WO2005036705A1 - 光半導体用基板 - Google Patents

光半導体用基板 Download PDF

Info

Publication number
WO2005036705A1
WO2005036705A1 PCT/JP2004/013766 JP2004013766W WO2005036705A1 WO 2005036705 A1 WO2005036705 A1 WO 2005036705A1 JP 2004013766 W JP2004013766 W JP 2004013766W WO 2005036705 A1 WO2005036705 A1 WO 2005036705A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
layer
substrate
solder layer
thickness
Prior art date
Application number
PCT/JP2004/013766
Other languages
English (en)
French (fr)
Inventor
Takao Shirai
Miho Nakamura
Original Assignee
Kabushiki Kaisha Toshiba
Toshiba Materials Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd. filed Critical Kabushiki Kaisha Toshiba
Priority to JP2005514546A priority Critical patent/JPWO2005036705A1/ja
Priority to US10/547,697 priority patent/US20060269698A1/en
Publication of WO2005036705A1 publication Critical patent/WO2005036705A1/ja
Priority to US12/180,864 priority patent/US20080298408A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/06Substrate layer characterised by chemical composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an optical semiconductor substrate used for mounting an optical semiconductor, and particularly to an optical semiconductor substrate having excellent bonding properties with an optical semiconductor and reducing stress applied to the optical semiconductor when the optical semiconductor is bonded or used.
  • the present invention relates to an optical semiconductor substrate capable of suppressing damage to an optical semiconductor which is damaged even by a slight stress and extending its life.
  • a substrate for an optical semiconductor is used as a semiconductor laser device by mounting an optical semiconductor such as an optical pickup LD for a CD (Compact Disc) or a DVD (Digital Video Disk).
  • FIG. 1 shows a configuration example of a semiconductor laser device.
  • the semiconductor laser device 1 has a structure in which an optical semiconductor 2 such as a laser diode is mounted on an optical semiconductor substrate 3.
  • the optical semiconductor substrate 3 is used for improving heat dissipation of the optical semiconductor 2 and for positioning.
  • a heat sink 4 having good thermal conductivity and also having the same strength as copper is bonded to efficiently release the heat generated in the optical semiconductor 2 to the outside (for example, Patent Document 1).
  • the optical semiconductor substrate 3 includes, for example, an insulating ceramic substrate 5, a metal layer 6 formed thereon by a sputtering method or the like, and a solder layer 7 further formed thereon. Is bonded on the optical semiconductor substrate 3 using the solder layer 7 (see, for example, Patent Document 2).
  • FIG. 2 shows a general relationship between the current of the optical semiconductor 2 and the optical output.
  • the current value at the start of laser oscillation is the threshold current Ith, and specifically, the current value at which the extension of the current-light output straight line in the oscillation state crosses the X axis is the threshold current Ith. be able to. Also, it is the value of the forward current when the specified optical output Po is obtained.
  • the optical semiconductor 2 is an optical semiconductor. Crystal defects occur due to a slight stress at the time of bonding to the use substrate 3 or during use. When the crystal of the optical semiconductor 2 is in order, stimulated emission occurs due to light emission recombination, and a specified optical output Po can be obtained for a long time by controlling the operating current lop in the optical semiconductor 2. On the other hand, if the optical semiconductor 2 has a slight crystal defect, non-radiative recombination occurs in that portion, and a large amount of heat is generated without emitting light. Due to this heat, crystal defects are further generated in the optical semiconductor 2, and non-radiative recombination occurs. Due to this repetition, the optical semiconductor 2 cannot obtain the specified optical output Po in a short period of time, and eventually does not emit light.
  • a typical semiconductor laser device 1 for example, like joining the laser diode on a silicon substrate, the thermal expansion coefficient of the silicon substrate is about 3 X 10- 6 Z ° C, the semi thermal expansion coefficient of the conductor is approximately 4. 2 X 10- 6 Z ° C , despite the difference in their thermal expansion coefficient does not force generated small small quantity kana stress, Recessed crystal missing in the laser diode by the stress Occurs and the life is shortened. Further, even in the case of using a 4. 6 X 10- 6 Z ° C about aluminum nitride substrate and so correct thermal expansion coefficient substantially to the thermal expansion coefficient of the laser diode, the difference in the small thermal expansion coefficient The generated stress may cause crystal defects in the laser diode and shorten its life.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 6-37403 (FIG. 11, etc.)
  • Patent Document 2 JP-A-2002-100826
  • the optical semiconductor substrate on which the optical semiconductor is mounted has a small stress applied to the optical semiconductor when the optical semiconductor is bonded or used thereafter, and the optical semiconductor is unlikely to have crystal defects.
  • the present invention has been made to solve such problems, and suppresses the stress applied to the optical semiconductor at the time of joining the optical semiconductor or at the time of subsequent use, thereby suppressing the occurrence of crystal defects in the optical semiconductor. It is another object of the present invention to provide an optical semiconductor substrate that can extend the life.
  • the present inventors have conducted research on substrates for optical semiconductors in order to suppress the occurrence of crystal defects that shorten the life of optical semiconductors.
  • the conventional general Au (gold) Sn (tin) solder Although it is hard to be damaged even when a small amount of stress is applied like a silicon chip, it can be used satisfactorily for bonding. It was found that the stress generated during joining and use of the optical semiconductor could not be sufficiently reduced because of too much, and crystal defects occurred in the optical semiconductor, resulting in a shorter life.
  • the inventors of the present invention have studied the material and composition of the solder constituting the solder layer of the optical semiconductor substrate.
  • typical Au-Sn solders are hard because they contain as much as about 80% by weight of Au. Therefore, the stress generated during the joining and use of optical semiconductors cannot be reduced sufficiently, and the It has been found that crystal defects occur and the life is shortened. Therefore, they found that as a result of increasing the Sn content in the Au—Sn solder, the hardness of the Au—Sn solder could be effectively reduced.
  • the inventors of the present invention have conducted studies on such a decrease in solderability, and as a result, the decrease in solderability is due to the oxide film formed on the surface of the Au—Sn solder as the solder layer. It was also found that the formation of the oxide film was due to the fact that the Au—Sn solder forming the solder layer contained a large amount of Sn that was easily oxidized. Was.
  • the present inventors have conducted research to improve the decrease in solderability due to the formation of such an oxide film.
  • the solder layer is not oxidized and has no adverse effect. It is effective to cover the Au—Sn solder surface, and as such, it is effective to form a protective layer made of Au (gold) or Ag (silver) on the surface.
  • Au and Ag are not oxidized, have a low electrical resistance, can form a eutectic with Sn, which is a component of the solder layer, and hardly cause adverse effects. They have been found to be suitable for forming a protective layer to cover. Furthermore, it was also found that by forming such a protective layer on the surface of the solder layer, the solder layer does not necessarily need to contain Au.
  • the thickness of the protective layer exceeds 1 ⁇ m, the protective layer remains because the protective layer and the solder layer are not completely mixed during the heat treatment for bonding the optical semiconductor.
  • the optical semiconductor substrate of the present invention comprises an insulating ceramics substrate, a metal layer provided on the insulating ceramics substrate, and 50% by weight of Sn alone or Sn provided on the metal layer.
  • a solder layer substantially composed of Au and including the above, and a protective layer provided on the solder layer and having a thickness of 0.01 ⁇ m or more and 1 ⁇ m or less and having an Au or Ag force. Things.
  • FIG. 1 is a cross-sectional view showing an example of a general semiconductor laser device.
  • FIG. 2 is a diagram showing a relationship between current and light output characteristics of a general semiconductor laser device.
  • FIG. 3 is a cross-sectional view illustrating an example of the optical semiconductor substrate of the present invention.
  • FIG. 3 is a sectional view showing the structure of the optical semiconductor substrate 3 of the present invention.
  • a metal layer 6, a solder layer 7, and a protective layer 8 made of Au (gold) or Ag (silver) are sequentially formed on an insulating ceramic substrate 5. Things.
  • the insulating ceramic substrate 5 used in the present invention has, as a main component, one selected from, for example, aluminum nitride, silicon nitride, silicon carbide, beryllium oxide, and diamond.
  • the thermal conductivity of the insulative ceramic substrate 5 improves the heat dissipation when an optical semiconductor such as a laser diode is mounted, suppresses the generation of stress, and suppresses the generation of crystal defects in the optical semiconductor. More preferably 80WZm.K or more, more preferably 190W / m'K or more! / ,.
  • the thickness of the insulating ceramic substrate 5 is not particularly limited, and can be appropriately adjusted in consideration of the thermal conductivity, strength, and the like of the insulating ceramic substrate 5. It is preferable to set the range to 5 mm or less.
  • the ratio between them is as follows. Those having (KZt) of 700 or more are preferable. That is, it is possible to further improve the heat dissipation of the optical semiconductor substrate 3 by increasing the thermal conductivity K and decreasing the plate thickness t.
  • the thickness t be 0.286 mm or less, and an aluminum nitride having a thermal conductivity of 170 WZm'K is used.
  • its thickness t is preferably set to 0.243 mm or less.
  • Such an insulating ceramic substrate 5 is made of, for example, aluminum nitride or the like as described above. It is obtained by adding a sintering aid to the raw material powder, further adding a binder and the like, mixing the mixture, forming a predetermined substrate shape, and sintering the formed body.
  • a sintering aid a rare earth oxide that can use various metal compounds is preferably used.
  • Rare earth acid oxidants include, for example, Y O (yttrium oxide), Er O (oxide erbium),
  • oxides of alkaline earth metal elements such as Ca, Ba, and Sr, Si compounds such as SiO and SiN, and BO, BC, TiB, LaB, and the like. Boron compounds etc.
  • rare earth oxides, alkaline earth metal oxides, and the like may be compounded as carbonates, oxalates, nitrates, fluorides, and the like that become oxides during firing.
  • a sintered body having a light-transmitting property such as aluminum nitride
  • a coloring agent such as Sr or Sr may be added.
  • the coloring material is preferably added in a proportion of 5.0% by weight or less based on the aluminum nitride raw material powder and the like. If the amount of the coloring agent added is too large to exceed 5.0% by weight, the thermal conductivity of the sintered body tends to decrease, and the heat dissipation of the optical semiconductor substrate 3 is impaired.
  • the coloring material it is preferable to add and include oxides, nitrides, and fluorides of the above-mentioned various elements. It is preferable to select arbitrarily in consideration of the influence on properties such as strength.
  • the metal layer 6 is provided on the insulating ceramic substrate 5 as described above.
  • the metal layer 6 is laminated, for example, from the insulating ceramic substrate 5 side in the order of a Ti layer, a Pt layer, and an Au layer.
  • a circuit may or may not be formed in the metal layer 6. It is preferable that the total thickness of the metal layer 6 having such a force as the Ti layer, the Pt layer, and the Au layer be 3 ⁇ m or less.
  • the Ti layer, the Pt layer and the Au layer are formed on the insulating ceramic substrate 5 by a PVD method such as a sputtering method, a vacuum evaporation method, a molecular beam epitaxy (MBE) method, an ion plating method, and a laser deposition method.
  • PVD Physical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • a thin film forming method such as a chemical vapor deposition method.
  • solder layer 7 is formed on this metal layer 6, a solder layer 7 is formed.
  • the solder layer 7 is composed of Sn alone, an Au—Sn alloy containing 50% by weight or more of Sn and the balance being substantially Au, or an Au—Sn mixture.
  • the solder layer 7 contains 50% by weight or more of Sn, the hardness of the solder layer 7 can be effectively reduced. As a result, when the optical semiconductor is bonded or used thereafter, stress generated mainly due to a difference in thermal expansion coefficient between the insulating ceramic substrate 5 and the optical semiconductor is sufficiently relaxed, and crystal defects are generated even by a slight stress. The generation of crystal defects in the optical semiconductor can be suppressed and the life can be prolonged.
  • Solder layer 7 more preferably contains Sn alone or Sn in an amount of 60% by weight or more and the balance is made of Au, and still more preferably contains Sn alone or Sn in an amount of 70% by weight or more and the balance is made of Au. It is.
  • the melting point of the solder layer 7 is preferably 210 ° C or more and 500 ° C or less, more preferably 210 ° C or more and 400 ° C or less.
  • the hardness of the solder layer 7 can be more effectively reduced, and the stress applied to the optical semiconductor at the time of joining the optical semiconductor or at the time of subsequent use can be reduced. Can be sufficiently relaxed, and crystal defects are generated even by a slight stress, thereby suppressing the generation of crystal defects in the optical semiconductor whose life is shortened and extending its life.
  • the solder layer 7 is formed on the metal layer 6 by, for example, a technique such as vacuum deposition or sputtering of Au or Sn, or by using a screen printing method or the like with the above-mentioned solder paste. It can be performed by a coating method. It is preferable that the thickness of the solder layer 7 be 2 m or more and 5 ⁇ m or less.
  • the thickness of the solder layer 7 is 2 ⁇ m or less, the thickness of the solder layer 7 is too thin, so that the stress generated due to the difference in the thermal expansion coefficient between the optical semiconductor and the insulating ceramic substrate 5 can be sufficiently reduced. It cannot be alleviated, and it may be difficult to suppress the generation of crystal defects in the optical semiconductor and extend the life.
  • the thickness of the solder layer 7 is up to about 5 m, a sufficient buffering effect can be obtained, and providing a thickness of more than 5 m is preferable in terms of productivity and the like. The effect of this may be reduced and the service life may be shortened, which is not preferable.
  • a protective layer 8 having Au or Ag force is formed on the solder layer 7 as described above.
  • the protective layer 8 is provided to prevent an oxide film from being formed on the surface of the solder layer 7.
  • the solder layer 7 according to the present invention contains Sn in an amount of 50% by weight or more in order to minimize the stress applied to the optical semiconductor at the time of joining the optical semiconductor or thereafter using the optical semiconductor, to suppress the generation of crystal defects and to extend the life. By including it, its hardness is reduced.
  • the oxide film is easily oxidized, and the Sn content is large, so that an oxide film is easily formed on the surface thereof.
  • This oxide film reduces the solder wettability and makes it difficult to join the optical semiconductor, and after the optical semiconductor is joined, the heat transfer to the optical semiconductor substrate 5 due to its high thermal resistance. To cause crystal defects in the optical semiconductor and shorten its life.
  • a protective layer 8 having Au or Ag force is provided in order to prevent the formation of the oxide film on the solder layer 7. Since the protective layer 8 is made of a metal that is hardly oxidized, such as Au or Ag, the oxide film as described above is easily formed! / ⁇ The formation of an oxidized film in the solder layer is suppressed, and the solder wettability is reduced. The decrease can be suppressed. Further, since Au or Ag forming the protective layer 8 can form a eutectic with Sn which is a component of the solder layer, the Au or Ag easily mixes with the solder layer 7 at the time of joining the optical semiconductor, and hardly causes any adverse effect.
  • the thickness of such a protective layer 8 is not less than 0.01 ⁇ m and not more than 1 ⁇ m. If the thickness of the protective layer 8 is less than 0.01 m, a portion of the surface of the solder layer 7 that is not sufficiently covered by the protective layer 8 is generated, and the uncovered portion is oxidized and oxidized. It becomes a dangling film and makes bonding of the optical semiconductor difficult. Further, after the optical semiconductor is bonded, the heat resistance of the oxide film is high, so that the heat transfer to the optical semiconductor insulating ceramic substrate 5 is hindered, and crystal defects are generated in the optical semiconductor and the life is shortened. .
  • the protective layer 8 When the thickness of the protective layer 8 exceeds 1 ⁇ m, the protective layer 8 and the solder layer 7 are not completely mixed during the heat treatment for bonding the optical semiconductor, and the protective layer 8 remains. In addition, there may be portions where the concentration of Au or Ag is high, which makes it difficult to join optical semiconductors. After joining the optical semiconductor, the portion where such a protective layer 8 remains or the portion where the concentration of Au or Ag is high is hardened. Therefore, the stress is not sufficiently relaxed, and crystal defects occur in the optical semiconductor, and the life is shortened.
  • the thickness of the protective layer 8 is more preferably 0.01 ⁇ m or more and 0.2 / z m or less.
  • the protective layer 8 can be easily mixed with the solder layer 7 during the heat treatment for bonding the optical semiconductor, and the Au or Ag concentration can be reduced. Can be suppressed from partially increasing, and by sufficiently relaxing the stress, the occurrence of crystal defects in the optical semiconductor can be suppressed and the life can be prolonged.
  • the Au or Ag protective layer 8 is formed by a PVD (Physical Vapor Deposition: PVD) method such as a sputtering method, a vacuum evaporation method, a molecular beam epitaxy (MBE) method, an ion plating method, and a laser deposition method. It may be formed using a thin film forming method such as a CVD (Chemical Vapor Deposition) method such as a physical vapor deposition method, a thermal CVD method, a plasma CVD method, or an optical CVD method. Then, it may be formed using a paste method.
  • PVD Physical Vapor Deposition: PVD
  • CVD Chemical Vapor Deposition
  • Such an optical semiconductor substrate 3 of the present invention is used as a semiconductor laser element by bonding an optical semiconductor.
  • the bonding between the optical semiconductor substrate 3 and the optical semiconductor is preferably performed by a heat treatment at a temperature higher than the melting temperature of the solder layer 7, for example, 250 ° C. to 400 ° C. for about 10 seconds to 5 minutes.
  • the optical semiconductor substrate 3 of the present invention is suitably used particularly for joining a high-output type optical semiconductor.
  • a high-output type optical semiconductor is joined, a large amount of heat is generated due to an excessive light density at the end face of the optical semiconductor when the optical semiconductor is used, and an excessive stress is easily applied to the optical semiconductor immediately. This stress causes crystal defects in the optical semiconductor and shortens its life. Therefore, the life of the optical semiconductor substrate 3 of the present invention can be greatly extended as compared with the related art by joining such a high-output type optical semiconductor.
  • a Ti, Pt, and Au film were sequentially formed on an aluminum nitride substrate having a length of 1. Omm, a width of 1. Omm, and a thickness of 0.2 mm by a vacuum deposition method, and a total thickness of 0.6. a single metal layer or a solder layer that also has Sn and Au strength on this metal layer, and then form an Au layer as a protective layer on this solder layer using a vacuum evaporation method.
  • the optical semiconductor substrate changes the Au—Sn composition of the solder layer.
  • the thickness of the Au layer formed on the solder layer was varied in the range of 0.008-1.2 to produce multiple types.
  • the thermal conductivity of the aluminum nitride substrate was set to 70, 170, and 200 for the solder layer composition of AulO wt% and Sn90 wt%. , 250 (WZm'K).
  • the composition of the solder layer was 0% by weight of Au, 90% by weight of Sn, the thermal conductivity of the aluminum nitride substrate was 200 (WZm'K), and the Au layer was The experiment was carried out with a thickness of 0.1 ⁇ m while changing the thickness of the solder layer in the range of 1 ⁇ m-6 ⁇ m.
  • the Sn content in the solder layer is 50% by weight or more and the thickness of the Au layer or Ag layer is 0%. It is not less than 01 ⁇ m and not more than 1 ⁇ m.
  • a laser diode having a length of 1. Omm, a width of 1. Omm, and a thickness of 0.2 mm was placed on the substrate for optical semiconductor, and was bonded by performing a heat treatment at 400 ° C. for 1 minute.
  • a semiconductor laser device was fabricated.
  • the thermal resistance ratio and the lop life were measured to examine the effects of the composition of the solder layer and the thickness of the Au layer or Ag layer as a protective layer formed on the solder layer. Table 1 shows the measurement results of the thermal resistance ratio and the lop life.
  • the thermal resistance ratio measuring the thermal resistance at the time of the Is the Bruno pulse time, the result is the thickness of the composition of the solder layer Au20 weight 0/0, Sn80 weight 0/0, Au layer
  • the thermal resistance at 0.1 ⁇ m was defined as 100%, which is the standard, and expressed as a ratio (%) to this.
  • the thermal resistance ratio is related to the evaluation of the solderability. If the thermal resistance ratio is high, the surface of the solder layer has oxidized parts, or the Au layer or Ag layer as a protective layer is completely in the solder layer. , Which means that there is a part.
  • the lop life was measured with the semiconductor laser device placed in a constant temperature bath at 80 ° C. A current of mA was passed to cause light emission, and the time until light emission stopped after that was measured. The longer the lop life, the less stress applied to the laser diode or the better the soldering is done.
  • Table 1, 2 from the obvious way, the Sn content in the solder layer 50 weight 0/0 or more, the thickness of the Au layer as a protective layer 0. 01 mu m or more and less than 1 mu m In each case, it was confirmed that the lop life exceeded 1500 hours, the stress applied to the laser diode was reduced, and the generation of crystal defects in the laser diode was suppressed. Also, it was confirmed that the lop life can be further improved by setting the Sn content in the solder layer to 60% by weight or more, and more preferably 70% by weight or more.
  • the thickness of the Au layer as the protective layer is 0.01 m or more, The lower one has a longer lop life, and the aluminum nitride substrate with a thermal conductivity of 80 WZm'K or more and 190 WZm'K or more has a longer lop life. Was done. It was also confirmed that the same effect as that of the Au layer was obtained when the Ag layer was used as the protective layer.
  • the present invention can be applied to the task of manufacturing a semiconductor laser device by joining optical semiconductors.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Ceramic Products (AREA)

Abstract

 本発明の光半導体用基板は、絶縁性セラミックス基板と、前記絶縁性セラミックス基板上に設けられた金属層と、前記金属層上に設けられ、Sn単体またはSnを50重量%以上含み残部が実質的にAuからなるはんだ層と、前記はんだ層上に設けられ、厚さが0.01μm以上、1μm以下であるAuまたはAgからなる保護層とを具備するものである。このような光半導体用基板とすることにより、僅かな応力により結晶欠陥が発生しやすい光半導体を接合する際あるいはその後の使用時に、光半導体に加わる応力を極力少なくし、結晶欠陥の発生を抑制し寿命を延ばすことができる。

Description

明 細 書
光半導体用基板
技術分野
[0001] 本発明は光半導体を搭載するために用いられる光半導体用基板に係り、特に光半 導体との接合性に優れ、また光半導体の接合時あるいは使用時に光半導体に加わ る応力を緩和し、僅かな応力によっても損傷する光半導体の損傷を抑制し、その寿 命を延ばすことが可能な光半導体用基板に関する。
背景技術
[0002] 光半導体用基板は、例えば CD(Compact Disc)や DVD (Digital Video Disk)用光ピ ックアップ LD等の光半導体を搭載させて半導体レーザ素子として用いられて 、る。 図 1は、半導体レーザ素子の構成例を示したものである。
[0003] 半導体レーザ素子 1は、レーザダイオード等の光半導体 2が光半導体用基板 3上に 搭載された構造となっている。光半導体用基板 3は光半導体 2の放熱性向上および 位置決め等のために用いられるものである。光半導体用基板 3の他方の面には、例 えば光半導体 2に発生した熱を効率的に外部へ放出するため、熱伝導性が良好な 銅等力もなるヒートシンク 4が接合されている (例えば特許文献 1参照)。
[0004] 光半導体用基板 3は、例えば絶縁性セラミックス基板 5と、その上にスパッタリング法 等により形成された金属層 6と、さらにその上に形成されたはんだ層 7とからなり、光 半導体 2はこのはんだ層 7を利用して光半導体用基板 3上に接合されて ヽる(例えば 、特許文献 2参照)。
[0005] 図 2は、光半導体 2の電流と光出力との一般的な関係を示したものである。光出力 力 Spthに達するまでは自然放出光がでており、 Pthを超えるとレーザ発振 (誘導放出 )が起こる。このレーザ発振を開始するときの電流値がしきい値電流 Ithであり、具体 的には発振状態の電流一光出力直線の延長線が X軸と交わる電流値をしきい値電 流 Ithとすることができる。また、規定の光出力 Poが得られるときの順方向の電流の値 力 動作電流 lopである。
[0006] 一般に、トランジスタ等に使用されるシリコンチップと異なり、光半導体 2は光半導体 用基板 3への接合時や使用時における僅かな応力により結晶欠陥が発生する。光半 導体 2の結晶が整っている場合には発光再結合により誘導放出が起こり、光半導体 2 に動作電流 lopをカ卩えることにより長期にわたって規定の光出力 Poを得ることができ る。これに対し、光半導体 2に僅かでも結晶欠陥があるとその部分で非発光再結合が 起こり、光を放出せずに多量の熱が発生する。この熱により光半導体 2にはさらに結 晶欠陥が発生し、非発光再結合が起こる。この繰り返しにより、光半導体 2は短期間 で規定の光出力 Poが得られなくなり、最終的に発光しなくなる。
[0007] 応力による損傷に関して具体的に説明すれば、例えばアルミナ基板上にシリコンチ ップが接合された一般のトランジスタ等は、アルミナの熱膨張係数が約 7 X 10— 6Z°C 、シリコンチップの熱膨張係数が約 3 X 10— 6Z°Cであり、熱膨張係数の差が大きいに もかかわらず損傷せずに使用可能である。また、銅力もなるリードフレーム上にシリコ ンチップを接合したようなものでは、銅力もなるリードフレームの熱膨張係数が約 17 X 10— 6Z°Cと熱膨張係数の差が非常に大きくなるにもかかわらず使用可能なものも ある。
[0008] これに対して、一般的な半導体レーザ素子 1、例えばシリコン基板上にレーザダイ オードを接合したようなものは、シリコン基板の熱膨張係数が約 3 X 10— 6Z°C、光半 導体の熱膨張係数が約 4. 2 X 10— 6Z°Cであり、それらの熱膨張係数の差が小さく僅 かな応力し力発生しないにもかかわらず、その応力によりレーザダイオードに結晶欠 陥が発生し、寿命が短くなつてしまう。また、レーザダイオードの熱膨張係数にほぼ等 しい熱膨張係数である 4. 6 X 10— 6Z°C程度の窒化アルミニウム基板を用いた場合で あっても、その僅かな熱膨張係数の違いにより発生する応力によってレーザダイォー ドに結晶欠陥が発生し、寿命が短くなつてしまうことがある。
[0009] 特に、近年においては機器の性能を向上させるために光半導体 2の高出力化が進 み、光半導体 2の端面での光密度が過大になることで多量の熱が生じ、過大な応力 力 Sかかり損傷しやすくなつており、その損傷を防ぐことが重要な課題となっている。 特許文献 1:特開平 6 - 37403号公報 (第 11図等)
特許文献 2:特開 2002-100826号公報
発明の開示 [0010] 上述したように、光半導体は僅かな応力によっても結晶欠陥が発生し、寿命が短く なってしまう。このため、これを搭載する光半導体用基板においては光半導体を接合 する際あるいはその後の使用時に光半導体へ加わる応力が少なぐ光半導体に結 晶欠陥が発生しにくいものであることが求められる。本発明はこのような課題を解決 するためになされたものであって、光半導体を接合する際あるいはその後の使用時 に光半導体に加わる応力を抑制し、光半導体の結晶欠陥の発生を抑制し、寿命を 延ばすことができる光半導体用基板を提供することを目的としている。
[0011] 本発明者らは光半導体の寿命を短くする結晶欠陥の発生を抑制するべく光半導体 用基板についての研究を進めた結果、従来の一般的な Au (金) Sn (スズ)はんだは シリコンチップのように多少の応力が加わっても損傷しにくいものの接合には十分使 用できるものの、光半導体のように僅かな応力によっても結晶欠陥が発生し寿命が短 くなるものの接合には硬すぎるため光半導体の接合時や使用時に発生する応力を 十分に緩和できず、光半導体に結晶欠陥が発生し寿命が短くなることを見 、だした。
[0012] そこで、本発明者らは光半導体用基板のはんだ層を構成するはんだの材質、組成 の研究を行った。その結果、一般的な Au— Snはんだは Auを 80重量%程度と多く含 むために硬くなつており、このため光半導体の接合時や使用時に発生する応力を十 分に緩和できず、光半導体に結晶欠陥が発生し寿命が短くなることを見いだした。そ こで、 Au— Snはんだにおける Sn含有量を増加させた結果、 Au— Snはんだの硬さを 効果的に低減できることを見 、だした。
[0013] し力しながら、はんだ層として Snを多く含む Au— Snはんだを用いた場合、はんだ 付け性が低下することがわ力つた。半導体レーザ素子の製造では生産性向上のため に光半導体用基板への光半導体の接合時間の短縮が求められており、このようなは んだ付け性の低下は生産性向上にとって障害となる。さらに、はんだ付け性が低下 すると熱抵抗が高くなり、光半導体力 光半導体用基板への熱の移動が十分に行わ れず、これにより応力が発生し光半導体に結晶欠陥が発生し寿命が短くなることがわ かった。
[0014] 本発明者らは、このようなはんだ付け性の低下について研究を重ねた結果、はんだ 付け性の低下ははんだ層である Au— Snはんだの表面に形成された酸ィ匕膜によるは んだ濡れ性の低下によるものであることがわかり、さらにこの酸ィ匕膜の形成ははんだ 層を構成する Au— Snはんだが酸ィ匕されやすい Snを多く含むことによるものであるこ とがわかった。
[0015] 本発明者らはこのような酸ィ匕膜の形成によるはんだ付け性の低下を改善すべく研 究を進めた結果、酸化されず、他に悪影響が発生しないものではんだ層である Au— Snはんだ表面を覆うことが有効であり、このようなものとして Au (金)または Ag (銀)か らなる保護層(以下、単に保護層と呼ぶ。)を表面に形成することが有効であることを 見いだした。すなわち、 Auおよび Agは酸ィ匕されず、電気抵抗も低ぐまたはんだ層 の成分である Snと共晶を形成でき、悪影響も発生させにくいため、はんだ層である A u— Snはんだ表面を覆う保護層の形成に好適なものであることを見 ヽだした。さら〖こ、 はんだ層の表面にこのような保護層を形成することにより、必ずしもはんだ層に Auを 含ませなくてもよ 、こともわかった。
[0016] また、保護層の厚さがはんだ層表面の酸化、はんだ付け性に与える影響を検討し たところ、その厚さによりはんだ層表面の酸化、はんだ付け性が急激に変化すること がわかった。すなわち、保護層の厚さが 0. 01 m未満であるとはんだ層の表面が十 分に覆われていない部分が発生し、この部分が酸化されてできた酸ィ匕膜により光半 導体の接合が困難となり、また光半導体を接合したときにはこの部分の熱抵抗が高く なり応力を発生させ、光半導体に結晶欠陥が発生し寿命が短くなることがわかった。
[0017] 一方、保護層の厚さが 1 μ mを超えると、光半導体を接合するための熱処理の際に 保護層とはんだ層とが完全に混ざり合わないために保護層が残ったままとなり、また Auや Agの濃度が高い部分が発生したりするために光半導体の接合が困難となり、 さらに接合後にお 、ては Auや Agの濃度が高 、部分が硬 、ために応力が十分に緩 和されず、光半導体に結晶欠陥が発生し寿命が短くなることがわ力つた。
[0018] 本発明者らは以上のような知見に基づき、本発明を完成させたものである。すなわ ち、本発明の光半導体用基板は、絶縁性セラミックス基板と、前記絶縁性セラミックス 基板上に設けられた金属層と、前記金属層上に設けられ、 Sn単体または Snを 50重 量%以上含み残部が実質的に Auからなるはんだ層と、前記はんだ層上に設けられ 、厚さが 0. 01 μ m以上、 1 μ m以下である Auまたは Ag力 なる保護層とを具備する ものである。
図面の簡単な説明
[0019] [図 1]一般的な半導体レーザ素子の一例を示した断面図。
[図 2]—般的な半導体レーザ素子の電流一光出力特性の関係を示した図。
[図 3]本発明の光半導体用基板の一例を示した断面図。
発明を実施するための最良の形態
[0020] 以下、本発明の実施の形態について説明する。
[0021] 図 3は、本発明の光半導体用基板 3の構造を示した断面図である。本発明の光半 導体用基板 3は、絶縁性セラミックス基板 5上に、金属層 6、はんだ層 7、および、 Au( 金)または Ag (銀)カゝらなる保護層 8が順に形成されたものである。
[0022] 本発明に用いられる絶縁性セラミックス基板 5は、例えば窒化アルミニウム、窒化珪 素、炭化珪素、酸ィ匕ベリリウムおよびダイヤモンドの中から選択される 1種を主成分と するものである。絶縁性セラミックス基板 5の熱伝導率は、レーザダイオード等の光半 導体を搭載した場合の放熱性を向上させ、応力の発生を抑制し、光半導体への結晶 欠陥の発生を抑制する観点から、 80WZm.K以上であることが好ましぐ 190W/ m'K以上であればなお好まし!/、。
[0023] 絶縁性セラミックス基板 5の厚さは特に制限されるものではなぐ絶縁性セラミックス 基板 5の熱伝導率、強度等を勘案して適宜調整することができるが、例えば 0. lmm 以上、 1. 5mm以下の範囲とすることが好ましい。
[0024] また、熱伝導率との関係から、絶縁性セラミックス基板 5の熱伝導率を K (W/m-K )、絶縁性セラミックス基板 5の厚さを t (mm)としたとき、それらの比 (KZt)が 700以 上となるものが好ましい。すなわち、熱伝導率 Kを高くし、板厚 tを薄くすることによつ て光半導体用基板 3の放熱性をさらに向上させることが可能になる。
[0025] 例えば、熱伝導率が 200WZm'Kの窒化アルミニウム基板を使用する場合には、 その厚さ tは 0. 286mm以下とすることが好ましぐまた熱伝導率が 170WZm'Kの 窒化アルミニウム基板を使用する場合には、その厚さ tは 0. 243mm以下とすること が好ましい。
[0026] このような絶縁性セラミックス基板 5は、例えば上述したような窒化アルミニウム等の 原料粉末に焼結助剤を添加し、さらにバインダ等を加えて混合した後、所定の基板 形状に成形し、この成形体を焼結することにより得られる。焼結助剤としては各種の 金属化合物を用いることができる力 希土類酸ィ匕物が好適に用いられる。
[0027] 希土類酸ィ匕物としては、例えば Y O (酸化イットリウム)、 Er O (酸ィ匕エルビウム)、
2 3 2 3
Yb O (酸化イッテルビウム)、等が挙げられ、これらの中でも特に Y oが好適に用
2 3 2 3 いられる。
[0028] また、希土類酸ィ匕物に加えて、 Ca、 Ba、 Sr等のアルカリ土類金属元素の酸ィ匕物、 SiO、 Si N等の Si化合物、 B O、 B C、 TiB、 LaB等の硼素化合物等を併用して
2 3 4 2 3 4 2 6
もよい。なお、希土類酸化物やアルカリ土類金属酸化物等は、焼成時に酸化物とな る炭酸塩、シユウ酸塩、硝酸塩、フッ化物等として配合してもよい。
[0029] さらに、例えば窒化アルミニウムのように焼結体が透光性を有するものついては、レ 一ザ光の再反射による特性変化を抑制するために、 W、 Ti、 Zr、 Hf、 Cr、 Mo、 Sr等 の着色化材を添加してもよ 、。
[0030] この場合、着色化材は窒化アルミニウム原料粉末等に対して 5. 0重量%以下の割 合で添加することが好ましい。着色化材の添加量が 5. 0重量%を超えるように過大 になると、焼結体の熱伝導率が低下し易くなり、光半導体用基板 3の放熱性が損なわ れる。
[0031] なお、上記着色化材を添加する形態としては、上記各種元素の酸化物、窒化物、 フッ化物として添加し含有させることが好ましぐその形態は絶縁性セラミックス基板 5 の放熱性、強度等の特性に対する影響を勘案して任意に選択することが好まし 、。
[0032] 上述したような絶縁性セラミックス基板 5上には金属層 6が設けられる。金属層 6は、 例えば絶縁性セラミックス基板 5側から Ti層、 Pt層、 Au層の順に積層される。金属層 6には回路を形成してもよいし、回路を形成しなくてもよい。このような Ti層、 Pt層およ び Au層等力もなる金属層 6の全体の厚さは 3 μ m以下とすることが好ましい。
[0033] 絶縁性セラミックス基板 5上への Ti層、 Pt層および Au層の形成は、スパッタ法、真 空蒸着法、分子線ェピタキシ(MBE)法、イオンプレーティング法およびレーザデポ ジシヨン法等の PVD (Physical Vapor Deposition:物理的蒸着)法、場合によっては熱 CVD法、プラズマ CVD法、光 CVD法等の CVD (Chemical Vapor Deposition:化学 的気相成長)法等の薄膜形成法を適用して行うことが好ましい。
[0034] この金属層 6上にははんだ層 7が形成される。このはんだ層 7は、 Sn単体からなるも の、または、 Snを 50重量%以上含み残部が実質的に Auである Au— Sn合金あるい は Au— Sn混合物からなるものである。
[0035] はんだ層 7を Snを 50重量%以上含むものとすることで、はんだ層 7の硬さを有効に 低下させることができる。これにより、光半導体を接合する際あるいはその後の使用 時に、主として絶縁性セラミックス基板 5と光半導体との熱膨張係数の違いにより発生 する応力を十分に緩和し、僅かな応力によっても結晶欠陥が発生し寿命が短くなる 光半導体における結晶欠陥の発生を抑制しその寿命を長くすることができる。
[0036] はんだ層 7は、より好ましくは Sn単体または Snを 60重量%以上含み残部が Auから なるものであり、さらに好ましくは Sn単体または Snを 70重量%以上含み残部が Auか らなるものである。そして、はんだ層 7の融点は 210°C以上、 500°C以下が好ましぐ 210°C以上、 400°C以下であればより好ましい。
[0037] このように Snの含有量を多くすることにより、はんだ層 7の硬さを一層有効に低下さ せることができ、光半導体を接合する際あるいはその後の使用時に光半導体に加わ る応力を十分に緩和し、僅かな応力によっても結晶欠陥が発生し寿命が短くなる光 半導体における結晶欠陥の発生を抑制しその寿命を長くすることができる。
[0038] 金属層 6上へのはんだ層 7の形成は、例えば Au、 Snの真空蒸着もしくはスパッタ 等の手法により、あるいは、上述したような糸且成のはんだペーストをスクリーン印刷法 等を用いて塗布する手法により行うことができる。はんだ層 7の厚さは 2 m以上、 5 μ m以下とすることが好ましい。
[0039] はんだ層 7の厚さが 2 μ m以下であると、はんだ層 7の厚さが薄すぎるため光半導体 と絶縁性セラミックス基板 5との熱膨張係数の違いにより発生する応力を十分に緩和 できず、光半導体における結晶欠陥の発生を抑制し寿命を長くすることが困難となる おそれがある。また、はんだ層 7の厚さは 5 m程度まであれば十分に緩衝効果を得 ることができ、それ以上設けることは生産性等の観点力 好ましくなぐまたかえって 光半導体における結晶欠陥の発生を抑制する効果が低くなり寿命を短くしてしまうお それもあり好ましくない。 [0040] 上述したようなはんだ層 7上には Auまたは Ag力 なる保護層(以下、単に保護層と 呼ぶ。)8が形成される。この保護層 8ははんだ層 7の表面に酸ィ匕膜が形成されること を防止するために設けられるものである。本発明におけるはんだ層 7は、光半導体を 接合する際あるいはその後の使用時に光半導体に加わる応力を極力少なくし、その 結晶欠陥の発生を抑制し寿命を長くするために、 Snを 50重量%以上含ませることに よりその硬さを低減させている。
[0041] しかし、酸化されやす!/、Snの含有量が多 、ためにその表面には酸化膜が形成され やすくなつている。この酸ィ匕膜ははんだ濡れ性を低下させ光半導体の接合を困難と し、また光半導体を接合した後においては、熱抵抗が高いために光半導体力 絶縁 性セラミックス基板 5への熱の移動を妨げ、光半導体に結晶欠陥を発生させ寿命を 短くする。
[0042] そこで、本発明ではこのようなはんだ層 7における酸ィ匕膜の形成を防ぐものとして A uまたは Ag力もなる保護層 8を設けることとした。この保護層 8は酸化されにくい金属 である Auまたは Agカゝらなるため、上述したような酸化膜が形成されやす!/ヽはんだ層 における酸ィ匕膜の形成を抑制し、はんだ濡れ性の低下を抑制することができる。また 、保護層 8を構成する Auまたは Agははんだ層の成分である Snと共晶を形成できる ため、光半導体の接合時にはんだ層 7に容易に混ざり合い、また悪影響も発生させ にくい。
[0043] このような保護層 8の厚さは 0. 01 μ m以上、 1 μ m以下である。保護層 8の厚さが 0 . 01 m未満であると、はんだ層 7の表面が保護層 8により十分に覆われていない部 分が発生し、この覆われていない部分が酸化されて酸ィ匕膜となり光半導体の接合を 困難とする。また、光半導体を接合した後においては、この酸化膜の熱抵抗が高い ために光半導体力 絶縁性セラミックス基板 5への熱の移動が妨げられ、光半導体に 結晶欠陥が発生し寿命が短くなる。
[0044] また、保護層 8の厚さが 1 μ mを超えると、光半導体を接合するための熱処理の際 に保護層 8とはんだ層 7とが完全に混じり合わず保護層 8が残存し、また Auや Agの 濃度が高い部分が生じることがあり、光半導体の接合が困難となる。また、光半導体 の接合後は、このような保護層 8が残存した部分や Auや Agの濃度が高い部分が硬 いために応力が十分に緩和されず、光半導体に結晶欠陥が発生し寿命が短くなる。
[0045] 保護層 8の厚さは、より好ましくは 0. 01 μ m以上、 0. 2 /z m以下である。保護層 8の 厚さを 0. 2 m以下とすることにより、光半導体を接合するための熱処理の際に保護 層 8をはんだ層 7に容易に混ぜ合わせることができ、また Auや Agの濃度が部分的に 高くなることも抑制でき、応力の緩和を十分に行うことにより光半導体における結晶欠 陥の発生を抑制し寿命を延ばすことができる。
[0046] このような Auまたは Ag力 なる保護層 8は、スパッタ法、真空蒸着法、分子線ェピ タキシ(MBE)法、イオンプレーティング法およびレーザデポジション法等の PVD ( Physical Vapor Deposition:物理的蒸着)法、場合によっては熱 CVD法、プラズマ C VD法、光 CVD法等の CVD (Chemical Vapor Deposition:化学的気相成長)法等の 薄膜形成法を用いて形成してもよ ヽし、ペースト法を用いて形成してもよ 、。
[0047] このような本発明の光半導体用基板 3は、光半導体を接合することにより半導体レ 一ザ素子として用いられる。光半導体用基板 3と光半導体との接合は、はんだ層 7の 溶融温度以上、例えば 250°C以上、 400°C以下で、 10秒以上、 5分以下程度の熱 処理を行うことが好ましい。本発明の光半導体用基板 3は、特に高出力タイプの光半 導体を接合するために好適に用いられる。高出力タイプの光半導体を接合した場合 、その使用時に光半導体の端面での光密度が過大になるために多量の熱が生じや すぐ光半導体に過大な応力がかかりやすい。この応力は光半導体に結晶欠陥を発 生させ寿命を短くする。このため本発明の光半導体用基板 3はこのような高出力タイ プの光半導体を接合することで、従来に比べ寿命を大きく延ばすことが可能となる。
[0048] (実施例)
次に、本発明を実施例を参照してさらに詳細に説明する。
[0049] 縦 1. Omm、横 1. Omm、厚さ 0. 2mmの窒化アルミニウム基板上に、真空蒸着法 を用いて Ti、 Pt、 Auの膜を順に形成して全体で厚さ 0. 6 mの金属層とし、この金 属層上に Sn単体または Snおよび Au力もなるはんだ層を形成し、さらにこのはんだ 層上に真空蒸着法を用いて保護層としての Au層を形成して光半導体用基板とした
[0050] なお、表 1に示すように、光半導体用基板ははんだ層の Au— Sn組成を変化させる と共〖こ、はんだ層上に形成する Au層の厚さを 0. 008— 1. 2の範囲で変化させて複 数種類を製造した。
[0051] また、窒化アルミニウム基板の熱伝導率の違いによる影響を調べるために、はんだ 層の組成が AulO重量%、 Sn90重量%のものについて、窒化アルミニウム基板の熱 伝導率を 70、 170、 200、 250 (WZm'K)と変えて同様の実験を行った。
[0052] さらに、はんだ層の厚さの違いによる影響を調べるために、はんだ層の組成が Aul 0重量%、 Sn90重量%、窒化アルミニウム基板の熱伝導率が 200 (WZm'K)、 Au 層の厚さが 0. 1 μ mのものについて、はんだ層の厚さを 1 μ m— 6 μ mの範囲で変化 させて実験を行った。
[0053] また、保護層としての Ag層の有効性を調べるために、はんだ層の組成が AulO重 量0 /0、 Sn90重量%、窒化アルミニウム基板の熱伝導率が 200 (WZm'K)、はんだ 層の厚さが 3 mのものについて、保護層としての Ag層の厚さを変えて実験を行った
[0054] なお表 1中、「*」がついているものは、本発明の範囲内となるものであり、はんだ層 における Sn含有量が 50重量%以上、 Au層または Ag層の厚さが 0. 01 μ m以上、 1 μ m以下のものである。
[0055] 次に、この光半導体用基板上に縦 1. Omm、横 1. Omm、厚さ 0. 2mmのレーザダ ィオードを配置して 400°Cで 1分間の熱処理を行うことにより接合し、半導体レーザ素 子を作製した。そして、はんだ層の組成およびはんだ層上に形成された保護層として の Au層または Ag層の厚さ等の効果を調べるため、熱抵抗比および lopライフを測定 した。表 1に、熱抵抗比および lopライフの測定結果を示す。
[0056] なお、熱抵抗比は、ノ ルス時間を Isとした際の熱抵抗を測定し、結果ははんだ層 の組成が Au20重量0 /0、 Sn80重量0 /0、 Au層の厚さが 0. 1 μ mの場合の熱抵抗を 基準である 100%とし、これに対する比率(%)で表した。熱抵抗比ははんだ付け性 の評価に関わり、熱抵抗比が高いものははんだ層表面に酸ィ匕が発生している部分が あり、またはんだ層に保護層としての Au層または Ag層が完全に溶け込んで 、な ヽ 部分があることを表す。
[0057] また、 lopライフの測定は、半導体レーザ素子を 80°Cの恒温槽に入れた状態で 30 mAの電流を流して発光させ、その後発光しなくなるまでの時間を測定した。 lopライ フの長いものほど、レーザダイオードに加わる応力が緩和され、またはんだ付けが良 好に行われてレ、ることを表す。
[表 1]
Figure imgf000013_0001
[表 2]
Figure imgf000014_0001
[0058] 表 1、 2から明らかなように、はんだ層における Sn含有量を 50重量0 /0以上、保護層 としての Au層の厚さを 0. 01 μ m以上、 1 μ m以下としたものは、いずれも lopライフ が 1500時間を超え、レーザダイオードに加わる応力が緩和され、レーザダイオード における結晶欠陥の発生が抑制されていることが確認された。また、はんだ層におけ る Sn含有量を 60重量%以上、さらには 70重量%以上とすることで、 lopライフをより 向上できることが確認された。
[0059] さらに、これらの中でも保護層としての Au層の厚さが 0. 01 m以上、 0. 以 下であるものは lopライフが長くなり、また窒化アルミニウム基板として熱伝導率が 80 WZm'K以上、さらには 190WZm'K以上のものを用いたものは lopライフがより一 層長くなることが確認された。また、保護層として Ag層を用いた場合についても、 Au 層と同様の効果が得られることが確認された。
産業上の利用可能性
本発明は、光半導体を接合して半導体レーザ素子を製造する業務に適用できる。

Claims

請求の範囲
[1] 絶縁性セラミックス基板と、
前記絶縁性セラミックス基板上に設けられた金属層と、
前記金属層上に設けられ、 Sn単体または Snを 50重量%以上含み残部が実質的 に Auカゝらなるはんだ層と、
前記はんだ層上に設けられ、厚さが 0. 01 μ m以上、 1 μ m以下である Auまたは A gからなる保護層と
を具備する光半導体用基板。
[2] 請求項 1記載の光半導体用基板において、
前記はんだ層の厚さが 2 μ m以上、 5 μ m以下である光半導体用基板。
[3] 請求項 1記載の光半導体用基板において、
前記絶縁性セラミックス基板が、窒化アルミニウム、窒化珪素、炭化珪素、酸化ベリ リウムおよびダイヤモンドの中力 選択される 1種を主成分とするものである光半導体 用基板。
[4] 請求項 3記載の光半導体用基板において、
前記絶縁性セラミックス基板の熱伝導率が 80WZm'K以上である光半導体用基 板。
PCT/JP2004/013766 2003-09-22 2004-09-21 光半導体用基板 WO2005036705A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005514546A JPWO2005036705A1 (ja) 2003-09-22 2004-09-21 光半導体用基板
US10/547,697 US20060269698A1 (en) 2003-09-22 2004-09-21 Substrate for optical semiconductor
US12/180,864 US20080298408A1 (en) 2003-09-22 2008-07-28 Substrate for optical semiconductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003329563 2003-09-22
JP2003-329563 2003-09-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/180,864 Continuation US20080298408A1 (en) 2003-09-22 2008-07-28 Substrate for optical semiconductor

Publications (1)

Publication Number Publication Date
WO2005036705A1 true WO2005036705A1 (ja) 2005-04-21

Family

ID=34430927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013766 WO2005036705A1 (ja) 2003-09-22 2004-09-21 光半導体用基板

Country Status (5)

Country Link
US (2) US20060269698A1 (ja)
JP (1) JPWO2005036705A1 (ja)
KR (1) KR100781859B1 (ja)
TW (1) TWI256756B (ja)
WO (1) WO2005036705A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1923922A1 (en) * 2006-11-15 2008-05-21 Lemnis Lighting IP GmbH Improved led lighting assembly
US20160049564A1 (en) 2014-08-13 2016-02-18 Samsung Electronics Co., Ltd. Semiconductor device and method of manufacturing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816155B2 (en) * 2007-07-06 2010-10-19 Jds Uniphase Corporation Mounted semiconductor device and a method for making the same
CN101465516B (zh) * 2009-01-09 2010-12-01 西安炬光科技有限公司 一种大功率半导体激光器及其制备方法
JP5846408B2 (ja) * 2010-05-26 2016-01-20 東芝ライテック株式会社 発光装置および照明装置
CN102412361B (zh) * 2010-09-21 2016-06-08 佳胜科技股份有限公司 层叠散热基板以及使用此层叠散热基板的电子组装结构
CN103166103A (zh) * 2013-03-18 2013-06-19 中国工程物理研究院应用电子学研究所 一种水电绝缘的半导体激光器线阵的封装方法
US10763639B2 (en) * 2018-02-12 2020-09-01 Lumentum Operations Llc Emitter-on-sub-mount device
EP4013611A1 (en) * 2019-08-15 2022-06-22 Materion Corporation Beryllium oxide pedestals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0951048A (ja) * 1995-08-09 1997-02-18 Kyocera Corp 光半導体素子収納用パッケージ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138777A (ja) * 1987-11-25 1989-05-31 Mitsubishi Electric Corp 光半導体素子用サブマウント
JPH022646A (ja) * 1988-06-15 1990-01-08 Matsushita Electric Ind Co Ltd 電極の形成方法
JPH0888393A (ja) * 1994-09-19 1996-04-02 Fujitsu Ltd 半導体光検出装置およびその製造方法
JP3888487B2 (ja) * 1997-08-29 2007-03-07 富士フイルムホールディングス株式会社 半導体レーザおよび該半導体レーザを用いたレーザ発光装置
JP2002373960A (ja) * 2001-06-14 2002-12-26 Tokuyama Corp 素子接合用基板及びその製造方法
JP3509809B2 (ja) * 2002-04-30 2004-03-22 住友電気工業株式会社 サブマウントおよび半導体装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0951048A (ja) * 1995-08-09 1997-02-18 Kyocera Corp 光半導体素子収納用パッケージ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1923922A1 (en) * 2006-11-15 2008-05-21 Lemnis Lighting IP GmbH Improved led lighting assembly
WO2008059033A2 (en) * 2006-11-15 2008-05-22 Lemnis Lighting Patent Holding B.V. Improved led lighting assembly
WO2008059033A3 (en) * 2006-11-15 2008-07-10 Lemnis Lighting Ip Gmbh Improved led lighting assembly
US20160049564A1 (en) 2014-08-13 2016-02-18 Samsung Electronics Co., Ltd. Semiconductor device and method of manufacturing the same
US10249604B2 (en) 2014-08-13 2019-04-02 Samsung Electronics Co., Ltd. Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
US20080298408A1 (en) 2008-12-04
JPWO2005036705A1 (ja) 2006-12-28
KR20050107450A (ko) 2005-11-11
TWI256756B (en) 2006-06-11
US20060269698A1 (en) 2006-11-30
TW200515659A (en) 2005-05-01
KR100781859B1 (ko) 2007-12-03

Similar Documents

Publication Publication Date Title
US20080298408A1 (en) Substrate for optical semiconductor
JP4666337B2 (ja) 熱界面材およびヒートシンク配置
KR101022583B1 (ko) 방열재 및 땜납 프리폼
JP4001169B2 (ja) 半導体装置
US6479325B2 (en) Method of stacking semiconductor laser devices in a sub-mount and heatsink
KR100328407B1 (ko) 세라믹회로기판
US20010010310A1 (en) Ceramic heater
JP5417505B2 (ja) 半導体装置
JP2009076730A (ja) 窒化物半導体レーザ装置
JP2007142479A (ja) 半導体装置
JP2003197826A (ja) セラミックス回路基板およびそれを用いた半導体モジュール
WO2002103787A1 (fr) Substrat utilise pour coller un element
JPWO2006061937A1 (ja) ヒートシンク材およびその製造方法ならびに半導体レーザー装置
JP2002299744A (ja) 半導体レーザアセンブリ
TW200525709A (en) Carrier layer for a semiconductor layer sequence and method for producing semiconductor chips
JP4409041B2 (ja) サブマウント材
JP2003060282A (ja) サブマウント材
JP2003249724A (ja) 窒化物系化合物半導体レーザ装置およびその製造方法
JP2523162B2 (ja) 半導体装置用部材
JP2002100826A (ja) サブマウント材
JP2003192462A (ja) 窒化珪素回路基板およびその製造方法
JP3457958B2 (ja) 光伝送モジュール用パッケージ
JP2001127388A (ja) 窒化珪素質回路基板及びその製造方法
JP4409553B2 (ja) サブマウント材用基板の製造方法
JP2004193355A (ja) 熱電モジュール

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514546

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057015642

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006269698

Country of ref document: US

Ref document number: 10547697

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057015642

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10547697

Country of ref document: US