WO2010076360A1 - Procedimiento para la obtención de micro - o nanopartículas sólidas - Google Patents

Procedimiento para la obtención de micro - o nanopartículas sólidas Download PDF

Info

Publication number
WO2010076360A1
WO2010076360A1 PCT/ES2009/070485 ES2009070485W WO2010076360A1 WO 2010076360 A1 WO2010076360 A1 WO 2010076360A1 ES 2009070485 W ES2009070485 W ES 2009070485W WO 2010076360 A1 WO2010076360 A1 WO 2010076360A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
solid
nanoparticles
micro
water
Prior art date
Application number
PCT/ES2009/070485
Other languages
English (en)
French (fr)
Inventor
Nora Ventosa Rull
Jaume VECIANA MIRÓ
Mary Cano Sarabia
Santiago SALA VERGÉS
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Centro De Investigación Biomédica En Red En Bioingeniería, Biomateriales Y Nanomedicina (Ciber-Bbn)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Centro De Investigación Biomédica En Red En Bioingeniería, Biomateriales Y Nanomedicina (Ciber-Bbn) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Priority to ES09836113.2T priority Critical patent/ES2523725T3/es
Priority to CA2748682A priority patent/CA2748682C/en
Priority to US13/142,764 priority patent/US8613953B2/en
Priority to EP09836113.2A priority patent/EP2383034B1/en
Publication of WO2010076360A1 publication Critical patent/WO2010076360A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1688Processes resulting in pure drug agglomerate optionally containing up to 5% of excipient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/005Selection of auxiliary, e.g. for control of crystallisation nuclei, of crystal growth, of adherence to walls; Arrangements for introduction thereof
    • B01D9/0054Use of anti-solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0095Preparation of aerosols

Definitions

  • the present invention provides a process for obtaining solid micro- or nanoparticles with a homogeneous structure from a microemulsion.
  • a method that allows obtaining solid micro- or nanoparticles of homogeneous structure, with a particle size of less than 10 ⁇ m where the processed solid compound reveals the nature, for example, crystalline, amorphous, polymorphic, etc. , typical of the starting compound.
  • sizes as small as 500 nm can be obtained.
  • the invention provides a method for obtaining solid micro- or nanoparticles with an aspect ratio close to the unit, that is, with a substantially spheroidal morphology.
  • racemic ibuprofen and S-ibuprofen have also been micronized through the RESS process. Pure agglomerated and coagulated pure ibuprofen particles consisting of 100-500 nm primary particles with irregular shapes are observed.
  • Supercrit Fluids, 2006, 37, 279-286 describes the obtaining by means of the RESOLV process of suspensions in water of ibuprofen particles on a nanometric scale, not agglomerated. This process consists in carrying out the depressurization of the RESS method on an aqueous solution. achieving the stabilization of the particles in the aqueous medium that a surfactant may contain. This procedure is described in patent applications WO9965469 and WO9714407.
  • the synthesis of the particles is carried out by an anti-solvent effect of CO 2 ("anti-solvent gas", GAS) on an emulsion of the solute to be precipitated.
  • GAS anti-solvent gas
  • This methodology has been developed by Zhang et al., And comprises the following two stages: In the first stage, the preparation of a water emulsion in a non-polar solvent (usually iso-octane) containing the solute is carried out to precipitate and a dissolved surfactant. The second stage consists in the precipitation of the particles when the emulsion comes into contact with the CO2.
  • This methodology is described in, for example, J. Zhang, B. Han, X. Zhang, J. He, Z. Liu, T. Jiang, G. Yang, Chem. Eur. J. 2002, 8, 17, 3879
  • the second methodology is based on the precipitation of particles from the extraction by CO2 of the non-polar solvent that is part of the emulsion.
  • This methodology has been developed by "Ferro Corporation” (US2004071781).
  • the synthesis of the particles also comprises two stages. In the first, called preparation of the emulsion, the solute to be precipitated is dissolved in a non-polar solvent saturated with water. On the other hand, the surfactant is dissolved in water saturated with the same non-polar solvent. Next, both solutions are mixed to form an emulsion. Finally, the resulting emulsion is homogenized in a homogenizer.
  • the precipitation of the particles The emulsion is sprayed through a nozzle in an extraction column where a flow of CO2 circulates countercurrently. The droplets of the emulsion come into contact with the CO2, and this extracts the non-polar solvent from them. The particles will precipitate into fine particles suspended in the aqueous phase. Therefore, by means of this technology, the precipitation of the particles takes place by the extractive effect of the non-polar solvent which causes the precipitation.
  • Inserm Inst Nat Sante & Rech Med ⁇ cale WO 2007072106 have developed a new particle preparation process.
  • This process is based on the extraction of the organic solvent from the emulsion by CO2, when it passes from critical conditions to a liquid state.
  • the synthesis of the particles comprises the preparation of an emulsion, and the solidification of the discontinuous phase for the formation of the particles.
  • the emulsion will consist of a compressed fluid (continuous phase), and a solvent that will contain the solute to precipitate dissolved (discontinuous phase).
  • the compressed fluid will extract the solvent from the discontinuous phase, passing from critical conditions to a liquid state, thus precipitating the particles.
  • the third methodology of particle precipitation is based on the use of emulsions formed by water as a discontinuous medium and CO 2 as a continuous medium ("water-in-C02 emulsions").
  • water-in-C02 emulsions emulsions formed by water as a discontinuous medium and CO 2 as a continuous medium
  • the synthesis comprises three stages. In a first, an emulsion is prepared. The continuous phase will be formed by compressed or supercritical fluid
  • the discontinuous phase by a solution (preferably aqueous) of the solute to be precipitated and / or reacted.
  • a solution preferably aqueous
  • the emulsion is sprayed through a nozzle forming small droplets of emulsion.
  • the compressed fluid and the organic solvent are removed from the droplets which leads to the precipitation of the particles.
  • the precipitation method is based on the precipitation of particles from the mixture of two water / C0 2 emulsions.
  • the synthesis of the particles comprises the following two stages: In a first stage two emulsions are prepared. The continuous phase is formed by compressed or supercritical fluid (CO2), and the discontinuous phase by a solution (preferably aqueous) of the solute to be precipitated and / or reacted. In a second stage, the two emulsions are mixed and their components react by precipitating the particles.
  • CO2 compressed or supercritical fluid
  • the present invention provides a method for obtaining solid micro- or nanoparticles from a microemulsion.
  • Microemulsions are characterized by being thermodynamically stable, forming spontaneously with a average diameter of the nanometric droplets and having a transparent or translucent bluish appearance.
  • the process for obtaining solid micro- or nanoparticles is based on providing a microemulsion that includes water (H 2 O), an organic solvent or mixture of organic solvents, a solid compound C and fluid B, where said micro- or nanoparticles obtained they have a homogeneous structure with a particle size that can reach values as low as 500 nm.
  • the precipitation of the solid micro- or nanoparticles is produced by the anti-solvent effect of water without the need for a highly effective agitation system.
  • the process of the invention allows the direct obtaining of micro- or nanoparticles of homogeneous structure, which manifest the properties of the nature of the starting product such as, for example, crystallinity, amorphity, polymorphism, etc., in the processed product and that optionally, they have an aspect ratio close to the unit, that is to say they have a substantially spheroidal morphology, and particle size between 10 ⁇ m and 500 nm.
  • a first aspect of the present invention is to provide a new method for obtaining solid micro- or nanoparticles of homogeneous structure.
  • Said process comprises preparing a mixture that includes an organic solvent or a mixture of organic solvents, a solid compound C and water (H 2 O), and obtaining a microemulsion by adding a fluid B, and increasing the pressure until reaching a first pressure (Pi) where the predetermined supersaturation value ( ⁇ ) of solid compound C is less than or equal to 1.
  • a variation of said first pressure (P 1 ) at a second pressure (P 2 ) allows the solvent effect of water (H 2 O) on said first pressure (Pi) to be modified to an anti-solvent effect on said second pressure (P 2 ) What causes the precipitation of solid micro- or nanoparticles of homogeneous structure; Then, said micro- or can be isolated and collected at said second pressure (P 2 ) solid nanoparticles using conventional methods.
  • micro- or nanoparticles of improved stability are provided, that is, with less risk of degradation or structural change during storage, lower reactivity and greater stability against mechanical and thermal stress, in addition of less sensitivity to moisture.
  • a second aspect of the present invention is the use of said improved micro- or nanoparticles in a composition that also comprises other pharmaceutically acceptable excipients.
  • solid micro- or nanoparticles of homogeneous structure, crystalline and with an aspect ratio close to the unit, that is to say spheroidal morphology can be obtained, which makes them useful for applications where the structure and morphology of the particles has a decisive influence for their administration.
  • a third aspect of the present invention is the use of said micro- or nanoparticles of homogeneous structure and with an aspect ratio close to the unit for the preparation of aerosols based on active principles of administration by inhalation or for the preparation of suspensions of Therapeutically active principles that have low water solubility and bioavailability.
  • fluid B means a fluid that at atmospheric pressure and ambient temperature is a gas and that at a first pressure (Pi), higher than atmospheric, is miscible with the organic solvent, and immiscible or partially miscible with the water
  • said fluid B is selected from CO2 and a freon.
  • said fluid B It does not act as a supercritical fluid in any of the stages defined in the appended claims.
  • organic solvent means any polar or non-polar organic solvent or a mixture of both that is miscible with CO2 at a first pressure (P1), higher than atmospheric pressure, and miscible in water at atmospheric pressure.
  • said organic solvent may be selected from the group comprising: monohydric alcohols such as methanol, ethanol, 1- propanol, 2-propanol, 1-butanol, 1-hexanol, 1-octanol, and trifluoroethanol, polyhydric alcohols such as propylene glycol, PEG 400 , and 1,3-propanediol; ethers such as tetrahydrofuran (THF), and diethyl ether; alkanes such as decalin, isooctane, and mineral oil; aromatics such as benzene, toluene, chlorobenzene, and pyridine; amides such as n-methyl pyrrolidone (NMP), and N 1 N-dimethylformamide (DMF); esters such as ethyl acetate, propyl acetate, and methyl acetate; chlorocarbons such as dichloromethane, chloroform, tetrachlor
  • surfactant or “surfactant” means an anionic, cationic or neutral agent that can be selected from an emulsifying agent, surface agent, stabilizer, colloid protector and, more preferably, from among, polyethylene glycols ( PEGs), polysorbates, poloxamer, ascorbyl palmitate, lecithin, hexadecyltrimethylammonium bromide (CTAB), sulfates, sulphonates, phosphates, carboxylates, and sulphosuccinates.
  • PEGs polyethylene glycols
  • CAB hexadecyltrimethylammonium bromide
  • polyethylene glycol 6000 PEG6000
  • sodium bis (2-ethylhexyl) sulfosuccinate AOT
  • sodium dodecyl sulfate SDS
  • sodium octyl sulfate sodium tetradecyl sulfate
  • sodium octadecyl sulfate sodium laurate
  • sodium salt of cholesterol sulfate sodium dodecyl sulphonate, sodium decyl sulphonate, sodium octyl sulphonate, sodium oleate, as well as among others, or a mixture of them.
  • the term "aspect ratio" is understood as a value close to 1, where said value is only intended to define a particle commonly referred to as spheroidal morphology.
  • the aspect ratio can be defined as the relationship between the length and the height of the particle, the length being the greatest distance measured between two points of the perimeter of the projection of the particle regardless of its orientation and the width being the greatest distance between two points contained in the intersection of one of the axes perpendicular to the length and perimeter according to the procedure defined in S.Ameme-Prieto, J.BIanco-Méndez, FJ.
  • solid compound C means a substance or mixture of solid substances, selected from a drug, explosive, dye, pigment, cosmetic, polymer, catalyst, chemical for agriculture or another substance partially or totally insoluble in water, and capable of being dissolved at the pressure in which the supersaturation value ( ⁇ ) is less than or equal to 1, the temperature being between the ranges described below according to the invention.
  • the formation of micro- or nanoparticles can be monitored and controlled by analyzing the turbidity of the system, induced in turn by successive changes in pressure and molar fraction of CO2 (X C o2) in the system.
  • the turbidity of the system can be measured by optical density.
  • the optical density (OD) is defined as the absorbance of an optical element at a certain wavelength in which the system does not absorb, and per unit of optical path or distance.
  • the optical density is a property used in the invention to detect variations of the supersaturation value ( ⁇ ) in the system when ⁇ > 1, and of the supramolecular organization of its constituents.
  • On-line monitoring of the system is carried out through an ultraviolet-visible spectrophotometer.
  • a process for obtaining micro- or nanoparticles with a homogeneous structure is provided.
  • the process according to the first aspect of the invention comprises: a) Preparing in a closed container a mixture that includes an organic solvent or a mixture of organic solvents, a solid compound C and water (H 2 O), where in said step a) there is at least one liquid phase and one solid phase, which is characterized by the fact that it also comprises: b) Adding a fluid B to said mixture prepared in stage a) and increasing the pressure of the vessel until a first pressure is reached.
  • stages a) and c) the nature of the solvent will determine the existence of one or more liquid phases, depending on whether it is a polar organic solvent, apolar or mixtures of both or more than one of them.
  • a polar solvent when used there is a single liquid phase. If an apolar solvent is used, there will be more than one liquid phase determined by optical density.
  • the mixture of stage a) is prepared at atmospheric pressure and room temperature.
  • the temperature of the process regardless of the step, can be between -50 0 C and 200 0 C, preferably between 10 ° C and 70 0 C, and still more preferably between 20 0 C and 50 ° C.
  • steps a) and b) can be carried out simultaneously.
  • the procedure continues in step c).
  • the increase of the pressure of the container to a first pressure (Pi) in stage b) can be carried out either by the addition of the fluid B, the use of a mechanical means such as, for example, a plunger in the container, or Ia addition of an inert gas, such as N 2 .
  • the pressure variation in stage c) until a second pressure (P 2 ) can be carried out in the same way.
  • a surfactant in step a) a surfactant can also be added.
  • a surfactant in step b) further improves the stability of the final dispersion, being able to favor the control of nucleation and crystalline growth processes and, thus, obtain even smaller particle sizes. and narrower size distributions.
  • stage b) when said first pressure (Pi) is reached, the supersaturation value ( ⁇ ) is less than or equal to 1, the supersaturation value ( ⁇ ) being the ratio between the concentration [C] of solid compound C with respect to the concentration of supersaturation [C 3 ] of said solid compound C in the microemulsion:
  • microemulsion is formed by said organic solvent or mixture of organic solvents, said water (H 2 O) and said fluid B and, optionally, a surfactant.
  • the microemulsion formed in said step b) comprises an organic phase saturated with water, wherein said organic phase is formed by said fluid B, said organic solvent or mixture of organic solvents and said solid compound C and, optionally, said surfactant.
  • said variation of positive or negative pressure that is, increasing or decreasing the first pressure (Pi) to a second pressure (P2), promotes the precipitation of solid micro- or nanoparticles of homogeneous structure due to the anti-solvent effect of water (H2O) at said second pressure (P2), where the supersaturation value ( ⁇ ) is greater than 1.
  • the authors of the present invention have found that the final characteristics of the micro- or nanoparticles obtained do not depend on the agitation efficiency as is the case in the technologies described to date, but on the degree of homogeneous distribution of water in The microemulsion obtained which, followed by a variation of the pressure (step c)) causes the water to act as an antisolvent and the precipitation of the solid micro- or nanoparticles takes place. Therefore, the process of the present invention represents a substantial change in the line followed to date to obtain finely divided particles based mainly on that greater agitation or homogenization of the solution containing the solid to be precipitated provides a smaller size. of particle.
  • the anti-solvent effect of water under certain pressure conditions and in a suitable medium, a microemulsion allows to obtain solid micro- or nanoparticles of homogeneous structure whose micro- or nanoparticles also manifest the characteristic starting properties of Ia nature of the solid compound to precipitate.
  • the second pressure (P 2 ) is higher than the first pressure (Pi), and precipitation is a reversible phenomenon .
  • the second pressure (P 2 ) when the pressure variation in stage c) is negative, that is ⁇ P ⁇ 0, the second pressure (P 2 ) is lower than the first pressure (Pi) and precipitation is an irreversible phenomenon.
  • the Organic solvent when ⁇ P> 0 the Organic solvent can be selected from a polar or non-polar solvent, and when ⁇ P ⁇ 0 the organic solvent is a polar solvent.
  • said micro- or nanoparticles are collected at said second pressure (P 2 ) by conventional methods.
  • said particles can be isolated and collected, for example, by filtration and also when ⁇ P ⁇ 0 can be collected on a stream of water so that a suspension of said particles is obtained.
  • Said suspension has application in the preparation of a medicament that preferably should be administered orally, intravenously or mucosally.
  • step c With the variation of the pressure (step c) of the microemulsion, the behavior of the water is modified, going from acting as a solvent to Pi to an antisolvent to P 2 Io that causes the precipitation of solid micro- or nanoparticles with a homogeneous structure.
  • said solid micro- or nanoparticles are also crystalline.
  • said solid micro- or nanoparticles have an aspect ratio substantially equal to the unit.
  • micro- or nanoparticles with an excellent structure-property relationship are provided.
  • micro- or nanoparticles with improved structural characteristics can be obtained, such as, for example, greater crystallinity, which confer high stability during storage, fluidity and less tendency to absorb moisture.
  • the process of the invention provides a new technology for obtaining solid micro- or nanoparticles where fluid B is not responsible for precipitation, nor is it used in a supercritical state at any stage of the process. It is believed that the anti-solvent effect of water at P2 and the conditions in which precipitation occurs favor a nucleation and growth of crystalline structures with a substantially spheroidal morphology. Therefore, the new procedure provides unexpected properties in the micro- or nanoparticles obtained, properties not described in the state of the art to said micros- or nanoscale.
  • crystallinity and, therefore, the absence of amorphous solid in, for example, a pharmaceutical product is of great importance because it is considered that formulations containing amorphous forms are less stable than the crystalline solid and, therefore, carry a risk as to preservation of material properties during storage.
  • These partially or totally amorphous materials often have greater reactivity and have instability against mechanical and thermal stress and have a high tendency to absorb water.
  • a method for obtaining micro- or nanoparticles with a substantially spheroidal morphology also called a morphology with an aspect ratio close to 1, according to the method referenced in The section of definitions for aspect ratio.
  • the morphology is a very determining property in the preparation and administration of, for example, a medicine since it has a special impact on properties of the pharmaceutical formulation such as fluidity and
  • the particles obtained have a narrow volumetric distribution of sizes and an average associated sphere diameter of less than 10 Dm, generally less than 1 Dm.
  • the particle size obtained with the procedure defined in the invention is between 10 ⁇ m and 500 nm, preferably between 3 ⁇ m and 800 nm, more preferably between 1 ⁇ m and 700 nm.
  • the micro- or nanoparticles obtained in accordance with the first aspect are of high interest for the preparation of a composition that also comprises other pharmaceutically acceptable excipients where the structure and morphology of the micro - or nanoparticles is decisive for its application.
  • said micro- or nanoparticles obtained have special interest in the preparation of an aerosol for inhalation dosing of drugs intended for the treatment of lung diseases, or of formulations where it is intended to increase the bioavailability of active substances Not very soluble in water.
  • Figure 1 shows two supersaturation curves with respect to time (t), curve A and curve B.
  • Said figure 1 presents three differentiated zones, zone I where there is no crystalline growth, zone Il where crystalline growth exists but no nucleation and zone III where nucleation exists.
  • Curve A corresponds to a qualitative supersaturation profile corresponding to a process of crystallization where the nucleation phenomenon is favored above the crystalline growth process.
  • Curve B corresponds to a qualitative supersaturation profile of a process where crystalline growth is favored above nucleation.
  • the process of the invention follows a type A supersaturation curve, characterized in that it develops in zone III in a short period of time and, therefore, there is high nucleation, which translates into a greater number of solid particles with a small size
  • FIG. 2 shows an installation for carrying out the process of the invention.
  • Said equipment comprises a tank 1 containing CO2, said tank being connected to a pump 3 to supply said CO2 fluid at high pressure.
  • the addition of the CO2 fluid on the mixing reactor 7 where a mixture of the organic solvent (or a mixture of organic solvents) is already found, a solid compound C and water can be carried out from the top through valves 4 and 6, or through valves 4 and 5 through the lower part.
  • an inert gas N 2 in the tank 8 is controlled. This inert gas can be used to increase the pressure from Pi to P 2 when ⁇ P ( P2 > pi ) > 0.
  • a mechanically or pneumatically actuated piston (not shown) can be used to increase the pressure of the mixing reactor 7.
  • the microemulsion formed in the reactor 7 at the pressure P 2 passes to the filter 11 through The valve 10, where a first filtration is carried out maintaining the pressure at the pressure P 2 .
  • the microemulsion containing the CO 2 expands and undergoes rapid depressurization until atmospheric pressure, with the consequent precipitation of the crystalline solid particles.
  • the particles are retained in the filter 13 and the mother liquors are collected in the container 15 through the valve 14.
  • Figure 3 shows the variation of the optical density observed in a microemulsion formed in accordance with the method of the invention, for example, by the system "ibuprofen / acetone / water / PEG6000 / C ⁇ 2" as a function of the pressure at 35 ' 0 C.
  • the optical density is defined as the absorbance of an optical element at a certain wavelength and per unit of optical path or distance.
  • the turbidity of a system is defined in terms of optical density when the system does not absorb light at that wavelength.
  • Figure 4 represents a differential scanning calorimetry (DSC) profile of solid compound C (ibuprofen) obtained in accordance with the process of the invention, with and without surfactant (PEG6000). From this figure it can be seen that the presence of the surfactant does not modify the crystalline structure of the solid micro- or nanoparticles, nor does it do so if ⁇ P (P2 ⁇ pi) ⁇ 0 or if ⁇ P (P2 >pi)> 0 Profile 1 corresponds to the ibuprofen compound obtained for ⁇ P (P2 >pi)> 0 in the presence of surfactant (PEG6000).
  • DSC differential scanning calorimetry
  • Profiles 2 and 3 correspond to the ibuprofen compound obtained for ⁇ P (P2 ⁇ pi) ⁇ 0, with and without surfactant (PEG6000), respectively.
  • Profile 4 corresponds to the original unprocessed ibuprofen compound.
  • the symbols X and Y correspond to the endothermic melting peaks of the surfactant (PEG6000) and of the compound C (ibuprofen), respectively.
  • Figure 5 represents an X-ray diffraction spectrum of solid compound C (ibuprofen) obtained by the process of the invention in the presence or absence of surfactant (PEG6000).
  • ibuprofen solid compound C
  • PEG6000 surfactant
  • the spectra (a) and (b) correspond to the ibuprofen compound obtained for ⁇ P (P2 ⁇ P i) ⁇ 0 with and without surfactant (PEG6000), respectively.
  • the spectrum (c) corresponds to the compound ibuprofen obtained for ⁇ P (P2 > pi ) > 0 with surfactant (PEG6000).
  • Spectrum (d) corresponds to the original unprocessed ibuprofen compound.
  • Figure 6B is a scanning electron microscopy (SEM) image of the ibuprofen compound obtained with PEG6000 and ⁇ P ⁇ 0 (P2 ⁇ P1). - lbuprofen / acetone / water / CO 2 / PEG6000;
  • Figure 6C is a scanning electron microscopy (SEM) image of the ibuprofen compound obtained with PEG6000 and ⁇ P> 0 (P2> P1)
  • Example 1 Obtaining nano-particles of ibuprofen by the process of the invention when ⁇ P ⁇ 0 (Without surfactant)
  • a mixing reactor 7 of 30OmL capacity 17OmL of a solution of the ibuprofen compound in acetone is introduced with a concentration relative to the saturation of 63% and 9OmL of H 2 O, obtaining a suspension of the drug in the acetone-water mixture .
  • CO2 is added to this suspension with a flow rate of 7Kg / h until the pressure P1 of the reactor 7 reaches 100Bar.
  • the temperature is kept constant throughout the process at 35 0 C. Under these conditions, this system is formed by a transparent microemulsion consisting of the ibuprofen / acetone / water / CO 2 system . The microemulsion is left to stabilize at P1 and 35 0 C for 15 minutes (see Figure 2).
  • the CO2 supply is closed and the addition of N2 is initiated by the upper part of the reactor through the valve 6, to keep the pressure P1 at 100bar constant inside the reactor during the microemulsion depressurization process.
  • the evaporation of the CO2 causes the water to again manifest its anti-solvent character on the ibuprofen dissolved in The organic phase, causing its precipitation.
  • the precipitated particles are washed with CO2 at 40Bar.
  • the mother liquors are collected in the container 15 through the valve 14.
  • the particle size of the ibuprofen compound was determined by scanning electron microscopy (SEM).
  • SEM scanning electron microscopy
  • the particle size distribution of the solid phase collected in the filter 13 has an average of 740 nm with a standard deviation of 100 nm. It was observed by X-ray powder diffraction that the particles obtained are crystalline, and by scanning electron microscopy (SEM) that have a homogeneous spheroidal morphology (see Figure 5A). The yield of the process is 86%.
  • a second filter is available to collect the possible solid that has not dissolved in the microemulsion obtained at pressure P1, said filter being the one represented in Figure 2 as filter 11.
  • Example 2 Obtaining nano-particles of ibuprofen by the process of the invention when ⁇ P ⁇ 0 (In the presence of a PEG6000 surfactant dissolved in the aqueous phase)
  • a mixing reactor 7 of 30OmL capacity 17OmL of a solution of the ibuprofen compound in acetone with a concentration relative to the saturation of 63% and 9OmL of an aqueous solution containing 10% by weight of PEG6000 surfactant are introduced, obtaining a suspension of the drug in the acetone-water mixture.
  • CO2 is added to this suspension with a flow rate of 7Kg / h until the pressure P1 of the reactor 7 reaches 100Bar.
  • the temperature is kept constant throughout the process at 35 0 C. Under these conditions, this system is formed by a transparent microemulsion consisting of the ibuprofen / acetone / water / PEG6000 / CO2 system.
  • the microemulsion is left to stabilize at P1 and 35 0 C for 15 minutes (see Figure 2).
  • the CO2 supply is closed and the addition of N 2 is initiated by the upper part of the reactor 7 through the valve 6, to keep the pressure P1 at 100Bars constant inside the reactor during the microemulsion depressurization process.
  • the precipitated particles are washed with CO2 at 40Bar.
  • the waters Mothers are collected in the container 15 through the valve 14.
  • the particle size of the ibuprofen compound was determined by scanning electron microscopy (SEM).
  • SEM scanning electron microscopy
  • the particle size distribution of the solid phase collected in the filter 13 has an average of 680 nm with a standard deviation of 110 nm. It was observed by powder X-ray diffraction that the particles obtained are crystalline, and by scanning electron microscopy (SEM) that have a homogeneous spheroidal morphology (see Figure 5B). The yield of the process is 81%.
  • a second filter is available to collect the possible solid that has not dissolved in the microemulsion obtained at pressure P1, said filter being the one represented in Figure 2 as filter 11.
  • Example 3 Obtaining nano-particles of ibuprofen by the process of the invention when ⁇ P> 0 (Without surfactant)
  • a mixing reactor 7 of 30OmL capacity 17OmL of a solution of the ibuprofen compound in acetone is introduced with a concentration relative to the saturation of 63% and 9OmL of H 2 O, obtaining a suspension of the drug in the acetone-water mixture .
  • CO2 is added to this suspension with a flow rate of 7Kg / h until the pressure P1 of the reactor 7 reaches 100Bar.
  • the temperature is kept constant throughout the process at 35 0 C. Under these conditions, this system is formed by a transparent microemulsion consisting of the ibuprofen / acetone / water / C ⁇ 2 system. The microemulsion is left to stabilize at P1 and 35 0 C for 15 minutes (see Figure 2).
  • P2 146Bar
  • the increase in the pressure from P1 to P2 promotes that the water shows again the anti-solvent effect on the solute present in the solute / organic solvent / water / CO2 system, causing its precipitation.
  • the precipitated solid is filtered on filter 11 under pressure P2.
  • the depressurization of the mother liquors is carried out through Ia valve 12 and its collection in the tank 15, after passing through the filter 13 and the valve 14.
  • the solid collected in the filter 11 is washed with CO2 at 40Bar.
  • the particle size of the ibuprofen compound was determined by scanning electron microscopy (SEM).
  • the particle size distribution of the solid phase collected in the filter 11 has an average of 940 nm with a standard deviation of 300 nm. It was observed by X-ray powder diffraction that the particles obtained are crystalline, and by scanning electron microscopy (SEM) that have a homogeneous spheroidal morphology. The yield of the process was 20%.
  • Example 4 Obtaining nano-particles of ibuprofen by the process of the invention when ⁇ P> 0 (In the presence of a PEG6000 surfactant dissolved in the aqueous phase)
  • a mixing reactor 7 of 30OmL capacity 17OmL of a solution of the ibuprofen compound in acetone with a concentration relative to the saturation of 63% and 9OmL of an aqueous solution containing 10% by weight of PEG6000 surfactant are introduced, obtaining a suspension of the drug in the acetone-water mixture.
  • CO2 is added to this suspension with a flow rate of 7Kg / h until the pressure P1 of the reactor 7 reaches 100Bar.
  • the temperature is kept constant throughout the process at 35 0 C. Under these conditions, this system is formed by a transparent microemulsion consisting of the ibuprofen / acetone / water / PEG6000 / CO2 system.
  • the microemulsion is left to stabilize at Pi and 35 0 C for 15 minutes (see Figure 2).
  • P2 146Bar
  • Increasing the pressure from P1 to P2 promotes water again manifest antisolvent effect on this solute in the solute system / organic solvent / water / PEG6000 / CO 2, causing precipitation.
  • the precipitated solid is filtered on filter 11 under pressure P2.
  • the depressurization of the mother liquors is carried out through the valve 12 and its collection in the tank 15, after passing through the filter 13 and the valve 14.
  • the solid collected in the filter 11 is washed with CO2 at 40Bar.
  • the particle size of the ibuprofen compound was determined by scanning electron microscopy (SEM).
  • SEM scanning electron microscopy
  • the particle size distribution of the solid phase collected in the filter 11 has an average of 935nm with a standard deviation of 460nm. It was observed by X-ray powder diffraction that the particles obtained are crystalline, and by scanning electron microscopy (SEM) that have a homogeneous spheroidal morphology. The yield of the process was 21%. (See Figure 6C).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Biomedical Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

La invención proporciona un nuevo procedimiento para la obtención de micro- o nanopartículas sólidas con estructura homogénea. Se proporciona un procedimiento que permite obtener micro- o nanopartículas sólidas de estructura homogénea, con un tamaño de partícula inferior a 10 μm donde el compuesto sólido procesado revela la naturaleza, cristalina, amorfa, polimórfica, etc., propia del compuesto de partida. De acuerdo con la invención se proporciona un procedimiento que además permite obtener micro- o nanopartículas sólidas con una morfología sustancialmente esferoidal.

Description

PROCEDIMIENTO PARA LA OBTENCIÓN DE MICRO- O NANOPARTÍCULAS SÓLIDAS
Campo de Ia invención
La presente invención proporciona un procedimiento para Ia obtención de micro- o nanopartículas sólidas con estructura homogénea a partir de una microemulsión.
De acuerdo con Ia invención se proporciona un procedimiento que permite obtener micro- o nanopartículas sólidas de estructura homogénea, con un tamaño de partícula inferior a 10 μm donde el compuesto sólido procesado revela Ia naturaleza, por ejemplo, cristalina, amorfa, polimórfica, etc., propia del compuesto de partida. De acuerdo con el procedimiento de Ia invención pueden llegar a obtenerse tamaños tan pequeños como 500 nm. Ventajosamente, Ia invención proporciona un procedimiento para Ia obtención de micro- o nanopartículas sólidas con una relación de aspecto próxima a Ia unidad, es decir, con una morfología sustancialmente esferoidal.
Antecedentes de Ia invención
Existen en el estado de Ia técnica diferentes procedimientos que se refieren a Ia obtención de partículas finamente divididas como estrategia para aumentar Ia solubilidad en agua y, por tanto, Ia biodisponibilidad de moléculas activas poco solubles en condiciones fisiológicas. Algunos de estos procedimientos han utilizado como molécula modelo el ibuprofeno para demostrar su efectividad en este sentido. A continuación, se detallan algunos de estos trabajos basados en experimentos con ibuprofeno.
En el artículo de N. Rasenack, B. W. Müller, Pharmaceutical Research, 2002, 19, 1894-1900, se plantea Ia utilización de una técnica denominada Micronización in-situ como forma alternativa a las técnicas convencionales de micronización por molienda para Ia obtención de micro- y nanopartículas de sólidos poco solubles en agua como el ibuprofeno. Para Ia formación del sólido particulado se vierte una solución acuosa de un agente estabilizante sobre una solución de ibuprofeno en un disolvente orgánico miscible en agua. En este procedimiento el agua actúa como no solvente del producto provocando su precipitación y dando lugar a una suspensión de éste. Esta precipitación viene seguida de un proceso de "spray drying" (secado por esprayado) para eliminar el líquido de dicha suspensión y aislar el sólido particulado. Este sólido consiste en micropartículas del principio activo recubiertas por el agente estabilizante.
En el artículo de M. Charoenchaitrakool, F. Deghani, N. R. Foster, Ind. Eng. Chem. Res. 2000, 39, 4794-4802 se ha micronizado ibuprofeno racémico y S-ibuprofeno por medio del proceso RESS descrito en Ia patente US 4582731. Este proceso consiste en Ia despresurización de una disolución de un producto (ibuprofeno) en un fluido supercrítico (CO2) a través de una boquilla, dando lugar a su precipitación. Se obtienen micropartículas del producto (1-15 μm) con geometría irregular y con una pérdida de cristalinidad significativa.
En el artículo de D. Hermsdorf, Stephan Jauer, R. Signorell,
Molecular Physics, 2007, 105, 8, 951-959, también se ha micronizado ibuprofeno racémico y S-ibuprofeno por medio del proceso RESS. Se observan partículas de ibuprofeno puro fuertemente aglomeradas y coaguladas que consisten en partículas primarias de 100-500 nm con formas irregulares.
En el artículo de P. Pathak, M. J. Meziani, T. Desai, Y. -P. Sun, J.
Supercrit. Fluids, 2006, 37, 279-286 se describe Ia obtención por medio del proceso RESOLV de suspensiones en agua de partículas de ibuprofeno a escala nanométrica, no aglomeradas. Este proceso consiste en Ia realización de Ia despresuración del método RESS sobre una disolución acuosa consiguiendo la estabilización de las partículas en el medio acuoso que puede contener un tensioactivo. Este procedimiento se encuentra descrito en las solicitudes de patente WO9965469 y WO9714407.
Sin embargo, en muchas ocasiones es deseable obtener partículas sólidas finamente divididas con un mayor control del tamaño de partícula.
Principalmente, se han desarrollado tres metodologías para Ia preparación de partículas sólidas finamente divididas basadas en el empleo de emulsiones y CO2.
En Ia primera metodología, Ia síntesis de las partículas se lleva a cabo por un efecto anti-solvente del CO2 ("gas anti-solvent", GAS) sobre una emulsión del soluto a precipitar. Esta metodología ha sido desarrollada por Zhang et al., y comprende las dos siguientes etapas: En Ia primera etapa, se lleva a cabo Ia preparación de una emulsión de agua en un disolvente no-polar (normalmente iso-octano) que contenga el soluto a precipitar y un tensoactivo disueltos. La segunda etapa, consiste en Ia precipitación de las partículas cuando Ia emulsión entra en contacto con el CO2. Esta metodología se encuentra descrita en, por ejemplo, J. Zhang, B. Han, X. Zhang, J. He, Z. Liu, T. Jiang, G. Yang, Chem. Eur. J. 2002, 8, 17, 3879.
La segunda metodología, denominada "supercritical fluid extraction emulsión" (SFEE), se basa en Ia precipitación de partículas a partir de Ia extracción por el CO2 del disolvente no-polar que forma parte de Ia emulsión. Esta metodología ha sido desarrollada por "Ferro Corporation" (US2004071781 ). En este proceso, Ia síntesis de las partículas comprende también dos etapas. En Ia primera, denominada preparación de Ia emulsión, el soluto a precipitar se disuelve en un disolvente no-polar saturado con agua. Por otro lado, el tensioactivo es disuelto en agua saturada con el mismo disolvente no-polar. Seguidamente, ambas disoluciones se mezclan para formar una emulsión. Finalmente, Ia emulsión resultante se homogeneiza en un homogenizador. En Ia segunda etapa, tendrá lugar Ia precipitación de las partículas. La emulsión se pulveriza a través de una boquilla en una columna de extracción por donde circula a contracorriente un flujo de CO2. Las gotitas de Ia emulsión entran en contacto con el CO2, y éste extrae el disolvente no- polar de las mismas. Las partículas precipitaran en finas partículas suspendidas en Ia fase acuosa. Por Io tanto, mediante esta tecnología Ia precipitación de las partículas tiene lugar por el efecto extractor del disolvente no-polar Io que provoca Ia precipitación. Dentro de esta metodología, basada en el papel extractor del CO2, Inserm Inst Nat Sante & Rech Medícale (WO 2007072106) han desarrollado un nuevo proceso de preparación de partículas. Este proceso se basa en Ia extracción del disolvente orgánico de Ia emulsión por el CO2, al pasar éste de condiciones críticas a un estado líquido. La síntesis de las partículas comprende Ia preparación de una emulsión, y Ia solidificación de Ia fase discontinua para Ia formación de las partículas. La emulsión estará formada por un fluido comprimido (fase continua), y un disolvente que contendrá el soluto a precipitar disuelto (fase discontinua). El fluido comprimido extraerá el disolvente de Ia fase discontinua, al pasar de condiciones críticas a estado líquido, precipitando por tanto las partículas.
La tercera metodología de precipitación de partículas, se basa en Ia utilización de emulsiones formadas por agua como medio discontinuo y CO2 como medio continuo ("water-in-C02 emulsions"). Dentro de esta metodología puede haber dos tipos de precipitación diferentes. En un primer lugar está Ia desarrollada por "Ferro Corporation" (WO 2004110603) que se basa en Ia pulverización de una emulsión formada por agua y CO2 dentro de un reactor, y una posterior eliminación de los disolventes para obtener finalmente las partículas. La síntesis comprende tres etapas. En una primera, se prepara una emulsión. La fase continua estará formada por fluido comprimido o supercrítico
(CO2), y Ia fase discontinua por una disolución (preferiblemente acuosa) del soluto a precipitar y/o reaccionar. En una segunda etapa, Ia emulsión se pulveriza a través de una boquilla formándose pequeñas gotitas de emulsión.
En una tercera etapa, se elimina el fluido comprimido y el disolvente orgánico de Ia gotitas Io que conduce a Ia precipitación de las partículas. En un segundo lugar se encuentra Ia utilización de emulsiones formadas por agua como medio discontinuo y CO2 como medio continuo. En este caso, el método de precipitación se basa en Ia precipitación de partículas a partir de Ia mezcla de dos emulsiones agua/C02. La síntesis de las partículas comprende las dos siguientes etapas: En una primera etapa se preparan dos emulsiones. La fase continua está formada por fluido comprimido o supercrítico (CO2), y Ia fase discontinua por una disolución (preferiblemente acuosa) del soluto a precipitar y/o reaccionar. En una segunda etapa, las dos emulsiones se mezclan y reaccionan sus componentes precipitando las partículas. En el artículo de CA. Fernández, CM. Wai, Small 2006, 2, 11 , 1266, se describe Ia obtención de nanopartículas de plata a través de esta metodología.
Sin embargo, en muchas ocasiones es deseable obtener micro- o nanopartículas sólidas con elevada homogeneidad en el tamaño de partícula y con un mayor control del mismo. Además, en Ia mayoría de las tecnologías existentes hasta Ia fecha Ia naturaleza del producto de partida no se manifiesta de igual forma en el producto final procesado, perdiendo o disminuyendo, por ejemplo, su naturaleza cristalina en el producto final.
Por Io tanto, no existe todavía una tecnología que permita reducir el tamaño de partícula con un elevado control y homogeneidad del mismo y que al mismo tiempo las propiedades, por ejemplo cristalinas, propias de Ia naturaleza del producto de partida se manifiesten en las micro- o nanopartículas sólidas obtenidas tras su procesado.
Descripción resumida de Ia invención
Con dicho fin, Ia presente invención proporciona un procedimiento para Ia obtención de micro- o nanopartículas sólidas a partir de una microemulsión. Las microemulsiones se caracterizan por ser termodinámicamente estables, formarse de manera espontánea con un diámetro medio de las gotitas nanométrico y por tener un aspecto transparente o translúcido azulado.
El procedimiento para Ia obtención de micro- o nanopartículas sólidas se basa en proporcionar una microemulsión que incluya agua (H2O), un disolvente orgánico o mezcla de disolventes orgánicos, un compuesto sólido C y fluido B, donde dichas micro- o nanopartículas obtenidas posean una estructura homogénea con un tamaño de partícula que puede llegar a valores tan bajos como los 500 nm. De acuerdo con Ia invención, Ia precipitación de las micro- o nanopartículas sólidas se produce por efecto anti-solvente del agua sin que sea necesario un sistema altamente efectivo de agitación. El procedimiento de Ia invención permite Ia obtención directa de micro- o nanopartículas de estructura homogénea, que manifiestan las propiedades propias de Ia naturaleza del producto de partida como, por ejemplo Ia cristalinidad, amorficidad, polimorfismo, etc., en el producto procesado y que opcionalmente, presentan una relación de aspecto próxima a Ia unidad, es decir presentan una morfología sustancialmente esferoidal, y tamaño de partícula comprendido entre 10 μm y 500 nm.
Un primer aspecto de Ia presente invención es proporcionar un nuevo procedimiento para Ia obtención de micro- o nanoparticulas sólidas de estructura homogénea. Dicho procedimiento comprende preparar una mezcla que incluye un disolvente orgánico o una mezcla de disolventes orgánicos, un compuesto sólido C y agua (H2O), y obtener una microemulsión mediante Ia adición de un fluido B, y el aumento de Ia presión hasta alcanzar una primera presión (Pi ) donde el valor de sobresaturación predeterminado (β) del compuesto sólido C es menor o igual que 1 . A continuación, una variación de dicha primera presión (P1) a una segunda presión (P2) permite modificar el efecto solvente del agua (H2O) en dicha primera presión (Pi ) a un efecto antisolvente en dicha segunda presión (P2) Io que provoca Ia precipitación de micro- o nanopartículas sólidas de estructura homogénea; A continuación, pueden aislarse y recogerse a dicha segunda presión (P2) dichas micro- o nanopartículas sólidas utilizando métodos convencionales.
Ventajosamente, con el procedimiento según el primer aspecto de Ia invención se proporcionan micro- o nanoparticulas de estabilidad mejorada, es decir, con menor riesgo de degradación o cambio estructural durante su almacenamiento, menor reactividad y mayor estabilidad frente al estrés mecánico y térmico, además de menor sensibilidad a Ia humedad.
Un segundo aspecto de Ia presente invención es Ia utilización de dichas micro- o nanoparticulas mejoradas en una composición que comprende además otros excipientes farmacéuticamente aceptables. Ventajosamente, de acuerdo con el procedimiento de Ia invención pueden obtenerse micro- o nanopartículas sólidas de estructura homogénea, cristalinas y con una relación de aspecto próxima a Ia unidad, es decir de morfología esferoidal, que las hace útiles para aplicaciones donde Ia estructura y morfología de las partículas tiene una influencia decisiva para su administración.
Un tercer aspecto de Ia presente invención es Ia utilización de dichas micro- o nanoparticulas de estructura homogénea y con una relación de aspecto próxima a Ia unidad para Ia preparación de aerosoles basados en principios activos de administración por vía inhalatoria o para Ia preparación de suspensiones de principios terapéuticamente activos que presentan baja hidrosolubilidad y biodisponibilidad.
Definiciones
En Ia presente invención por "fluido B" se entiende un fluido que a presión atmosférica y temperatura ambiente es un gas y que a una primera presión (Pi), superior a Ia atmosférica, es miscible con el disolvente orgánico, e inmiscible o parcialmente miscible con el agua. Preferiblemente, dicho fluido B se selecciona entre CO2 y un freón. Además, de acuerdo con las condiciones de presión y temperatura según el procedimiento de Ia invención dicho fluido B no actúa como fluido supercrítico en ninguna de las etapas definidas en las reivindicaciones adjuntas.
En Ia presente invención por "disolvente orgánico" se entiende cualquier disolvente orgánico polar o apolar o una mezcla de ambos que sea miscible con el CO2 a una primera presión (P1 ), superior a Ia presión atmosférica, y miscible en agua a presión atmosférica.
Preferiblemente, dicho disolvente orgánico puede seleccionarse del grupo que comprende: alcoholes monohídricos como metanol, etanol, 1- propanol, 2-propanol, 1-butanol, 1-hexanol, 1 -octanol, y trifluoroetanol, alcoholes polihídricos como el propilenglicol, PEG 400, y 1 ,3-propanediol; éteres como el tetrahidrofurano (THF), y dietiléter; alcanos como Ia decalina, isooctano, y aceite mineral; aromáticos como el benceno, tolueno, clorobenceno, y piridina; amidas como Ia n-metil pirrolidona (NMP), y N1N- dimetilformamida (DMF); esteres como el acetato de etilo, acetato de propilo, y acetato de metilo; clorocarbonos como el diclorometano, cloroformo, tetraclorometano, 1 ,2-dicloroetano, y 1 ,1 ,1-tricloroetano; cetonas como Ia acetona, cetona etil metílica, y cetona isobutílica metílica; otros disolventes como etilenodiamina, acetonitrilo, y trimetilfosfato. También pueden utilizarse disolventes de baja volatilidad tales como Ia dimetilacetamida o el dimetilsulfóxido o un líquido iónico. En una realización de Ia presente invención, el disolvente orgánico preferible es acetona.
En Ia presente invención por "agente tensioactivo" o "tensioactivo" se entiende un agente aniónico, catiónico o neutro que puede seleccionarse entre un agente emulsionante, agente de superficie, estabilizante, protector de coloides y, más preferiblemente, de entre, los polietilenglicoles (PEGs), los polisorbatos, poloxámero, palmitato de ascorbilo, lecitina, bromuro hexadeciltrimetilamonio (CTAB), sulfatos, sulfonatos, fosfatos, carboxilatos, y sulfosuccinatos. Todavía más preferiblemente, se selecciona entre polietilenglicol 6000 (PEG6000), bis (2-etilhexil)sulfosuccinato sódico (AOT), dodecil sulfato sódico (SDS), octil sulfato sódico, tetradecil sulfato sódico, octadecil sulfato sódico, laurato de sodio, sal sódica de colesterol sulfato, dodecil sulfonato sódico, decil sulfonato sódico, octil sulfonato sódico, oleato de sodio, así como entre otros, o una mezcla de ellos.
En Ia presente invención por el término "relación de aspecto" (RA) se entiende un valor próximo a 1 , donde dicho valor tiene únicamente el objeto de definir una partícula denominada comúnmente de morfología esferoidal. La relación de aspecto puede definirse como Ia relación entre Ia longitud y Ia altura de Ia partícula, siendo Ia longitud Ia mayor distancia medida entre dos puntos del perímetro de Ia proyección de Ia partícula independientemente de su orientación y siendo Ia anchura Ia mayor distancia entre dos puntos contenidos en Ia intersección de uno de los ejes perpendiculares a Ia longitud y perímetro de acuerdo con el procedimiento definido en S.AImeida-Prieto, J.BIanco- Méndez, FJ. Otero-Espinar, European Journal of Pharmaceutics and Biopharmaceutics 67 (2007) 766-776, en particular, página 772, Figura 5, procedimiento (a), de Research paper "Microscopio image analysis techniques for the morphological characterization of pharmaceutical partióles: Influence of the software, and the factor algorithms used in the shape factor estimation" en base a cuya determinación se indica el valor de relación de aspecto en Ia presente invención, sin que por ello no puedan utilizarse otros métodos para definir una partícula con morfología esferoidal.
En Ia presente invención por el término "compuesto sólido C" se entiende una sustancia o mezcla de sustancias sólidas, seleccionadas entre un fármaco, explosivo, colorante, pigmento, cosmético, polímero, catalizador, producto químico para Ia agricultura u otra sustancia parcial o totalmente insoluble en agua, y susceptible de ser disuelta a Ia presión en Ia cual el valor de sobresaturación (β) es menor o igual que 1 , estando Ia temperatura entre los márgenes descritos más adelante según Ia invención.
La formación de micro- o nanopartículas puede ser monitorizada y controlada mediante el análisis de Ia turbidez del sistema, inducida a su vez, por sucesivos cambios de presión y fracción molar de CO2 (XCo2) en el sistema. La turbidez del sistema se puede medir por densidad óptica. La densidad óptica (OD) se define como Ia absorbancia de un elemento óptico a una determinada longitud de onda en Ia cual el sistema no absorbe, y por unidad de camino óptico o distancia. La densidad óptica es una propiedad utilizada en Ia invención para detectar variaciones del valor de sobresaturación (β) en el sistema cuando β > 1 , y de Ia organización supramolecular de sus constituyentes. La monitorización "on-line" del sistema se lleva a cabo a través de un espectrofotómetro de ultravioleta-visible.
Descripción detallada de Ia invención
De acuerdo con el primer aspecto de Ia presente invención se proporciona un procedimiento para Ia obtención de micro- o nanopartículas con estructura homogénea.
El procedimiento de acuerdo con el primer aspecto de Ia invención comprende: a) Preparar en un recipiente cerrado una mezcla que incluye un disolvente orgánico o una mezcla de disolventes orgánicos, un compuesto sólido C y agua (H2O), donde en dicha etapa a) existen al menos una fase líquida y una fase sólida, que se caracteriza por el hecho de que comprende además: b) Añadir un fluido B a dicha mezcla preparada en Ia etapa a) y aumentar Ia presión del recipiente hasta alcanzar una primera presión (Pi), permitiendo dicha adición de fluido B a dicha primera presión (Pi) Ia obtención de una microemulsión formada por una fase orgánica saturada con agua, donde no existe una fase sólida y donde el valor de sobresaturación predeterminado (β) es menor o igual que 1 ; c) Variar dicha primera presión (Pi) a una segunda presión (P2), donde dicha variación de presión sea distinta de cero (ΔP ≠ 0), y donde a dicha segunda presión (P2) dicha agua (H2O) tenga un efecto antisolvente y promueva Ia precipitación de micro- o nanopartículas sólidas de estructura homogénea; donde existen al menos una fase líquida y una fase sólida; Y, si se desea, d) Recoger a dicha segunda presión (P2) dichas micro- o nanopartículas sólidas por métodos convencionales.
En dichas etapas a), b) y c), Ia transición entre unas a otras viene determinada por cambios de fases observados a través de variaciones en Ia densidad óptica.
Así, en las etapas a) y c), Ia naturaleza del disolvente determinará Ia existencia de una o más fases líquidas, dependiendo de si se trata de un disolvente orgánico polar, apolar o mezclas de ambos o de más de uno de ellos. En dichas etapas a) y c) cuando se utiliza un disolvente polar existe una única fase líquida. Si se utiliza un disolvente apolar, existirán más de una fase líquida determinadas por densidad óptica.
Ventajosamente, Ia mezcla de Ia etapa a) se prepara a presión atmosférica y temperatura ambiente. Sin embargo, Ia temperatura del procedimiento, con independencia de Ia etapa, puede estar comprendida entre -500C y 2000C, preferiblemente entre 10°C y 70 0C, y todavía más preferiblemente entre 200C y 50°C.
Opcionalmente, las etapas a) y b) pueden llevarse a cabo simultáneamente. En esta realización, donde las etapas a) y b) se llevan a cabo simultáneamente, el procedimiento prosigue en Ia etapa c). El aumento de Ia presión del recipiente hasta una primera presión (Pi) en Ia etapa b) puede llevarse a cabo ya bien sea por Ia propia adición del fluido B, Ia utilización de un medio mecánico como, por ejemplo un embolo en el recipiente, o bien Ia adición de un gas inerte, como por ejemplo el N2. También Ia variación de presión en Ia etapa c) hasta una segunda presión (P2) puede realizarse de igual forma.
En todavía otra realización de Ia presente invención, en Ia etapa a) puede añadirse también un agente tensioactivo. Ventajosamente, Ia presencia de un agente tensioactivo en Ia microemulsión obtenida en Ia etapa b) mejora todavía más Ia estabilidad de Ia dispersión final, pudiendo favorecer el control de los procesos de nucleación y crecimiento cristalino y, así, obtener tamaños de partícula todavía más pequeños y distribuciones de tamaño más estrechas.
Es de destacar que en Ia etapa b), cuando se alcanza dicha primera presión (Pi), el valor de sobresaturación (β) es menor o igual que 1 , siendo el valor de sobresaturación (β) Ia relación entre Ia concentración [C] de compuesto sólido C respecto Ia concentración de sobresaturación [C3] de dicho compuesto sólido C en Ia microemulsión:
P = [CWC8] ... 1
donde dicha microemulsión está formada por dicho disolvente orgánico o mezcla de disolventes orgánicos, dicha agua (H2O) y dicho fluido B y, opcionalmente, un agente tensioactivo.
La microemulsión formada en dicha etapa b) comprende una fase orgánica saturada con agua, donde dicha fase orgánica está formada por dicho fluido B, dicho disolvente orgánico o mezcla de disolventes orgánicos y dicho compuesto sólido C y, opcionalmente, dicho agente tensioactivo.
La variación de Ia primera presión (Pi) hasta una segunda presión
(P2), siendo dicha variación de presión positiva o negativa, es decir, aumentando o disminuyendo Ia primera presión (Pi) hasta una segunda presión (P2), promueve Ia precipitación de micro- o nanopartículas sólidas de estructura homogénea debido al efecto antisolvente del agua (H2O) a dicha segunda presión (P2), donde el valor de sobresaturación (β) es mayor que 1.
Sorprendentemente, los autores de Ia presente invención han encontrado que las características finales de las micro- o nanopartículas obtenidas no dependen de Ia eficacia de agitación como sí es el caso en las tecnologías descritas hasta Ia fecha, sino del grado de distribución homogénea del agua en Ia microemulsión obtenida que seguida de una variación de Ia presión (etapa c)) provoca que el agua actúe como antisolvente y tenga lugar Ia precipitación de las micro- o nanopartículas sólidas. Por Io tanto, el procedimiento de Ia presente invención representa un cambio sustancial en Ia línea seguida hasta Ia fecha para Ia obtención de partículas finamente divididas basada principalmente en que una mayor agitación u homogeneización de Ia solución que contiene el sólido a precipitar proporciona un menor tamaño de partícula.
De acuerdo con Ia presente invención, el efecto antisolvente del agua en determinadas condiciones de presión y en un medio adecuado, una microemulsión, permite obtener micro- o nanopartículas sólidas de estructura homogénea cuyas micro- o nanopartículas además manifiestan las propiedades de partida características de Ia naturaleza del compuesto sólido a precipitar.
En una realización de Ia invención, cuando Ia variación de presión en Ia etapa c) es positiva, es decir ΔP>0, Ia segunda presión (P2) es superior a Ia primera presión (Pi), y Ia precipitación es un fenómeno reversible.
En otra realización de Ia invención, cuando Ia variación de presión en Ia etapa c) es negativa, es decir ΔP<0, Ia segunda presión (P2) es inferior a Ia primera presión (Pi) y Ia precipitación es un fenómeno irreversible.
De acuerdo con el procedimiento de Ia invención, cuando ΔP > 0 el disolvente orgánico puede seleccionarse entre un disolvente polar o apolar, y cuando ΔP < 0 el disolvente orgánico es un disolvente polar.
Seguidamente, se recogen dichas micro- o nanopartículas a dicha segunda presión (P2) por métodos convencionales. Opcionalmente, dichas partículas pueden aislarse y recogerse, por ejemplo, por filtración y también cuando ΔP < 0 pueden recogerse sobre una corriente de agua de manera que se obtiene una suspensión de dichas partículas. Dicha suspensión tiene aplicación en Ia preparación de un medicamento que preferiblemente deba administrarse por vía oral, intravenosa o mucosal.
Con Ia variación de Ia presión (etapa c) de Ia microemulsión se modifica el comportamiento del agua, pasando de actuar como solvente a Pi a antisolvente a P2 Io que provoca Ia precipitación de micro- o nanopartículas sólidas con una estructura homogénea. En una realización de Ia invención, además dichas micro- o nanopartículas sólidas son cristalinas. También en otra realización de Ia presente invención dichas micro- o nanopartículas sólidas presentan una relación de aspecto sustancialmente igual a Ia unidad.
Ventajosamente, con el procedimiento según el primer aspecto de Ia invención se proporcionan micro- o nanopartículas con una excelente relación estructura-propiedad. Así, con el procedimiento de Ia invención pueden obtenerse micro- o nanopartículas con características estructurales mejoradas como, por ejemplo, una mayor cristalinidad, que confieren elevada estabilidad durante el almacenamiento, fluidez y menos tendencia a Ia absorción de humedad.
Además, Ia adición de fluido B, por ejemplo CO2, en el procedimiento de Ia invención, y a diferencia de las técnicas descritas hasta Ia fecha, no provoca Ia precipitación del compuesto sólido C en forma de partículas finamente divididas. Con ello, el procedimiento de Ia invención proporciona una nueva tecnología de obtención de micro- o nanopartículas sólidas donde el fluido B no es el responsable de Ia precipitación, ni se utiliza en estado supercrítico en ninguna etapa del procedimiento. Se cree que el efecto antisolvente del agua a P2 y las condiciones en las que se produce Ia precipitación favorecen una nucleación y crecimiento de estructuras cristalinas con una morfología sustancialmente esferoidal. Por tanto, el nuevo procedimiento proporciona propiedades inesperadas en las micro- o nanopartículas obtenidas, propiedades no descritas en el estado de Ia técnica a dicha micro- o nanoescala.
La cristalinidad y, por tanto, Ia ausencia de sólido amorfo en, por ejemplo, un producto farmacéutico es de gran importancia porque se considera que formulaciones que contienen formas amorfas son menos estables que el sólido cristalino y, por tanto, conllevan un riesgo en cuanto a conservación de las propiedades del material durante el almacenamiento. Estos materiales parcial o totalmente amorfos tienen a menudo mayor reactividad y presentan inestabilidad frente al estrés mecánico y térmico y presentan gran tendencia a Ia absorción de agua.
Además, ventajosamente, de acuerdo con el primer aspecto de Ia presente invención se proporciona un procedimiento para Ia obtención de micro- o nanopartículas con una morfología sustancialmente esferoidal, también denominada una morfología con una relación de aspecto próxima a 1 , según el método referenciado en Ia sección de definiciones para relación de aspecto.
La morfología es una propiedad muy determinante en Ia preparación y administración de, por ejemplo, un medicamento ya que tiene especial incidencia en propiedades de Ia formulación farmacéutica como son Ia fluidez y
Ia compactabilidad. Así, cuanto más regular y más similar a Ia forma esférica sea la morfología de las partículas mayor será su fluidez en formulaciones de tipo aerosol, como las que se utilizan para Ia administración por inhalación.
Las partículas obtenidas presentan una estrecha distribución volumétrica de tamaños y un diámetro medio de esfera asociada inferior a los 10 Dm, generalmente inferior a 1 Dm. Ventajosamente, el tamaño de partícula obtenido con el procedimiento definido en Ia invención está comprendido entre 10 μm y 500 nm, preferiblemente entre 3 μm y 800 nm, más preferiblemente entre 1 μm y 700 nm.
Así, de acuerdo con el segundo aspecto de Ia invención, las micro- o nanopartículas obtenidas de acuerdo con el primer aspecto son de elevado interés para Ia preparación de una composición que comprende además otros excipientes farmacéuticamente aceptables donde Ia estructura y Ia morfología de las micro- o nanopartículas sea determinante para su aplicación.
También, de acuerdo con el tercer aspecto de Ia invención dichas micro- o nanopartículas obtenidas tienen especial interés en Ia preparación de un aerosol de dosificación inhalatoria de medicamentos destinado al tratamiento de enfermedades pulmonares, o de formulaciones donde se pretenda aumentar Ia biodisponibilidad de sustancias activas poco solubles en agua.
Descripción de las Figuras
La Figura 1 muestra dos curvas de sobresaturación respecto al tiempo (t), curva A y curva B.
Dicha figura 1 presenta tres zonas diferenciadas, zona I donde no existe crecimiento cristalino, zona Il donde existe crecimiento cristalino pero no nucleación y zona III donde existe nucleación. La curva A corresponde a un perfil cualitativo de sobresaturación correspondiente a un proceso de cristalización donde el fenómeno de nucleación se encuentra favorecido por encima del proceso de crecimiento cristalino. La curva B corresponde a un perfil cualitativo de sobresaturación de un proceso donde el crecimiento cristalino está favorecido por encima de Ia nucleación.
El procedimiento de Ia invención sigue una curva de sobresaturación tipo A, que se caracteriza porque se desarrolla en Ia zona III en un breve periodo de tiempo y, por tanto, existe elevada nucleación, Io que se traduce en un mayor número de partículas sólidas con un tamaño reducido.
La Figura 2 muestra una instalación para llevar a cabo el procedimiento de Ia invención. Dicho equipo comprende un depósito 1 que contiene CO2 estando dicho deposito conectado a una bomba 3 para suministrar dicho fluido CO2 a alta presión. La adición del fluido CO2 sobre el reactor de mezclado 7 donde ya se encuentra una mezcla del disolvente orgánico (o una mezcla de disolventes orgánicos), un compuesto sólido C y agua puede realizarse por Ia parte superior a través de las válvulas 4 y 6, ó a través de las válvulas 4 y 5 por Ia parte inferior. A través de las válvulas 9 y 5 se controla Ia adición, al reactor de mezclado 7, de un gas inerte N2 que se encuentra en el depósito 8. Este gas inerte puede utilizarse para aumentar Ia presión de Pi a P2 cuando ΔP(P2>pi)> 0. Alternativamente, puede utilizarse un émbolo accionado mecánica o pneumáticamente (no mostrado) para aumentar Ia presión del reactor de mezclado 7. La microemulsión formada en el reactor 7 a Ia presión P2 pasa al filtro 11 a través de Ia válvula 10, donde se procede a una primera filtración manteniendo Ia presión a Ia presión P2. A Ia salida del filtro 11 y tras pasar por Ia válvula 12, Ia microemulsión que contiene el CO2 se expande y sufre una rápida despresurización hasta presión Ia atmosférica, con Ia consecuente precipitación de las partículas sólidas cristalinas. Durante Ia filtración a presión atmosférica, en el filtro 13, las partículas son retenidas en el filtro 13 y las aguas madres se recogen en el recipiente 15 a través de Ia válvula 14. La Figura 3 muestra Ia variación de Ia densidad óptica observada en una microemulsión formada de acuerdo con el procedimiento de Ia invención, por ejemplo, por el sistema "ibuprofeno/acetona/agua/PEG6000/Cθ2" en función de Ia presión a 35' 0C.
La densidad óptica se define como Ia absorbancia de un elemento óptico a una determinada longitud de onda y por unidad de camino óptico o distancia. La turbidez de un sistema se define en términos de densidad óptica cuando el sistema no absorbe luz a esa longitud de onda.
La Figura 4 representa un perfil de calorimetría diferencial por barrido (DSC) del compuesto sólido C (ibuprofeno) obtenido de acuerdo con el procedimiento de Ia invención, con y sin agente tensioactivo (PEG6000). A partir de dicha figura puede observarse que Ia presencia del agente tensioactivo no modifica Ia estructura cristalina de las micro- o nanopartículas sólidas, así como tampoco Io hace si ΔP(P2<pi)< 0 o si ΔP(P2>pi)> 0. El perfil 1 se corresponde al compuesto ibuprofeno obtenido para ΔP(P2>pi)> 0 en presencia de tensoactivo (PEG6000). Los perfiles 2 y 3 se corresponden al compuesto ibuprofeno obtenido para ΔP(P2<pi)<0, con y sin tensoctivo (PEG6000), respectivamente. El perfil 4 se corresponde al compuesto ibuprofeno original sin procesar. En Ia Figura 4 los símbolos X e Y se corresponden a los picos endotérmicos de fusión del tensioactivo (PEG6000) y del compuesto C (ibuprofeno), respectivamente.
La Figura 5 representa un espectro de difracción de rayos X de compuesto sólido C (ibuprofeno) obtenido mediante el procedimiento de Ia invención en presencia o ausencia de agente tensioactivo (PEG6000). En particular, en dicha figura puede observarse que con el procedimiento según Ia invención, se obtienen micro- o nanopartículas sólidas cristalinas tanto si ΔP(P2<P1 )< 0 como si ΔP(P2>P1)> 0. Los espectros (a) y (b) se corresponden al compuesto ibuprofeno obtenidos para ΔP(P2<Pi)< 0 con y sin tensoactivo (PEG6000), respectivamente. El espectro (c) se corresponde al compuesto ibuprofeno obtenido para ΔP(P2>pi)> 0 con tensoactivo (PEG6000). El espectro (d) corresponde al compuesto ibuprofeno original sin procesar.
La figura 6A es una imagen de microscopía electrónica de barrido (SEM) del compuesto ibuprofeno obtenido sin tensoactivo y ΔP < 0 (P2<P1 ). lbuprofeno/acetona/agua/CO2, sin agente tensioactivo; Precipitación obtenida a P2 = presión atmosférica
- X2= 0,16 (fracción molar de CO2);
- Sólido recogido en un filtro no presurizado; - Diámetro medio de partícula: 740 nm;
- Rendimiento total del sólido recogido: 86%
La figura 6B es una imagen de microscopía electrónica de barrido (SEM) del compuesto ibuprofeno obtenido con PEG6000 y ΔP < 0 (P2<P1 ). - lbuprofeno/acetona/agua/CO2/PEG6000;
Precipitación obtenida a P2 = presión atmosférica
- X2= 0,16 (fracción molar de CO2);
- Sólido recogido en un filtro no presurizado;
- Diámetro medio de partícula: 680 nm; - Rendimiento total sólido recogido: 81%
De Ia comparación de dichas Figuras 6A y 6B puede apreciarse que con ΔP<0 Ia presencia del agente tensioactivo tiene influencia en el tamaño de partícula, reduciéndolo con su presencia.
La figura 6C es una imagen de microscopía electrónica de barrido (SEM) del compuesto ibuprofeno obtenido con PEG6000 y ΔP >0 (P2>P1 )
- lbuprofeno/acetona/agua/CO2/PEG6000; Precipitación obtenida a P2=I 47 bares y 350C; - X∞2= 0,16 (fracción molar de CO2);
- Sólido recogido en un filtro presurizado;
- Diámetro medio de partícula: 935 nm; A continuación, se describen realizaciones preferidas de Ia presente invención que no son limitativas de Ia misma.
Ejemplos
Ejemplo 1 : Obtención de nano-partículas de ibuprofeno mediante el proceso de Ia invención cuando ΔP<0 (Sin tensoactivo)
En un reactor de mezclado 7 de 30OmL de capacidad, se introducen 17OmL de una disolución del compuesto ibuprofeno en acetona con una concentración relativa a Ia saturación del 63% y 9OmL de H2O, obteniéndose una suspensión del fármaco en Ia mezcla acetona-agua. Sobre esta suspensión se adiciona CO2 con un caudal de 7Kg/h hasta que Ia presión P1 del reactor 7 alcanza los 100Bar. La temperatura se mantiene constante durante todo el proceso a 350C. A estas condiciones, este sistema esta formado por una microemulsión transparente constituida por el sistema ibuprofeno/acetona/agua/CO2. La microemulsión se deja estabilizar a P1 y 350C durante 15 minutos (véase Figura 2). Se cierra el suministro de CO2 y se inicia Ia adición de N2 por Ia parte superior del reactor a través de Ia válvula 6, para mantener constante Ia presión P1 a 100bar dentro del reactor durante el proceso de despresurización de Ia microemulsión. La despresurización de Ia microemulsión desde P1 hasta P2=1 bar, con Ia consiguiente rápida evaporación del CO2, se realiza mediante Ia abertura de una válvula 12. La evaporación del CO2 provoca que el agua manifieste de nuevo su carácter antisolvente sobre el ibuprofeno disuelto en Ia fase orgánica, provocando su precipitación. Las partículas precipitadas se recogen en el filtro 13 a P2=1 bar (presión atmosférica). Las partículas precipitadas se lavan con CO2 a 40Bar. Las aguas madres se recolectan en el recipiente 15 a través de Ia válvula 14. El tamaño de partícula del compuesto ibuprofeno fue determinado por microscopía electrónica de barrido (SEM). La distribución de tamaños de partícula de Ia fase sólida recolectada en el filtro 13 tiene una media de 740nm con una desviación estándar de 100nm. Se observó mediante difracción de rayos X en polvo que las partículas obtenidas son cristalinas, y por microscopía electrónica de barrido (SEM) que presentan una morfología esferoidal homogénea (ver Figura 5A). El rendimiento del proceso es del 86%.
Opcionalmente, se dispone de un segundo filtro para recoger el posible sólido que no se haya disuelto en Ia microemulsión obtenida a presión P1 , siendo dicho filtro el representado en Ia Figura 2 como filtro 11.
Ejemplo 2: Obtención de nano-partículas de ibuprofeno mediante el proceso de Ia invención cuando ΔP<0 (En presencia de un tensoactivo PEG6000 disuelto en Ia fase acuosa)
En un reactor de mezclado 7 de 30OmL de capacidad, se introducen 17OmL de una disolución del compuesto ibuprofeno en acetona con una concentración relativa a Ia saturación del 63% y 9OmL de una disolución acuosa que contiene un 10% en peso de tensoactivo PEG6000, obteniéndose una suspensión del fármaco en Ia mezcla acetona-agua. Sobre esta suspensión se adiciona CO2 con un caudal de 7Kg/h hasta que Ia presión P1 del reactor 7 alcanza los 100Bar. La temperatura se mantiene constante durante todo el proceso a 350C. A estas condiciones, este sistema esta formado por una microemulsión transparente constituida por el sistema ibuprofeno / acetona / agua / PEG6000 / CO2. La microemulsión se deja estabilizar a P1 y 350C durante 15 minutos (véase Figura 2). Se cierra el suministro de CO2 y se inicia Ia adición de N2 por Ia parte superior del reactor 7 a través de Ia válvula 6, para mantener constante Ia presión P1 a 100Bars dentro del reactor durante el proceso de despresurización de Ia microemulsión. La despresurización de Ia microemulsión desde P1 hasta P2=1 Bar, con Ia consiguiente rápida evaporación del CO2, se realiza mediante de Ia abertura de una válvula 12. La evaporación del CO2 provoca que el agua manifieste de nuevo su carácter antisolvente sobre el ibuprofeno disuelto en Ia fase orgánica, provocando su precipitación. Las partículas precipitadas se recogen en el filtro 13 a P2=1 Bar (presión atmosférica). Las partículas precipitadas se lavan con CO2 a 40Bar. Las aguas madres se recolectan en el recipiente 15 a través de Ia válvula 14. El tamaño de partícula del compuesto ibuprofeno fue determinado por microscopía electrónica de barrido (SEM). La distribución de tamaños de partícula de Ia fase sólida recolectada en el filtro 13 tiene una media de 680nm con una desviación estándar de 110nm. Se observó mediante difracción de rayos X en polvo que las partículas obtenidas son cristalinas, y por microscopía electrónica de barrido (SEM) que presentan una morfología esferoidal homogénea (ver Figura 5B). El rendimiento del proceso es del 81 %.
Opcionalmente, se dispone de un segundo filtro para recoger el posible sólido que no se haya disuelto en Ia microemulsión obtenida a presión P1 , siendo dicho filtro el representado en Ia Figura 2 como filtro 11.
Ejemplo 3: Obtención de nano-partículas de ibuprofeno mediante el proceso de Ia invención cuando ΔP>0 (Sin tensioactivo)
En un reactor de mezclado 7 de 30OmL de capacidad, se introducen 17OmL de una disolución del compuesto ibuprofeno en acetona con una concentración relativa a Ia saturación del 63% y 9OmL de H2O, obteniéndose una suspensión del fármaco en Ia mezcla acetona-agua. Sobre esta suspensión se adiciona CO2 con un caudal de 7Kg/h hasta que Ia presión P1 del reactor 7 alcanza los 100Bar. La temperatura se mantiene constante durante todo el proceso a 350C. A estas condiciones, este sistema esta formado por una microemulsión transparente constituida por el sistema ibuprofeno/acetona/agua/Cθ2. La microemulsión se deja estabilizar a P1 y 350C durante 15 minutos (véase Figura 2). Se cierra el suministro de CO2 y se inicia Ia adición de N2 por Ia parte superior del reactor 7 a través de Ia válvula 6 hasta alcanzar una presión P2=146Bar dentro del reactor(P2>P1 ). El aumento de Ia presión de P1 a P2 promueve que el agua manifieste de nuevo el efecto antisolvente sobre el soluto presente en el sistema soluto/ disolvente orgánico / agua /CO2, provocando su precipitación. El sólido precipitado se filtra sobre el filtro 11 a presión P2. La despresurización de las aguas madres se realiza a través de Ia válvula 12 y su recolección en el depósito 15, después de pasar por el filtro 13 y Ia válvula 14. El sólido recogido en el filtro 11 se lava con CO2 a 40Bar. El tamaño de partícula del compuesto ibuprofeno fue determinado por microscopía electrónica de barrido (SEM). La distribución de tamaños de partícula de Ia fase sólida recolectada en el filtro 11 tiene una media de 940nm con una desviación estándar de 300nm. Se observó mediante difracción de rayos X en polvo que las partículas obtenidas son cristalinas, y por microscopía electrónica de barrido (SEM) que presentan una morfología esferoidal homogénea. El rendimiento del proceso fue de 20%.
Ejemplo 4: Obtención de nano-partículas de ibuprofeno mediante el proceso de Ia invención cuando ΔP>0(En presencia de un tensoactivo PEG6000 disuelto en Ia fase acuosa)
En un reactor de mezclado 7 de 30OmL de capacidad, se introducen 17OmL de una disolución del compuesto ibuprofeno en acetona con una concentración relativa a Ia saturación del 63% y 9OmL de una disolución acuosa que contiene un 10% en peso de tensoactivo PEG6000, obteniéndose una suspensión del fármaco en Ia mezcla acetona-agua. Sobre esta suspensión se adiciona CO2 con un caudal de 7Kg/h hasta que Ia presión P1 del reactor 7 alcanza los 100Bar. La temperatura se mantiene constante durante todo el proceso a 350C. A estas condiciones, este sistema esta formado por una microemulsión transparente constituida por el sistema ibuprofeno / acetona / agua / PEG6000 / CO2. La microemulsión se deja estabilizar a Pi y 350C durante 15 minutos (véase Figura 2). Se cierra el suministro de CO2 y se inicia Ia adición de N2 por Ia parte superior del reactor 7 a través de Ia válvula 6 hasta alcanzar una presión P2= 146Bar dentro del reactor(P2>P1 ). El aumento de Ia presión de P1 a P2 promueve que el agua manifieste de nuevo el efecto antisolvente sobre el soluto presente en el sistema soluto/ disolvente orgánico / agua / PEG6000/ CO2, provocando su precipitación. El sólido precipitado se filtra sobre el filtro 11 a presión P2. La despresurización de las aguas madres se realiza a través de Ia válvula 12 y su recolección en el depósito 15, después de pasar por el filtro 13 y Ia válvula 14. El sólido recogido en el filtro 11 se lava con CO2 a 40Bar. El tamaño de partícula del compuesto ibuprofeno fue determinado por microscopía electrónica de barrido (SEM). La distribución de tamaños de partícula de Ia fase sólida recolectada en el filtro 11 tiene una media de 935nm con una desviación estándar de 460nm. Se observó mediante difracción de rayos X en polvo que las partículas obtenidas son cristalinas, y por microscopía electrónica de barrido (SEM) que presentan una morfología esferoidal homogénea. El rendimiento del proceso fue de 21 %. (Véase Figura 6C).

Claims

R E I V I N D I C A C I O N E S
1 . Procedimiento para Ia obtención de micro- o nanopartículas sólidas que comprende: a) Preparar en un recipiente cerrado una mezcla que incluye un disolvente orgánico o una mezcla de disolventes orgánicos, un compuesto sólido C y agua (H2O), donde en dicha etapa a) existen al menos una fase líquida y una fase sólida; caracterizado por el hecho de que comprende además: b) Añadir un fluido B a dicha mezcla preparada en Ia etapa a) y aumentar Ia presión del recipiente hasta alcanzar una primera presión (Pi ), permitiendo dicha adición de fluido B a dicha primera presión (Pi ) Ia obtención de una microemulsión formada por una fase orgánica saturada con agua, donde no existe una fase sólida y donde a dicha primera presión (Pi ) el valor de sobresaturación predeterminado (β) del compuesto sólido C es menor o igual que 1 , c) Variar dicha primera presión (P1) a una segunda presión (P2), donde dicha variación de presión sea distinta de cero (ΔP ≠ 0), y donde a dicha segunda presión (P2) dicha agua (H2O) tenga un efecto antisolvente y promueva Ia precipitación de micro- o nanopartículas sólidas de estructura homogénea; donde en dicha etapa c) existen al menos una fase líquida y una fase sólida;
Y, si se desea, d) Recoger a dicha segunda presión (P2) dichas micro- o nanopartículas sólidas por métodos convencionales.
2. Procedimiento según Ia reivindicación 1 , donde dichas etapas a) y b) se llevan a cabo simultáneamente.
3. Procedimiento según cualquiera de las reivindicaciones anteriores, donde en Ia etapa a) Ia mezcla incluye un agente tensioactivo.
4. Procedimiento según Ia reivindicación 1 , donde en Ia etapa a) dicho recipiente está a presión atmosférica y temperatura ambiente.
5. Procedimiento según Ia reivindicación 1 , donde en Ia etapa c) dicha variación es tal que Ia segunda presión (P2) es superior a Ia primera presión (P1), (ΔP > 0).
6. Procedimiento según las reivindicaciones 5, donde dicha etapa c) es reversible, es decir Ia precipitación es un fenómeno reversible.
7. Procedimiento según Ia reivindicación 1 , donde en Ia etapa c) dicha variación es tal que Ia segunda presión (P2) es inferior a Ia primera presión (P1), (ΔP < 0).
8. Procedimiento según Ia reivindicación 1 , donde siendo ΔP > 0 dicho disolvente orgánico se selecciona entre un disolvente polar o apolar.
9. Procedimiento según Ia reivindicación 1 , donde siendo ΔP < 0 dicho disolvente orgánico es un disolvente polar.
10. Procedimiento según Ia reivindicación 1 , donde dicho compuesto sólido C es insoluble o parcialmente insoluble en H2O.
11. Procedimiento según Ia reivindicación 1 , donde dicho fluido B es CO2.
12 Procedimiento según Ia reivindicación 1 , donde dichas micro- o nanopartículas sólidas presentan un tamaño de partícula inferior a 10 μm, preferiblemente inferior a 1 μm.
13. Procedimiento según Ia reivindicación 1 , donde dichas micro- o nanopartículas sólidas presentan un valor de relación de aspecto próximo a Ia unidad.
14. Procedimiento según Ia reivindicación 13, donde dichas micro- o nanopartículas sólidas presentan una morfología sustancialmente esferoidal.
15. Procedimiento según cualquiera de las reivindicaciones anteriores, donde siendo el compuesto sólido C de naturaleza cristalina dichas micro- o nanopartículas sólidas obtenidas presentan estructura cristalina.
16. Composición que comprende dichas micro- o nanopartículas sólidas obtenidas según cualquiera de las reivindicaciones anteriores para Ia preparación de una formulación juntamente con otros excipientes farmacéuticamente aceptables.
17. Utilización de dichas micro- o nanopartículas sólidas obtenidas según cualquiera de las reivindicaciones 1 a 15 para Ia fabricación de un medicamento para Ia administración por vía inhalatoria en forma de aerosol.
18. Utilización de dichas micro- o nanopartículas sólidas obtenidas según cualquiera de las reivindicaciones 1 a 15 para Ia fabricación de una suspensión para Ia administración por vía oral, intravenosa o mucosal.
PCT/ES2009/070485 2008-12-30 2009-11-06 Procedimiento para la obtención de micro - o nanopartículas sólidas WO2010076360A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES09836113.2T ES2523725T3 (es) 2008-12-30 2009-11-06 Procedimiento para la obtención de micro- o nanopartículas sólidas
CA2748682A CA2748682C (en) 2008-12-30 2009-11-06 Process for obtaining solid micro- or nano-particles
US13/142,764 US8613953B2 (en) 2008-12-30 2009-11-06 Method for obtaining solid micro- or nanoparticles
EP09836113.2A EP2383034B1 (en) 2008-12-30 2009-11-06 Method for obtaining solid micro- or nanoparticles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200803753A ES2342140B1 (es) 2008-12-30 2008-12-30 Procedimiento para la obtencion de micro- o nanoparticulas solidas
ESP200803753 2008-12-30

Publications (1)

Publication Number Publication Date
WO2010076360A1 true WO2010076360A1 (es) 2010-07-08

Family

ID=42260540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070485 WO2010076360A1 (es) 2008-12-30 2009-11-06 Procedimiento para la obtención de micro - o nanopartículas sólidas

Country Status (5)

Country Link
US (1) US8613953B2 (es)
EP (1) EP2383034B1 (es)
CA (1) CA2748682C (es)
ES (2) ES2342140B1 (es)
WO (1) WO2010076360A1 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113200846B (zh) * 2021-04-23 2022-04-22 浙江新和成股份有限公司 一种高松密度布洛芬球形晶体的制备方法及其产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010055561A1 (en) * 2000-03-03 2001-12-27 Said Saim Material processing by repeated solvent expansion-contraction
ES2170008A1 (es) * 2000-08-25 2002-07-16 Soc Es Carburos Metalicos Sa Procedimiento para la precipitacion de particulas solidas finamente divididas.
ES2228149T3 (es) * 1998-11-23 2005-04-01 Astrazeneca Ab Proceso para la preparacion de particulas cristalinas.
ES2261469T3 (es) * 2001-07-02 2006-11-16 MICRO &amp; NANO MATERIALS SAGL Proceso para la produccion de microparticulas y nanoparticulas.
ES2265262A1 (es) * 2005-01-31 2007-02-01 Activery Biotech, S.L.(Titular Al 50%) Procedimiento para la obtencion de sistemas micro- y nanodispersos.
ES2292300A1 (es) * 2005-07-19 2008-03-01 Sociedad Española De Carburos Metalicos, S.A.(Titular Al 50%) Procedimiento para la obtencion de un material compuesto.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10248619A1 (de) * 2002-10-18 2004-04-29 Bayer Ag Verfahren zur Herstellung pulverförmiger Wirkstoff-Formulierungen mit kompressiblen Fluiden
WO2007009986A2 (en) * 2005-07-19 2007-01-25 Activery Biotech, S.L. Process for obtaining a composite
US20110021592A1 (en) * 2006-09-14 2011-01-27 Shlomo Magdassi Organic nanoparticles obtained from microemulsions by solvent evaporation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2228149T3 (es) * 1998-11-23 2005-04-01 Astrazeneca Ab Proceso para la preparacion de particulas cristalinas.
US20010055561A1 (en) * 2000-03-03 2001-12-27 Said Saim Material processing by repeated solvent expansion-contraction
ES2170008A1 (es) * 2000-08-25 2002-07-16 Soc Es Carburos Metalicos Sa Procedimiento para la precipitacion de particulas solidas finamente divididas.
ES2261469T3 (es) * 2001-07-02 2006-11-16 MICRO &amp; NANO MATERIALS SAGL Proceso para la produccion de microparticulas y nanoparticulas.
ES2265262A1 (es) * 2005-01-31 2007-02-01 Activery Biotech, S.L.(Titular Al 50%) Procedimiento para la obtencion de sistemas micro- y nanodispersos.
ES2292300A1 (es) * 2005-07-19 2008-03-01 Sociedad Española De Carburos Metalicos, S.A.(Titular Al 50%) Procedimiento para la obtencion de un material compuesto.

Also Published As

Publication number Publication date
US20120004308A1 (en) 2012-01-05
ES2342140A1 (es) 2010-07-01
US8613953B2 (en) 2013-12-24
EP2383034B1 (en) 2014-08-13
EP2383034A1 (en) 2011-11-02
ES2523725T3 (es) 2014-12-01
CA2748682C (en) 2016-06-28
CA2748682A1 (en) 2010-07-08
ES2342140B1 (es) 2011-05-17
EP2383034A4 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
ES2312996T3 (es) Proceso de solidificacion con antidisolvente.
ES2261782T3 (es) Tratamiento de polvo con fluidos gaseosos presurizados.
ES2265262B1 (es) Procedimiento para la obtencion de sistemas micro- y nanodispersos.
ES2289308T3 (es) Particulas obtenidas por extraccion con fluido supercritico de emulsion.
ES2306452T3 (es) Aporte de farmacos insolubles.
ES2280850T3 (es) Procedimiento para preparar particulas compuestas.
Chavhan et al. Nanosuspensions in drug delivery: recent advances, patent scenarios, and commercialization aspects
Patel et al. Nanosuspension: A novel approch to enhance solubility of poorly water soluble drugs-A review
Badens et al. Comparison of solid dispersions produced by supercritical antisolvent and spray-freezing technologies
Zhang et al. Micronization of silybin by the emulsion solvent diffusion method
Pragati et al. Solid lipid nanoparticles: a promising drug delivery technology
ES2295446T3 (es) Procedimiento de preparacion de un compuesto de interaccion de sustancias activas con un soporte poroso mediante fluido supercritico.
ES2523725T3 (es) Procedimiento para la obtención de micro- o nanopartículas sólidas
Vedaga et al. Nanosuspension: An emerging trend to improve solubility of poorly water soluble drugs
CA2403343C (en) Process for the preparation of accelerated release formulations using compressed fluids
US20160166512A1 (en) Porous Hollow Fiber Anti-Solvent Crystallization-Based Continuous Method of Polymer Coating on Submicron and Nanoparticles
Pathak et al. Supercritical fluid processing of drug nanoparticles in stable suspension
CN101242809A (zh) 方法
WO2002016003A1 (es) Procedimiento para la precipitacion de particulas solidas finamente divididas
ES2292300B1 (es) Procedimiento para la obtencion de un material compuesto.
Ali et al. Drug nanocrystals: emerging trends in pharmaceutical industries
Kolhe et al. Solubility and solubilization techniques–A review
Martín et al. Post‐extraction Processes: Improvement of Functional Characteristics of Extracts
Muntó et al. Synergistic solubility behaviour of a polyoxyalkylene block co-polymer and its precipitation from liquid CO2-expanded ethanol as solid microparticles
Sekar The utilisation of neoteric media technology for the development of formulations for treatment of colorectal cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09836113

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2748682

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009836113

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13142764

Country of ref document: US