WO2010076209A1 - Reaktor und verfahren zur herstellung von phosgen - Google Patents

Reaktor und verfahren zur herstellung von phosgen Download PDF

Info

Publication number
WO2010076209A1
WO2010076209A1 PCT/EP2009/067239 EP2009067239W WO2010076209A1 WO 2010076209 A1 WO2010076209 A1 WO 2010076209A1 EP 2009067239 W EP2009067239 W EP 2009067239W WO 2010076209 A1 WO2010076209 A1 WO 2010076209A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
tubes
contact
catalyst
heat carrier
Prior art date
Application number
PCT/EP2009/067239
Other languages
English (en)
French (fr)
Inventor
Gerhard Olbert
Wolfgang Gerlinger
Byoung Yeon Kim
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to JP2011541403A priority Critical patent/JP5378539B2/ja
Priority to BRPI0922235A priority patent/BRPI0922235A2/pt
Priority to EP09799608.6A priority patent/EP2379217B1/de
Priority to CN200980156855.0A priority patent/CN102316970B/zh
Priority to ES09799608T priority patent/ES2770646T3/es
Priority to US13/140,194 priority patent/US8492587B2/en
Publication of WO2010076209A1 publication Critical patent/WO2010076209A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/065Feeding reactive fluids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/80Phosgene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • B01J2208/00221Plates; Jackets; Cylinders comprising baffles for guiding the flow of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • B01J2208/0023Plates; Jackets; Cylinders with some catalyst tubes being empty, e.g. dummy tubes or flow-adjusting rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00247Fouling of the reactor or the process equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0277Metal based
    • B01J2219/0286Steel

Definitions

  • the invention relates to a reactor and a process for the preparation of phosgene by gas phase reaction of carbon monoxide and chlorine in the presence of a solid catalyst.
  • Phosgene is industrially produced in a catalytic gas phase reaction of carbon monoxide and chlorine in the presence of a solid catalyst, preferably activated carbon.
  • the reaction is strongly exothermic, the enthalpy of formation is -107.6 kJ / mol.
  • the reaction is usually prepared in a tube-bundle reactor according to the method described in Ullmanns Enzyklopadie der ischen Chemie, Vol. A 19, pages 413 to 414. Thereafter, the granular catalyst, having a particle size in the range of 3 to 5 mm, in tubes with an inner diameter between 50 and 70 mm used. At 40 to 50 0 C, the reaction starts, the temperature rises in the tubes to about 580 0 C and then drops again.
  • Carbon monoxide is used in slight excess to ensure that all the chlorine is converted and to obtain chlorine-free phosgene.
  • the reaction can be carried out without pressure or under pressure, often at 2 to 5 bar, in order to be able to condense the phosgene already with cooling water.
  • Phosgene is an important adjuvant in the production of intermediate and end products in almost all branches of chemistry.
  • the largest use in terms of quantity is the preparation of diisocyanates for polyurethane chemistry, in particular toluene diisocyanate and 4,4-diisocyanate-diphenylmethane.
  • deflecting plates are installed between the catalyst tubes, which effect a transverse flow of the catalyst tubes through the heat carrier.
  • WO 03/072237 describes an improved reactor for the production of phosgene, which allows an increased specific cross-sectional load and thus a higher capacity by avoiding the corrosion problems at the contact tubes in the deflection region.
  • WO 03/072237 proposes a reactor with a bundle of contact tubes arranged parallel to one another in the longitudinal direction of the reactor, which are fastened at their ends in tube plates, each with a hood at both ends of the reactor, and with a space perpendicular to the longitudinal direction of the reactor in the intermediate space arranged between the catalyst tubes baffles which leave alternately opposite passage openings on the reactor inner wall, wherein the catalyst tubes are filled with the solid catalyst, the gaseous reaction mixture passed from a reactor end via a hood through the catalyst tubes and withdrawn from the opposite end of the reactor via the second hood and through the Interspace around the catalyst tubes a liquid heat transfer medium is passed and wherein the reactor is in the area of the passage openings untouched.
  • the large pressure drop across the reactor cross section between the two opposite passage openings on the reactor inner wall leads to larger differences in the heat transfer coefficients at the boundary layer between the catalyst tubes and the heat transfer medium, factors of 1: 2 between areas with good heat transfer and areas with Bad heat transfer can occur within a reactor cross-section. Accordingly, the catalyst tubes are cooled worse in the areas with poor heat transfer.
  • the catalyst tubes depending on the material used, in particular duplex steel, have a maximum temperature load, often in the range of about 160 to 200 0 C, in particular from about 170 to 180 0 C, which may not be exceeded ü, because otherwise the corrosion of the material increases sharply, the areas with poor heat transfer limit the throughput and thus the capacity of the reactor.
  • the solution consists in a reactor for the production of phosgene by gas phase reaction of carbon monoxide and chlorine in the presence of a solid catalyst, which is arranged in the contact tubes of a bundle of catalyst tubes, which are welded at both ends thereof in each case a tube plate, with feed of the starting materials at the top End of the contact tubes and discharge of the gaseous reaction mixture at the lower end of the catalyst tubes, each with a hood, as well as with supply and discharge means for a liquid heat carrier in the shell space between the catalyst tubes, wherein the flow of the heat carrier in the space between the catalyst tubes by Deflection plates is passed, leaving the alternately opposite passage openings on the reactor inner wall, in which the baffles have circular segment-shaped recesses, and wherein the reactor in the region of the passage openings is untested, which is characterized in that the heat transfer coefficients at the boundary layer between the catalyst tubes and the heat transfer medium are made uniform across each reactor cross section by the flow paths of the heat transfer medium in each reactor cross section, measured from the first to the last
  • the pressure loss is the same for all flow paths of the heat carrier.
  • the pressure loss ⁇ p can be described by the following equation:
  • ⁇ p 1 / d R ( ⁇ i • ⁇ • v + ⁇ 2 • p / 2 v 2 ),
  • ⁇ p is the pressure drop in Pascal
  • ⁇ i and C, 2 are the dimensionless pressure loss coefficients (pressure loss coefficients)
  • I is the length of the flow path in m
  • 6 R is the diameter of a contact tube (characteristic size) in m
  • p is the density in kg / m 3
  • v velocity in m / s and ⁇ viscosity in Pa • s.
  • the first term corresponds to a laminar-shaped part of the pressure loss that is proportional to the velocity and the second term corresponds to a turbulent-shaped part that is proportional to the square of the velocity.
  • the reactor according to the invention is cylindrical, with an internal diameter of preferably 0.5 to 6 m, more preferably from 2.5 to 6 m, in particular from 3.5 to 6 m.
  • a bundle that is a plurality of catalyst tubes, arranged parallel to each other in the reactor longitudinal direction.
  • the number of the contact tubes is preferably in the range of 100 to 10,000, in particular from 1000 to 3500.
  • the contact tubes are made of a corrosion-resistant material, such as stainless steel, preferably duplex steel 1.4462, stainless steel 1.4571 or stainless steel 1.4541 or also made of nickel-based alloys or nickel.
  • a corrosion-resistant material such as stainless steel, preferably duplex steel 1.4462, stainless steel 1.4571 or stainless steel 1.4541 or also made of nickel-based alloys or nickel.
  • the tube plates or the entire reactor of the aforementioned materials, in particular of duplex or stainless steel are formed. It is also possible to clad the tubesheets with the above-mentioned materials only.
  • Each contact tube preferably has a wall thickness in the range from 2.0 to 4.0 mm, in particular from 2.5 to 3.0 mm, and an inner tube diameter in the range from 20 to 90 mm, preferably in the range from 30 to 50 mm.
  • the contact tubes preferably have a length in the range of 1.5 to 6.0 m, in particular in the range of 2.50 to 4.50 m.
  • the contact tubes are preferably arranged in the interior of the reactor such that the ratio between the distance between the centers of immediately adjacent contact tubes and the outer diameter of the contact tubes is in the range from 1, 15 to 1, 4, preferably in the range from 1.2 to 1.3 and that the contact tubes are arranged in triangular division in the reactor.
  • the catalyst tubes are attached liquid-tightly at both ends in tube sheets, preferably welded.
  • the tubesheets are likewise made of a corrosion-resistant material, preferably stainless steel, in particular duplex steel, particularly preferably of the same material as the contact tubes.
  • Both reactor ends are limited to the outside by hoods.
  • hoods Through a hood, the supply of the reaction mixture to the catalyst tubes takes place, through the hood at the other end of the reactor, the product stream is withdrawn.
  • the hoods are preferably designed removable and preferably provided with weld lip seals.
  • hood gas distributor are preferably arranged to equalize the gas flow, for example in the form of a plate, in particular a perforated plate.
  • baffles are arranged perpendicular to the reactor longitudinal direction, which leave alternately opposite passage openings on the reactor inner wall.
  • the baffles cause a deflection of the circulating in the reactor interior, in the space between the catalyst tubes heat carrier, such that the contact tubes are flowed through by the heat transfer medium, whereby the heat dissipation is improved.
  • the baffles have to leave alternately at the opposite sides of the reactor inner wall passage openings for the heat carrier.
  • the number of baffles is preferably about 5 to 21.
  • the baffles are arranged equidistant from each other, but particularly preferably the lowermost and the uppermost baffle each from the tube plate farther away than the distance between two consecutive baffles to each other, preferably by about 1, 5 times.
  • the released passage openings are initially circular segment-shaped.
  • the reactor In the area of the passage openings, the reactor is not tamped, that is to say it is essentially free of contact tubes.
  • individual contact tubes can be arranged in the passage openings of the deflection regions.
  • the passage openings are completely free of contact tubes.
  • all baffles release the same passage openings.
  • each passage opening is preferably 5 to 20%, in particular 8 to 14% of the reactor cross-section.
  • the baffles are not arranged sealingly around the catalyst tubes, and allow a leakage flow of up to 40 vol .-% of the total flow of the heat carrier.
  • gaps in the range from 0.1 to 0.6 mm, preferably from 0.2 to 0.4 mm are provided between the contact tubes and baffles.
  • baffles liquid-tight with the exception of the regions of the passages to the reactor inner wall, so that there is no additional leakage current occurs.
  • the baffles are preferably formed of a corrosion-resistant material, preferably stainless steel, in particular duplex steel, preferably in a thickness of 8 to 30 mm, preferably from 10 to 20 mm.
  • the catalyst tubes are filled with a solid catalyst, preferably activated carbon.
  • the catalyst bed in the catalyst tubes preferably has a void volume of from 0.33 to 0.5, in particular from 0.33 to 0.40.
  • the baffles initially have circular segment-shaped recesses, and accordingly release passages on the reactor inner wall, which are formed nikseg- ment-shaped, the pipe mirror, that is, the cross section through the catalyst tubes in a horizontal plane between two successive Deflection plates, since the openings are not drilled, also have two mutually opposite circular segment-shaped recesses on the reactor inner wall.
  • the arrangement of the catalyst tubes modified by the lateral boundaries of the bundle of catalyst tubes are changed in the tube mirror from chords to circular arcs out. It is thus compared to a reactor according to the prior art, the number of catalyst tubes on the longest flow path of the heat carrier on the reactor inner wall most reduced, and increased in the reactor center, accordingly. It is not necessary that the lateral boundaries of the bundle of contact tubes in the inventive arrangement of the contact tubes correspond exactly to a circular arc shape, it is only preferred that they approach a circular arc shape.
  • the lateral boundaries of the bundle of contact tubes can be changed to each of a polygonal line, each inscribed in a circular arc.
  • the heat transfer coefficients at the boundary layer between the catalyst tubes and the heat transfer medium can be adjusted in such a way by installing dummy tubes in the regions with the worst heat transfer, that is in the reactor inner wall regions with the longest flow paths of the heat carrier or by removing contact tubes from this area.
  • the alternately opposite passage openings of the baffles can be adapted to the lateral boundaries of the bundle of catalyst tubes.
  • the change of the arrangement of the contact tubes for the purpose of matching the flow paths of the heat carrier in each reactor cross-section can be carried out according to the following algorithm: First, the pipe mirror, that is, the arrangement of the catalyst tubes is drawn in a reactor cross-section, wherein the two opposite lateral boundaries of the bundle of catalyst tubes in the mirror are chords; and wherein in the tube mirror the main flow direction of the heat carrier as y-coordinate and the coordinate perpendicular thereto, in the plane of the
  • the shortest flow path is extended so that the surface of the tube mirror, i. the area bounded by the two chords and the reactor jacket does not change in comparison to the previous iteration;
  • the arrangement of the catalyst tubes should be changed such that the flow paths in each reactor cross-section, from the first to the last contact tube are the same.
  • the arrangement of the catalyst tubes must be adapted in order to balance the flow in the x-direction so that the flow paths of the heat carrier on the interior reactor shell are up to 25% shorter are considered along the central axis.
  • the invention also provides a process for the preparation of phosgene by gas phase reaction of carbon monoxide and chlorine in the presence of a solid catalyst in a reactor with a bundle of catalyst tubes containing the solid catalyst, and wherein the catalyst tubes are welded at the two ends in each case a tube plate, with feed of the reactants at the upper end of the catalyst tubes and discharge of the gaseous reaction mixture at the lower end of the catalyst tubes, in each case via a hood, as well as with supply and discharge means for a liquid heat carrier in the shell space between the catalyst tubes, wherein the flow of the heat carrier is guided in the intermediate space between the catalyst tubes by means of deflecting plates, the alternately opposite füreriesöff- leave free at the reactor inner wall, in which the baffles have Vietnameseseg- ment-shaped recesses, and wherein the reactor in the region of the openings is unthreaded, characterized in that the heat transfer coefficients at the boundary layer between the catalyst tubes and the heat exchanger on each reactor cross-section uniformed be measured
  • the flow paths of the heat carrier in each reactor cross section in each case measured from the first to the last contact tube in the flow direction of the heat carrier can be additionally adjusted to one another by the installation of dummy tubes.
  • the contact tubes were made of duplex steel 1.4462.
  • the reactor was cooled with monochlorobenzene as a heat carrier, wherein the mono-chlorobenzene was passed through the reactor jacket from top to bottom, with a meandering flow around the baffles.
  • the amount of coolant was 1800 t / h monochlorobenzene, the inlet temperature of monochlorobenzene was 67 ° C and the discharge temperature of monochlorobenzene 78.4 ° C in the embodiment of the prior art and the embodiment of the invention without increased Phosgene load, but 80.8 0 C in the embodiment of the invention with increased phosgene load.
  • Carbon monoxide and chlorine were passed through activated carbon as the solid catalyst from top to bottom through the catalyst tubes, the carbon monoxide excess being 3.5% by weight, the inlet temperature of the reaction gas mixture being 40 ° C. and the inlet pressure of the reaction mixture being 4.8 bar absolute.
  • the amount of phosgene produced in the embodiment of the prior art and the first example according to the invention was 26717 kg / h, in the second embodiment of the invention 32060 kg / h.
  • the heat dissipation was 8.25 megawatts in the prior art embodiment and the first embodiment of the invention, 9.9 megawatts in the second embodiment of the invention.
  • the tube arrangement was changed such that the tube mirror corresponded to the schematic illustration in FIG. 3, the flow paths of the heat carrier being matched to one another via the reactor cross section.
  • FIG. 1 shows a schematic representation of a longitudinal section through an embodiment of a reactor according to the invention
  • FIG. 2A corresponds to an arrangement of the contact tubes according to the prior art and FIGS. 2B and 2C correspond to arrangements according to the invention of the contact tubes,
  • FIG. 3 shows a tube mirror through an embodiment of a reactor according to the invention, as used in the exemplary embodiments,
  • FIG. 4 shows an embodiment of a reactor according to the invention with an additional arrangement of dummy tubes in the regions susceptible to corrosion
  • FIG. 5 is a schematic representation of the main flow direction of the heat carrier in the areas between the baffles, showing the section A-A in Figure 5A,
  • Figure 6 is a schematic representation of an inventively modified pipe mirror
  • Figure 7 is a schematic representation of another pipe according to the invention.
  • the reactor 1 shown schematically in longitudinal section in FIG. 1 has a bundle of contact tubes 2, which are welded into an upper and a lower tube plate 3.
  • a heat transfer medium 6 is passed, in one embodiment with introduction of the heat carrier 6 at the upper end and vent at the lower end of the reactor and in another embodiment with reverse passage of the heat carrier, that is with supply at the lower end of Reactor and discharge at the top of the reactor.
  • baffles 5 which are arranged horizontally in the reactor, and leave the passages 7 alternately on the reactor inner shell.
  • FIG. 2A shows a tube mirror, that is to say an arrangement of the contact tubes in a cross section between two successive deflection plates, according to the prior art, wherein the mutually opposite lateral boundaries of the tube mirror are chords 9.
  • the main flow direction of the heat transfer medium between the two opposite tube-free regions 7 is denoted by y. and the flow direction perpendicular thereto, in the cross-sectional plane through the reactor, as the x-coordinate.
  • FIG. 1 shows a distribution of the heat transfer coefficients over the tube mirror, with the lowest, worst heat transfer coefficients, of 1 168 W / m 2 / K at the two tube inner sides, at the extremes of the x-coordinate, being measured, and FIGS best, largest heat transfer coefficients at the two extremes, measured at the intersection of the y-axis with the chords 9, and which were 1500 W / m 2 / K.
  • FIG. 2B shows a tube mirror with an arrangement according to the invention of the contact tubes, wherein the lateral boundaries of circular chords 9 in the prior art are changed to a polygonal line.
  • FIGS. 2A to 2C thus show that, in the case of an arrangement of the contact tubes which has been changed according to the invention, the worst heat transfer coefficient compared with the prior art is substantially increased and the regions at risk of corrosion become correspondingly smaller.
  • FIG. 3 shows a tube mirror for an embodiment of a reactor according to the invention, as used in the exemplary embodiments.
  • FIG. 4 shows a cross section through a preferred embodiment for an arrangement according to the invention of contact tubes, wherein dummy tubes are additionally provided in the regions susceptible to corrosion.
  • FIG. 5 shows a simplified schematic representation of the main flow direction of the heat transfer medium through the jacket space 4 between the contact tubes, between the deflection plates 5, which leave alternating passage openings 7 alternately on the inside of the reactor shell.
  • the main flow direction is referred to as the y-direction, the longitudinal direction through the reactor as the z-coordinate.
  • FIG. 5A shows a sectional view in the plane AA through the reactor shown schematically in FIG. 5, with an explanation of the iterative algorithm for determining the arrangement of the contact tubes according to the invention.
  • the section in the plane A-A through the reactor 1 illustrates the tube mirror according to the prior art, which is assumed in the invention, that is with lateral boundaries of the tube mirror in the form of chords 9th
  • the main flow direction of the heat carrier is referred to as y-coordinate and the coordinate perpendicular thereto, in the plane of the reactor cross-section, as x-coordinate.
  • the tube mirror is subdivided in Example 3 to the chords 9 in parallel and equidistant straight lines 10.
  • Its straight line 10 is divided into m, in the present case 5 equidistant points, the first and the last, in the present case the first and the fifth point, respectively at the outermost edge of the tube mirror, that is to say on the jacket of the reactor 1.
  • the respective i-th points on the straight line 10 are connected to each other, whereby the flow paths are obtained whose lengths are equalized by the described iteration steps.
  • Figure 6 illustrates a pipe mirror for an inventive arrangement of the contact tubes, wherein the lateral boundaries of chords are changed towards circular arcs.
  • Figure 7 illustrates another embodiment of an inventive arrangement of the contact tubes, wherein only one of the lateral boundaries of the tube mirror is changed from a circular chord to a circular arc.
  • the second lateral boundary of the tube mirror remains in this embodiment in the form of a chord 9th

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Vorgeschlagen wird ein Reaktor (1 ) zur Herstellung von Phosgen durch Gasphasenreaktion von Kohlenmonoxid und Chlor in Gegenwart eines Feststoffkatalysators, der in den Kontaktrohren (2) eines Bündels von Kontaktrohren (2) angeordnet ist, die an beiden Enden derselben in jeweils einem Rohrboden (3) eingeschweißt sind, mit Zuführung der Edukte am oberen Ende der Kontaktrohre (2) und Ableitung des gasförmigen Reaktionsgemisches am unteren Ende der Kontaktrohre (2), jeweils über eine Haube, sowie mit Zu- bzw. Abführeinrichtungen für einen flüssigen Wärmeträger (6) in den Zwischenraum (4) zwischen den Kontaktrohren (2), wobei die Strömung des Wärmeträgers (6) im Mantelraum (4) zwischen den Kontaktrohren (2) mittels Umlenkblechen (5) geleitet wird, die alternierend einander gegenüberliegende Durchtrittsöffnungen (7) an der Reaktorinnenwand freilassen, in denen die Umlenkbleche (5) kreissegmentförmige Aussparungen aufweisen, und wobei der Reaktor (1 ) im Bereich der Durchtrittsöffnungen (7) unberohrt ist, der dadurch gekennzeichnet ist, dass die Wärmeübergangskoeffizienten an der Grenzschicht zwischen den Kontaktrohren (2) und dem Wärmeträger (6) über jeden Reaktorquerschnitt vergleichmäßigt werden, indem die Strömungswege des Wärmeträgers (6) in jedem Reaktorquerschnitt, jeweils gemessen vom ersten bis zum letzten Kontaktrohr (2) in Strömungsrichtung des Wärmeträgers (6) durch eine geänderte Anordnung der Kontaktrohre (2) einander angeglichen werden.

Description

Reaktor und Verfahren zur Herstellung von Phosgen
Beschreibung
Die Erfindung betrifft einen Reaktor und ein Verfahren zur Herstellung von Phosgen durch Gasphasenreaktion von Kohlenmonoxid und Chlor in Gegenwart eines Feststoffkatalysators.
Phosgen wird großtechnisch in einer katalytischen Gasphasenreaktion von Kohlenmo- noxid und Chlor in Gegenwart eines Feststoffkatalysators, bevorzugt Aktivkohle, hergestellt. Die Reaktion ist stark exotherm, die Bildungsenthalpie beträgt -107,6 kJ/mol. Die Reaktion wird in der Regel in einem Rohrbündelreaktor nach dem in Ullmanns Enzyklopädie der technischen Chemie, Vol. A 19, Seite 413 bis 414 beschriebenen Verfahren, hergestellt. Danach wird der körnige Katalysator, mit einer Korngröße im Be- reich von 3 bis 5 mm, in Rohren mit einem Innendurchmesser zwischen 50 und 70 mm eingesetzt. Bei 40 bis 500C springt die Reaktion an, die Temperatur steigt in den Rohren bis auf etwa 5800C und fällt dann wieder ab. Kohlenmonoxid wird in geringem Ü- berschuss eingesetzt, um zu gewährleisten, dass das gesamte Chlor umgesetzt wird und um chlorfreies Phosgen zu erhalten. Die Reaktion kann drucklos oder unter Druck durchgeführt werden, häufig bei 2 bis 5 bar, um das Phosgen bereits mit Kühlwasser kondensieren zu können.
Phosgen ist ein wichtiger Hilfsstoff bei der Herstellung von Zwischen- und Endprodukten in nahezu allen Zweigen der Chemie. Das mengenmäßig größte Verwendungsge- biet ist die Herstellung von Diisocyanaten für die Polyurethanchemie, insbesondere von Toluylendiisocyanat und von 4,4-Diisocyanat-diphenylmethan.
Zur besseren Abführung der Reaktionswärme über den zwischen den Kontaktrohren zirkulierende Wärmeträger werden Umlenkbleche zwischen den Kontaktrohren einge- baut, die eine Queranströmung der Kontaktrohre durch den Wärmeträger bewirken.
Bekannte Rohrbündelreaktoren für die Herstellung von Phosgen sind zwecks maximaler Raumausnutzung im Reaktorinnenraum vollständig berohrt. Sie weisen Umlenkbleche zwischen den Kontaktrohren auf, die relativ kurz gehalten sind, d.h. sie reichen im Umlenkbereich nicht bis zur Reaktorinnenwand, sondern lassen jeweils einen Anteil von etwa 25 bis 30 % des gesamten Reaktorquerschnitts frei, um den Druckabfall des Wärmeträgers und somit die Betriebskosten für die Umwälzpumpe des Wärmeträgers zu begrenzen. Im Umlenkbereich ändert sich das Strömungsprofil des Wärmeträgers um die Kontaktrohre von Queranströmung auf Längsanströmung. Die Kontaktrohre werden schlechter gekühlt, und in der Folge treten an den Kontaktrohren im Umlenkbereich Korrosionsprobleme auf.
Die WO 03/072237 beschreibt einen verbesserten Reaktor zur Herstellung von Phos- gen, der eine erhöhte spezifische Querschnittsbelastung und somit eine höhere Kapazität ermöglicht, indem die Korrosionsprobleme an den Kontaktrohren im Umlenkbereich vermieden werden. Hierzu schlägt die WO 03/072237 einen Reaktor mit einem Bündel von parallel zueinander, in Reaktorlängsrichtung angeordneten Kontaktrohren vor, die an ihren Enden in Rohrböden befestigt sind, mit je einer Haube an beiden En- den des Reaktors, sowie mit senkrecht zur Reaktorlängsrichtung im Zwischenraum zwischen den Kontaktrohren angeordneten Umlenkblechen, die alternierend einander gegenüberliegende Durchtrittsöffnungen an der Reaktorinnenwand freilassen, wobei die Kontaktrohre mit dem Feststoffkatalysator befüllt sind, das gasförmige Reaktionsgemisch von einem Reaktorende über eine Haube durch die Kontaktrohre geleitet und vom entgegengesetzten Reaktorende über die zweite Haube abgezogen und durch den Zwischenraum um die Kontaktrohre ein flüssiger Wärmeträger geleitet wird und wobei der Reaktor im Bereich der Durchtrittsöffnungen unberohrt ist.
Es hat sich jedoch gezeigt, dass bei Reaktoren mit größerem Durchmesser, insbeson- dere ab Reaktordurchmessern von etwa 3 m, mit Zunahme des Reaktordurchmessers der Druckverlust des im Mantelraum strömenden Wärmeträgers über den Reaktorquerschnitt, von der einen bis zur gegenüberliegenden Durchtrittsöffnung an der Reaktorinnenwand zu groß wird. Darüber hinaus werden auch die Verluste an Wärmeträger und somit der Druckverlust über die Spalte zwischen der Außenwand der Kontaktrohre und den Umlenkblechen, die aus fertigungstechnischen Gründen vorhanden sind, zu groß. Entsprechend wird der Pumpaufwand für den Wärmeträger zu groß.
Darüber hinaus führt der große Druckverlust über den Reaktorquerschnitt zwischen den beiden einander gegenüberliegenden Durchtrittsöffnungen an der Reaktorinnen- wand zu größeren Unterschieden der Wärmeübergangskoeffizienten an der Grenzschicht zwischen den Kontaktrohren und dem Wärmeträger, wobei durchaus Faktoren von 1 : 2 zwischen Bereichen mit gutem Wärmeübergang und Bereichen mit schlechtem Wärmeübergang innerhalb eines Reaktorquerschnittes auftreten können. Entsprechend werden die Kontaktrohre in den Bereichen mit schlechtem Wärmeübergang schlechter gekühlt. Da die Kontaktrohre jedoch, abhängig vom eingesetzten Werkstoff, insbesondere Duplexstahl, eine maximale Temperaturbelastung aufweisen, häufig im Bereich von etwa 160 bis 2000C, insbesondere von etwa 170 bis 1800C, die nicht ü- berschritten werden darf, weil ansonsten die Korrosion des Werkstoffs stark ansteigt, limitieren die Bereiche mit schlechtem Wärmeübergang den Durchsatz und damit die Kapazität des Reaktors. Es war demgegenüber Aufgabe der Erfindung, eine technisch einfache und elegante Lösung zur Verfügung zu stellen, die es erlaubt, großtechnische Reaktoren zur Herstellung von Phosgen, mit großen Reaktordurchmessern, von über 2 oder auch über 3,5 m, mit einem höheren Durchsatz gegenüber bekannten Reaktoren zu betreiben, ohne dass es hierfür erforderlich wäre, die Umwälzmenge an Wärmeträger zu erhöhen, und wobei gleichzeitig die Korrosionsproblematik durch eine Angleichung der Wärmeübergangskoeffizienten an der Grenzschicht zwischen Kontaktrohren und Wärmeträger über den Reaktorquerschnitt reduziert wird.
Die Lösung besteht in einem Reaktor zur Herstellung von Phosgen durch Gasphasenreaktion von Kohlenmonoxid und Chlor in Gegenwart eines Feststoffkatalysators, der in den Kontaktrohren eines Bündels von Kontaktrohren angeordnet ist, die an beiden Enden derselben in jeweils einem Rohrboden eingeschweißt sind, mit Zuführung der Edukte am oberen Ende der Kontaktrohre und Ableitung des gasförmigen Reaktions- gemisches am unteren Ende der Kontaktrohre, jeweils über eine Haube, sowie mit Zu- bzw. Abführeinrichtungen für einen flüssigen Wärmeträger in den Mantelraum zwischen den Kontaktrohren, wobei die Strömung des Wärmeträgers im Zwischenraum zwischen den Kontaktrohren mittels Umlenkblechen geleitet wird, die alternierend einander gegenüberliegende Durchtrittsöffnungen an der Reaktorinnenwand freilassen, in denen die Umlenkbleche kreissegmentförmige Aussparungen aufweisen, und wobei der Reaktor im Bereich der Durchtrittsöffnungen unberohrt ist, der dadurch gekennzeichnet ist, dass die Wärmeübergangskoeffizienten an der Grenzschicht zwischen den Kontaktrohren und dem Wärmeträger über jeden Reaktorquerschnitt vergleichmäßigt werden, indem die Strömungswege des Wärmeträgers in jedem Reaktorquer- schnitt, jeweils gemessen vom ersten bis zum letzten Kontaktrohr in Strömungsrichtung des Wärmeträgers durch eine geänderte Anordnung der Kontaktrohre einander • angeglichen werden.
Es wurde gefunden, dass es möglich ist, die Wärmeübergangskoeffizienten an der Grenzschicht zwischen Kontaktrohren und Wärmeträger über den Reaktorquerschnitt einander weitgehend anzugleichen, und entsprechend kritische Bereiche, mit hohen Wärmeübergangskoeffizienten, das heißt mit schlechtem Wärmeübergang durch eine geänderte Anordnung der Kontaktrohre, weitgehend zu reduzieren.
Für die Strömung des Wärmeträgers im Mantelraum des Reaktors zwischen zwei Umlenkblechen, innerhalb eines Reaktorquerschnitts, von einem rohrfreien Bereich (Durchtrittsöffnung) zum gegenüberliegenden rohrfreien Bereich, jeweils an der Reaktorinnenwand, ist der Druckverlust derselbe für alle Strömungswege des Wärmeträgers. Der Druckverlust Δp kann durch die nachfolgende Gleichung beschrieben werden:
Δp = l/dR (ζi • η • v + ζ2 • p/2 v2),
wobei Δp den Druckverlust in Pascal, ζi und C,2 die dimensionslosen Druckverlustkoeffizienten (Druckverlustbeiwerte), I die Länge des Strömungsweges in m, 6R den Durchmesser eines Kontaktrohres (charakteristische Größe) in m, p die Dichte in kg/m3, v die Geschwindigkeit in m/s und η die Viskosität in Pa • s, bezeichnet.
In der obigen Formel entspricht der erste Term einem laminar geprägten Teil des Druckverlustes, der proportional zur Geschwindigkeit ist und der zweite Term einem turbulent geprägten Teil, der proportional zum Quadrat der Geschwindigkeit ist.
Da der Druckverlust für jeden Strömungsweg derselbe ist, ist, bei ansonsten unverän- derten Bedingungen, insbesondere bei gleicher Rohrteilung, für kürzere Strömungswegen, wie sie in der Mitte des Rohrspiegels eines Reaktors nach dem Stand der Technik, mit einander gegenüberliegenden Begrenzungen des Bündels von Kontaktrohren in Form von Kreissehnen, gegenüber Strömungswegen an der Reaktorinnenwand, die Geschwindigkeit des Wärmeträgers nach der obigen Formel für den Druckverlust ent- sprechend größer. Da der Wärmeübergangskoeffizient α näherungsweise direkt proportional zur Geschwindigkeit hoch 0,8 ist, ergeben sich für die längeren Strömungswege, am Reaktorinnenmantel, niedrigere Strömungsgeschwindigkeiten des Wärmeträgers und entsprechend niedrigere Wärmeübergangskoeffizienten, das heißt ein schlechterer Wärmeübergang, gegenüber den kürzeren Strömungswegen, in der Re- aktormitte.
Der erfindungsgemäße Reaktor ist zylinderförmig ausgebildet, mit einem Innendurchmesser von bevorzugt 0,5 bis 6 m, weiter bevorzugt von 2,5 bis 6 m, insbesondere von 3,5 bis 6 m.
Im Reaktor ist ein Bündel, das heißt eine Vielzahl von Kontaktrohren, parallel zueinander in Reaktorlängsrichtung angeordnet.
Die Anzahl der Kontaktrohre liegt bevorzugt im Bereich von 100 bis 10000, insbeson- dere von 1000 bis 3500.
Die Kontaktrohre sind aus einem korrosionsfesten Material, beispielsweise Edelstahl, bevorzugt Duplexstahl 1.4462, Edelstahl 1.4571 oder Edelstahl 1.4541 oder auch aus Nickel-Basislegierungen oder aus Nickel gebildet. Bevorzugt sind auch die Rohrböden oder auch der gesamte Reaktor aus den vorerwähnten Werkstoffen, insbesondere aus Duplex- oder Edelstahl gebildet. Es ist auch möglich, die Rohrböden mit den oben erwähnten Werkstoffen lediglich zu plattieren.
Jedes Kontaktrohr weist bevorzugt eine Wandstärke im Bereich von 2,0 bis 4,0 mm, insbesondere von 2,5 bis 3,0 mm, und einen Rohrinnendurchmesser im Bereich von 20 bis 90 mm, bevorzugt im Bereich von 30 bis 50 mm auf.
Die Kontaktrohre weisen bevorzugt eine Länge im Bereich von 1 ,5 bis 6,0 m, insbe- sondere im Bereich von 2,50 bis 4,50 m, auf.
Die Kontaktrohre sind bevorzugt derart im Reaktorinnenraum angeordnet, dass das Verhältnis zwischen dem Abstand der Mittelpunkte unmittelbar benachbarter Kontaktrohre und dem Außendurchmesser der Kontaktrohre im Bereich von 1 ,15 bis 1 ,4, be- vorzugt im Bereich von 1 ,2 bis 1 ,3 liegt und dass die Kontaktrohre in Dreiecksteilung im Reaktor angeordnet sind.
Die Kontaktrohre sind an beiden Enden in Rohrböden flüssigkeitsdicht befestigt, bevorzugt verschweißt. Die Rohrböden bestehen ebenfalls aus einem korrosionsfesten Ma- terial, bevorzugt Edelstahl, insbesondere Duplexstahl, besonders bevorzugt aus dem selben Material wie die Kontaktrohre.
Beide Reaktorenden sind nach außen durch Hauben begrenzt. Durch eine Haube erfolgt die Zuführung des Reaktionsgemisches zu den Kontaktrohren, durch die Haube am anderen Ende des Reaktors wird der Produktstrom abgezogen. Die Hauben sind bevorzugt abnehmbar ausgestaltet und bevorzugt mit Schweißlippendichtungen versehen.
In den Hauben sind bevorzugt Gasverteiler zur Vergleichmäßigung des Gasstromes angeordnet, beispielsweise in Form einer Platte, insbesondere einer perforierten Platte.
Im Zwischenraum zwischen den Kontaktrohren sind senkrecht zur Reaktorlängsrichtung Umlenkbleche angeordnet, die alternierend einander gegenüberliegende Durchtrittsöffnungen an der Reaktorinnenwand freilassen. Die Umlenkbleche bewirken eine Umlenkung des im Reaktorinnenraum, im Zwischenraum zwischen den Kontaktrohren zirkulierenden Wärmeträgers, dergestalt, dass die Kontaktrohre vom Wärmeträger quer angeströmt werden, wodurch die Wärmeabführung verbessert wird. Um diese vorteilhafte Queranströmung der Kontaktrohre zu erreichen, müssen die Umlenkbleche alternierend an den einander gegenüberliegende Seiten der Reaktorinnenwand Durchtritts- Öffnungen für den Wärmeträger freilassen. Die Anzahl der Umlenkbleche beträgt bevorzugt etwa 5 bis 21. Vorzugsweise sind die Umlenkbleche äquidistant zu einander angeordnet, besonders bevorzugt ist jedoch das unterste und das oberste Umlenkblech jeweils vom Rohrboden weiter entfernt als der Abstand zweier aufeinander folgender Umlenkbleche zueinander, bevorzugt um etwa das 1 , 5-fache.
Die freigelassenen Durchtrittsöffnungen sind zunächst kreissegmentförmig.
Im Bereich der Durchtrittsöffnungen ist der Reaktor unberohrt, das heißt er ist im We- sentlichen frei von Kontaktrohren. In einer Ausführungsform können dabei einzelne Kontaktrohre in den Durchtrittsöffnungen der Umlenkbereiche angeordnet sein. '
In einer weiteren Ausführungsform sind die Durchtrittsöffnungen vollständig frei von Kontaktrohren.
Bevorzugt lassen alle Umlenkbleche jeweils gleiche Durchtrittsöffnungen frei.
Die Fläche jeder Durchtrittsöffnung beträgt bevorzugt 5 bis 20 %, insbesondere 8 bis 14 % des Reaktorquerschnitts.
Bevorzugt sind die Umlenkbleche nicht dichtend um die Kontaktrohre angeordnet, und lassen eine Leckageströmung von bis zu 40 Vol.-% des Gesamtstroms des Wärmeträgers zu. Hierzu sind zwischen den Kontaktrohren und Umlenkblechen Spalte im Bereich von 0,1 bis 0,6 mm, bevorzugt von 0,2 bis 0,4 mm vorgesehen.
Es ist vorteilhaft, die Umlenkbleche mit Ausnahme der Bereiche der Durchtrittsöffnungen zur Reaktorinnenwand hin flüssigkeitsdicht zu gestalten, so dass dort kein zusätzlicher Leckagestrom auftritt.
Die Umlenkbleche werden bevorzugt aus einem korrosionsfesten Material, bevorzugt Edelstahl, insbesondere Duplexstahl, bevorzugt in einer Dicke von 8 bis 30 mm, bevorzugt von 10 bis 20 mm, gebildet.
Die Kontaktrohre sind mit einem Feststoffkatalysator, bevorzugt Aktivkohle, gefüllt. Die Katalysatorschüttung in den Kontaktrohren weist bevorzugt ein Lückenvolumen von 0,33 bis 0,5, insbesondere von 0,33 bis 0,40, auf.
Indem die Umlenkbleche zunächst kreissegmentförmige Aussparungen aufweisen, und entsprechend Durchtrittsöffnungen an der Reaktorinnenwand freilassen, die kreisseg- mentförmig ausgebildet sind, werden der Rohrspiegel, das heißt der Querschnitt durch die Kontaktrohre in einer horizontalen Ebene zwischen zwei aufeinander folgenden Umlenkblechen, da die Durchtrittsöffnungen unberohrt sind, ebenfalls zwei einander gegenüberliegende kreissegmentförmige Aussparungen an der Reaktorinnenwand aufweisen.
Erfindungsgemäß wird, ausgehend von der oben beschriebenen Anordnung der Kontaktrohre entsprechend der Druckschrift WO 03/072237, die Anordnung der Kontaktrohre modifiziert, indem die seitlichen Begrenzungen des Bündels von Kontaktrohren im Rohrspiegel von Kreissehnen zu Kreisbögen hin geändert werden. Es wird somit gegenüber einem Reaktor nach dem Stand der Technik die Anzahl der Kontaktrohre auf dem längsten Strömungsweg des Wärmeträgers an der Reaktorinnenwand am stärksten reduziert, und in der Reaktormitte, entsprechend erhöht. Dabei ist es nicht erforderlich, dass die seitlichen Begrenzungen des Bündels von Kontaktrohren bei der erfindungsgemäßen Anordnung der Kontaktrohre genau einer Kreisbogenform entsprechen, es ist lediglich bevorzugt, dass sie sich einer Kreisbogenform annähern.
Insbesondere können die seitlichen Begrenzungen des Bündels von Kontaktrohren hin zu jeweils einer polygonalen Linie geändert werden, die jeweils in einen Kreisbogen einbeschrieben ist.
In einer weiteren Ausführungsform können die Wärmeübergangskoeffizienten an der Grenzschicht zwischen den Kontaktrohren und dem Wärmeträger in der Weise einander angeglichen werden, indem in den Bereichen mit dem schlechtesten Wärmeübergang, das heißt in den reaktorinnenwandnahen Bereichen mit den längsten Strömungswegen des Wärmeträgers, Dummy-Rohre eingebaut werden, oder indem aus diesem Bereich Kontaktrohre herausgenommen werden. Darüber hinaus ist es auch möglich, in den korrosionsgefährdeten Bereichen, mit schlechteren Wärmeübergangskoeffizienten, Kontaktrohre zu verschließen.
Bevorzugt können die alternierend einander gegenüberliegenden Durchtrittsöffnungen der Umlenkbleche an die seitlichen Begrenzungen des Bündels von Kontaktrohren angepasst werden.
In einer weiteren Ausführungsform ist es möglich, im inneren Bereich des Reaktors, wo die Strömungswege des Wärmeträgers am kürzesten und somit die Wärmeübergangs- koeffizienten am größten sind, strömungsstörende Einbauten, beispielsweise Lochbleche, vorzusehen, um die Wärmeübergangskoeffizienten über den gesamten Reaktorquerschnitt einander weiter anzugleichen.
Insbesondere kann die Änderung der Anordnung der Kontaktrohre zwecks Anglei- chung der Strömungswege des Wärmeträgers in jedem Reaktorquerschnitt nach dem folgenden Algorithmus erfolgen: zunächst wird der Rohrspiegel, das heißt die Anordnung der Kontaktrohre in einem Reaktorquerschnitt gezeichnet, wobei die beiden einander gegenüberliegenden seitlichen Begrenzungen des Bündels von Kontaktrohren im Spiegel Kreissehnen sind; und wobei im Rohrspiegel die Hauptströmungsrichtung des Wärme- trägers als y-Koordinate und die Koordinate rechtwinklig hierzu, in der Ebene des
Reaktorquerschnitts als x-Koordinate bezeichnet wird; der Rohrspiegel wird anschließend in n zu den Kreissehnen parallele und zu einander äquidistante Geraden unterteilt; jeder der Geraden n wird in m äquidistante Punkte aufgeteilt, die fortlaufend mit einer natürlichen Zahl i durchnummeriert werden, wobei i = 1 bis m, und wobei die äußersten Punkte, das heißt die Punkte i = 1 und die Punkte i = m jeweils auf dem äußersten Rand des Rohrspiegels, das heißt am Mantel des Reaktors liegen; die jeweils i-ten Punkte auf den Geraden werden miteinander verbunden, wobei die Strömungswege erhalten werden, deren Längen durch die nachfolgenden Ite- rationsschritte angeglichen werden:
(1 ) ermittle den längsten Strömungsweg imax und kürzesten Strömungsweg imιn; falls mehr als ein längster bzw. kürzester Strömungsweg existieren, wähle zufällig einen aus, (2) ermittle die Differenz der Längen der Strömungswege von kürzestem und längstem Strömungsweg, d.h. die Ungleichheit der Strömungsweglängen; ist die Ungleichheit der Strömungsweglängen weniger als 1 % des Mittelwerts der Längen der Strömungswege, gehe zu (8);
(3) verkürze den längsten Strömungsweg imax um 25 % der Ungleichheit; indem die y-Koordinate der beiden äußeren Punkte, d.h. des Punktes auf der 1. und des Punktes auf der n-ten Geraden auf diesem Strömungsweg gleichmäßig verringert und die dazwischen liegenden Punkte anschließend wieder äquidistant verteilt werden;
(4) analog wird der kürzeste Strömungsweg so verlängert, dass die Fläche des Rohrspiegels, d.h. die durch die beiden Kreissehnen und den Reaktormantel begrenzte Fläche sich im Vergleich zur vorigen Iteration nicht verändert;
(5) handelt es sich nicht um die äußeren Strömungswege i = 1 bzw. i = m, werden bei dieser Veränderung der y-Koordinate der Punkte die x-Koordinaten nicht verändert; (6) handelt es sich um eine der beiden äußeren Kurven, so wird die x-
Koordinate derart geändert, dass die Punkte weiterhin auf dem Reaktormantel liegen; ist eine x-Verschiebung eines Punktes notwendig, werden alle Punkte auf der Linie i = n so verschoben, dass sie wieder äquidistant zueinander sind; (7) gehe zurück zu (1 )
(8) Ende der Iteration. Nach dem obigen Algorithmus wird lediglich die Hauptströmungsrichtung des Wärmeträgers in der Ebene des Reaktorquerschnitts, die vorliegend als y-Koordinate bezeichnet wird, zwischen den einander gegenüberliegenden Durchtrittsöffnungen an der Reaktorinnenwand betrachtet. Diese vereinfachte Betrachtung ist in der Regel bereits ausreichend als Grundlage für die Ermittlung einer geänderten Anordnung der Kontaktrohre.
Bei einer genaueren Betrachtung der Strömungswege des Wärmeträgers ist jedoch die Strömungsrichtung senkrecht zu der obigen Strömungsrichtung in der Ebene des Re- aktorquerschnitts zu berücksichtigen und die vorliegend als x-Koordinate bezeichnet wird.
Wird nur die Hauptströmungsrichtung, entlang der y-Koordinate, über den Reaktorquerschnitt berücksichtigt, so ist die Anordnung der Kontaktrohre dergestalt zu ändern, dass die Strömungswege in jedem Reaktorquerschnitt, vom ersten bis zum letzten Kontaktrohr jeweils gleich sind.
Da jedoch vorteilhaft zusätzlich die Strömung des Wärmeträgers entlang der x- Koordinate zu berücksichtigen ist, ist, zwecks Ausgleich der Strömung auch zusätzlich in x-Richtung, die Anordnung der Kontaktrohre dergestalt anzupassen, dass die Strömungswege des Wärmeträgers am Reaktorinnenmantel um bis zu 25 % kürzer sind als entlang der Mittelachse.
Indem durch die erfindungsgemäße Anordnung der Kontaktrohre der Strömungswege insgesamt gegenüber einem Reaktor nach dem Stand der Technik, entsprechend
WO 03/072237, verkürzt werden, ist der Druckverlust des Wärmeträgers bei gleicher
Geschwindigkeit des Wärmeträgers insgesamt geringer. Entsprechend sind auch die
Bypassströmung des Wärmeträgers durch die Spalte zwischen den Umlenkblechen und den Kontaktrohren geringer und die erforderlichen Umwälzmengen an Wärmeträ- ger geringer.
Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung von Phosgen durch Gasphasenreaktion von Kohlenmonoxid und Chlor in Gegenwart eines Feststoffkatalysators in einem Reaktor mit einem Bündel von Kontaktrohren enthaltend den Feststoff- katalysator, und wobei die Kontaktrohre an den beiden Enden in jeweils einem Rohrboden eingeschweißt sind, mit Zuführung der Edukte am oberen Ende der Kontaktrohre und Ableitung des gasförmigen Reaktionsgemisches am unteren Ende der Kontaktrohre, jeweils über eine Haube, sowie mit Zu- bzw. Abführeinrichtungen für einen flüssigen Wärmeträger in den Mantelraum zwischen den Kontaktrohren, wobei die Strö- mung des Wärmeträgers im Zwischenraum zwischen den Kontaktrohren mittels Umlenkblechen geleitet wird, die alternierend einander gegenüberliegende Durchtrittsöff- nungen an der Reaktorinnenwand freilassen, in denen die Umlenkbleche kreisseg- mentförmige Aussparungen aufweisen, und wobei der Reaktor im Bereich der Durchtrittsöffnungen unberohrt ist, dass dadurch gekennzeichnet ist, dass die Wärmeübergangskoeffizienten an der Grenzschicht zwischen den Kontaktrohren und dem Wärme- träger über jeden Reaktorquerschnitt vergleichmäßigt werden, indem die Strömungswege des Wärmeträgers in jedem Reaktorquerschnitt, jeweils gemessen vom ersten bis zum letzten Kontaktrohr in Strömungsrichtung des Wärmeträgers durch eine geänderte Anordnung der Kontaktrohre.
Bevorzugt können die Strömungswege des Wärmeträgers in jedem Reaktorquerschnitt, jeweils gemessen vom ersten bis zum letzten Kontaktrohr in Strömungsrichtung des Wärmeträgers zusätzlich durch den Einbau von Dummy-Rohren einander angeglichen werden.
Durch die erfindungsgemäße Anordnung der Kontaktrohre können die Wärmeübergangskoeffizienten bei großen Reaktoren zur Herstellung von Phosgen, mit Durchmessern von 3,5 m und größer, über jeden Reaktorquerschnitt von Unterschieden von etwa 13 bis 20 % bei Reaktoren nach dem Stand der Technik entsprechend WO 03/072237 auf wesentlich niedrigere Werte im Bereich von etwa 8 bis 10 %, reduziert werden.
Die Erfindung wird im Folgenden anhand eines Ausführungsbeispiels sowie einer Zeichnung näher erläutert.
Zu einem großtechnischen Reaktor entsprechend der schematischen Darstellung in Figur 1 wurde Phosgen hergestellt, mit einer Anordnung der Kontaktrohre entsprechend dem aus der Druckschrift WO 03/072237 bekannten Stand der Technik, zum Vergleich, und mit angepasster Anordnung der Kontaktrohre entsprechend der Erfindung.
Es werden 2914 Kontaktrohre, mit einem Außendurchmesser von 44,5 mm, einer Wandstärke von 2,6 mm, einer Länge von 3800 mm, einer Rohrteilung von 55 mm und einer Anordnung an den Ecken gleichseitiger Dreiecke eingesetzt.
Die Kontaktrohre waren aus Duplexstahl 1.4462 hergestellt.
Der Reaktor wurde mit Monochlorbenzol als Wärmeträger gekühlt, wobei das Mono- chlorbenzol durch den Reaktormantel von oben nach unten, mit mäanderförmiger Strömung um die Umlenkbleche, geführt wurde. Die Kühlmittelmenge betrug 1800 t/h Monochlorbenzol, die Eintrittstemperatur des Monochlorbenzols war 67°C und die Aus- trittstemperatur des Monochlorbenzols 78,4°C beim Ausführungsbeispiel nach dem Stand der Technik und beim Ausführungsbeispiel nach der Erfindung ohne erhöhter Phosgenlast, jedoch 80,80C beim Ausführungsbeispiel nach der Erfindung mit erhöhter Phosgenlast.
Durch die Kontaktrohre wurde von oben nach unten Kohlenmonoxid und Chlor über Aktivkohle als Feststoffkatalysator geleitet, wobei der Kohlenmonoxidüberschuss 3,5 Gew.-%, die Eintrittstemperatur des Reaktionsgasgemisches 400C und der Eintrittsdruck des Reaktionsgemisches 4,8 bar absolut betrug.
Die erzeugte Phosgenmenge betrug beim Ausführungsbeispiel nach dem Stand der Technik und beim ersten Beispiel nach der Erfindung jeweils 26717 kg/h, beim zweiten Ausführungsbeispiel nach der Erfindung 32060 kg/h.
Die Wärmeabfuhr betrug 8,25 Megawatt beim Ausführungsbeispiel nach dem Stand der Technik und beim ersten Ausführungsbeispiel nach der Erfindung, 9,9 Megawatt beim zweiten Ausführungsbeispiel nach der Erfindung.
Beim Ausführungsbeispiel nach dem Stand der Technik wurde ein schlechtester Wärmeübergangskoeffizient von 1000 W/m2/K auf der Kühlmittelseite erreicht. Dieser limitierte die Wärmeabfuhr und führte bei einer Phosgenlast von 2,1 kg Phosgen/m2/s zu einer Innenwandtemperatur der Kontaktrohre von 168°C.
Nach dem erfindungsgemäßen Beispiel wurde die Rohranordnung dergestalt geändert, dass der Rohrspiegel der schematischen Darstellung in Figur 3 entsprach, wobei die Strömungswege des Wärmeträgers über den Reaktorquerschnitt einander angeglichen wurden. Dadurch wurde der schlechteste Wärmeübergangskoeffizient über den Reaktorquerschnitt auf 1150 W/m2/K erhöht. Dies führte bei ansonsten unveränderten Verfahrensbedingungen zu einer niedrigeren Innenwandtemperatur der Kontaktrohre, von 1600C.
Da für den Werkstoff der Kontaktrohre eine Temperaturbelastung von bis zu 168°C unkritisch ist, bestand daher die Möglichkeit, die Phosgenbelastung für den Reaktor mit erfindungsgemäßer Anordnung der Kontaktrohre zu erhöhen. Um ebenfalls auf eine Rohrinnenwandtemperatur von unkritischen 168°C zu gelangen, war es möglich, die Phosgenlast um 20%, von 2,1 kg Phosgen/m2/s auf 2,52 kg Phosgen pro m2/s zu stei- gern.
In der Zeichnung zeigen im Einzelnen:
Figur 1 die schematische Darstellung eines Längsschnitts durch eine Ausführungs- form eines erfindungsgemäßen Reaktors, Figur 2A bis
2C jeweils Temperaturverteilungen im Rohrspiegel, wobei Figur 2A einer Anordnung der Kontaktrohre nach dem Stand der Technik und die Figuren 2B und 2C erfindungsgemäßen Anordnungen der Kontaktrohre entsprechen,
Figur 3 einen Rohrspiegel durch eine Ausführungsform eines erfindungsgemäßen Reaktors, wie er in den Ausführungsbeispielen eingesetzt wurde,
Figur 4 eine Ausführungsform eines erfindungsgemäßen Reaktors mit zusätzlicher Anordnung von Dummy-Rohren in den korrosionsgefährdeten Bereichen,
Figur 5 eine schematische Darstellung der Hauptströmungsrichtung des Wärmeträgers in den Bereichen zwischen den Umlenkblechen, mit Darstellung des Schnittes A-A in Figur 5A,
Figur 6 eine schematische Darstellung eines erfindungsgemäß geänderten Rohrspiegels, und
Figur 7 eine schematische Darstellung eines weiteren erfindungsgemäßen Rohr- spiegeis.
Der in Figur 1 schematisch im Längsschnitt dargestellte Reaktor 1 weist ein Bündel von Kontaktrohren 2 auf, die in einem oberen und in einem unteren Rohrboden 3 eingeschweißt sind.
Durch den Mantelraum zwischen den Kontaktrohren 2 wird ein Wärmeträger 6 geleitet, in einer Ausführungsform mit Einleitung des Wärmeträgers 6 am oberen Ende und Abzug am unteren Ende des Reaktors und in einer weiteren Ausführungsform mit umgekehrter Durchleitung des Wärmeträgers, das heißt mit Zuführung am unteren Ende des Reaktors und Ableitung am oberen Ende des Reaktors.
Die Strömung des Wärmeträgers 6 durch den Mantelraum 4 um die Kontaktrohre 2 wird durch Umlenkbleche 5 gelenkt, die horizontal im Reaktor angeordnet sind, und die alternierend am Reaktorinnenmantel Durchtrittsöffnungen 7 freilassen.
Figur 2A zeigt einen Rohrspiegel, das heißt eine Anordnung der Kontaktrohre in einem Querschnitt zwischen zwei aufeinander folgenden Umlenkblechen, nach dem Stand der Technik, wobei die einander gegenüberliegenden seitlichen Begrenzungen des Rohrspiegels Kreissehnen 9 sind. Die Hauptströmungsrichtung des Wärmeträgers zwi- sehen den beiden einander gegenüberliegenden rohrfreien Bereichen 7 ist mit y be- zeichnet, und die Strömungsrichtung senkrecht hierzu, in der Querschnittsebene durch den Reaktor, als x-Koordinate.
Aus Figur 1 ist eine Verteilung der Wärmeübergangskoeffizienten über den Rohrspie- gel zu erkennen, wobei die niedrigsten, schlechtesten Wärmeübergangskoeffizienten, von 1 168 W/m2/K an den beiden Rohrinnenseiten, auf den Extremen der x-Koordinate, gemessen wurden, und die besten, größten Wärmeübergangskoeffizienten an den beiden Extremen, am Schnitt der y-Achse mit den Kreissehnen 9 gemessen wurden, und die 1500 W/m2/K betrugen.
Figur 2B zeigt einen Rohrspiegel mit erfindungsgemäß geänderter Anordnung der Kontaktrohre, wobei die seitlichen Begrenzungen von Kreissehnen 9 im Stand der Technik zu einer polygonalen Linie hin geändert sind.
In Figur 2C ist diese Änderung deutlicher ausgeprägt. Entsprechend wurden niedrigste (schlechteste) Wärmeübergangskoeffizienten von 1308 W/m2/K an den beiden Extremen auf der x-Achse, an der Rohrinnenwand, gemessen.
Die Darstellungen in Figur 2A bis 2C zeigen somit, dass bei einer erfindungsgemäß geänderten Anordnung der Kontaktrohre der schlechteste Wärmeübergangskoeffizient gegenüber dem Stand der Technik wesentlich erhöht wird und die korrosionsgefährde- ten Bereiche entsprechend kleiner werden.
Figur 3 zeigt einen Rohrspiegel für eine Ausführungsform eines erfindungsgemäßen Reaktors, wie er in den Ausführungsbeispielen eingesetzt wurde. Bei einem Reaktor mit einem Innendurchmesser von 3550 mm oder die Anordnung der Kontaktrohre dergestalt geändert, dass die seitlichen Begrenzungen im Rohrspiegel von Kreissehnen zu einer polygonalen Linie hin mit den in Figur 3 angegebenen Abmessungen in mm.
Figur 4 zeigt einen Querschnitt durch eine bevorzugte Ausführungsform für eine erfindungsgemäße Anordnung von Kontaktrohren, wobei in den korrosionsgefährdeten Bereichen zusätzlich Dummy-Rohr vorgesehen sind.
Figur 5 zeige eine vereinfachte schematische Darstellung für die Hauptströmungsrich- tung des Wärmeträgers durch den Mantelraum 4 zwischen den Kontaktrohren, zwischen den Umlenkblechen 5, die am Reaktorinnenmantel jeweils alternierend einander gegenüberliegende Durchtrittsöffnungen 7 freilassen. Die Hauptströmungsrichtung ist als y-Richtung bezeichnet, die Längsrichtung durch den Reaktor als z-Koordinate. Figur 5A zeigt eine Schnittdarstellung in der Ebene A-A durch den in Figur 5 schematisch dargestellten Reaktor, mit Erläuterung des iterativen Algorithmus zur Bestimmung der erfindungsgemäßen Anordnung der Kontaktrohre.
Der Schnitt in der Ebene A-A durch den Reaktor 1 verdeutlicht den Rohrspiegel nach dem Stand der Technik, von dem in der Erfindung ausgegangen wird, das heißt mit seitlichen Begrenzungen des Rohrspiegels in Form von Kreissehnen 9.
Die Hauptströmungsrichtung des Wärmeträgers ist als y-Koordinate bezeichnet und die Koordinate rechtwinklig hierzu, in der Ebene des Reaktorquerschnitts, als x- Koordinate.
Der Rohrspiegel ist in Beispiel 3 zu den Kreissehnen 9 in parallele und äquidistante Geraden 10 unterteilt. Ihre Gerade 10 ist in m, vorliegend 5 äquidistante Punkte aufge- teilt, wobei der erste und der letzte, vorliegend der erste und der fünfte Punkt, jeweils am äußersten Rand des Rohrspiegels, das heißt am Mantel des Reaktors 1 , liegen. Die jeweils i-ten Punkte auf den Geraden 10 werden miteinander verbunden, wobei die Strömungswege erhalten werden, deren Längen durch die beschriebenen Iterationsschritte einander angeglichen werden.
Figur 6 verdeutlicht einen Rohrspiegel für eine erfindungsgemäße Anordnung der Kontaktrohre, worin die seitlichen Begrenzungen von Kreissehnen hin zu Kreisbögen geändert sind.
Figur 7 verdeutlicht eine weitere Ausführungsform für eine erfindungsgemäße Anordnung der Kontaktrohre, worin lediglich eine der seitlichen Begrenzungen des Rohrspiegels von einer Kreissehne hin zu einem Kreisbogen geändert ist. Die zweite seitliche Begrenzung des Rohrspiegels verbleibt in diesem Ausführungsbeispiel bei der Form einer Kreissehne 9.

Claims

Patentansprüche
1. Reaktor (1 ) zur Herstellung von Phosgen durch Gasphasenreaktion von Kohlen- monoxid und Chlor in Gegenwart eines Feststoffkatalysators, der in den Kontaktrohren (2) eines Bündels von Kontaktrohren (2) angeordnet ist, die an beiden Enden derselben in jeweils einem Rohrboden (3) eingeschweißt sind, mit Zuführung der Edukte am oberen Ende der Kontaktrohre (2) und Ableitung des gasförmigen Reaktionsgemisches am unteren Ende der Kontaktrohre (2), jeweils über eine Haube, sowie mit Zu- bzw. Abführeinrichtungen für einen flüssigen
Wärmeträger (6) in den Mantelraum (4) zwischen den Kontaktrohren (2), wobei die Strömung des Wärmeträgers (6) im Zwischenraum (4) zwischen den Kontaktrohren (2) mittels Umlenkblechen (5) geleitet wird, die alternierend einander gegenüberliegende Durchtrittsöffnungen (7) an der Reaktorinnenwand freilassen, in denen die Umlenkbleche (5) kreissegmentförmige Aussparungen aufweisen, und wobei der Reaktor (1 ) im Bereich der Durchtrittsöffnungen (7) unberohrt ist, dadurch gekennzeichnet, dass die Wärmeübergangskoeffizienten an der Grenzschicht zwischen den Kontaktrohren (2) und dem Wärmeträger (6) über jeden Reaktorquerschnitt vergleichmäßigt werden, indem die Strömungswege des Wärmeträgers (6) in jedem Reaktorquerschnitt, jeweils gemessen vom ersten bis zum letzten Kontaktrohr (2) in Strömungsrichtung des Wärmeträgers (6) durch eine geänderte Anordnung der Kontaktrohre (2) einander angeglichen werden.
2. Reaktor nach Anspruch 1 , dadurch gekennzeichnet, dass die Strömungswege des Wärmeträgers (6) in jedem Reaktorquerschnitt, jeweils gemessen vom ersten bis zum letzten Kontaktrohr (2) in Strömungsrichtung des Wärmeträgers (6) durch den Einbau von Dummy-Rohren (8) einander angeglichen werden.
3. Reaktor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die geänderte Anordnung der Kontaktrohre (2) dadurch erfolgt, dass die beiden einander gegenüberliegenden seitlichen Begrenzungen des Bündels von Kontaktrohren (2) von Kreissehnen (9) zu Kreisbögen hin geändert werden.
4. Reaktor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die einander gegenüberliegenden seitlichen Begrenzungen des Bündels von Kontaktrohren
(2) von Kreissehnen (9) zu einer polygonalen Linie geändert werden, die in einen Kreisbogen eingeschrieben ist.
5. Reaktor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die alternierend einander gegenüberliegende Durchtrittsöffnungen (7) der Umlenk- bleche (5) an die seitlichen Begrenzungen des Bündels von Kontaktrohren (2) angepasst sind.
6. Reaktor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass im inneren Bereich des Reaktors (1 ) strömungsstörende Einbauten, insbesondere
Lochbleche, vorgesehen sind.
7. Verfahren zur Herstellung von Phosgen durch Gasphasenreaktion von Kohlen- monoxid und Chlor in Gegenwart eines Feststoffkatalysators in einem Reaktor (1 ) mit einem Bündel von Kontaktrohren (2) enthaltend den Feststoffkatalysator, und wobei die Kontaktrohre (2) an den beiden Enden derselben in jeweils einem Rohrboden (3) eingeschweißt sind, mit Zuführung der Edukte am oberen Ende der Kontaktrohre (2) und Ableitung des gasförmigen Reaktionsgemisches am unteren Ende der Kontaktrohre (2), jeweils über eine Haube, sowie mit Zu- bzw. Ab- führeinrichtungen für einen flüssigen Wärmeträger (6) in den Mantelraum (4) zwischen den Kontaktrohren (2), wobei die Strömung des Wärmeträgers (6) im Zwischenraum (4) zwischen den Kontaktrohren (2) mittels Umlenkblechen (5) geleitet wird, die alternierend einander gegenüberliegende Durchtrittsöffnungen (7) an der Reaktorinnenwand freilassen, in denen die Umlenkbleche (5) kreissegment- förmige Aussparungen aufweisen, und wobei der Reaktor (1 ) im Bereich der
Durchtrittsöffnungen (7) unberohrt ist, dadurch gekennzeichnet, dass die Wärmeübergangskoeffizienten an der Grenzschicht zwischen den Kontaktrohren (2) und dem Wärmeträger (6) über jeden Reaktorquerschnitt vergleichmäßigt werden, indem die Strömungswege des Wärmeträgers (6) in jedem Reaktorquer- schnitt, jeweils gemessen vom ersten bis zum letzten Kontaktrohr (2) in Strömungsrichtung des Wärmeträgers (6) durch eine geänderte Anordnung der Kontaktrohre (2) und/oder durch Einbau von Dummy-Rohren (8) einander angeglichen werden.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Strömungswege des Wärmeträgers (6) in jedem Reaktorquerschnitt, jeweils gemessen vom ersten bis zum letzten Kontaktrohr (2) in Strömungsrichtung des Wärmeträgers (6) durch den Einbau von Dummy-Rohren (8) angeglichen werden.
PCT/EP2009/067239 2008-12-16 2009-12-16 Reaktor und verfahren zur herstellung von phosgen WO2010076209A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011541403A JP5378539B2 (ja) 2008-12-16 2009-12-16 ホスゲンを調製するための反応器および方法
BRPI0922235A BRPI0922235A2 (pt) 2008-12-16 2009-12-16 reator e processo para produzir fosfogênio
EP09799608.6A EP2379217B1 (de) 2008-12-16 2009-12-16 Reaktor und verfahren zur herstellung von phosgen
CN200980156855.0A CN102316970B (zh) 2008-12-16 2009-12-16 制备光气的反应器和方法
ES09799608T ES2770646T3 (es) 2008-12-16 2009-12-16 Reactor y procedimiento para la fabricación de fosgeno
US13/140,194 US8492587B2 (en) 2008-12-16 2009-12-16 Reactor and process for preparing phosgene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08171726 2008-12-16
EP08171726.6 2008-12-16

Publications (1)

Publication Number Publication Date
WO2010076209A1 true WO2010076209A1 (de) 2010-07-08

Family

ID=42226553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/067239 WO2010076209A1 (de) 2008-12-16 2009-12-16 Reaktor und verfahren zur herstellung von phosgen

Country Status (10)

Country Link
US (1) US8492587B2 (de)
EP (1) EP2379217B1 (de)
JP (1) JP5378539B2 (de)
KR (1) KR101653851B1 (de)
CN (1) CN102316970B (de)
BR (1) BRPI0922235A2 (de)
ES (1) ES2770646T3 (de)
HU (1) HUE047744T2 (de)
PT (1) PT2379217T (de)
WO (1) WO2010076209A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014009346A1 (de) 2012-07-11 2014-01-16 Bayer Materialscience Ag Vorrichtung und verfahren zur herstellung von phosgen
US8993803B2 (en) 2009-03-11 2015-03-31 Basf Se Method for producing phosgene
BE1024344B1 (nl) * 2016-07-04 2018-02-02 PharmaFluidics N.V. Productie van chemische reactoren

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010076208A1 (de) * 2008-12-16 2010-07-08 Basf Se Reaktor und verfahren zur herstellung von phosgen
US8841480B2 (en) 2009-07-16 2014-09-23 Basf Se Process for the preparation of light-colored iocyanates of a diphenylmethanediisocyanate series
JP5899654B2 (ja) * 2011-05-12 2016-04-06 三菱レイヨン株式会社 固定床多管式反応器の製造方法
PL3138672T3 (pl) 2011-11-10 2020-05-18 Packsize Llc Maszyna przekształcająca
DK2955158T3 (da) 2014-06-11 2020-08-31 Haldor Topsoe As Fremgangsmåde til fremstilling af phosgen
US10850469B2 (en) 2016-06-16 2020-12-01 Packsize Llc Box forming machine
US11242214B2 (en) 2017-01-18 2022-02-08 Packsize Llc Converting machine with fold sensing mechanism
SE540672C2 (en) 2017-06-08 2018-10-09 Packsize Llc Tool head positioning mechanism for a converting machine, and method for positioning a plurality of tool heads in a converting machine
US11247427B2 (en) 2018-04-05 2022-02-15 Avercon BVBA Packaging machine infeed, separation, and creasing mechanisms
US11305903B2 (en) 2018-04-05 2022-04-19 Avercon BVBA Box template folding process and mechanisms
DE102018113735A1 (de) * 2018-06-08 2019-12-12 Man Energy Solutions Se Verfahren, Rohrbündelreaktor und Reaktorsystem zur Durchführung katalytischer Gasphasenreaktionen
US11634244B2 (en) 2018-06-21 2023-04-25 Packsize Llc Packaging machine and systems
CN117412805A (zh) * 2021-05-27 2024-01-16 巴斯夫欧洲公司 制备光气的方法
WO2024003247A1 (en) * 2022-06-30 2024-01-04 Basf Se Process for producing phosgene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072237A1 (de) * 2002-02-27 2003-09-04 Basf Aktiengesellschaft Reaktor und verfahren zur herstellung von phosgen
DE102004041777A1 (de) * 2004-08-28 2006-03-02 Bayer Materialscience Ag Verfahren und Vorrichtung zur Herstellung von Phosgen
EP1813346A1 (de) * 2004-09-27 2007-08-01 Sumitomo Chemical Company, Limited Mehrrohr-reaktionsvorrichtung für kontaktgasphasenreaktion

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3807963A (en) * 1972-03-09 1974-04-30 J Smith Reaction apparatus
US4231959A (en) * 1978-02-15 1980-11-04 Stauffer Chemical Company Phosgene manufacture
JP4295462B2 (ja) * 2002-01-11 2009-07-15 三菱化学株式会社 気相接触酸化方法
WO2010076208A1 (de) 2008-12-16 2010-07-08 Basf Se Reaktor und verfahren zur herstellung von phosgen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072237A1 (de) * 2002-02-27 2003-09-04 Basf Aktiengesellschaft Reaktor und verfahren zur herstellung von phosgen
DE102004041777A1 (de) * 2004-08-28 2006-03-02 Bayer Materialscience Ag Verfahren und Vorrichtung zur Herstellung von Phosgen
EP1813346A1 (de) * 2004-09-27 2007-08-01 Sumitomo Chemical Company, Limited Mehrrohr-reaktionsvorrichtung für kontaktgasphasenreaktion

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993803B2 (en) 2009-03-11 2015-03-31 Basf Se Method for producing phosgene
WO2014009346A1 (de) 2012-07-11 2014-01-16 Bayer Materialscience Ag Vorrichtung und verfahren zur herstellung von phosgen
US9480958B2 (en) 2012-07-11 2016-11-01 Covestro Deutschland Ag Device and method for producing phosgene
BE1024344B1 (nl) * 2016-07-04 2018-02-02 PharmaFluidics N.V. Productie van chemische reactoren
US11724259B2 (en) 2016-07-04 2023-08-15 Pharmafluidics Nv Production of chemical reactors

Also Published As

Publication number Publication date
BRPI0922235A2 (pt) 2015-12-29
US8492587B2 (en) 2013-07-23
ES2770646T3 (es) 2020-07-02
US20110269995A1 (en) 2011-11-03
JP5378539B2 (ja) 2013-12-25
EP2379217A1 (de) 2011-10-26
CN102316970A (zh) 2012-01-11
KR101653851B1 (ko) 2016-09-02
CN102316970B (zh) 2014-08-20
HUE047744T2 (hu) 2020-05-28
EP2379217B1 (de) 2019-11-20
JP2012512124A (ja) 2012-05-31
KR20110111411A (ko) 2011-10-11
PT2379217T (pt) 2020-02-17

Similar Documents

Publication Publication Date Title
EP2379217B1 (de) Reaktor und verfahren zur herstellung von phosgen
EP2379216B1 (de) Reaktor und verfahren zur herstellung von phosgen
EP1485195B1 (de) Verfahren zur herstellung von phosgen
EP1169119B1 (de) Rohrbündelreaktor, insbesondere für katalytische gasphasenreaktionen
EP1831147B1 (de) Verfahren zur herstellung von phthalsäureanhydrid
DE69003404T3 (de) Mehrrohrtypwärmetauscher.
WO2007042529A1 (de) Rohrbündelwärmeübertrager und verfahren zur entfernung von gelösten stoffen aus einer polymerlösung durch entgasung in einem rohrbündelwärmeübertrager
EP1572582A1 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff
DE102017203058A1 (de) Wärmeübertrager und Reaktor
EP2872443B1 (de) Vorrichtung und verfahren zur herstellung von phosgen
EP1109619A1 (de) Reaktor mit einem kontaktrohrbündel
DE112005000654T5 (de) Katalytischer Reaktor
EP1027922B1 (de) Reaktor zur Durchführung einer katalytischen, exothermen Reaktion an Substanzen, die in einer Gasströmung enthalten sind
EP3972934A1 (de) Verfahren und reaktor zur herstellung von phosgen
EP1148940A1 (de) Reaktormodul mit einem kontaktrohrbündel
DE202016104687U1 (de) Kondensator
EP0394758B1 (de) Wärmetauscher
DE10159824A1 (de) Geordnete Packung für einen Reaktor
DE10032304A1 (de) Reaktor mit einem Bündel von Kontaktrohren
WO2022248501A1 (de) Verfahren zur herstellung von phosgen
EP1332794B1 (de) Einbauten für Packungskolonnen
DE708889C (de) Verfahren zur Herstellung fluessiger Kohlenwasserstoffe durch katalytische Reduktion von Kohlenoxyd
WO2023208409A1 (de) Verfahren und reaktor zur katalytischen umsetzung eines einsatzstroms
EP4374958A1 (de) Reaktor und herstellungsverfahren dafür
WO2001087477A1 (de) Längsstromreaktor mit einem kontaktrohrbündel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980156855.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09799608

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011541403

Country of ref document: JP

Ref document number: 13140194

Country of ref document: US

Ref document number: 4260/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009799608

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117016636

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0922235

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110616