WO2010076194A1 - Herstellung von carbonsäureestern unter strippen mit alkohol-dampf - Google Patents

Herstellung von carbonsäureestern unter strippen mit alkohol-dampf Download PDF

Info

Publication number
WO2010076194A1
WO2010076194A1 PCT/EP2009/067179 EP2009067179W WO2010076194A1 WO 2010076194 A1 WO2010076194 A1 WO 2010076194A1 EP 2009067179 W EP2009067179 W EP 2009067179W WO 2010076194 A1 WO2010076194 A1 WO 2010076194A1
Authority
WO
WIPO (PCT)
Prior art keywords
alcohol
reaction mixture
reactor
acid
vapor
Prior art date
Application number
PCT/EP2009/067179
Other languages
English (en)
French (fr)
Inventor
Jarren Peters
Walter Disteldorf
Katrin Friese
Thomas Schäfer
Oliver Bey
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to US13/140,274 priority Critical patent/US8901344B2/en
Priority to ES09799604.5T priority patent/ES2554170T3/es
Priority to JP2011541391A priority patent/JP5698146B2/ja
Priority to CA2746571A priority patent/CA2746571C/en
Priority to CN200980150480.7A priority patent/CN102256922B/zh
Priority to EP09799604.5A priority patent/EP2379482B1/de
Priority to KR1020117016502A priority patent/KR101733814B1/ko
Publication of WO2010076194A1 publication Critical patent/WO2010076194A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0005Degasification of liquids with one or more auxiliary substances
    • B01D19/001Degasification of liquids with one or more auxiliary substances by bubbling steam through the liquid
    • B01D19/0015Degasification of liquids with one or more auxiliary substances by bubbling steam through the liquid in contact columns containing plates, grids or other filling elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/36Azeotropic distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/38Steam distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds

Definitions

  • the present invention relates to a process for the preparation of carboxylic acid esters by reacting a reaction mixture comprising a carboxylic acid and / or a carboxylic acid anhydride and an alcohol.
  • Esters of phthalic acid, adipic acid, sebacic acid or maleic acid are widely used in coating resins, as constituents of paints and in particular as plasticizers for plastics.
  • carboxylic acid esters by reacting carboxylic acids with alcohols. This reaction can be carried out autocatalytically or catalytically, for example by Brönstedt or Lewis acids. Regardless of the type of catalysis, there is always a temperature-dependent equilibrium between the starting materials (carboxylic acid and alcohol) and the products (esters and water).
  • the reaction of internal carboxylic acid anhydrides with alcohols proceeds in two steps:
  • the alcoholysis of the anhydride to the monoester usually proceeds rapidly and completely.
  • the further reaction of the monoester to the diester to form water of reaction is reversible and proceeds slowly.
  • This second step is the rate-limiting step of the reaction.
  • an entraining agent is generally used, with the aid of which the water of reaction is removed from the batch. If one of the starting materials (alcohol or carboxylic acid) boils lower than the ester formed and forms a miscibility gap with water, an educt can be used as entraining agent and recycled to the batch after removal of water.
  • the alcohol used is usually the entraining agent.
  • the procedure is usually to at least partially condense the vapor from the reactor, to separate the condensate into an aqueous phase and an organic phase consisting essentially of the alcohol used for the esterification, and the organic phase at least partially recycled to the reactor.
  • EP-A 1 186 593 describes a process for the preparation of carboxylic acid esters by reaction of di- or polycarboxylic acids or their anhydrides with alcohols, wherein the water of reaction is removed by azeotropic distillation with the alcohol. The amount of liquid removed from the reaction by the azeotropic distillation is completely or partially replenished with the alcohol.
  • the prior art contains various proposals to improve the removal of the water of reaction.
  • EP 680 463 B1 describes a process for the esterification of acids or acid anhydrides with a monoalcohol or a polyhydroxy compound, in which a reaction mixture is heated to boiling and the water is removed as steam, the reaction mixture being mixed continuously so that at least 2.5 volumes Reaction mixture are circulated internally per minute. By mixing under the conditions mentioned, the conversion rate should be increased.
  • EP-A 835 860 relates to a process for the separation of water from reaction mixtures for the esterification of acids or acid anhydrides with alcohols at the boiling point of the reaction mixture, wherein the lowest boiling starting material is first used in substoichiometric amount, the resulting vapor mixture of predominantly water and the The lowest boiling component is dehydrated on a membrane, the dehydrated vapor mixture is returned to the reaction mixture and the lowest-boiling starting material is added to the reaction mixture in the course of the reaction.
  • the invention has for its object to provide an alternative method for improving the separation of the reaction water.
  • the invention is more particularly based on the object of providing a process for the preparation of esters having a low acid number.
  • the object is achieved by a process for the preparation of carboxylic acid esters by reacting a reaction mixture comprising a carboxylic acid and / or a carboxylic anhydride and an alcohol in a reaction system consisting of one or more reactors, wherein water of reaction as alcohol-water azeotrope with the Distilled off vapors, which is characterized in that the reaction mixture is treated with superheated alcohol vapor.
  • Superheated alcohol vapor is characterized by the fact that its temperature is above the thermodynamically defined dew point at operating pressure.
  • the alcohol used is the alcohol in the gaseous state, which is the alcohol component of the reaction mixture.
  • the temperature of the alcohol vapor is preferably at least 20 ° C. higher than the dew point.
  • the reaction mixture is conveniently treated with the alcohol vapor to provide a large exchange area between the liquid reaction mixture and the alcohol vapor, preferably under turbulent conditions.
  • the treatment with alcohol vapor during the reaction has a stripping effect and completes the removal of the water of reaction.
  • Energy is also introduced into the reaction system via the alcohol vapor; the energy input through the reactor jacket can be throttled. As a result, overheating of the reaction mixture in the vicinity of the reactor jacket and the formation of by-products can be reduced.
  • the alcohol vapor is introduced below the liquid surface into the boiling reaction mixture so that it bubbled through the reaction mixture.
  • the pressure of the alcohol vapor must be high enough to overcome the hydrostatic pressure of the reaction mixture above the alcohol-steam feed. For example, one can introduce the alcohol vapor 20 to 50 cm below the liquid surface of the reaction mixture.
  • the alcohol vapor may be fed by any suitable means.
  • Gassing lances which may be permanently installed, or preferably nozzles.
  • the nozzles may be provided at or near the reactor bottom.
  • the nozzles can be designed as openings of a hollow chamber surrounding the reactor.
  • immersion nozzles are used with suitable leads.
  • Several nozzles can z. B. be arranged in the form of a wreath.
  • the nozzles may face up or down.
  • the nozzles are preferably inclined downwards.
  • the reaction mixture is preferably mixed in order to allow an exchange of reaction mixture in the reactor region below the alcohol-steam feed with reactant. tion mixture in the reactor area above the alcohol-steam feed to effect.
  • mixing for example, stirrer or a circulation pump are suitable.
  • the alcohol vapor is preferably generated by evaporation of liquid, anhydrous alcohol.
  • the production of the alcohol vapor can with any
  • the introduced amount of alcohol and steam is not subject to any particular restrictions and amounts to, for example, a continuous process.
  • B 0.01 to 0.5 kg / h, in particular 0.05 to 0.2 kg / h per kg / h reaction mixture.
  • reaction system is understood to mean a reactor or an arrangement of several reactors. Several reactors are preferably connected in series. The process according to the invention can be carried out batchwise or continuously, but is preferably carried out continuously.
  • the reactors can be any reactors which are suitable for carrying out chemical reactions in the liquid phase.
  • Suitable reactors are non-backmixed reactors, such as tubular reactors or built-in residence time vessels, but preferably backmixed reactors, such as stirred tanks, loop reactors, jet loop reactors or jet nozzle reactors. However, combinations of successive backmixed reactors and non-backmixed reactors may also be used.
  • reactors can be combined in a multi-stage apparatus.
  • Such reactors are, for example, loop reactors with built-in sieve trays, cascaded vessels, tube reactors with intermediate feed or stirred columns.
  • the reaction can be carried out in a reactive distillation column.
  • These columns are characterized by a high residence time of the reaction solution in the respective stage.
  • stirred tank reactors are used.
  • the stirred tank reactors are usually made of metallic materials, with stainless steel being preferred.
  • the reaction mixture is preferably mixed intensively with the aid of a stirrer or a circulation pump.
  • the process according to the invention can also be operated with only one stirred tank, it is expedient, in the case of continuous process control, to combine a plurality of reactors with one another in the form of a cascade for as complete a conversion as possible.
  • the individual reactors are passed through one after the other from the reaction mixture, the outlet of the first reactor being fed to the second reactor, the outlet of the second reactor being fed to the third reactor and so on.
  • the cascade can z. B. 2 to 10 reactors, with 3 to 6 reactors are preferred.
  • Carboxylic acid and / or carboxylic anhydride and alcohol are continuously added to the first reactor.
  • an alcohol-water mixture is distilled off as an azeotrope from the reaction mixture.
  • alcohol is fed into the reactor or the individual reactors of the reaction system.
  • additional alcohol may be suspended; optionally, additional liquid alcohol may be added.
  • additional liquid alcohol may be added in the reactors into which no alcohol vapor is introduced.
  • the reaction system comprises a cascade of several reactors
  • alcohol vapor is introduced into the reaction mixture in at least one reactor, preferably at least in the reaction mixture in the last reactor.
  • the degree of conversion increases steadily from the first to the last reactor.
  • the stripping with alcohol vapor according to the invention especially in the later reactors of a cascade, supports the removal of the remaining small amounts of reaction water.
  • the alcohol vapor can be passed in parallel with the individual reactors or the alcohol vapor passes through several reactors in succession. Combinations are also conceivable in which two or more reactors are bubbled with fresh alcohol vapor and the vapor from at least one of the reactors is passed through at least one further reactor.
  • each reactor to be bubbled is connected to the alcohol evaporator via an alcohol-steam line.
  • the fresh alcohol vapor must be introduced with sufficient pressure to overcome the cumulative hydrostatic pressure of the reaction mixture in the reactors to be passed in succession. In this case, the pressure drop between the reactors is sufficient for the collected vapor to bubbled through the reaction mixture in the preceding reactor. Otherwise, the collected vapor can be compressed before it is introduced into the preceding reactor. For example, one can introduce in a cascade of six reactors fresh alcohol vapor in the reaction mixture in the last reactor, collect the vapor from the last reactor and introduce vapor into the reaction mixture in the fifth reactor, collect the vapors from the fifth reactor and vapor into the reaction mixture in the fourth reactor.
  • the vapor from at least one reactor is at least partially condensed, the condensate is separated into an aqueous phase and an alcohol phase, and at least partially returns the alcohol phase to the reaction system.
  • “Feedback to the reaction system” means that the alcohol phase is passed into at least one reactor of the reaction system.
  • capacitors For condensation or partial condensation of the vapor all suitable capacitors can be used. These can be cooled with any cooling media. Capacitors with air cooling and / or water cooling are preferred, with air cooling being particularly preferred.
  • the resulting condensate is subjected to phase separation into an aqueous phase and an organic phase.
  • the condensate is usually passed into a phase separator (decanter), where it decays by mechanical settling into two phases, which can be withdrawn separately.
  • the aqueous phase is separated off and, if appropriate after work-up, can be discarded or used as stripping water in the after-treatment of the ester.
  • the vapor from the individual reactors of a cascade can be combined and condensed together.
  • the alcohol phase to be recycled may be directed to any one reactor of a cascade or split into multiple reactors of the cascade. However, it is preferred not to direct the alcohol phase to be recycled to the last reactor of the cascade.
  • the alcohol phase to be recycled is passed exclusively or predominantly into the first reactor of the cascade.
  • the alcohol phase is preferably recycled via a column (so-called back alcohol column) into the reaction system, in which the recycled alcohol phase is fed at least part of the vapor. It is expedient to introduce the alcohol phase at the top or in the upper region into the back alcohol column.
  • the effluent condensate of the back alcohol column returns to the reaction system, preferably when using a reactor cascade in the first reactor.
  • the recycling of the alcohol phase via the back alcohol column has the advantage that the recycled alcohol phase is preheated and freed from traces of water which remain in the organic phase after phase separation or are dissolved in the organic phase according to their thermodynamic solubility.
  • the back alcohol column can be, for example, a tray column, packed column or packed column. A low number of separation stages is generally sufficient. Suitable is z. B. a column with 2 to 10 theoretical plates.
  • the vapor When using a reactor cascade, the vapor preferably leaves at least the first reactor via the back alcohol column. One or more or all other reactors may also have a vapor withdrawal to the back alcohol column.
  • the process according to the invention is applicable in principle to all esterifications in which the water of reaction is removed by distillation as an azeotrope with an alcohol.
  • carboxylic acids or carboxylic anhydrides are used as the acid component.
  • polybasic carboxylic acids also partially anhydridized compounds can be used. It is also possible to use mixtures of carboxylic acids and anhydrides.
  • the acids may be aliphatic, including carbocyclic, heterocyclic, saturated or unsaturated, as well as aromatic, including heteroaromatic.
  • Suitable carboxylic acids include aliphatic monocarboxylic acids having at least 5 carbon atoms, especially 5 to 20 carbon atoms, such as n-pentanoic acid, 2-methylbutyric acid, 3-methylbutyric acid, 2-methylpentanoic acid, 2-ethylbutyric acid, n-heptanoic acid, 2 Methylhexanoic acid, isoheptanoic acids, cyclohexanecarboxylic acid, n-octanoic acid, 2-ethylhexanoic acid, isooctanoic acids, n-nonanoic acid, 2-methyloctanoic acid, isononanoic acids, n-decanoic acid, isodecanoic acids, 2-methyl undecanoic acid, isoundecanoic acid, tricyclodecanecarboxylic acid and isotridecancarbonic acid.
  • aliphatic C4-Cio-dicarboxylic acids or their anhydrides such as.
  • carbocyclic compounds are: 1, 2-cyclohexanedicarboxylic acid (hexahydrophthalic acid), 1, 2-cyclohexanedicarboxylic acid anhydride (hexahydrophthalic anhydride), cyclohexane-1, 4-dicarboxylic acid, cyclohex-4-ene-1,2-dicarboxylic acid, cyclohexene-1, 2-dicarboxylic anhydride, 4-methylcyclohexane-1, 2-dicarboxylic acid, 4-methylcyclohexane-1,2-dicarboxylic anhydride, 4-methylcyclohex-4-ene-1,2-dicarboxylic acid, 4-methylcyclohex-4-en-1, 2 dicarboxylic anhydride.
  • aromatic dicarboxylic acids or their anhydrides examples include: phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, or naphthalenedicarboxylic acids and their anhydrides.
  • Suitable aromatic tricarboxylic acids are trimellitic acid, trimellitic anhydride or trimesic acid;
  • An example of a suitable aromatic tetracarboxylic acid or its anhydride are pyromellitic acid and pyromellitic anhydride.
  • phthalic anhydride is particularly preferably used as the carboxylic acid component.
  • branched or linear aliphatic alcohols having 4 to 13 C atoms.
  • the alcohols are monovalent and can be secondary or primary.
  • the alcohols used can come from different sources. Suitable starting materials are, for example, fatty alcohols, alcohols from the Alfol process or alcohols or alcohol mixtures which have been obtained by hydrogenation of saturated or unsaturated aldehydes, in particular those whose synthesis includes a hydroformylation step.
  • Alcohols used in the process according to the invention are, for example, n-butanol, isobutanol, n-octanol (1), n-octanol (2), 2-ethylhexanol, nonanols, decyl alcohols or tridecanols prepared by hydroformylation or aldol condensation and subsequent hydrogenation ,
  • the alcohols can be used as a pure compound, as a mixture of isomeric compounds or as a mixture of compounds with different carbon numbers.
  • a preferred example of such an alcohol mixture is a Cg / Cn alcohol mixture.
  • Preferred starting alcohols are mixtures of isomeric octanols, nonanols or tridecanols, the latter being obtainable from the corresponding butene oligomers, in particular oligomers of linear butenes, by hydroformylation and subsequent hydrogenation.
  • the preparation of the butene oligomers can be carried out in principle by three methods.
  • the acid-catalyzed oligomerization in the technically z.
  • zeolites or phosphoric acid can be used on carriers, provides the most branched oligomers.
  • linear butenes for example, a Cs fraction which consists essentially of dimethylhexenes is formed (WO 92/13818).
  • oligomerization with soluble Ni complexes known as the DIMERSOL method (B. Cornils, W. A. Herrmann, Applied Homogeneous Catalysis with Organometallic Compounds, page 261-263, Verlag Chemie 1996).
  • the oligomerization is carried out on nickel-fixed bed catalysts, such as, for example, the OCTOL process (Hydrocarbon Process, Int. Ed. (1986) 65 (2nd Sect. 1), pages 31-33) or the process according to WO 95/14647 or WO 01/36356.
  • Very particularly preferred starting materials for the esterification according to the invention are mixtures of isomeric nonanols or mixtures of isomeric tridecanols which are prepared by oligomerization of linear butenes to give C 2 -olefins and C 12 -olefins according to the octol process or according to WO 95/14647, with subsequent hydroformylation and hydrogenation ,
  • alkylene glycol monoethers in particular ethylene glycol monoethers, such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether and ethylene glycol ether. monobuthylether; and polyalkylene glycol monoethers, in particular polyethylene glycol monoethers, such as polyethylene glycol monomethyl ether.
  • Particularly preferred alcohols are 2-ethylhexanol, 2-propylheptanol, isononanol isomer mixtures, decanol isomer mixtures and Cg / Cn-alcohol mixtures.
  • the esterification according to the invention can be carried out by autocatalyst or in the presence of an esterification catalyst.
  • the esterification catalyst is among Lewis acids such as alcoholates, carboxylates and chelate compounds of titanium, zirconium, tin, aluminum and zinc; Boron trifluoride, boron trifluoride etherates; Mineral acids, such as sulfuric acid, phosphoric acid; and sulfonic acids, such as methanesulfonic acid and toluenesulfonic acid, and ionic fluids.
  • the esterification catalyst is selected from alcoholates, carboxylates and chelate compounds of titanium, zirconium, tin, aluminum and zinc.
  • Tetraalkyl titanates such as tetramethyl titanate, tetraethyl titanate, tetra-n-propyl titanate, tetra-isopropyl titanate, tetra-n-butyl titanate, tetra-isobutyl titanate, tetra-sec-butyl titanate, tetraoctyl titanate, tetra (2-ethylhexyl) titanate; Dialkyl titanates ((RO) 2TiO 2, wherein R is, for example, iso-propyl, n-butyl, iso-butyl), such as isopropyl n-butyl titanate; Titanium acetylacetonate chelates such as di-isopropoxy-bis (acetylacetonate
  • Suitable ionic liquids are z.
  • esterification catalysts are selected from acid ion exchangers, zeolites, oxides and / or hydroxides of magnesium, aluminum, zinc, titanium, silicon, tin, lead, antimony, bismuth, molybdenum and manganese.
  • the catalyst concentration depends on the type of catalyst. In the titanium compounds preferably used, this is 0.005 to 1, 0 wt .-% based on the reaction mixture, in particular 0.01 to 0.3 wt .-%.
  • the starting materials and the catalyst can be introduced into the reactor simultaneously or successively.
  • the catalyst can be introduced in pure form or as a solution, preferably dissolved in one of the starting materials, at the beginning or only after the reaction temperature has been reached.
  • Carboxylic acid anhydrides often react autocatalytically with alcohols, d. H. uncatalyzed to the corresponding ester carboxylic acids (half esters), for example phthalic anhydride to the phthalic acid monoester. Therefore, a catalyst is often required only after the first reaction step.
  • streams of the educts and of the catalyst are introduced into the reactor or, if a reactor cascade is used, into the first reactor of the cascade.
  • the residence time in the reactor or the individual reactors is determined by the volume of the reactors and the flow rate of the reactants.
  • the alcohol to be reacted which serves as an entraining agent, can be used in stoichiometric excess, preferably from 30 to 200%, more preferably from 50 to 100%, of the stoichiometrically necessary amount.
  • the reaction temperatures are between 160 0 and 270 0 C.
  • the optimum tempera- tures depend on the starting materials, reaction progress and the catalyst concentration. They can easily be determined by experiment for each individual case. Higher temperatures increase the reaction rates and promote side reactions, such as dehydration from alcohols to form olefins or formation of colored by-products. It is necessary for the removal of the reaction water that the alcohol can distill off from the reaction mixture.
  • the desired temperature or the desired temperature range can be adjusted by the pressure in the reactor. In the case of low-boiling alcohols, therefore, the reaction can be carried out under reduced pressure and with higher-boiling alcohols under reduced pressure. For example, in the reaction of phthalic anhydride with a mixture of isomeric nonanols in a temperature range of 170 0 C to 250 0 C in the pressure range of 200 mbar to 3 bar worked.
  • All reactors of a cascade can be operated at the same temperature. In general, however, it is preferred to change the temperature from the first to the last reactor continuously increase a cascade, wherein a reactor is operated at the same or higher temperature than the upstream in the flow direction of the reaction mixture reactor. Conveniently, all reactors can be operated at substantially the same pressure.
  • reaction mixture which consists essentially of the desired ester and excess alcohol, in addition to the catalyst and / or its derivatives small amounts of ester carboxylic acid (s) and / or unreacted carboxylic acid.
  • the neutralization of the acidic substances is carried out by adding bases, for.
  • bases for.
  • the neutralizing agent can be used in solid form or preferably as a solution, in particular as an aqueous solution.
  • sodium hydroxide solution of a concentration of 1 to 30 wt .-%, preferably from 20 to 30 wt .-% is often used.
  • the neutralizing agent is added in an amount corresponding to one to four times, more preferably one to two times, the stoichiometric amount determined by titration.
  • esters of polybasic carboxylic acids find wide application in coating resins, as constituents of paints and especially as plasticizers for plastics.
  • Suitable plasticizers for PVC are dioctyl phthalates, diisononyl phthalates, diisodecyl phthalates and dipropylheptyl phthalates.
  • Fig. 1 shows an apparatus suitable for carrying out the method according to the invention.
  • the plant comprises a cascade of six stirred tanks 1, 2, 3, 4, 5 and 6, where at the end of the first boiler the second boiler, the outlet of the second boiler is fed to the third boiler and so on.
  • Alcohol is metered into the stirred tanks 1, 2, 3, 4 and 5 via an alcohol manifold (not shown).
  • an acid component for example phthalic anhydride (PSA)
  • PSA phthalic anhydride
  • esterification catalyst is added via line.
  • the combined vapors are a capacitor 15, z.
  • the mixed-phase stream leaving the condenser 15 is separated in the phase separator 16.
  • the lower, aqueous phase is withdrawn via a line (not shown) and discarded.
  • the upper, organic phase is fed via the line 17 to the Ragalkohol collecting vessel 18.
  • Part of the organic phase can be discharged or treated to avoid accumulation of by-products, eg. B., and therastalkohol collecting vessel 18 are fed.
  • alcohol from the return alcohol collecting vessel 18 is fed in at the top or in the upper region of the back alcohol column 9, where it is directed towards the rising vapor, and passes via the line 11 into the first vessel 1.
  • alcohol is the evaporator 22, z. B a tube bundle evaporator, fed and evaporated.
  • the evaporator 22 is heated with superheated steam, which is introduced via the line 23.
  • the superheated steam condensate is removed via the line 24.
  • the generated alcohol vapor is introduced via the line 25 and the nozzle ring 26 below the liquid surface in the reaction mixture in the boiler 6.
  • the vapors in the gas space of the boiler 6 are collected via the line 27 and introduced via the nozzle ring 28 below the liquid surface in the reaction mixture in the boiler 5.
  • the pressure difference between the boiler 6 and the boiler 5 is sufficient that the vapors from the boiler 6 without additional compression, the hydrostatic pressure of the reaction mixture above the nozzle ring 28 in the boiler fifth overcome.
  • the vapors in the gas space of the vessel 5 are collected via the line 29 and introduced via the nozzle ring 30 below the liquid surface in the reaction mixture in the boiler 4.
  • diisononyl phthalate DINP
  • a cascade of six stirred tanks was used. Isononanol was metered into each reaction vessel, a total of 731 g / h of isononanol.
  • 0.3 g / h of propyl titanate were added.
  • 358 g / h of phthalic anhydride (PSA) were metered into the first reaction vessel.
  • About a back alcohol column on the first stirred tank also about 665 g / h of isononanol cycle reflux were given as reflux to the back alcohol column.
  • the vapors from the first stirred tank were withdrawn via the gearing column, the return was returned to the first stirred tank.
  • the vapor withdrawal from the second to third stirred tank was also carried out via the back alcohol column; the vapors from the fourth to sixth stirred tank were withdrawn directly.
  • the vapors from the esterification were condensed in an air cooler and the con- condensate to a temperature of 70 0 C cooled.
  • a phase separator the organic and aqueous phases were separated at normal pressure. The water was discharged; a portion of the organic phase fed to an alcohol collection container.
  • the acid value of the obtained DINP was more than 80% lower than in Comparative Example 1; the space-time yield increased by more than 30%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Bei einem Verfahren zur Herstellung von Carbonsäureestern durch Umsetzung eines Reaktionsgemisches, das eine Carbonsäure und/oder ein Carbonsäureanhydrid und einen Alkohol umfasst, in einem aus einem oder mehreren Reaktoren bestehenden Reaktionssystem, wird Reaktionswasser als Alkohol-Wasser-Azeotrop mit dem Brüden abdestilliert. Außerdem wird das Reaktionsgemisch mit überhitztem Alkohol-Dampf behandelt. Das Verfahren erlaubt die Herstellung von Estern mit niedriger Säurezahl.

Description

Herstellung von Carbonsäureestern unter Strippen mit Alkohol-Dampf
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Carbonsäureestern durch Umsetzung eines Reaktionsgemisches, das eine Carbonsäure und/oder ein Carbonsäureanhydrid und einen Alkohol umfasst.
Ester der Phthalsäure, Adipinsäure, Sebacinsäure oder Maleinsäure finden weite An- wendung in Lackharzen, als Bestandteile von Anstrichmitteln und insbesondere als Weichmacher für Kunststoffe.
Es ist bekannt, Carbonsäureester durch Umsetzung von Carbonsäuren mit Alkoholen herzustellen. Diese Reaktion kann autokatalytisch oder katalytisch, beispielsweise durch Brönstedt- oder Lewissäuren, durchgeführt werden. Unabhängig von der Art der Katalyse entsteht immer ein temperaturabhängiges Gleichgewicht zwischen den Einsatzstoffen (Carbonsäure und Alkohol) und den Produkten (Ester und Wasser).
Die Umsetzung von inneren Carbonsäureanhydriden mit Alkoholen verläuft in zwei Schritten: Die Alkoholyse des Anhydrids zum Monoester verläuft in der Regel rasch und vollständig. Die weitere Umsetzung des Monoesters zum Diester unter Bildung von Reaktionswasser ist reversibel und verläuft langsam. Dieser zweite Schritt ist der geschwindigkeitsbestimmende Schritt der Reaktion.
Um das Gleichgewicht zu Gunsten des Esters (bzw. des Vollesters bei mehrbasigen Säuren) zu verschieben, wird in der Regel ein Schleppmittel eingesetzt, mit dessen Hilfe das Reaktionswasser aus dem Ansatz entfernt wird. Wenn einer der Einsatzstoffe (Alkohol oder Carbonsäure) niedriger siedet als der gebildete Ester und mit Wasser eine Mischungslücke bildet, kann ein Edukt als Schleppmittel verwendet und nach Ab- trennung von Wasser wieder in den Ansatz zurückgeführt werden. Bei der Veresterung von höheren aliphatischen Carbonsäuren, aromatischen Carbonsäuren oder von zwei- oder mehrbasigen Carbonsäuren ist in der Regel der eingesetzte Alkohol das Schleppmittel. Dient der eingesetzte Alkohol als Schleppmittel, geht man üblicherweise so vor, dass man den Brüden aus dem Reaktor zumindest teilweise kondensiert, das Konden- sat in eine wässrige Phase und eine im Wesentlichen aus dem zur Veresterung eingesetzten Alkohol bestehende organische Phase trennt und die organische Phase zumindest teilweise in den Reaktor zurückführt. Die EP-A 1 186 593 beschreibt ein Verfahren zur Herstellung von Carbonsäureestern durch Reaktion von Di- oder Polycarbonsäuren oder deren Anhydride mit Alkoholen, wobei das Reaktionswasser durch azeotrope Destillation mit dem Alkohol entfernt wird. Die durch die azeotrope Destillation aus der Reaktion entfernte Flüssigkeitsmenge wird vollständig oder teilweise mit dem Alkohol wieder ergänzt.
H. Suter in Chemie-Ing.-Technik 41 (1969), Nr. 17 S. 971-974 beschreibt die kontinuierliche Herstellung von Phthalsäureestern in einer Rührkesselkaskade.
Der Stand der Technik enthält verschiedene Vorschläge, um die Entfernung des Reaktionswassers zu verbessern.
So beschreibt die EP 680 463 B1 ein Verfahren zur Veresterung von Säuren oder Säureanhydriden mit einem Monoalkohol oder einer Polyhydroxyverbindung, wobei man ein Reaktionsgemisch zum Sieden erhitzt und das Wasser als Dampf entfernt, wobei das Reaktionsgemisch kontinuierlich so gemischt wird, dass mindestens 2,5 Volumen Reaktionsgemisch intern pro Minute zirkuliert werden. Durch das Mischen unter den genannten Bedingungen soll die Umwandlungsrate erhöht werden.
Die EP-A 835 860 betrifft ein Verfahren zur Abtrennung von Wasser aus Reaktionsgemischen zur Veresterung von Säuren bzw. Säureanhydriden mit Alkoholen bei Siedetemperatur des Reaktionsgemisches, wobei das am niedrigsten siedende Edukt zunächst in unterstöchiometrischer Menge eingesetzt wird, das entstehende Dampfgemisch aus vorwiegend Wasser und der am niedrigsten siedenden Komponente an ei- ner Membran entwässert wird, das entwässerte Dampfgemisch in das Reaktionsgemisch zurückgeführt und das am niedrigsten siedende Edukt im Laufe der Reaktion dem Reaktionsgemisch nachgesetzt wird.
Der Erfindung liegt die Aufgabe zugrunde, ein alternatives Verfahren zur Verbesserung der Abtrennung des Reaktionswassers bereitzustellen. Der Erfindung liegt insbesondere die Aufgabe zugrunde, ein Verfahren zur Herstellung von Estern mit niedriger Säurezahl bereitzustellen.
Die Aufgabe wird gelöst durch ein Verfahren zur Herstellung von Carbonsäureestern durch Umsetzung eines Reaktionsgemisches, das eine Carbonsäure und/oder ein Carbonsäureanhydrid und einen Alkohol umfasst, in einem aus einem oder mehreren Reaktoren bestehenden Reaktionssystem, wobei man Reaktionswasser als Alkohol- Wasser-Azeotrop mit dem Brüden abdestilliert, das dadurch gekennzeichnet ist, dass man das Reaktionsgemisch mit überhitztem Alkohol-Dampf behandelt. Überhitzter Alkohol-Dampf zeichnet sich dadurch aus, dass seine Temperatur oberhalb des thermodynamisch definierten Taupunkts bei Betriebsdruck liegt. Als Alkohol-Dampf verwendet man den Alkohol in gasförmigem Zustand, der die Alkoholkomponente des Reaktionsgemisches ist. Die Temperatur des Alkohol-Dampfs ist vorzugsweise wenigstens 20 0C höher als der Taupunkt.
Das Reaktionsgemisch wird zweckmäßigerweise so mit dem Alkohol-Dampf behandelt, dass eine große Austauschfläche zwischen dem flüssigen Reaktionsgemisch und dem Alkohol-Dampf, vorzugsweise unter turbulenten Bedingungen, geschaffen wird. Die Behandlung mit Alkohol-Dampf während der Umsetzung hat einen Stripp-Effekt und vervollständigt die Entfernung des Reaktionswassers. Über den Alkohol-Dampf wird außerdem Energie in das Reaktionssystem eingetragen; der Energieeintrag über den Reaktormantel kann gedrosselt werden. Dadurch kann eine Überhitzung des Reakti- onsgemisches in der Nähe des Reaktormantels und die Bildung von Nebenprodukten verringert werden.
Zur Behandlung eignen sich beispielsweise alle gängigen Apparaturen zum Strippen von Flüssigkeiten mit Gasen.
In bevorzugten Ausführungsformen wird der Alkohol-Dampf unter der Flüssigkeitsoberfläche in das siedende Reaktionsgemisch eingeführt, so dass er das Reaktionsgemisch durchperlt. Der Druck des Alkohol-Dampfs muss ausreichend hoch sein, um den hydrostatischen Druck des Reaktionsgemisches oberhalb der Alkohol-Dampf-Einspeisung zu überwinden. Z. B. kann man den Alkohol-Dampf 20 bis 50 cm unterhalb der Flüssigkeitsoberfläche des Reaktionsgemisches einführen.
Der Alkohol-Dampf kann über beliebige geeignete Vorrichtungen eingespeist werden. Es eignen sich z. B. Begasungslanzen, die fest installiert sein können, oder vorzugs- weise Düsen. Die Düsen können am oder in der Nähe des Reaktorbodens vorgesehen sein. Die Düsen können hierzu als Öffnungen einer den Reaktor umgebenden Hohlkammer ausgebildet sein. Bevorzugt werden jedoch Tauchdüsen mit geeigneten Zuleitungen eingesetzt. Mehrere Düsen können z. B. in Form eines Kranzes angeordnet sein. Die Düsen können nach oben oder nach unten weisen. Die Düsen weisen vor- zugsweise schräg nach unten.
Vorzugsweise wird das Reaktionsgemisch durchmischt, um einen Austausch von Reaktionsgemisch im Reaktorbereich unterhalb der Alkohol-Dampf-Einspeisung mit Reak- tionsgemisch im Reaktorbereich oberhalb der Alkohol-Dampf-Einspeisung zu bewirken. Zur Vermischung eignen sich beispielsweise Rührer oder eine Umlaufpumpe.
Der Alkohol-Dampf wird vorzugsweise durch Verdampfen von flüssigem, wasserfreien Alkohol erzeugt. Die Erzeugung des Alkohol-Dampfs kann mit einem beliebigen
Dampferzeuger erfolgen, z. B. einem Dampfkessel, Plattenverdampfer, Rohrverdampfer oder Rohrbündelverdampfer. Platten- und Rohrbündelverdampfer und Kombinationen davon sind im Allgemeinen bevorzugt.
Die eingeführte Alkohol-Dampf-Menge unterliegt keinen besonderen Beschränkungen und beträgt bei kontinuierlicher Verfahrensführung z. B. 0,01 bis 0,5 kg/h, insbesondere 0,05 bis 0,2 kg/h pro kg/h Reaktionsgemisch.
Unter "Reaktionssystem" wird ein Reaktor oder eine Anordnung von mehreren Reakto- ren verstanden. Mehrere Reaktoren sind vorzugsweise hintereinander geschaltet. Das erfindungsgemäße Verfahren kann diskontinuierlich oder kontinuierlich durchgeführt werden, wird aber vorzugsweise kontinuierlich durchgeführt.
Bei den Reaktoren kann es sich um beliebige Reaktoren handeln, die zur Durchfüh- rung von chemischen Umsetzungen in flüssiger Phase geeignet sind.
Als Reaktoren sind nicht rückvermischte Reaktoren, wie Rohrreaktoren oder mit Einbauten versehene Verweilzeitbehälter, vorzugsweise aber rückvermischte Reaktoren, wie Rührkessel, Schlaufenreaktoren, Strahlschlaufenreaktoren oder Strahldüsenreak- toren geeignet. Es können aber auch Kombinationen aus aufeinander folgenden rückvermischten Reaktoren und nicht rückvermischten Reaktoren verwendet werden.
Gegebenenfalls können auch mehrere Reaktoren in einer mehrstufigen Apparatur zu- sammengefasst werden. Solche Reaktoren sind zum Beispiel Schlaufenreaktoren mit eingebauten Siebböden, kaskadierte Behälter, Rohrreaktoren mit Zwischeneinspeisung oder Rührkolonnen.
In einer weiteren Verfahrensvariante kann die Umsetzung in einer Reaktivdestillations- kolonne durchgeführt werden. Diese Kolonnen zeichnen sich durch eine hohe Verweil- zeit der Reaktionslösung in der jeweiligen Stufe aus. So können vorteilhaft z.B. Kolonnen verwendet werden, die einen hohen Flüssigkeits-"hold-up" haben, wie z.B. bei hochaufgestauten Böden einer Bodenkolonne. Vorzugsweise werden Rührkesselreaktoren verwendet. Die Rührkesselreaktoren bestehen meist aus metallischen Werkstoffen, wobei Edelstahl bevorzugt ist. Der Reaktionsansatz wird vorzugsweise mit Hilfe eines Rührers oder einer Umlaufpumpe intensiv vermischt.
Wenngleich das erfindungsgemäße Verfahren auch mit nur einem Rührkessel betrieben werden kann, ist es bei kontinuierlicher Verfahrensführung für eine möglichst vollständige Umsetzung zweckmäßig, mehrere Reaktoren miteinander in Form einer Kaskade zu verbinden. Die einzelnen Reaktoren werden vom Reaktionsgemisch nachein- ander durchlaufen, wobei der Ablauf des ersten Reaktors dem zweiten Reaktor, der Ablauf des zweiten Reaktors dem dritten Reaktor usw. zugeführt wird. Die Kaskade kann z. B. 2 bis 10 Reaktoren umfassen, wobei 3 bis 6 Reaktoren bevorzugt sind. Carbonsäure und/oder Carbonsäureanhydrid und Alkohol werden kontinuierlich in den ersten Reaktor zugegeben.
Während der Reaktion wird ein Alkohol-Wasser-Gemisch als Azeotrop aus der Reaktionsmischung abdestilliert. Während der Reaktion wird außerdem Alkohol in den Reaktor bzw. die einzelnen Reaktoren des Reaktionssystems nachgespeist. In die Reaktoren, in die Alkohol-Dampf eingeführt wird, kann die Zugabe zusätzlichen Alkohols un- terbleiben; gegebenenfalls kann zusätzlich flüssiger Alkohol zugegeben werden. In die Reaktoren, in die kein Alkohol-Dampf eingeführt wird, wird vorzugsweise flüssiger Alkohol nachgespeist.
Wenn das Reaktionssystem eine Kaskade von mehreren Reaktoren umfasst, führt man in das Reaktionsgemisch in wenigstens einem Reaktor, vorzugsweise zumindest in das Reaktionsgemisch im letzten Reaktor, Alkohol-Dampf ein. In den Reaktoren einer Kaskade nimmt der Umsatzgrad vom ersten bis zum letzten Reaktor stetig zu. Das erfindungsgemäße Strippen mit Alkohol-Dampf unterstützt vor allem in den späteren Reaktoren einer Kaskade die Entfernung der noch verbliebenen geringen Mengen Reakti- onswasser.
Wenn mehr als ein Reaktor mit Alkohol-Dampf behandelt wird, kann der Alkohol-Dampf parallel zu den einzelnen Reaktoren geführt werden oder der Alkohol-Dampf passiert mehrere Reaktoren nacheinander. Es sind auch Kombinationen denkbar, in denen zwei oder mehrere Reaktoren mit frischem Alkohol-Dampf durchperlt werden und der Dampf aus wenigstens einem der Reaktoren durch wenigstens einen weiteren Reaktor geleitet wird. Bei der parallelen Versorgung mit Alkohol-Dampf ist jeder zu durchperlende Reaktor über eine Alkohol-Dampf-Leitung mit dem Alkohol-Verdampfer verbunden. Wenn der Alkohol-Dampf mehrere Reaktoren hintereinander passiert, geht man so vor, dass man den Brüden aus einem Reaktor, in den Alkohol-Dampf eingeführt wird, sammelt und den Brüden dampfförmig in das Reaktionsgemisch in wenigstens einem der vorausgehenden Reaktoren einführt. Der frische Alkohol-Dampf muss mit ausreichendem Druck eingeführt werden, um den kumulierten hydrostatischen Druck des Reaktionsgemisches in den nacheinander zu durchlaufenden Reaktoren zu überwinden. In diesem Fall ist das Druckgefälle zwischen den Reaktoren ausreichend, damit der gesammelte Brüden das Reaktionsgemisch im vorausgehenden Reaktor durchperlen kann. Andernfalls kann man den gesammelten Brüden verdichten, bevor dieser in den vorausgehenden Reaktor eingeführt wird. Beispielsweise kann man in einer Kaskade von sechs Reaktoren frischen Alkohol-Dampf in das Reaktionsgemisch im letzten Reaktor einführen, den Brüden aus dem letzten Reaktor sammeln und dampfförmig in das Reaktionsgemisch im fünften Reaktor einführen, den Brüden aus dem fünften Reaktor sammeln und dampfförmig in das Reaktionsgemisch im vierten Reaktor einführen.
Im Allgemeinen kondensiert man den Brüden aus wenigstens einem Reaktor zumindest teilweise, trennt das Kondensat in eine wässrige Phase und eine Alkoholphase und führt die Alkoholphase zumindest teilweise in das Reaktionssystem zurück. "Rück- führung in das Reaktionssystem" bedeutet, dass die Alkoholphase in wenigstens einen beliebigen Reaktor des Reaktionssystems geleitet wird.
Zur Kondensation bzw. partiellen Kondensation des Brüden können alle geeigneten Kondensatoren verwendet werden. Diese können mit beliebigen Kühlmedien gekühlt werden. Kondensatoren mit Luftkühlung und/oder Wasserkühlung sind bevorzugt, wobei die Luftkühlung besonders bevorzugt ist.
Das erhaltene Kondensat wird einer Phasentrennung in eine wässrige Phase und eine organische Phase unterzogen. Üblicherweise wird das Kondensat hierzu in einen Pha- senscheider (Dekanter) geleitet, wo es durch mechanisches Absetzen in zwei Phasen zerfällt, die getrennt abgezogen werden können. Die wässrige Phase wird abgetrennt und kann, gegebenenfalls nach Aufarbeitung, verworfen oder als Strippwasser bei der Nachbehandlung des Esters verwendet werden.
Der Brüden aus den einzelnen Reaktoren einer Kaskade kann vereinigt werden und gemeinsam kondensiert werden. Gegebenenfalls kann man jeweils mehrere Reaktoren der Kaskade zu einer Untereinheit zusammenfassen, wobei dann jeweils die Untereinheiten mit einem Kondensator gekoppelt sind. Es besteht daneben weiterhin die Möglichkeit, jeden Reaktor der Kaskade mit einem Kondensator zu koppeln. Die zurückzuführende Alkoholphase kann in einen beliebigen Reaktor einer Kaskade geleitet oder auf mehrere Reaktoren der Kaskade aufgeteilt werden. Es ist jedoch bevorzugt, die zurückzuführende Alkoholphase nicht in den letzten Reaktor der Kaskade zu leiten. Vorzugsweise leitet man die zurückzuführende Alkoholphase ausschließlich oder überwiegend in den ersten Reaktor der Kaskade.
Für die Rückführung der Alkoholphase in das Reaktionssystem gibt es verschiedene Möglichkeiten. Eine Möglichkeit ist, die organische Phase, gegebenenfalls nach Er- wärmen, in das flüssige Reaktionsgemisch zu pumpen.
Zur thermischen Optimierung des Verfahrens führt man die Alkoholphase aber vorzugsweise über eine Kolonne (so genannte Rückalkohol-Kolonne) in das Reaktionssystem zurück, in der man der rückgeführten Alkoholphase zumindest einen Teil des Brüden entgegenführt. Zweckmäßigerweise führt man die Alkoholphase am Kopf oder im oberen Bereich in die Rückalkohol-Kolonne ein. Das ablaufende Kondensat der Rückalkohol-Kolonne gelangt in das Reaktionssystem zurück, bei Verwendung einer Reaktorkaskade vorzugsweise in den ersten Reaktor. Die Rückführung der Alkoholphase über die Rückalkohol-Kolonne weist den Vorteil auf, dass die rückgeführte Alko- holphase vorerwärmt und von Wasserspuren befreit wird, die nach der Phasentrennung in der organischen Phase verblieben sind bzw. gemäß ihrer thermodynamischen Löslichkeit in der organischen Phase gelöst sind. Bei der Rückalkohol-Kolonne kann es sich beispielsweise um eine Bodenkolonne, Packungskolonne oder Füllkörperkolonne handeln. Eine geringe Trennstufenzahl ist im Allgemeinen ausreichend. Geeignet ist z. B. eine Kolonne mit 2 bis 10 theoretischen Trennstufen.
Bei Verwendung einer Reaktorkaskade verlässt der Brüden vorzugsweise zumindest den ersten Reaktor über die Rückalkohol-Kolonne. Ein oder mehrere oder alle weiteren Reaktoren können ebenfalls einen Brüdenabzug zur Rückalkohol-Kolonne aufweisen.
Das erfindungsgemäße Verfahren ist prinzipiell auf alle Veresterungen anwendbar, bei denen das Reaktionswasser als Azeotrop mit einem Alkohol destillativ abgetrennt wird.
Im erfindungsgemäßen Verfahren werden als Säurekomponente Carbonsäuren oder Carbonsäureanhydride eingesetzt. Bei mehrbasigen Carbonsäuren können auch teilweise anhydridisierte Verbindungen eingesetzt werden. Ebenso ist es möglich, Gemische aus Carbonsäuren und Anhydriden zu verwenden. Die Säuren können aliphatisch, einschließlich carbocyclisch, heterocyclisch, gesättigt oder ungesättigt, sowie aromatisch, einschließlich heteroaromatisch, sein.
Zu den geeigneten Carbonsäuren zählen aliphatische Monocarbonsäuren mit wenigs- ten 5 Kohlenstoffatomen, insbesondere 5 bis 20 Kohlenstoffatomen, wie n-Pentan- säure, 2-Methylbuttersäure, 3-Methylbuttersäure, 2-Methylpentansäure, 2-Ethyl- buttersäure, n-Heptansäure, 2-Methylhexansäure, Isoheptansäuren, Cyclohexancar- bonsäure, n-Octansäure, 2-Ethylhexansäure, Isooctansäuren, n-Nonansäure, 2- Methyloctansäure, Isononansäuren, n-Decansäure, Isodecansäuren, 2-Methyl- undecansäure, Isoundecansäure, Tricyclodecancarbonsäure und Isotridecancarbon- säure.
Weiter eignen sich aliphatische C4-Cio-Dicarbonsäuren bzw. deren Anhydride, wie z. B. Maleinsäure, Fumarsäure, Maleinsäureanhydrid, Bernsteinsäure, Bernsteinsäurean- hydrid, Adipinsäure, Korksäure, Trimethyladipinsäure, Azelainsäure, Decandisäure, Dodecandisäure, Brassylsäure. Beispiele für carbocyclische Verbindungen sind: 1 ,2- Cyclohexandicarbonsäure (Hexahydrophthalsäure), 1 ,2-Cyclohexandicarbonsäure- anhydrid (Hexahydrophthalsäureanhydrid), Cyclohexan-1 ,4-dicarbonsäure, Cyclohex- 4-en-1 ,2-dicarbonsäure, Cyclohexen-1 ,2-dicarbonsäureanhydrid, 4-Methylcyclohexan- 1 ,2-dicarbonsäure, 4-Methylcyclohexan-1 ,2-dicarbonsäureanhydrid, 4-Methylcyclohex- 4-en-1 ,2-dicarbonsäure, 4-Methylcyclohex-4-en-1 ,2-dicarbonsäureanhydrid.
Beispiele geeigneter aromatischer Dicarbonsäuren bzw. deren Anhydride sind: Phthalsäure, Phthalsäureanhydrid, Isophthalsäure, Therephthalsäure, oder Naphthalindicar- bonsäuren und deren Anhydride.
Beispiele geeigneter aromatischer Tricarbonsäuren (bzw. Anhydride) sind Trimellitsäu- re, Trimellitsäureanhydrid oder Trimesinsäure; Ein Beispiel einer geeigneten aromatischen Tetracarbonsäure bzw. ihres Anhydrids sind Pyromellitsäure und Pyromellitsäu- reanhydrid.
Besonders bevorzugt wird im erfindungsgemäßen Verfahren Phthalsäureanhydrid als Carbonsäurekomponente eingesetzt.
Im erfindungsgemäßen Verfahren werden bevorzugt verzweigte oder lineare aliphatische Alkohole mit 4 bis 13 C-Atomen eingesetzt. Die Alkohole sind einwertig und können sekundär oder primär sein. Die eingesetzten Alkohole können aus verschiedenen Quellen stammen. Geeignete Einsatzstoffe sind beispielsweise Fettalkohole, Alkohole aus dem Alfolprozess oder Alkohole oder Alkoholgemische, die durch Hydrierung von gesättigten oder ungesättigten Aldehyden gewonnen wurden, insbesondere solchen, deren Synthese einen Hydroformylierungsschritt einschließt.
Alkohole, die im erfindungsgemäßen Verfahren eingesetzt werden, sind beispielsweise n-Butanol, Isobutanol, n-Octanol(1 ), n-Octanol(2), 2-Ethylhexanol, Nonanole, Decylal- kohole oder Tridecanole hergestellt durch Hydroformylierung oder Aldolkondensation und anschließende Hydrierung. Die Alkohole können als reine Verbindung, als Gemisch isomerer Verbindungen oder als Gemisch von Verbindungen mit unterschiedlicher C-Zahl eingesetzt werden. Ein bevorzugtes Beispiel eines derartigen Alkoholgemisches ist ein Cg/Cn-Alkoholgemisch.
Bevorzugte Einsatzalkohole sind Gemische isomerer Octanole, Nonanole oder Tridecanole, wobei die letzteren aus den entsprechenden Butenoligomeren, insbesondere Oligomeren von linearen Butenen, durch Hydroformylierung und anschließender Hydrierung gewonnen werden können. Die Herstellung der Butenoligomeren kann im Prinzip nach drei Verfahren durchgeführt werden. Die sauer katalysierte Oligomerisierung, bei der technisch z. B. Zeolithe oder Phosphorsäure auf Trägern eingesetzt werden, liefert die verzweigtesten Oligomere. Bei Einsatz von linearen Butenen entsteht beispielsweise eine Cs-Fraktion, die im Wesentlichen aus Dimethylhexenen besteht (WO 92/13818). Ein ebenfalls weltweit ausgeübtes Verfahren ist die Oligomerisierung mit löslichen Ni-Komplexen, bekannt als DIMERSOL-Verfahren (B. Cornils, W. A. Herr- mann, Applied Homogenous Catalysis with Organometallic Compounds, Seite 261- 263, Verlag Chemie 1996). Weiterhin wird die Oligomerisierung an Nickel-Festbett- Katalysatoren ausgeübt, wie beispielsweise der OCTOL-Process (Hydrocarbon Pro- cess., Int. Ed. (1986) 65 (2. Sect. 1 ), Seite 31-33) oder das Verfahren gemäß der WO 95/14647 oder WO 01/36356.
Ganz besonders bevorzugte Einsatzstoffe für die erfindungsgemäße Veresterung sind Gemische isomerer Nonanole oder Gemische isomerer Tridecanole, die durch Oligomerisierung linearer Butene zu Cs-Olefinen und Ci2-Olefinen nach dem Octol-Prozess oder gemäß der WO 95/14647, mit anschließender Hydroformylierung und Hydrierung hergestellt werden.
Weiterhin eignen sich Alkylenglykolmonoether, insbesondere Ethylenglykolmonoether, wie Ethylenglykolmonomethylether, Ethylenglykolmonoethylether und Ethylenglykol- monobuthylether; und Polyalkylenglykolmonoether insbesondere Polyethylenglykolmo- noether, wie Polyethylenglykolmonomethylether.
Besonders bevorzugte Alkohohole sind 2-Ethylhexanol, 2-Propylheptanol, Isononanol- Isomerengemische, Decanol-Isomerengemische und Cg/Cn-Alkoholgemische.
Die erfindungsgemäße Veresterung kann autokatalysiert oder in Gegenwart eines Veresterungskatalysators durchgeführt werden. Geeigneterweise ist der Veresterungskatalysator unter Lewissäuren, wie Alkoholaten, Carboxylaten und Chelatverbindungen von Titan, Zirkonium, Zinn, Aluminium und Zink; Bortrifluorid, Bortrifluorid-Etheraten; Mineralsäuren, wie Schwefelsäure, Phosphorsäure; und Sulfonsäuren, wie Methansul- fonsäure und Toluolsulfonsäure, und ionischen Fluiden ausgewählt.
Geeigneterweise ist der Veresterungskatalysator unter Alkoholaten, Carboxylaten und Chelatverbindungen von Titan, Zirkonium, Zinn, Aluminium und Zink ausgewählt. Es eignen sich Tetraalkyltitanate, wie Tetramethyltitanat, Tetraethyltitanat, Tetra-n- propyltitanat, Tetra-isopropyltitanat, Tetra-n-butyltitanat, Tetra-isobutyltitanat, Tetra- sec-butyltitanat, Tetraoctyltitanat, Tetra-(2-ethylhexyl)-titanat; Dialkyltitanate ((RO)2Tiθ2, worin R z.B. für iso-Propyl, n-Butyl, iso-Butyl steht), wie Isopropyl-n- butyltitanat; Titan-Acetylacetonat-Chelate, wie Di-isopropoxy-bis(acetylacetonat)titanat, Di-isopropoxy-bis(ethylacetylacetonat)titanat, Di-n-butyl-bis(acetylacetonat)titanat, Di- n-butyl-bis(ethylacetoacetat)titanat, Tri-isopropoxid-bis(acetylacetonat)titanat; Zirkon- tetraalkylate, wie Zirkontetraethylat, Zirkontetrabutylat, Zirkontetrabutyrat, Zirkon- tetrapropylat, Zirkoncarboxylate, wie Zirkondiacetat; Zirkon— Acetylacetonat-Chelate, wie Zirkontetra(acetylacetonat), Tributoxyzirkonacetylacetonat, Dibutoxyzirkon(bis- acetylacetonat); Aluminiumtrisalkylate, wie Aluminiumtriisopropylat, Aluminiumtrisbuty- lat; Aluminium-Acetylacetonat-Chelate, wie Aluminiumtris(acetylacetonat) und Alumini- umtris(ethylacetylacetonat). Insbesondere werden Isopropyl-n-butyltitanat, Tet- ra(isopropyl)orthotitanat oder Tetra(butyl)orthotitanat eingesetzt.
Geeignete ionische Fluide (ionic liquids) sind z. B. 1-(4-Sulfobutyl)-3- methylimidazolium-triflat und 1 -Ethyl-3-methyl-imidazolium-hydrogensulfat.
Andere geeignete Veresterungskatalysatoren sind unter sauren lonentauschern, Zeo- lithen, Oxiden und/oder Hydroxiden von Magnesium, Aluminium, Zink, Titan, Silicium, Zinn, Blei, Antimon, Bismuth, Molybdän und Mangan ausgewählt. Die Katalysatorkonzentration hängt von der Art des Katalysators ab. Bei den bevorzugt eingesetzten Titanverbindungen beträgt diese 0,005 bis 1 ,0 Gew.-% bezogen auf das Reaktionsgemisch, insbesondere 0,01 bis 0,3 Gew.-%.
Bei diskontinuierlicher Verfahrensdurchführung können die Edukte und der Katalysator gleichzeitig oder nacheinander in den Reaktor eingefüllt werden. Der Katalysator kann in reiner Form oder als Lösung, bevorzugt gelöst in einem der Einsatzstoffe, zu Beginn oder erst nach Erreichen der Reaktionstemperatur eingebracht werden. Carbonsäureanhydride reagieren häufig mit Alkoholen bereits autokatalytisch, d. h. unkatalysiert zu den entsprechenden Estercarbon säuren (Halbestern), beispielsweise Phthalsäu- reanhydrid zum Phthalsäuremonoester. Daher ist ein Katalysator häufig erst nach dem ersten Reaktionsschritt erforderlich.
Bei kontinuierlicher Verfahrensdurchführung führt man Ströme der Edukte und des Katalysators in den Reaktor bzw. bei Verwendung einer Reaktorkaskade in den ersten Reaktor der Kaskade ein. Die Verweilzeit im Reaktor bzw. den einzelnen Reaktoren wird dabei durch das Volumen der Reaktoren und den Mengenstrom der Edukte bestimmt.
Der umzusetzende Alkohol, der als Schleppmittel dient, kann im stöchiometrischen Überschuss, bevorzugt 30 bis 200 %, besonders bevorzugt 50 bis 100 % der stöchio- metrisch notwendigen Menge eingesetzt werden.
Die Reaktionstemperaturen liegen zwischen 160 0C und 270 0C. Die optimalen Tempe- raturen hängen von den Einsatzstoffen, Reaktionsfortschritt und der Katalysatorkonzentration ab. Sie können für jeden Einzelfall durch Versuche leicht ermittelt werden. Höhere Temperaturen erhöhen die Reaktionsgeschwindigkeiten und begünstigen Nebenreaktionen, wie beispielsweise Wasserabspaltung aus Alkoholen unter Bildung von Olefinen oder Bildung farbiger Nebenprodukte. Es ist zur Entfernung des Reaktions- wassers erforderlich, dass der Alkohol aus dem Reaktionsgemisch abdestillieren kann. Die gewünschte Temperatur oder der gewünschte Temperaturbereich kann durch den Druck im Reaktor eingestellt werden. Bei niedrig siedenden Alkoholen kann daher die Umsetzung bei Überdruck und bei höher siedenden Alkoholen bei vermindertem Druck durchgeführt werden. Beispielsweise wird bei der Umsetzung von Phthalsäureanhydrid mit einem Gemisch isomerer Nonanole in einem Temperaturbereich von 170 0C bis 250 0C im Druckbereich von 200 mbar bis 3 bar gearbeitet.
Alle Reaktoren einer Kaskade können bei gleicher Temperatur betrieben werden. Im Allgemeinen ist es aber bevorzugt, die Temperatur vom ersten zum letzten Reaktor einer Kaskade stetig zu erhöhen, wobei ein Reaktor bei gleicher oder höherer Temperatur betrieben wird, als der in Fließrichtung des Reaktionsgemisches stromaufwärts gelegene Reaktor. Zweckmäßigerweise können alle Reaktoren bei im Wesentlichen gleichem Druck betrieben werden.
Nach Beendigung der Reaktion enthält das Reaktionsgemisch, das im Wesentlichen aus dem gewünschten Ester und überschüssigem Alkohol besteht, neben dem Katalysator und/oder dessen Folgeprodukte geringe Mengen an Estercarbonsäure(n) und/oder nicht umgesetzter Carbonsäure.
Zur Aufarbeitung dieser Esterrohgemische wird der überschüssige Alkohol entfernt, die saueren Verbindungen neutralisiert, der Katalysator zerstört und die dabei entstandenen festen Nebenprodukte abgetrennt. Dabei wird der größte Teil des nicht umgesetzten Alkohols bei Normaldruck oder im Vakuum abdestilliert. Die letzten Spuren des Alkohols können z. B. durch Wasserdampfdestillation, insbesondere im Temperaturbereich von 120 bis 225 0C unter Vakuum, entfernt werden. Die Abtrennung des Alkohols kann als erster oder als letzter Aufarbeitungsschritt erfolgen.
Die Neutralisation der saueren Stoffe, wie Carbonsäuren, Estercarbon säuren oder ge- gebenenfalls der saueren Katalysatoren, erfolgt durch Zugabe von Basen, z. B. von Alkali- und/oder Erdalkalimetallcarbonaten, -hydrogencarbonaten oder -hydroxiden. Das Neutralisationsmittel kann in fester Form oder bevorzugt als Lösung, insbesondere als wässrige Lösung eingesetzt werden. Hier wird häufig Natronlauge einer Konzentration von 1 bis 30 Gew.-%, bevorzugt von 20 bis 30 Gew.-% verwendet. Das Neutralisa- tionsmittel wird in einer Menge zugesetzt, die dem Einfachen bis dem Vierfachen, insbesondere dem Einfachen bis Zweifachen der stöchiometrisch notwendigen Menge, die durch Titration bestimmt wird, entspricht.
Die so hergestellten Ester aus mehrbasischen Carbonsäuren, wie beispielsweise Phthalsäure, Adipinsäure, Sebacinsäure, Maleinsäure, und aus Alkoholen, finden weite Anwendung in Lackharzen, als Bestandteile von Anstrichmitteln und insbesondere als Weichmacher für Kunststoffe. Geeignete Weichmacher für PVC sind Dioctylphthalate, Diisononylphthalate, Diisodecylphthalate und Dipropylheptylphthalate.
Die Erfindung wird durch die beigefügte Zeichnung und die folgenden Beispiele näher erläutert.
Fig. 1 zeigt eine zur Durchführung des erfindungsgemäßen Verfahrens geeignete Anlage. Die Anlage umfasst eine Kaskade aus sechs Rührkesseln 1 , 2, 3, 4, 5 und 6, wo- bei der Ablauf des ersten Kessels dem zweiten Kessel, der Ablauf des zweiten Kessels dem dritten Kessel usw. zugeführt wird. Über eine Alkohol-Sammelleitung (nicht dargestellt) wird über Zuleitungen Alkohol in die Rührkessel 1 , 2, 3, 4 und 5 dosiert. Über die Leitung 7 wird eine Säurekomponente, beispielsweise Phthalsäureanhydrd (PSA), in den ersten Kessel 1 gespeist. In den ersten Kessel 1 wird über die Leitung 8 Veresterungskatalysator zugesetzt.
Die aus dem ersten Kessel 1 aufsteigenden Brüden werden über die Leitung 10 abgezogen und gelangen in die Rückalkoholkolonne 9; der Rücklauf aus der Rückalkohol- Kolonne 9 gelangt über die Leitung 11 in den ersten Kessel 1. Die Brüdenabzüge 12, 13, 14 aus dem zweiten, dritten und vierten Kessel 2, 3, 4 führen ebenfalls zur Rückalkohol-Kolonne 9.
Die vereinten Brüden werden einem Kondensator 15, z. B. einem luftgekühlten Kon- densator, zugeführt. Der aus dem Kondensator 15 austretende gemischtphasige Strom wird im Phasenscheider 16 getrennt. Die untere, wässrige Phase wird über eine Leitung (nicht dargestellt) abgezogen und verworfen. Die obere, organische Phase wird über die Leitung 17 dem Rückalkohol-Sammelgefäß 18 zugeleitet. Ein Teil der organischen Phase kann zur Vermeidung der Aufpegelung von Nebenprodukten ausge- schleust werden oder behandelt, z. B. aufgereinigt, und dem Rückalkohol- Sammelgefäß 18 zugeleitet werden.
Über die Pumpe 19 und die Leitung 20 wird Alkohol aus dem Rückalkohol- Sammelgefäß 18 am Kopf oder in den oberen Bereich der Rückalkohol-Kolonne 9 ein- gespeist, wo er den aufsteigenden Brüden entgegengeführt wird, und gelangt über die Leitung 11 in den ersten Kessel 1.
Über die Leitung 21 wird Alkohol dem Verdampfer 22, z. B einem Rohrbündelverdampfer, zugeführt und verdampft. Der Verdampfer 22 wird mit Heißdampf beheizt, der über die Leitung 23 herangeführt wird. Das Heißdampf-Kondensat wird über die Leitung 24 abgeführt. Der erzeugte Alkohol-Dampf wird über die Leitung 25 und den Düsenkranz 26 unterhalb der Flüssigkeitsoberfläche in das Reaktionsgemisch im Kessel 6 eingeführt. Der Alkohol-Dampf durchperlt das Reaktionsgemisch; der Stripp-Effekt unterstützt die Abtrennung des Reaktionswassers als Alkohol-Wasser-Azeotrop. Die Brüden im Gasraum des Kessels 6 werden über die Leitung 27 gesammelt und über den Düsenkranz 28 unterhalb der Flüssigkeitsoberfläche in das Reaktionsgemisch im Kessel 5 eingeführt. Die Druckdifferenz zwischen dem Kessel 6 und dem Kessel 5 ist ausreichend, dass die Brüden aus dem Kessel 6 ohne zusätzliche Verdichtung den hydrostatischen Druck des Reaktionsgemisches oberhalb des Düsenkranzes 28 im Kessel 5 überwinden. Die Brüden im Gasraum des Kessels 5 werden über die Leitung 29 gesammelt und über den Düsenkranz 30 unterhalb der Flüssigkeitsoberfläche in das Reaktionsgemisch im Kessel 4 eingeführt.
BEISPIELE
Vergleichsbeispiel 1 : Herstellung von Diisononylphthalat
Zur kontinuierlichen Herstellung von Diisononylphthalat (DINP) verwendete man eine Kaskade von sechs Rührkesseln. In jeden Reaktionskessel wurde Isononanol zudosiert, insgesamt 731 g/h Isononanol. In den ersten Reaktionskessel wurden 0,3 g/h Propyltitanat zudosiert. Außerdem wurden 358 g/h Phthalsäureanhydrid (PSA) in den ersten Reaktionskessel dosiert. Über eine Rückalkohol-Kolonne am ersten Rührkessel wurden außerdem etwa 665 g/h Isononanol-Kreislaufrückstrom als Rücklauf auf die Rückalkohol-Kolonne gegeben.
Die Brüden aus dem ersten Rührkessel wurden über die Rückalkohol-Kolonne abgezogen, deren Rücklauf in den ersten Rührkessel zurückgeleitet wurde. Der Brüdenab- zug aus dem zweiten bis dritten Rührkessel erfolgte ebenfalls über die Rückalkohol- Kolonne; die Brüden aus dem vierten bis sechsten Rührkessel wurden direkt abgezogen.
Die Brüden aus der Veresterung wurden in einem Luftkühler kondensiert und das Kon- densat auf eine Temperatur von 70 0C gekühlt. In einem Phasenscheider wurden die organische und wässrige Phase bei Normaldruck getrennt. Das Wasser wurde ausgeschleust; ein Teil der organischen Phase einem Alkoholsammelbehälter zugeführt.
Das aus dem letzten Rührkessel ablaufende Esterrohgemisch wurde aufgearbeitet, indem der überschüssige Alkohol entfernt, die saueren Verbindungen neutralisiert, der Katalysator zerstört und die dabei entstandenen festen Nebenprodukte abgetrennt wurden. Man erhielt 1000 g/h DINP mit einer Säurezahl von 0,5 mg KOH/g.
Beispiel 1
Die kontinuierliche Herstellung von DINP erfolgte analog zum Vergleichsbeispiel 1 , wobei jedoch in den sechsten Rührkessel 30 cm unterhalb der Flüssigkeitsoberfläche des Reaktionsgemisches Isononanol-Dampf eingeführt wurde, der durch Verdampfen von 105 g/h Isononanol in einem Verdampfer erzeugt wurde und die Zugabe von flüs- sigem Isononanol in diesen Kessel ersetzte. Die Brüden aus dem sechsten Kessel wurden unterhalb der Flüssigkeitsoberfläche des Reaktionsgemisches in den fünften Kessel, die Brüden aus dem fünften Kessel unterhalb der Flüssigkeitsoberfläche des Reaktionsgemisches in den vierten Kessel geleitet.
Die Säurezahl des erhaltenen DINP war mehr als 80% niedriger als im Vergleichsbeispiel 1 ; die Raumzeitausbeute stieg um mehr als 30 %.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Carbonsäureestern durch Umsetzung eines Reaktionsgemisches, das eine Carbonsäure und/oder ein Carbonsäureanhydrid und einen Alkohol umfasst, in einem aus einem oder mehreren Reaktoren bestehenden Reaktionssystem, wobei man Reaktionswasser als Alkohol-Wasser-Azeotrop mit dem Brüden abdestilliert, dadurch gekennzeichnet, dass man das Reaktionsgemisch mit überhitztem Alkohol-Dampf behandelt.
2. Verfahren nach Anspruch 1 , wobei man den Alkohol-Dampf unterhalb der Flüssigkeitsoberfläche des Reaktionsgemisches einführt und das Reaktionsgemisch mit dem Alkohol-Dampf durchperlt.
3. Verfahren nach Anspruch 2, wobei man das Reaktionsgemisch durchmischt, um einen Austausch von Reaktionsgemisch im Reaktorbereich unterhalb der Alko- hol-Dampf-Einspeisung mit Reaktionsgemisch im Reaktorbereich oberhalb der Alkohol-Dampf-Einspeisung zu bewirken.
4. Verfahren nach Anspruch 2 oder 3, wobei das Reaktionssystem eine Kaskade von mehreren Reaktoren umfasst und man in das Reaktionsgemisch in mehr als einem Reaktor Alkohol-Dampf einführt.
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Reaktionssystem eine Kaskade von mehreren Reaktoren umfasst und man zumindest in das Reaktionsgemisch im letzten Reaktor Alkohol-Dampf einführt.
6. Verfahren nach Anspruch 4, wobei man zumindest den Brüden aus dem letzten Reaktor sammelt und dampfförmig in das Reaktionsgemisch in wenigstens einem der vorausgehenden Reaktor einführt.
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei man den Brüden aus wenigstens einem Reaktor zumindest teilweise kondensiert, das Kondensat in eine wässrige Phase und eine Alkoholphase trennt und die Alkoholphase zumindest teilweise in das Reaktionssystem zurückführt.
8. Verfahren nach Anspruch 7, wobei man die Alkoholphase über eine Kolonne in das Reaktionssystem zurückführt, in der man der rückgeführten Alkoholphase zumindest einen Teil des Brüden entgegenführt.
9. Verfahren nach Anspruch 8, wobei das Reaktionssystem eine Kaskade von mehreren Reaktoren umfasst und man die Alkoholphase ausschließlich oder überwiegend in den ersten Reaktor der Kaskade zurückführt.
10. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Umsetzung in Gegenwart eines Veresterungskatalysators erfolgt.
1 1. Verfahren nach Anspruch 10, wobei der Veresterungskatalysator unter Lewissäuren, Mineralsäuren, Sulfonsäuren und ionischen Fluiden ausgewählt ist.
12. Verfahren nach Anspruch 11 , wobei der Veresterungskatalysator unter Alkohola- ten, Carboxylaten und Chelatverbindungen von Titan, Zirkonium, Zinn, Aluminium und Zink; Bortrifluorid, Bortrifluorid-Etheraten; Schwefelsäure, Phosphorsäure; Methansulfonsäure und Toluolsulfonsäure ausgewählt ist.
13. Verfahren nach Anspruch 10, wobei der Veresterungskatalysator unter sauren lonentauschern, Zeolithen, Oxiden und/oder Hydroxiden von Magnesium, Aluminium, Zink, Titan, Silicium, Zinn, Blei, Antimon, Bismuth, Molybdän und Mangan ausgewählt ist.
14. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Carbonsäure unter aliphatischen Monocarbonsäuren mit wenigsten 5 Kohlenstoffatomen, aliphatischen C4-Cio-Dicarbonsäuren, aromatischen Monocarbonsäuren, aromatischen Dicarbonsäuren, aromatischen Tricarbonsäuren, aromatischen Tetracar- bonsäuren und Anhydriden davon ausgewählt ist.
15. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Alkohol unter C4-Ci3-Alkoholen, Alkylenglykolmonoethern und Polyalkylenglykolmonoethern und Gemischen davon ausgewählt ist.
PCT/EP2009/067179 2008-12-16 2009-12-15 Herstellung von carbonsäureestern unter strippen mit alkohol-dampf WO2010076194A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/140,274 US8901344B2 (en) 2008-12-16 2009-12-15 Production of carboxylic acid esters by stripping with alcohol vapor
ES09799604.5T ES2554170T3 (es) 2008-12-16 2009-12-15 Producción de ésteres de ácidos carboxílicos por arrastre con vapor de alcohol
JP2011541391A JP5698146B2 (ja) 2008-12-16 2009-12-15 アルコール蒸気によるストリッピング下にカルボン酸エステルを製造する方法
CA2746571A CA2746571C (en) 2008-12-16 2009-12-15 Production of carboxylic acid esters by stripping with alcohol vapor
CN200980150480.7A CN102256922B (zh) 2008-12-16 2009-12-15 通过醇蒸气汽提制备羧酸酯
EP09799604.5A EP2379482B1 (de) 2008-12-16 2009-12-15 Herstellung von carbonsäureestern unter strippen mit alkohol-dampf
KR1020117016502A KR101733814B1 (ko) 2008-12-16 2009-12-15 알콜 증기를 사용하는 스트립핑에 의한 카르복실산 에스테르의 제조

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08171795.1 2008-12-16
EP08171795 2008-12-16

Publications (1)

Publication Number Publication Date
WO2010076194A1 true WO2010076194A1 (de) 2010-07-08

Family

ID=42167488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/067179 WO2010076194A1 (de) 2008-12-16 2009-12-15 Herstellung von carbonsäureestern unter strippen mit alkohol-dampf

Country Status (9)

Country Link
US (1) US8901344B2 (de)
EP (1) EP2379482B1 (de)
JP (1) JP5698146B2 (de)
KR (1) KR101733814B1 (de)
CN (1) CN102256922B (de)
CA (1) CA2746571C (de)
ES (1) ES2554170T3 (de)
MY (1) MY157837A (de)
WO (1) WO2010076194A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295564A (zh) * 2011-07-25 2011-12-28 浙江庆安化工有限公司 一种dop连续化生产工艺及所用的设备
CN103822937A (zh) * 2012-11-16 2014-05-28 哈尔滨飞机工业集团有限责任公司 三氯乙烯槽液沸点测试方法
KR101663586B1 (ko) 2016-04-28 2016-10-10 애경유화주식회사 차별화 된 반응 온도 제어를 이용하여 반응 전환 속도를 높인 디옥틸테레프탈레이트의 제조방법
US10273345B2 (en) 2014-09-04 2019-04-30 Basf Se Plasticizer composition which contains a polymer dicarboxylic acid ester
WO2019185409A1 (de) 2018-03-29 2019-10-03 Basf Se Pvc-zusammensetzung, enthaltend wenigstens einen weichmacher der wenigstens eine carbonsäureestergruppe aufweist und wenigstens eine carbodiimidverbindung
EP3995485A4 (de) * 2019-07-04 2022-09-07 Lg Chem, Ltd. Verfahren zur kontinuierlichen herstellung von diesterbasiertem material

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102001948B (zh) * 2010-10-18 2015-04-15 华侨大学 一种酯化合成对苯二甲酸二异辛酯的方法
CN103113231A (zh) * 2013-02-27 2013-05-22 寿光市鲁源盐化有限公司 二烯丙基二甘醇碳酸酯的合成方法
TWI466863B (zh) * 2013-03-21 2015-01-01 Chang Chun Plastics Co Ltd 對苯二甲酸二(2-乙基己酯)之製造方法
CN104418747B (zh) * 2013-08-22 2016-08-10 中国科学院大连化学物理研究所 一种制备邻苯二甲酸二(2-丙基庚)酯的方法
CN105111074B (zh) * 2015-07-20 2018-02-13 浙江大学 一种碱减量废水固体残渣甲酯化回收利用方法
CN105111075A (zh) * 2015-08-28 2015-12-02 华东理工大学 邻苯二甲酸酯类增塑剂连续生产新工艺
KR102506500B1 (ko) * 2018-11-29 2023-03-06 주식회사 엘지화학 디알킬 테레프탈레이트계 조성물의 제조방법
WO2020204558A1 (ko) * 2019-04-04 2020-10-08 주식회사 엘지화학 에스터계 조성물의 제조방법 및 제조 시스템
US11512166B2 (en) 2019-04-04 2022-11-29 Lg Chem, Ltd. Method and system for manufacturing ester-based composition
KR102489174B1 (ko) * 2019-07-04 2023-01-18 주식회사 엘지화학 디에스터계 조성물의 제조 시스템 및 방법
KR102489171B1 (ko) * 2019-07-04 2023-01-18 주식회사 엘지화학 디에스터계 물질의 제조 유닛 및 이를 포함하는 디에스터계 물질의 제조 시스템
KR102489172B1 (ko) * 2019-07-04 2023-01-18 주식회사 엘지화학 디에스터계 물질의 제조 유닛 및 이를 포함하는 디에스터계 물질의 제조 시스템
KR102489173B1 (ko) * 2019-07-04 2023-01-18 주식회사 엘지화학 열교환 시스템 및 이를 포함하는 디에스터계 조성물 제조 시스템
CN112239405B (zh) * 2019-07-17 2023-05-02 中国石油化工股份有限公司 2,6-萘二甲酸二甲酯的合成方法
KR102501597B1 (ko) * 2019-09-25 2023-02-20 주식회사 엘지화학 디에스테르계 조성물의 제조 시스템 및 제조방법
KR102595882B1 (ko) * 2019-09-25 2023-10-30 주식회사 엘지화학 디에스터계 조성물의 제조 시스템 및 제조방법
US20220242814A1 (en) * 2019-09-27 2022-08-04 Lg Chem, Ltd. Method for producing diester-based material
CN110938000A (zh) * 2019-12-09 2020-03-31 江苏国胶新材料有限公司 一种丙烯酸异辛酯的生产工艺方法
JP2023534443A (ja) * 2020-09-24 2023-08-09 エルジー・ケム・リミテッド エステル系組成物の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2503195A1 (de) 1975-01-27 1976-07-29 Henkel & Cie Gmbh Verfahren und vorrichtung zur kontinuierlichen veresterung von fettsaeuren mit alkoholen
EP0334154A2 (de) 1988-03-21 1989-09-27 Henkel Kommanditgesellschaft auf Aktien Verfahren zur kontinuierlichen Veresterung von Fettsäuren
EP0434390A1 (de) 1989-12-22 1991-06-26 Unichema Chemie B.V. Veresterungsverfahren
EP0835860A1 (de) 1996-10-14 1998-04-15 Bayer Ag Entfernung von Wasser aus Reaktionsgemischen
EP0680463B1 (de) 1993-01-19 1998-06-10 Exxon Chemical Patents Inc. Verfahren zur herstellung von weichmittel und polyolestern
EP1186593A2 (de) 2000-09-05 2002-03-13 Oxeno Olefinchemie GmbH Verfahren zur Herstellung von Carbonsäureestern
US20040106813A1 (en) 2002-11-28 2004-06-03 Peter Moritz Method for the esterification of a fatty acid

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8618888D0 (en) * 1986-08-01 1986-09-10 Davy Mckee Ltd Process
GB9102513D0 (en) 1991-02-06 1991-03-27 Exxon Chemical Patents Inc Hydrocarbon production
DE4339713A1 (de) 1993-11-22 1995-05-24 Basf Ag Verfahren zur Oligomerisierung von Olefinen zu hochlinearen Oligomeren und Katalysatoren dafür
JPH11189569A (ja) * 1997-12-25 1999-07-13 Mitsubishi Chemical Corp ジアルキルフタレートの製造方法
DE19955593A1 (de) 1999-11-18 2001-05-23 Basf Ag C13-Alkoholgemisch und funktionalisiertes C13-Alkoholgemisch
US6271410B1 (en) * 2000-06-06 2001-08-07 Creanova Inc. Higher alkyl esters of cyanoacetic acid
JP2007153814A (ja) * 2005-12-06 2007-06-21 Mitsubishi Chemicals Corp ジカルボン酸ジエステルの製造方法
EP2200959A2 (de) 2007-08-31 2010-06-30 Basf Se Verfahren zur herstellung von 1,2-propandiol durch hydrierung von glycerin in wenigstens drei hintereinandergeschalteten reaktoren
WO2009027502A2 (de) 2007-08-31 2009-03-05 Basf Se Verfahren zur herstellung von 1,2-propandiol durch niederdruck-hydrierung von glycerin
CN101855945B (zh) 2007-11-13 2013-10-23 奥斯兰姆有限公司 用于驱动高压放电灯的电路装置和方法
EP2107064A1 (de) 2008-04-02 2009-10-07 Basf Se Verfahren zur Herstellung von Triamiden aus Ammoniak und Amido-Dichloriden
WO2009121881A1 (de) 2008-04-01 2009-10-08 Basf Se Verfahren zur farbaufhellung von polyisocyanaten mit ozonhaltigem gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2503195A1 (de) 1975-01-27 1976-07-29 Henkel & Cie Gmbh Verfahren und vorrichtung zur kontinuierlichen veresterung von fettsaeuren mit alkoholen
EP0334154A2 (de) 1988-03-21 1989-09-27 Henkel Kommanditgesellschaft auf Aktien Verfahren zur kontinuierlichen Veresterung von Fettsäuren
EP0434390A1 (de) 1989-12-22 1991-06-26 Unichema Chemie B.V. Veresterungsverfahren
EP0680463B1 (de) 1993-01-19 1998-06-10 Exxon Chemical Patents Inc. Verfahren zur herstellung von weichmittel und polyolestern
EP0835860A1 (de) 1996-10-14 1998-04-15 Bayer Ag Entfernung von Wasser aus Reaktionsgemischen
EP1186593A2 (de) 2000-09-05 2002-03-13 Oxeno Olefinchemie GmbH Verfahren zur Herstellung von Carbonsäureestern
US20040106813A1 (en) 2002-11-28 2004-06-03 Peter Moritz Method for the esterification of a fatty acid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H. SUTER IN CHEMIE-IRIG.-TECHNIK, vol. 41, no. 17, 1969, pages 971 - 974

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295564A (zh) * 2011-07-25 2011-12-28 浙江庆安化工有限公司 一种dop连续化生产工艺及所用的设备
CN103822937A (zh) * 2012-11-16 2014-05-28 哈尔滨飞机工业集团有限责任公司 三氯乙烯槽液沸点测试方法
US10273345B2 (en) 2014-09-04 2019-04-30 Basf Se Plasticizer composition which contains a polymer dicarboxylic acid ester
KR101663586B1 (ko) 2016-04-28 2016-10-10 애경유화주식회사 차별화 된 반응 온도 제어를 이용하여 반응 전환 속도를 높인 디옥틸테레프탈레이트의 제조방법
WO2019185409A1 (de) 2018-03-29 2019-10-03 Basf Se Pvc-zusammensetzung, enthaltend wenigstens einen weichmacher der wenigstens eine carbonsäureestergruppe aufweist und wenigstens eine carbodiimidverbindung
EP3995485A4 (de) * 2019-07-04 2022-09-07 Lg Chem, Ltd. Verfahren zur kontinuierlichen herstellung von diesterbasiertem material
US12084413B2 (en) 2019-07-04 2024-09-10 Lg Chem, Ltd. Continuous production method of diester-based material

Also Published As

Publication number Publication date
CA2746571A1 (en) 2010-07-08
CN102256922B (zh) 2015-09-09
US20110301377A1 (en) 2011-12-08
KR101733814B1 (ko) 2017-05-08
MY157837A (en) 2016-07-29
EP2379482B1 (de) 2015-08-26
CA2746571C (en) 2017-08-22
KR20110101206A (ko) 2011-09-15
ES2554170T3 (es) 2015-12-16
JP5698146B2 (ja) 2015-04-08
EP2379482A1 (de) 2011-10-26
CN102256922A (zh) 2011-11-23
US8901344B2 (en) 2014-12-02
JP2012512231A (ja) 2012-05-31

Similar Documents

Publication Publication Date Title
EP2379482B1 (de) Herstellung von carbonsäureestern unter strippen mit alkohol-dampf
EP2379481B1 (de) Verfahren zur herstellung von carbonsäureestern
EP1186593B1 (de) Verfahren zur Herstellung von Carbonsäureestern
DE69410988T2 (de) Verfahren zur herstellung von weichmittel und polyolestern
EP3197859B1 (de) Verfahren zur herstellung von terephthalsäurediestern mit rückalkohol-entwässerung
DE19604253A1 (de) Verfahren zur kontinuierlichen Herstellung von Alkylestern der (Meth)acrylsäure
DE19604267A1 (de) Verfahren zur kontinuierlichen Herstellung von Alkylestern der (Meth)acrylsäure
EP2379483B1 (de) Verfahren zur aufarbeitung eines rohen esters
EP2714640B1 (de) Verfahren zur herstellung von methacrylsäure
EP1719753B1 (de) Verfahren zur Herstellung von Carbonsäureestern
DE19814375A1 (de) Verfahren zur Herstellung von Acrylsäure und Acrylsäureestern
EP1300388B1 (de) Verfahren zur Herstellung von Estern di- oder mehrbasiger Karbonsäuren
EP1129061A1 (de) Verfahren zur kontinuierlichen herstellung von alkylestern der (meth)acrylsäure
EP1399409B1 (de) Verfahren zur herstellung von (meth)acrylsäureestern
WO2019197175A1 (de) Verfahren zur herstellung eines gemisches von mono- und dibenzoaten

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980150480.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09799604

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2746571

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13140274

Country of ref document: US

Ref document number: 2011541391

Country of ref document: JP

Ref document number: 2009799604

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117016502

Country of ref document: KR

Kind code of ref document: A