WO2010075713A1 - 一种扭曲向列液晶盒及包含该液晶盒的装置 - Google Patents

一种扭曲向列液晶盒及包含该液晶盒的装置 Download PDF

Info

Publication number
WO2010075713A1
WO2010075713A1 PCT/CN2009/074879 CN2009074879W WO2010075713A1 WO 2010075713 A1 WO2010075713 A1 WO 2010075713A1 CN 2009074879 W CN2009074879 W CN 2009074879W WO 2010075713 A1 WO2010075713 A1 WO 2010075713A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
electrode
point
electrodes
lens array
Prior art date
Application number
PCT/CN2009/074879
Other languages
English (en)
French (fr)
Inventor
武延兵
Original Assignee
深圳超多维光电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳超多维光电子有限公司 filed Critical 深圳超多维光电子有限公司
Publication of WO2010075713A1 publication Critical patent/WO2010075713A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement

Definitions

  • a twisted nematic liquid crystal cell and a device comprising the same
  • the present invention relates to a twisted nematic liquid crystal (TN) box and a device including the same, and more particularly to a point-by-point switching TN box and a 2D-3D stereoscopic display device including the point-by-point switching TN box.
  • TN twisted nematic liquid crystal
  • FIG. 1 is a schematic view of a conventional TN box: a glass substrate 11 and a glass substrate 12 are arranged in parallel at a predetermined pitch, and a transparent electrode 13 and a transparent electrode 14 are respectively disposed on the inner surfaces of the substrate 11 and the substrate 12, and the transparent electrodes 13 and 14 are respectively provided.
  • the inner surface has an alignment layer 15 and an alignment layer 16, respectively, and the rubbing directions of the alignment layer 15 and the alignment layer 16 are perpendicular to each other; and the twisted nematic liquid crystal 17 is filled between the alignment layer 15 and the alignment layer 16.
  • the TN box can convert the linearly polarized light whose polarization direction is parallel to the direction of the incident side alignment layer into a polarization direction.
  • the linearly polarized light perpendicular to the polarization direction of the ray polarized light is emitted; when the applied voltage between the transparent electrode 13 and the transparent electrode 14 is greater than or equal to the threshold voltage, the long axis direction of the liquid crystal 17 is along the direction of the electric field, and the TN box is not The polarization state of the ray polarized light is changed.
  • a TN box as shown in FIG. 1 is disposed in front of the ordinary display screen as an optical switching device, and a polarization voltage of the outgoing light is controlled by applying a threshold voltage to the TN box. , thus achieving 2D and 3D display switching. Obviously, once the TN box is switched, it is a full screen switch, and 2D/3D point switching cannot be performed.
  • TFT Thin Film Transistor
  • the fabrication process of the TFT is complicated and expensive, and since it is necessary to arrange circuit lines such as signal lines and gate lines of the opaque TFT circuit on the transparent substrate, it is necessary to cover the wiring area with a black matrix, resulting in a reduction in effective display area and a reduction in aperture ratio. And the presence of the black matrix may affect the display quality of the picture. Summary of the invention
  • An object of the present invention is to provide a point-to-point switching TN box and a 2D-3D stereoscopic display device using the point-by-point switching TN box, which can not only switch the polarization direction of the input ray polarized light point by point, but also increase the display area. Increase the aperture ratio and improve the display quality.
  • the invention provides a point-by-point switching twisted nematic liquid crystal cell, comprising: a first transparent substrate, a plurality of first electrodes, a first insulating layer, a plurality of second electrodes, a first alignment layer, a twisted liquid crystal, and a second alignment layer a plurality of fourth electrodes, a second insulating layer, a plurality of third electrodes, and a second transparent substrate;
  • the first transparent substrate is located at the bottom layer, the second transparent substrate is located at the top layer, the first transparent substrate and the second transparent substrate are parallel to each other; the first electrode is strip-shaped, and the first electrodes are spaced apart from each other Above the first transparent substrate; the first insulating layer covers the first electrode, and the upper surface of the first insulating layer is a plane; the second electrode is a strip, the The two electrodes are spaced apart from each other on the upper surface of the first insulating layer, and the arrangement direction of the second electrodes is parallel to the arrangement direction of the first electrodes, and the gap between any two of the first electrodes is opposite to a second An electrode; the first alignment layer covers the second electrode, and an upper surface of the first alignment layer is a plane; the third electrode is in a strip shape, and the third electrodes are spaced apart from each other a lower surface of the second transparent substrate, wherein an arrangement direction of the third electrode is perpendicular to an arrangement direction of the first electrodes; a second insulating layer covers a lower surface
  • the point-by-point switching twisted nematic liquid crystal cell is driven by a line scan or a column scan mode, and the twisted liquid crystal has a retention time in the vicinity of the second state longer than or equal to one scan period; wherein the first state is the distortion a state in which the liquid crystal is naturally aligned under the action of the first alignment layer and the second alignment layer when the electric field is not applied, and the second state is that the long axis direction of the molecular phase of the twisted liquid crystal is completely perpendicular to the first transparent The state in which the substrates are aligned.
  • the point-by-point switching twisted nematic liquid crystal cell further includes a seal frame for sealing the twisted liquid crystal between the first alignment layer and the second alignment layer.
  • the point-by-point switching twisted nematic liquid crystal cell further includes a spacer disposed between the first alignment layer and the second alignment layer for ensuring a spacing between the first alignment layer and the second alignment layer Predetermined spacing.
  • the widths of both ends of the first, second, third, and fourth electrodes in the longitudinal direction are narrower than the width of the intermediate portion.
  • the embodiment of the present invention further provides a 2D-3D stereoscopic display device.
  • the 2D-3D stereoscopic display device includes: a display panel for providing image light, and a point-by-point switching twisted nematic provided by the present invention. a liquid crystal cell, a single refractive lens array, and a birefringent lens array;
  • the image light provided by the display panel is first linearly polarized light whose polarization direction and the propagation direction are perpendicular to each other; the direction of the alignment of the alignment layer in the side-by-point switching twisted nematic liquid crystal cell near the display panel is The polarization directions of the first linearly polarized lights are parallel to each other; the point-by-point switching twisted nematic liquid crystal cell is for directly transmitting the first linearly polarized light, or converting the first linearly polarized light into a polarization direction and the Polarization direction of the first linearly polarized light a second linearly polarized light that is perpendicular to each other; the single refractive lens array and the birefringent lens array both include a planar portion and a curved portion opposite to the plane, and the curved portions of the single refractive lens array and the birefringent lens array are complementary in shape a combination of the single refractive lens array and the birefringent lens array for expressing one of the
  • the single refractive lens array is a convex lens array, and the single refractive lens array has a refractive index equal to the largest of the ordinary light refractive index and the extraordinary light refractive index of the birefringent lens array.
  • the single refractive lens array is a convex lens array, and the single refractive lens array has a refractive index equal to the smallest one of the ordinary light refractive index and the extraordinary light refractive index of the birefringent lens array.
  • the point-by-point switching TN box provided by the invention not only can realize individual control display of each pixel, but also has high aperture ratio, large effective display area and no blind area in the display area, and all display areas can perform 2D/3D conversion.
  • the 2D-3D stereoscopic display device provided by the invention can realize independent control of sub-pixels of the image display panel, and has the advantages of simple structure, flexible control and high display quality.
  • FIG. 1 is a schematic structural view of a conventional TN box
  • FIG. 2 is a cross-sectional view of a point-by-point switching TN box in a light passing direction according to an embodiment of the present invention
  • Figure 3 is a schematic view showing the structure of the first control layer seen from the side of the second electrode after removing the first alignment layer and twisting the liquid crystal;
  • Figure 4 is a schematic view showing the structure of the second control layer as seen from the side of the fourth electrode after removing the second alignment layer and twisting the liquid crystal;
  • Figure 5 is a partial plan view of the point-by-point switching TN box shown in Figure 2;
  • FIG. 6 is a schematic structural diagram of a 2D-3D stereoscopic display device and a schematic diagram of an imaging optical path thereof according to an embodiment of the present invention. detailed description
  • FIG. 2 is a cross-sectional view showing a point-by-point switching TN box in a light passing direction according to an embodiment of the present invention.
  • the point-by-point switching TN box includes: a first control layer, a second control layer, and a twisted liquid crystal 20 between the first control layer and the second control layer.
  • the twisted liquid crystal is sealed by a sealing frame or the like on the peripheral edges of the first control layer and the second control layer. 20 is enclosed between the first control layer and the second control layer.
  • the first control layer includes: a first transparent substrate 21, a plurality of first electrodes 22, a first insulating layer 23, a plurality of second electrodes 24, and a first alignment layer 25, and the first electrode 22 and the first insulating layer 23.
  • the second electrode 24 and the first alignment layer 25 are both transparent.
  • the first electrode 22 and the second electrode 24 are both strip-shaped, and the arrangement directions of the first electrode 22 and the second electrode 24 are parallel to each other.
  • Each of the first electrodes 22 is spaced apart from each other on the first transparent substrate 21.
  • the first insulating layer 23 covers the first electrode 22 and has a flat surface on the upper surface.
  • the respective second electrodes 24 are formed on the upper surface of the first insulating layer 23 at intervals from each other.
  • a second electrode 24 is directly above the gap between any two first electrodes 22, and the width of each of the second electrodes 24 is greater than or equal to the spacing between the two first electrodes below it.
  • the first alignment layer 25 is formed in the gap between each of the second electrodes 24 and the upper surface of each of the second electrodes 24, and the upper surface is a flat surface.
  • the second control layer includes: a second transparent substrate 26, a plurality of third electrodes (not shown), a second insulating layer 27, a plurality of fourth electrodes 28 and a second alignment layer 29, and a third electrode,
  • the second insulating layer 27, the fourth electrode 28, and the second alignment layer 29 are all transparent.
  • the structure of the second control layer is similar to that of the first control layer.
  • the third electrode and the fourth electrode 28 are both strip-shaped, and the arrangement directions of the third electrode and the fourth electrode 28 are parallel to each other.
  • Each of the third electrodes is spaced apart from each other on the second transparent substrate 26.
  • the second insulating layer 27 covers the third electrode and the upper surface is a plane.
  • the fourth electrodes 28 are spaced apart from each other on the upper surface of the second insulating layer 27.
  • the TN box further includes a spacer (not shown) disposed between the first alignment layer 25 and the second alignment layer 29 for ensuring that the first and second control layer pitches are a predetermined pitch.
  • Fig. 3 is a view showing the structure of the first control layer as seen from the side of the second electrode 24 after the second control layer in Fig. 2 and the twisted liquid crystal 20 are removed.
  • Fig. 4 is a view showing the structure of the second control layer as seen from the side of the fourth electrode 28 after the first control layer and the twisted liquid crystal 20 are removed.
  • the first electrode 22, the second electrode 24, the third electrode 30, and the fourth electrode 28 are all strip-shaped, and both ends in the longitudinal direction are signal input ends, and the first electrode 22 and the second electrode are 24.
  • the widths of both ends of the third electrode 30 and the fourth electrode 28 along the length direction are narrower than the width of the display region thereof, so as to prevent the input ends of the electrodes from switching between the TN boxes at the point-by-point basis because they are not insulated from each other. A short circuit occurs at the edge.
  • Figure 5 is a partial plan view of the point-by-point switching TN box shown in Figure 2.
  • the edge of the TN box is not shown in the top view shown in FIG. 5, and only eight first electrodes a1 to a8, eight second electrodes bl to b8, and six third electrodes cl are schematically illustrated. Up to c6, six fourth electrodes dl to d6. Wherein the first electrode and the second electrode edge are indicated by dashed lines.
  • the operation of the point-by-point switching TN box shown in Fig. 5 will be described below.
  • the third and fourth electrodes overlap the first and second electrodes, and the point-by-point switching TN box is divided into 12 ⁇ 16 pixel display areas, and the bottom of each pixel area is the first control layer. The upper part is the second control layer, and the middle is twisted liquid crystal.
  • the liquid crystal inside is twisted by 90 degrees under the action of the first alignment layer 25 and the second alignment layer 29, and the polarization direction is parallel to the rubbing direction of the incident substrate.
  • the emitted light is linearly polarized light whose polarization direction is perpendicular to the polarization direction of the incident polarized light.
  • the distorted liquid crystal state in this time is referred to as the first state;
  • the row electrode and the jth column electrode are respectively added with voltages, f/, and f/, at a time equal to or greater than the threshold voltage of the twisted liquid crystal, the twisted liquid crystal molecules within % are under the action of the electric field force, and the molecular
  • the long axis direction is arranged in a direction perpendicular to the first transparent substrate 21 and the second transparent substrate 26, and the polarization state of the incident linearly polarized light is not changed at this time, and the following is a convenient explanation.
  • the liquid crystal state is referred to as a second state. It can be seen that by applying voltages to electrodes of different rows and columns, individual control of the liquid crystal state in the display area of each pixel can be achieved.
  • the point-by-point switching TN box can also realize: causing the liquid crystal in the partial display area to be in one of the first state and the second state, and the twisted liquid crystals of the other display parts are in the first state and the second state Another state among them.
  • the point-by-point switching TN box provided by the present invention adopts progressive scanning or column-by-column scanning to perform liquid crystal state switching control, and the scanning frequency is selected so that the twisted liquid crystal used in the point-by-point switching TN box is
  • the time to switch from the first state to the second state is extremely short and the hold time in the vicinity of the second state is longer than or equal to one scan period, so that the point-by-point switch can be made when scanning the last line of the point-by-point switching TN box
  • the liquid crystal in which the first row of the TN cell is changed to the second state is still far from returning to the first state.
  • the point-by-point switching TN box shown in FIG. 5 is taken as an example to illustrate how to make 53 , ⁇ 54 , ⁇ 55 , ⁇ 56 , ⁇ 57 of the 5th row, 63 of the 6th row,
  • the twisted liquid crystal in 83 , 4, 5 , 6 , and 7 of the 8th line of the 7th line is in the second state, and the point-by-point switching is performed on the rest of the cassette.
  • the twisted LCD is in the first state.
  • the electrodes a1 to a8, bl to b8, cl to c6, dl to d6 can be kept at the same initial input voltage ⁇ , in the case of progressive scanning, sequentially from cl
  • Each line is scanned and the scanning input voltage is such that a pulse voltage is input to the electrode a2, the electrode b2, the electrode a3, the electrode b3, and the electrode a4 at the same time of scanning the fifth line, so that the electrodes overlap with the fifth row electrode c3.
  • the potential difference between the upper and lower areas (ie, ⁇ - is greater than or equal to f / i3 ⁇ 4 .
  • the twisted liquid crystal in 7 simultaneously switches from the first state to the second state.
  • the pulse voltage ⁇ is input to the electrode a2, the electrode b2, the electrode a3, the electrode b3, and the electrode a4 at the same timing of scanning the sixth line, so that the potential difference between the ends of 63 , 3 ⁇ 4 , ⁇ 65 , 66 , 67 is larger than
  • the twisted liquid crystal in "64, a 65, a 66, "67 is simultaneously switched from the first state to the second state at the same time; at the same time of scanning the seventh row, the electrode a2, the electrode b2, and the electrode A3, the electrode b3 and the electrode a4 are input with a pulse voltage ⁇ ,
  • the potential difference between the two ends is greater than or equal to f / i3 ⁇ 4 , then the twisted liquid crystal is quickly switched from the first state to the second state; at the same time of scanning the eighth row, the electrode a2, the electrode b2, the electrode a3, the electrode b3 and The electrode a4 inputs a pulse voltage and rapidly switches the twisted liquid crystals in 3, 4 , 5 , a 86 , and 7 from the first state to the second state at the same time.
  • can be considered as Time, " 54 ,” 55 , a 56, a 57, "63, “64, “65, “66, “67, “73, “74, “75,” 76 and 77 are still in the second a state in which the twisted liquid crystal in the other pixel display area of the point-by-point switching cassette is in the first state.
  • the above-mentioned point-by-point switching box provided by the embodiment of the present invention can not only implement point-by-point switching control, but also, the first electrode and the second electrode, the third electrode, and the fourth electrode are arranged in a layered manner, and each band
  • the electrode signals are input from both ends of the strip electrodes without wiring between the electrodes to individually control the electrode voltages at the respective pixel points. Therefore, the black matrix is not required in the point-by-point switching cassette, and the electrode width in the display area can be Maximized, and full-area control is possible.
  • the effective display area of the point-by-point switching cassette is enlarged, the aperture ratio is significantly improved, and the display quality is improved.
  • the embodiment of the present invention further provides a 2D-3D stereoscopic display device using the above-mentioned point-by-point switching cassette as a switching device.
  • the device in the light propagation direction, the device includes: a display panel 61 for providing an image, and the present invention Point-by-point switching box 62 provided, single fold The lens array 63 and the birefringent lens array 64 are mounted.
  • the 2D-3D stereoscopic display device shown in FIG. 6 further includes: a control module 65 for controlling the voltage of each electrode of the point-by-point switching TN box 62.
  • the display panel 61 is for providing first linearly polarized light whose polarization direction and propagation direction are perpendicular to each other.
  • first linearly polarized light whose polarization direction and propagation direction are perpendicular to each other.
  • the direction of the alignment layer of the control layer in the control layer on the side close to the display panel 61 in the point-by-point switching TN box 62 is parallel to the polarization direction of the incident first linearly polarized light.
  • the point-by-point switching TN box 62 is for directly transmitting the incident first linearly polarized light or converting the first linearly polarized light into a second linearly polarized light having a polarization direction perpendicular thereto under the control of the control module 65.
  • the first control layer in the point-by-point switching TN box 62 is closer to the display panel 61 than the second control layer, and the alignment direction of the first alignment layer is the same as the polarization direction of the first linearly polarized light. Any two adjacent first and second electrodes of the TN box 62 are switched point by point to correspond to a single refractive lens.
  • the refractive index of the single refractive lens array 63 is such that the birefringent lens array 64 has an ordinary refractive index and an extraordinary refractive index, and the lens optical axis direction of the birefringent lens array 64 and the first linearly polarized light
  • the polarization directions are the same, and the double arrows in Fig. 6 indicate the optical axis direction of the lens of the birefringent lens array 64.
  • the display panel 61 is switched point by point in order to indicate the polarization state of the first linearly polarized light provided by the display panel 61 and the polarization state of the first linearly polarized light after switching the TN box 62 point by point.
  • the TN box 62 and the single-refractive lens array 63 are respectively spaced apart from each other.
  • the display panel 61, the point-by-point switching TN box 62, and the single-refractive lens array 63 can be placed in close contact.
  • FIG. 6 only the connection relationship between the control module 65 and the point-by-point switching TN box 62 is schematically shown. Actually, the control module 65 individually controls the electrodes in the point-by-point switching TN box 62.
  • the control module 65 causes the liquid crystal in the pixel display area of the point-to-point switching TN box 62 corresponding to the first two first linearly polarized lights to operate in the second state, so that the incident upper two first linearly polarized lights maintain the original polarization.
  • the characteristic passes through the point-by-point switching TN cell 62, then passes through the single refractive lens array 63 and is incident on the birefringent lens array 64, at this time due to the polarization direction of the incident first linearly polarized light and the birefringent lens array 64
  • the axial directions are parallel, so that the refractive index of the birefringent lens array 64 for the first linearly polarized light is such that the first linearly polarized light incident on the birefringent lens array 64 is larger because the refractive index of the single refractive lens array 63 is larger than Refraction occurs at the interface of the single refractive lens array 63 and the birefringent lens array 64, and the optical effect of the birefringent lens array 64 appears as a convex lens.
  • the 2D-3D stereoscopic display device can respectively transmit the two outgoing light rays to the left eye and the right eye of the human eye, so that the human eye can see the 3D stereoscopic image, that is, the 2D-3D stereoscopic display device will be The two lights are displayed in 3D.
  • the control module 65 causes the liquid crystal operation in the pixel display area of the TN box 62 to be switched point by point corresponding to the next two first linearly polarized lights.
  • the incident second ray linearly polarized light is rotated by 90 degrees after the TN cell 62 is switched point by point, and becomes the second linearly polarized light; then the second linearly polarized light is
  • the single refractive lens array 63 is incident on the birefringent lens array 64, at this time, due to the polarization direction of the incident second linearly polarized light and the optical axis direction of the birefringent lens array 64 (ie, the polarization direction of the first linearly polarized light)
  • the refractive index of the birefringent lens array 64 with respect to the second linearly polarized light is, since the refractive index of the single refractive lens array 63 is equal to ".
  • the refractive index of the single refractive lens array 63 is the same as the refractive index of the birefringent lens array 64, so that the second linearly polarized light does not refract at the interface of the single refractive lens array 63 and the birefringent lens array 64, The second linearly polarized light passes straight through the birefringent lens array 64.
  • the 2D-3D stereoscopic display device displays the next two first linearly polarized lights shown in Fig. 6 in a 2D manner.
  • the single-refractive lens array 63 and the birefringent lens array 64 in the 2D-3D stereoscopic display device shown in FIG. 6 may also have other combinations, such as other single-refractive lens arrays and birefringent lens arrays mentioned in CN201126495. Combination method, no longer detailed here Said.
  • the point-by-point switching TN box provided by the embodiment of the invention is used in the 2D-3D stereoscopic display device, and the single pixel of the image display panel can be independently controlled, and the plurality of pixels of the image display panel can be controlled, not only Simple, flexible control, and can significantly improve the display quality of 2D-3D stereoscopic display devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)

Description

说 明 书 一种扭曲向列液晶盒及包含该液晶盒的装置
技术领域
本发明涉及扭曲向列液晶 (Twisted Nematic, TN) 盒及包含该 液晶盒的装置, 尤其涉及一种逐点切换 TN盒及包含该逐点切换 TN 盒的 2D-3D立体显示装置。
背景技术
随着显示技术的发展, TN盒的使用越来越广泛。 图 1所示为现 有的 TN盒示意图:玻璃基板 11和玻璃基板 12以预定间距平行设置, 在基板 11、 基板 12的内表面上分别具有透明电极 13、 透明电极 14, 透明电极 13、 14的内表面上分别具有配向层 15、配向层 16, 且配向 层 15和配向层 16的摩擦方向相互垂直;在配向层 15和配向层 16之 间充满扭曲向列液晶 17。 当透明电极 13和透明电极 14之间没有外 加电压时, 该 TN盒的状态如图 1所示, 此时该 TN盒能使偏振方向 平行于入射侧配向层方向的线偏振光转换为偏振方向与入射线偏振 光的偏振方向相垂直的线偏振光出射; 当透明电极 13和透明电极 14 间的外加电压大于等于阈值电压时,液晶 17的长轴方向沿电场方向, 此时该 TN盒不改变入射线偏振光的偏振状态。
现有的一类 2D/3D可切换立体显示器中, 在普通显示屏前面设 置一块如图 1所示的 TN盒作为光切换装置, 通过对所述 TN盒外加 阈值电压来控制出射光线的偏振方向, 从而实现 2D和 3D的显示切 换。显然, 该 TN盒一旦切换则是整屏切换, 不能进行 2D/3D的点切 换。
为解决上述问题, 现有的另一类 2D/3D可切换立体显示器采用 薄膜晶体管(Thin Film Transistor, TFT)型的 TN盒作为光切换装置, 由于 TFT型的 TN盒可以进行像素点的切换控制,因此极大地方便了 局部显示面板的 2D图像和 3D图像的切换显示。但是 TFT的制作工 艺复杂, 造价昂贵, 而且由于需要在透明基板上布置不透明的 TFT 电路的信号线、栅线等电路, 因此必须采用黑矩阵覆盖布线区域, 导 致有效显示面积减小, 开口率降低,且黑矩阵的存在可能会影响画面 的显示质量。 发明内容
本发明的目的在于提供一种逐点切换 TN盒及使用该种逐点切换 TN盒的 2D-3D立体显示装置,不仅能够逐点切换控制入射线偏振光 的偏振方向, 而且能够增加显示面积、 提高开口率、 提高显示质量。
本发明提供一种逐点切换扭曲向列液晶盒,包括:第一透明基板、 若干个第一电极、第一绝缘层、若干个第二电极、第一配向层、扭曲 液晶、第二配向层、若干个第四电极、第二绝缘层、若干个第三电极 和第二透明基板;
所述第一透明基板位于底层,第二透明基板位于顶层,所述第一 透明基板和第二透明基板相互平行;所述第一电极为带状,且所述第 一电极彼此间隔排列于所述第一透明基板之上;所述第一绝缘层覆盖 于所述第一电极之上, 且所述第一绝缘层的上表面为一平面;所述第 二电极为带状, 所述第二电极彼此间隔排列于所述第一绝缘层上表 面,且所述第二电极的排列方向平行于所述第一电极的排列方向,任 意两个所述第一电极的间隙正对一个第二电极;所述第一配向层覆盖 于所述第二电极之上, 且所述第一配向层的上表面为一平面;所述第 三电极为带状,所述第三电极彼此间隔排列于所述第二透明基板的下 表面, 且所述第三电极的排列方向垂直于所述第一电极的排列方向; 所述第二绝缘层覆盖于所述第三电极下表面,且所述第二绝缘层的下 表面为一平面;所述第四电极为带状,所述第四电极彼此间隔排列于 所述第二绝缘层下表面,且所述第四电极的排列方向平行于所述第三 电极的排列方向, 任意两个所述第三电极的间隙正对一个第四电极; 所述第二配向层覆盖于所述第四电极的下表面,且所述第二配向层的 下表面为一平面;所述扭曲液晶位于所述第一配向层和第二配向层之 间; 所述第一配向层的配向方向和第二配向层的配向方向相互垂直。
所述逐点切换扭曲向列液晶盒采用行扫描或列扫描方式进行驱 动,所述扭曲液晶在第二状态附近的保持时间长于或等于一个扫描周 期; 其中, 所述第一状态为所述扭曲液晶在无电场作用时、在所述第 一配向层和第二配向层作用下自然排列的状态,所述第二状态为所述 扭曲液晶的分子长轴方向完全沿垂直于所述第一透明基板方向排列 的状态。
驱动所述的逐点切换扭曲向列液晶盒时,在每次扫描周期内,通 过对处于第二状态的扭曲液晶两端电极施加与上一次扫描周期施加 在该部分扭曲液晶两端电极上的电压反向的电压、使所述处于第二状 态的扭曲液晶切换到第一状态。
所述的逐点切换扭曲向列液晶盒还包括用于将所述扭曲液晶封 闭在所述第一配向层和第二配向层之间的封胶框。
所述的逐点切换扭曲向列液晶盒还包括设置于所述第一配向层 和第二配向层之间的衬垫料,用于确保所述第一配向层和第二配向层 的间距为预定间距。
所述的逐点切换扭曲向列液晶盒中, 所述第一、第二、第三、第 四电极沿长度方向的两端宽度均窄于中间部位的宽度。
本发明实施例还提供一种 2D-3D立体显示装置, 沿光传播方向, 所述 2D-3D立体显示装置依次包括: 用于提供图像光的显示面板、 本发明提供的逐点切换扭曲向列液晶盒、单折射透镜阵列和双折射透 镜阵列;
所述显示面板提供的图像光为偏振方向与传播方向相互垂直的 第一线偏振光;所述逐点切换扭曲向列液晶盒中靠近所述显示面板一 侧的配向层的配向方向与所述第一线偏振光的偏振方向相互平行;所 述逐点切换扭曲向列液晶盒用于使所述第一线偏振光直接透射,或将 所述第一线偏振光转换为偏振方向与所述第一线偏振光的偏振方向 相互垂直的第二线偏振光出射;所述单折射透镜阵列和双折射透镜阵 列都包括平面部分和与该平面相对的曲面部分,且所述单折射透镜阵 列和双折射透镜阵列的曲面部分外形互补;所述单折射透镜阵列和双 折射透镜阵列的组合用于对所述逐点切换扭曲向列液晶盒出射的第 一线偏振光和第二线偏振光之中的一种表现为平透镜,另一种表现为 凸透镜。
所述单折射透镜阵列为凸透镜阵列,且所述单折射透镜阵列的折 射率等于所述双折射透镜阵列的寻常光折射率和非寻常光折射率中 最大的那个折射率。
所述单折射透镜阵列为凸透镜阵列,且所述单折射透镜阵列的折 射率等于所述双折射透镜阵列的寻常光折射率和非寻常光折射率中 最小的那个折射率。
本发明提供的逐点切换 TN盒不仅能够实现各像素的单独控制显 示, 而且开口率高, 有效显示面积大且显示区内无盲区存在, 全部显 示区都可以进行 2D/3D转换。 此外, 本发明提供的 2D-3D立体显示 装置可以实现对图像显示面板的子像素的独立控制,结构简单、控制 灵活、 显示质量高。 附图说明
图 1为现有的 TN盒结构示意图;
图 2为本发明实施例提供的一种逐点切换 TN盒沿通光方向的剖 面图;
图 3 为除去第一配向层和扭曲液晶后从第二电极一侧看到的第 一控制层的结构示意图;
图 4为除去第二配向层和扭曲液晶后从第四电极一侧看到的第 二控制层的结构示意图;
图 5为图 2所示的逐点切换 TN盒的局部俯视图;
图 6为本发明实施例提供的一种 2D-3D立体显示装置结构示意 图及其成像光路示意图。 具体实施方式
图 2所示为本发明实施例提供的一种逐点切换 TN盒沿通光方向 的剖面图。 该逐点切换 TN盒包括: 第一控制层、 第二控制层以及位 于第一控制层和第二控制层之间的扭曲液晶 20。 图中为方便表示, 仅画出该剖面图的局部, 值得说明得是, 具体实施时, 在所述第一控 制层和第二控制层的四周边缘, 采用封胶框等将所述扭曲液晶 20封 闭在所述第一控制层和第二控制层之间。
其中, 第一控制层包括: 第一透明基板 21、若干个第一电极 22、 第一绝缘层 23、 若干个第二电极 24和第一配向层 25, 且第一电极 22、 第一绝缘层 23、 第二电极 24和第一配向层 25均是透明的。 所 述第一电极 22和第二电极 24均为带状, 且第一电极 22和第二电极 24的排列方向相互平行。各第一电极 22彼此间隔排列于第一透明基 板 21上。 所述第一绝缘层 23覆盖于所述第一电极 22上方且上表面 为一平面。各第二电极 24彼此间隔形成于所述第一绝缘层 23上表面。 任意两个第一电极 22间隙的正上方具有一个第二电极 24, 且各第二 电极 24的宽度大于等于其下方的两个第一电极之间的间距。 所述第 一配向层 25成形于各第二电极 24间隙内及各第二电极 24的上表面 且上表面为一平面。
第二控制层包括: 第二透明基板 26、 若干个第三电极(图中无 法示出)、第二绝缘层 27、若干个第四电极 28和第二配向层 29, 且 第三电极、 第二绝缘层 27、 第四电极 28和第二配向层 29均是透明 的。第二控制层的结构类似于第一控制层。所述第三电极和第四电极 28均为带状, 且第三电极和第四电极 28的排列方向相互平行。 各第 三电极彼此间隔排列于第二透明基板 26上。所述第二绝缘层 27覆盖 于所述第三电极上方且上表面为一平面。 各第四电极 28彼此间隔形 成于所述第二绝缘层 27上表面。 任意两个第三电极间隙的正上方具 有一个第四电极 28, 且各第四电极 28的宽度大于等于其下方的两个 第三电极间的间距。所述第二配向层 29成形于各第四电极 28间隙内 及各第四电极 28的上表面且上表面为一平面。 所述第一控制层和第二控制层平行。 所述第一电极 22和所述第 三电极的排列方向相互垂直,第二电极 24所处平面和第四电极 28所 述平面间的间距小于所述第一透明基板 21和第二透明基板 26间的间 距。 此外, 该 TN盒还包括设置于所述第一配向层 25和第二配向层 29之间的衬垫料(图中未示出) , 用于确保第一, 二控制层间距为 预定间距。
图 3为去掉图 2中的第二控制层和扭曲液晶 20后、 从第二电极 24侧看到的第一控制层的结构示意图。 图 4为去掉第一控制层和扭 曲液晶 20后、从第四电极 28侧看到的第二控制层的结构示意图。图 3、 图 4中, 第一电极 22、 第二电极 24、 第三电极 30、 第四电极 28 均为带状且沿长度方向的两端为信号输入端, 第一电极 22、 第二电 极 24、 第三电极 30和第四电极 28沿长度方向的两端的宽度均窄于 自身在显示区域的宽度,以防止各电极的输入端由于不相互绝缘而使 输入信号在该逐点切换 TN盒的边缘发生短路。
图 5所示为图 2所示的逐点切换 TN盒的局部俯视图。其中为方 便表示, 图 5所示俯视图中没有画出 TN盒的边缘, 且仅示意性画出 了 8个第一电极 al至 a8, 8个第二电极 bl至 b8, 6个第三电极 cl 至 c6, 6个第四电极 dl至 d6。 其中, 第一电极和第二电极边缘用虚 线表示。 以下说明图 5所示逐点切换 TN盒的工作原理。
由图 5可知, 所述第三、 第四电极与所述第一、 第二电极交叠, 将该逐点切换 TN盒划分为 12x16个像素显示区,各像素区的底部为 第一控制层, 上部为第二控制层, 中间为扭曲液晶。为方便说明, 将 图 3所示的 12x16个像素显示区看成一个 12x16的二维像素矩阵,该 二维像素矩阵的列代表第一电极 22和第二电极 24, 该二维像素矩阵 的行代表第三电极 30和第四电极 28, 用 表示第 i行(i=l,...,12) 和第 j(j=l , ... ,16)列处的像素显示区,则当 αι]的上下电极没有外加电压 时,在所述第一配向层 25和第二配向层 29的作用下, 内的液晶扭 曲 90度, 偏振方向平行于入射基板的摩擦方向的线偏振光经%后, 出射光为偏振方向与入射线偏振光的偏振方向垂直的线偏振光,以下 为方便描述, 将此时该 内的扭曲液晶状态称为第一状态; 当向第 i 行电极、第 j列电极在同一时刻分别添加电压 .、 f/,且 和 f/,之差大 于等于所述扭曲液晶的阈值电压时,%内的扭曲液晶分子在电场力作 用下、 分子的长轴方向沿垂直于所述第一透明基板 21和第二透明基 板 26的方向排布, 此时 不改变入射的线偏振光的偏振状态, 以下 为方便说明, 将此时该^内的扭曲液晶状态称为第二状态。可见, 通 过向不同行不同列的电极外加电压,可以实现对各像素显示区内液晶 状态的单独控制。
此外, 该逐点切换 TN盒还能实现: 使局部显示区内的液晶处于 所述第一状态和第二状态之中的一个状态,而其它显示部位的扭曲液 晶处于第一状态和第二状态之中的另一个状态。为实现该功能,本发 明提供的逐点切换 TN盒采用逐行扫描或逐列扫描的方式进行液晶状 态的切换控制, 且扫描频率的选择需要使得该逐点切换 TN盒中采用 的扭曲液晶为从第一状态切换到第二状态的时间极短且在第二状态 附近的保持时间长于或等于一个扫描周期,这样可使得当扫描到该逐 点切换 TN盒的最后一行时, 该逐点切换 TN盒的第一行被改变为第 二状态的液晶还远远未回复到第一状态。以下以图 5所示的逐点切换 TN盒为例说明如何使第 5行的 53、 α54、 α55、 α56、 α57 ,第 6行的 63
"64、 α65、 α66、 "67, 第 7行的 第 8行的 83、 4、 567内的扭曲液晶都为第二状态, 同时使该逐点切换 ΤΝ盒的其余部位的扭曲液晶都为第一状态。 对于图 5所示的逐点切 换 ΤΝ盒, 则可在初始时使电极 al至 a8、 bl至 b8、 cl至 c6、 dl至 d6保持同样的输入电压^, 在逐行扫描时, 依次从 cl开始对每行进 行扫描且扫描输入电压为 在扫描第 5行的同一时刻向电极 a2、 电极 b2、 电极 a3、 电极 b3和电极 a4输入脉冲电压 , 使这些电极 与第 5行电极 c3的交叠区域上下电势差(即^ - 大于等于 f/。 其中, 为该逐点切换 TN盒中采用的扭曲液晶改变状态所对应的阈 值电压, ( -^ )小于 且(^ -^ )小于 。则此时
7中的扭曲液晶同时从第一状态迅速切换到第二状态。 同样地, 在扫描第 6行的同一时刻向电极 a2、 电极 b2、 电极 a3、 电极 b3和电 极 a4输入脉冲电压^, 使 63¾、 α656667的两端电势差大于 等亍 uth , 则 、 "64、 a65、 a66、 "67中的扭曲液晶同时从第一状态迅 速切换到第二状态; 在扫描第 7行的同一时刻向电极 a2、 电极 b2、 电极 a3、 电极 b3和电极 a4输入脉冲电压^, 使
77的两端电势差大于等于 f/, 则 中的扭曲液 晶同时从第一状态迅速切换到第二状态;在扫描第 8行的同一时刻向 电极 a2、 电极 b2、 电极 a3、 电极 b3和电极 a4输入脉冲电压 并使 3、 45、 a867中的扭曲液晶同时从第一状态迅速切换到第二 状态。由于扫描频率很高,因此当扫描到第 8行时, 、 a54、 a55、 a56 , 和《77所对应的液晶 几乎还没从第二状态向第一状态转变, δΡ: 可认为此时 、 "54、 "55a56、 a57、 "63、 "64、 "65、 "66、 "67、 "73、 "74、 "75、 "76和 77中的扭曲 液晶仍处于第二状态, 且该逐点切换 ΤΝ盒的其它像素显示区内的扭 曲液晶处于第一状态。此外, 在新的扫描周期到来时, 若需要使上一 个扫描周期中已从第一状态转变为第二状态的像素显示区 内的液 晶转变回第一状态, 则需要在本次扫描周期内扫描到第 i行时, 根据 此时 内液晶的状态, 同时向第 j列电极输入适当的脉冲电压, 以使 内的液晶的长轴迅速反向旋转,即使其迅速转变回第一状态。显然, 若采用上述扫描方式,就可以对该逐点切换 ΤΝ盒的各像素显示区的 扭曲液晶的状态进行切换控制,实现与 TFT型的逐点切换 ΤΝ盒等同 的切换显示效果。
显然,本发明实施例提供的上述逐点切换 ΤΝ盒不仅可以实现逐 点切换控制, 此外, 由于第一电极和第二电极、第三电极和第四电极 都采用分层方式设置,且各带状电极信号从带状电极两端输入而无需 在各电极之间布线以单独控制各像素点两端电极电压, 因此,该逐点 切换 ΤΝ盒中无需使用黑矩阵, 显示区域内的电极宽度可最大化, 且 可进行全区域控制, 相对于 TFT型的 ΤΝ盒, 这种逐点切换 ΤΝ盒的 有效显示面积得以扩大, 开口率得到显著提高, 显示质量得以改善。
本发明实施例还提供一种采用上述逐点切换 ΤΝ盒作为切换装置 的 2D-3D立体显示装置, 如图 6所示, 沿光传播方向, 该装置包括: 提供图像的显示面板 61、 本发明所提供的逐点切换 ΤΝ盒 62、 单折 射透镜阵列 63和双折射透镜阵列 64。此外, 图 6所示的 2D-3D立体 显示装置还包括: 用于控制所述逐点切换 TN盒 62的各电极电压的 控制模块 65。
所述显示面板 61用于提供偏振方向与传播方向相互垂直的第一 线偏振光。 当所述显示面板 61的出射光为非线性偏振光时, 需要在 显示面板 61和所述逐点切换 TN盒 62之间添加线偏振片以使所述线 偏振片出射第一线偏振光。
所述逐点切换 TN盒 62中靠近所述显示面板 61的一侧的控制层 中配向层的配向方向与入射的第一线偏振光的偏振方向相互平行。该 逐点切换 TN盒 62用于在所述控制模块 65的控制下使入射的第一线 偏振光直接透射或将所述第一线偏振光转换为偏振方向与其垂直的 第二线偏振光。 以下为方便说明, 设逐点切换 TN盒 62中第一控制 层比第二控制层接近所述显示面板 61, 第一配向层的配向方向与所 述第一线偏振光的偏振方向相同。 逐点切换 TN盒 62的任意两个相 邻的第一电极和第二电极与一个单折射透镜对应。
所述单折射透镜阵列 63的折射率为 ,双折射透镜阵列 64具有 寻常光折射率 和非寻常光折射率 ,且 所述双折射透 镜阵列 64的透镜光轴方向与所述第一线偏振光的偏振方向相同, 图 6中双箭头所示为该双折射透镜阵列 64的透镜光轴方向。
值得说明的是, 图 6中是为了标明显示面板 61提供的第一线偏 振光的偏振状态以及第一线偏振光经逐点切换 TN盒 62后的偏振状 态而使显示面板 61、逐点切换 TN盒 62和单折射透镜阵列 63之间分 别具有一定间距, 具体实施时, 所述显示面板 61、 逐点切换 TN盒 62和单折射透镜阵列 63可以紧密接触放置。 此外, 图 6中仅是示意 性画出了控制模块 65和逐点切换 TN盒 62的连接关系,实际上控制 模块 65对所述逐点切换 TN盒 62内的各电极单独控制。
以下对图 6所示的 2D-3D立体显示装置的 4条成像光路图进行说 明,其中上两条第一线偏振光最后发生折射,下两条第一线偏振光直 接透射, 下面具体说明它们的原理。
从图 6中可以看出, 由于需要对上两条第一线偏振光进行 3D显 示, 控制模块 65使上两条第一线偏振光所对应的逐点切换 TN盒 62 的像素显示区内的液晶工作于第二状态,因此入射的上两条第一线偏 振光保持原偏振特性穿过该逐点切换 TN盒 62,接着穿过单折射透镜 阵列 63并入射到双折射透镜阵列 64, 此时由于入射的第一线偏振光 的偏振方向与所述双折射透镜阵列 64光轴方向平行, 因此双折射透 镜阵列 64对于该第一线偏振光线的折射率为 , 由于单折射透镜阵 列 63的折射率^大于 , 因此入射于所述双折射透镜阵列 64的第一 线偏振光在单折射透镜阵列 63和双折射透镜阵列 64的交界面上发生 折射, 且所述双折射透镜阵列 64的光学效果表现为凸透镜。 这种情 况下, 该 2D-3D立体显示装置可以将最终出射的两条光线分别传播 到人眼的左眼和右眼,使人眼看到 3D立体图像, 即该 2D-3D立体显 示装置将上两条光线采用 3D方式显示。
对于入射于所述逐点切换 TN盒 62的下两条第一线偏振光,控制 模块 65使下两条第一线偏振光所对应的逐点切换 TN盒 62的像素显 示区内的液晶工作于第一状态,因此入射的下两条第一线偏振光通过 该逐点切换 TN盒 62后偏振方向被旋转 90度,变为第二线偏振光出 射; 随后所述第二线偏振光经所述单折射透镜阵列 63射至所述双折 射透镜阵列 64, 此时由于入射的第二线偏振光的偏振方向与所述双 折射透镜阵列 64的光轴方向 (即第一线偏振光的偏振方向) 垂直, 因此所述双折射透镜阵列 64相对于该第二线偏振光的折射率为 , 由于单折射透镜阵列 63 的折射率^等于《。, 即此时单折射透镜阵列 63的折射率与双折射透镜阵列 64的折射率相同, 因此该第二线偏振 光在所述单折射透镜阵列 63和双折射透镜阵列 64的界面处不发生折 射, 第二线偏振光直线通过所述双折射透镜阵列 64。 这种情况下, 该 2D-3D立体显示装置将图 6所示的下两条第一线偏振光采用 2D方 式显不。
图 6所示的 2D-3D立体显示装置中的单折射透镜阵列 63和双折 射透镜阵列 64还可以有别的组合方式,例如 CN201126495中所提到 的其它单折射透镜阵列和双折射透镜阵列的组合方式, 在此不再详 述。
将本发明实施例提供的逐点切换 TN盒用于 2D-3D立体显示装置 中,可以实现对图像显示面板的单个像素的独立控制, 也可以对图像 显示面板的多个像素进行控制, 不仅实现简单、控制灵活, 而且能够 显著提高 2D-3D立体显示装置的显示质量。
上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域 的技术人员在本方法的启示下,在不脱离本方法宗旨和权利要求所保 护的范围情况下,还可以作出很多变形,这些均属于本发明的保护范 围之内。

Claims

权 利 要 求 书
1、一种逐点切换扭曲向列液晶盒, 其特征在于, 包括: 第一透 明基板、若干个第一电极、第一绝缘层、若干个第二电极、第一配向 层、扭曲液晶、 第二配向层、 若干个第四电极、 第二绝缘层、 若干个 第三电极和第二透明基板;
所述第一透明基板位于底层,第二透明基板位于顶层,所述第一 透明基板和第二透明基板相互平行;
所述第一电极为带状,且所述第一电极彼此间隔排列于所述第一 透明基板之上;所述第一绝缘层覆盖于所述第一电极之上,且所述第 一绝缘层的上表面为一平面;所述第二电极为带状,所述第二电极彼 此间隔排列于所述第一绝缘层上表面,且所述第二电极的排列方向平 行于所述第一电极的排列方向,任意两个所述第一电极的间隙正对一 个第二电极;所述第一配向层覆盖于所述第二电极之上,且所述第一 配向层的上表面为一平面;
所述第三电极为带状,所述第三电极彼此间隔排列于所述第二透 明基板的下表面,且所述第三电极的排列方向垂直于所述第一电极的 排列方向;所述第二绝缘层覆盖于所述第三电极下表面,且所述第二 绝缘层的下表面为一平面;所述第四电极为带状,所述第四电极彼此 间隔排列于所述第二绝缘层下表面,且所述第四电极的排列方向平行 于所述第三电极的排列方向,任意两个所述第三电极的间隙正对一个 第四电极;所述第二配向层覆盖于所述第四电极的下表面,且所述第 二配向层的下表面为一平面;
所述扭曲液晶位于所述第一配向层和第二配向层之间;所述第一 配向层的配向方向和第二配向层的配向方向相互垂直。
2、如权利要求 1所述的逐点切换扭曲向列液晶盒,其特征在于, 所述逐点切换扭曲向列液晶盒采用行扫描或列扫描方式进行驱动,所 述扭曲液晶在第二状态附近的保持时间长于或等于一个扫描周期; 其中,所述第一状态为所述扭曲液晶的分子在无电场作用时、在 所述第一配向层和第二配向层作用下自然排列的状态,所述第二状态 为所述扭曲液晶的分子长轴方向完全沿垂直于所述第一透明基板方 向排列的状态。
3、如权利要求 2所述的逐点切换扭曲向列液晶盒,其特征在于, 在每次扫描周期内,通过对处于第二状态的扭曲液晶两端电极施加与 上一次扫描周期施加在该部分扭曲液晶两端电极上的电压反向的电 压、 使所述处于第二状态的扭曲液晶切换到第一状态。
4、如权利要求 1所述的逐点切换扭曲向列液晶盒,其特征在于, 还包括:用于将所述扭曲液晶封闭在所述第一配向层和第二配向层之 间的封胶框。
5、如权利要求 1所述的逐点切换扭曲向列液晶盒,其特征在于, 还包括:设置于所述第一配向层和第二配向层之间的衬垫料,用于确 保所述第一配向层和第二配向层的间距为预定间距。
6、 如权利要求 1至 5任一项所述的逐点切换扭曲向列液晶盒, 其特征在于, 所述第一、第二、第三、第四电极沿长度方向的两端宽 度均窄于中间部位的宽度。
7、 一种 2D-3D立体显示装置, 其特征在于, 沿光传播方向, 所 述 2D-3D立体显示装置依次包括: 用于提供图像光的显示面板、 权 利要求 1至 6任一项所述的逐点切换扭曲向列液晶盒、单折射透镜阵 列和双折射透镜阵列;
所述显示面板提供的图像光为偏振方向与传播方向相互垂直的 第一线偏振光;
所述逐点切换扭曲向列液晶盒中靠近所述显示面板一侧的配向 层的配向方向与所述第一线偏振光的偏振方向相互平行;所述逐点切 换扭曲向列液晶盒用于使所述第一线偏振光直接透射,或将所述第一 线偏振光转换为偏振方向与所述第一线偏振光的偏振方向相互垂直 的第二线偏振光出射;
所述单折射透镜阵列和双折射透镜阵列都包括平面部分和与该 平面相对的曲面部分,且所述单折射透镜阵列和双折射透镜阵列的曲 面部分外形互补;所述单折射透镜阵列和双折射透镜阵列的组合用于 对所述逐点切换扭曲向列液晶盒出射的第一线偏振光和第二线偏振 光之中的一种表现为平透镜, 另一种表现为凸透镜。
8、 如权利要求 7所述的 2D-3D立体显示装置, 其特征在于, 所 述单折射透镜阵列为凸透镜阵列,且所述单折射透镜阵列的折射率与 所述双折射透镜阵列的寻常光折射率和非寻常光折射率中最大的那 个折射率相等。
9、 如权利要求 7所述的 2D-3D立体显示装置, 其特征在于, 所 述单折射透镜阵列为凸透镜阵列,且所述单折射透镜阵列的折射率与 所述双折射透镜阵列的寻常光折射率和非寻常光折射率中最小的那 个折射率相等。
PCT/CN2009/074879 2008-12-31 2009-11-10 一种扭曲向列液晶盒及包含该液晶盒的装置 WO2010075713A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2008102467910A CN101477278A (zh) 2008-12-31 2008-12-31 一种扭曲向列液晶盒及包含该液晶盒的装置
CN200810246791.0 2008-12-31

Publications (1)

Publication Number Publication Date
WO2010075713A1 true WO2010075713A1 (zh) 2010-07-08

Family

ID=40838015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074879 WO2010075713A1 (zh) 2008-12-31 2009-11-10 一种扭曲向列液晶盒及包含该液晶盒的装置

Country Status (2)

Country Link
CN (1) CN101477278A (zh)
WO (1) WO2010075713A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102053419B (zh) * 2009-11-09 2013-06-05 京东方科技集团股份有限公司 液晶快门狭缝光栅
WO2011088614A1 (zh) * 2010-01-20 2011-07-28 深圳超多维光电子有限公司 扭曲向列液晶盒及包含该液晶盒的2d-3d立体显示装置
KR101706231B1 (ko) 2010-06-11 2017-02-15 엘지디스플레이 주식회사 입체 영상 표시 장치
CN102346327A (zh) * 2010-07-26 2012-02-08 比亚迪股份有限公司 一种立体显示装置
CN101923257B (zh) * 2010-08-06 2011-12-14 友达光电股份有限公司 视差控制元件、显示装置及自动立体影像的形成方法
KR101308475B1 (ko) * 2010-08-26 2013-09-16 엘지디스플레이 주식회사 입체 영상 표시 장치 및 이의 구동 방법
KR20120122049A (ko) * 2011-04-28 2012-11-07 엘지디스플레이 주식회사 입체영상 표시장치와 그 구동방법
JP5597661B2 (ja) 2012-03-05 2014-10-01 株式会社東芝 画像表示装置
CN102591090A (zh) * 2012-03-23 2012-07-18 华映视讯(吴江)有限公司 裸眼式立体显示装置
CN102866528B (zh) * 2012-09-07 2016-03-16 深圳超多维光电子有限公司 显示装置
TWI448733B (zh) * 2012-10-29 2014-08-11 Au Optronics Corp 可顯示二維與三維影像之畫面之立體顯示裝置
CN105824157A (zh) * 2015-01-28 2016-08-03 群创光电股份有限公司 液晶显示面板
CN107490891A (zh) * 2016-06-13 2017-12-19 湖南创图视维科技有限公司 一种可切换显示状态的显示面板及其显示状态切换方法
CN108333825A (zh) * 2017-01-20 2018-07-27 深超光电(深圳)有限公司 液晶显示面板、其制造方法及液晶显示器
CN109387949B (zh) * 2017-08-09 2020-12-01 徐伟科 一种基于偏振调节的光束控制装置
CN109343241B (zh) * 2018-10-26 2021-05-25 张家港康得新光电材料有限公司 一种显示装置及其驱动方法
CN110568676B (zh) * 2019-01-07 2021-12-21 友达光电股份有限公司 像素结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166326A (ja) * 1982-03-26 1983-10-01 Hitachi Ltd 液晶表示装置
JPH05224218A (ja) * 1992-02-17 1993-09-03 Seiko Instr Inc 液晶装置
CN201126495Y (zh) * 2007-12-03 2008-10-01 北京超多维科技有限公司 2d-3d可转换立体显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166326A (ja) * 1982-03-26 1983-10-01 Hitachi Ltd 液晶表示装置
JPH05224218A (ja) * 1992-02-17 1993-09-03 Seiko Instr Inc 液晶装置
CN201126495Y (zh) * 2007-12-03 2008-10-01 北京超多维科技有限公司 2d-3d可转换立体显示装置

Also Published As

Publication number Publication date
CN101477278A (zh) 2009-07-08

Similar Documents

Publication Publication Date Title
WO2010075713A1 (zh) 一种扭曲向列液晶盒及包含该液晶盒的装置
WO2011088614A1 (zh) 扭曲向列液晶盒及包含该液晶盒的2d-3d立体显示装置
JP5175127B2 (ja) 液晶表示装置
TWI354160B (zh)
CN102930809B (zh) 双栅极驱动的横向排列的像素结构及显示面板
JP4488002B2 (ja) 液晶表示素子および表示装置
TWI384301B (zh) 液晶顯示裝置
US8411240B2 (en) Liquid crystal display device and method of driving liquid crystal display device
US7800570B2 (en) LCD device capable of controlling a viewing angle and method for driving the same
KR101634854B1 (ko) 액정 표시 장치 및 전자 기기
JP6117197B2 (ja) 液晶表示装置
JPH08254712A (ja) 液晶表示素子
WO2013078903A1 (zh) 阵列基板、液晶面板及显示设备
TW200408860A (en) Liquid crystal display device
KR101777529B1 (ko) 2d와 3d 디스플레이 모드를 겸용하는 액정 디스플레이 패널 및 디스플레이 방법
TW201229618A (en) Stereoscopic display device and liquid crystal barrier device
CN103278958A (zh) 一种液晶光栅及具有该液晶光栅的显示系统
TWI308307B (en) Image display system
JP4662494B2 (ja) 液晶表示装置
KR101323250B1 (ko) 액정표시장치용 어레이 기판과 그 제조방법
JP3643163B2 (ja) 液晶電気光学装置
CN107390408B (zh) 一种阵列基板、显示面板及其驱动方法
CN111240107A (zh) 像素结构、阵列基板、显示面板以及显示面板的制作方法
JP3982571B2 (ja) 広視野角の液晶表示装置
JP4019593B2 (ja) 電気光学装置および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09836000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09836000

Country of ref document: EP

Kind code of ref document: A1