WO2011088614A1 - 扭曲向列液晶盒及包含该液晶盒的2d-3d立体显示装置 - Google Patents

扭曲向列液晶盒及包含该液晶盒的2d-3d立体显示装置 Download PDF

Info

Publication number
WO2011088614A1
WO2011088614A1 PCT/CN2010/070290 CN2010070290W WO2011088614A1 WO 2011088614 A1 WO2011088614 A1 WO 2011088614A1 CN 2010070290 W CN2010070290 W CN 2010070290W WO 2011088614 A1 WO2011088614 A1 WO 2011088614A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
liquid crystal
lens array
electrode
linearly polarized
Prior art date
Application number
PCT/CN2010/070290
Other languages
English (en)
French (fr)
Inventor
戈张
郭福忠
Original Assignee
深圳超多维光电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳超多维光电子有限公司 filed Critical 深圳超多维光电子有限公司
Priority to CN2010800036060A priority Critical patent/CN102439516B/zh
Priority to PCT/CN2010/070290 priority patent/WO2011088614A1/zh
Priority to US12/906,250 priority patent/US8279363B2/en
Priority to JP2011009447A priority patent/JP5237399B2/ja
Publication of WO2011088614A1 publication Critical patent/WO2011088614A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3622Control of matrices with row and column drivers using a passive matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/02Composition of display devices
    • G09G2300/023Display panel composed of stacked panels

Definitions

  • the present invention relates to a twisted nematic liquid crystal (TN) box and a device including the same, and more particularly to a point-by-point control TN box and a 2D-3D stereoscopic display device including the point-by-point control TN box.
  • TN twisted nematic liquid crystal
  • FIG. 1 is a schematic view of a conventional TTSr box in which a glass substrate 11 and a glass substrate 12 are arranged in parallel at a predetermined pitch, and a transparent electrode 13, a transparent electrode 14, and transparent electrodes 13 and 14 are respectively provided on the inner surfaces of the substrate 11 and the substrate 12.
  • the inner surface has an alignment layer 15 and an alignment layer 16, respectively, and the rubbing directions of the alignment layer 15 and the alignment layer 16 are perpendicular to each other; and the twisted nematic liquid crystal 17 is filled between the alignment layer 15 and the alignment layer 16.
  • the cassette can emit linearly polarized light whose polarization direction is perpendicular to the polarization direction;
  • the applied voltage between the 13 and the transparent electrode 14 is greater than or equal to the threshold voltage, the long-axis direction of the liquid crystal 17 is in the direction of the electric field, and the cassette does not change the polarization state of the incident polarized light.
  • a TN box as shown in FIG. 1 is disposed in front of the ordinary display screen as an optical switching device, and is controlled by applying a voltage to the TN box.
  • the polarization direction of the outgoing light is used to achieve 2D and 3D display switching. Obviously, once the TN box is switched, it is a full screen switch, and 2D/3D point-by-point switching cannot be performed.
  • TFT Thin Film Transistor
  • the fabrication process of the TFT is complicated and expensive, and since it is necessary to arrange circuit lines such as signal lines and gate lines of the opaque TFT circuit on the transparent substrate, it is necessary to cover the wiring area with a black matrix, resulting in a reduction in effective display area and a reduction in aperture ratio. , and the presence of the black matrix may affect the display quality of the picture. If the black matrix is removed, a bright line is generated at the edge of the electrode, which also affects the display quality of the picture. Summary of the invention
  • An object of the present invention is to provide a point-by-point control TN box and a 2D-3D stereoscopic display device for controlling a TN box by point-by-point, which can not only control the polarization direction of the incident polarized light point by point, but also increase the display area and increase the display area.
  • the aperture ratio eliminating the bright lines between the electrodes, and improving the display quality.
  • the invention provides a point-by-point control twisted nematic liquid crystal cell, comprising: a first transparent substrate having a plurality of strip-shaped first electrodes on a surface, a first alignment layer, a twisted liquid crystal, a second alignment layer, and a surface a second transparent substrate with a strip of second electrodes;
  • the plurality of first electrodes are insulated from each other on the first transparent layer; the plurality of second electrodes are insulated from each other on the second transparent substrate, and the second electrodes are arranged perpendicular to each other Arranging directions of the first electrodes; at least one long side of the first electrode and/or the second electrode is wavy.
  • the twisted liquid crystal has a holding time longer than or equal to one scanning period in a state in which the molecular long axis direction is aligned in a direction perpendicular to the first transparent substrate. .
  • the long sides of the first electrode and the second electrode are both wavy.
  • the point-by-point control twisted nematic liquid crystal cell further includes: a sealing frame for sealing the twisted liquid crystal between the first alignment layer and the second alignment layer.
  • the point-by-point control twisted nematic liquid crystal cell further includes: a spacer disposed between the first alignment layer and the second alignment layer for ensuring the first alignment layer and the second alignment layer
  • the pitch is a predetermined pitch.
  • the present invention also provides a 2D-3D stereoscopic display device, which includes, in order of light propagation direction, a display panel for providing image light, a point-by-point control twisted nematic liquid crystal cell connected with a control module, a single refractive lens array, and Birefringent lens array;
  • the image light provided by the display panel is first linearly polarized light whose polarization direction and propagation direction are perpendicular to each other;
  • the direction of the alignment of the alignment layer on the side of the twisted nematic liquid crystal cell near the display panel is parallel to the polarization direction of the first linearly polarized light; the point-by-point control twisted nematic liquid crystal cell is in the Under the control of the control module, the first linearly polarized light is directly transmitted, or the first linearly polarized light is converted into a second linearly polarized light whose polarization direction and the polarization direction of the first linearly polarized light are perpendicular to each other
  • the single refractive lens array and the birefringent lens array both include a planar portion and a curved portion opposite to the plane, and the single refractive lens array and the curved portion of the fused refractive lens array are complementary in shape; the single refractive lens array and the double
  • the combination of the refractive lens arrays is used to represent one of the first linearly polarized light and the second linearly polarized light emitted from the point-by-point control twisted nematic liquid crystal cell as a flat lens, and the other is represented as a convex lens.
  • the single refractive lens array may be a convex lens array, and the refractive index of the single refractive lens array is equal to the largest one of the ordinary light refractive index and the extraordinary optical refractive index of the birefringent lens array.
  • the single refractive lens array may be a concave lens array, and the refractive index of the single refractive lens array is equal to the smallest of the ordinary light refractive index and the extraordinary light refractive index of the birefringent lens array.
  • the point-by-point control TN box provided by the invention can not only realize the individual control of each point, but also has a high aperture ratio, a large effective display area and no blind zone in the display area, no bright lines between the electrodes, and all display areas can be 2D/ 3D conversion.
  • the 2D-3D stereoscopic display device provided by the invention can realize independent control of sub-pixels of the image display panel, has a simple structure, low cost, flexible control and high display quality.
  • FIG. 1 is a schematic structural view of a conventional TN box
  • FIG. 2 is a cross-sectional view of a point-by-point control TN box along an optical path according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing the electrode structure of the first control layer seen after removing the first alignment layer and twisting the liquid crystal;
  • Figure 4 is a schematic view showing the electrode structure of the second control layer seen after removing the second alignment layer and distorting the liquid crystal;
  • FIG. 5 is a schematic diagram of electrode distribution of the point-by-point control TN box shown in FIG. 2; FIG.
  • FIG. 6 is a schematic structural diagram and an optical path diagram of a 2D-3D stereoscopic display device according to an embodiment of the present invention. detailed description
  • the point-by-point control TN box includes: a first control layer, a second control layer, and a twisted liquid crystal 20 between the first control layer and the second control layer.
  • the twisted liquid crystal is sealed by a frame sealant or the like on the peripheral edges of the first control layer and the second control layer. 20 is enclosed between the first control layer and the second control layer.
  • the first control layer includes: a first transparent substrate 21, a plurality of first electrodes 22 and a first alignment layer 23, and the first electrode 22 and the first alignment layer 23 are both transparent.
  • the first electrode 22 is in the form of a wavy band.
  • Each of the first electrodes 22 is spaced apart from each other on the first transparent substrate 21.
  • the first alignment layer 23 is formed in the gap and the upper surface of each of the first electrodes 22 and has a flat surface on the upper surface.
  • the first transparent substrate 21 having the first electrode 22 may be coated with an alignment agent.
  • the second control layer includes: a second transparent substrate 26, a plurality of second electrodes (due to The arrangement direction of the second electrodes is perpendicular to the arrangement direction of the first electrodes, and only the figure is shown in the figure.
  • a second electrode), and a second alignment layer 24 are formed, and the second electrode 25 and the second alignment layer 24 are both transparent.
  • the structure of the second control layer is similar to that of the first control layer.
  • the second electrode 25 is in the form of a wavy strip.
  • Each of the second electrodes is spaced apart from each other on the second transparent substrate 26.
  • the second alignment layer 24 is formed in the gap and the upper surface of each of the second electrodes 25, and the upper surface is a plane, and the twisted liquid crystal 20 is located between the first alignment layer 23 and the second alignment layer 24.
  • the first control layer and the second control layer are parallel.
  • the arrangement direction of the first electrode 22 and the second electrode 25 is perpendicular to each other, and the distance between the plane where the first electrode 22 is located and the plane where the second electrode 25 is located is smaller than the first transparent substrate 21 and the second transparent substrate. 26 spaces.
  • the read TN box may further include a spacer (not shown) disposed between the first alignment layer 23 and the second alignment layer 24 for ensuring that the first and second control layer pitches are predetermined intervals. .
  • Figure 3 is a schematic view showing the structure of the first electrode of the first control layer as seen after the second control layer of Fig. 2 and the twisted liquid crystal 20 are removed.
  • 4 is a schematic view showing the structure of a second electrode of the second control layer seen after the first control layer and the twisted liquid crystal 20 are removed.
  • the two long sides of the first electrode 22 and the second electrode 25 are wavy.
  • the specific implementation is not limited thereto, and one long side of the electrode may be selected to be wavy.
  • Fig. 5 is a schematic view showing the electrode distribution of the point-by-point control TN box shown in Fig. 2, and only eight first electrodes al to a8 and eight second electrodes bl to b8 are schematically shown. The operation of the T-point control TN box shown in Figure 5 is explained below.
  • the first electrode overlaps with the second electrode, and the point-by-point control TN box is divided into 8 x 8 pixel display areas, and the bottom of each pixel area is a first control layer, and the upper part is a
  • the second control layer has a twisted liquid crystal in the middle.
  • the 8 x 8 pixel display area shown in FIG. 5 is regarded as an 8 ⁇ 8 two-dimensional pixel matrix, and the columns of the two-dimensional pixel matrix represent the first electrode 22, and the row representative of the two-dimensional pixel matrix
  • the liquid crystal inside is twisted by 90 degrees, and the polarization direction is parallel to the rubbing direction of the incident substrate.
  • the emitted light is linearly polarized light whose polarization direction is perpendicular to the polarization direction of the incident polarized light.
  • the distorted liquid crystal state in this time is referred to as the first state;
  • the row electrode and the jth column electrode respectively apply voltages at the same time, and the difference between them is greater than or equal to the threshold voltage of the twisted liquid crystal, the twisted liquid crystal molecules in aij are perpendicular to the long axis direction of the molecules under the action of the electric field force.
  • the direction of the first transparent substrate 21 and the second transparent substrate 26 are arranged.
  • the polarization state of the incident linearly polarized light is not changed.
  • the state of the twisted liquid crystal in this case is referred to as a second. status. It can be seen that by applying voltages to electrodes of different rows and columns, individual control of the liquid crystal state in the display area of each pixel can be achieved.
  • the point-by-point control of the TO box can also be implemented: causing the liquid crystal in the partial display area to be in one of the first state and the second state, and the twisted liquid crystals of the other display portions are in the first state and the second state Another state among them.
  • the point-by-point control TN box provided by the present invention adopts progressive scanning or column-by-column scanning to perform liquid crystal state switching control, and the selection of scanning frequency needs to be such that the twisted liquid crystal used in the point-by-point control TN box is
  • the time to switch from the first state to the second state is extremely short and the hold time in the vicinity of the second state is longer than or equal to one scan period, such that the point-by-point control is performed when scanning the last line of the point-by-point control TN box
  • the liquid crystal in which the first row of the TN cell is changed to the second state is still far from returning to the first state.
  • the point-by-point control TN box shown in FIG. 5 is taken as an example to illustrate how to make 53 , a 5S , a 56 , 57 of the 5th line, ⁇ of the 6th line,
  • each row is sequentially scanned from al and the scan input voltage is a pulse voltage input to the electrode a3, the electrode a4, the electrode a5, the electrode a6, and the electrode a7 at the same time on the fifth line of scanning [/ 2
  • the upper and lower potential difference (i.e., C / 2 - ) between the electrodes and the fifth row electrode b5 is greater than or equal to ⁇ .
  • is the threshold voltage corresponding to the twisted liquid crystal change state adopted in the point-by-point control TN box
  • ( - ) is smaller than ( U 2 ⁇ U 0 ) is smaller than U !h .
  • the twisted liquid crystals in a 53 , « 54 , a 55 , a 56 , and a 57 are simultaneously switched from the first state to the second state.
  • the pulse voltage / 2 is input to the electrode a3, the electrode a4, the electrode a5, the electrode a6, and the electrode a7 so that the potential difference between the ends of a 6i , 65 , 3 ⁇ 4 , and 67 is greater than or equal to ⁇ 63 , " ⁇ 4 , ⁇ 65 , a 7
  • the twisted liquid crystal is rapidly switched from the first state to the second state at the same time; the pulse voltage t/ 2 is input to the electrode a3, the electrode a4, the electrode a5, the electrode a6, and the electrode a7 at the same timing of scanning the first row, so that ⁇ , ⁇ 4.
  • the above-mentioned point-by-point control TN box provided by the embodiment of the present invention can not only realize point-by-point switching control, but also, the first electrode and the second electrode are arranged in a wavy manner, and each wave strip electrode signal is from one end of the strip electrode. Input without wiring between the electrodes to individually control the electrode voltages at each pixel point. Therefore, the black matrix is not required in the point-by-point control TN box, the electrode width in the display area can be maximized, and full-area control can be performed.
  • the effective display area of the point-by-point control TN box is enlarged, the aperture ratio is remarkably improved, and there is no bright line between the electrodes, and the display quality can be changed.
  • the shape of the wavy strip electrode in the above embodiment is merely illustrative and can be flexibly varied, and the fact that one of the first electrode and the second electrode is a wavy strip electrode also improves the case where the edge of the electrode is bright.
  • the first electrode or the second electrode may not necessarily be located in one plane.
  • a part of the electrodes of the first electrode are located on one side of the first transparent substrate, and another part of the electrode is located on the other side of the first transparent substrate; a part of the electrodes of the second electrode Located on one side of the second transparent substrate, the other part of the electrode is located on the other side of the second transparent substrate.
  • the electrodes may be located on the opposite side of the transparent substrate from the alignment layer.
  • the embodiment of the present invention further provides a 2D-3D stereoscopic display device using the above-mentioned point-by-point control TN box as a switching device.
  • the device in the light propagation direction, the device includes: a display panel 61 for providing an image, and the present invention A point-by-point control TN box 62, a single refractive lens array 63, and a lenticular lens array 64 that conforms to the single refractive lens array 63 are provided.
  • the 2D-3D stereoscopic display device shown in FIG. 6 further includes: a control module 65 for controlling the voltage of each electrode of the point-by-point control TN box 62.
  • the display panel 61 is for providing first linearly polarized light whose polarization direction and propagation direction are perpendicular to each other.
  • the outgoing light of the display panel 6 is nonlinearly polarized light, it is necessary to add a linear polarizing plate between the display panel 61 and the point-by-point control TN box 62 to cause the linear polarizing plate to emit the first linearly polarized light.
  • the point-to-point control of the alignment layer of the control layer on the side close to the display panel 61 in the TN box 62 is parallel to the polarization direction of the incident first linearly polarized light.
  • the point-by-point control T-box 62 is for direct transmission of incident first linearly polarized light or conversion of the first linearly polarized light to second linearly polarized light having a polarization direction perpendicular thereto under the control of the control module 65.
  • the first control layer in the TN box 62 is closer to the display panel 61 than the second control layer, and the alignment direction of the first alignment layer is the same as the polarization direction of the first linearly polarized light.
  • the point-by-point control TN box 62 has an array of pixel display areas corresponding to the pixel array of the display panel 61.
  • the refractive index of the single refractive lens array 63 is such that the birefringent transmissive array 64 has an ordinary refractive index ". And the extraordinary light refractive index " ⁇ , and " iu : ⁇ .
  • the lens optical axis direction of the birefringent lens array 64 is the same as the polarization direction of the first linearly polarized light, and the double arrow in FIG. 6 indicates the double The optical axis direction of the lens of the refractive lens array 64. It should be noted that, in FIG.
  • the display panel 61 is controlled point by point in order to indicate the polarization state of the first linearly polarized light provided by the display panel 61 and the polarization state of the first linearly polarized light after controlling the TN box 62 point by point.
  • the TN box 62 and the single-refractive lens array 63 are respectively spaced apart from each other.
  • the display panel 61, the point-by-point control TN box 62, and the single-refractive lens array 63 can be placed in close contact.
  • FIG. 6 only the connection relationship between the control module 65 and the point-by-point control TN box 62 is schematically illustrated. Actually, the control module 65 individually controls the electrodes in the point-by-point control TN box 62.
  • the control module 65 controls the pixel display area of the TN box 62 corresponding to the point-by-point control of the first two linearly polarized lights.
  • the liquid crystal operates in the second state such that the incident upper two first linearly polarized light maintains the original polarization characteristics through the point-by-point control box 62, then passes through the single refractive lens array 63 and is incident on the refracting lens array 64, Since the polarization direction of the incident first linearly polarized light is parallel to the optical axis direction of the birefringent lens array 64, the refractive index of the birefringent lens array 64 for the first linearly polarized light is; due to the refraction of the single refractive lens array 63 The rate ⁇ is greater than, so that the first linearly polarized light incident on the birefringent lens array 64 is refracted at the interface of the single refractive lens array 63 and the birefringent lens array 64, and the optical effect of the birefringent lens array 64 ⁇ appears as a convex lens.
  • the 2D-3D stereoscopic display device can respectively transmit the finally emitted two rays to the left and right eyes of the human eye, so that the human eye can see the 3D stereoscopic image, that is, the 2D-3D stereoscopic display device will be The two lights are displayed in 3D.
  • the control module 65 controls the liquid crystal operation in the pixel display area of the TN box 62 corresponding to the next two first linearly polarized lights.
  • the incident second ray linearly polarized light is rotated by 90 degrees after the TN cell 62 is controlled point by point, and becomes the second linearly polarized light; then the second linearly polarized light is A single refractive lens array 63 is incident on the birefringent lens array 64, at this time due to the polarization direction of the incident second linearly polarized light
  • the optical axis direction of the birefringent lens array 64 i.e., the polarization direction of the first linearly polarized light
  • the refractive index of the birefringent lens array 64 with respect to the second linearly polarized light is due to the refraction of the single refractive lens array 63.
  • the rate is equal to, that is, the refractive index of the single refractive lens array 63 is the same as the refractive index of the birefringent lens array 64, so that the second linearly polarized light does not occur at the interface of the single refractive lens array 63 and the birefringent lens array 64.
  • the second linearly polarized light passes through the refractive lens array 64 in a straight line.
  • the 2D-3D stereoscopic display device displays the next two first linearly polarized apertures shown in FIG. 6 in a 2D manner.
  • the single refractive lens array 63 and the birefringent lens array 64 in the 2D-3D stereoscopic display device shown in FIG. 6 can also be combined in other ways, such as other single refractive lens arrays and Han refractive lens arrays mentioned in CN201126495. The combination method will not be described in detail here.
  • the point-by-point control TN box provided by the embodiment of the invention is used in the 2D-3D stereoscopic display device, and can realize independent control of a single pixel of the image display panel, and can also control multiple pixels of the image display panel, not only realize Simple, flexible control, and can significantly improve the display quality of 2D-3D stereoscopic display devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Optics & Photonics (AREA)

Description

说 明 书 扭曲向列液晶盒及包舍该液晶盒的 2D-3D立体显示装置
技术领域 本发明涉及扭曲向列液晶 (Twisted Nematic, TN )盒及包含该 液晶盒的装置, 尤其涉及一种逐点控制 TN盒及包含该逐点控制 TN 盒的 2D-3D立体显示装置。
Figure imgf000003_0001
随着显示技术的发展, TN盒的使用越来越广泛。 图 1所示为现 有的 TTSr盒示意图:玻璃基板 11和玻璃基板 12以预定间距平行设置, 在基板 11、 基板 12的内表面上分别具有透明电极 13、 透明电极 14, 透明电极 13、 14的内表面上分别具有配向层 15、 配向层 16, 且配向 层 15和配向层 16的摩擦方向相互垂直;在配向层 15和配向层 16之 间充满扭曲向列液晶 17。 当透明电极 13和透明电极 14之间没有外 加电压时, 该 ΤΝ盒的状态如图 1所示, 此时该 ΤΝ盒能使偏振方向 光的偏振方向相垂直的线偏振光出射; 当透明电极 13和透明电极 14 间的外加电压大于等于阈值电压时,液晶 17的长轴方向沿电场方向, 此时该 ΤΝ盒不改变入射线偏振光的偏振状态。
现有的一类 2D/3D可切换立体显示器中(参见 CN 101387758 A ) , 在普通显示屏前面设置一块如图 1所示的 TN盒作为光切换装置,通 过对所述 TN盒外加电压来控制出射光线的偏振方向, 从而实现 2D 和 3D的显示切换。 显然, 该 TN盒一旦切换则是整屏切换, 不能进 行 2D/3D的逐点切换。
为解决上述问题, 现有的另一类 2D/3D可切换立体显示器采用 薄膜晶体管 ( Thin Film Transistor, TFT )型的 TN盒作为光切换装置 , 由于 TFT型的 TN盒可以进行像素点的切换控制,因此极大地方便了 局部显示面板的 2D图像和 3D图像的切换显示。 但是 TFT的制作工 艺复杂, 造价昂贵, 而且由于需要在透明基板上布置不透明的 TFT 电路的信号线、栅线等电路, 因此必须采用黑矩阵覆盖布线区域, 导 致有效显示面积减小, 开口率降低, 且黑矩阵的存在可能会影响画面 的显示质量, 如果去掉黑矩阵, 则会在电极的边缘产生亮线, 同样影 响画面的显示质量。 发明内容
本发明的目的在于提供一种逐点控制 TN盒及使用读种逐点控制 TN盒的 2D-3D立体显示装置, 不仅能够逐点控制入射线偏振光的偏 振方向, 而且能够增加显示面积、提高开口率、 消除电极间亮线、提 高显示质量。
本发明提供一种逐点控制扭曲向列液晶盒, 包括: 顺序设置的表 面有若干个带状第一电极的第一透明基板、 第一配向层、 扭曲液晶、 第二配向层、 表面有若千个带状第二电极的第二透明基板;
所述若干个第一电极彼此绝缘排列于所述第一透明^^上;所述 若干个第二电极彼此绝缘排列于所述第二透明基板上 ,且所述第二电 极的排列方向垂直于所述第一电极的排列方向; 所述第一电极和 /或 所迷第二电极的至少一个长边为波浪形。
所述逐点控制扭曲向列液晶盒采用扫描方式进行驱动时,所述扭 曲液晶在其分子长轴方向沿垂直于所述第一透明基板方向排列的状 态下的保持时间长于或等于一个扫描周期。
所述第一电极和所述第二电极的长边均为波浪形。
所述的逐点控制扭曲向列液晶盒还包括:用于将所述扭曲液晶封 闭在所述第一配向层和第二配向层之间的封胶框。
所述的逐点控制扭曲向列液晶盒还包^:设置于所述第一配向层 和第二配向层之间的衬垫料,用于确保所迷第一配向层和第二配向层 的间距为预定间距。
本发明还提供一种 2D-3D立体显示装置, 沿光传播方向依次包 括: 用于提供图像光的显示面板、连接有控制模块的所迷逐点控制扭 曲向列液晶盒、 单折射透镜阵列和双折射透镜阵列;
所述显示面板提供的图像光为偏振方向与传播方向相互垂直的 第一线偏振光;
所述逐点控制扭曲向列液晶盒中靠近所述显示面板一侧的配向 层的配向方向与所述第一线偏振光的偏振方向相互平行;所述逐点控 制扭曲向列液晶盒在所述控制模块的控制下用于使所述第一线偏振 光直接透射,或将所述第一线偏振光转换为偏振方向与所述第一线偏 振光的偏振方向相互垂直的第二线偏振光出射;
所述单折射透镜阵列和双折射透镜阵列都包括平面部分和与该 平面相对的曲面部分,且所述单折射透镜阵列和默折射透镜阵列的曲 面部分外形互补;所述单折射透镜阵列和双折射透镜阵列的组合用于 对所述逐点控制扭曲向列液晶盒出射的第一线偏振光和第二线偏振 光之中的一种表现为平透镜, 另一种表现为凸透镜。
所述单折射透镜阵列可为凸透镜阵列,且所述单折射透镜阵 列的折射率与所述双折射透镜阵列的寻常光折射率和非寻常光 折射率中最大的那个折射率相等。
所述单折射透镜阵列可为凹透镜阵列,且所述单折射透镜阵列的 折射率与所述双折射透镜阵列的寻常光折射率和非寻常光折射率中 最小的那个折射率相等。
本发明提供的逐点控制 TN盒不仅能梦实现各点的单独控制, 而 且开口率高,有效显示面积大且显示区内无盲区存在,电极间无亮线, 全部显示区都可以进行 2D/3D转换。 此外, 本发明提供的 2D- 3D立 体显示装置可以实现对图像显示面板的子像素的独立控制, 结构筒 单、 成本低廉、 控制灵活、 显示质量高。 附图说明
图 1为现有的 TN盒结构示意图;
图 2为本发明实施例提供的一种逐点控制 TN盒沿光路方向的剖 面图;
图 3 为除去第一配向层和扭曲液晶后看到的第一控制层的电极 结构示意图;
图 4 为除去第二配向层和扭曲液晶后看到的第二控制层的电极 结构示意图;
图 5为图 2所示的逐点控制 TN盒的电极分布示意图;
图 6为本发明实施例提供的一种 2D-3D立体显示装置结构示意 图及光路示意图。 具体实施方式
现将参考附图更全面地描述本发明,在附图中显示了本发明的示 范性实施方式。
图 2所示为本发明实施例提供的一种逐点控制 TN盒沿光路方向 的剖面图。 该逐点控制 TN盒包括: 第一控制层、 第二控制层以及位 于第一控制层和第二控制层之间的扭曲液晶 20。 图中为方便表示, 仅画出该剖面图的局部, 值得说明得是, 具体实施时, 在所述第一控 制层和第二控制层的四周边缘, 采用封框胶等将所述扭曲液晶 20封 闭在所述第一控制层和第二控制层之间。
其中, 第一控制层包括: 第一透明基板 21、 若干个笫一电极 22 和第一配向层 23, 且第一电极 22和第一配向层 23均是透明的。 所 述第一电极 22为波浪形带状。各第一电极 22彼此绝缘间隔排列于第 一透明基板 21上。 所述第一配向层 23成形于各第一电极 22间隙内 及上表面且上表面为一平面, 可在具有第一电极 22的第一透明基板 21上涂抹配向剂菽得。
第二控制层包括: 第二透明基板 26、 若干个第二电极(由于所 述第二电极的排列方向垂直于所述第一电极的排列方向,图中只能示
.出一个第二电极) 、 和第二配向层 24, 且第二电极 25和第二配向层 24均是透明的。 第二控制层的结构类似于第一控制层。 所述第二电 极 25为波浪形带状。 各第二电极彼此绝缘间隔排列于第二透明基板 26上。 所述第二配向层 24成形于各第二电极 25间隙内及上表面且 上表面为一平面,扭曲液晶 20位于所述第一配向层 23和第二配向层 24之间。
所述第一控制层和第二控制层平行。 所述第一电极 22和所述第 二电极 25的排列方向相互垂直, 第一电极 22所处平面和第二电极 25所处平面间的间距小于所述第一透明基板 21和第二透明基板 26 间的间距。 此外, 读 TN盒还可以包括设置于所述第一配向层 23和 第二配向层 24之间的衬垫料(图中未示出) , 用于确保第一, 二控 制层间距为预定间距。
图 3为去掉图 2中的第二控制层和扭曲液晶 20后看到的第一控 制层的第一电极结构示意图。 图 4为去掉第一控制层和扭曲液晶 20 后看到的第二控制层的第二电极结构示意图。 图 3、 图 4中, 第一电 极 22、 第二电极 25所具有的两长边均为波浪形。 当然, 具体实施中 不限于此, 还可以选择电极的一个长边为波浪形。
图 5所示为图 2所示的逐点控制 TN盒的电极分布示意图 ,且仅 示意性画出了 8个第一电极 al至 a8, 8个第二电极 bl至 b8。以下说 明图 5所示€点控制 TN盒的工作原理。
由图 5可知, 所述第一电极与所述第二电极交叠,将该逐点控制 TN盒划分为 8 x 8个像素显示区,各像素区的底部为第一控制层,上 部为第二控制层, 中间为扭曲液晶。 为方便说明, 将图 5所示的 8 x 8个像素显示区看成一个 8 x 8的二维像素矩阵, 该二维像素矩阵的 列代表第一电极 22, 该二维像素矩阵的行代表第二电极 25, 用 表 示第 i行(i=l,...,8 )和第 j(j=l,...,8)列处的像素显示区, 则当 的上 下电极没有外加电压时,在所述第一配向层 23和第二配向层 24的作 用下, 内的液晶扭曲 90度, 偏振方向平行于入射基板的摩擦方向 的线偏振光经 后,出射光为偏振方向与入射线偏振光的偏振方向垂 直的线偏振光, 以下为方便描述,将此时该 内的扭曲液晶状态称为 第一状态; 当向第 i行电极、第 j列电极在同一时刻分别施加电压 、 ^且 和 之差大于等于所述扭曲液晶的阈值电压时 , aij内的扭曲 液晶分子在电场力作用下、分子的长轴方向沿垂直于所述第一透明基 板 21和第二透明基板 26的方向排布,此时 .不改变入射的线偏振光 的偏振状态, 以下为方便说明,将此时该 内的扭曲液晶状态称为第 二状态。 可见, 通过向不同行不同列的电极外加电压, 可以实现对各 像素显示区内液晶状态的单独控制。
此外, 该逐点控制 TO盒还能实现: 使局部显示区内的液晶处于 所述第一状态和第二状态之中的一个状态,而其它显示部位的扭曲液 晶处于第一状态和第二状态之中的另一个状态。为实现该功能, 本发 明提供的逐点控制 TN盒采用逐行扫描或逐列扫描的方式进行液晶状 态的切换控制,且扫描频率的选择需要使得该逐点控制 TN盒中采用 的扭曲液晶为从第一状态切换到第二状态的时间极短且在第二状态 附近的保持时间长于或等于一个扫描周期,这样可使得当扫描到该逐 点控制 TN盒的最后一行时, 该逐点控制 TN盒的第一行被改变为第 二状态的液晶还远远未回复到第一状态。以下以图 5所示的逐点控制 TN盒为例说明如何使第 5行的 53、 、 a5S、 a5657, 第 6行的^、
«64、 a65、 a66、 «67 ' 第 7行的 ί¾、 <374、 «75、 <376、 «77 > 第 8行的 ί½、 aiA、 aS5 aS6、 asi内的扭曲液晶都为第二状态, 同时使该逐点控制 TN盒的其余部位的扭曲液晶都为第一状态。 对于图 5所示的逐点控 制 盒, 则可在初始时使电极 al至 a8保持同样的输入电压 t/。, 在 逐行扫描时, 依次从 al开始对每行进行扫描且扫描输入电压为 在扫描第 5行的同一时刻向电极 a3、 电极 a4、 电极 a5、 电极 a6和电 极 a7输入脉冲电压 [/2,使这些电极与第 5行电极 b5的交叠区域上下 电势差 (即 C/2 - )大于等于^。 其中, ^为该逐点控制 TN盒中 采用的扭曲液晶改变状态所对应的阈值电压, ( - ) 小于 且 ( U2 ~U0 ) 小于 U!h。 则此时 a53、 «54、 a55、 a56、 a57中的扭曲液晶同 时从第一状态迅速切换到笫二状态。 同样地, 在扫描第 6行的同一时 刻向电极 a3、 电极 a4、 电极 a5、 电极 a6和电极 a7输入脉冲电压 /2 , 使 、 a6i , 65¾67的两端电势差大于等于 则 α63、 "ΰ4、 α65、 a 7中的扭曲液晶同时从第一状态迅速切换到第二状态; 在扫描 第 Ί行的同一时刻向电极 a3、 电极 a4、 电极 a5、 电极 a6和电极 a7 输入脉沖电压 t/2,使^、 ^ 4、 ^75、 ^76、 ^77的两端电势差大于等于^, 则 、 。74、 a15、 a16、 ^中的扭曲液晶同时从第一状悉迅速切换到第 二状态; 在扫描第 8行的同一时刻向电极 a3、 电极 a4、 电极 a5、 电 极 a6和电极 a7输入脉冲电压 t/2并使 、 i¾、 aS5 ¾、 87中的扭曲 液晶同时从第一状态迅速切换到第二状态。 由于扫描频率很高, 因此 当扫描到第 8行时, £½、 "54、 aS5、 as6、 α、 <¾、 α6465、 «66、 α67、 和 αΊΊ所对应的液晶几乎还没从第二状态向第一状态 转变, 即: 可认为此时 α53、 α54、 α55 , α56 , α57、 。63、 a64、 α65、 α66 , α 、 α73、 α7 , αΊ5 , ¾和《77中的扭曲液晶仍处于第二状态, 且该逐 点控制 ΤΝ盒的其它像素显示区内的扭曲液晶处于第一状态。 此外, 在新的扫描周期到来时,若需要使上一个扫描周期中已从第一状态转 变为第二状态的像素显示区 aij内的液晶转变回第一状态 ,则需要在本 次扫描周期内扫描到第 i行时, 根据此时 内液晶的状态, 同时向第 j列电极输入适当的脉冲电压,以使 内的液晶的长轴迅速反向旋转, 即使其迅速转变回第一状态。 显然, 若采用上述扫描方式, 就可以对 该逐点控制 TN盒的各像素显示区的扭曲液晶的状态进行切换控制, 实现与 TFT型的逐点控制 TN盒等同的切换显示功能。所述第一配向 层的配向方向和第二配向层的配向方向是否需要垂直,可以根据具体 的应用要求而定。
显然,本发明实施例提供的上述逐点控制 TN盒不仅可以实现逐 点切换控制, 此外, 由于第一电极和第二电极采用波浪线方式设置, 且各波浪带状电极信号从带状电极一端输入而无需在各电极之间布 线以单独控制各像素点两端电极电压, 因此, 该逐点控制 TN盒中无 需使用黑矩阵,显示区域内的电极宽度可最大化,且可进行全区域控 制, 相对于 TFT型的 TN盒, 这种逐点控制 TN盒的有效显示面积得 以扩大, 开口率得到显著提高, 且电极之间无亮线, 显示质量得以改 善。上述实施例中波浪带状电极的形状仅仅是示意性的, 可以灵活变 动,而且第一电极和第二电极其中之一为波浪形带状电极也会改善电 极边缘产生亮线的情况。第一电极或第二电极也可以不必均位于一个 平面, 比如第一电极的其中一部分电极位于第一透明基板的一面, 另 一部分电极位于第一透明基板的另一面;第二电极的其中一部分电极 位于第二透明基板的一面, 另一部分电极位于第二透明基板的另一 面。 而且电极可以位于透明基板上与配向层相对的一面。
本发明实施例还提供一种采用上述逐点控制 TN盒作为切换装置 的 2D- 3D立体显示装置, 如图 6所示, 沿光传播方向, 该装置包括: 提供图像的显示面板 61、 本发明所提供的逐点控制 TN盒 62、 单折 射透镜阵列 63和与单折射透镜阵列 63吻合的 斤射透镜阵列 64。 此外, 图 6所示的 2D- 3D立体显示装置还包括: 用于控制所述逐点 控制 TN盒 62的各电极电压的控制模块 65。
所述显示面板 61用于提供偏振方向与传播方向相互垂直的第一 线偏振光。 当所述显示面板 6 的出射光为非线性偏振光时, 需要在 显示面板 61和所述逐点控制 TN盒 62之间添加线偏振片以使所述线 偏振片出射第一线偏振光。
所述逐点控制 TN盒 62中靠近所述显示面板 61的一侧的控制层 中配向层的配向方向与入射的第一线偏振光的偏振方向相互平行。该 逐点控制 T 盒 62用于在所述控制模块 65的控制下使入射的第一线 偏振光直接透射或将所述第一线偏振光转换为偏振方向与其垂直的 第二线偏振光。 以下为方便说明, 设逐点控制 TN盒 62中第一控制 层比第二控制层接近所述显示面板 61 , 第一配向层的配向方向与所 述第一线偏振光的偏振方向相同。 逐点控制 TN盒 62具有与显示面 板 61像素阵列对应的像素显示区阵列。
所述单折射透镜阵列 63的折射率为 ,双折射透 4竟阵列 64具有 寻常光折射率《。和非寻常光折射率《β , 且" i u:^。 所述双折射透 镜阵列 64的透镜光轴方向与所述第一线偏振光的偏振方向相同, 图 6中双箭头所示为该双折射透镜阵列 64的透镜光轴方向。 值得说明的是, 图 6中是为了标明显示面板 61提供的第一线偏 振光的偏振状态以及第一线偏振光经逐点控制 TN盒 62后的偏振状 态而使显示面板 61、逐点控制 TN盒 62和单折射透镜阵列 63之间分 别具有一定间距, 具体实施时, 所述显示面板 61、 逐点控制 TN盒 62和单折射透镜阵列 63可以紧密接触放置。 此外, 图 6中仅是示意 性画出了控制模块 65和逐点控制 TN盒 62的连接关系 , 实际上控制 模块 65对所述逐点控制 TN盒 62内的各电极单独控制。
以下对图 6所示的 2D-3D立体显示装置的 4条成像光路图进行 说明, 其中上两条第一线偏振光最后发生折射, 下两条第一线偏振光 直接透射, 下面具体说明它们的原理。
从图 6中可以看出, 由于需要对上两条第一线偏振光进行 3D显 示, 控制模块 65使上两奈第一线偏振光所对应的逐点控制 TN盒 62 的像素显示区内的液晶工作于第二状态,因此入射的上两条第一线偏 振光保持原偏振特性穿过该逐点控制 盒 62,接着穿过单折射透镜 阵列 63并入射到默折射透镜阵列 64, 此时由于入射的第一线偏振光 的偏振方向与所述双折射透镜阵列 64光轴方向平行, 因此双折射透 镜阵列 64对于该第一线偏振光线的折射率为; 由于单折射透镜阵 列 63的折射率 ηι大于 , 因此入射于所述双折射透镜阵列 64的第一 线偏振光在单折射透镜阵列 63和双折射透镜阵列 64的交界面上发生 折射, 且所述双折射透镜阵列 64的光学效杲表现为凸透镜。 这种情 况下, 该 2D-3D立体显示装置可以将最终出射的两奈光线分别传播 到人眼的左眼和右眼,使人眼看到 3D立体图像, 即谅 2D-3D立体显 示装置将上两条光线采用 3D方式显示。
对于入射于所述逐点控制 TN盒 62的下两条第一线偏振光, 控 制模块 65使下两条第一线偏振光所对应的逐点控制 TN盒 62的像素 显示区内的液晶工作于第一状态,因此入射的下两条第一线偏振光通 过该逐点控制 TN盒 62后偏振方向被旋转 90度, 变为第二线偏振光 出射; 随后所述第二线偏振光经所述单折射透镜阵列 63射至所述双 折射透镜阵列 64, 此时由于入射的第二线偏振光的偏振方向与所述 双折射透镜阵列 64的光轴方向(即第一线偏振光的偏振方向)垂直, 因此所述双折射透镜阵列 64相对于该第二线偏振光的折射率为 , 由于单折射透镜阵列 63 的折射率 等于 , 即此时单折射透镜阵列 63的折射率与双折射透镜阵列 64的折射率相同, 因此该第二线偏振 光在所述单折射透镜阵列 63和双折射透镜阵列 64的界面处不发生折 射, 第二线偏振光直线通过所述 折射透镜阵列 64。 这种情况下, 该 2D-3D立体显示装置将图 6所示的下两条第一线偏振光耒用 2D方 式显示。 - 图 6所示的 2D-3D立体显示装置中的单折射透镜阵列 63和双折 射透镜阵列 64还可以有别的组合方式,例如 CN201126495中所提到 的其它单折射透镜阵列和汉折射透镜阵列的组合方式, 在此不再详 述。
将本发明实施例提供的逐点控制 TN盒用于 2D-3D立体显示装置 中,可以实现对图像显示面板的单个像素的独立控制,也可以对图像 显示面板的多个像素进行控制, 不仅实现简单、控制灵活, 而且能够 显著提高 2D-3D立体显示装置的显示质量。
上述的具体实施方式仅仅是示意性的, 而不是限制性的, 本领域 的技术人员在本方法的启示下,在不脱离本方法宗旨和权利要求所保 护的范围情况下,还可以作出很多变形,这些均属于本发明的保护范 围之内。

Claims

权 利 要 求 书 一种逐点控制扭曲向列液晶盒, 包括: 顺序设置的表面有若 干个带状第一电极的笫一透明基板、 第一配向层、 扭曲液晶、 第二配 向层、 表面有若干个带状第二电极的第二透明基板; 其特征在于, 所述若干个第一电极彼此绝缘排列于所述第一透明基板上;所述 若干个第二电极彼此绝缘排列于所述第二透明基板上,且所述第二电 极的排列方向垂直于所述第一电极的排列方向; 所述第一电极和 /或 所述第二电极的至少一个长边为波浪形。
2、如权利要求 1所述的逐点控制扭曲向列液晶盒, 其特征在于, 所述逐点控制扭曲向列液晶盒采用扫描方式进行驱动时,所述扭曲液 晶在其分子长轴方向沿垂直于所述第一透明基板方向排列的状态下 的保持时间长于或等于一个扫描周期。
3、 如权利要求 1所迷的, 其特征在于, 所述第一电极和所述第 二电极的长边均为波浪形。
4、如权利要求 1所述的逐点控制扭曲向列液晶盒, 其特征在于, 还包括:用于将所述扭曲液晶封闭在所述第一配向层和第二配向层之 间的封胶框。
5、如权利要求 1所述的逐点控制扭曲向列液晶盒,其特征在于, 还包括:设置于所述第一配向层和第二配向层之间的衬垫料, 用于确 保所述第一配向层和第二配向层的间距为预定间距。
6、 一种 2D-3D立体显示装置, 其特征在于, 沿光传播方向依次 包括: 用于提供图像光的显示面板、 连接有控制模块的如权利要求 1 至 5中任一项所述的逐点控制扭曲向列液晶盒、单折射透镜阵列和双 折射透镜阵列;
所迷显示面板提供的图像光为偏振方向与传播方向相互垂直的 第一线偏振光;
所述逐点控制扭曲向列液晶盒中靠近所述显示面板一侧的配向 层的配向方向与所述第一线偏振光的偏振方向相互平行;所述逐点控 制扭曲向列液晶盒在所述控制模块的控制下用于使所述第一线偏振 光直接透射,或将所述第一线偏振光转换为偏振方向与所述第一线偏 振光的偏振方向相互垂直的第二线偏振光出射;
所述单折射透镜阵列和双折射透镜阵列都包括平面部分和与该 平面相对的曲面部分,且所述单折射透镜阵列和 折射透镜阵列的曲 面部分外形互补;所述单折射透镜阵列和汉折射透镜阵列的组合用于 对所述逐点控制扭曲向列液晶盒出射的第一线偏振光和第二线偏振 光之中的一种表现为平透镜, 另一种表现为凸透镜。
7、 如权利要求 6所述的 2D-3D立体显示装置, 其特征在于, 所 述单折射透镜阵列为凸透镜阵列 ,且所述单折射透镜阵列的折射 率与所述欢折射透镜阵列的寻常光折射率和非寻常光折射率中 最大的那个折射率相等。
8、 如权利要求 6所述的 2D- 3D立体显示装置, 其特征在于, 所 述单折射透镜阵列为凹透镜阵列,且所述单折射透镜阵^的折射 率与所述双折射透镜阵列的寻常光折射率和非寻常光折射率中 最小的那个折射率相等。
PCT/CN2010/070290 2010-01-20 2010-01-20 扭曲向列液晶盒及包含该液晶盒的2d-3d立体显示装置 WO2011088614A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800036060A CN102439516B (zh) 2010-01-20 2010-01-20 扭曲向列液晶盒及包含该液晶盒的2d-3d立体显示装置
PCT/CN2010/070290 WO2011088614A1 (zh) 2010-01-20 2010-01-20 扭曲向列液晶盒及包含该液晶盒的2d-3d立体显示装置
US12/906,250 US8279363B2 (en) 2010-01-20 2010-10-18 Twisted nematic (TN) based 3D display system and method
JP2011009447A JP5237399B2 (ja) 2010-01-20 2011-01-20 ツイストネマティック液晶箱及びその液晶箱を使う2d/3d表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/070290 WO2011088614A1 (zh) 2010-01-20 2010-01-20 扭曲向列液晶盒及包含该液晶盒的2d-3d立体显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/906,250 Continuation US8279363B2 (en) 2010-01-20 2010-10-18 Twisted nematic (TN) based 3D display system and method

Publications (1)

Publication Number Publication Date
WO2011088614A1 true WO2011088614A1 (zh) 2011-07-28

Family

ID=44277375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070290 WO2011088614A1 (zh) 2010-01-20 2010-01-20 扭曲向列液晶盒及包含该液晶盒的2d-3d立体显示装置

Country Status (4)

Country Link
US (1) US8279363B2 (zh)
JP (1) JP5237399B2 (zh)
CN (1) CN102439516B (zh)
WO (1) WO2011088614A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104252082A (zh) * 2013-06-25 2014-12-31 胜华科技股份有限公司 液晶透镜、立体显示装置与其显示方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8817199B2 (en) * 2010-10-18 2014-08-26 Superd Co. Ltd. Twisted nematic (TN) based 3D display system and method
JP5639983B2 (ja) * 2011-10-25 2014-12-10 株式会社ジャパンディスプレイ 3次元画像表示装置
CN102809868A (zh) * 2012-08-14 2012-12-05 深圳超多维光电子有限公司 一种液晶透镜
JP6358494B2 (ja) * 2013-02-27 2018-07-18 Tianma Japan株式会社 立体画像表示装置
CN103777416B (zh) * 2014-01-17 2017-11-24 京东方科技集团股份有限公司 一种液晶透镜及三维显示装置
US10281731B2 (en) 2014-05-16 2019-05-07 The Hong Kong University Of Science & Technology 2D/3D switchable liquid crystal lens unit
KR101751407B1 (ko) * 2016-02-16 2017-07-11 단국대학교 산학협력단 플래시 메모리의 신뢰성 검증을 위한 아날로그 정보 기반 에뮬레이션 방법 및 그 장치
FR3051053B1 (fr) 2016-05-03 2018-05-25 Essilor International Matrice active transparente a reseau desordonne et composant optique integrant une telle matrice
CN105824159B (zh) * 2016-06-02 2020-04-03 京东方科技集团股份有限公司 辅助面板和显示装置
KR20180074264A (ko) 2016-12-23 2018-07-03 엘지디스플레이 주식회사 전자 장치 및 이를 포함하는 표시 장치
US20190045174A1 (en) * 2018-03-29 2019-02-07 Intel Corporation Extended depth of focus integral displays
CN109324447A (zh) * 2018-11-13 2019-02-12 郴州市海利微电子科技有限公司 全视角tn液晶显示屏生产方法
CN110767713A (zh) * 2019-03-08 2020-02-07 云谷(固安)科技有限公司 显示装置及其oled基板、oled透光基板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034736A (en) * 1989-08-14 1991-07-23 Polaroid Corporation Bistable display with permuted excitation
US6600467B1 (en) * 1999-04-28 2003-07-29 Homer L. Webb Flat panel display architecture
CN201126495Y (zh) * 2007-12-03 2008-10-01 北京超多维科技有限公司 2d-3d可转换立体显示装置
CN101477278A (zh) * 2008-12-31 2009-07-08 北京超多维科技有限公司 一种扭曲向列液晶盒及包含该液晶盒的装置
JP2009222914A (ja) * 2008-03-14 2009-10-01 Fuji Xerox Co Ltd パッシブマトリクス型液晶表示媒体の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718995B2 (ja) * 1985-02-19 1995-03-06 キヤノン株式会社 液晶素子
JPH083588B2 (ja) * 1987-03-17 1996-01-17 株式会社小糸製作所 カラー表示液晶表示装置
GB2330678A (en) * 1997-10-16 1999-04-28 Sharp Kk Addressing a ferroelectric liquid crystal display
EP1069454B1 (en) * 1998-03-27 2014-01-29 Hideyoshi Horimai Three-dimensional image display
KR100748442B1 (ko) * 2001-02-26 2007-08-10 엘지.필립스 엘시디 주식회사 수평전계 구동방식 액정 표시 장치용 어레이 기판 및 그제조 방법
KR100580632B1 (ko) * 2003-12-05 2006-05-16 삼성전자주식회사 2차원과 3차원 영상을 선택적으로 표시할 수 있는디스플레이
TW200631005A (en) * 2004-10-25 2006-09-01 Koninkl Philips Electronics Nv Optical device for scanning an information carrier
US20080040179A1 (en) * 2006-08-14 2008-02-14 Deutsche Boerse Ag System and method for sharing information and causing an action based on that information
US8316378B2 (en) 2007-12-21 2012-11-20 Mediatek Inc. Data flow control in wireless communication systems
WO2009093891A1 (en) 2008-01-25 2009-07-30 Mobihealth B.V. Mobile monitoring system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034736A (en) * 1989-08-14 1991-07-23 Polaroid Corporation Bistable display with permuted excitation
US6600467B1 (en) * 1999-04-28 2003-07-29 Homer L. Webb Flat panel display architecture
CN201126495Y (zh) * 2007-12-03 2008-10-01 北京超多维科技有限公司 2d-3d可转换立体显示装置
JP2009222914A (ja) * 2008-03-14 2009-10-01 Fuji Xerox Co Ltd パッシブマトリクス型液晶表示媒体の製造方法
CN101477278A (zh) * 2008-12-31 2009-07-08 北京超多维科技有限公司 一种扭曲向列液晶盒及包含该液晶盒的装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104252082A (zh) * 2013-06-25 2014-12-31 胜华科技股份有限公司 液晶透镜、立体显示装置与其显示方法

Also Published As

Publication number Publication date
JP5237399B2 (ja) 2013-07-17
US8279363B2 (en) 2012-10-02
CN102439516A (zh) 2012-05-02
US20110176074A1 (en) 2011-07-21
JP2011150345A (ja) 2011-08-04
CN102439516B (zh) 2013-01-23

Similar Documents

Publication Publication Date Title
WO2011088614A1 (zh) 扭曲向列液晶盒及包含该液晶盒的2d-3d立体显示装置
WO2010075713A1 (zh) 一种扭曲向列液晶盒及包含该液晶盒的装置
KR101128519B1 (ko) 고해상도 오토스테레오스코픽 디스플레이
CN100592149C (zh) 液晶显示装置及其驱动方法
TWI472802B (zh) 顯示裝置
US8743298B2 (en) Display device
KR101370416B1 (ko) 입체영상 표시장치 및 그 제조 방법
US7800570B2 (en) LCD device capable of controlling a viewing angle and method for driving the same
JP6132825B2 (ja) 2d/3d表示システム、2d/3d表示駆動方法及び液晶レンズ
US10613394B2 (en) Display device
US10495891B2 (en) Three-dimensional (3D) display device
TW201003259A (en) Liquid crystal display device
WO2014153992A1 (zh) 立体液晶显示装置
JP5802571B2 (ja) 表示装置
CN110398864B (zh) 一种显示装置及其驱动方法
JPWO2014196125A1 (ja) 画像表示装置及び液晶レンズ
US20120038871A1 (en) Stereoscopic display device and liquid crystal barrier device
KR101777529B1 (ko) 2d와 3d 디스플레이 모드를 겸용하는 액정 디스플레이 패널 및 디스플레이 방법
US10678088B2 (en) Display apparatus comprising a lens assembly having first and second lens layers located between a polarization converting unit and a third lens layer and displaying method
CN105047173A (zh) 显示面板、驱动电路、驱动方法和显示装置
JP2014026010A (ja) 表示装置
CN111812870B (zh) 显示面板及显示装置
CN203365868U (zh) 一种液晶光栅及具有该液晶光栅的显示系统
JP2885206B2 (ja) 液晶表示装置
US9841640B2 (en) Pixel unit array and liquid crystal display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003606.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10843657

Country of ref document: EP

Kind code of ref document: A1