WO2010073987A1 - 信号配置方法及び通信装置 - Google Patents

信号配置方法及び通信装置 Download PDF

Info

Publication number
WO2010073987A1
WO2010073987A1 PCT/JP2009/071130 JP2009071130W WO2010073987A1 WO 2010073987 A1 WO2010073987 A1 WO 2010073987A1 JP 2009071130 W JP2009071130 W JP 2009071130W WO 2010073987 A1 WO2010073987 A1 WO 2010073987A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
symbol
data
pilot
data symbols
Prior art date
Application number
PCT/JP2009/071130
Other languages
English (en)
French (fr)
Inventor
玉木 諭
桑原 幹夫
幸樹 上野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP09834788.3A priority Critical patent/EP2381602B1/en
Priority to US13/141,308 priority patent/US8630313B2/en
Priority to JP2010544036A priority patent/JP5377516B2/ja
Publication of WO2010073987A1 publication Critical patent/WO2010073987A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals

Definitions

  • the present invention is encoded in a communication method for performing communication by dividing an encoded signal into a plurality of communication resources, particularly in a multicarrier communication method such as an orthogonal frequency division multiplexing method in which communication is performed by dividing a plurality of subcarriers.
  • the present invention relates to an information signal arrangement method and a communication apparatus that implements the method.
  • a multi-carrier communication scheme is used in which transmission information is divided into a plurality of frequency bands called subcarriers for communication.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the Orthogonal Frequency Division Multiplexing (OFDM) system uses signal orthogonality while improving resistance to delayed waves by narrowing the bandwidth per subcarrier. Therefore, it is possible to realize high frequency utilization efficiency without requiring a guard band between subcarriers. For example, it is used in a wide range of systems such as WiMAX (Worldwide Interoperability of Microwave Access) and LTE (Long Turn Evolution).
  • a signal having a fixed pattern hereinafter referred to as a pilot signal
  • the reception signal is estimated by estimating fluctuations in amplitude and phase during signal propagation from the amplitude and phase of the pilot signal on the reception side. Is demodulated.
  • the higher the ratio of pilot signals inserted into the transmission signal the more accurately the propagation path can be estimated and the communication quality can be improved.
  • the lower the pilot signal insertion ratio the higher the data signal ratio and the higher the maximum data rate. Therefore, the pilot signal is arranged to be as small as possible within the range that satisfies the required channel estimation accuracy. .
  • FIG. 2 is a diagram showing an example of an LTE pilot signal arrangement.
  • This figure is “3GPP TS 36.211 V8.3.0 Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)” (Non-Patent Document 1) Represents a pilot signal arrangement when one antenna port is used. Note that a signal referred to as reference signal in the document corresponds to a pilot signal.
  • FIG. 2 is a schematic diagram in which the horizontal axis is the OFDM symbol number, that is, the time axis, and the vertical axis is the subcarrier number, that is, the frequency axis. Each rectangular box represents one modulation symbol such as QPSK or 16QAM.
  • the gray rectangle of the symbol 202 represents a pilot signal
  • the white rectangle of the symbol 201 represents a non-pilot signal such as a data signal or a control signal.
  • two pilot signals are arranged per slot in the time direction, and one pilot is arranged per six subcarriers in the frequency direction.
  • the position where the pilot signal in the time direction is arranged varies depending on the number of antennas and the like, but is common to all cells.
  • pilot signals are arranged at different positions depending on the cell. In the example shown in FIG.
  • pilot signals are arranged in subcarrier n, subcarrier n + 3, subcarrier n + 6, subcarrier n + 9, but in another cell, for example, pilot signals are arranged in subcarrier + 1, subcarrier4 +, subcarrier4 +, subcarrier4 +, subcarrier4 +, subcarrier4 + Is done.
  • FIG. 3 is a diagram illustrating another example of LTE pilot signal arrangement.
  • FIG. 3 is an example of the pilot signal arrangement described in Non-Patent Document 1 as in FIG. 2, and is a schematic diagram showing the pilot signal arrangement in one antenna port when four antenna ports are used.
  • the point that the gray rectangle of the symbol 202 represents the pilot signal and the white rectangle of the symbol 201 represents the non-pilot signal is the same as in FIG.
  • a rectangle indicated by X of the symbol 203 indicates a time / frequency that is not used for signal transmission in order to avoid collision with pilot signals of other antenna ports.
  • the propagation path information obtained by interpolation or extrapolation to the time / frequency where the corresponding non-pilot signal is arranged based on the propagation path estimation result using the pilot signal is used.
  • the number of pilot signals is smaller than that of non-pilot signals. Therefore, the disturbance added to one symbol of the pilot signal is a large number of non-pilots in the vicinity using the propagation path estimation result of the pilot signal. Affects the reception quality of the pilot signal. For this reason, pilot signals are required to have higher reception quality than non-pilot signals.
  • Patent Document 1 in order to increase the transmission power of the pilot signal while keeping the total transmission power per time constant, the transmission power of the non-pilot signal is decreased on average or assigned for transmission of the non-pilot signal.
  • a technique has been introduced in which some of the received symbols are not used for transmission.
  • JP 2008-172377 A "Transmitting apparatus, receiving apparatus and method used in mobile communication system using OFDM system" 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8), 3GPP TS 36.211 V8.3.0, 5 May 2008, 6. 10 Reference signals
  • FIG. 4 is a diagram illustrating an example of a relationship between a base station and a terminal in a multi-cell environment.
  • inter-cell interference in which a communication signal in one cell interferes with a communication signal in another cell may occur.
  • a transmission signal from the base station A101 to the terminal A111 reaches the terminal B112 with attenuation corresponding to the distance.
  • the signal received from the base station A101 becomes interference, and the communication quality is lowered.
  • inter-cell interference For example, adjacent cells do not use the same frequency, and communication is performed using the same frequency so that the interference signal is sufficiently attenuated. There is a method for separating the cells.
  • the inter-cell interference is reduced as the distance between cells using the same frequency is increased, there is a problem that the frequency utilization efficiency is lowered. For this reason, in order to increase the frequency utilization efficiency, a method is required in which the communication quality does not greatly deteriorate even in a situation where there is a certain amount of inter-cell interference.
  • the pilot signal transmission power is made larger than the transmission power of other symbols to improve the signal-to-interference power ratio of the pilot power, but inter-cell interference is considered. Then, there is a problem that the quality of the symbol that receives interference from the pilot signal whose power is increased greatly deteriorates. Further, in the technique described in Patent Document 1, the ratio of the power of the pilot signal to the non-pilot signal, or information about which non-pilot signal symbol is not used for transmission is shared in advance between the transmitting station and the receiving station. There is a need to. For this reason, there is a problem that it is difficult to mix a station that uses the technique described in Patent Document 1 and a station that is not used, and to switch between using and not using the station.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a signal arrangement method and a communication apparatus for reducing deterioration in communication quality due to the influence of inter-cell interference occurring in a multi-cell environment. To do.
  • the data symbol transmitted at the same time as the pilot signal and the data symbol not at the same time as the pilot signal the data symbol transmitted at the same time as the pilot signal and the data symbol not at the same time as the pilot signal.
  • the arrangement of the error correction encoded signal is changed.
  • the modulation scheme is changed between a data symbol transmitted at the same time as the pilot signal and a data symbol not at the same time as the pilot signal.
  • a signal placement method for placing a data signal and a pilot signal of a known pattern comprising: N0 bit transmission signal is error correction encoded to generate N1 bit signal, When signals that can be arranged in a plurality of first data symbols that are not at the same time as pilot symbols are M0 bits, and signals that can be arranged in a plurality of second data symbols at the same time as pilot symbols are M1 bits, (I) When N0 ⁇ M0 ⁇ N1, A punctured code having a coding rate N0 / M0 is constructed by extracting the minimum M0 bit necessary for decoding the transmission signal of N0 bit before error correction coding from the signal N1 bit after error correction coding, A Chad code is arranged in the plurality of first data symbols, and
  • a signal placement method for placing a data signal and a pilot signal of a known pattern comprising: Maximum number of transmission bits that can be transmitted per symbol of the modulation scheme used for data symbols that are not the same time as the pilot signal is the maximum number of transmission bits that can be transmitted per symbol of the modulation scheme that is used for data symbols of the same time as the pilot signal
  • a signal placement method is provided which is characterized in that less.
  • a signal placement method for placing a data signal and a pilot signal of a known pattern comprising: For data symbols that are not at the same time as the pilot symbols, use a modulation scheme that has information in the amplitude and phase directions, There is provided a signal arrangement method characterized by using a modulation scheme that has no information in the amplitude direction and data only in the phase direction in the data symbol at the same time as the pilot symbol.
  • a communication device for arranging a data signal and a pilot signal of a known pattern, An error correction encoding unit that generates an N1 bit signal by performing error correction encoding on the N0 bit transmission signal; A multiplexing mapping unit that multiplexes and maps the signal N1 bits after error correction coding from the error correction coding unit and the pilot signal to each symbol; With When signals that can be arranged in a plurality of first data symbols that are not at the same time as pilot symbols are M0 bits, and signals that can be arranged in a plurality of second data symbols at the same time as pilot symbols are M1 bits, The multiplexing mapping unit includes: (I) When N0 ⁇ M0 ⁇ N1, A punctured code having a coding rate
  • a data signal and a pilot signal of a known pattern are provided for each symbol represented by a matrix of subcarriers or frequencies and symbol numbers or time axes.
  • the symbol modulation unit includes: Maximum number of transmission bits that can be transmitted per symbol of the modulation scheme used for data symbols that are not the same time as the pilot signal is the maximum number of transmission bits that can be transmitted per symbol of the modulation scheme that is used for data symbols of the same time as the pilot signal.
  • a communication device for arranging a data signal and a pilot signal of a known pattern, A symbol modulation unit that modulates a signal assigned to each symbol;
  • the symbol modulation unit includes: For data symbols that are not at the same time as the pilot signal, a modulation scheme having information in the amplitude direction and phase direction is used. A data symbol at the same time as the pilot signal has no information in the amplitude direction, and a modulation method that has information only in the phase direction prevents large peak power from being generated for each symbol. Is provided.
  • a signal arrangement method and a communication apparatus capable of reducing the influence of a decrease in communication quality even in an environment where inter-cell interference exists in a multicarrier communication system such as OFDM.
  • the signal arrangement method and the communication apparatus of the present invention are applied to a signal transmitted from the first wireless station to the second wireless station.
  • the station is called a transmitting station
  • the second radio station is called a receiving station.
  • the signal arrangement method and communication apparatus of the present invention are for signal transmission from the first radio station to the second radio station and for signal transmission from the second radio station to the first radio station.
  • the first and second radio stations perform signal processing for both the transmitting station and the receiving station described below.
  • the communication device of the present invention can include a transmitting station, a receiving station, or both a transmitting station and a receiving station.
  • a fixed station corresponds to a transmitting station and a mobile station corresponds to a receiving station.
  • the mobile station corresponds to the transmitting station and the fixed station corresponds to the receiving station.
  • the present invention is applied to communications from both a fixed station to a mobile station and from a mobile station to a fixed station, each of the fixed station and the mobile station performs both signal processing as a transmitting station and a receiving station.
  • each terminal when transmitting a signal to which the present invention is applied, each terminal operates as a transmitting station and receives a signal to which the present invention is applied. In this case, each terminal operates as a receiving station.
  • an embodiment of the present invention is described as an example of an OFDM scheme in which each subcarrier is arranged at a frequency orthogonal to each other as a multicarrier communication scheme, but the present invention is limited to the OFDM scheme. However, any multi-carrier scheme using a plurality of subcarriers can be applied.
  • the number of subcarriers will be described based on a drawing in which the number of subcarriers is limited to 12, for example, but the application of the present invention is not limited to the number of subcarriers and can be applied to a system having any number of subcarriers.
  • data referred to as data symbols and transmission data in the following may include only user data such as voice traffic or image / video traffic, or may include a control signal in addition to user data.
  • a pilot symbol refers to a fixed pattern signal used for estimation of phase and amplitude fluctuations in a propagation path.
  • a signal called Reference signal corresponds to this.
  • pilot symbols can be adopted.
  • the arrangement method is not particularly described, but in the present invention, any arrangement may be used as long as pilot symbols are arranged such that data symbols at the same time as pilot symbols and data symbols not at the same time as pilot symbols exist. Absent.
  • the same arrangement method as the Downlink reference signal shown in Non-Patent Document 1 may be used.
  • the likelihood is a value estimated from the received signal, and the logarithm of the ratio between the probability that the transmission signal is estimated to be 0 and the probability that the transmission signal is estimated to be 1 or an approximation thereof.
  • a value also referred to as a log likelihood ratio.
  • FIG. 5 is an example of a schematic diagram of signal arrangement in the embodiment of the present invention.
  • the vertical axis represents subcarriers or frequencies
  • the horizontal axis represents OFDM symbols or time
  • individual rectangles represent one modulation symbol.
  • a gray rectangle 202 represents a pilot symbol
  • a hatched rectangle represents a data symbol 212 at the same time as the pilot symbol
  • a white rectangle represents a data symbol 201 that is not at the same time as other pilot symbols.
  • the minimum signal required for decoding the received signal is arranged in the data symbol 201 with the highest priority and not at the same time as the pilot symbol, and is arranged in the data symbol 201 not at the same time as the pilot symbol.
  • the signals are selected and arranged so that the punctured code is formed only by the received signals.
  • a signal that can be allocated to data symbol 201 not at the same time as the pilot symbol is M0 bit
  • a signal that can be allocated to data symbol 212 at the same time as the pilot symbol is M1 bit
  • a transmission signal before error correction coding is N0 bit
  • the signal after error correction coding is N1 bits.
  • FIG. 14 is a diagram illustrating an example of a diagram illustrating conditional branching of signal arrangement in the embodiment of the present invention. As shown in FIG. 14, the signal arrangement is performed as follows according to the relationship between the values of M0, M1, N0, and N1.
  • N0 ⁇ M0 ⁇ N1 and M0 + M1 ⁇ N1 The M0 bit is extracted from the signal N1 bit after error correction coding to form a punctured code with a coding rate N0 / M0, and the punctured code is piloted
  • the data symbol 201 is not located at the same time as the symbol.
  • the M1 bit is extracted from the signal that has not been placed in the data symbol 201 not at the same time as the pilot symbol in the signal after error correction coding, and is placed in the data symbol 212 at the same time as the pilot symbol.
  • N1 bits after error correction coding a signal that is not arranged in either M0 or M1 may be discarded as it is, or may be retransmitted when retransmission control such as hybrid ARQ is performed.
  • the information to be used may be preferentially selected.
  • N0 ⁇ M0 ⁇ N1 and M0 + M1> N1 The M0 bit is extracted from the signal N1 bit after error correction coding to form a punctured code with a coding rate N0 / M0, and the punctured code is piloted
  • the data symbol 201 is not located at the same time as the symbol.
  • all signals that are not arranged in the data symbol 201 not at the same time as the pilot symbol are arranged in the data symbol 212 at the same time as the pilot symbol, and further arranged in any data symbol.
  • a signal corresponding to M0 + M1-N1 bits is selected from the generated signals by an appropriate method and arranged in the data symbol 212 at the same time as the pilot symbol.
  • M0> N1 All signal N1 bits after error correction coding are arranged in data symbols 201 that are not at the same time as pilot symbols.
  • a signal for M0-N1 bits is selected from the signals already arranged in the data symbols, and a signal for M1 bits is selected by an appropriate method for the data symbols 201 that are not at the same time as the pilot symbols, and the same as the pilot symbols. Arranged in the data symbol 212 of the time.
  • FIG. 7 is a schematic diagram of an encoding unit of a turbo code which is one of systematic codes used in wireless communication.
  • the pre-encoding signal 500 is directly output as a systematic bit string 501, and the parity bit string 502 recursively convolutionally encoded through the recursive convolutional encoding unit 511 and the order in the turbo interleaver 510.
  • the recursive convolution coding unit 512 outputs the recursive convolution coded parity signal sequence 503.
  • the systematic bit string 501 is preferentially arranged in the data symbol 201 not at the same time as the pilot symbol, and then the parity bit string 502 and 503 may be arranged in the data symbol 201 not at the same time as the pilot symbol and the data symbol 212 at the same time as the pilot symbol.
  • turbo code was mentioned here as an example of the systematic code, the same method can be applied even if the systematic code is different from the turbo code such as the LDPC code. Further, as long as a decodable punctured code can be configured, a different punctured code configuration method may be used, and it is not necessary to use a systematic code as an error correction code.
  • FIG. 15 is another example of a schematic diagram of signal arrangement in the embodiment of the present invention.
  • the vertical axis represents subcarriers or frequencies
  • the horizontal axis represents OFDM symbols or time
  • individual rectangles represent one modulation symbol.
  • the gray rectangle represents the pilot symbol 202
  • the shaded rectangle represents the data symbol 212 at the same time as the pilot symbol
  • the white rectangle represents the data symbol 201 not at the same time as the other pilot symbols.
  • the range of the alternate long and short dash line is the first channel range 221, which indicates that one channel is configured by combining data symbols within the range of the alternate long and short dash line.
  • a broken line range is a channel range 222 in the figure, which represents that another channel is configured by combining data symbols within the broken line range.
  • FIG. 15 shows an example in which two channels are arranged in a unit for performing data arrangement, but the same applies to the case of arranging three or more channels.
  • FIG. 6 is another example of a schematic diagram of signal arrangement in the embodiment of the present invention.
  • the vertical axis represents subcarriers or frequencies
  • the horizontal axis represents OFDM symbols or time
  • individual rectangles represent one modulation symbol.
  • the gray rectangle represents the pilot symbol 202
  • the shaded rectangle represents the data symbol 212 at the same time as the pilot symbol
  • the white rectangle represents the data symbol 201 not at the same time as the other pilot symbols.
  • a rectangle with x is a non-transmission symbol 203 that does not transmit a signal by transmitting a pilot signal with another antenna
  • a rectangle with vertical stripes is a data symbol 213 at the same time as a non-transmission symbol.
  • the signal arrangement method for the data symbol 212 at the same time as the pilot symbol and the data symbol 201 not at the same time as the pilot symbol is the same as the signal arrangement of FIG.
  • the data symbol 213 at the same time as the non-transmitted symbol may be handled as the data symbol 212 at the same time as the pilot symbol, or may be handled as the data symbol 201 not at the same time as the pilot symbol.
  • FIG. 1 is a block diagram showing signal processing in a communication apparatus (wireless station) to which the present invention is applied.
  • the error correction coding unit 301 performs error correction coding on input transmission information using an error correction code such as a turbo code, a convolutional code, a Reed-Solomon code, and an LDPC code, and outputs the transmission information to the interleaving unit 302. .
  • an error correction code such as a turbo code, a convolutional code, a Reed-Solomon code, and an LDPC code
  • the error correction coding unit 301 may add an error detection code such as CRC to the transmission information before error correction coding.
  • a signal randomization process using, for example, a PN code may be performed before or after error correction coding.
  • the interleaving unit 302 performs an interleaving process that is a change of the signal order on the input signal and outputs the signal to the transmission buffer unit 303.
  • the transmission buffer unit 303 accumulates the input signal and outputs it to the multiplexing / mapping unit 304 according to the amount of information transmitted per unit time.
  • the processing from the error correction encoding unit 301 to the transmission buffer unit 303 is, for example, when generating a signal for a control signal channel and one or more data signal channels, or for generating signals for a plurality of users. In some cases, it is possible to carry out processing with a plurality of blocks in parallel, and it is also possible to repeatedly use one or more blocks by time multiplexing.
  • the multiplexing / mapping unit 304 arranges signals in data symbols and arranges pilot signals in pilot symbols.
  • the multiplexing / mapping unit 304 transmits the input signal and pilot signal for a plurality of channels for communication using a plurality of channels, and for a plurality of users for communication of a plurality of users, for subcarriers and symbol times for transmission. Corresponding mapping is performed and output is performed.
  • mapping is performed so that signal arrangement according to the above rules is performed at the time of output of the multiplexing / mapping unit 304.
  • the correspondence between the subcarrier and symbol time in which the signal is arranged and the output of the error correction coding unit 301 need only be related. Therefore, the arrangement according to the rule is implemented at any point between them. May be. That is, for example, the error correction coding unit 301 performs coding using a systematic code, the interleaving unit 302 interleaves systematic bits and parity bits individually, and the multiplexing / mapping unit 304 converts these signals according to the above rules. You may allocate to a subcarrier and symbol time.
  • mapping rule in the multiplexing / mapping unit 304 may be fixed, and the interleaving unit 302 may perform interleaving in advance so as to follow the rule when signals are assigned to subcarriers and symbol times according to the mapping rule.
  • the symbol modulation unit 305 performs a modulation process for each subcarrier and each symbol time on a signal allocated for each subcarrier and each symbol time using a symbol modulation method such as BPSK, QPSK, 8PSK, or 16QAM.
  • the IFFT unit 306 arranges the signals input from the symbol modulation unit 305 on the frequency axis, converts the signals into time domain signals by IFFT calculation, and outputs them.
  • the GI insertion unit 307 performs guard interval insertion processing for copying a part of the end of the time domain signal after IFFT calculation and inserting it at the beginning for each IFFT signal processing unit.
  • the signal is converted into a radio frequency band signal and transmitted.
  • the timing detection unit 408 detects the reception signal timing using the reception signal converted into the baseband band through the RF unit, and outputs it to the FFT unit 406.
  • the reception signal timing detection means for example, a cross-correlation value between the reception signal and the fixed pattern signal may be used, or an autocorrelation value of the reception signal itself separated by IFFT unit may be used.
  • the FFT unit 406 separates the signal in the IFFT unit from the time domain signal input from the RF unit using the reception timing notified from the timing detection unit 408, and performs the FFT process to convert the signal into the frequency domain signal. And output.
  • the propagation path estimation unit 407 compares the phase and amplitude of the pilot signal included in the signal input from the FFT unit 406 with the phase and amplitude of the pilot signal that is the transmitted fixed pattern.
  • the fluctuation amount of the phase and amplitude for each time is estimated and notified to the symbol demodulator 405.
  • the symbol demodulator 405 compensates for variations in the propagation path of the signal input from the FFT section 406 using the estimated phase and amplitude fluctuation values notified from the propagation path estimator 407, and performs symbol modulation such as QPSK and 16QAM.
  • the demodulated signal is demodulated, and the likelihood for each bit is derived and output.
  • the signal separation unit 404 extracts and separates signals for each unit of decoding processing in which the likelihood for each bit derived by the symbol demodulation unit 405 is performed for each user or each channel, for example.
  • the reception buffer unit 403 holds the output of the signal separation unit 404 for each unit of decoding processing, and outputs to the deinterleaving unit 402 when signals for processing units to be decoded are accumulated.
  • the deinterleaving unit 402 performs deinterleaving processing that is order conversion corresponding to the inverse of the order conversion performed in the interleaving unit 302 at the time of transmission.
  • the error correction decoding unit 401 performs a decoding process using the error correction code used in the error correction coding unit 301 at the time of transmission, and outputs it as received information.
  • the processing from the reception buffer unit 403 to the error correction unit 401 is performed, for example, when receiving a signal of a control signal channel and one or more data signal channels, or when receiving signals for a plurality of users. It is possible to carry out processing with a plurality of blocks in parallel, and it is also possible to repeatedly use one or more blocks by time multiplexing.
  • the signal processing flow described above is merely an example. If the signal finally output from the RF unit at the time of transmission is the same, the signal output from the error correction decoding unit 401 at the time of reception is the same. As long as it exists, the flow and sequence of signal processing may be in any form.
  • the symbol modulation unit 305 is described after the multiplexing / mapping unit 204. However, the symbol modulation unit 305 is set immediately after the interleaving unit 302, and the symbol modulation is performed before accumulation in the transmission buffer unit 303. But it ’s okay.
  • Second Embodiment In the first embodiment, the method focusing only on the signal arrangement has been described. However, the object of the present invention can be achieved by changing the modulation method as another embodiment. That is, in the case of the signal arrangement of FIG. 5, the modulation scheme used for the data symbol 212 at the same time as the pilot symbol is made to be a scheme having a high error resistance compared to the modulation scheme used at the data symbol 201 not at the same time as the pilot symbol. Therefore, it is possible to reduce the deterioration of communication quality caused by interference from pilot symbols of other cells.
  • This object can be achieved by using 16QAM capable of transmitting 4 bits of information or using QPSK capable of transmitting information of up to 2 bits per symbol.
  • the data symbol 212 at the same time as the pilot symbol has no information in the amplitude direction and does not have information in the phase direction so that no large peak power is generated for each symbol.
  • This object can also be achieved by using a modulation scheme such as BPSK, QPSK, or 8PSK having only information.
  • the data symbols 212 at the same time as the pilot symbols and the data symbols 201 not at the same time as the pilot symbols are used.
  • the method for selecting the modulation method is the same as the method for selecting the modulation method shown in FIG.
  • the data symbol 213 at the same time as the non-transmitted symbol may be handled as the data symbol 212 at the same time as the pilot symbol, or may be handled as the data symbol 201 not at the same time as the pilot symbol.
  • data symbol 201 that is not at the same time as the pilot symbol and data symbol at the same time as the pilot symbol in symbol modulation section 305
  • a modulation scheme different from that of 212 is selected.
  • the modulation scheme used for the data symbol 212 at the same time as the pilot symbol is selected from the modulation scheme used for the data symbol 201 not at the same time as the pilot symbol, which has a smaller maximum number of bits that can be transmitted per symbol.
  • a modulation method such as BPSK, QPSK, or 8PSK that has no information in the amplitude method is selected as the modulation method used in the data symbol 212 at the same time as the pilot symbol.
  • a modulation scheme may be individually selected for each channel or each target user. Note that the method shown in this embodiment can be used alone, or both of the methods described in the first embodiment can be performed simultaneously.
  • Third Embodiment The methods described in the first embodiment and the second embodiment can achieve the object of the present invention more effectively by adding transmission power control. That is, after applying one or both of the methods described in the first embodiment or the second embodiment, the transmission power per symbol of the data symbol 212 at the same time as the pilot symbol is set at the same time as the pilot symbol. Reducing the influence of inter-cell interference by reducing the transmission power per symbol of the data symbol 201 that is not the same, or by reducing the transmission power per symbol of the data symbol 212 at the same time as the pilot symbol to 0 Is possible.
  • the quality when a received signal including the symbol is decoded is lowered by reducing the power of some transmission symbols or by setting the power to 0.
  • the signal arrangement described in the first embodiment it is possible to reduce the degradation of the decoding quality.
  • the degradation in decoding quality by reducing the number of bits per symbol of the modulation scheme used in the data symbol 212 at the same time as the pilot symbol.
  • the data symbol 212 at the same time as the pilot symbol uses a modulation scheme having no information in the amplitude direction, so that the transmission station transmits the data symbol 212 at the same time as the pilot symbol. Since the receiving station can demodulate the signal without having information on whether or not the power is reduced or how much the transmission power of the data symbol 212 at the same time as the pilot symbol is reduced, the transmission power can be easily changed. Is possible.
  • data symbols 212 at the same time as the pilot symbols and data not at the same time as the pilot symbols are the same as in the first and second embodiments.
  • the transmission power determination method for the symbol 201 is the same as the transmission power determination method in FIG.
  • the data symbol 213 at the same time as the non-transmitted symbol may be handled as the data symbol 212 at the same time as the pilot symbol, or may be handled as the data symbol 201 not at the same time as the pilot symbol.
  • the symbol modulation section 205 uses pilot symbols rather than the signal amplitude of the data symbols 201 that are not at the same time as the pilot symbols.
  • the signal amplitude of the data symbol 212 at the same time is reduced.
  • symbol modulation section 205 sets the signal amplitude of data symbol 212 at the same time as the pilot symbol to 0.
  • the symbol modulation unit 305 processes signals for a plurality of channels or a plurality of users, the signal amplitude may be individually selected for each channel or each target user.
  • symbol demodulation is performed when the radio station in FIG. 1 is the receiving station.
  • the likelihood obtained as a demodulation result of data symbol 212 at the same time as the pilot symbol in unit 305 may be reduced or may be zero.
  • a process for reducing the likelihood obtained as a demodulation result there is a method of multiplying the likelihood by a coefficient smaller than 1, such as 0.5.
  • FIG. 10 is another example of a block diagram illustrating signal processing in the radio station according to the present embodiment.
  • the block diagram of FIG. 10 differs from the block diagram of FIG. 1 in that an interference reduction determination unit 310 is added and an input from the interference reduction determination unit 310 is added to the symbol modulation unit 305. For each part other than these two points, the operation as shown in the above embodiment is performed.
  • FIG. 11 is an example of the processing flow of the symbol modulation unit 305 in the present embodiment.
  • the symbol modulation unit 305 performs iterative processing for the number of channels and the number of users from processing P601 to processing P605.
  • the notification from the interference reduction determination unit 310 is determined. If the interference reduction instruction is On, the process P603 is instructed as the next process to indicate the interference reduction instruction. If OFF, the process jumps to process P604 as the next process.
  • process P603 a process of reducing the signal amplitude of the data symbol 212 at the same time as the pilot is performed, and the process proceeds to the next process P604.
  • symbol modulation processing is performed using a modulation scheme such as QPSK or 16QAM for each subcarrier and symbol time, and the repetition processing ends when the processing P604 processing ends.
  • the interference reduction determination unit 310 determines whether or not power control for interference reduction is necessary for each channel and each user signal, and sends an interference reduction instruction On or an interference reduction instruction Off to the symbol modulation unit 305. Notice. As a condition for the determination, for example, depending on the type of the own station, if the own station is a femto cell, it is set to On. Another determination condition is On if the destination station is a femtocell, for example, depending on the type of signal destination station. As another determination condition, for example, a user who is turned on and a user who is turned off are switched depending on the user type of the signal transmission destination.
  • another determination condition is, for example, set to On in the case of best-effort type communication based on the QoS of the signal.
  • the channel having a large total transmission power is set to On depending on the total transmission power of the channel.
  • FIG. 12 is another example of a block diagram showing signal processing in the radio station of this embodiment, and the receiving station of this embodiment can be configured as shown in the block diagram of FIG.
  • the block diagram of FIG. 12 differs from the block diagram of FIG. 10 in that a power reduction determination unit 409 is added and an input from the power reduction determination unit 409 is added to the symbol demodulation unit 405. For each part other than these two points, the operation as described in the block diagram of FIG. 10 is performed.
  • FIG. 13 is an example of a processing flow of the power reduction determination unit 409 in the present embodiment.
  • the power reduction determination unit 409 performs iterative processing for the number of channels and the number of users from process P611 to process P617.
  • a power reduction determination coefficient C is determined in process P612.
  • the power reduction determination coefficient C is a non-negative value for determining the power reduction of the data symbol 212 at the same time as the pilot symbol in the transmitting station.
  • the smaller the coefficient C the lower the possibility of overlooking the power reduction, while increasing the possibility of erroneously determining that the power has been reduced even though the power is not reduced at the transmitting station.
  • the coefficient C increases, the possibility of misjudgment decreases, but the possibility of missing a power decrease increases.
  • a value used as C for example, a value such as 4 may be fixedly used.
  • the coefficient C may be adaptively changed so as to select a smaller coefficient C.
  • an average power Pr per symbol of pilot symbols in the channel is derived.
  • averaging using past values may be performed.
  • an average power Pd per symbol of the data symbol 212 at the same time as the pilot symbol in the channel is derived.
  • FIG. 13 for convenience process P612, the processing P613, has been described a process P614 in this order, it may be performed in any order because these treatments are each independently.
  • process P615 the product value of the average power Pd and the coefficient C is compared with the value of the average power Pr. As a result of the comparison, if the average power Pr is larger, the process jumps to the process P616 as the next process, and otherwise jumps to the end of the repetition process of the process P617.
  • the symbol demodulator 405 is notified of a likelihood reduction instruction. The end of the process P616 or the branch of the process P615 ends the repetition process.
  • the symbol demodulation unit 405 when the symbol demodulation unit 405 is notified of a likelihood decrease instruction from the power decrease determination unit 409, the bit corresponding to the data symbol 212 at the same time as the corresponding channel and the pilot symbol of the user is transmitted.
  • a process of decreasing the likelihood or setting it to 0 is performed.
  • the likelihood reduction instruction from the likelihood reduction determination unit 409 when the likelihood reduction instruction from the likelihood reduction determination unit 409 is not notified, the likelihood is multiplied by a coefficient 1, and the likelihood reduction determination unit 409 There is a method of multiplying the likelihood by a coefficient smaller than 1, for example, 0.5.
  • a process for setting the likelihood of the corresponding bit to 0 there is a method of multiplying the likelihood by 0 when the likelihood reduction instruction from the likelihood reduction determination unit 409 is notified.
  • each signal processing block has been described. However, in reality, each block need not have an independent entity, and the operation of each block is realized using a general-purpose processing module. It may be implemented.
  • FIG. 9 is a schematic diagram of a transceiver implementation example mainly including a DSP and a CPU.
  • a block 701 is a CPU and a DSP module, and performs signal processing calculation and signal processing control shown in each of the above embodiments.
  • a block 702 is a memory module, and holds transmission signals and reception signals that are being processed and before and after processing, and tables used for signal processing.
  • a block 703 is a logic circuit module, and controls the signal processing calculation and signal processing shown in each of the above embodiments in the same manner as the CPU / DSP 701.
  • a block 704 is an interface module that inputs and outputs control signals, transmission signals before signal processing, and reception signals after signal processing.
  • a block 705 is an RF module, which converts a transmission signal into a radio frequency band signal and transmits the signal via an antenna, and receives a signal received via the antenna as a baseband signal. Convert to signal.
  • the bus 706 connects the above modules.
  • the signal processing calculation and signal processing control in each processing block shown in the first to fourth embodiments are performed by one or both of a program in the CPU / DSP module 701 and an arithmetic circuit in the logic circuit module 703 and necessary. If so, the memory module 702 is used.
  • FIG. 9 shows the simplest implementation example, and each module is described one by one.
  • each module and bus are not necessarily single.
  • a plurality of CPU / DSP modules 701 may be provided, and a plurality of buses 706 may be provided.
  • buses 706 it is not always necessary that all the buses are connected to all the modules.
  • the memory module 702 and the logic circuit module 703 There may be a bus that connects only.
  • the present invention can be applied to various multi-carrier communication schemes, modulation schemes and the like other than those described above.

Abstract

 OFDMなどのマルチキャリア通信方式において、セル間干渉の影響による通信品質の低下を軽減する。 パイロット信号と同時刻に送信するデータシンボルと、パイロット信号と同時刻ではないデータシンボルとで、誤り訂正符号化した信号の配置方法を変更する。または、パイロット信号と同時刻に送信するデータシンボルと、パイロット信号と同時刻ではないデータシンボルとで変調方式を変更する。更に、パイロット信号と同時刻に送信するデータシンボルの信号振幅又は電力を低下するようにしてもよい。

Description

信号配置方法及び通信装置
 本発明は符号化した信号を複数の通信リソースに分割して通信を行う通信方式、特に複数のサブキャリアに分割して通信する直交周波数分割多重方式のようなマルチキャリア通信方式において、符号化した情報の信号配置方法及び当該方法を実現する通信装置に関する。
 無線通信の広帯域化に伴って、以下サブキャリアと称する複数の周波数帯域に送信情報を分割して通信を行うマルチキャリア通信方式が用いられている。マルチキャリア通信方式のうち、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)方式は、サブキャリアあたりの帯域幅を狭帯域化することで遅延波に対する耐性を向上しつつ、信号の直交性を利用することでサブキャリア間のガードバンドを不要として高い周波数利用効率を実現できることから、例えばWiMAX(Worldwide Interoperability of Microwave Access)やLTE(Long Tern Evolution)等の幅広いシステムで採用されている。
 これらの通信システムでは、送信側では以下パイロット信号と称する固定パターンの信号を送信信号に挿入し、受信側ではパイロット信号の振幅及び位相から信号伝搬中の振幅及び位相の変動を推定して受信信号の復調処理を行う。送信信号に挿入されるパイロット信号の割合が高い程精度良く伝搬路推定を行い、通信品質を高める事が出来る。一方でパイロット信号の挿入比率が低いほどデータ信号の比率が上がり、最大データレートが向上するため、パイロット信号は必要な伝搬路推定の精度を満たす範囲で可能な限り少量となるように配置される。
 図2は、LTE方式のパイロット信号配置の一例を示す図である。この図は、「3GPP TS 36.211 V8.3.0 Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation(Release 8)」(非特許文献1)に示されている例であり、一つのantenna portを使用する際のパイロット信号配置を表す。なお、同文献にてreference signalと呼称されている信号がパイロット信号に相当する。図2は横軸をOFDMシンボル番号、即ち時間軸とし、縦軸をサブキャリア番号、即ち周波数軸とした模式図であり、各矩形の箱がQPSKや16QAM等の一つの変調シンボルを表す。このうち、シンボル202の灰色の矩形がパイロット信号を表し、シンボル201の白色の矩形は例えばデータ信号や制御信号などのパイロットではない信号を表す。この例では、時間方向には1Slotあたり2のパイロット信号が配置され、周波数方向には6サブキャリアあたり1のパイロットが配置される。なおLTEでは、時間方向のパイロット信号が配置される位置はアンテナ数等によって異なるもののすべてのセルで共通である。一方で周波数方向については、セルによって異なった位置にパイロット信号が配置される。図2に示した例では、パイロット信号はsubcarrier n、subcarrier n+3、subcarrier n+6、subcarrier n+9に配置されているが、別のセルでは例えばパイロット信号はsubcarrier n+1、subcarrier n+4、subcarrier n+7、subcarrier n+10に配置される。
 図3は、LTE方式のパイロット信号配置の別の一例を示す図である。
 図3は図2と同じく非特許文献1記載のパイロット信号配置の一例であり、4つのantenna portを使用する際の一つのantenna portにおけるパイロット信号配置を表した模式図である。シンボル202の灰色の矩形がパイロット信号を表し、シンボル201の白色の矩形が非パイロット信号を表す点は図2と同様である。シンボル203のX印の矩形は他のantenna portのパイロット信号との衝突を避けるために信号送信には使用しない時間・周波数であることを示す。
 各々の非パイロット信号を復調する際には、パイロット信号を用いた伝搬路推定結果を元に該当する非パイロット信号が配置された時間・周波数に補間ないしは外挿して求めた伝搬路情報を用いる。図2及び図3の模式図のとおりパイロット信号は非パイロット信号に比べて少数である為、パイロット信号1シンボルに対して加わった擾乱は当該パイロット信号の伝搬路推定結果を用いる周辺の多数の非パイロット信号の受信品質に影響を与える。このためパイロット信号は非パイロット信号に比べて高い受信品質が求められる。このため例えば特許文献1では時間当たりの総送信電力を一定にしつつパイロット信号の送信電力を増加させるために、非パイロット信号の送信電力を平均的に低下させる、あるいは非パイロット信号の送信用に割り当てられたシンボルのうちいくつかを送信に用いない技術が紹介されている。
特開2008-172377号公報 「OFDM方式を利用する移動通信システム使用される送信装置、受信装置及び方法」 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation(Release 8)、 3GPP TS 36.211 V8.3.0、 2008年5月、 6.10 Reference signals
 図4は、マルチセル環境における基地局と端末との関係の例を示す図である。
 複数の基地局が存在するマルチセル環境においては、あるセルにおける通信信号が別のセルの通信信号の妨害となるセル間干渉が発生する場合がある。例えば基地局A101から端末A111への送信信号は、端末B112に対しても距離相応の減衰を持って到達する。このため、同時に基地局B102から端末B102に対して信号を送信していた場合、基地局A101から届いた信号が干渉となり、通信品質を低下させる。
 このようなセル間干渉の影響を低減させる為には、例えば隣接するセル同士では同じ周波数を使わないようにして、干渉となる信号が十分に減衰するように同一の周波数を用いて通信を行うセル同士の間隔を離す方法がある。しかし同一周波数を用いるセル間の間隔を離す程セル間干渉は低減するものの周波数の利用効率が低下してしまうという課題がある。このため周波数の利用効率を高めるためにはある程度のセル間干渉が存在する状況においても通信品質が大きく低下する事がない方式が必要となる。
 また、例えば上記特許文献1に記載の技術では、パイロット信号の送信電力を他のシンボルの送信電力よりも大きくする事でパイロット電力の信号対干渉電力比の向上を図るが、セル間干渉を考慮するとこの電力を大きくしたパイロット信号から干渉を受けるシンボルの品質は大きく劣化するという課題がある。更に特許文献1記載の技術では、パイロット信号の電力と非パイロット信号との電力の比率、あるいはいずれの非パイロット信号用のシンボルを送信に用いないかの情報を送信局と受信局とで予め共有する必要がある。このため、特許文献1記載の技術を使用する局と使用しない局との混在や、使用の有無の切替が困難であるという課題がある。
 本発明は上記の課題を解決すべく為されたものであり、マルチセル環境において生じるセル間の干渉の影響による通信品質の低下を軽減するための信号配置方法及び通信装置を提供する事を目的とする。
 上記課題を解決するための手段として、本発明による信号配置方法及び該方法を実現する通信装置では、パイロット信号と同時刻に送信するデータシンボルと、パイロット信号と同時刻ではないデータシンボルとで、誤り訂正符号化した信号の配置を変更する。または、本発明による電力割当方法及び該方法を実現する通信装置では、パイロット信号と同時刻に送信するデータシンボルと、パイロット信号と同時刻ではないデータシンボルとで変調方式を変更する。
 本発明の第1の解決手段によると、
 符号化した信号を複数のサブキャリアを用いて通信するマルチキャリア通信方式において、サブキャリア番号とシンボル番号とにより定められた各シンボル、又は、周波数軸と時間軸とにより定められた各シンボルに、データ信号及び既知のパターンのパイロット信号を配置するための信号配置方法であって、
 N0ビットの送信信号を誤り訂正符号化してN1ビットの信号を生成し、
 パイロットシンボルと同時刻でない複数の第1のデータシンボルに配置可能な信号がM0ビット、パイロットシンボルと同時刻の複数の第2のデータシンボルに配置可能な信号がM1ビットであるとき、
(i)N0≦M0≦N1の場合、
 誤り訂正符号化後の信号N1ビットから誤り訂正符合化前のN0ビットの送信信号の復号に最低限必要なM0ビットを抜き出して符号化率N0/M0のパンクチャド符号を構成して、該パンクチャド符号を前記複数の第1のデータシンボルに配置し、さらに、誤り訂正符号化後の信号のうち前記複数の第1のデータシンボルに配置されなかった信号の一部又は全てのビットを、前記複数の第2のデータシンボルに配置し、
(ii)M0>N1の場合、
 誤り訂正符号化後の信号N1ビットを全て前記複数の第1のデータシンボルに配置し、
(iii)M0<N0≦M0+M1の場合、
 誤り訂正符号化後の信号N1ビットから符号化率N0/(M0+M1)の符号を構成し、前記複数の第1のデータシンボル及び前記複数の第2のデータシンボルに配置する
ことを特徴とする信号配置方法が提供される。
 また、本発明の第2の解決手段によると、
 符号化した信号を複数のサブキャリアを用いて通信するマルチキャリア通信方式において、サブキャリア番号とシンボル番号とにより定められた各シンボル、又は、周波数軸と時間軸とにより定められた各シンボルに、データ信号及び既知のパターンのパイロット信号を配置するための信号配置方法であって、
 パイロット信号と同時刻のデータシンボルに用いる変調方式の1シンボルあたりに伝送可能な最大伝送ビット数が、パイロット信号と同時刻でないデータシンボルに用いる変調方式の1シンボルあたりに伝送可能な最大伝送ビット数よりも少なくしたことを特徴とする信号配置方法が提供される。
 また、本発明の第3の解決手段によると、
 符号化した信号を複数のサブキャリアを用いて通信するマルチキャリア通信方式において、サブキャリア番号とシンボル番号とにより定められた各シンボル、又は、周波数軸と時間軸とにより定められた各シンボルに、データ信号及び既知のパターンのパイロット信号を配置するための信号配置方法であって、
 パイロットシンボルと同時刻でないデータシンボルにおいては、振幅方向及び位相方向に情報を持つ変調方式を用い、
 パイロットシンボルと同時刻のデータシンボルにおいては振幅方向には情報を持たず、位相方向にのみ情報を持つ変調方式を用いる
ことを特徴とする信号配置方法が提供される。
 また、本発明の第4の解決手段によると、
 符号化した信号を複数のサブキャリアを用いて通信するマルチキャリア通信方式において、サブキャリア番号とシンボル番号とにより定められた各シンボル、又は、周波数軸と時間軸とにより定められた各シンボルに、データ信号及び既知のパターンのパイロット信号を配置するための通信装置であって、
 N0ビットの送信信号を誤り訂正符号化してN1ビットの信号を生成する誤り訂正符号化部と、
 前記誤り訂正符号化部からの誤り訂正符号化後の信号N1ビットと、パイロット信号とを前記各シンボルに多重化及びマッピングする多重化マッピング部と、
を備え、
 パイロットシンボルと同時刻でない複数の第1のデータシンボルに配置可能な信号がM0ビット、パイロットシンボルと同時刻の複数の第2のデータシンボルに配置可能な信号がM1ビットであるとき、
 前記多重化マッピング部は、
(i)N0≦M0≦N1の場合、
 誤り訂正符号化後の信号N1ビットから、誤り訂正符合化前のN0ビットの送信信号の復号に最低限必要なM0ビットを抜き出して符号化率N0/M0のパンクチャド符号を構成して、該パンクチャド符号を前記複数の第1のデータシンボルに配置し、さらに、誤り訂正符号化後の信号のうち前記複数の第1のデータシンボルに配置されなかった信号の一部又は全てのビットを、前記複数の第2のデータシンボルに配置し、
(ii)M0>N1の場合、
 誤り訂正符号化後の信号N1ビットを全て前記複数の第1のデータシンボルに配置し、
(iii)M0<N0≦M0+M1の場合、
 誤り訂正符号化後の信号N1ビットから符号化率N0/(M0+M1)の符号を構成し、前記複数の第1のデータシンボル及び前記複数の第2のデータシンボルに配置する
ことを特徴とする通信装置が提供される。
 また、本発明の第5の解決手段によると、
 符号化した信号を複数のサブキャリアを用いて通信するマルチキャリア通信方式において、サブキャリア又は周波数とシンボル番号又は時間軸とのマトリクスで表された各シンボルに、データ信号及び既知のパターンのパイロット信号を配置するための通信装置であって、
 前記各シンボルに割り当てられた信号を変調するシンボル変調部を備え、
 前記シンボル変調部は、
 パイロット信号と同時刻のデータシンボルに用いる変調方式の1シンボルあたりに伝送可能な最大伝送ビット数が、パイロット信号と同時刻でないデータシンボルに用いる変調方式の1シンボルあたりに伝送可能な最大伝送ビット数よりも少なくしたことを特徴とする通信装置が提供される。
 また、本発明の第6の解決手段によると、
 符号化した信号を複数のサブキャリアを用いて通信するマルチキャリア通信方式において、サブキャリア番号とシンボル番号とにより定められた各シンボル、又は、周波数軸と時間軸とにより定められた各シンボルに、データ信号及び既知のパターンのパイロット信号を配置するための通信装置であって、
 前記各シンボルに割り当てられた信号を変調するシンボル変調部を備え、
 前記シンボル変調部は、
 パイロット信号と同時刻でないデータシンボルにおいては、振幅方向及び位相方向に情報を持つ変調方式を用い、
 パイロット信号と同時刻のデータシンボルにおいては振幅方向には情報を持たず、位相方向にのみ情報を持つ変調方式を用いることにより、シンボル毎に大きなピーク電力が生じる事が無いようにした
ことを特徴とする通信装置が提供される。
 本発明によれば、OFDMなどのマルチキャリア通信方式において、セル間干渉が存在する環境においても通信品質の低下の影響を軽減できる信号配置方法及び通信装置が提供される。
本発明を適用する無線局における信号処理を表すブロック図の一例を示す図。 LTE方式のパイロット信号配置の一例を示す図。 LTE方式のパイロット信号配置の別の一例を示す図。 マルチセル環境における基地局と端末との関係の例を示す図。 本発明の実施の形態における信号配置の模式図の一例。 本発明の実施の形態における信号配置の模式図の別の一例。 誤り訂正符号化器の一例であるターボ符号化器の例を示す図。 ガードインターバル挿入処理を示す模式図。 CPUやDSPを主体とした送受信機実装例の模式図。 本発明を適用する無線局における信号処理を表すブロック図の別の一例を示す図。 本発明の実施の形態におけるシンボル変調処理の処理の流れの一例を示す図。 本発明を適用する無線局における信号処理を表すブロック図の別の一例を示す図。 本発明の実施の形態における電力低下判定処理の処理の流れの一例を示す図。 本発明の実施の形態における信号配置の条件分岐を表す図の一例を示す図。 本発明の実施の形態における信号配置の模式図の別の一例。
1.本発明の適応
 以下、本発明の種々の実施の形態について図面を用いて説明する。以下の説明では簡単のために第1の無線局から第2の無線局に対して送信する信号に対して本発明の信号配置方法及び通信装置を適用する場合について説明し、上記第1の無線局を送信局、上記第2の無線局を受信局と称する。一方本発明の信号配置方法及び通信装置は第1の無線局から第2の無線局への信号送信に対してと、第2の無線局から第1の無線局への信号送信に対してとの両方に対して適用することが可能であり、この場合、該第1及び第2の無線局はそれぞれ以下で説明する送信局と受信局との両方の信号処理を行う。なお、本発明の通信装置は、送信局、受信局、または、送信局と受信局の両方を含むことができる。
 例えばセルラシステムやインフラストラクチャモードの無線LANにおける、以下固定局と称する基地局ないしはアクセスポイントと、以下移動局と称するユーザ端末とが存在するシステムにおいては、固定局から移動局への通信に対して本発明を適用する際には固定局が送信局、移動局が受信局に対応する。逆に移動局から固定局への通信に対して本発明を適用する際には移動局が送信局、固定局が受信局に対応する。また固定局から移動局、移動局から固定局の両方の通信に対して本発明を適用する際には、固定局及び移動局のそれぞれが送信局及び受信局として両方の信号処理を行う。
 またアドホックモードの無線LANのように端末同士が直接通信するシステムにおいては、本発明を適用する信号を送信する際には各端末がそれぞれ送信局として動作し、本発明を適用する信号を受信する際には各端末がそれぞれ受信局として動作する。
 また、以下ではマルチキャリア通信方式として、各サブキャリアをシンボル単位で直交するような周波数に配置するOFDM方式を例に本発明の実施の形態について説明しているが、本発明はOFDM方式に限定されるものではなく、複数のサブキャリアを用いるマルチキャリア方式であれば適用可能である。
 また以下ではサブキャリア数を例えば12に絞った図面を元に記載するが、本発明の適用はサブキャリア数に制限を受けず、いかなるサブキャリア数のシステムに対しても適用可能である。
 また以下においてデータシンボル及び送信データと呼称する際のデータとは、例えば音声トラフィック又は画像・映像トラフィックなどのユーザデータだけを含むようにしてもよいし、ユーザデータに加えて制御信号を含むようにしてもよい。
 また以下においてパイロットシンボルとは、伝搬路における位相及び振幅変動の推定等に用いられる固定パターンの信号を指す。例えば非特許文献1においてはReference signalと呼称される信号が相当する。
 また以下においてパイロットシンボルの配置方法については適宜のものを採用することができる。その配置方法は、特に記載しないが、本発明においてはパイロットシンボルと同時刻のデータシンボルと、パイロットシンボルと同時刻ではないデータシンボルとが存在するようなパイロットシンボルの配置であればいかなる配置でもかまわない。例えば非特許文献1に示されているDownlink reference signalと同じ配置方法でよい。
 また本発明において尤度とは受信信号から推定する値であり、送信信号が0であったと推定される確率と送信信号が1であったと推定される確率との比の対数値、あるいはその近似値であり、対数尤度比とも呼ばれる値を指す。
2.第1の実施の形態
2-1.信号配置
 以下、本発明の第1の実施の形態について図面に基づいて説明する。
 図5は、本発明の実施の形態における信号配置の模式図の一例である。縦軸がサブキャリア即ち周波数を、横軸がOFDMシンボル即ち時間を表し、個々の矩形が一つの変調シンボルを表す。灰色の矩形202がパイロットシンボルを表し、斜線付の矩形がパイロットシンボルと同時刻のデータシンボル212、白色の矩形がその他のパイロットシンボルと同時刻ではないデータシンボル201を表す。
 本発明の信号配置では、受信信号の復号に最低限必要な信号を最も高い優先度でパイロットシンボルと同時刻ではないデータシンボル201に配置し、パイロットシンボルと同時刻ではないデータシンボル201に配置された信号だけでパンクチャド符号が構成されるように信号の選択及び配置を行う。
 以下、パイロットシンボルと同時刻ではないデータシンボル201に配置可能な信号をM0ビット、パイロットシンボルと同時刻のデータシンボル212に配置可能な信号をM1ビット、誤り訂正符号化前の送信信号をN0ビット、誤り訂正符号化後の信号をN1ビットとする。例えば図5のシンボル配置で各シンボルの変調方式として1シンボルあたり2ビット通信可能なQPSKを用い、2スロットを1単位としてデータ配置を行う場合、パイロットシンボルと同時刻ではないデータシンボル201の数は120あるため、M0=240となる。同様に、パイロットシンボルと同時刻のデータシンボル212の数は40あるため、M1=80となる。
 図14は、本発明の実施の形態における信号配置の条件分岐を表す図の一例を示す図である。
 信号配置は図14に示すとおり、M0、M1、N0、N1の値間の関係によってそれぞれ以下の通りに行う。
 A) N0 ≦ M0 ≦ N1 かつ M0+M1 ≦ N1の場合 : 誤り訂正符号化後の信号N1ビットからM0ビットを抜き出して符号化率N0/M0のパンクチャド符号を構成して、そのパンクチャド符号をパイロットシンボルと同時刻ではないデータシンボル201に配置する。さらに誤り訂正符号化後の信号のうちパイロットシンボルと同時刻ではないデータシンボル201に配置されなかった信号からM1ビットを抜き出し、パイロットシンボルと同時刻のデータシンボル212に配置する。なお、誤り訂正符号化後の信号N1ビットのうち、M0にもM1にも配置されなかった信号に関しては、そのまま廃棄しても良いし、例えばハイブリッドARQのような再送制御を行う場合に再送に用いる情報として優先的に選択してもよい。
 B) N0 ≦ M0 ≦ N1 かつ M0+M1 > N1の場合 : 誤り訂正符号化後の信号N1ビットからM0ビットを抜き出して符号化率N0/M0のパンクチャド符号を構成して、そのパンクチャド符号をパイロットシンボルと同時刻ではないデータシンボル201に配置する。さらに誤り訂正符号化後の信号のうちパイロットシンボルと同時刻ではないデータシンボル201に配置されなかった信号全てをパイロットシンボルと同時刻のデータシンボル212に配置し、更に既にいずれかのデータシンボルに配置された信号からM0+M1-N1ビット分の信号を適宜の手法により選択してパイロットシンボルと同時刻のデータシンボル212に配置する。
 C) M0 > N1 の場合 : 誤り訂正符号化後の信号N1ビットを全てパイロットシンボルと同時刻ではないデータシンボル201に配置する。さらに既にデータシンボルに配置された信号からM0-N1ビット分の信号を選択してパイロットシンボルと同時刻ではないデータシンボル201に、M1ビット分の信号を適宜の手法により選択してパイロットシンボルと同時刻のデータシンボル212に配置する。
 D) M0 < N0 ≦ M0+M1 の場合 : 誤り訂正符号化後の信号N1ビットから符号化率N0/(M0+M1)の符号を構成し、パイロットシンボルと同時刻のデータシンボル212及びパイロットシンボルと同時刻ではないデータシンボル202に配置する。
 E) M0+M1 < N0の場合 : 1単位の送信では受信不可能であり、再送制御等により複数回の送信データをまとめることで受信可能となる状態である。この場合には、x単位の送信で受信可能となる場合、x単位分の、パイロットシンボルと同時刻ではないデータシンボル201に配置可能なビット数をまとめてM0、x単位分の、パイロットシンボルと同時刻のデータシンボル212に配置可能なビット数をまとめてM1として扱い、上記A)、B)、C)、D)のいづれかの場合にあてはめる。例えば、2スロットを1単位として、2単位分(x=2)のデータ配置を行う場合、図5の例では、データシンボル201についてはM0=480、データシンボル212についてはN1=160となり、これらに基づき、上記A)、B)、C)、D)のいずれかの場合にあてはめてデータを配置する。
 以上に示したようなデータの配置にて用いるパンクチャド符号の構成方法としては、簡単には例えば誤り訂正符号として組織符号を使用する際の組織ビットを優先的にパイロットシンボルと同時刻ではないデータシンボル201に割り当てる方法がある。
 図7は無線通信において用いられる組織符号の一つであるターボ符号の符号化部の模式図である。ターボ符号化器では符号化前信号500は、直接組織ビット列501として出力される他に、再帰的畳込み符号化部511を通じて再帰的畳み込み符号化されたパリティビット列502及び、ターボインタリーバ510において順序の変換を行った後に再帰的畳込み符号化部512を通じて再帰的畳み込み符号化されたパリティ信号列503として出力される。
 図7のターボ符号器を用いて符号化された信号に対して本発明を適用する場合、組織ビット列501を優先的にパイロットシンボルと同時刻ではないデータシンボル201に配置した後に、パリティビット列502及び503をパイロットシンボルと同時刻ではないデータシンボル201及びパイロットシンボルと同時刻のデータシンボル212に配置すれば良い。
 なおここでは組織符号の例としてターボ符号を挙げたが、例えばLDPC符号のようなターボ符号とは異なる組織符号であっても同じ方法は適用可能である。また復号可能なパンクチャド符号を構成可能でさえあればこれとは異なるパンクチャド符号の構成方法を用いても良く、また誤り訂正符号として組織符号を用いる必要もない。
 以上の信号配置によれば、他セルのパイロット信号由来の干渉によって品質劣化するパイロットシンボルと同時刻のデータシンボル212を用いずとも復号することが可能となるため、セル間干渉が存在する環境においても通信品質の低下を抑えることが出来る。
 図15は、本発明の実施の形態における信号配置の模式図の別の一例である。縦軸がサブキャリア即ち周波数を、横軸がOFDMシンボル即ち時間を表し、個々の矩形が一つの変調シンボルを表す。灰色の矩形がパイロットシンボル202を表し、斜線付の矩形がパイロットシンボルと同時刻のデータシンボル212、白色の矩形がその他のパイロットシンボルと同時刻ではないデータシンボル201を表す。また一点鎖線の範囲は一つ目のチャネル範囲221であり、一点鎖線の範囲内のデータシンボルをあわせて一つのチャネルを構成することを表す。また破線の範囲は図中のチャネル範囲222であり、破線の範囲内のデータシンボルをあわせてもう一つのチャネルを構成することを表す。
 図15の信号配置のように、データ配置を行う一つの単位内にそれぞれ別個に誤り訂正符号化を行う複数のチャネルを配置する場合には、それぞれのチャネルごとに図5の信号配置と同様の信号配置を行ってもよいし、例えば一つ目のチャネル範囲221は図5の信号配置と同様の信号配置を行わず、二つ目のチャネル範囲222についてのみ図5と信号配置と同様の信号配置を行っても良い。
 なお、図15はデータ配置を行う単位内に2つのチャネルが配置される場合の例であるが、3以上のチャネルを配置する場合についても同様である。
 図6は、本発明の実施の形態における信号配置の模式図の別の一例である。縦軸がサブキャリア即ち周波数を、横軸がOFDMシンボル即ち時間を表し、個々の矩形が一つの変調シンボルを表す。灰色の矩形がパイロットシンボル202を表し、斜線付の矩形がパイロットシンボルと同時刻のデータシンボル212、白色の矩形がその他のパイロットシンボルと同時刻ではないデータシンボル201を表す。また×印付の矩形は別のアンテナにてパイロット信号を送信する等により信号を送信しない無送信シンボル203であり、縦縞付の矩形は無送信シンボルと同時刻のデータシンボル213である。
 図6の信号配置の場合には、パイロットシンボルと同時刻のデータシンボル212およびパイロットシンボルと同時刻ではないデータシンボル201に対する信号配置の方法は、図5の信号配置の場合と同様である。無送信シンボルと同時刻のデータシンボル213に関しては、上記パイロットシンボルと同時刻のデータシンボル212として扱っても良いし、或いは上記パイロットシンボルと同時刻ではないデータシンボル201として扱っても良い。
2-2.通信装置
 以下、本発明における通信装置(送信局並びに受信局)の構成を図面に基づいて説明する。
 図1は、本発明を適用する通信装置(無線局)における信号処理を表すブロック図である。
 誤り訂正符号化部301は、例えばターボ符号や畳込み符号、リードソロモン符号、LDPC符号といった誤り訂正符号を用いて入力された送信情報に対する誤り訂正符号化を行い、インタリーブ部302に対して出力する。なお誤り訂正符号化部301では、誤り訂正符号化前に送信情報に対して例えばCRCのような誤り検出符号を付加しても良い。また誤り訂正符号化の前もしくは後に例えばPN符号を用いた信号のランダム化処理を行っても良い。
 インタリーブ部302は、入力された信号に対して信号順序の入れ替えであるインタリーブ処理を行い、送信バッファ部303に出力する。送信バッファ部303は入力された信号を蓄積し、単位時間毎に送信する情報量に応じて多重化・マッピング部304に出力する。
 なお誤り訂正符号化部301から送信バッファ部303までの処理は、例えば制御信号用のチャネル及び1ないし複数のデータ信号用のチャネルの信号を生成する場合や、あるいは複数のユーザに対する信号を生成する場合には、複数のブロックを並列に持って処理を行う事も可能であるし、1ないし複数のブロックを時多重により繰り返し使用することも可能である。
 多重化・マッピング部304は、データシンボルに信号を配置するとともに、パイロットシンボルにパイロット信号を配置する。多重化・マッピング部304は入力された信号及びパイロット信号を、複数チャネルを用いる通信であれば複数チャネル分、複数ユーザの通信であれば複数ユーザ分、それぞれについて送信を行うサブキャリア及びシンボル時間に対応してマッピングを行って出力を行う。
 図1の無線局が送信局である場合には、多重化・マッピング部304の出力の時点で上記ルールに従った信号配置が為されるようにマッピングを行う。上記ルールでは信号が配置されるサブキャリア及びシンボル時間と、誤り訂正符号化部301の出力との対応が関係付けられればよいため、その間のいずれの箇所にて上記ルールに従った配置が実装されてもよい。即ち、例えば誤り訂正符号化部301において組織符号を用いて符号化を行い、インタリーブ部302では組織ビットとパリティビットとをそれぞれ個別にインタリーブし、多重化・マッピング部304でそれら信号を上記ルールに従ってサブキャリア及びシンボル時間に割り当てても良い。また例えば多重化・マッピング部304におけるマッピングルールは固定とし、当該マッピングルールにてサブキャリア及びシンボル時間に信号を割り当てた際に上記ルールに従うように予めインタリーブ部302においてインタリーブを行っても良い。
 シンボル変調部305は各サブキャリア及びシンボル時間毎に割りあてられた信号を、例えばBPSKやQPSK、8PSK、16QAM等のシンボル変調方式にて各サブキャリア及びシンボル時間毎に変調処理を行う。IFFT部306はシンボル変調部305から入力された信号を周波数軸に並べ、IFFT演算により時間領域信号に変換して出力する。
 GI挿入部307は、図8の模式図のように、IFFT信号処理単位毎にIFFT演算後の時間領域信号の末尾一部をコピーして先頭に挿入するガードインターバル挿入処理を行い、RF部を通じて信号を無線周波数帯域の信号に変換して送信を行う。
 タイミング検出部408は、RF部を通じてベースバンド帯域に変換された受信信号を用いて受信信号タイミングを検出してFFT部406に対して出力する。受信信号タイミングの検出手段としては、例えば受信信号と固定パターン信号との相互相関値を用いても良いし、IFFT単位だけ離れた受信信号自体の自己相関値を用いても良い。FFT部406は、RF部から入力された時間領域の信号に対して、タイミング検出部408から通知された受信タイミングを用いてIFFT単位に信号を切り分け、FFT処理を行って周波数領域の信号に変換して出力する。
 伝搬路推定部407は、FFT部406から入力された信号に含まれるパイロット信号の位相及び振幅と、送信された固定パターンであるパイロット信号の位相及び振幅とを比較し、比較結果からサブキャリア及び時間毎の位相及び振幅の変動量を推定してシンボル復調部405に対して通知する。シンボル復調部405は、伝搬路推定部407から通知された位相及び振幅変動の推定値を用いてFFT部406から入力された信号の伝搬路における変動を補償し、またQPSKや16QAM等のシンボル変調された信号を復調してビット毎の尤度を導出して出力する。
 信号分離部404はシンボル復調部405にて導出されたビットごとの尤度を例えばユーザ毎やチャネル毎に行う復号処理の単位毎に信号を抽出及び分離する。受信バッファ部403は復号処理の単位毎に信号分離部404の出力を保持し、復号を行う処理単位分の信号が蓄積されるとデインタリーブ部402に対して出力する。デインタリーブ部402では、送信時にインタリーブ部302においてなされた順序変換の逆変換に相当する順序変換であるデインタリーブ処理を行う。誤り訂正復号部401では、送信時に誤り訂正符号化部301にて用いた誤り訂正符号を用いて復号処理を行い、受信情報として出力する。また送信時に誤り訂正符号化部301において誤り訂正符号化の前もしくは後にランダム化処理が為されていた場合には、復号処理の後もしくは前にランダム化処理に対応する逆変換処理を行う。また送信時に誤り訂正符号化部301において誤り訂正符号化の前に誤り検出符号が付加されていた場合には、復号処理の後に誤り検出処理を行い、誤り検出結果を受信情報に付加して出力する。
 なお受信バッファ部403から誤り訂正部401までの処理は、例えば制御信号用のチャネル及び1ないし複数のデータ信号用のチャネルの信号を受信する場合や、あるいは複数のユーザに対する信号を受信する場合には、複数のブロックを並列に持って処理を行う事も可能であるし、1ないし複数のブロックを時多重により繰り返し使用することも可能である。
 また上記に記した信号処理の流れはあくまでも一例であり、送信時には最終的にRF部から出力される信号が同じ形であれば、受信時には誤り訂正復号部401から出力される信号が同じ形であれば、信号処理の流れ及び順序はどのような形であっても構わない。例えば上記例ではシンボル変調部305は多重化・マッピング部204の後に記しているが、シンボル変調部305をインタリーブ部302の直後とし、送信バッファ部303に蓄積する前にシンボル変調を行うような構成でも良い。
3.第2の実施の形態
 第1の実施の形態では信号配置のみに着目した方法について記載したが、別の実施の形態として変調方法の変更によっても本発明の目的を達成可能である。
 即ち図5の信号配置の場合、パイロットシンボルと同時刻ではないデータシンボル201において用いる変調方式に比べて、パイロットシンボルと同時刻のデータシンボル212に用いる変調方式を誤り耐性の強い方式とすることで、他セルのパイロットシンボルからの干渉によって生じる通信品質の低下を低減する事が出来る。
 一般的に変調方式毎のシンボルあたりに伝送可能な最大ビット数が小さい変調方式ほど誤り耐性が強い。このため、例えばパイロットシンボルと同時刻ではないデータシンボル201において、1シンボルあたり最大6ビットの情報を伝送可能な64QAMを用いている場合に、パイロットシンボルと同時刻のデータシンボル212において1シンボルあたり最大4ビットの情報を伝送可能な16QAMを用いる事や、1シンボルあたり最大2ビットの情報を伝送可能なQPSKを用いる事により本目的を達成する事が出来る。
 また他セルのパイロットシンボルに対する干渉を低減する為に、シンボル毎に大きなピーク電力が生じる事が無いよう、パイロットシンボルと同時刻のデータシンボル212においては振幅方向には情報を持たず、位相方向にのみ情報を持つBPSKやQPSK、8PSK等の変調方式を用いる事によっても、本目的を達成する事が出来る。
 なお信号配置が図6の模式図に示すとおりである場合についても、第1の実施の形態の場合と同様にパイロットシンボルと同時刻のデータシンボル212およびパイロットシンボルと同時刻ではないデータシンボル201に対する変調方式の選択の方法は上記図5の変調方式の選択と同様である。無送信シンボルと同時刻のデータシンボル213に関しては、上記パイロットシンボルと同時刻のデータシンボル212として扱っても良いし、或いは上記パイロットシンボルと同時刻ではないデータシンボル201として扱っても良い。
 以下、本実施の形態における通信装置(送信局並びに受信局)の構成を、図1のブロック図に基づいて説明する。信号の送信及び受信に係る図1のブロック図各部の動作については、基本的に第1の実施の形態にて記載の動作と同じである。
 図1の通信装置(無線局)が本第2の実施の形態の送信局である場合には、シンボル変調部305においてパイロットシンボルと同時刻ではないデータシンボル201とパイロットシンボルと同時刻のデータシンボル212とで異なる変調方式を選択する。例えばパイロットシンボルと同時刻のデータシンボル212で用いる変調方式を、パイロットシンボルと同時刻ではないデータシンボル201で用いる変調方式に比べ、1シンボルあたりに伝送可能な最大ビット数が少ない変調方式を選択する。あるいは、パイロットシンボルと同時刻のデータシンボル212にて用いる変調方式として、振幅方式に情報を持たない例えばBPSKやQPSK、8PSKといった変調方式を選択する。なお、シンボル変調部305において複数のチャネル或いは複数のユーザに対する信号の処理を行う際には、チャネルごと或いは対象のユーザ毎に変調方式を個別に選択しても良い。
 なお本実施の形態において示した方式は単独で用いる事ができる他、第1の実施の形態において記した方法と両方を同時に実施する事も可能である。
4.第3の実施の形態
 第1の実施の形態及び第2の実施の形態に記載の方法は、送信電力の制御を追加する事で本発明の目的を更に効果的に達成する事が出来る。即ち第1の実施の形態もしくは第2の実施の形態記載の方法の一方もしくは両方を適用した上で、パイロットシンボルと同時刻のデータシンボル212の1シンボルあたりの送信電力を、パイロットシンボルと同時刻ではないデータシンボル201の1シンボルあたりの送信電力よりも小さくすることで、あるいはパイロットシンボルと同時刻のデータシンボル212のシンボルあたりの送信電力を0とすることでセル間干渉の影響を低減することが可能である。
 一般に、一部の送信シンボルの電力を低下させる、或いは0とする事によって当該シンボルを含む受信信号を復号した際の品質は低下する。しかるに第1の実施の形態記載の信号配置を組み合わせる事によって復号品質の低下を軽減する事が出来る。また第2の実施の形態記載のようにパイロットシンボルと同時刻のデータシンボル212で用いる変調方式のシンボルあたりのビット数を小さくする事によっても、復号品質の低下を軽減する事が出来る。
 更に一般的に一部の送信シンボルの電力を低下させる、或いは0とする場合にはどのシンボルの電力がどの変化したかの情報を送信局と受信局とで共有する必要がある。しかるに第2の実施の形態記載のようにパイロットシンボルと同時刻のデータシンボル212にて振幅方向に情報を持たない変調方式を用いる事により、送信局においてパイロットシンボルと同時刻のデータシンボル212の送信電力を低下させたか否か、或いはパイロットシンボルと同時刻のデータシンボル212の送信電力をどの程度低下させたかの情報を持たずとも受信局は信号の復調が可能である為、容易に送信電力を変更することが可能である。
 なお信号配置が図6の模式図に示すとおりである場合についても、第1及び第2の実施の形態の場合と同様にパイロットシンボルと同時刻のデータシンボル212およびパイロットシンボルと同時刻ではないデータシンボル201に対する送信電力決定の方法は、上記図5の送信電力決定の方法と同様である。無送信シンボルと同時刻のデータシンボル213に関しては、上記パイロットシンボルと同時刻のデータシンボル212として扱っても良いし、或いは上記パイロットシンボルと同時刻ではないデータシンボル201として扱っても良い。
 以下、本実施の形態における通信装置(送信局並びに受信局)の構成を図1のブロック図に基づいて説明する。信号の送信及び受信に係る図1のブロック図各部の動作については、基本的に第1の実施の形態にて記載の動作と同じである。
 図1の通信装置(無線局)が本第3の実施の形態の送信局である場合には、シンボル変調部205においてパイロットシンボルと同時刻ではないデータシンボル201の信号振幅よりも、パイロットシンボルと同時刻のデータシンボル212の信号振幅を低下させる。あるいはシンボル変調部205において、パイロットシンボルと同時刻のデータシンボル212の信号振幅を0とする。なお、シンボル変調部305において複数のチャネル或いは複数のユーザに対する信号の処理を行う際には、チャネルごと或いは対象のユーザ毎に信号振幅を個別に選択しても良い。
 また受信局において受信する信号が本第3の実施の形態の送信局が送信する信号である事が予め判明している場合には、図1の無線局が受信局である場合にはシンボル復調部305においてパイロットシンボルと同時刻のデータシンボル212の復調結果として求まる尤度を減少させる、あるいは0としても良い。復調結果として求まる尤度を減少させる処理としては、尤度に対して例えば0.5のような1よりも小さな係数を乗算する方法がある。対応するビットの尤度を0とする処理としては、同様に尤度に対して0を乗算する方法がある。
5.第3の実施の形態の変形例
 上記第3の実施の形態の制御は、固定的に行うだけではなく条件をトリガにして実施する事も可能である。
 図10は、本実施の形態の無線局における信号処理を表すブロック図の別の一例である。図10のブロック図は図1のブロック図に対して、干渉低減判定部310が追加されている点及びシンボル変調部305に対して干渉低減判定部310からの入力が追加されている点が異なっており、この2点以外の各部については以上の実施の形態にて示した通りの動作を行う。
 図11は、本実施の形態におけるシンボル変調部305の処理の流れの一例である。シンボル変調部305では、処理P601から処理P605までのチャネル数及びユーザ数分の繰り返し処理を行う。繰り返し処理の内部では、まず、処理P602の干渉低減指示の判断処理として、干渉低減判定部310からの通知を判断し、干渉低減指示がOnであれば次の処理として処理P603に、干渉低減指示がOffであれば次の処理として処理P604にジャンプする。処理P603では、パイロットと同時刻のデータシンボル212の信号振幅を低下させる処理を行い次の処理P604に移行する。P604では、各サブキャリア及びシンボル時間毎に例えばQPSKや16QAMといった変調方式を用いてシンボル変調処理を行い、処理P604処理の終了をもって繰り返し処理の終了とする。
 干渉低減判定部310は各チャネル及び各ユーザの信号に対して干渉低減のための電力制御が必要か否かの判定を行い、干渉低減指示Onもしくは干渉低減指示Offをシンボル変調部305に対して通知する。判定の条件としては、例えば自局の種別によって、自局がフェムトセルであればOnとする。また別の判定の条件としては、例えば信号の送信先局の種別によって、送信先局がフェムトセルであればOnとする。また別の判定の条件としては、例えば信号の送信先のユーザ種別によってOnとするユーザとOffとするユーザとを切り替える。また別の判定の条件としては、例えば信号のQoSによって、ベストエフォートタイプの通信の場合にOnとする。また別の判定の条件としては、例えば当該チャネルの送信電力の総量によって、総送信電力が大きなチャネルに対してOnとする。
 図12は、本実施の形態の無線局における信号処理を表すブロック図の別の一例であり、本実施の形態の受信局を図12のブロック図のように構成することも可能である。図12のブロック図は図10のブロック図に対して、電力低下判定部409が追加されている点及びシンボル復調部405に対して電力低下判定部409からの入力が追加されている点が異なっており、この2点以外の各部については図10のブロック図の説明の通りの動作を行う。
 図13は、本実施の形態における電力低下判定部409の処理の流れの例である。電力低下判定部409では、処理P611から処理P617までのチャネル数及びユーザ数分の繰り返し処理を行う。繰り返し処理の内部では、まず、処理P612において電力低下判定係数Cを決定する。電力低下判定係数Cは送信局におけるパイロットシンボルと同時刻のデータシンボル212の電力低下を判定するための非負の値である。係数Cが小さいほど電力低下を見逃す可能性が低下する一方で、送信局において電力低下がなされていないにもかかわらず電力低下されたと誤判定してしまう可能性が増加する。逆に係数Cが大きいほど誤判定の可能性は低下するものの電力低下を見逃す可能性が増加する。Cとして用いる値としては、例えば4等の値を固定的に用いても良い。また通信状況に応じて例えば通信状況の変動が小さく誤判定の可能性が低い場合には小さめの係数Cを選択するように適応的に変更しても良い。次いで処理P613においてチャネル内のパイロットシンボルのシンボルあたりの平均電力Prを導出する。平均電力Prの導出の際には、過去の値を用いた平均化を行っても良い。次いで処理P614において、チャネル内のパイロットシンボルと同時刻のデータシンボル212のシンボルあたりの平均電力Pdを導出する。
 なお、図13では便宜上処理P612、処理P613、処理P614をこの順で記載しているが、これら処理はそれぞれ独立であるためどのような順序で実行しても良い。以上の処理の後、処理P615では平均電力Pdと係数Cとの積の値と平均電力Prの値との比較を行う。比較の結果、平均電力Prの方が大きい場合には次の処理として処理P616に、その他の場合には処理P617の繰り返し処理の終了にジャンプする。処理P616では、尤度低下指示をシンボル復調部405に通知する。処理P616の終了もしくは処理P615の分岐の結果によって繰り返し処理の終了となる。
 この実施の形態においては、シンボル復調部405では電力低下判定部409からの尤度低下指示が通知された場合には該当するチャネル及びユーザのパイロットシンボルと同時刻のデータシンボル212に対応するビットの尤度を低下させる、或いは0とする処理を行う。対応するビットの尤度を低下させる処理としては、例えば尤度低下判定部409からの尤度低下指示が通知されない場合には尤度に対して係数1を乗算し、尤度低下判定部409からの尤度低下指示が通知された場合には尤度に対して1よりも小さな係数、例えば0.5、を乗算する方法がある。対応するビットの尤度を0とする処理としては、同様に尤度低下判定部409からの尤度低下指示が通知された場合には尤度に対して0を乗算する方法がある。
6.通信装置の他の構成
 なお、以上の構成図では信号処理のブロック毎に説明したが、実際にはそれぞれが独立した実体を持つ必要は無く、汎用の処理モジュールを用いて各ブロックの動作を実現する実装でも良い。
 例えば、図9は、DSPやCPUを主体とした送受信機実装例の模式図である。
 ブロック701はCPU及びDSPモジュールであり、各上記実施の形態にて示した信号処理演算及び信号処理の制御を行う。ブロック702はメモリモジュールであり、処理中及び処理前後の送信信号及び受信信号や、信号処理に用いるテーブル類を保持する。ブロック703は論理回路モジュールであり、CPU/DSP701と同様に各上記実施の形態にて示した信号処理演算及び信号処理の制御を行う。ブロック704はインタフェースモジュールであり、制御信号や信号処理前の送信信号、信号処理後の受信信号の入出力を行う。ブロック705はRFモジュールであり、送信信号に対しては無線周波数帯域の信号に変換してアンテナを経由して送信を行い、受信信号に対してはアンテナを介して受信した信号をベースバンド帯域の信号に変換する。バス706は、上記各モジュールを接続する。
 第1から第4の実施の形態にて示した各処理ブロックにおける信号処理演算及び信号処理の制御それぞれは、CPU/DSPモジュール701におけるプログラムと論理回路モジュール703における演算回路との一方もしくは両方及び必要であればメモリモジュール702を用いて行われる。
 なお、図9は最も単純な実装例であり各モジュール一つずつを記載しているが、各モジュール及びバスはそれぞれ必ずしも単一である必要は無い。例えば複数のCPU/DSPモジュール701があっても良く、また複数のバス706があっても良い。またバス706が複数ある場合には、必ずしもすべてのバスが全てのモジュールと接続している必要は無く、例えば全てのモジュールと接続しているバスの他に、メモリモジュール702と論理回路モジュール703とのみを接続するバスがあっても良い。
 本発明は、上述した以外にも様々な各種マルチキャリア通信方式、変調方式等に適用することができる。

Claims (22)

  1.  符号化した信号を複数のサブキャリアを用いて通信するマルチキャリア通信方式において、サブキャリア番号とシンボル番号とにより定められた各シンボル、又は、周波数軸と時間軸とにより定められた各シンボルに、データ信号及び既知のパターンのパイロット信号を配置するための信号配置方法であって、
     N0ビットの送信信号を誤り訂正符号化してN1ビットの信号を生成し、
     パイロットシンボルと同時刻でない複数の第1のデータシンボルに配置可能な信号がM0ビット、パイロットシンボルと同時刻の複数の第2のデータシンボルに配置可能な信号がM1ビットであるとき、
    (i)N0≦M0≦N1の場合、
     誤り訂正符号化後の信号N1ビットから誤り訂正符合化前のN0ビットの送信信号の復号に最低限必要なM0ビットを抜き出して符号化率N0/M0のパンクチャド符号を構成して、該パンクチャド符号を前記複数の第1のデータシンボルに配置し、さらに、誤り訂正符号化後の信号のうち前記複数の第1のデータシンボルに配置されなかった信号の一部又は全てのビットを、前記複数の第2のデータシンボルに配置し、
    (ii)M0>N1の場合、
     誤り訂正符号化後の信号N1ビットを全て前記複数の第1のデータシンボルに配置し、
    (iii)M0<N0≦M0+M1の場合、
     誤り訂正符号化後の信号N1ビットから符号化率N0/(M0+M1)の符号を構成し、前記複数の第1のデータシンボル及び前記複数の第2のデータシンボルに配置する
    ことを特徴とする信号配置方法。
     
  2.  請求項1に記載の信号配置方法であって、
     i-1) N0≦M0≦N1かつM0+M1≦N1の場合、誤り訂正符号化後の信号N1ビットのうち、前記複数の第1のデータシンボルにも前記複数の第2のデータシンボルにも配置されなかった信号を、そのまま廃棄する、又は、再送に用いる情報として優先的に選択及び/又は記憶し、
     i-2) N0≦M0≦N1かつM0+M1>N1の場合、更に既に前記複数の第1のデータシンボル又は前記複数の第2のデータシンボルのいずれかに配置された信号からM0+M1-N1ビット分の信号を選択して前記複数の第2のデータシンボルに配置する
    ことを特徴とする信号配置方法。
     
  3.  請求項1に記載の信号配置方法であって、
     (ii) M0>N1の場合、さらに既に前記複数の第1のデータシンボルに配置された信号から、M0-N1ビット分の信号を選択して前記複数の第1のデータシンボルに、M1ビット分の信号を選択して前記複数の第2のデータシンボルに配置することを特徴とする信号配置方法。
     
  4.  請求項1に記載の信号配置方法であって、
     (iv)M0+M1<N0の場合、信号がx単位(x≧2)の送信で受信可能となる場合、x単位分の前記複数の第1のデータシンボルに配置可能なビット数をまとめてM0、x単位分の前記複数の第2のデータシンボルに配置可能なビット数をまとめてM1として扱い、上記(i)、(ii)、(iii)のいずれかの場合にあてはめて信号を配置することを特徴とする信号配置方法。
     
  5.  請求項1に記載の信号配置方法であって、
     さらに、前記マトリクス上に、信号を送信しない複数の無送信シンボルを配置し、
     前記複数の無送信シンボルと同時刻の複数の第3のデータシンボルに関しては、前記複数の第2のデータシンボルとして扱う、または、前記複数の第1のデータシンボルとして扱うことを特徴とする信号配置方法。
     
  6.  符号化した信号を複数のサブキャリアを用いて通信するマルチキャリア通信方式において、サブキャリア番号とシンボル番号とにより定められた各シンボル、又は、周波数軸と時間軸とにより定められた各シンボルに、データ信号及び既知のパターンのパイロット信号を配置するための信号配置方法であって、
     パイロット信号と同時刻のデータシンボルに用いる変調方式の1シンボルあたりに伝送可能な最大伝送ビット数が、パイロット信号と同時刻でないデータシンボルに用いる変調方式の1シンボルあたりに伝送可能な最大伝送ビット数よりも少なくしたことを特徴とする信号配置方法。
     
  7.  符号化した信号を複数のサブキャリアを用いて通信するマルチキャリア通信方式において、サブキャリア番号とシンボル番号とにより定められた各シンボル、又は、周波数軸と時間軸とにより定められた各シンボルに、データ信号及び既知のパターンのパイロット信号を配置するための信号配置方法であって、
     パイロットシンボルと同時刻でないデータシンボルにおいては、振幅方向及び位相方向に情報を持つ変調方式を用い、
     パイロットシンボルと同時刻のデータシンボルにおいては振幅方向には情報を持たず、位相方向にのみ情報を持つ変調方式を用いる
    ことを特徴とする信号配置方法。
     
  8.  請求項1に記載の信号配置方法と、
     請求項6に記載の信号配置方法と
    を含む信号配置方法。
     
  9.  請求項1に記載の信号配置方法と、
     請求項7に記載の信号配置方法と
    を含む信号配置方法。
     
  10.  請求項1に記載の信号配置方法であって、
     前記第2のデータシンボルの送信電力又は振幅を、前記第1のデータシンボルの送信電力又は振幅よりも小さくすることで、または、前記第2のデータシンボルの送信電力又は振幅を0とすることを特徴とする信号配置方法。
     
  11.  請求項6に記載の信号配置方法であって、
     前記パイロット信号と同時刻のデータシンボルの送信電力又は振幅を、前記パイロット信号と同時刻でないデータシンボルの送信電力又は振幅よりも小さくすることで、または、前記パイロット信号と同時刻のデータシンボルの送信電力又は振幅を0とすることを特徴とする信号配置方法。
     
  12.  請求項7に記載の信号配置方法であって、
     前記パイロット信号と同時刻のデータシンボルの送信電力又は振幅を、前記パイロット信号と同時刻でないデータシンボルの送信電力又は振幅よりも小さくすることで、または、前記パイロット信号と同時刻のデータシンボルの送信電力又は振幅を0とすることを特徴とする信号配置方法。
     
  13.  請求項10に記載の信号配置方法であって、
     干渉低減のための電力制御が必要であることを示す干渉低減指示に従い、前記複数の第2のデータシンボルの信号振幅を低下させること又は0とすることを特徴とする信号配置方法。
     
  14.  請求項10に記載の信号配置方法であって、
     前記複数の第2のデータシンボルの復調結果として求められる尤度を低下させるまたは0とすることを特徴とする信号配置方法。
     
  15.  請求項10に記載の信号配置方法であって、
     パイロットシンボルの電力と、前記第2のデータシンボルの電力とを比較し、その比較結果に従い尤度低下指示を通知し、シンボル復調処理において、前記尤度低下指示に従い、該当するチャネル及び/又はユーザーの前記第2のデータシンボルに対応するビットの尤度を低下させる又は0とすることを特徴とする信号配置方法。
     
  16.  請求項15に記載の信号配置方法であって、
     電力低下判定係数Cを、送信局における前記複数の第2のデータシンボルの電力低下を判定するための非負の値である予め定められた係数とし、平均電力Prを、チャネル内のパイロットシンボルのシンボルあたりの平均電力とし、平均電力Pdを、チャネル内の前記複数の第2のデータシンボルのシンボルあたりの平均電力としたとき、
     平均電力Pdと予め定められた電力低下判定係数Cとの積の値と、平均電力Prの値との比較を行い、比較の結果、平均電力Prの方が大きい場合に、前記尤度低下指示を通知することを特徴とする信号配置方法。
     
  17.  符号化した信号を複数のサブキャリアを用いて通信するマルチキャリア通信方式において、サブキャリア番号とシンボル番号とにより定められた各シンボル、又は、周波数軸と時間軸とにより定められた各シンボルに、データ信号及び既知のパターンのパイロット信号を配置するための通信装置であって、
     N0ビットの送信信号を誤り訂正符号化してN1ビットの信号を生成する誤り訂正符号化部と、
     前記誤り訂正符号化部からの誤り訂正符号化後の信号N1ビットと、パイロット信号とを前記各シンボルに多重化及びマッピングする多重化マッピング部と、
    を備え、
     パイロットシンボルと同時刻でない複数の第1のデータシンボルに配置可能な信号がM0ビット、パイロットシンボルと同時刻の複数の第2のデータシンボルに配置可能な信号がM1ビットであるとき、
     前記多重化マッピング部は、
    (i)N0≦M0≦N1の場合、
     誤り訂正符号化後の信号N1ビットから、誤り訂正符合化前のN0ビットの送信信号の復号に最低限必要なM0ビットを抜き出して符号化率N0/M0のパンクチャド符号を構成して、該パンクチャド符号を前記複数の第1のデータシンボルに配置し、さらに、誤り訂正符号化後の信号のうち前記複数の第1のデータシンボルに配置されなかった信号の一部又は全てのビットを、前記複数の第2のデータシンボルに配置し、
    (ii)M0>N1の場合、
     誤り訂正符号化後の信号N1ビットを全て前記複数の第1のデータシンボルに配置し、
    (iii)M0<N0≦M0+M1の場合、
     誤り訂正符号化後の信号N1ビットから符号化率N0/(M0+M1)の符号を構成し、前記複数の第1のデータシンボル及び前記複数の第2のデータシンボルに配置する
    ことを特徴とする通信装置。
     
  18.  符号化した信号を複数のサブキャリアを用いて通信するマルチキャリア通信方式において、サブキャリア又は周波数とシンボル番号又は時間軸とのマトリクスで表された各シンボルに、データ信号及び既知のパターンのパイロット信号を配置するための通信装置であって、
     前記各シンボルに割り当てられた信号を変調するシンボル変調部を備え、
     前記シンボル変調部は、
     パイロット信号と同時刻のデータシンボルに用いる変調方式の1シンボルあたりに伝送可能な最大伝送ビット数が、パイロット信号と同時刻でないデータシンボルに用いる変調方式の1シンボルあたりに伝送可能な最大伝送ビット数よりも少なくしたことを特徴とする通信装置。
     
  19.  符号化した信号を複数のサブキャリアを用いて通信するマルチキャリア通信方式において、サブキャリア番号とシンボル番号とにより定められた各シンボル、又は、周波数軸と時間軸とにより定められた各シンボルに、データ信号及び既知のパターンのパイロット信号を配置するための通信装置であって、
     前記各シンボルに割り当てられた信号を変調するシンボル変調部を備え、
     前記シンボル変調部は、
     パイロット信号と同時刻でないデータシンボルにおいては、振幅方向及び位相方向に情報を持つ変調方式を用い、
     パイロット信号と同時刻のデータシンボルにおいては振幅方向には情報を持たず、位相方向にのみ情報を持つ変調方式を用いることにより、シンボル毎に大きなピーク電力が生じる事が無いようにした
    ことを特徴とする通信装置。
     
  20.  請求項17に記載の通信装置であって、
     前記第2のデータシンボルの送信電力又は振幅を、前記第1のデータシンボルの送信電力又は振幅よりも小さくすることで、または、前記複数の第2のデータシンボルの送信電力又は振幅を0とすることを特徴とする通信装置。
     
  21.  請求項18に記載の通信装置であって、
     前記パイロット信号と同時刻のデータシンボルの送信電力又は振幅を、前記パイロット信号と同時刻でないデータシンボルの送信電力又は振幅よりも小さくすることで、または、前記パイロット信号と同時刻のデータシンボルの送信電力又は振幅を0とすることを特徴とする通信装置。
     
  22.  請求項19に記載の通信装置であって、
     前記パイロット信号と同時刻のデータシンボルの送信電力又は振幅を、前記パイロット信号と同時刻でないデータシンボルの送信電力又は振幅よりも小さくすることで、または、前記パイロット信号と同時刻のデータシンボルの送信電力又は振幅を0とすることを特徴とする通信装置。
PCT/JP2009/071130 2008-12-22 2009-12-18 信号配置方法及び通信装置 WO2010073987A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09834788.3A EP2381602B1 (en) 2008-12-22 2009-12-18 Method of positioning of signal
US13/141,308 US8630313B2 (en) 2008-12-22 2009-12-18 Signal mapping method and communication device
JP2010544036A JP5377516B2 (ja) 2008-12-22 2009-12-18 信号配置方法及び通信装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-325929 2008-09-16
JP2008325929 2008-12-22

Publications (1)

Publication Number Publication Date
WO2010073987A1 true WO2010073987A1 (ja) 2010-07-01

Family

ID=42287597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071130 WO2010073987A1 (ja) 2008-12-22 2009-12-18 信号配置方法及び通信装置

Country Status (4)

Country Link
US (1) US8630313B2 (ja)
EP (1) EP2381602B1 (ja)
JP (1) JP5377516B2 (ja)
WO (1) WO2010073987A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014486A1 (ja) * 2010-07-30 2012-02-02 パナソニック株式会社 基地局装置及び送信電力制御方法
JP2015518331A (ja) * 2012-07-25 2015-06-25 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィMitsubishi Electric R&D Centre Europe B.V. 光受信機、光受信機によって実行される方法、光送信機、および光送信機によって実行される方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2410684B1 (en) 2009-03-16 2019-08-28 Sun Patent Trust Radio receiving apparatus, radio transmitting apparatus and wireless communication method
JP5280384B2 (ja) * 2010-01-28 2013-09-04 Kddi株式会社 無線基地局装置及び無線通信方法
US10938608B2 (en) * 2015-11-19 2021-03-02 Sony Corporation Apparatus and method
US10454657B2 (en) 2017-02-28 2019-10-22 Qualcomm Incorporated Narrowband time-division duplex frame structure for narrowband communications
CN110838889B (zh) * 2018-08-16 2022-06-24 海能达通信股份有限公司 编码方法、解码方法、发送终端和接收终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005295200A (ja) * 2004-03-31 2005-10-20 Toshiba Corp 通信装置および通信方法
WO2007138753A1 (ja) * 2006-05-31 2007-12-06 Hitachi Communication Technologies, Ltd. マルチキャリア通信における符号化信号配置方法及び通信装置
JP2008160822A (ja) * 2006-11-30 2008-07-10 Matsushita Electric Ind Co Ltd 無線送信装置、無線受信装置、無線送信方法、及び、無線受信方法
JP2008172377A (ja) 2007-01-09 2008-07-24 Ntt Docomo Inc Ofdm方式を利用する移動通信システムで使用される送信装置、受信装置及び方法
JP2008533801A (ja) * 2005-03-09 2008-08-21 三星電子株式会社 広帯域無線通信システムにおける時空間符号化データの副搬送波写像装置及び方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6947748B2 (en) * 2000-12-15 2005-09-20 Adaptix, Inc. OFDMA with adaptive subcarrier-cluster configuration and selective loading
JP4323985B2 (ja) * 2003-08-07 2009-09-02 パナソニック株式会社 無線送信装置及び無線送信方法
US7457231B2 (en) * 2004-05-04 2008-11-25 Qualcomm Incorporated Staggered pilot transmission for channel estimation and time tracking
JP2007329588A (ja) * 2006-06-06 2007-12-20 Fujitsu Ltd 送信機及び送信方法
US8315660B2 (en) * 2007-02-14 2012-11-20 Qualcomm Incorporated User power offset estimation using dedicated pilot tones for OFDMA
US8411732B2 (en) * 2007-03-21 2013-04-02 Qualcomm Incorporated Fast square root algorithm for MIMO equalization
US7804893B2 (en) * 2007-04-26 2010-09-28 Broadcom Corporation Feedback of reinterleaved correctly decoded data block to decoder for use in additional channel decoding operations of channel coded word containing data block

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005295200A (ja) * 2004-03-31 2005-10-20 Toshiba Corp 通信装置および通信方法
JP2008533801A (ja) * 2005-03-09 2008-08-21 三星電子株式会社 広帯域無線通信システムにおける時空間符号化データの副搬送波写像装置及び方法
WO2007138753A1 (ja) * 2006-05-31 2007-12-06 Hitachi Communication Technologies, Ltd. マルチキャリア通信における符号化信号配置方法及び通信装置
JP2008160822A (ja) * 2006-11-30 2008-07-10 Matsushita Electric Ind Co Ltd 無線送信装置、無線受信装置、無線送信方法、及び、無線受信方法
JP2008172377A (ja) 2007-01-09 2008-07-24 Ntt Docomo Inc Ofdm方式を利用する移動通信システムで使用される送信装置、受信装置及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2381602A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014486A1 (ja) * 2010-07-30 2012-02-02 パナソニック株式会社 基地局装置及び送信電力制御方法
JP2012034211A (ja) * 2010-07-30 2012-02-16 Panasonic Corp 基地局装置及び送信電力制御方法
JP2015518331A (ja) * 2012-07-25 2015-06-25 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィMitsubishi Electric R&D Centre Europe B.V. 光受信機、光受信機によって実行される方法、光送信機、および光送信機によって実行される方法

Also Published As

Publication number Publication date
JP5377516B2 (ja) 2013-12-25
US8630313B2 (en) 2014-01-14
EP2381602B1 (en) 2015-12-16
JPWO2010073987A1 (ja) 2012-06-14
EP2381602A4 (en) 2014-04-30
EP2381602A1 (en) 2011-10-26
US20110255519A1 (en) 2011-10-20

Similar Documents

Publication Publication Date Title
US10250428B2 (en) Transmitter and receiver and methods of transmitting and receiving
EP4075708B1 (en) Communication method and communication apparatus
KR100925439B1 (ko) 물리 하이브리드 arq 지시 채널 매핑 방법
US7746758B2 (en) Orthogonal-Frequency-Division-Multiplex-Packet-Aggregation (OFDM-PA) for wireless network systems using error-correcting codes
US8792359B2 (en) Communication system, transmitting device, receiving device, transmission method, and communication method
JP4125712B2 (ja) 直交周波数分割多重方式を使用する通信システムでの適応変調及びコーディングを制御するための装置及び方法
US8619917B2 (en) Decoding apparatus and method of terminal in wireless communication system
US20150049723A1 (en) Methods and Systems for HARQ Protocols
JP5377516B2 (ja) 信号配置方法及び通信装置
US20060101168A1 (en) Apparatus and method for allocating data bursts in a broadband wireless communication system
EP1557994A2 (en) Modulating and coding apparatus and method in a high-rate wireless data communication system
US8448038B2 (en) Method for transmitting data using HARQ
WO2009099308A2 (en) Method for transmitting control information in wireless communication system
CN110691340A (zh) 涉及消息的重新传输的无线车辆通信
EP2412110A1 (en) Apparatus and method for bit remapping in a relay enhanced communication system
US8599696B2 (en) Method of processing adaptive hybrid automatic repeat request (HARQ) scheme by selecting a start point of data block in a mother code
JP4153452B2 (ja) マルチキャリア適応変調通信システムとその送受信装置
EP2961083A1 (en) Multiple access scheme
KR100980275B1 (ko) 프레임 제어 헤더 디코딩 장치
CN112771824A (zh) 基站以及终端装置
EP1941776A1 (en) In-band rate control for an orthogonal frequency division multiple access communication system
Juang Enhanced wireless broadcasting systems employing network coding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010544036

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009834788

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13141308

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE