WO2010072060A1 - 超大跨度双层网架穹顶施工工艺 - Google Patents

超大跨度双层网架穹顶施工工艺 Download PDF

Info

Publication number
WO2010072060A1
WO2010072060A1 PCT/CN2009/071253 CN2009071253W WO2010072060A1 WO 2010072060 A1 WO2010072060 A1 WO 2010072060A1 CN 2009071253 W CN2009071253 W CN 2009071253W WO 2010072060 A1 WO2010072060 A1 WO 2010072060A1
Authority
WO
WIPO (PCT)
Prior art keywords
dome
wind
construction
load
installation
Prior art date
Application number
PCT/CN2009/071253
Other languages
English (en)
French (fr)
Inventor
朱新颖
张建文
牛尚洲
刘煜
吴立文
Original Assignee
徐州中煤钢结构建设有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州中煤钢结构建设有限公司 filed Critical 徐州中煤钢结构建设有限公司
Publication of WO2010072060A1 publication Critical patent/WO2010072060A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/32Arched structures; Vaulted structures; Folded structures

Definitions

  • the invention relates to a construction method, in particular to a diameter which can greatly reduce the amount of steel used per square meter.
  • the spatial reticulated shell structure is one of the most widely used types of space structures in the world today. It is developed very rapidly and is widely used in various civil and industrial buildings. It is mainly used in stadiums, airport terminals, and hangars in civil buildings. Public buildings that require large spans, such as conference centers. In industrial buildings, it is mainly used in various storage silos, sheds, various large-span factories and warehouse roofs.
  • the spatial reticulated shell structure is a structure with a three-dimensional shape and three-dimensional force characteristics under load. Compared with the planar structure, the spatial structure has the following characteristics: reasonable force, light weight, low cost, and various structures. , can be used for a large span. It is the most suitable load-bearing structure for various large-span storage sheds in the coal, electric power and cement industries.
  • the reticulated shell structure has a single-layer net shell and a double-layer net shell. Its advantages and characteristics mainly include the following:
  • the reticulated shell structure has the main features of the rod structure and the shell structure.
  • the space reticulated shell structure adopts the same grid structure that the space meets the space, and the load-bearing structure and the supporting structure are integrated, which effectively changes the stress state of the plane truss, and the rod is mainly affected by the shaft.
  • the force to make the steel performance the most beneficial.
  • the amount of steel used for the storage shed using the space reticulated structure is generally 30 ⁇ 60kg/m 2
  • the amount of steel used for the portal steel frame or steel truss is 60 ⁇ 120kg/m 2 . Save about half of the steel.
  • the span exceeds 100 meters, the solid abbreviated steel frame has no practical application at all, and the steel truss structure has a steel capacity of more than 120kg/m 2 .
  • coal storage tanks such as coal and cement
  • coal and cement have been listed as one of the necessary environmental protection projects, and they are required to be designed, constructed and put into use simultaneously with their main structures.
  • the amount of steel used for the dome of the super-long span grid with a diameter of more than 100 meters is generally around 120kg/m 2 , which not only directly affects the manufacturing cost, but also under such a large self-weight situation. Affects the construction safety of the dome of the grid.
  • the object of the invention is to solve the problems of large steel consumption, high raw material cost and complicated construction process in the construction process of the super large diameter double-layer net dome, and to invent a large steel with low steel volume, convenient construction, safety and reliability.
  • a super-long span double-layer grid dome construction process characterized in that it comprises the following steps:
  • the building size of the dome determines the building size of the dome according to the storage capacity and the equipment to be installed, including the height and diameter.
  • the local meteorological parameters of the dome to be built plus the calculated number of grids and the number of nodes of the entire dome are input into the wind tunnel test part of the finite element analysis component to obtain the wind load distribution value of each grid;
  • the panel is installed with a large-sized panel.
  • the length of the panel is 8rr! ⁇ 12m, and use the manual pull plate and the adjustable small mast spreader to hoist the panel to the installation work surface.
  • the small unit is composed of two bolt balls and eight rod members.
  • the elevation of the support and the roundness after the closure shall be controlled.
  • the elevation of the support shall be adjusted by steel plates of different thicknesses, and the roundness shall be adjusted by the frame of the well and the jack; after repeated adjustment of the installation error to meet the specification requirements
  • the support is initially welded and fixed; after the circle is closed, it should be reviewed in time to ensure the overall stiffness of the dome and reduce the error accumulation.
  • the roundness and closing error of the whole installation should be checked in time.
  • the support is finally welded and fixed. Afterwards, it should be closed and circled one by one, and the roundness of the structure should be checked and adjusted every three times. At this time, the ground anchor is adjusted by wire rope tensioning. .
  • the computer simulation wind tunnel technology is used to solve the wind load formation coefficient, the unfavorable load combination data is determined, and the calculation model is established. Instead of the laboratory wind tunnel test, which reduced time, cost, and data, this technology pioneered.
  • the present invention is designed to ensure structural safety and increase the construction process, and is subjected to the simulation calculation of the maximum unfavorable wind load in the most unfavorable structural form in the unsealed state of 3/4. The basis for the feasibility of structural construction safety and construction scheme was obtained, and the calculation data was checked.
  • the invention adopts a construction scheme which is closed along the diameter circle and installed from bottom to top layer by layer, adopts the ground small spelling unit, forms 2 ⁇ 3 triangles and is installed at a high altitude, which reduces the working at height. Lifting to the installation work surface with a vertical conveyor, the installation plan for high-altitude bulk, canceled the full house red scaffolding, reducing construction costs and shortening the construction period.
  • the invention adopts the adjustable small mast spreader to solve the problem that the installation node is not on one plane, and the small spell element is transported to the installation point through the adjustment angle.
  • the invention firstly points out that in the process of high-altitude bulk, the structure can not form a space structure system under the conditions of self-weight and wind load, and the most unfavorable 3/4 height (ie 50 meters or more), and the wind is 8 Above the level It is often seen that in this unfavorable structural form, the windward surface structure is used to pull the safety cable under the unfavorable wind load. The number and position of the safety cable are established by experience, and the height of the installation increases with the height of the structure, and satisfactory results are obtained. .
  • the invention solves the problem that the original purlin installation is connected by means of aerial welding, and the welding quality is not easy to ensure; the use of the welding machine, the sub-line and the power line are very large, and the efficiency is slow, which not only directly affects the construction period, but also is very unsafe.
  • the problem By welding the "L" iron piece on the truss plate of the grid, the ground welding, punching and slinging are directly bolted together, which speeds up the construction speed, saves the construction period and ensures the quality and safety.
  • the present invention employs every 8 rr for reducing seams! ⁇ 12m is a mounting length, generally using artificial pull plate to the installation work surface, but at a height of 50 meters or more, the wind is very large, adopting self-adjusting mast lifting, wind rope control combined with manual pulling, etc. Way, safe and reliable.
  • the present invention can develop the span, height and reserves of the dome into a new field, giving the owner a greater choice of space. And laid the foundation for the development of a larger span.
  • the invention can reduce costs and increase the use space for the owner. For example: 100,000 tons of steel content is 29.6 kg I m% Cost: 10.61 million yuan and 200,000 tons reduced to steel capacity 24 kg / m % The cost is 7.92 million yuan, the cost is not only low but reduced, saving costs And laid the foundation for social promotion, the company's construction profit is also very good.
  • the invention has laid a foundation for the safety and reliability of the structure of the large-span storage silo, ensuring the construction period, ensuring quality and ensuring safety.
  • the invention changes the original overall spherical shell wind tunnel test into the wind load simulation test of the grid node, which greatly increases the accuracy of the test, and is changed from the overall structural modeling calculation to the node modeling calculation, and the obtained structure is more It can accurately reflect the stress of the node, so the accuracy is higher.
  • the grid size is changed according to the change of the load from top to bottom. Therefore, the design calculation method of the invention is more scientific and reasonable, and the calculated amount of steel per square meter not only ensures the structural strength but also maximizes the saving.
  • the amount of steel used for the long-span dome of 200,000 tons of reserves designed and manufactured by the method of the present invention is only equivalent to the amount of steel used for the dome of 100,000 tons of reserves designed and manufactured by conventional technology, and the cost can be saved only by the cost of steel. More than 30%.
  • the present invention has obtained a large amount of experiments to obtain the optimum amount of steel per unit area of different diameter large-span domes under different wind pressures under the premise that the environmental conditions meet the national standards, as shown in the following table.
  • the present invention creatively utilizes the accumulation of grid wind tunnel simulation tests and finite element analysis to replace the traditional modeling wind tunnel experiment, which can shorten the construction period by more than 50% and greatly reduce the architectural design cost of important components of the engineering construction. Therefore, the engineering cost is reduced, and the manufacturing cost of the 200,000-ton storage yard manufactured by the technology of the present invention is only equivalent to the cost of the 5-ton storage yard constructed by the conventional technology. The effect of energy saving and emission reduction is also very obvious.
  • Fig. 1 is a graph showing the results of a wind tunnel test body shape coefficient in an embodiment of the present invention. detailed description
  • a super-long span double-layer grid dome construction process which comprises the following steps:
  • the building size of the dome determines the building size of the dome according to the storage capacity and the equipment to be installed, including the height and diameter.
  • the local meteorological parameters of the dome to be built plus the calculated grid number and number of nodes of the entire dome are input into the finite element analysis component (such as SFCAD issued by Beijing Yunguang Design Consulting Co., Ltd., Tongji University of Shanghai Tongji Civil Engineering)
  • the wind load distribution value of each grid calculated in the previous step plus the constant load, snow load and seismic load input finite element design software to obtain the maximum load of the entire dome and its components.
  • the size of the rod that satisfies the condition is selected from the component library; in the specific implementation, the same parameter can be input into different software for checking, that is, repeating the first to fifth steps 1 -3 times, to calculate the largest rod size as the design basis;
  • the elevation of the support and the roundness after closing are controlled.
  • the elevation of the support is adjusted by steel plates of different thicknesses, and the roundness is adjusted by the well frame and the jack.
  • the support is initially welded and fixed; Afterwards, it should be reviewed in time to ensure the overall stiffness of the dome and reduce the accumulation of errors.
  • the roundness and closing error of the whole installation should be checked and adjusted in time, and the indicators meet the requirements.
  • the seat is finally welded and fixed. Afterwards, it should be closed and circled one by one.
  • the roundness of the structure is checked and adjusted every three times. At this time, the ground anchor is tensioned and adjusted.
  • the adjustable small mast spreader can be realized by using the utility model patent that the applicant has applied for earlier, the patent application number is: 200820186176), lifting the small unit; each small unit consists of two bolts Ball and eight rods;
  • the key control items in the construction process are:
  • the first circle installation includes the support elevation control and the roundness control after closing.
  • the support elevation is adjusted by steel plates of different thicknesses, and the roundness is increased by the well type. Jack adjustment.
  • the support is initially welded and fixed.
  • close by circle timely check to ensure the overall stiffness of the dome and reduce the error accumulation.
  • the roundness and closing error of the whole installation should be checked in time.
  • the support is finally welded and fixed. Afterwards, it should be closed and circled one by one. The roundness of the structure is checked and adjusted every three times.
  • the adjustment method is to set the ground anchor to tension with the steel wire rope.
  • Panels under windy conditions can be colored steel plates
  • the present invention adopts 8-12 meters long and large plates. Since the construction site has no wind or breeze weather, the single board is easy to float under the action of wind. , causing a safety accident.
  • the following installation technologies can be used, namely, the first lower layer, the upper upper layer, the first windward surface, the rear wind surface, and the additional windproof rope to ensure the normal installation of the project under normal wind conditions, and create a construction unit to start production on schedule. condition.
  • Spherical reticulated shells have the best load-bearing properties and can be used for very large spans.
  • the selection of the reticulated shell structure of the coal storage yard must first meet the function of use, that is, meet the space requirements of coal storage equipment such as stacker and reclaimer, bucket turbine, gantry crane and belt conveyor.
  • a spherical reticulated shell structure can be adopted.
  • the long stacker and reclaimer (bucket turbine), the gantry crane and the belt conveyor can adopt a cylindrical reticulated shell structure.
  • the span and stiffness requirements should be comprehensively considered. Factors such as plane shape, support conditions, fabrication and installation, and technical and economic indicators determine specific parameters.
  • the double-layer reticulated shell structure can adopt an articulated joint, and the single-layer reticulated shell structure should adopt a rigid joint node.
  • the plane size of the reticulated shell, the height of the sagittal height, and the thickness of the double-layer reticulated shell should be limited.
  • the aspect ratio should be greater than 1
  • the span ratio should be in the range of 1/2 - 1 / 6
  • the thickness of the reticulated shell should be in the range of 1 / 20 to 1 / 50.
  • the span ratio should be no more than 1/2
  • the thickness of the reticulated shell should be in the range of 1/30 to 1/60 of the span.
  • a double-layer spherical reticulated shell with a diameter of 100 m should have a height of not more than 50 m and a thickness of 3. 3 m to 1.75 m.
  • the thickness of the general load state is 2 m to 2.5 m.
  • the span of the 133-meter Huolin River coal storage yard is made of spherical reticulated shells with a thickness of only 2 meters.
  • the reticulated shell structure generally has a large horizontal thrust.
  • the horizontal thrust is proportional to the vertical load, up to 100-400 kN, and the foundation must have sufficient resistance.
  • inclined piles or inclined foundations are used.
  • the horizontal thrust of the spherical reticulated shell can be resisted by two methods, one is that the net shell itself is hooped, and the other is that the lower structural integral ring beam is hooped with enough steel bars, so that the horizontal thrust to the foundation can be small. Only a few hundred thousand cattle. The calculated maximum displacement of the reticulated structure should not exceed 1/400 of the end span. The deflection is no more than 1/250. Load and function of reticulated shell structure of coal storage yard
  • the main loads of reticulated shell structures are permanent loads, variable loads (live loads, snow loads, wind loads, ash accumulation) and effects (temperature effects, seismic action)
  • Permanent load generally including the weight of the reticulated structure, the weight of the roof envelope structure, the pipe load of the suspension equipment (pipe, sprinkler system), the load of the horse.
  • the roof section envelope comprises Gum, Color roof typically 0. 15-0. 2 KN / m 2 . 5KN/ ⁇ 2 ⁇ In general, the dead load can be taken to 0. 35-0. 6KN / m 2 .
  • Live loads there are four main types of variable loads for storage bins: roof live load, ash load, snow load, wind load.
  • the live load on the roof shall be taken in accordance with the provisions of the Code for Loads of Building Structures (GB5009-2001). 5KN/ ⁇ 2 ⁇
  • the roof of the roof is not taken up in general. If it is a foreign project, the value should be adopted according to the requirements of the adopted specifications. In the Indian and American regulations, it is generally taken to be 0.57KN/m 2 .
  • the ash load must be considered in the building materials and metallurgy industry. This is the same in all countries, generally 0. 5KN/m 2 or l. OKN/m 2 (depending on the storage and surrounding ash source). The production environment of coal storage yards in power plants or coal industry is better, and the opportunity load can be ignored. The ash load should be considered simultaneously with the larger of the snow load or the roof live load.
  • the snow load is one of the important loads of the reticulated shell structure, and it is a sensitive load for the long-span structure.
  • snow loads must be considered. Consideration should be given to the uniform distribution and uneven distribution of roofs and the uniform distribution of half-spans.
  • the factors affecting the distribution of snow load on the roof are mainly wind factors, roof slope factors, and roof shape.
  • Snow loading usually plays a controlling role. In our country's code, the snow load is not considered at the same time as the load, but needs to be combined with the ash load. Its basic snow pressure value can be queried in the specification.
  • Wind loads are also one of the important loads on the reticulated structure. For large-span structures, they are often the controlling loads.
  • W0 0.5 P * v * v (5-2) where WO - basic wind pressure; P - air density: 1. 25kg / m 3 ; V - 10 meters height 10 minutes average wind speed;
  • the above domestic coefficients can be determined by referring to the load specification.
  • the wind load values calculated by various national codes are very large, and the main reasons for this situation are as follows.
  • the basic wind pressure caused by the difference in the basic wind speed is large. Because countries determine the basic wind speed (that is, the maximum average wind speed in a certain time range), different time intervals (referred to as time intervals) are used. It is in a pulsating state (its excellent period lmin or so), of course, the greater the time interval, the smaller the average wind speed, the corresponding relationship of various time wind speeds.
  • Each category has three levels, and its 1A, 2A, 3C, 4C, which is equivalent to the top four types of landforms in China, but there is a big difference in the corresponding height coefficient of different landforms, see the following table: China Standard Wind Pressure System
  • the wind-vibration coefficient storage silo reticulated shell structure generally has a large span, and the self-vibration period is greater than 0.25s.
  • the wind-induced vibration coefficient can be calculated by computer-specific software.
  • the SRSS method or CQC algorithm can be selected.
  • the CQC algorithm has higher precision but For a long time, the accuracy of the SRSS method is sufficient for the two-layer net shell.
  • the maximum wind vibration coefficient is about 1.4-1.6. Of course, each point is different. Generally, the higher the image, the lower the bottom.
  • the length of the cylinder shed is calculated from 40 m to 60 m. 1. 3-1. 4, 60 m to 80 m is approximately 1. 4-1. 6.
  • Body shape coefficient and wind tunnel test China's load code gives the body shape coefficient of most building forms.
  • the common shape factor of coal storage structure such as closed hemisphere type and double slope type can be found.
  • the canonical form factor reference is used.
  • the body shape coefficients are different, and the US and India specifications are basically the same, which are larger than the Chinese specifications. See the following table:
  • the shape factor given by the specification cannot be completely covered, and the body shape coefficients provided by the code do not specifically consider the surrounding environment and atmospheric boundary of the building.
  • the influence of the three-dimensional flow of the layer and the airflow, so the structural wind load calculated according to the norm is generally conservative, and in some parts it is not safe enough.
  • wind tunnel simulation test is very necessary.
  • the purpose of the wind tunnel test is to simulate the wind load of buildings in the atmospheric boundary layer, and to consider the influence of adjacent buildings and ground roughness and wind direction angles, and use the rigid model pressure measurement data to find the building surface.
  • the wind pressure distribution characteristics provide a basis for the reasonable determination of the wind load for the design of the coal shell spherical shell structure.
  • wind tunnel equipment is needed first, and the building entity model must be made. Because wind tunnel equipment is very rare in China, only Harbin Institute of Technology, Tongji, Tsinghua University, Tianda University and other nuclear research units are available. It takes a long time to complete, and it costs a lot.
  • Harbin Institute of Technology we began to use the results of computer simulation of wind tunnels for analysis. The results show that the results of computer simulation and solid modeling are not much different, and can be used completely, which reduces the cost of wind tunnel use and saves time.
  • wind tunnel simulation can be completed in one week using computer technology, and the time is only 1/4 of the solid modeling.
  • the cost can be controlled within 200,000, only 1/3 1/2 of the solid modeling.
  • Commonly used such software includes CFD numerical wind tunnel system, Digital Wind Tunnel (DWT) numerical wind tunnel simulation software, ANSYS two-dimensional wind tunnel test numerical simulation software. These softwares have their own characteristics, and those that are conditional should be used at the same time.
  • DWT Digital Wind Tunnel
  • the wind pressure field on the surface of the casing is characterized by wind pressure except for a small part of the front edge.
  • the other part mainly shows the wind suction force, and the closer to the top of the shell, the greater the suction force, and the maximum on both sides of the windward side of the shell top hat. Value, which is due to the separation of the airflow on the top cap surface;
  • the wind pressure distribution generally has characteristics perpendicular to the inflow of the wind, and is basically parallelized, that is, in each The wind pressure coefficient is substantially close to the cross section perpendicular to the incoming flow.
  • the 3s wind speed should be converted to lOmin wind speed. If the US standard or Indian standard is used, the wind speed should be converted into 3s wind speed. Since countries regulate their own systems, a certain parameter is larger or smaller, and even if the calculation result is larger or smaller, it cannot be said that the specification is unsafe or conservative. To consider its total effect, it should be placed in the whole structure. Considered in the computing system.
  • the reticulated shell structure is a statically indeterminate structure, the rods cannot be freely stretched under the uniform temperature field, and stress is generated, which is called temperature stress.
  • the larger span means that the diameter of the spherical reticulated coal storage yard is more than 60 meters, and the span of the column-shaped reticulated coal storage yard is more than 40 meters.
  • the temperature difference is generally taken from the construction and installation. The difference between the temperature at the completion (fixed support) and the local maximum or minimum temperature.
  • Earthquake action In the 7 degree zone of fortification intensity, vertical seismic design may not be carried out, but horizontal seismic check calculation shall be carried out. Horizontal and vertical seismic check calculation shall be carried out in the 8 degree and 9 degree zones.
  • the vibration mode decomposition method can be used to form a complex or significant reticulated shell.
  • the structure should be supplemented by time history analysis.
  • the influence of the support structure on the reticulated shell structure has been considered in the seismic analysis.
  • the seismic force of the cylindrical reticulated coal storage yard is generally large, with small sides on both sides and 1/3 in the longitudinal direction.
  • the horizontal seismic action increases with the increase of the span ratio.
  • the vertical seismic action decreases slightly with the increase of the span ratio.
  • An increase in the thickness of the reticulated shell will increase the stiffness and increase the seismic effect.
  • the seismic force of the spherical reticulated coal storage yard is that the seismic action coefficient of the circumferential rod and the inclined rod is large, and the other positions are small, and the horizontal seismic action increases with the increase of the span ratio.
  • the vertical seismic action decreases slightly with the increase of the span ratio.
  • An increase in the thickness of the reticulated shell will increase the stiffness and increase the seismic effect.
  • Anti-rust measures should be heavily anti-corrosion measures for major structures.
  • the steel components should be thoroughly derusted first, at least Sa2. 5, can be shot blasting, pickling phosphating, pickling phosphating The effect is the best, but the cost is higher, and the shot blasting treatment can also meet the requirements.
  • a good anti-rust protective layer which can be sprayed with hot-dip galvanized, hot-sprayed aluminum or non-metallic paint.
  • hot-dip galvanizing, thermal spray aluminum should not be less than SOum.
  • epoxy should be selected.
  • Fire prevention measures can be used in three ways: 1. Fireproof coatings, which make the steel components have a fire resistance time of more than 2 hours; 2. Use a sprinkler system; 3.
  • the anti-side pressure measures can adopt the following measures: 1. Set up the inner wall retaining wall; 2. Appropriately increase the structural span to maintain a certain safe distance from the coal pile; 3. Increase the support and avoid the coal pile. Reduced design time and festival by computer simulation of wind tunnel calculations for a 100,000-ton project and 200,000-ton project Designed for funding. Taking the dome of a 200,000-ton coal storage yard of an open-pit coal power plant as an example, the main function of the dome is to protect the coal yard and stacker and reclaimer of the lower yard from the influence of wind and snow.
  • the lower part is provided with reinforced concrete silo.
  • the silo has a height of 18.5 meters and an inner diameter of 120 meters.
  • the maximum shape diameter is 130 meters.
  • the function is to increase the height of the coal pile and resist the pressure on the side of the coal pile, thus effectively increasing the reserves.
  • the upper part adopts a space double-layer spherical steel mesh structure with a span of 122. 6 meters, a height of 47 meters and a surface area of about 19,000 square meters.
  • the enclosure is made of purlin + single-layer color steel plate, and a glass fiber reinforced resin board lighting belt is partially set.
  • the support layout the peripheral support every 10 degrees, a total of 36
  • bearing type plate rubber bearing.
  • Rod specifications ⁇ 60X3. 5, ⁇ 75. 5 ⁇ 3. 75, ⁇ 88. 5 ⁇ 4, ⁇ 114 ⁇ 4, ⁇ 140X4, ⁇ 159 ⁇ 6 (8), ⁇ 180 X 10, material Q235 (welded pipe) or 20# steel (seamless pipe)
  • the design software is either SFCAD2000 or MTS2006.
  • the model can be created automatically or transferred through the cylinder shell.
  • the wind load body type coefficient is based on the standard value, and the simulated wind tunnel value is used as a reference.
  • Figure 1 is the wind tunnel test body shape coefficient result map.
  • the positive pressure zone, the normal value is basically the same as the simulated wind tunnel value.
  • the wind cap at the top of the simulated wind tunnel is more disordered.
  • the pressure value at the individual is larger than the standard value, but the comprehensive comparison is slightly smaller than the standard design value.
  • the simulated wind tunnel is lowered by the negative pressure zone of the wind at a normal angle greater than 30 degrees, which is significantly smaller than the standard value.
  • the wind-induced wind-induced vibration coefficient can be calculated by SRSS.
  • the uniform wind-induced vibration coefficient is 1.557, and the internal force-coordinated wind-induced coefficient is 1.330.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

说明书
超大跨度双层网架穹顶施工工艺
技术领域
本发明涉及一种建筑施工方法, 尤其是一种能大幅度降低每平方米用钢量的直径在
100米以上的双层网架结构穹顶的设计制造方法, 具体地说是一种超大跨度双层网架穹顶 施工工艺。
背景技术
近年来, 随着我国经济的快速发展, 煤炭、 电力、 水泥、 化工等行业的煤炭和其他 原材料的需求越来越大,其存储设施也因此得到大规模建设。这些存储设施主要是各种储 料仓、 干煤棚, 它们起到了环保和遮风挡雨的作用。 随着煤矿、 电厂, 水泥厂的规模越 来越大, 储煤棚的跨度和长度也在不断增加, 对其设计技术的要求也越来越高。
空间网壳结构是空间结构中当今世界各国应用最广泛的一种, 发展非常快, 广泛应 用于各种民用、 工业建筑中, 在民用建筑中主要应用在体育馆、 飞机场航站楼、 飞机库、 会议中心等需要大跨度的公用建筑。在工业建筑中主要应用在各种储料仓, 棚子、各种大 跨度的厂房、 仓库屋盖。
空间网壳结构是一种具有三维空间形体,且在荷载作用下具有三维受力特性的结构, 相对平面结构而言, 空间结构有以下的特点: 受力合理、 重量轻、 造价低, 结构多样, 可 作超大跨度。 是煤炭, 电力, 水泥行业各种大跨度储料棚最合适的承重结构形式。
网壳结构作为一种曲面网格结构, 有单层网壳和双层网壳之分, 它的优点和特点主 要有以下几点:
网壳结构具备杆系结构和壳结构的主要特点。 从受力性能上讲, 空间网壳结构采用 大致相同的网格组成空间交汇的杆件体系,承重结构与支撑结构合为一体,有效的改变了 平面桁架的受力状态, 杆件主要受轴向力, 使钢材性能得到最有利发挥。据测算, 当跨度 大于 60米时采用空间网壳结构的储料棚用钢量一般在 30〜60kg/m2,而采用门式钢架或钢 桁架用钢量在 60〜120kg/m2。用钢量节省一半左右。 当跨度超过 100米时, 实腹门式钢架 已往完全不具备实际应用可能, 钢桁架结构的用钢量超过 120kg/m2
据统计, 在中国, 近年快速发展的工业对各种原料产生了大量需求, 每年直径百米 以上圆形储料棚超过 50座, 单体表面积超过 20000平米的长形储料棚要超过 100座。 尤 其是近几年煤炭价格的大幅度提升,业主对建立储煤仓既可减少对煤炭的损失又有利于保 护堆取料机而产生的效益也有了较强的共识, 所以, 无论新老矿区均在大量调研、寻找解 决既节约成本又提高利润又满足国家环保要求的结构形式,而且要求跨度越来越大、高度 越来越高, 而超大直径网架结构储煤仓穹顶已成为首选的结构之一,上述情况已广泛的影 响到电力的干煤棚、 水泥、 钢铁系统的原料堆放库等。 国内无论是煤炭、 水泥等行业新建 项目储仓穹顶已被列为必须的环保项目之一, 并要求同其主要结构同时设计、施工, 共同 投入使用。 而且从目前的结构条件看还没有其他结构形式可替代它, 无论是相贯线桁架、 索膜结构均无法替代。但受传统设计施工理念的影响,对于直径在 100米以上的超大跨度 网架穹顶的用钢量一般在 120kg/m2左右, 这不仅直接影响到制造成本, 而且在如此大的 自重情况下会影响到网架穹顶的施工安全。
综上所述, 建设超大直径储料仓, 尤其是超大直径穹顶储料仓是一种发展趋势, 市 场前景广泛, 但如何在确保安全的前提下将目前 120kg/m2的用钢量降到合理的水平是降 低造价, 提高市场竞争力的关键。 发明内容
本发明的目的是针对目前超大直径双层网架穹顶建设制造过程中存在的用钢量大、原 材料成本高、 施工工艺复杂的问题, 发明一种用钢量低、 施工方便、 安全可靠的超大跨度 双层网架穹顶施工工艺。
本发明的技术方案是:
一种超大跨度双层网架穹顶施工工艺, 其特征是它包括以下步骤:
首先, 根据存储量和拟安装的设备确定穹顶的建筑尺寸, 包括高度和直径; 其次,根据建筑尺寸,按 3-5米的边长计算出整个穹顶的网格数,进而计算出节点数; 第三,将待建穹顶当地的气象参数加上计算所得的整个穹顶的网格数及节点数输入有 限元分析元件中的风洞测试部分, 得到每个网格的风载分布数值;
第四,将上步计算所得的每个网格的风载分布数值加上恒荷载、雪载和地震作用荷载 输入有限元设计软件中得到整个穹顶各节占及其构件的最大受力荷载;
第五, 根据各构件所受的最大荷载从构件库中选择出满足条件的杆件尺寸; 第六, 根据选择的杆件尺寸重新计算得到施工图;
第七, 根据施工图, 首先完成混凝土基础的砌筑, 然后采用以下措施完成整个穹顶的 施工:
1、 采用沿直径逐圈封闭, 由下至上逐层安装的施工方案, 采用地面小拼单元, 形成 2〜3个三角形后高空安装, 以减少高空作业;
2、 利用可调式小扒杆吊具, 进行小拼单元的吊装; 3、 在被建穹顶周围设置安全索桩, 利用拉索抵消风力的影响, 安全索的数量及位置 应随结构安装高度升高而改变,在建造高度达到整个设计高度的 3/4时还应在迎风面增拉 安全索;
4、 在网架檩托板上加焊 " L "铁, 并预先在地面安装 " L"铁的焊接、 打孔, 使得檩 条在高空直接用螺栓联结以加快施工速度;
5、 采用大尺寸面板进行面板安装, 面板的长度为 8rr!〜 12m, 并采用人工拉板和可调 式小扒杆吊具并用的方法将面板吊装至安装工作面。
所述的小拼单元由两个螺栓球和八根杆件组成。
逐圈封闭中的首圈安装时应对支座标高和闭合后圆度进行控制,支座标高采用不同厚 度的钢板调整, 圆度采用井字架加千斤顶调整; 经反复调整安装误差达到规范要求后, 支 座初步焊接固定;逐圈闭合后应及时复核 以保证穹顶整体刚度和减少误差积累, 网架第 二、第三圈安装完成后, 应及时对整体安装的圆度和闭合误差进行检査和调整, 各项指标 满足要求后支座最后焊接固定, 以后应逐圈安装逐圈闭合,每三圈对结构圆度进行一次检 査和调整, 此时采用设地锚用钢丝绳张拉进行调整。
本发明的有益效果:
1、 采用了计算机模拟风洞技术, 求解风荷载形成系数, 确定了不利荷载组合数据, 建立了计算模型。 代替了试验室风洞试验, 减少了时间, 节约了成本, 数据更为准确, 此 技术开创了先河。
2、 在没有成熟设计方法的情况下, 采用有限元计算程序和多种网架专用设计软件相 结构, 相互对比验证; 在确保计算结构安全的条件下降低了含钢量 (20 万吨含钢量仅为 24 kg / m\ 低于 10万吨、 5万吨)
3、 本发明为确保结构安全, 增加了施工过程, 在 3/4高度未封闭状态下的最不利结 构形式下受最大不利风荷载的模拟验算。 为结构施工安全和施工方案的可行性获得了依 据, 校核了计算数据。
4、本发明采用沿直径分圈封闭, 由下至上逐层安装的施工方案, 采用地面小拼单元, 形成 2〜3个三角形后高空安装, 减少了高空作业。 用垂直运输机吊运到安装工作面, 高 空散装的安装方案, 取消了满堂红脚手架, 减少了施工费用及缩短了工期。
5、 本发明采用可调式小扒杆吊具解决了安装节点不在一个平面上、 小拼元运到安装 点必须通过调整角度的难题,。
6、 本发明首次指出了高空散装过程中, 结构在自重、 风荷载作用的条件下, 还没封 闭不能形成空间结构体系, 在 3/4高度 (即 50米以上) 最为不利, 而且风在 8级以上时 常出现, 在这种不利结构形态下, 不利风载下采用了迎风面结构拉安全索的方式, 经验算 确立安全索数量及位置, 并随结构安装高度升高而改变, 获得了满意的效果。
7、 本发明解决了原檩条安装均采用空中焊接的方式联结, 其焊接质量不容易保证; 使用焊机、 把子线、 电源线非常之大, 效率慢, 不仅直接影响工期, 而且非常不安全的问 题。 通过在网架檩托板加焊 "L"铁片, 地面焊接, 打孔, 檩条高空直接用螺栓联结, 加 快了施工速度, 节约了工期, 保证了质量、 安全。
8、 本发明为减少接缝采用了每 8rr!〜 12m为一安装长度, 一般采用人工拉板至安装工 作面上, 但在 50米以上高度, 风又非常大的情况下, 采取了自调式扒杆吊运, 揽风绳控 制结合人工拉动等方式, 安全可靠。
9、 本发明可以将穹顶的跨度、 高度、 储量发展到一个新的领域, 供业主有了更大空 间的选择。 并为向更大跨度的研发奠定了基础。
10、 利用本发明可为业主降低成本, 增大使用空间。 例如: 10万吨含钢量为 29. 6 kg I m% 造价: 1061万元而 20万吨降为含钢量 24 kg / m% 造价 792万元, 造价不仅不高 反而降低, 节约了成本, 并为社会推广奠定了基础, 公司施工利润也很不错。
11、 本发明为大跨度储料仓的结构安全、 可靠, 保证施工工期、 保证质量、 保证安全 起到了奠基作用。
12、本发明将原来的整体球壳风洞试验改为网格节点的风载模拟试验,大大增加了试 验的准确性, 同时由整体结构建模计算改为按节点建模计算,所得结构更能准确反映节点 受力情况, 因此准确性更高。此外还根据从上到下各层荷载的变化改变网格尺寸, 因此本 发明的设计计算方法更加科学合理,所计算出的每平米用钢量既保证了结构强度需要,又 最大限度地节省了用钢量, 采用本发明的方法设计制造的 20万吨储量的大跨度穹顶的用 钢量仅与传统技术设计制造的 10万吨储量的穹顶用钢量相当,仅用钢量成本就可节约 30% 以上。
13、本发明通过大量的实验得出了环境条件满足国家标准前提下,不同直径的大跨度 穹顶在不同风压下单位面积的最佳用钢量, 如下表所示。
序 规格 荷载取值 经济指标
内 直 度 网格 表 面 积 恒荷载 活荷载 积灰 基本 主结构 W 每平米 W 径 m m 厚度 m kN/m2 kN/m2 风压 钢; 钢 M
m kN/m2 kN/m2 kg/m2
0. 35 263 18. 74
0. 50 267 19. 02
1 100 42 2. 00 14036. 64 0. 25 0. 5 0. 5 0. 65 275 19. 59
0. 80 280 19. 95
1. 00 330 23. 51 0. 35 316 18. 67
0. 5 324 19. 14
2 110 46 2. 20 16926. 40 0. 25 0. 5 0. 5 0. 65 335 19. 79
0. 80 347 20. 50
1. 00 380 22. 45
0. 35 390 19. 38
0. 50 408 20. 27
3 120 50 2. 50 20125. 83 0. 25 0. 5 0. 5 0. 65 426 21. 17
0. 80 437 21. 71
1. 00 475 23. 60
0. 35 540 22. 47
0. 50 558 23. 22
4 130 55 3. 00 24030. 04 0. 25 0. 5 0. 5 0. 65 576 23. 97
0. 80 606 25. 22
1. 00 685 28. 51
14、本发明创造性地利用网格风洞模拟试验的累加再加上有限元分析来代替传统的建 模风洞实验,可缩短建设工期 50%以上,大大降低工程建设重要组成部分的建筑设计成本, 从而降低工程造价, 利用本发明技术制造的 20万吨储料场的制造成本仅相当于传统技术 建造的 5吨储料场的成本。 节能减排效果也十分明显。 附图说明
图 1是本发明实施例中风洞试验体型系数结果图。 具体实施方式
下面结合附图和实施例对本发明作进一步的说明。
如图 1所示。
一种超大跨度双层网架穹顶施工工艺, 它包括以下步骤:
首先, 根据存储量和拟安装的设备确定穹顶的建筑尺寸, 包括高度和直径; 其次,根据建筑尺寸,按 3-5米的边长计算出整个穹顶的网格数,进而计算出节点数; 第三,将待建穹顶当地的气象参数加上计算所得的整个穹顶的网格数及节点数输入有 限元分析元件 (如北京云光设计咨询事务所发行的 SFCAD、 上海同济大学同磊土木工程 技术有限公司发行的 3D3S韩国迈达斯技术有限公司的 Mudas gen,上海交通大学结构工程 研究所的 TWCAD等) 中的风洞测试部分, 得到每个网格的风载分布数值;
第四,将上步计算所得的每个网格的风载分布数值加上恒载荷载、雪载和地震作用荷 载输入有限元设计软件中得到整个穹顶各节占及其构件的最大受力荷载; 第五, 根据各构件所受的最大荷载从构件库中选择出满足条件的杆件尺寸; 具体实施时, 可将相同的参数输入不同的软件中进行验算, 即重复第一至第五步 1-3 次, 以计算出所得的杆件尺寸最大者作为设计依据;
第六, 根据选择的杆件尺寸重新计算得到施工图;
第七, 根据施工图, 首先完成混凝土基础的砌筑, 然后采用以下措施完成整个穹顶的 施工:
1、 采用沿直径逐圈封闭, 由下至上逐层安装的施工方案, 采用地面小拼单元, 形成 2〜3 个三角形后高空安装, 以减少高空作业; 逐圈封闭中的首圈安装时应对支座标高和 闭合后圆度进行控制,支座标高采用不同厚度的钢板调整,圆度采用井字架加千斤顶调整; 经反复调整安装误差达到规范要求后,支座初步焊接固定;逐圈闭合后应及时复核 以保 证穹顶整体刚度和减少误差积累, 网架第二、第三圈安装完成后, 应及时对整体安装的圆 度和闭合误差进行检査和调整,各项指标满足要求后支座最后焊接固定, 以后应逐圈安装 逐圈闭合,每三圈对结构圆度进行一次检査和调整,此时采用设地锚用钢丝绳张拉进行调 整。
2、 利用可调式小扒杆吊具 (可采用申请人已在先申请的实用新型专利加以实现, 专 利申请号为: 200820186176), 进行小拼单元的吊装; 每个小拼单元由两个螺栓球和八根 杆件组成;
3、 在被建穹顶周围设置安全索桩, 利用拉索抵消风力的影响, 安全索的数量及位置 应随结构安装高度升高而改变,在建造高度达到整个设计高度的 3/4时还应在迎风面增拉 安全索;
4、 在网架檩托板上加焊 " L "铁, 并预先在地面安装 " L"铁的焊接、 打孔, 使得檩 条在高空直接用螺栓联结以加快施工速度;
5、 采用大尺寸面板 (如彩钢板等)进行面板安装, 面板的长度为 8rr!〜 12m, 并采用人 工拉板和可调式小扒杆吊具并用的方法将面板吊装至安装工作面。
施工过程中应重点控制的内容有:
1、 安装精度的控制。 网架安装的精度要求非常严格, 如果安装误差过大会直接影响 安装速度, 同时, 在结构内部形成很大应力, 影响结构安全。控制安装精度, 防止误差积 累我们重点做好两个环节: 第一, 首圈安装 包括支座标高控制和闭合后圆度控制, 支座 标高采用不同厚度的钢板调整, 圆度采用井字架加千斤顶调整。经反复调整安装误差达到 规范要求后, 支座初步焊接固定。第二, 逐圈闭合, 及时复核 为保证穹顶整体刚度和减 少误差积累, 网架第二、第三圈安装完成后, 应及时对整体安装的圆度和闭合误差进行检 査和调整, 各项指标满足要求后支座最后焊接固定, 以后应逐圈安装逐圈闭合, 每三圈对 结构圆度进行一次检査和调整, 调整方法是设地锚用钢丝绳张拉。
2、 采用小型吊具。 当安装高度超过 30米后, 使用汽车吊会大幅度增加安装费用, 降 低安装进度; 当高度超过 50米后汽车吊已不能满足高度要求,只能研制小型附着式吊具。 由于网架随高度增加倾斜角度不同和上下弦的差别,需要研制六种不同形式,满足不同部 位安装要求的小型吊具。采用申请人在先申请的实用新型专利的小型吊具具有轻巧、灵活、 定位准确、 安装效率高的优点, 大大提高了安装的精度和速度。
3、 大风条件下对结构安全的保证。 在穹顶安装到 3/4 (或 45m以上) 高度以上时如 正值五级以上的大风天气, 这时网架处于最不利受力状态, 为保证结构安全, 可在穹顶四 周的砂地上制作多组 (如 20组或以上) 组合地锚, 用钢丝绳进行张拉, 实践证明效果良 好, 不但有效抵抗了风荷载, 也控制了结构的整体变形, 保证穹顶的顺利闭合。
4、 有风条件下的面板 (可为彩色钢板) 安装。 为减少接头数量, 增大抗风能力, 美 化整体效果, 本发明全部采用 8-12米长大板, 由于施工现场无风或微风天气非常少, 安 装时单板在风力作用下极易飘起来, 造成安全事故。为解决这一难题, 可采用以下安装技 术, 即先下层, 后上层、 先迎风面, 后背风面、 增设防风绳等, 以保证工程在一般风力条 件下的正常安装, 为建设单位按期投产创造条件。
下面以结合一个实施储煤场网壳结构的设计计算对本发明的节材原理作进一步的说 明。
球面网壳具有最优良的承载性能,可作超大跨度。储煤场网壳结构选型首先要满足使 用功能, 即满足堆取料机、 斗轮机、 龙门吊、 带式输送机等储煤设备对空间的要求。 对于 环形堆取料机可采用球型网壳结构, 长型堆取料机 (斗轮机)、 龙门吊、 带式输送机可采 用圆柱型网壳结构, 在此前提下应综合考虑跨度、 刚度要求、 平面形状、 支撑条件、 制作 安装和技术经济指标等因素决定具体参数。
双层网壳结构可采用铰接节点, 单层网壳结构应采用刚接节点。
为使网壳结构受力合理, 有较好的刚度, 网壳的平面尺寸、 矢高、 双层网壳的厚度应 有一定限制。 对于双层柱面网壳, 它的长宽比应大于 1, 矢跨比应在 1/2— 1/6范围, 网 壳厚度宜取跨度 1/20到 1/50范围。对于双层球面网壳矢跨比应不大于 1/2, 网壳厚度宜 取跨度的 1/30到 1/60范围。 例如直径 100米的双层球面网壳, 其矢高不应大于 50米, 厚度在 3. 3米到 1. 75米皆可, 一般荷载状态厚度取到 2 米到 2. 5米时比较经济的, 跨度 133米霍林河储煤场网壳采用球面网壳, 网壳厚度仅 2米。
网壳结构一般有较大的水平推力。
- Ί - 对于柱面网壳结构, 其水平推力的大小与竖向荷载的大小成正比, 可达 100-400 千牛, 基础必须有足够的抵抗措施, 一般采用斜桩或斜基础。
球面网壳的水平推力可以通过两种方法抵抗, 一种是网壳自身杆件箍住, 另一种是 下部结构整体圈梁用足够钢筋箍住, 这样的话给基础的水平推力可以很小, 仅数十千牛 而已。 网壳结构的最大位移计算值不应超过端详跨度的 1/400。 挠度不大于 1/250。 储煤场网壳结构的荷载、 作用
网壳结构主要荷载是永久荷载, 可变荷载 (活载, 雪载, 风载, 积灰) 和作用 (温 度作用, 地震作用)
永久荷载, 一般包括网壳结构自重, 屋面围护结构自重, 悬挂设备管荷载 (管道、 喷淋系统), 马道荷载。
在各种储料仓结构中网壳自重一般为 0. 2-0. 4KN/m2,屋面围护结构包括衿条, 彩钢 屋面板一般为 0. 15-0. 2 KN/m2。 所以没有设备及马道荷载的情况下, 一般恒载可以取到 0. 35-0. 6KN/m2
活荷载, 对储料仓来说可变荷载主要有四种: 屋面活载、 积灰荷载、 雪载、 风载。 屋面活荷载应按《建筑结构荷载规范》(GB5009-2001 ) 的规定取值。 其中不上人的 屋面活载在一般取到 0. 5KN/m2。如果是国外项目, 取值应根据所采用规范要求采用, 在 印度、 美国规范里一般取到 0. 57KN/m2
积灰荷载在建材、 冶金业是必须考虑的, 这一点各国均相同, 一般为 0. 5KN/m2或 l . OKN/m2 (视储料和周边灰源情况而定)。 电厂或煤炭行业储煤场生产环境较好, 可不 考虑机会荷载。 积灰荷载应与雪荷载或屋面活荷载中较大值同时考虑。
雪荷载是储煤场网壳结构重要的荷载之一, 对大跨度结构来说是敏感荷载。在各国 均发生过网壳结构在大雪 (不均匀雪载)情况下倒塌的事故。 有雪的地区必须考虑雪荷 载, 应考虑屋面均匀分布和不均匀分布、 半跨均匀分布三种情况。 影响雪荷载在屋面分 布的因素主要有风因素、 屋面坡度因素、 屋面形状也有较大影响。 在网壳结构里不均匀 雪载通常起控制作用。 在我国规范里, 雪载在参与组合时不与或荷载同时考虑, 而需要 与积灰荷载同时组合。 其基本雪压值可在规范中査询。
风荷载也是网壳结构重要的荷载之一, 对大跨度结构来说, 常常是起控制作用的荷 载。 在规范里, 对于作用在储煤场网壳结构上的风力可简化为等效静力荷载, 其方向垂 直于建筑物表面, 标准值可按下式计算: Wk= β μ Z μ S WO (5-1) 式中 WO——基本风压; U S——风荷载体形系数; μ Ζ——风荷载高度变化系数; β——风荷载风振系数。 其中 W0=0. 5 P *v*v (5-2) 式中 WO——基本风压; P——空气密度: 1. 25kg/m3; V—— 10米高度 10分钟平均风速; 在国内以上各系数均可査阅荷载规范确定。 各个国家规范计算出的的风荷载值出入很大,造成这种状况的主要原因主要有以下几 方面。
基本风速 基本风速取值差距较大造成的基本风压较大差距, 由于各国在确定基本风速(即在特 定时间范围内的最大平均风速) 时采用不同的时间间隔 (简称时距), 由于风本身处于脉 动状态(其卓越周期 lmin左右), 当然时距越大, 平均风速越小, 各种时距风速的对应关 系下表: 风速时距 lh lOmin 5min 2min lmin 0. 5min 20sec lOsec 5sec 瞬时 统计比值 0. 94 1 1. 07 1. 16 1. 20 1. 26 1. 28 1. 35 1. 39 1. 50 其中世界各国标准绝大多数取 lOmin或 3sec风速,取 lOmin风速的有中国、 日本、前 苏联地区各国家、 ISO国际标准化协会等, 取 3sec风速的有美国、 印度、 英国及英联邦 国家等。当然重现期的不同也会使风速取值有不同,大部分国家在进行一般结构设计时均 取 50年重现期。 日本取 100年。 基本风速修正参数, 包括风压高度系数、 地形分类。 中国规范将地貌分为四类: A,B,C,D 相当于美国的 D,C,B,A,印度规范较细, 分了四 类, 每类下有三级, 其 1A,2A,3C,4C,与中国上四类地貌相当, 但在不同地貌相应的高度 系数取值上差距较大, 见下表: 中国规范风压高度系
离地面高度 (m)
地面粗燥度类别
10 15 20 30 50 100 150
A 1. 38 1. 52 1. 63 1. 8 2. 03 2. 4 2. 64
B 1 1. 14 1. 25 1. 42 1. 67 2. 09 2. 38
C 0. 74 0. 74 0. 84 1 1. 25 1. 7 2. 03
D 0. 62 0. 62 0. 62 0. 62 0. 84 1. 27 1. 61
Figure imgf000012_0001
从上表可见中、 美、 印高度系数取值差别很大, 我们通过下表作了一个对比:
Figure imgf000012_0002
印度规范 1A 1. 31 1. 39 1. 46 1. 57 1. 69 1. 90 2. 03 美国规范 /印度规范 1. 12 1. 17 1. 19 1. 24 1. 30 1. 40 1. 45 高皮系数比值
离地面高度 (m)
地面粗燥度类别
10 15 20 30 50 100 150 中国规范 B 1 1 1 1 1 1 1 美国规范 c 1. 00 1. 05 1. 13 1. 13 1. 18 1. 30 1. 35 印度规范 2A 1 1. 09 1. 17 1. 27 1. 43 1. 69 1. 86 关国规范 /印度规范 1. 00 1. 04 1. 04 1. 13 1. 21 1. 30 1. 38
高度系数比值
离地而高度 (m)
地面粗燥度类别
10 15 20 30 50 100 150 屮国规范 c 1 1 1 1 1 1 1 美国规范 B 1. 00 1. 00 1. 00 1. 00 1. 10 1. 23 1. 31 印度规范 3C 0. 90 0. 85 0. 92 1. 04 1. 23 1. 55 1. 77 美国规范 /印度规范 0. 90 0. 85 0. 92 1. 04 1. 12 1. 25 1. 35 由上表可见在常用三类地形中, 中国规范取值要比美国规范、 印度规范高, 而且随着 高度增加差距越大。
风振系数 储料仓网壳结构一般跨度较大, 自振周期大于 0. 25s, 要考虑风振系数, 可采用计算 机专用软件计算得到, 可选择 SRSS方法或 CQC算法, CQC算法精度较高但时间较长, 对 二层网壳来说 SRSS方法精度上已足够。通常对于直径大于 80米的圆形料棚最大风振系数 约为 1. 4-1. 6之间, 当然每一点是不同的, 一般的越像上越高, 呈倒锅底状。 圆柱体长形 料棚在 40米 -60米跨计算值约 1. 3-1. 4, 60米到 80米约为 1. 4-1. 6。
体形系数与风洞试验 我国荷载规范给定了大部分建筑形式的体形系数,常见的储煤结构体形系数如封闭的 半球型、、双坡型都可以査到, 对于国外项目, 应参考项目所在的规范体形系数参考使用。 对于储煤场空间网壳常用的落地拱型来说, 体型系数列有区别, 美印规范基本相同, 均比 中国规范大些, 见下表:
Figure imgf000014_0001
但对于一些复杂的、 大跨度的、 特别重要的结构储煤场大跨结构, 规范给的体形系数 不能完全涵盖, 而且由于规范所提供的体型系数没有具体考虑建筑所处的周围环境、 大气 边界层、 气流三维流动的影响, 因而根据规范计算出的结构风荷载在总体上偏保守, 在某 些局部则不够安全。为做好这种结构的抗风设计,风洞模拟试验是十分必要的。一般来说, 风洞试验的目的是模拟建筑物在大气边界层中受风荷载作用,并考虑相邻建筑物和地面粗 糙度及风向角的影响, 利用刚性模型测压数据求出建筑物表面的风压分布特性, 为煤仓球 壳结构设计提供风荷载合理确定的依据。 要实现风洞试验首先需要有风洞设备,并且要做出建筑物实体模型, 由于风洞设备在 我国非常少, 仅有哈工大, 同济, 清华、 天大等少数高校核科研单位才有, 每次完成均需 要较长时间, 花费较大代价。 2007 年经哈工大介绍, 我们开始使用计算机模拟风洞得到 的结果进行分析, 结果显示计算机模拟和实体建模所得结果差距不大, 完全可以采用, 即 降低了风洞使用费用,又节省了时间,据测算采用计算机技术仅需一周即可完成风洞模拟, 时间仅为实体建模的 1/4。花费可控制在 20万以内, 只有实体建模的 1/3 1/2。常用的此 类软件有 CFD数值风洞系统、 Digital Wind Tunnel (DWT)数值风洞模拟软件、 ANSYS二 维风洞试验数值模拟软件。 这些软件各有特点, 有条件的应同时参照使用。
通过对 133米跨 10万吨储煤场, 和 20万吨 130米跨储煤场, 及两个 120米的球面储煤场 分别作了风洞模拟试验, 得出以下结论:
( 1 ) 壳体表面的风压场除在前沿一小部分表现为风压力外, 其余部分主要表现出风 吸力作用, 且越接近壳顶风吸力越大, 在壳顶帽迎风面两侧达最大值, 这是由于气流在顶 帽表面发生分离所致;
(2) 风压分布总体上具有与风的来流相垂直的特性, 且基本呈现平行分布, 即在各 垂直于来流的截面上风压系数基本接近。
( 3 ) 对于球型网壳储煤场, 其试验结果与规范给定的体形系数相近, 在周围没有大 的干扰源的情况下, 可使用规范给定体形系数。 在有干扰源的情况应作模拟风洞试验。 综上所述: 风荷载是储煤场网壳结构设计中的难点和控制性荷载, 必须加以重视, 使 用模拟风洞技术可节省时间和经费,球面网壳再附近没有的干扰源时可采用规范给定体形 系数。 由于各国规范在风荷载计算差别较大, 故在计算时应作一定的转换, 必须把不同规 范体系下的参数转换成同一体系下的参数才能使用,才不会存在安全问题。即如采用整体 结构采用中国规范计算, 应将 3s风速转换成 lOmin风速, 如采用美国规范或印度规范计 算, 应将成 lOmin风速转换成 3s风速。 由于各国规范自成体系, 某一个参数大一些或小 一些, 甚至计算结果大一些或小一些, 都不能说这个规范不安全或保守, 要考虑它的总效 应, 应改把它放在整个结构计算系统中考虑。
温度作用 由于网壳结构是超静定结构, 均匀温度场变化下杆件不能自由伸缩, 就会产生应力, 即称之为温度应力。对于有较大环境温差的大跨度网壳要考虑温度效应,较大跨度是指球 型网壳储煤场直径 60米以上,柱型网壳储煤场跨度 40米以上,温差一般取施工安装完毕 时的气温 (支座固定) 和当地常年最高温度或最低温度的差值。 计算表明, 对于柱面网壳来说,温度效应它的长度即温度差成线性正比关系, 与纵向 约束刚度成指数正比关系。 球面网壳储煤场由于各杆件方向均不相同,温度作用对下部结构作用较不明显,在霍 林河 20万吨项目中,由于储煤场下部结构采用的 18米高混凝土墙与钢结构的球面网壳有 着不同的温度膨胀系数,采用常规平板支座将有有较大温度作用,所以我们采用采用橡胶 支座, 来释放释放温度应力。
地震作用: 在设防烈度 7度区, 可不进行竖向抗震设计, 但应进行水平抗震验算, 在 8度、 9度 区应进行水平和竖向抗震验算。 对网壳结构进行地震效应计算时,可采用振型分解法,对体形复杂的或重大的的网壳 结构应采用时程分析法补充计算。 在进行抗震分析时已考虑支撑结构对网壳结构的影响。 圆柱面网壳储煤场的地震力一般中间大,两边及纵向 1/3处小。水平地震作用随矢跨 比的增大而增大。竖向地震作用随矢跨比的增大而略减小。网壳厚度的加大将使刚度增加, 地震作用随之增加。 球面网壳储煤场的地震力是环向杆件和斜杆地震作用系数较大,其他位置较小,水平 地震作用随矢跨比的增大而增大。竖向地震作用随矢跨比的增大而略减小。网壳厚度的加 大将使刚度增加, 地震作用随之增加。
储煤场设计中的保护措施 防锈措施 对重大结构应采用重防腐措施, 应首先对钢构件彻底除锈, 至少达到 Sa2. 5级, 可采 用抛丸、 酸洗磷化其中酸洗磷化效果最好, 但成本较高, 采用抛丸处理也能达到要求。其 次应选择选择良好的防锈保护层, 可采用热镀锌、热喷铝或非金属涂料喷涂, 如采用热镀 锌、 热喷铝厚度不应小于 SOum.如采用非金属涂料宜选择环氧富锌类、 聚氨酯类、 氯磺化 聚乙烯类, 其厚度应不小于 125um.我们在 20万吨项目采用环氧富锌底漆, 聚氨酯面漆效 果较好;在中原大化储煤场项目考虑其化工大气条件采用了氯磺化聚乙烯类底面漆;在宁 海电厂项目考虑它所在地区是海洋大气条件, 采用喷锌加环氧富锌底漆, 熨贴中间漆、聚 氨酯面漆总厚度达 200um以上, 设计防锈年限达 50年。 防火措施 可采用三种措施: 1、 防火涂料, 使钢构件耐火时间大于 2小时; 2、 采用喷淋系统; 3、 隔离系统, 设计时确保煤堆与结构件距离 3米以上, 使得煤堆自然时火苗达不到结构 件。 防侧压措施 可采用如下措施: 1、 设立内壁挡煤墙; 2、 适当加大结构跨度, 保持与煤堆有一定安 全距离; 3、 提高支座, 避开煤堆。 通过对某 10万吨项目和 20万吨项目采用计算机模拟风洞计算,缩短了设计时间、节 约了设计经费。 以某露天煤业电厂 20万吨储煤场穹顶为例, 穹顶的主要功能是保护下部料场煤堆和 堆取料机不受风雨雪影响。 根据工艺要求, 其下部设钢筋混凝土筒仓, 筒仓高 18. 5米、 内径 120米, 最大外形直径 130米, 其作用是增加煤堆高度, 抵抗煤堆侧压力, 从而有效 增加储量。 上部采用空间双层球面钢网结构, 跨度 122. 6米、 高度 47米, 表面积约 1. 9 万平米。 围护采用檩条 +单层彩钢板围护, 局部设玻璃纤维增强树脂板采光带。
设计参数:
1、 结构类型: 钢结构球面双层钢网壳
2、 设计尺寸: 跨度 122. 6米, 矢高: 47米
3、 网格类型: 正方四角锥
4、 网格尺寸: 径向 3. 73米, 圆周方向 2. 0〜3. 8米
5、 节点类型: 螺栓球
6、 支座布置: 周边支座每 10度一个, 共 36个
7、 支座类型: 板式橡胶支座。
设计荷载:
1、 恒载: 0. 45KN/m2
2、 活载: 0. 5 KN/m2
3、 附加荷载: 0. 15 KN/m2
4、 基本风压: 0. 65 KN/m2
5、 基本雪压: 0. 3 KN/m2
6、 地震设防烈度: 7 基本地震加速度: 0. 10
7、 温度效应: +35, -40。
材料:
杆件规格: Φ 60X3. 5, Φ75. 5Χ3. 75, Φ88. 5Χ4, Φ114Χ4, Φ 140X4, Φ159Χ6 (8), Φ180 X 10, 材质 Q235 (焊管) 或 20#钢 (无缝管)
螺栓球规格: Φ 100, 120 , 150, 180, 200 , 材质: 45#钢
锥头、 封板材质: Q235
高强螺栓: 10. 9级或 8. 8级
控制指标:
1、 杆件长细比: 压杆 <=150 拉杆 <=250
2、 位移: <=1/400 3、 应力比: <=195N/mm*mm
荷载输入:
设计软件选用 SFCAD2000版或 MTS2006版, 模型可自动建立也可通过柱面筒壳转移 生成。其中风荷载体型系数以采用规范值为主, 模拟风洞值作参考, 图 1是风洞试验体型 系数结果图
规范给定的体型系数公式是:
μ s-0.5sin sin(2-cos 其中 Φ是法线与中垂线角度, <ί是水平角度。
经计算对比, 可得出结论:
1、 面正压区, 规范值与模拟风洞值基本相同。
2、 模拟风洞顶帽处被风处较为紊乱, 个别处压力值大于规范值, 但综合对比还是比 规范设计值略小。
3、 模拟风洞被风处负压区在法向角度大于 30度区域下降较快, 明显小于规范值。
4、 对于周围没有障碍物或干扰物的单个球面穹顶, 完全可以采用规范值。 如有干扰 源应进行风洞模拟求得体型系数。
风荷载风振系数可以通过 SRSS计算得到位移一致风振系数为: 1.557, 内力一致风 振系数为: 1.330。 组合计算
组合如下:
(1) 1.20静
(2) 1.20静 +1.40活 1
(3) 1.20静 +1.40活 2
(4广(11) 1.00静 +1.40风广 8
(12)〜(19) 1.20静 +1.40活 1+0.84风广 8
(20广(27) 1.20静 +1.40活 2+0.84风广 8
(28) 1.20静 +1.40温 (+35)
(29) 1.20静 +1.40活 1+1.40温 (+35)
(30) 1.20静 +1.40活 2+1.40温 (+35)
(31) 1.20静 +1.40温 (-40)
(32) 1.20静 +1.40活 1+1.40温 (-40)
(33) 1.20静 +1.40活 2+1.40温 (-40) (34) 1.20静 +1,30震力
(35) 1.20静 +0,60活 1+1.30震力
(36) 1.20静 +0.60活 2+1.30震力
(37) 1.20静 +1.40活 1+0.98活 2 本发明未涉及部分均与现有技术相同或可采用现有技术加以实现。

Claims

权利要求书
1、 一种超大跨度双层网架穹顶施工工艺, 其特征是它包括以下步骤:
首先, 根据存储量和拟安装的设备确定穹顶的建筑尺寸, 包括高度和直径; 其次,根据建筑尺寸, 按 3-5米的边长计算出整个穹顶的网格数,进而计算出节点数; 第三,将待建穹顶当地的气象参数加上计算所得的整个穹顶的网格数及节点数输入有 限元分析软件中的风洞测试部分, 得到每个网格的风载分布数值;
第四, 将上步计算所得的每个网格的风载分布数值加上恒荷载、 雪载和地震作用荷载 输入有限元设计软件中得到整个穹顶各节占及其构件的最大受力荷载;
第五, 根据各构件所受的最大荷载从构件库中选择出满足条件的杆件尺寸; 第六, 根据选择的杆件尺寸重新计算得到施工图;
第七, 根据施工图, 首先完成混凝土基础的灌筑, 然后采用以下措施完成整个穹顶的 施工:
1、 采用沿直径逐圈封闭, 由下至上逐层安装的施工方案, 采用地面小拼单元, 形成 2〜3个三角形后高空安装, 以减少高空作业;
2、 利用可调式小扒杆吊具, 进行小拼单元的吊装;
3、 在被建穹顶周围设置安全索桩, 利用拉索抵消风力的影响, 安全索的数量及位置 应随结构安装高度升高而改变, 在建造高度达到整个设计高度的 3/4时还应在迎风面增拉 安全索;
4、 在网架檩托板上加焊 "L"铁, 并预先在地面安装 "L"铁的焊接、 打孔, 使得檩 条在高空直接用螺栓联结以加快施工速度;
5、 采用大尺寸面板进行面板安装, 面板的长度为 8m〜12m, 并采用人工拉板和可调 式小扒杆吊具并用的方法将面板吊装至安装工作面。
2、 根据权利要求 1所述的一种超大跨度双层网架穹顶施工工艺, 其特征是所述的小拼单 元由两个螺栓球和八根杆件组成。
3、 根据权利要求 1所述的一种超大跨度双层网架穹顶施工工艺, 其特征是逐圈封闭中的 首圈安装时应对支座标高和闭合后圆度进行控制, 支座标高采用不同厚度的钢板调整, 圆 度采用井字架加千斤顶调整; 经反复调整安装误差达到规范要求后, 支座初步焊接固定; 逐圈闭合后应及时复核 以保证穹顶整体刚度和减少误差积累, 网架第二、 第三圈安装完 成后, 应及时对整体安装的圆度和闭合误差进行检査和调整, 各项指标满足要求后支座最 后焊接固定, 以后应逐圈安装逐圈闭合, 每三圈对结构圆度进行一次检査和调整, 此时采 用设地锚用钢丝绳张拉进行调整。
PCT/CN2009/071253 2008-12-23 2009-04-13 超大跨度双层网架穹顶施工工艺 WO2010072060A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810244134.2 2008-12-23
CN200810244134A CN100591877C (zh) 2008-12-23 2008-12-23 超大跨度双层网架穹顶施工工艺

Publications (1)

Publication Number Publication Date
WO2010072060A1 true WO2010072060A1 (zh) 2010-07-01

Family

ID=40725229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071253 WO2010072060A1 (zh) 2008-12-23 2009-04-13 超大跨度双层网架穹顶施工工艺

Country Status (2)

Country Link
CN (1) CN100591877C (zh)
WO (1) WO2010072060A1 (zh)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109083477A (zh) * 2018-08-27 2018-12-25 山西尚风科技股份有限公司 一种多拱型料仓
CN109101766A (zh) * 2018-09-19 2018-12-28 中铁建设集团有限公司 大跨度正交空间管桁架结构分块提升计算方法
CN109711064A (zh) * 2018-12-28 2019-05-03 上海市建工设计研究总院有限公司 一种采用abaqus模拟数值风洞的方法及装置
CN110067334A (zh) * 2019-05-06 2019-07-30 中建八局装饰工程有限公司 一种叠级吊顶安装系统及其安装方法
CN110222359A (zh) * 2019-04-19 2019-09-10 中国人民解放军63921部队 大跨超高空间网格结构体系的性能评估方法
CN110318462A (zh) * 2019-07-24 2019-10-11 上海联创设计集团股份有限公司 网格钢网壳节点
CN110485737A (zh) * 2019-08-20 2019-11-22 青岛一建集团有限公司 一种基于bim技术的钢网架定位安装施工方法
CN110851905A (zh) * 2019-11-14 2020-02-28 福州大学 一种峡谷微地形条件下的输电铁塔风振系数计算方法
CN110987504A (zh) * 2019-12-20 2020-04-10 哈尔滨工业大学(威海) 光辐射下钢结构温度梯度及其影响的测试装置及测试方法
CN111079330A (zh) * 2019-12-09 2020-04-28 桂林理工大学 一种考虑流固耦合效应的大跨度膜结构抗风设计方法
CN111302082A (zh) * 2020-03-24 2020-06-19 中冶赛迪工程技术股份有限公司 一种基于现有露天料场改造的封闭式料场及改造方法
CN111428415A (zh) * 2020-04-07 2020-07-17 中建八局第四建设有限公司 一种超限钢结构网架提升监测方法
CN111428410A (zh) * 2020-03-25 2020-07-17 中国十七冶集团有限公司 一种基于bim的大跨度网架结构施工方法
CN111444564A (zh) * 2020-03-25 2020-07-24 中国十七冶集团有限公司 一种基于bim的网架结构同步提升施工方法
CN111651808A (zh) * 2020-03-31 2020-09-11 重庆科技学院 考虑梯度风和混凝土质量影响的超高输电塔风振系数简化计算方法
CN112329156A (zh) * 2019-07-31 2021-02-05 深圳市建筑设计研究总院有限公司 一种轴心受力构件的加载及内力计算方法
CN112446100A (zh) * 2019-08-14 2021-03-05 深圳市建筑设计研究总院有限公司 一种受扭构件的预内力及其计算方法
CN112446085A (zh) * 2019-08-14 2021-03-05 深圳市建筑设计研究总院有限公司 一种框架的预内力及其计算方法
CN112948938A (zh) * 2021-03-12 2021-06-11 中国建筑第八工程局有限公司 Bim三维建模计算、识别超重梁的方法
CN113158378A (zh) * 2021-05-08 2021-07-23 中国水利水电第十一工程局有限公司 一种月牙肋钢岔管体型拟定方法
CN113420370A (zh) * 2021-06-02 2021-09-21 中国航空工业集团公司沈阳飞机设计研究所 一种高度静不定结构的强度设计载荷获取方法
CN113931661A (zh) * 2021-11-02 2022-01-14 中铁二十四局集团有限公司 一种适用于大跨度洞室穹顶二次衬砌模板装置及施工方法
CN114102061A (zh) * 2021-11-27 2022-03-01 上海游艺机工程有限公司 一种超长中心轴的施工工艺
CN114969936A (zh) * 2022-06-02 2022-08-30 中国十七冶集团有限公司 一种基于bim的网格结构施工方法
CN114969921A (zh) * 2022-05-25 2022-08-30 中铁二院工程集团有限责任公司 一种铁路框架桥结构尺寸的设计方法
CN118087707A (zh) * 2024-04-26 2024-05-28 陕西建工第十建设集团有限公司 一种双曲面单层钢网壳结构及其施工方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100591877C (zh) * 2008-12-23 2010-02-24 徐州中煤钢结构建设有限公司 超大跨度双层网架穹顶施工工艺
CN102080451B (zh) * 2009-11-27 2012-03-21 中冶天工建设有限公司 工业厂房网架的施工方法
CN102235031B (zh) * 2010-04-26 2012-10-03 湖南大学 超大跨度变截面双层与三层预应力肋梁式网架及制作方法
CN101988308B (zh) * 2010-09-30 2011-08-10 中国华西企业有限公司 大跨度空间螺栓球钢网壳穹顶无支撑安装工法
CN102337785B (zh) * 2011-08-19 2012-07-18 徐州中煤百甲重钢结构有限公司 超大跨度网架拱棚储料仓施工工艺
CN102425326B (zh) * 2011-09-14 2012-11-21 徐州中煤百甲重钢科技有限公司 螺栓球网架筒壳储料仓逆安装施工工艺
CN102383520B (zh) * 2011-09-29 2014-01-29 安徽鲁班建设投资集团有限公司 一种大跨度圆形屋顶以及该屋顶的安装方法
CN102561708A (zh) * 2012-02-02 2012-07-11 张俊辉 一种半球形屋顶阳光板的安装方法
CN103510711B (zh) * 2012-06-29 2015-10-28 中国有色金属工业第六冶金建设有限公司 穹顶结构安装中顶环的吊装方法
CN106599503A (zh) * 2016-12-23 2017-04-26 大工(青岛)新能源材料技术研究院有限公司 一种基于有限元分析的冬暖联排钢结构大棚仿真方法
CN108133068B (zh) * 2017-05-11 2023-07-25 中国北方车辆研究所 一种桁架式无人车辆车体轻量化设计方法
CN108181035B (zh) * 2018-02-26 2023-12-08 成都理工大学 鞍形膜结构试验装置
CN112231808B (zh) * 2020-10-14 2023-09-01 中国建筑第八工程局有限公司 骨架外露网格结构的风荷载模拟与取值方法
CN112726810A (zh) * 2020-12-28 2021-04-30 湖南鼎盛绿色建筑集团有限公司 一种建筑钢结构选用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343532A (ja) * 1989-07-10 1991-02-25 Takenaka Komuten Co Ltd 単層ラチスシェルのグリッド
CN2361703Y (zh) * 1998-12-11 2000-02-02 昆明理工大学 拉索穹顶大跨屋盖结构
DE10017805A1 (de) * 2000-04-10 2001-10-18 Valentin Boronin Tragende Baukonstruktion ohne Zwischenwiderlager
CN1374427A (zh) * 2002-04-11 2002-10-16 王立洪 超大跨度空间结构
CN101314972A (zh) * 2008-06-24 2008-12-03 浙江大学 一种用于弦支穹顶结构的连接结构
CN101440644A (zh) * 2008-12-23 2009-05-27 徐州中煤钢结构建设有限公司 超大跨度双层网架穹顶施工工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7389343B2 (en) * 2002-09-16 2008-06-17 International Business Machines Corporation Method, system and program product for tracking web user sessions
CN100353013C (zh) * 2006-07-07 2007-12-05 贵州大学 大跨度大悬挑屋面斜拉式双层预应力钢网架屋盖结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343532A (ja) * 1989-07-10 1991-02-25 Takenaka Komuten Co Ltd 単層ラチスシェルのグリッド
CN2361703Y (zh) * 1998-12-11 2000-02-02 昆明理工大学 拉索穹顶大跨屋盖结构
DE10017805A1 (de) * 2000-04-10 2001-10-18 Valentin Boronin Tragende Baukonstruktion ohne Zwischenwiderlager
CN1374427A (zh) * 2002-04-11 2002-10-16 王立洪 超大跨度空间结构
CN101314972A (zh) * 2008-06-24 2008-12-03 浙江大学 一种用于弦支穹顶结构的连接结构
CN101440644A (zh) * 2008-12-23 2009-05-27 徐州中煤钢结构建设有限公司 超大跨度双层网架穹顶施工工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FAN, ZHONG ET AL.: "Design and Research of Large-span Steel Structure for the National Stadium", JOURNAL OF BUILDING STRUCTURES, vol. 28, no. 2, April 2007 (2007-04-01), pages 1 - 16 *
ZHU, LIGANG: "Discuss of the Design of Arch and Cable in 110m*95m Elliptic Roof", INDUSTRIAL CONSTRUCTION, vol. 37, no. 7, July 2007 (2007-07-01), pages 117 - 119 *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109083477A (zh) * 2018-08-27 2018-12-25 山西尚风科技股份有限公司 一种多拱型料仓
CN109101766A (zh) * 2018-09-19 2018-12-28 中铁建设集团有限公司 大跨度正交空间管桁架结构分块提升计算方法
CN109101766B (zh) * 2018-09-19 2023-05-05 中铁建设集团有限公司 大跨度正交空间管桁架结构分块提升计算方法
CN109711064A (zh) * 2018-12-28 2019-05-03 上海市建工设计研究总院有限公司 一种采用abaqus模拟数值风洞的方法及装置
CN109711064B (zh) * 2018-12-28 2023-04-28 上海市建工设计研究总院有限公司 一种采用abaqus模拟数值风洞的方法及装置
CN110222359A (zh) * 2019-04-19 2019-09-10 中国人民解放军63921部队 大跨超高空间网格结构体系的性能评估方法
CN110067334A (zh) * 2019-05-06 2019-07-30 中建八局装饰工程有限公司 一种叠级吊顶安装系统及其安装方法
CN110318462A (zh) * 2019-07-24 2019-10-11 上海联创设计集团股份有限公司 网格钢网壳节点
CN110318462B (zh) * 2019-07-24 2024-01-26 上海联创设计集团股份有限公司 网格钢网壳节点
CN112329156A (zh) * 2019-07-31 2021-02-05 深圳市建筑设计研究总院有限公司 一种轴心受力构件的加载及内力计算方法
CN112446085A (zh) * 2019-08-14 2021-03-05 深圳市建筑设计研究总院有限公司 一种框架的预内力及其计算方法
CN112446100A (zh) * 2019-08-14 2021-03-05 深圳市建筑设计研究总院有限公司 一种受扭构件的预内力及其计算方法
CN110485737A (zh) * 2019-08-20 2019-11-22 青岛一建集团有限公司 一种基于bim技术的钢网架定位安装施工方法
CN110851905A (zh) * 2019-11-14 2020-02-28 福州大学 一种峡谷微地形条件下的输电铁塔风振系数计算方法
CN110851905B (zh) * 2019-11-14 2022-06-14 福州大学 一种峡谷微地形条件下的输电铁塔风振系数计算方法
CN111079330A (zh) * 2019-12-09 2020-04-28 桂林理工大学 一种考虑流固耦合效应的大跨度膜结构抗风设计方法
CN110987504B (zh) * 2019-12-20 2024-05-14 哈尔滨工业大学(威海) 光辐射下钢结构温度梯度及其影响的测试装置及测试方法
CN110987504A (zh) * 2019-12-20 2020-04-10 哈尔滨工业大学(威海) 光辐射下钢结构温度梯度及其影响的测试装置及测试方法
CN111302082A (zh) * 2020-03-24 2020-06-19 中冶赛迪工程技术股份有限公司 一种基于现有露天料场改造的封闭式料场及改造方法
CN111444564A (zh) * 2020-03-25 2020-07-24 中国十七冶集团有限公司 一种基于bim的网架结构同步提升施工方法
CN111428410A (zh) * 2020-03-25 2020-07-17 中国十七冶集团有限公司 一种基于bim的大跨度网架结构施工方法
CN111428410B (zh) * 2020-03-25 2023-04-25 中国十七冶集团有限公司 一种基于bim的大跨度网架结构施工方法
CN111651808A (zh) * 2020-03-31 2020-09-11 重庆科技学院 考虑梯度风和混凝土质量影响的超高输电塔风振系数简化计算方法
CN111651808B (zh) * 2020-03-31 2022-10-04 重庆科技学院 考虑梯度风和混凝土质量影响的超高输电塔风振系数简化计算方法
CN111428415B (zh) * 2020-04-07 2023-04-11 中建八局第四建设有限公司 一种超限钢结构网架提升监测方法
CN111428415A (zh) * 2020-04-07 2020-07-17 中建八局第四建设有限公司 一种超限钢结构网架提升监测方法
CN112948938A (zh) * 2021-03-12 2021-06-11 中国建筑第八工程局有限公司 Bim三维建模计算、识别超重梁的方法
CN113158378A (zh) * 2021-05-08 2021-07-23 中国水利水电第十一工程局有限公司 一种月牙肋钢岔管体型拟定方法
CN113420370B (zh) * 2021-06-02 2024-03-19 中国航空工业集团公司沈阳飞机设计研究所 一种高度静不定结构的强度设计载荷获取方法
CN113420370A (zh) * 2021-06-02 2021-09-21 中国航空工业集团公司沈阳飞机设计研究所 一种高度静不定结构的强度设计载荷获取方法
CN113931661B (zh) * 2021-11-02 2023-10-27 中铁二十四局集团有限公司 一种适用于大跨度洞室穹顶二次衬砌模板装置及施工方法
CN113931661A (zh) * 2021-11-02 2022-01-14 中铁二十四局集团有限公司 一种适用于大跨度洞室穹顶二次衬砌模板装置及施工方法
CN114102061A (zh) * 2021-11-27 2022-03-01 上海游艺机工程有限公司 一种超长中心轴的施工工艺
CN114969921A (zh) * 2022-05-25 2022-08-30 中铁二院工程集团有限责任公司 一种铁路框架桥结构尺寸的设计方法
CN114969921B (zh) * 2022-05-25 2024-03-12 中铁二院工程集团有限责任公司 一种铁路框架桥结构尺寸的设计方法
CN114969936B (zh) * 2022-06-02 2024-03-05 中国十七冶集团有限公司 一种基于bim的网格结构施工方法
CN114969936A (zh) * 2022-06-02 2022-08-30 中国十七冶集团有限公司 一种基于bim的网格结构施工方法
CN118087707A (zh) * 2024-04-26 2024-05-28 陕西建工第十建设集团有限公司 一种双曲面单层钢网壳结构及其施工方法

Also Published As

Publication number Publication date
CN101440644A (zh) 2009-05-27
CN100591877C (zh) 2010-02-24

Similar Documents

Publication Publication Date Title
WO2010072060A1 (zh) 超大跨度双层网架穹顶施工工艺
CN105569358B (zh) 大跨度多曲率异型曲面屋顶的施工方法
CN102337785B (zh) 超大跨度网架拱棚储料仓施工工艺
Busch et al. New natural draft cooling tower of 200 m of height
CN101988308A (zh) 大跨度空间螺栓球钢网壳穹顶无支撑安装工法
CN103306531B (zh) 网壳-环形桁架-异型组合柱联合支撑可微移的球罐体系
CN112554345A (zh) 一种大跨度焊接球网架地面拼装整体提升工法
Xue et al. Design and construction of “Bamboo Cubic” facade with laminated bamboo lumber
CN208884949U (zh) 一种边坡支护移动设备
CN204282845U (zh) 寒冷地区建筑用保温棚结构
CN106437024A (zh) 一种异形大跨度网架高空定位分块安装方法
Peko et al. Comparative analysis of steel and aluminum structures
CN108442598A (zh) 网架与钢桁架轻质复合板组合式屋面施工工法
Baniotopoulos Design of wind-sensitive structures
Si et al. A Discussion on the Type Selection of the 200 m Span Closed Coal Shed in the Thermal Power Plant
CN210140983U (zh) 球形网架起步架空中合拢操作台
CN112765752B (zh) 一种可旋转桁架的抗强度评估方法
Wang Multi-Dimensional Hybrid Design and Construction of Skyscraper Cluster-Innovative Engineering of Raffles City Chongqing
CN208202757U (zh) 一种地面一体化可移动式快装塔
Wang et al. Study on key points and countermeasures of a coastal construction project
CN214940383U (zh) 一种装配式地下输煤廊道
Lu et al. Research and application of key technology in construction of steel structure of super-high and large-span heavy duty globular corridor
Shmelev et al. Influence of wind load on connection system of temporary towers
Henriques et al. Design of Lattice Wind Towers and Comparison with the Typical Self-Supported Tubular Towers
Yang Durability of thermal insulation for residential buildings with thin plastered exterior walls

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834013

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2832/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834013

Country of ref document: EP

Kind code of ref document: A1