WO2010071071A1 - タンパク質固定化電極およびその製造方法ならびに機能素子およびその製造方法 - Google Patents
タンパク質固定化電極およびその製造方法ならびに機能素子およびその製造方法 Download PDFInfo
- Publication number
- WO2010071071A1 WO2010071071A1 PCT/JP2009/070674 JP2009070674W WO2010071071A1 WO 2010071071 A1 WO2010071071 A1 WO 2010071071A1 JP 2009070674 W JP2009070674 W JP 2009070674W WO 2010071071 A1 WO2010071071 A1 WO 2010071071A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cytochrome
- immobilized
- electrode
- protein
- self
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 108020002206 Cytochrome c552 Proteins 0.000 claims abstract description 105
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 64
- 239000010931 gold Substances 0.000 claims abstract description 64
- 229910052737 gold Inorganic materials 0.000 claims abstract description 64
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 35
- 125000003396 thiol group Chemical class [H]S* 0.000 claims abstract description 12
- 239000013545 self-assembled monolayer Substances 0.000 claims description 35
- 239000002094 self assembled monolayer Substances 0.000 claims description 33
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 27
- 239000000243 solution Substances 0.000 claims description 15
- 235000011164 potassium chloride Nutrition 0.000 claims description 13
- 239000001103 potassium chloride Substances 0.000 claims description 13
- 230000003100 immobilizing effect Effects 0.000 claims description 6
- 239000007853 buffer solution Substances 0.000 claims description 2
- 108010052832 Cytochromes Proteins 0.000 abstract description 14
- 102000018832 Cytochromes Human genes 0.000 abstract description 14
- 150000003573 thiols Chemical class 0.000 description 44
- 238000002484 cyclic voltammetry Methods 0.000 description 25
- 238000010586 diagram Methods 0.000 description 23
- 102000004169 proteins and genes Human genes 0.000 description 21
- 108090000623 proteins and genes Proteins 0.000 description 21
- 102100030497 Cytochrome c Human genes 0.000 description 16
- 108010075031 Cytochromes c Proteins 0.000 description 16
- 241000283073 Equus caballus Species 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 12
- 230000002107 myocardial effect Effects 0.000 description 9
- 230000027756 respiratory electron transport chain Effects 0.000 description 9
- 150000003278 haem Chemical class 0.000 description 7
- 210000004165 myocardium Anatomy 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 4
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 238000004925 denaturation Methods 0.000 description 4
- 230000036425 denaturation Effects 0.000 description 4
- 239000005090 green fluorescent protein Substances 0.000 description 4
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 125000001165 hydrophobic group Chemical group 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000012460 protein solution Substances 0.000 description 3
- ULGGZAVAARQJCS-UHFFFAOYSA-N 11-sulfanylundecan-1-ol Chemical compound OCCCCCCCCCCCS ULGGZAVAARQJCS-UHFFFAOYSA-N 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- CCIDWXHLGNEQSL-UHFFFAOYSA-N undecane-1-thiol Chemical compound CCCCCCCCCCCS CCIDWXHLGNEQSL-UHFFFAOYSA-N 0.000 description 2
- 238000004832 voltammetry Methods 0.000 description 2
- GWOLZNVIRIHJHB-UHFFFAOYSA-N 11-mercaptoundecanoic acid Chemical compound OC(=O)CCCCCCCCCCS GWOLZNVIRIHJHB-UHFFFAOYSA-N 0.000 description 1
- 108091006149 Electron carriers Proteins 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 241000589499 Thermus thermophilus Species 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 229960000789 guanidine hydrochloride Drugs 0.000 description 1
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000002120 nanofilm Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 108010034088 zinc cytochrome c Proteins 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K17/00—Carrier-bound or immobilised peptides; Preparation thereof
- C07K17/14—Peptides being immobilised on, or in, an inorganic carrier
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
- G01N33/54373—Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
- G01N33/5438—Electrodes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/451—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a metal-semiconductor-metal [m-s-m] structure
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/761—Biomolecules or bio-macromolecules, e.g. proteins, chlorophyl, lipids or enzymes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/795—Porphyrin- or corrin-ring-containing peptides
- G01N2333/80—Cytochromes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2610/00—Assays involving self-assembled monolayers [SAMs]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a protein-immobilized electrode and a method for producing the same, a functional device using the protein-immobilized electrode, and a method for producing the same.
- Thermusthermophilus-derived cytochrome c552 acts as an electron carrier in the living body in the same manner as the equine cardiac muscle cytochrome c.
- Cytochrome c552 is known to have very high thermal stability compared to equine myocardial cytochrome c (see Non-Patent Document 1).
- the denaturation midpoint of a general protein is 50-60 ° C.
- the denaturation midpoint of equine myocardial cytochrome c is 85 ° C.
- the denaturation temperature of cytochrome c552 is in a general aqueous solution (the upper limit of the temperature is 100 Since it cannot be measured at (° C.), it is at least 100 ° C. or higher.
- the midpoint of denaturation of cytochrome c552 in the presence of 4.2M guanidine hydrochloride (modifier) is reported to be 60-70 ° C.
- Cytochrome c552 is suitable as a device material because of its high thermal stability. Cytochrome c552 and equine cardiac muscle cytochrome c are similar in constituent amino acid and three-dimensional structure, but are different in the environment of the active center hem pocket that conducts electrons. Specifically, lysine residues having a positive charge are dispersed throughout the molecule in equine cardiac muscle cytochrome c, but the number of lysine residues in cytochrome c552 is the same as that of equine cardiac muscle cytochrome c. Is not placed around the hem pocket.
- Non-Patent Document 2 From the complex structure of cytochrome c552 with the in vivo redox partner, it has been reported that the formation of this complex is mainly a hydrophobic interaction (see Non-Patent Document 2). Therefore, in order to immobilize cytochrome c552 on the electrode while maintaining its electron transfer capability, a specific condition search is necessary.
- Non-Patent Document 3 A French research group reported that cytochrome c552 was immobilized on a silver electrode and succeeded in obtaining a protein-derived redox current using this protein-immobilized electrode (see Non-Patent Document 3).
- cytochrome c552 was immobilized on a silver electrode and succeeded in obtaining a protein-derived redox current using this protein-immobilized electrode (see Non-Patent Document 3).
- the cyclic voltammogram obtained using this protein-immobilized electrode there is a problem in controlling the protein orientation because the peak separation between the oxidation wave and the reduction wave is remarkable.
- silver as an electrode material can easily corrode and oxidize even in normal environment use. That is, since the silver electrode is not suitable for long-term stable use, it is necessary to use a chemically stable electrode instead of the silver electrode.
- the problem to be solved by the present invention is that a long-term stable structure in which cytochrome c552 having high stability, a derivative thereof or a variant thereof is immobilized on a chemically stable gold electrode while retaining its electron transfer ability. It is to provide an available protein-immobilized electrode and a method for producing the same. Another problem to be solved by the present invention is the long-term stability in which cytochrome c552, a derivative thereof or a variant thereof having high stability is immobilized on a chemically stable gold electrode while retaining its electron transfer ability. It is to provide a functional device using a protein-immobilized electrode that can be used and a method for producing the functional device.
- the present inventors have found that it is possible to immobilize cytochrome c552 on a gold electrode without impairing its electron transfer capability, while conducting earnest research to solve the above problems. It came to devise invention. That is, in order to solve the above problems, the present invention provides: A protein-immobilized electrode having a gold electrode and cytochrome c552, a derivative thereof, or a variant thereof immobilized on the gold electrode. The invention also provides This is a method for producing a protein-immobilized electrode in which cytochrome c552, a derivative thereof or a variant thereof is immobilized on a gold electrode.
- the invention also provides It is a functional element having a protein-immobilized electrode having a gold electrode and cytochrome c552, a derivative thereof, or a variant thereof immobilized on the gold electrode.
- the invention also provides This is a method for producing a functional device having a step of forming a protein-immobilized electrode by immobilizing cytochrome c552, a derivative thereof or a variant thereof on a gold electrode.
- the functional element is not particularly limited as long as cytochrome c552, a derivative thereof or a mutant thereof is used, and examples thereof include a photoelectric conversion element and various electronic elements having a photoelectric conversion function.
- cytochrome c552 a derivative thereof, or a variant thereof is typically immobilized with its hydrophobic portion facing the gold electrode.
- cytochrome c552, a derivative or variant thereof, and a gold electrode are bound via a self-assembled monolayer.
- the derivative of cytochrome c552 is obtained by chemically modifying the amino acid residue or heme of the skeleton of cytochrome c552.
- the mutant of cytochrome c552 is obtained by substituting a part of the amino acid residue of the backbone of cytochrome c552 with another amino acid residue.
- the gold electrode is chemically stable, it is possible to prevent the electrode from being corroded or oxidized when the protein-immobilized electrode is used. In addition, it is possible to prevent the electron transfer ability of cytochrome c552, a derivative thereof, or a mutant thereof from being impaired when immobilized on a gold electrode.
- long-term stable protein immobilization in which cytochrome c552 having high stability, a derivative thereof or a variant thereof is immobilized while maintaining its electron transfer ability on a chemically stable gold electrode.
- An electrode can be realized.
- various functional elements with high performance can be realized using this protein-immobilized electrode.
- Is a schematic diagram illustrating a HS (CH 3) 10 CH 2 OH cyclic results of voltammetry content was performed using the cytochrome c552 immobilized electrode was prepared by changing the used to form a self-assembled monolayer.
- Cyclic voltammograms obtained by cyclic voltammetry performed using cytochrome c552-immobilized electrodes prepared by changing the content of HS (CH 3 ) 10 CH 2 OH in the raw material used for forming the self-assembled monolayer it is a schematic diagram obtained by plotting the current values relative to the content of HS (CH 3) 10 CH 2 OH in the peak at.
- First Embodiment Protein-immobilized electrode and manufacturing method thereof
- Second embodiment photoelectric conversion element
- FIG. 1 shows a protein-immobilized electrode according to the first embodiment.
- cytochrome c552 13 is immobilized on a gold electrode 11 via a self-assembled monolayer (SAM) 12.
- SAM self-assembled monolayer
- cytochrome c552 13 is fixed with its hydrophobic portion 13a facing the gold electrode 11 side.
- Iron (Fe) is coordinated to the hem 13b inside the cytochrome c552 13 as a central metal.
- FIG. 2A schematically shows the structure of cytochrome c552.
- FIG. 2A shows the cytochrome c552 heme and its axial ligands histidine (His), methionine (Met) and lysine residues (positively charged amino acids) in a bar model.
- FIG. 2A is a front view of heme when the direction in which the axial ligand histidine (His) of cytochrome c552 comes to the right is assumed to be the front.
- FIG. 2B shows a surface charge distribution diagram of the cytochrome c552 shown in FIG. 2A.
- FIG. 3A shows a view of cytochrome c552 as seen from the back side of the hem.
- FIG. 3B shows a surface charge distribution diagram of the cytochrome c552 shown in FIG. 3A.
- FIG. 4A is a view of the equine myocardial cytochrome c viewed from the hem front side
- FIG. 4B is a surface charge distribution diagram of the equine myocardial cytochrome c shown in FIG. 4A
- FIG. 5B shows a surface charge distribution diagram of the equine myocardial cytochrome c shown in FIG. 5A.
- FIG. 6 schematically shows cytochrome c552 13 immobilized on the gold electrode 11 via the self-assembled monolayer 12.
- the axial ligand histidine of cytochrome c552 13 is on the near side, and lysine residues are shown in a bar model.
- FIG. 7 shows a view of cytochrome c552 13 immobilized on the gold electrode 11 via the self-assembled monolayer 12 from the gold electrode 11 side, and the axial ligand histidine is on the right side (heme front). ).
- the amino acid side chains are shown in a bar model.
- the self-assembled monolayer 12 is composed of three parts.
- the first part is a binding functional group (for example, a thiol group (—SH)) that reacts with atoms on the surface of the gold electrode 11 to be immobilized on the self-assembled monolayer 12.
- the second part is usually an alkyl chain, and the two-dimensional regular structure of the self-assembled monolayer 12 is mainly determined by the van der Waals force between the alkyl chains. Therefore, generally, when the number of carbon atoms in the alkyl chain is more than a certain level, a stable, high-density, highly oriented film is formed.
- the third part is a terminal group. By using the terminal group as a functional functional group, the solid surface can be functionalized.
- the self-assembled monolayer 12 is formed using, for example, a hydrophobic thiol and a hydrophilic thiol. Depending on the ratio of the hydrophobic thiol and the hydrophilic thiol, the cytochrome c552 13 and the gold electrode 11 The ease of coupling between changes.
- the hydrophilic group of the hydrophilic thiol is, for example, —OH, —NH 2 , SO 3 ⁇ , OSO 3 ⁇ , COO ⁇ , NH 4 + and the like. These hydrophobic thiols and hydrophilic thiols are selected as needed.
- the hydrophobic thiol is 1-undecanethiol (HS (CH 2 ) 10 CH 3 )
- the hydrophilic thiol is 1-hydroxy-11-undecanethiol (HS (CH 2 ) 10 CH 2 OH). is there.
- hydrophobic thiols are HS (CH 2 ) m CH 3
- hydrophilic thiols are HS (CH 2 ) n CH 2 OH (where m ⁇ n, m Is, for example, 5 or more, and n is, for example, 10 or less.
- the hydrophobic thiol is HS (CH 2 ) 9 CH 3
- the hydrophilic thiol is HS (CH 2 ) 10 CH 2 OH.
- FIG. 8 schematically shows the structure of the self-assembled monolayer 12 formed using a hydrophobic thiol and a hydrophilic thiol.
- the thiol group (—SH) side of the hydrophobic thiol 12 a and the hydrophilic thiol 12 b is bonded to the surface of the gold electrode 11.
- the hydrophobic group of the hydrophobic thiol 12a and the hydrophilic group (indicated by ⁇ in FIG. 8) of the hydrophilic thiol 12b are bonded to the hydrophobic portion 13a of the cytochrome c552-13.
- cytochrome c552-immobilized electrode Examples of this protein-immobilized electrode (hereinafter referred to as “cytochrome c552-immobilized electrode”) will be described.
- cytochrome c552-immobilized electrode 1-undecanethiol (HS (CH 2 ) 10 CH 3 ) as a hydrophobic thiol and 1-hydroxy-11-undecanethiol (HS (CH 2 ) 10 CH 2 OH) as a hydrophilic thiol :
- a 0.1 mM ethanol solution mixed at a ratio of 75 was prepared.
- a clean gold drop electrode or gold plate electrode is immersed in this solution and left at room temperature overnight. Thus, a self-assembled monolayer is formed on the surface of the gold drop electrode or the gold plate electrode.
- cytochrome c552 solution 10 mM Tris-HCl buffer (pH 7.6), 50 mM KCl
- a cytochrome c552-immobilized electrode in which cytochrome c552 is immobilized on the surface of the gold drop electrode or the gold plate electrode via the self-assembled monomolecular film is produced.
- Cyclic voltammetry was performed using the cytochrome c552 immobilized electrode thus prepared.
- I current (A)
- E potential (V) with respect to the reference electrode (Ag / AgCl) (the same applies hereinafter).
- FIGS. 9 and 10 it can be seen that a typical adsorptive cyclic voltammogram without peak separation is drawn.
- the cyclic voltammogram shown in FIG. 9 shows the measurement results obtained by changing the potential sweep rate by 10 mV / s in the range of 10 to 100 mV / s.
- the cyclic voltammogram shown in FIG. 10 shows the results of measurement by changing the potential sweep rate by 100 mV / s in the range of 100 to 1000 mV / s.
- FIG. 11 shows changes over time in current values (anodic current Ipa and cathodic current Ica) when the cytochrome c552-immobilized electrode was stored in a protein solution at room temperature.
- the cytochrome c552-immobilized electrode can obtain the same redox current value even after being stored in a protein solution at room temperature for 1 month.
- the current value decreases with time, and peak separation occurs in the cyclic voltammogram.
- the data when cytochrome c552 is immobilized on a gold electrode using self-assembled monolayers with different terminals, that is, when cytochrome c552 is immobilized in an incorrect orientation will be described.
- cyclic voltammetry is performed using a cytochrome c552-immobilized electrode in which cytochrome c552 is immobilized on a gold electrode using a thiol having a carbon number of 10 (HS (CH 2 ) 10 R) having a different terminal (—R).
- the obtained cyclic voltammogram is shown in FIG.
- a 10 mM phosphate-Na solution pH 7.0
- the potential sweep rate was 50 mV / s.
- cytochrome c552-immobilized electrode a 10 mM phosphate-Na solution (pH 7.0) was used as a buffer, and the potential sweep rate was 50 mV / s.
- a cytochrome c552-immobilized electrode a cytochrome c552 is attached to the gold drop electrode through a self-assembled monolayer formed using HS (CH 2 ) 10 CH 3 and HS (CH 3 ) 10 CH 2 OH as described above. What was immobilized was used. However, the diameter of the gold drop electrode is 2.5 mm.
- the obtained cyclic voltammogram is shown in FIG. However, 10 mM Tris-HCl buffer (pH 7.6) was used as the buffer in the cytochrome c552 solution. Since the range of KCl concentration in the cytochrome c552 solution capable of immobilizing cytochrome c552 is 0 to 200 mM, cyclic voltammetry was performed by changing the KCl concentration within this range.
- FIG. 14 shows a graph in which the cathodic current (downward peak) of the cyclic voltammogram shown in FIG. 13 is integrated to obtain the total charge amount and plotted against the KCl concentration.
- FIG. 14 shows that the optimum concentration of KCl is 10 to 30 mM.
- the amount of cytochrome c552 immobilized is about 1.5 times that in the case where KCl is not present in the cytochrome c552 solution, that is, when the KCl concentration is 0 mM, or when the KCl concentration is 50 mM or more. become.
- the KCl concentration is higher than 100 mM, desorption of cytochrome c552 and self-assembled monolayer is observed.
- HS (CH 2) 10 CH 3 and HS (CH 2) 10 CH 2 OH and HS ethanol solution was mixed with (CH 2) 10 CH 3
- a self-assembled monolayer was formed by changing the ratio of OH and HS (CH 2 ) 10 CH 2 OH.
- cyclic voltammetry was performed on a cytochrome c552-immobilized electrode in which cytochrome c552 was immobilized on a gold electrode via the self-assembled monolayer.
- a 10 mM phosphate-Na solution pH 7.0
- the potential sweep rate was 50 mV / s.
- the obtained cyclic voltammogram is shown in FIG.
- the numerical value of the footnote in FIG. 15 indicates ([HS (CH 2 ) 10 CH 3 ] / [HS (CH 2 ) 10 CH 2 OH]).
- (20/80) is HS (CH 2 ) 10 CH 3.
- FIG. 17 is a graph obtained by plotting the current value at the redox peak of the results shown in FIGS. 15 and 16 against the content of HS (CH 2 ) 10 CH 2 OH. From FIG. 17, it is understood that cytochrome c552 can be favorably immobilized when the content of HS (CH 2 ) 10 CH 2 OH is in the range of 60 to 90%.
- cytochrome c552 was immobilized on the gold electrode through this self-assembled monolayer. Cyclic voltammetry was performed using the cytochrome c552 immobilized electrode thus prepared. The obtained cyclic voltammogram is shown in FIG.
- cytochrome c552 13 having high stability is placed on the chemically stable gold electrode 11 so that the hydrophobic portion 13a faces the gold electrode 11 side. It is made to fix through the organized monolayer 12. For this reason, it is possible to realize a protein-immobilized electrode that can be stably used for a long time, in which cytochrome c552 13 is immobilized on the gold electrode 11 while maintaining its electron transfer capability.
- Second Embodiment> [Photoelectric conversion element] As shown in FIG. 19, in this photoelectric conversion element, as in the first embodiment, protein immobilization in which cytochrome c552 13 is immobilized on the gold electrode 11 through the self-assembled monolayer 12 is performed. It has an electrode. Further, a green fluorescent protein (GFP) 14 is electrostatically bound to the cytochrome c552 13.
- GFP green fluorescent protein
- the present invention is not limited to the above-described embodiment, and various modifications based on the technical idea of the present invention are possible.
- the numerical values, structures, configurations, shapes, materials, and the like given in the above-described embodiments are merely examples, and different numerical values, structures, configurations, shapes, materials, and the like may be used as necessary.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Medicinal Chemistry (AREA)
- Pathology (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Food Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Theoretical Computer Science (AREA)
- Materials Engineering (AREA)
- Mathematical Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Electromagnetism (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Peptides Or Proteins (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Abstract
Description
この発明が解決しようとする他の課題は、化学的に安定な金電極上に高い安定性を有するシトクロムc552、その誘導体またはその変異体がその電子伝達能を保持したまま固定化された長期安定利用可能なタンパク質固定化電極を用いる機能素子およびその製造方法を提供することである。
すなわち、上記課題を解決するために、この発明は、
金電極とこの金電極に固定化されたシトクロムc552、その誘導体またはその変異体とを有するタンパク質固定化電極である。
この発明はまた、
金電極にシトクロムc552、その誘導体またはその変異体を固定化するようにしたタンパク質固定化電極の製造方法である。
金電極とこの金電極に固定化されたシトクロムc552、その誘導体またはその変異体とを有するタンパク質固定化電極を有する機能素子である。
この発明はまた、
金電極上にシトクロムc552、その誘導体またはその変異体を固定化してタンパク質固定化電極を形成する工程を有する機能素子の製造方法である。
ここで、機能素子は、シトクロムc552、その誘導体またはその変異体を用いるものである限り特に限定されないが、例えば、光電変換素子や、光電変換機能を有する各種の電子素子などが挙げられる。
なお、説明は以下の順序で行う。
1.第1の実施の形態(タンパク質固定化電極およびその製造方法)
2.第2の実施の形態(光電変換素子)
[タンパク質固定化電極]
図1に第1の実施の形態によるタンパク質固定化電極を示す。
図1に示すように、このタンパク質固定化電極においては、金電極11上に自己組織化単分子膜(self-assembledmonolayer,SAM)12を介してシトクロムc552 13が固定化されている。この場合、シトクロムc552 13は、その疎水性部分13aを金電極11側に向けて固定化されている。シトクロムc552 13の内部にあるヘム13bには、中心金属として鉄(Fe)が配位している。
図7は、金電極11上に自己組織化単分子膜12を介して固定化されたシトクロムc552 13を金電極11側から見た図を示し、軸配位子ヒスチジンは右側にある(ヘム正面)。図7においては、アミノ酸側鎖を棒モデルで示した。
このタンパク質固定化電極の製造方法の一例について説明する。
まず、金電極11を上記の疎水性チオールおよび親水性チオールを所定の割合で混ぜた溶液(溶媒は例えばエタノール)に浸漬することによって、図1に示すように、自己組織化単分子膜12を金電極11の表面に形成する。
次に、こうして自己組織化単分子膜12を形成した金電極11をシトクロムc55213と緩衝液と必要に応じて塩化カリウム(KCl)などの塩とを含む溶液に浸漬することによって、自己組織化単分子膜12上にシトクロムc552 13をその疎水性部分13aが金電極11側を向くように吸着固定する。
以上のようにして、目的とするタンパク質固定化電極が製造される。
このタンパク質固定化電極(以下「シトクロムc552固定化電極」と言う。)の実施例について説明する。
1.試料の作製
疎水性チオールとしての1-ウンデカンチオール(HS(CH2)10CH3 )と親水性チオールとしての1-ヒドロキシ-11-ウンデカンチオール(HS(CH2)10CH2 OH)とを25:75の割合で混ぜた0.1mMエタノール溶液を調製した。この溶液に清浄な金ドロップ電極または金平板電極を浸漬し、室温で一昼夜放置する。こうして、自己組織化単分子膜が金ドロップ電極または金平板電極の表面に形成される。
測定に際しては、緩衝液として10mMリン酸-Na溶液(pH7.0)を用い、電位掃引速度は50mV/sとした。シトクロムc552固定化電極としては、上記と同様にHS(CH2)10CH3 およびHS(CH3 )10CH2 OHを用いて形成した自己組織化単分子膜を介して金ドロップ電極にシトクロムc552を固定化したものを用いた。ただし、金ドロップ電極の直径は2.5mmである。
図15および図16に示す結果の、酸化還元ピークにおける電流値をHS(CH2)10CH2 OHの含有量に対してプロットしたグラフを図17に示す。図17より、HS(CH2)10CH2 OHの含有量が60~90%の範囲でシトクロムc552の固定化を良好に行うことが可能であることが分かる。詳細は省略するが、別途行った実験により、疎水性チオールがHS(CH2)n CH3 (n=5,8,10)、親水性チオールがHS(CH2 )nCH2 OH(n=5,8,10)である場合全般について、HS(CH2 )n CH2OHの含有量が60~90%の範囲でシトクロムc552の固定化を良好に行うことが可能であることが確認されている。
[光電変換素子]
図19に示すように、この光電変換素子においては、第1の実施の形態と同様に、金電極11上に自己組織化単分子膜12を介してシトクロムc552 13が固定化されたタンパク質固定化電極を有する。さらに、このシトクロムc552 13には、緑色蛍光タンパク質(GreenFluorescent Protein,GFP)14が静電的に結合している。
上記以外のことは第1の実施の形態と同様である。
この第2の実施の形態によれば、長期安定利用可能なタンパク質固定化電極を用いた新規な光電変換素子を実現することができる。
例えば、上述の実施の形態において挙げた数値、構造、構成、形状、材料などはあくまでも例に過ぎず、必要に応じてこれらと異なる数値、構造、構成、形状、材料などを用いてもよい。
Claims (14)
- 金電極とこの金電極に固定化されたシトクロムc552、その誘導体またはその変異体とを有するタンパク質固定化電極。
- 上記シトクロムc552、その誘導体またはその変異体はその疎水性部分を上記金電極側に向けて固定化されている請求項1記載のタンパク質固定化電極。
- 上記シトクロムc552、その誘導体またはその変異体と上記金電極とは自己組織化単分子膜を介して結合している請求項2記載のタンパク質固定化電極。
- 上記自己組織化単分子膜は疎水性チオールおよび親水性チオールを用いて形成されたものである請求項3記載のタンパク質固定化電極。
- 上記疎水性チオールはHS(CH2)n CH3 (n=5,8,10)、上記親水性チオールはHS(CH2 )nCH2 OH(n=5,8,10)である請求項4記載のタンパク質固定化電極。
- 上記自己組織化単分子膜中のHS(CH2)n CH2 OHの含有量が60%以上90%以下である請求項5記載のタンパク質固定化電極。
- 上記疎水性チオールはHS(CH2)10CH3 、上記親水性チオールはHS(CH2 )10CH2OHである請求項4記載のタンパク質固定化電極。
- 上記疎水性チオールはHS(CH2)m CH3 、上記親水性チオールはHS(CH2 )n CH2OH(m<n)である請求項4記載のタンパク質固定化電極。
- 金電極にシトクロムc552、その誘導体またはその変異体を固定化するようにしたタンパク質固定化電極の製造方法。
- 上記シトクロムc552、その誘導体またはその変異体をその疎水性部分が上記金電極側に向くように固定化する請求項9記載のタンパク質固定化電極の製造方法。
- 上記シトクロムc552、その誘導体またはその変異体を自己組織化単分子膜を介して上記金電極と結合する請求項10記載のタンパク質固定化電極の製造方法。
- 上記金電極上に上記自己組織化単分子膜を形成した後、シトクロムc552、その誘導体またはその変異体と緩衝液と10mM以上30mM以下の塩化カリウムとを含む溶液に上記自己組織化単分子膜が形成された上記金電極を浸漬することにより上記シトクロムc552、その誘導体またはその変異体を上記自己組織化単分子膜を介して上記金電極と結合するようにした請求項11記載のタンパク質固定化電極の製造方法。
- 金電極とこの金電極に固定化されたシトクロムc552、その誘導体またはその変異体とを有するタンパク質固定化電極を有する機能素子。
- 金電極上にシトクロムc552、その誘導体またはその変異体を固定化してタンパク質固定化電極を形成する工程を有する機能素子の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/139,461 US8609438B2 (en) | 2008-12-18 | 2009-12-10 | Protein-immobilized electrode and method of manufacturing the same, and functional element and method of manufacturing the same |
EP09833374.3A EP2360466A4 (en) | 2008-12-18 | 2009-12-10 | IMMOBILIZED PROTEIN ELECTRODE, FUNCTIONAL ELEMENT, AND METHODS OF MANUFACTURING THE SAME |
CN200980154795.9A CN102282461B (zh) | 2008-12-18 | 2009-12-10 | 蛋白质固定化电极及其制造方法,以及功能元件及制造方法 |
BRPI0923356-3A BRPI0923356A2 (pt) | 2008-12-18 | 2009-12-10 | Eletrodo de proteína imobilizada, método para fabricar um eletrodo de proteína imobilizada, elemento funcional, e , método para fabricar um elemento funcional. |
RU2011124246/10A RU2532841C2 (ru) | 2008-12-18 | 2009-12-10 | Электрод с иммобилизованным белком и способ его изготовления и функциональный элемент и способ его изготовления |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-322199 | 2008-12-18 | ||
JP2008322199A JP5233650B2 (ja) | 2008-12-18 | 2008-12-18 | タンパク質固定化電極およびその製造方法ならびに機能素子およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010071071A1 true WO2010071071A1 (ja) | 2010-06-24 |
Family
ID=42268741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/070674 WO2010071071A1 (ja) | 2008-12-18 | 2009-12-10 | タンパク質固定化電極およびその製造方法ならびに機能素子およびその製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US8609438B2 (ja) |
EP (1) | EP2360466A4 (ja) |
JP (1) | JP5233650B2 (ja) |
KR (1) | KR20110094304A (ja) |
CN (1) | CN102282461B (ja) |
BR (1) | BRPI0923356A2 (ja) |
RU (1) | RU2532841C2 (ja) |
WO (1) | WO2010071071A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5444747B2 (ja) * | 2009-02-17 | 2014-03-19 | ソニー株式会社 | カラー撮像素子およびその製造方法ならびに光センサーおよびその製造方法ならびに光電変換素子およびその製造方法ならびに電子機器 |
JP2011100759A (ja) * | 2009-11-04 | 2011-05-19 | Sony Corp | 多層透明受光素子および電子機器 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10280182A (ja) * | 1997-04-11 | 1998-10-20 | Mitsubishi Heavy Ind Ltd | タンパク質固定修飾電極 |
JP2007220445A (ja) | 2006-02-16 | 2007-08-30 | Sony Corp | 光電変換素子、半導体装置および電子機器 |
JP2008122347A (ja) * | 2006-11-15 | 2008-05-29 | Sony Corp | タンパク質の固定化方法及びこれを用いたバイオセンサー |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SK154298A3 (en) * | 1996-05-10 | 2000-03-13 | British Gas Plc | Method for the transfer of electrons between an electrode and an enzyme in an electrochemical process |
JP4524395B2 (ja) * | 2004-05-31 | 2010-08-18 | 独立行政法人産業技術総合研究所 | チオール基又はスルフィド基含有化合物の検出、濃度測定方法 |
NO321280B1 (no) | 2004-07-22 | 2006-04-18 | Thin Film Electronics Asa | Organisk, elektronisk krets og fremgangsmate til dens fremstilling |
JP4561451B2 (ja) * | 2005-04-15 | 2010-10-13 | セイコーエプソン株式会社 | 多型検出方法および多型検出用キット |
JP5444747B2 (ja) * | 2009-02-17 | 2014-03-19 | ソニー株式会社 | カラー撮像素子およびその製造方法ならびに光センサーおよびその製造方法ならびに光電変換素子およびその製造方法ならびに電子機器 |
JP5446414B2 (ja) * | 2009-04-16 | 2014-03-19 | ソニー株式会社 | 光電変換素子 |
-
2008
- 2008-12-18 JP JP2008322199A patent/JP5233650B2/ja not_active Expired - Fee Related
-
2009
- 2009-12-10 US US13/139,461 patent/US8609438B2/en not_active Expired - Fee Related
- 2009-12-10 EP EP09833374.3A patent/EP2360466A4/en not_active Withdrawn
- 2009-12-10 RU RU2011124246/10A patent/RU2532841C2/ru not_active IP Right Cessation
- 2009-12-10 BR BRPI0923356-3A patent/BRPI0923356A2/pt not_active IP Right Cessation
- 2009-12-10 KR KR1020117013249A patent/KR20110094304A/ko not_active Application Discontinuation
- 2009-12-10 CN CN200980154795.9A patent/CN102282461B/zh not_active Expired - Fee Related
- 2009-12-10 WO PCT/JP2009/070674 patent/WO2010071071A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10280182A (ja) * | 1997-04-11 | 1998-10-20 | Mitsubishi Heavy Ind Ltd | タンパク質固定修飾電極 |
JP2007220445A (ja) | 2006-02-16 | 2007-08-30 | Sony Corp | 光電変換素子、半導体装置および電子機器 |
JP2008122347A (ja) * | 2006-11-15 | 2008-05-29 | Sony Corp | タンパク質の固定化方法及びこれを用いたバイオセンサー |
Non-Patent Citations (7)
Title |
---|
BERNAD, S., EUR. BIOPHYS. J., vol. 36, 2007, pages 1039 |
FEE, J. A., PROTEIN SCI., vol. 9, 2000, pages 2074 |
KYOKO FUJITA ET AL.: "Kongo SAM Shushoku Kin Denkyoku o Mochiita Cytochrome c Oyobi Azurin no Sanka Kangen Oto Kaiseki", THE ELECTROCHEMICAL SOCIETY OF JAPAN DAI 71 KAI TAIKAI KOEN YOSHISHU, 24 March 2004 (2004-03-24), pages 77, XP008148734 * |
MURESANU, L., J. BIOL. CHEM., vol. 281, 2006, pages 14503 |
SATORU ISOTA ET AL.: "Diode Tokusei o Motsu Jinko Tanpakushitsu", CHEMISTRY & CHEMICAL INDUSTRY, vol. 48, no. 6, 1 June 1995 (1995-06-01), pages 718 - 720, XP008163010 * |
See also references of EP2360466A4 |
SOPHIE BERNAD ET AL.: "Characterization and Redox Properties of Cytochrome C552 from Thermus thermophilus Adsorbed on Different Self- Assembled Thiol Monolayers, Used to Model the Chemical Environment of the Redox Partner", BIOPOLYMERS, vol. 81, no. 5, 5 April 2006 (2006-04-05), pages 407 - 418, XP008148731 * |
Also Published As
Publication number | Publication date |
---|---|
CN102282461A (zh) | 2011-12-14 |
JP5233650B2 (ja) | 2013-07-10 |
EP2360466A1 (en) | 2011-08-24 |
BRPI0923356A2 (pt) | 2015-07-21 |
CN102282461B (zh) | 2014-12-24 |
US20120103798A1 (en) | 2012-05-03 |
RU2532841C2 (ru) | 2014-11-10 |
JP2010145216A (ja) | 2010-07-01 |
RU2011124246A (ru) | 2013-01-27 |
KR20110094304A (ko) | 2011-08-23 |
EP2360466A4 (en) | 2014-05-14 |
US8609438B2 (en) | 2013-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rad et al. | A review on glucose and hydrogen peroxide biosensor based on modified electrode included silver nanoparticles | |
Ren et al. | Hydrogen peroxide sensor based on horseradish peroxidase immobilized on a silver nanoparticles/cysteamine/gold electrode | |
Valentini et al. | Nanomaterials and analytical chemistry | |
KR101360407B1 (ko) | 재조합 단백질 및 무기입자 이중층을 포함하는 바이오-메모리 디바이스 | |
Yadav et al. | Revisiting some recently developed conducting polymer@ metal oxide nanostructures for electrochemical sensing of vital biomolecules: a review | |
Feng et al. | Synergistic effect of zirconium phosphate and Au nanoparticles on direct electron transfer of hemoglobin on glassy carbon electrode | |
Zhu et al. | Non-enzymatic xanthine sensor of heteropolyacids doped ferrocene and reduced graphene oxide via one-step electrodeposition combined with layer-by-layer self-assembly technology | |
Zheng et al. | DNA as a linker for biocatalytic deposition of Au nanoparticles on graphene and its application in glucose detection | |
Chen et al. | A Molecule with Dual Functionality 4‐Aminophenylmethylphosphonic Acid: A Comparison Between Layers Formed on Indium Tin Oxide by In Situ Generation of an Aryl Diazonium Salt or by Self‐Assembly of the Phosphonic Acid | |
Shie et al. | Electroanalytical properties of cytochrome c by direct electrochemistry on multi-walled carbon nanotubes incorporated with DNA biocomposite film | |
Suhanto et al. | Sonochemical synthesis of magnetic Fe 3 O 4/graphene nanocomposites for label-free electrochemical biosensors | |
Xu et al. | A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin in Hb–Ag sol films | |
Zhang et al. | Gold Nanoparticle‐Based Mediatorless Biosensor Prepared on Microporous Electrode | |
Al-Akraa et al. | Self-assembling of gold nanoparticles array for electrosensing applications | |
Jakubec et al. | Novel Fe@ Fe-O@ Ag nanocomposite for efficient non-enzymatic sensing of hydrogen peroxide | |
JP5233650B2 (ja) | タンパク質固定化電極およびその製造方法ならびに機能素子およびその製造方法 | |
Kaya et al. | Carbon nanomaterial-based drug sensing platforms using state-of-the-art electroanalytical techniques | |
Stine et al. | Nanoporous gold for enzyme immobilization | |
Yang et al. | Stepwise synthesis of Gly− Gly− His on gold surfaces modified with mixed self-assembled monolayers | |
KR20130013776A (ko) | 다기능성 바이오-메모리 디바이스 | |
Ribeiro et al. | Electrocatalytic oxidation of ethinyl estradiol by an iron oxide nanoparticle/nickel phthalocyanine supramolecular electrode | |
Berchmans et al. | Electrochemical preparation of copper–dendrimer nanocomposites: picomolar detection of Cu 2+ ions | |
Jin et al. | Stripping chronopotentiometric analysis of cysteine on nano-silver coat polyquercetin–MWCNT modified platinum electrode | |
Chen et al. | Multilayer assembly of hemoglobin and colloidal gold nanoparticles on multiwall carbon nanotubes/chitosan composite for detecting hydrogen peroxide | |
Jia | Hydrogen peroxide biosensor based on horseradish peroxidase–Au nanoparticles at a viologen grafted glassy carbon electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980154795.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09833374 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20117013249 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4407/DELNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009833374 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011124246 Country of ref document: RU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13139461 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI0923356 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI0923356 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110610 |