WO2010069914A1 - Régulateurs de la transcription de statines - Google Patents

Régulateurs de la transcription de statines Download PDF

Info

Publication number
WO2010069914A1
WO2010069914A1 PCT/EP2009/067067 EP2009067067W WO2010069914A1 WO 2010069914 A1 WO2010069914 A1 WO 2010069914A1 EP 2009067067 W EP2009067067 W EP 2009067067W WO 2010069914 A1 WO2010069914 A1 WO 2010069914A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
genes
statin
compactin
homologous
Prior art date
Application number
PCT/EP2009/067067
Other languages
English (en)
Inventor
Marcus Hans
Van Den Marco Alexander Berg
Van Der Jan Metske Laan
Original Assignee
Dsm Ip Assets B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dsm Ip Assets B.V. filed Critical Dsm Ip Assets B.V.
Publication of WO2010069914A1 publication Critical patent/WO2010069914A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/385Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from Penicillium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters

Definitions

  • the present invention relates to a method for the fermentation of statins.
  • Cholesterol lowering agents of the statin class are important drugs as they lower the cholesterol concentration in the blood by inhibiting HMG-CoA reductase.
  • the latter enzyme catalyses the rate limiting step in cholesterol biosynthesis, i.e. the conversion of (3S)-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) to mevalonate.
  • statins There are several types of statins on the market, amongst which atorvastatin, compactin, lovastatin, simvastatin and pravastatin. Whilst atorvastatin is made via chemical synthesis, the others mentioned are produced either via direct fermentation or via precursor fermentation.
  • expression includes any step involved in the production of a polypeptide and may include transcription, post-transcriptional modification, translation, post-translational modification and secretion.
  • the term "host” as used herein, is intended to refer to an organism or a cell into which a vector such as a cloning vector or an expression vector has been introduced.
  • the organism or cell can be prokaryotic or eukaryotic. It should be understood that this term is intended to refer not only to the particular subject organism or cell, but to the progeny of such an organism or cell as well. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent organism or cell, but are still included within the scope of the term "host” as used herein.
  • nucleic acid construct is synonymous with the term “expression vector” or “cassette” when the nucleic acid construct contains all the control sequences required for expression of a coding sequence in a particular host organism.
  • polynucleotide refers to a polymeric form of nucleotides and includes both sense and anti sense strands of RNA, cDNA, genomic DNA, and synthetic forms and mixed polymers of the above.
  • a nucleotide refers to a ribonucleotide, deoxyribonucleotide or a modified form of either type of nucleotide. The term also includes single- and double-stranded forms of DNA.
  • a polynucleotide may include either or both naturally-occurring and modified nucleotides linked together by naturally-occurring and/or non-naturally occurring nucleotide linkages.
  • the nucleic acid molecules may be modified chemically or biochemically or may contain non-natural or derivatized nucleotide bases, as will be readily appreciated by those of skill in the art. Such modifications include, for example, labels, methylation, substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), pendent moieties (e.g., polypeptides), intercalators (e.g., acridine, psoralen, etc.), chelators, alkylators, and modified linkages (e.g., alpha anomeric nucleic acids, etc.).
  • uncharged linkages e.g., methyl phosphonates, phosphotriesters, phosphoramidate
  • the above term is also intended to include any topological conformation, including single-stranded, double-stranded, partially duplexed, triplex, hair pinned, circular and padlocked conformations.
  • synthetic molecules that mimic polynucleotides in their ability to bind to a designated sequence via hydrogen bonding and other chemical interactions. Such molecules are known in the art and include, for example, those in which peptide linkages substitute for phosphate linkages in the backbone of the molecule.
  • a reference to a nucleic acid sequence encompasses its complement unless otherwise specified.
  • a reference to a nucleic acid molecule having a particular sequence should be understood to encompass its complementary strand, with its complementary sequence.
  • the complementary strand is also useful, e.g., for anti sense therapy, hybridization probes and PCR primers.
  • control sequences is defined herein to include all components, which are necessary or advantageous for the expression of a polypeptide.
  • Each control sequence may be native or foreign to the nucleic acid sequence encoding the polypeptide.
  • Such control sequences may include, but are not limited to, a promoter, a leader, optimal translation initiation sequences (as described in Kozak, 1991 , J. Biol. Chem. 266:19867-19870), a secretion signal sequence, a pro-peptide sequence, a polyadenylation sequence, a transcription terminator.
  • the control sequences include a promoter, and transcriptional and translational stop signals.
  • the control sequence may be an appropriate promoter sequence containing transcriptional control sequences.
  • the promoter may be any nucleic acid sequence, which shows transcription regulatory activity in the cell including mutant, truncated, and hybrid promoters, and may be obtained from genes encoding extra cellular or intracellular polypeptides.
  • the promoter may be either homologous or heterologous to the cell or to the polypeptide.
  • the promoter maybe derived from the donor species or from any other source.
  • An alternative way to control expression levels in eukaryotes is the use of introns. Higher eukaryotes have genes consisting of exons and introns.
  • exons is defined herein to include all components of the Open
  • Reading Frame which are translated into the protein.
  • introns is defined herein to include all components, which are not comprised within the Open Reading Frame.
  • Open Reading Frame is defined herein as a polynucleotide starting with the sequence ATG, the codon for methionine, followed by a consecutive series of codons encoding all possible amino acids and after a certain number interrupted by a termination codon.
  • This Open Reading Frame can be translated into a protein.
  • a polynucleotide containing a gene isolated from the genome is a so-called genomic DNA or gDNA sequence of that gene, including all exons and introns.
  • a polynucleotide containing a gene isolated from mRNA via reverse transcriptase reactions is a so-called copy DNA or cDNA sequence of that gene, including only the exons, while the introns are spliced out through the cells machinery.
  • This latter type of DNA is of particular use when expressing eukaryotic genes of interest in prokaryotic hosts.
  • Variants of both types of DNA can also be made synthetically, which opens the possibility to either alter the exact nucleotide sequence of the introns or vary the number of introns in the gene of interest. This also opens the possibility of adding introns to genes of interest from prokaryotic origin to facilitate or improve expression in eukaryotic hosts.
  • introns can be introduced in the above named control sequences, like a promoter, a polyadenylation site or a transcription terminator. The presence, absence, variation or introduction of introns is a means of regulating gene expression levels in eukaryotes.
  • operably linked is defined herein as a configuration in which a control sequence is appropriately placed at a position relative to the coding sequence of the DNA sequence such that the control sequence directs the production of a polypeptide.
  • pravastatin is defined herein as 6'-hydroxyl substituted compactin with an ⁇ or ⁇ -configuration at the 6'-position, or a mixture of both ⁇ or ⁇ -configurations and includes both the closed structure (with a lactone ring) and the open structure (with a hydroxycarboxylic acid moiety).
  • compactin pravastatin, wuxistatin, monacolin J, lovastatin and/or simvastatin (generally referred to as 'statin' or 'statins') 'biosynthetic genes' or 'biosynthetic pathways' include all genes encoding enzymes directly involved in the synthesis of statin molecules, all genes encoding enzymes in secretion of statin molecules and all genes encoding proteins involved in the transcriptional regulation of the genes of the first two categories. Also, included are all genes of the microbial host capable of producing statins which by over expression or inactivation cause a significant change in the production capacity ⁇ i.e.
  • statin produced resulting in at least 20% more statin produced or in at least 20% less statin produced, respectively).
  • specific genes are, but are not limited to: the compactin biosynthetic gene cluster of Penicillium cit ⁇ num ⁇ i.e. mlcA, mlcB, mlcC, mlcD, mlcE, mlcF, mlcH, mlcG, mlcR; see Entrez database accession number AB072893; Abe Y, Suzuki T, Ono C, Iwamoto K, Hosobuchi M and Yoshikawa H, MoI Genet Genomics 2002, 267:636-646), the lovastatin biosynthetic gene cluster of Aspergillus terreus ⁇ i.e.
  • ORF1 ORF2, lovA, ORF5, lovC, lovD, ORF8, lovE, ORFW 1 lovF, ORF12, ORF13, ORFU, ORF15, ORFW 1 cytochrome P450 monooxygenase, ORF18; see Entrez database accession numbers AF141924 and AF141925; Kennedy J, Auclair K, Kendrew SG, Park C, Vederas JC and Hutchinson CR, Science 1999, 284:1368-1372), the monacolin K biosynthetic gene cluster of Monascus pilosus (i.e.
  • statin biosynthetic pathway can be obtained from a single donor host or from more than one host, or (partially) consist of synthetic polynucleotides.
  • the degree of identity between two sequences refers to the percentage of amino acids that are identical between the two sequences.
  • the terms "homology” or “percent identity” are used interchangeably herein.
  • the degree of identity is determined using the BLAST algorithm, which is described in Altschul, et al. (J. MoI. Biol. 215: 403-410 (1990)).
  • Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information The person skilled in the art can apply BLAST for determining homology between nucleotide sequences and also between protein sequences.
  • suitable BLAST settings may be an open gap penalty of 5, an extension gap penalty of 2 and a word size of 1 1 .
  • suitable BLAST settings may be an open gap penalty of 1 1 , an extension gap penalty of 1 and a word size of 3.
  • the degree of identity can also be determined using NEEDLE technology.
  • the sequences are aligned for optimal comparison purposes.
  • gaps may be introduced in any of the two sequences that are compared.
  • Such alignment can be carried out over the full length of the sequences being compared.
  • the alignment may be carried out over a shorter length, for example over about 20, about 50, about 100 or more nucleic acids/based or amino acids.
  • the identity refers to the percentage of amino acids that are identical between the two sequences over the aligned region.
  • a comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm.
  • the skilled person will be aware of the fact that several different computer programs are available to align two sequences and determine the homology between two sequences (Kruskal, J. B. (1983) An overview of sequence comparison in D. Sankoff and J. B. Kruskal, (ed.), Time warps, string edits and macromolecules: the theory and practice of sequence comparison, pp. 1 -44 Addison Wesley).
  • the percent identity between two amino acid sequences can be determined using the Needleman and Wunsch algorithm for the alignment of two sequences. (Needleman, S. B. and Wunsch, C. D. (1970) J. MoI. Biol. 48, 443-453).
  • the two sequences are the same length.
  • the identity between the two aligned sequences of different length is calculated as follows: Number of corresponding positions in the alignment showing an identical amino acid in both sequences divided by the total length of the alignment after subtraction of the total number of gaps in the alignment.
  • the identity defined as herein for sequences differing in length can be obtained from NEEDLE by using the NOBRIEF option and is labeled in the output of the program as "longest-identity".
  • Substantially homologous polypeptides may contain only conservative substitutions of one or more amino acids of the specified amino acid sequences or substitutions, insertions or deletions of non-essential amino acids.
  • a non- essential amino acid is a residue that can be altered in one of these sequences without substantially altering the biological function.
  • guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie, J. U. et al. (Science 247:1306-1310 (1990)) wherein the authors indicate that there are two main approaches for studying the tolerance of an amino acid sequence to change. The first method relies on the process of evolution, in which mutations are either accepted or rejected by natural selection.
  • the second approach uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene and selects or screens to identify sequences that maintain functionality.
  • proteins are surprisingly tolerant of amino acid substitutions.
  • the authors further indicate which changes are likely to be permissive at a certain position of the protein. For example, most buried amino acid residues require non-polar side chains, whereas few features of surface side chains are generally conserved. Other such phenotypically silent substitutions are described in Bowie et al. and the references cited therein.
  • substitution is intended to mean that a substitution in which the amino acid residue is replaced with an amino acid residue having a similar side chain.
  • amino acids with basic side chains e.g. lysine, arginine and histidine
  • acidic side chains e.g.
  • aspartic acid glutamic acid
  • uncharged polar side chains e.g., glycine, asparagines, glutamine, serine, threonine, tyrosine, cysteine
  • non-polar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
  • ⁇ -branched side chains e.g., threonine, valine, isoleucine
  • aromatic side chains e.g., tyrosine, phenylalanine tryptophan, histidine
  • vector denotes a nucleic acid molecule into which a second nucleic acid molecule can be inserted for introduction into a host where it will be replicated, and in some cases expressed.
  • a vector is capable of transporting a nucleic acid molecule to which it has been linked.
  • vectors include, but are not limited to, plasmids, cosmids, bacterial artificial chromosomes (BAC) and yeast artificial chromosomes (YAC) and vectors derived from bacteriophages or plant or animal (including human) viruses.
  • Vectors comprise an origin of replication recognized by the proposed host and in case of expression vectors, promoter and other regulatory regions recognized by the host.
  • a vector containing a second nucleic acid molecule is introduced into a cell for example by transformation, transfection, or by making use of bacterial or viral entry mechanisms.
  • Other ways of introducing nucleic acid into cells are known, such as electroporation or particle bombardment often used with plant cells, and the like.
  • the method of introducing nucleic acid into cells depends among other things on the type of cells, and so forth. This is not critical to the invention.
  • Certain vectors are capable of autonomous replication in a host into which they are introduced (e.g., vectors having a bacterial origin of replication can replicate in bacteria).
  • statins such as compactin, lovastatin, pravastatin, simvastatin and wuxistatin, thereby overcoming the problem of low statin productivity of recombinant statin producing strains harboring transcription regulators such as mlcR.
  • the present invention solves the problem of low statin productivity of heterologous microorganisms (i.e. microorganisms that naturally do not harbor statin biosynthetic pathways and where statin biosynthetic pathways from other organisms, such as Aspergillus terreus or Penicillium cit ⁇ num were integrated) by addition of a novel regulator, such as SEQ ID NO 23, SEQ ID NO 26, SEQ ID NO 27 or SEQ ID NO 28.
  • a novel regulator such as SEQ ID NO 23, SEQ ID NO 26, SEQ ID NO 27 or SEQ ID NO 28.
  • the invention discloses that microorganisms which heterologously harbor the Penicillium citrinum statin pathway surprisingly exhibit a higher statin productivity (twofold or even more) if the original transcription regulator mlcR is replaced by one of the regulators mentioned above or analogues thereof with a high degree of homology.
  • a gene transcription regulator according to SEQ ID NO 23, SEQ ID NO 26, SEQ ID NO 27 or SEQ ID NO 28 or a polynucleotide that is at least 90% homologous to SEQ ID NO 23, SEQ ID NO 26,
  • SEQ ID NO 27 or SEQ ID NO 28 and a fungal strain comprising a heterologous statin biosynthetic gene transcription regulator.
  • statin producing strain comprising one or more statin biosynthetic genes selected from mlcA, mlcB, mlcC, mlcD, mlcE, mlcF, mlcH, mlcG from Penicillium citrinum or homologues thereof and comprising one of the genes having sequences SEQ ID NO 23, SEQ ID NO 26, SEQ ID NO 27 or SEQ ID NO 28 or homologues thereof. It has been found that preferred homologues are those having sequence identity to sequences SEQ ID NO 23, SEQ ID NO 26, SEQ ID NO 27 and SEQ ID NO 28 of at least 90%, preferably at least 92%, more preferably at least 95%.
  • a compactin producing host cell derived from a production strain such as for instance Penicillium chrysogenum as described in WO 2007/122249.
  • This organism underwent several rounds of classical strain improvement and subsequent process adaptations and improvements to come to the current high titer penicillin G fermentation processes.
  • the numerous changes in the DNA of the organism resulted not only in an increased flux and yield towards the product penicillin G, but moreover also resulted in morphological changes and adaptations to the harsh conditions in 150,000-liter fermentation vessels (i.e. oxygen limitation, shear forces, glucose limitation and the like).
  • a strain is obtained that is devoid of any ⁇ -lactam production capability, but still retains all the mutations that result in the good performance on industrial scale, such as resistance to shear forces, suitability for scaling up, high metabolic flux towards metabolites, adapted to a defined medium and to industrial down stream processing, and low viscosity profile (i.e. morphological, regulatory and metabolic mutations).
  • the Penicillin chrysogenum strain of the present invention at least the ⁇ -lactam biosynthetic genes pcbC, encoding for isopenicillin N synthase, are inactivated.
  • the other ⁇ -lactam biosynthetic genes pcbAB, encoding for L-( ⁇ -aminoadipyl)-L-cysteinyl-D- valine synthetase, and/or penDE, encoding for acyl-coenzyme A:isopenicillin N acyltransferase, are inactivated. More preferably, the genes are inactivated by removal of part of the genes. Most preferred is that the gene sequences are completely removed. As complete removal of these genes leads to Penicillium chrysogenum strains that are devoid of any ⁇ -lactam biosynthetic capacity and therefore are very useful strains for producing all sorts of products. Despite the fact that industrial organisms can be very cumbersome to work with, this Penicillium chrysogenum strain is surprisingly well transformable and capable of producing statins at titers much higher than the natural producing host cells.
  • the Penicillium chrysogenum mutant is obtained from an organism capable of producing in an industrial environment.
  • Such organisms typically can be defined as having high productivities and/or high yield of product on amount of carbon source consumed and/or high yield of product on amount of biomass produced and/or high rates of productivity and/or high product titers.
  • Such organisms are extremely useful for conversion into a host cell for compactin.
  • such high titers are titers higher than 1 .5 g/L penicillin G, preferably higher than 2 g/L penicillin G, more preferably higher than 3 g/L penicillin G, most preferably higher than 4 g/L penicillin G.
  • the aforementioned values apply to fermentation titers after 96 h in complex fermentation medium (contains per liter: lactose, 40 g/L; corn steep solids, 20 g/L; CaCO 3 , 10 g/L; KH 2 PO 4 , 7 g/L; phenylacetic acid, 0.5 g/L; pH 6.0).
  • Suitable industrial strains are strains as mentioned in the experimental part (General Methods).
  • the isolate is then comparable to the type strain of the species, NRRL1951 , and its first descendants after classical strain improvement, up to Wisconsin 54-1255, all of which contain one copy of the penicillin biosynthetic genes.
  • the major difference is that the one-copy isolate derived from the high producing strain still contains all the other mutations of class (ii) and (iii) making it an industrial high producing strain as compared to the strains from NRRL1951 to Wisconsin 54-1255.
  • the last set of penicillin biosynthetic genes can be deleted using state-of-the-art recombination techniques. A detailed overview of these steps is given in the examples and summarized in the following steps: (a) Isolating an isolate with a single genomic copy of the penicillin gene cluster from a Penicillium strain
  • step (b) Deleting gene pcbC from the isolate obtained in step (a)
  • the genes can be partly inactivated. More preferably, the gene sequences are completely removed. As complete removal of these genes leads to Penicillium chrysogenum strains that are devoid of any ⁇ -lactam biosynthetic capacity and therefore are very useful strains for producing all sorts of products. Recombination techniques that can be applied are well known for the ones trained in the art (i.e. Single Cross Over or Double Homologous Recombination).
  • a preferred strategy for deletion and replacement is the gene replacement technique described in EP 357127.
  • the specific deletion of a gene and/or promoter sequence is preferably performed using the amdS gene as selection marker gene as described in EP 635574.
  • the resulting strain is selection marker free and can be used for further gene modifications.
  • a technique based on in vivo recombination of cosmids in Escherichia coli can be used, as described by Chaveroche et al. (2000, Nucl Acids Res, 28, E97). This technique is applicable to other filamentous fungi like for example Penicillium chrysogenum.
  • Penicillium chrysogenum cells can be equipped with the genes encoding all proteins and enzymes necessary for statin biosynthesis. This can be one or more of the statin biosynthetic genes, for example the eight genes of Penicillium citrinum described as being involved in compactin biosynthesis (Abe et al., 2002, MoI Genet Genomics 267:636-646; Abe et al., 2002, MoI Genet Genomics 268:130-137): mlcA, encoding a polyketide synthase; mlcB, encoding a polyketide synthase; mlcC, encoding P450 monooxygenase; mlcD, encoding a HMG-CoA reductase; mlcE, encoding an efflux pump; mlcF, encoding an oxidoreductase; mlcG, encoding a dehydrogenase; mlcH
  • Abe et al. also described a transcription regulator mlcR which is essential for compactin biosynthesis and which can also increase compactin levels of a Penicillium cithnum strain when added to the cell. Also, any homologous gene displaying the similar activity can be used.
  • the transcription regulator protein MIcR can be replaced by novel regulator proteins having sequences SEQ ID NO 29 or SEQ ID NO 30.
  • novel regulator proteins mentioned lead to a significant improved statin productivity as compared to strains with the transcription regulator MIcR from Penicillium cithnum.
  • statin producing host cell of other eukaryotic species, and their industrial derivatives, like, but not limited to: Aspergillus niger, Penicillium brevicompactum, Penicillium cithnum, Aspergillus oryzae, Thchoderma reesei, Chrysospohum lucknowense, Saccharomyces cerevisiae, Kluyveromyces lactis, Monascus ruber, Monascus paxii, Mucor hiemalis, Pichia ciferrii and Pichia pastoris.
  • the industrial derivatives of these species underwent various rounds of classical mutagenesis, followed by screening and selection for improved industrial production characteristics, which make them of particular use for the present invention.
  • By removing (i.e. deleting) parts of or complete pathways of unwanted products the strains remain their desired industrial fermentation characteristics and high flux to metabolites (including enzymes).
  • statins can be improved by using homologous proteins with improved kinetic features.
  • a "homologue” or “homologous sequence” is defined as a DNA sequence encoding a polypeptide that displays at least one activity of the polypeptide encoded by the original DNA sequence isolated from the donor species and has an amino acid sequence possessing a degree of identity to the amino acid sequence of the protein encoded by the specified DNA sequence.
  • a polypeptide having an amino acid sequence that is "substantially homologous" to the statin biosynthetic genes are defined as polypeptides having an amino acid sequence possessing a degree of identity to the specified amino acid sequence of at least 25%, more preferably at least 30%, more preferably at least 40%, more preferably at least 50%, still more preferably at least 60%, still more preferably at least 70%, still more preferably at least 80%, still more preferably at least 90%, still more preferably at least 98% and most preferably at least 99%, the substantially homologous peptide displaying activity towards the synthesis of the statin and/or statin-precursors.
  • various advantages can be obtained such as to overcome feedback inhibition, improvement of secretion and reduction of byproduct formation.
  • a homologous sequence may encompass polymorphisms that may exist in cells from different populations or within a population due to natural allelic or intra-strain variation.
  • a homologue may further be derived from a species other than the species where the specified DNA sequence originates from, or may be artificially designed and synthesized. DNA sequences related to the specified DNA sequences and obtained by degeneration of the genetic code are also part of the invention. Homologues may also encompass biologically active fragments of the full- length sequence. Excluded from the homologues of the present invention is the transcription regulator MIcR from Penicillium cithnum with SEQ ID NO 39 as described in EP 1 149919. Of particular interest are homologous sequences isolated by synthetic means.
  • biosynthetic gene clusters that are not homologous, but follow the same biosynthetic building principle for statin synthesis can be used.
  • nucleic acid constructs of the present invention contain at least one gene of interest, but in general contain several genes of interest; each operably linked to one or more control sequences, which direct the expression of the encoded polypeptide in the statin producing host cell.
  • the nucleic acid constructs may be on one DNA fragment or on separate fragments. To obtain the highest possible productivity a balanced expression of all genes of interests is crucial. Therefore, a range of promoters can be useful.
  • Preferred promoters for application filamentous fungal cells like Penicillium chrysogenum are known in the art and can be, for example, the promoters of the gene(s) derived Penicillium cithnum; the glucose-6-phosphate dehydrogenase gpdA promoters; the Penicillium chrysogenum pcbAB, pcbC and penDE promoters; protease promoters such as pepA, pepB, pepC; the glucoamylase glaA promoters; amylase amyA, amyB promoters; the catalase catR or catA promoters; the glucose oxidase goxC promoter; the beta-galactosidase lacA promoter; the ⁇ - glucosidase aglA promoter; the translation elongation factor tefA promoter; xylanase promoters such as xlnA, xlnB,
  • Said promoters can easily be found by the skilled person, amongst others, at the NCBI Internet website (http://www.ncbi.nlm.nih.gov/entrez/).
  • statin producing host cells derived from other than filamentous fungal species the choice of promoters will be determined by the choice of the host.
  • the promoters are derived from genes that are highly expressed (defined herein as the mRNA concentration with at least 0.5% (w/w) of the total cellular mRNA).
  • the promoters may be derived from genes, which are medium expressed (defined herein as the mRNA concentration with at least 0.01 % until 0.5% (w/w) of the total cellular mRNA).
  • the promoters may be derived from genes, which are low expressed (defined herein as the mRNA concentration lower than 0.01 % (w/w) of the total cellular mRNA). More preferably, micro array data is used to select genes, and thus promoters of those genes, that have a certain transcriptional level and regulation.
  • the control sequence may also include a suitable transcription termination sequence, a sequence recognized by a eukaryotic cell to terminate transcription.
  • the terminator sequence is operably linked to the 3'-terminus of the nucleic acid sequence encoding the polypeptide. Any terminator, which is functional in the cell, may be used in the present invention.
  • Preferred terminators for filamentous fungal cells are obtained from the genes encoding Aspergillus oryzae TAKA amylase; the Penicillium chrysogenum pcbAB, pcbC and penDE terminators; Aspergillus niger glucoamylase; Aspergillus nidulans anthranilate synthase; Aspergillus niger alpha-glucosidase; Aspergillus nidulans trpC gene; Aspergillus nidulans amdS; Aspergillus nidulans gpdA; Fusarium oxysporum trypsin-like protease.
  • terminators are the ones of the gene(s) derived from the natural producer, Penicillium citrinum.
  • statin producing host cells derived from other than filamentous fungal species the choice of termination sequences will be determined by the choice of the host.
  • the control sequence may also be a suitable leader sequence, a non-translated region of an mRNA that is important for translation by the cell.
  • the leader sequence is operably linked to the 5'-terminus of the nucleic acid sequence encoding the polypeptide. Any leader sequence, which is functional in the cell, may be used in the present invention.
  • Preferred leaders for filamentous fungal cells are obtained from the genes encoding Aspergillus oryzae TAKA amylase and Aspergillus nidulans triose phosphate isomerase and Aspergillus niger glaA.
  • the control sequence may also be a polyadenylation sequence, which is operably linked to the 3'-terminus of the nucleic acid sequence and which, when transcribed, is recognized by the filamentous fungal cell as signal to add polyadenosine residues to transcribed mRNA.
  • Any polyadenylation sequence, which is functional in the cell, may be used in the present invention.
  • Preferred polyadenylation sequences for filamentous fungal cells are obtained from the genes encoding Aspergillus oryzae TAKA amylase, Aspergillus niger glucoamylase, Aspergillus nidulans anthranilate synthase, Fusarium oxysporum trypsin-like protease and Aspergillus niger alpha-glucosidase.
  • the control sequence may also include a signal peptide-encoding region, coding for an amino acid sequence linked to the amino terminus of the polypeptide, which can direct the encoded polypeptide into the cell's secretory pathway.
  • the 5'-end of the nucleic acid coding sequence may inherently contain a signal peptide-coding region naturally linked in translation reading frame with the segment of the coding region, which encodes the secreted polypeptide.
  • the 5'-end of the coding sequence may contain a signal peptide-coding region, which is foreign to the coding sequence.
  • the foreign signal peptide-coding region may be required where the coding sequence does not normally contain a signal peptide-coding region.
  • the foreign signal peptide-coding region may simply replace the natural signal peptide-coding region in order to obtain enhanced secretion of the polypeptide.
  • control sequence may include organelle targeting signals.
  • organelle targeting signals Such a sequence is encoded by an amino acid sequence linked to the polypeptide, which can direct the final destination (i.e. compartment or organelle) within the cell.
  • the 5'- or 3'-end of the coding sequence of the nucleic acid sequence may inherently contain these targeting signals coding region naturally linked in translation reading frame with the segment of the coding region, which encodes the polypeptide.
  • the various sequences are well known to the persons trained in the art and can be used to target proteins to compartments like mitochondria, peroxisomes, endoplasmatic reticulum, golgi apparatus, vacuole, nucleus and the like.
  • the nucleic acid construct may be an expression vector.
  • the expression vector may be any vector (e.g. a plasmid or virus), which can be conveniently subjected to recombinant DNA procedures and can bring about the expression of the nucleic acid sequence encoding the polypeptide.
  • the choice of the vector will typically depend on the compatibility of the vector with the cell into which the vector is to be introduced.
  • the vectors may be linear or closed circular plasmids.
  • the vector may be an autonomously replicating vector, i.e. a vector, which exists as an extra chromosomal entity, the replication of which is independent of chromosomal replication, e.g. a plasmid, an extra chromosomal element, a mini chromosome, or an artificial chromosome.
  • An autonomously maintained cloning vector for a filamentous fungus may comprise the AMA1 -sequence (see e.g. Aleksenko and Clutterbuck (1997), Fungal Genet. Biol. 21 : 373-397).
  • the vector may be one which, when introduced into the cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated.
  • the integrative cloning vector may integrate at random or at a predetermined target locus in the chromosomes of the host cell.
  • the integrative cloning vector comprises a DNA fragment, which is homologous to a DNA sequence in a predetermined target locus in the genome of host cell for targeting the integration of the cloning vector to this predetermined locus.
  • the cloning vector is preferably linearized prior to transformation of the host cell. Linearization is preferably performed such that at least one but preferably either end of the cloning vector is flanked by sequences homologous to the target locus.
  • the length of the homologous sequences flanking the target locus is preferably at least at least 0.1 kb, even preferably at least 0.2 kb, more preferably at least 0.5 kb, even more preferably at least 1 kb, most preferably at least 2 kb.
  • the efficiency of targeted integration of a nucleic acid construct into the genome of the host cell by homologous recombination, i.e. integration in a predetermined target locus is preferably increased by augmented homologous recombination abilities of the host cell.
  • Such phenotype of the cell preferably involves a deficient hdfA or hdfB gene as described in WO 05/95624, and any improvements of this.
  • WO 05/95624 discloses a preferred method to obtain a filamentous fungal cell comprising increased efficiency of targeted integration.
  • the vector system may be a single vector or plasmid or two or more vectors or plasmids, which together contain the total DNA to be introduced into the genome of the host cell.
  • the constructs are preferably integrated in the genome of the host strain. As this is a random process this even can result in integration in genomic loci, which are highly suitable to drive gene expression, resulting in high amounts of enzyme and subsequently in high productivity.
  • Fungal cells may be transformed by protoplast formation, protoplast transformation, and regeneration of the cell wall. Suitable procedures for transformation of fungal host cells are described in EP 238023 and Yelton et al. (1984, Proc. Natl. Acad. Sci. USA 81 :1470-1474). Suitable procedures for transformation of filamentous fungal host cells using Agrobactehum tumefaciens are described by de Groot M.J. et al. (1998, Nat Biotechnol 16:839-842; Erratum in: 1998, Nat Biotechnol 16:1074). Other methods like electroporation, described for Neurospora crassa, may also be applied.
  • Fungal cells are transformed using co-transformation, i.e. along with gene(s) of interest also a selectable marker gene is transformed. This can be either physically linked to the gene of interest (i.e. on a plasmid) or on a separate fragment. Following transfection transformants are screened for the presence of this selection marker gene and subsequently analyzed for the presence of the gene(s) of interest.
  • a selectable marker is a product, which provides resistance against a biocide or virus, resistance to heavy metals, prototrophy to auxotrophs and the like.
  • Useful selectable markers include amdS (acetamidase), argB (ornithinecarbamoyltransferase), bar (phosphinothricinacetyl- transferase), hygB (hygromycin phosphotransferase), niaD (nitrate reductase), pyrG (orotidine-5'-phosphate decarboxylase), sC or sutB (sulfate adenyltransferase), trpC (anthranilate synthase), ble (phleomycin resistance protein), or equivalents thereof.
  • the same principle can be applied to come to a suitable statin producing host cell of prokaryotic species, and their industrial derivatives, like, but not limited to: Streptomyces clavuligerus, Streptomyces avermitilis, Streptomyces peucetius, Streptomyces coelicolor, Streptomyces lividans, Streptomyces carbophilus, Amycolatopsis orientalis, Corynebacterium glutamicum and Escherichia coli.
  • the industrial derivatives of these species underwent various rounds of classical mutagenesis, followed by screening and selection for improved industrial production characteristics, which make them of particular use for the present invention. By removing (i.e.
  • statin biosynthetic genes need be modified by state- of-the art methods to be functionally expressed in prokaryotic cells. The ones trained in the art will understand that this involves various steps comparable as outlined above for eukaryotes, including, but not limited to:
  • a host microorganism comprising the genes necessary for converting compactin into pravastatin.
  • a fungal host comprising the genes necessary for compactin biosynthesis (one or more of the following genes: mlcA, encoding a polyketide synthase; mlcB, encoding a polyketide synthase; mlcC, encoding P450 monooxygenase; mlcD, encoding a HMG- CoA reductase; mlcE, encoding an efflux pump; mlcF, encoding an oxidoreductase; mlcG, encoding a dehydrogenase; mlcH, encoding transesterase, a gene encoding for a P450 compactin hydroxylase and any of the genes of SEQ ID NO 23, SEQ ID NO 26, SEQ ID NO 27 or SEQ ID NO 28 or homologues thereof.
  • said P450 compactin hydroxylase gene is from Amycolatopsis ohentalis. More preferably, the P450 compactin hydroxylase enzyme is 80% homologous to the sequences as disclosed in WO 2008/071673 (i.e. SEQ ID NO 3 or SEQ ID NO 6 from WO 2008/071673). Even more preferably, the P450 compactin hydroxylase enzyme is identical to SEQ ID NO 3 or SEQ ID NO 6 from WO 2008/071673. The scope of the invention is not limited to these specific examples.
  • a host microorganism providing the genes necessary for the production of the statin monacolin J.
  • a fungal host is used which is not Penicillium cithnum. Most preferably the fungal host is Penicillium chrysogenum.
  • the fungal host can comprise one or more of the following set of genes leading to the production of monacolin J (all mlc genes are described in Abe et al., 2002, MoI Genet Genomics 267:636-646; Abe et al., 2002, MoI Genet Genomics 268:130-137, while the lov genes are described in Kennedy et al., 1999, Science 284, 1368-1372): lovB, encoding a polyketide synthase; mlcC, encoding P450 monooxygenase; mlcD, encoding a HMG-CoA reductase; mlcE, encoding an efflux pump; mlcF, encoding an oxidoreductase; mlcG, encoding a dehydrogenase; mlcH, encoding transesterase, and any of the genes of SEQ ID NO 23, SEQ ID NO 26, SEQ ID NO 27 or SEQ ID
  • a microorganism providing the genes needed for the production of lovastatin.
  • the microorganism which is preferably a fungus, but not Aspergillus terreus, even more preferably a filamentous fungus, most preferably Penicillium chrysogenum, can comprise one or more of the following set of genes leading to the production of lovastatin (all mlc genes are described in Abe et ai, 2002, MoI Genet Genomics 267:636-646; Abe et al., 2002, MoI Genet Genomics 268:130-137, while the lov genes are described in Kennedy et ai, 1999, Science 284, 1368-1372): mlcB, encoding a polyketide synthase, lovB, encoding a polyketide synthase; mlcC, encoding P450 monooxygenase; mlcD, encoding a HMG-CoA
  • a monacolin J producing microorganism that can be furthermore used for the production of simvastatin.
  • the compound 2,2-dimethylbutyrate or a 2,2-dimethylbutyrate precursor such as 2,2-dimethylbutyrate ester, most preferably 2,2-dimethylbutyrate thioester is added to the culture.
  • simvastatin is being produced.
  • the thioester compounds of 2,2-dimethylbutyrate preferably the thiol compounds methylmercaptopropionate, ethylmercaptopropionate or ⁇ /-acetylcysteamin are employed.
  • the invention is however not restricted to the use of the disclosed thioesters.
  • Other thioesters are also suitable compounds for the invention.
  • the production organism can be modified in such a way that it produces the 2,2-dimethylbutyrate side chain it self from the raw materials supplied.
  • pravastatin in a compactin hydroxylase expressing host cell can be improved by using homologous proteins with improved kinetic features.
  • a "homologue” or “homologous sequence” is defined as a DNA sequence encoding a polypeptide that displays at least one activity of the polypeptide encoded by the original DNA sequence isolated from the donor species and has an amino acid sequence possessing a degree of identity to the amino acid sequence of the protein encoded by the specified DNA sequence.
  • a polypeptide having an amino acid sequence that is "substantially homologous" to the compactin hydroxylase genes is defined as a polypeptide having an amino acid sequence possessing a degree of identity to the specified amino acid sequence of at least 25%, more preferably at least 30%, more preferably at least 40%, more preferably at least 50%, still more preferably at least 60%, still more preferably at least 70%, still more preferably at least 80%, still more preferably at least 90%, still more preferably at least 98% and most preferably at least 99%, the substantially homologous peptide displaying activity towards the synthesis of pravastatin.
  • various advantages are obtained such as to overcome feedback inhibition, improvement of secretion and reduction of byproduct formation.
  • a homologous sequence may encompass polymorphisms that may exist in cells from different populations or within a population due to natural allelic or intra-strain variation.
  • a homologue may further be derived from a species other than the species where the specified DNA sequence originates from, or may be artificially designed and synthesized.
  • DNA sequences related to the specified DNA sequences and obtained by degeneration of the genetic code are also part of the invention. Particularly important are homologous sequences isolated synthetically.
  • the efficiency of the compactin to pravastatin conversion may be improved by isolating a specific redox regenerating system, needed for the p450 enzyme, and introducing this in the compactin hydroxylase expressing host cell.
  • the methods of introducing such a system in the host cell are the same as described for introducing the compactin hydroxylase as outlined above.
  • Such a redox regenerating system may be obtained from the same species as from which the polynucleotide encoding the compactin hydroxylase (i.e. p450) may be obtained or heterologously expressed in; examples of which are Penicillium species (i.e.
  • Penicillium chrysogenum Penicillium citrinum
  • Aspergillus species i.e. Aspergillus niger, Aspergillus nidulans, Aspergillus terreus
  • Mucor species i.e. Mucor hiemalis
  • Monascus species i.e. Monascus ruber, Monascus paxii
  • Streptomyces species i.e.
  • Amycolatopsis species i.e. Amycolatopsis orientalis NRRL 18098, Amycolatopsis orientalis ATCC 19795
  • Bacillus species i.e. Bacillus subtilus, Bacillus amyloliquefaciens
  • alternative systems can be applied.
  • Examples of alternative systems are, but are not limited to, integrating the compactin hydroxylase of the present invention in a class IV p450 system, thereby fusing it to the redox partners (see for example Roberts et al., 2002, J Bacteriol 184:3898-3908 and Nodate et al., 2005, Appl Microbiol Biotechnol Sep 30:1 -8) or by NAD(P)H generating non-p450 linked enzymes like phosphite dehydrogenase (Johannes et al., 2005, Appl Environ Microbiol.
  • the host cell thus obtained may be used for producing pravastatin.
  • the one-step fermentation of pravastatin is carried out by mixing a compactin producing host cell with a compactin hydroxylase expressing host cell, and subsequently cultivating both host cells as a mixed culture, understanding that the compactin produced and secreted by the compactin producing host cell, will be imported and converted to pravastatin by the compactin hydroxylase expressing host cell.
  • the same principle to improve statin productivity can be applied to Aspergillus terreus strains producing monacolin J and/or lovastatin: increase the transcription of the biosynthetic genes by addition of exchange of a heterologous transcription regulator, in this case the transcription regulators of the first aspect of the present invention.
  • a strain of the first aspect is disclosed.
  • the microorganism of the first aspect is ideally suitable for the production of statins, such as compactin, pravastatin, lovastatin, simvastatin and wuxistatin.
  • statins such as compactin, pravastatin, lovastatin, simvastatin and wuxistatin.
  • the scope of the invention is not limited to these mentioned examples.
  • Example 1 Isolation of the compactin gene cluster from Penicillium citrinum NRRL8082 Chromosomal DNA was isolated from Penicillium citrinum NRRL8082. As the full gene cluster is difficult to amplify via PCR due to its size, it was divided in three fragments: 18 kb, 14 kb and 6 kb. The 14 and 6 kb fragments, were readily PCR amplified and cloned using Gateway (Invitrogen) into the entry vectors pDONR221 and pDONRP2-P3 with a so-called LR gateway reaction according to the suppliers' instructions. The 18 kb fragment was cloned in a two-step procedure.
  • Gateway Invitrogen
  • the three compactin gene cluster fragments were co-transformed to the Penicillium chrysogenum ⁇ -lactam minus strain (as described in Example 3 in WO2007/147827) with a ble expression cassette encoding for a protein that mediates phleomycin resistance.
  • This cassette can be isolated as a 1 .4 kb Sa/I fragment from pAMPF7 (Fierro et al., 1996, Curr. Genet. 29:482-489). Selection of transformants was done on mineral medium agar plates with 50 ⁇ g/mL Phleomycin and 1 M saccharose.
  • Phleomycin resistant colonies appearing on these protoplast regeneration plates were re-streaked on fresh phleomycin agar plates (100 ⁇ g/mL) without the saccharose and grown until sporulation.
  • the phleomycin resistant transformants were screened via colony PCR for the presence of one or more compactin gene fragments. For this, a small piece of colony material was suspended in 50 ⁇ l TE buffer (Sambrook et al., 1989) and incubated for 10 min at 95 Q C. To discard the cell debris the mixture was centrifuged for 5 minutes at 3000 rpm. The supernatant (5 ⁇ l) was used as a template for the PCR-reaction with SUPER TAQ from HT Biotechnology Ltd. The PCR-reactions were analyzed on the E-gel96 system from Invitrogen.
  • Penicillium chrysogenum platform strain transformants with the full compactin gene cluster were evaluated in liquid mineral media as described under General Methods for the presence of (hydrolyzed) compactin (ML236B) and deacylated compactin ML-236A (6-(2-(1 ,2,6,7,8,8a-hexahydro-8-hydroxy-2-methyl-1 -naphthalenyl)ethyl)-tetrahydro-4- hydroxy-2H-pyran-2-one). After 168 h of cultivation at 25°C in 25 ml the supernatant was analyzed with HPLC using the following equipment and conditions: Column: Waters XTerra RP18
  • a gene coding for a P450 compactin hydroxylase enzyme was produced synthetically (SEQ ID NO 19).
  • the DNA was restricted with the restriction enzymes Ncol and EcoRV; the resulting 1 .2 kb fragment (partial digestion was performed due to internal EcoRV site, but the shorter 1 kb fragment was discarded) was cloned into the vector fungal expression vector pAN8-l (Punt & van den Hondel, 1993, Meth. Enzymology 216:447- 457) digested ⁇ /col and Sma ⁇ .
  • the obtained integration construct pANP450 checked by restriction analysis, contains the P450 compactin hydroxylase gene downstream the Aspergillus nidulans gpdA promoter.
  • the linearized pANP450 plasmid was co- transformed to the Penicillium chrysogenum compactin cluster transformants #1 and #2 with an amdS expression cassette encoding for a protein that enables the utilization of acetamide as sole nitrogen source.
  • the amdS expression cassette was obtained by digesting pHELY-A1 (described in WO 04/106347) with ⁇ /ofl and isolating the 3.1 kb PgpdA-AnamdS expression cassette. Selection of transformants was done on mineral medium agar plates with 0.1 % acetamide and 1 M saccharose. Colonies appearing on these protoplast regeneration plates were re-streaked on fresh acetamide agar plates without the saccharose and grown until sporulation.
  • Penicillium chrysogenum ⁇ -lactam minus strains were transformed with the compactin biosynthetic genes lacking the regulator mlcR by digesting the plasmid pDONRP2-P3-6 kb right fragment compactin cluster (see Example 1 ) with BsaAI. By doing so, the ⁇ 2kb fragment harboring the mlcR gene was cut and removed by agarose gel electrophoresis. The remaining 6.6 kb plasmid fragment containing the gene mlcH was used in the co- transformation with the other two compactin cluster plasmids harboring the 18 kb fragment and the 14 kb fragment (see Example 1 ). As a selection marker, the ble expression cassette was co-transformed.
  • mlcR For the transformation, five new expression cassettes were constructed, one mlcR expression cassette and four transcription regulator expression cassettes (SEQ ID NO 23, SEQ ID NO 26, SEQ ID NO 27 and SEQ ID NO 28). These cassettes use identical promoter/terminator regions in order to facilitate comparisons between the transcription regulators mlcR and SEQ ID NO 23, SEQ ID NO 26, SEQ ID NO 27 or SEQ ID NO 28.
  • the genes of mlcR (SEQ ID NO 22), SEQ ID NO 23, SEQ ID NO 26, SEQ ID NO 27 and SEQ ID NO 28 were ordered synthetically. The polynucleotides were digested with Ncol and EcoRV.
  • the resulting 1 .52 kb fragments were cloned into the vector fungal expression vector pAN8-l (Punt & van den Hondel, 1993, Meth Enzymology 216:447-457) digested ⁇ /col and Sma ⁇ .
  • the obtained integration constructs pANSEQ ID NO 23, pANSEQ ID NO 26, pANSEQ ID NO 27, pANSEQ ID NO 28 and pANm/cR, respectively, checked by restriction analysis, contain the transcription regulator gene downstream the Aspergillus nidulans gpdA promoter.
  • Example 4 which contain all compactin biosynthetic genes except of the transcription regulator mlcR) were in a first step made amdS marker free by counter selection on fluoroacetamide (Hynes, MJ and Pateman, JA (1970), MoI. Gen. Genetics, 108, 107-1 16). Only strains which do not harbor functional amdS expression cassettes can grow on fluoroacetamide, which otherwise is toxic.
  • AmdS negative strains were furthermore transformed with linearized plasmids harboring either the mlcR, SEQ ID NO 23, SEQ ID NO 26, SEQ ID NO 27 or SEQ ID NO 28 expression cassettes (a suitable unique restriction site of the vector backbone was chosen), the P450 compactin hydroxylase expression cassette pANP450 (also here a linearized plasmid containing the expression cassette was used) and co-transformation of an amdS expression cassette.
  • the amdS expression cassette was obtained by digesting pHELY-A1 (described in WO 2004/106347) with ⁇ /ofl and isolating the 3.1 kb PgpdA-AnamdS expression cassette.
  • the integration of the mlcR or SEQ ID NO 23, SEQ ID NO 26, SEQ ID NO 27 or SEQ ID NO 28 expression cassette, and/or the p450 compactin hydroxylase were identified by colony PCR (the oligonucleotides SEQ ID NO 20 and SEQ ID NO 21 for the P450 compactin hydroxylase gene, the oligonucleotides SEQ ID NO 24 and SEQ ID NO 25 for the mlcR gene SEQ ID NO 22, the oligonucleotides SEQ ID NO 31 and SEQ ID NO 32 for SEQ ID NO 23, the oligonucleotides SEQ ID NO 33 and SEQ ID NO 34 for SEQ ID NO 26, the oligonucleotides SEQ ID NO 35 and SEQ ID NO 36 for SEQ ID NO 27 and the oligonucleotides SEQ ID NO 37 and SEQ ID NO 38 for SEQ ID NO 28).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

La présente invention porte sur un procédé de production par fermentation de compactine, de lovastatine, de pravastatine ou de simvastatine, le procédé consistant à cultiver un hôte, de préférence un champignon filamenteux, contenant l'un des gènes régulateurs de transcription représenté par SEQ ID NO 23, SEQ ID NO 26, SEQ ID NO 27 et SEQ ID NO 28. En outre, l'invention porte sur un hôte permettant la production des statines susmentionnées comprenant l'un desdits régulateurs de transcription.
PCT/EP2009/067067 2008-12-19 2009-12-14 Régulateurs de la transcription de statines WO2010069914A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08172257.1 2008-12-19
EP08172257 2008-12-19

Publications (1)

Publication Number Publication Date
WO2010069914A1 true WO2010069914A1 (fr) 2010-06-24

Family

ID=40459586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/067067 WO2010069914A1 (fr) 2008-12-19 2009-12-14 Régulateurs de la transcription de statines

Country Status (1)

Country Link
WO (1) WO2010069914A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015161856A1 (fr) 2014-04-23 2015-10-29 Danmarks Tekniske Universitet Résistance et exportation de statine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1149919A2 (fr) * 2000-04-18 2001-10-31 Sankyo Company Limited Genes en relation de la biosynthése de ML-236B
WO2006077258A1 (fr) * 2005-01-24 2006-07-27 Dsm Ip Assets B.V. Procede de fabrication d'un compose d'interet dans une cellule fongique filamenteuse
WO2007147827A2 (fr) * 2006-06-22 2007-12-27 Dsm Ip Assets B.V. Production de pravastatine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1149919A2 (fr) * 2000-04-18 2001-10-31 Sankyo Company Limited Genes en relation de la biosynthése de ML-236B
WO2006077258A1 (fr) * 2005-01-24 2006-07-27 Dsm Ip Assets B.V. Procede de fabrication d'un compose d'interet dans une cellule fongique filamenteuse
WO2007147827A2 (fr) * 2006-06-22 2007-12-27 Dsm Ip Assets B.V. Production de pravastatine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ABE Y ET AL: "Molecular cloning and characterization of an ML-236B (compactin) biosynthetic gene cluster in Penicillium citrinum", MGG - MOLECULAR GENETICS AND GENOMICS, SPRINGER, BERLIN, DE, vol. 267, no. 5, 1 July 2002 (2002-07-01), pages 636 - 646, XP002472854, ISSN: 1617-4615 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015161856A1 (fr) 2014-04-23 2015-10-29 Danmarks Tekniske Universitet Résistance et exportation de statine

Similar Documents

Publication Publication Date Title
US20110223640A1 (en) Improved statin production
EP2029750B1 (fr) Production de pravastatine
AU748462B2 (en) Yeast strains for the production of lactic acid
Schmitt et al. Regulation of cephalosporin biosynthesis
JP3967812B2 (ja) ピルビン酸カルボキシラーゼ遺伝子組み換え菌体による有機酸の製造法
EP2233562A1 (fr) Procédé de fabrication d'une grande quantité d'acide glycolique par fermentation
US20070031950A1 (en) Production of D-lactic acid with yeast
AU2021225189A1 (en) Increasing lipid production in oleaginous yeast
KR20170121147A (ko) 발효 경로를 통해 플럭스 증가를 나타내는 재조합 미생물
MX2007006780A (es) Produccion de beta-lactamas en celulas individuales.
WO2009091582A1 (fr) PRODUCTION D'ACIDE R-α-LIPOÏQUE PAR UN PROCÉDÉ DE FERMENTATION UTILISANT DES MICRO-ORGANISMES GÉNÉTIQUEMENT MODIFIÉS
WO2009133089A1 (fr) Production de statine améliorée
US20030004299A1 (en) Production of polyhydroxyalkanoates
KR101739147B1 (ko) 리보플라빈의 제조 방법
WO2006085535A1 (fr) Procédé servant à produire de la bioptérine en utilisant une enzyme de biosynthèse de tétrahydrobioptérine
WO2019013573A9 (fr) Procédé de préparation de 2-hydroxy-gamma-butyrolactone ou de 2,4-dihydroxy-butyrate
US20090233287A1 (en) Production of compounds in a recombinant host
JP3764166B2 (ja) 二次代謝産物を産生するための方法
WO2010069914A1 (fr) Régulateurs de la transcription de statines
EP2094841B1 (fr) Procédé de préparation de la pravastatine
WO2009133098A2 (fr) Souches produisant des b-lactames
EP1675946A1 (fr) Methode de production de penicilline
JP2007125030A (ja) ピルビン酸カルボキシラーゼ遺伝子組み換え菌体による有機酸の製造法
JP2008526246A (ja) ジソラゾールの産生のための合成経路をコードする遺伝子
EP2123772A1 (fr) Souches produisant des antibiotiques bêta-lactamines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09799317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09799317

Country of ref document: EP

Kind code of ref document: A1