WO2010069819A1 - Verfahren zur herstellung von piperazindion-derivaten - Google Patents

Verfahren zur herstellung von piperazindion-derivaten Download PDF

Info

Publication number
WO2010069819A1
WO2010069819A1 PCT/EP2009/066615 EP2009066615W WO2010069819A1 WO 2010069819 A1 WO2010069819 A1 WO 2010069819A1 EP 2009066615 W EP2009066615 W EP 2009066615W WO 2010069819 A1 WO2010069819 A1 WO 2010069819A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
alkenyl
formula
alkynyl
alkoxy
Prior art date
Application number
PCT/EP2009/066615
Other languages
English (en)
French (fr)
Inventor
William Karl Moberg
Trevor William Newton
Liliana Parra Rapado
Michael Rack
Frank Stelzer
Matthias Witschel
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2010069819A1 publication Critical patent/WO2010069819A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/06Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having one or two double bonds between ring members or between ring members and non-ring members
    • C07D241/08Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having one or two double bonds between ring members or between ring members and non-ring members with oxygen atoms directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/10Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D241/14Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D241/18Oxygen or sulfur atoms

Definitions

  • the present invention relates to a process for the preparation of piperazinedione derivatives of the formula I,
  • R 1 Ci-C ⁇ alkyl, Ci-C 6 alkoxy-C 6 alkyl, C 3 -C 6 alkenyl, C 3 -C 6 -alkyl kinyl, CH 2 CN, and d-C ⁇ -alkylcarbonyl, wherein R 1 may be partially or completely substituted by groups R a ;
  • R 2 is C 1 -C 6 -alkyl, C 3 -C 4 -alkenyl, C 3 -C 4 -alkynyl and C 1 -C 8 -alkylcarbonyl;
  • A, B are independently aryl or 5- or 6-membered monocyclic or 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocyclyl containing 1, 2, 3 or 4 heteroatoms selected from O, N and S, which cyclic groups are bonded via C 1 -C 4 -alkylene or C 1 -C 4 -alkyl and may be substituted in part or in full by groups R a ,
  • R a is halogen, CN, NO2, Ci to C 4 -alkyl, ZC 3 -C 6 cycloalkyl, Ci-C4-haloalkyl, -C 4 - alkoxy, Ci-C4-haloalkoxy, 0-ZC 3 -C 6- CyCl or Iacyl, S (O) n R y , C 2 -C 6 -alkenyl,
  • R aa and / or R a1 which may be partially or completely substituted by groups R aa and / or R a1 ;
  • R y is C 1 -C 6 -alkyl, C 3 -C 4 -alkenyl, C 3 -C 4 -alkynyl, NR A R B , and C 1 -C 4 -haloalkyl, and n is O, 1 or 2;
  • R A, R B are independently hydrogen, Ci-C 6 alkyl, C 3 -C 6 alkenyl, and
  • R A , R B may also together with the nitrogen atom to which they are attached form a five- or six-membered saturated, partially or completely unsaturated ring containing, in addition to carbon, 1, 2 or 3 heteroatoms selected from O, N and S. which ring may be substituted by 1 to 3 groups R aa ;
  • Z is a covalent bond, oxygen, C 1 -C 4 -alkylene, C 2 -C 6 -alkenyl or C 2 -C 6 -alkynyl;
  • R a1 is hydrogen, OH, C 1 -C 8 -alkyl, C 1 -C 4 -haloalkyl, C 3 -C 6 -cycloalkyl, C 2 -C -alkenyl, C 5 -C 6 -cycloalkenyl, C 2 -C 8 - al kinyl, Ci-C 6 alkoxy, Ci-C 4 - haloalkoxy, C 3 -C 8 alkenyloxy, C 3 -C 8 -alkyl kinyloxy, NR A R B, Ci-C 6 -AIk- oxyamino, Ci- C 6 alkylsulfonylamino, C CerAlkylaminosulfonylamino, [di- (Ci-C
  • Piperazinedione derivatives of the formula I are valuable pharmaceutical and herbicidal active substances. They are from Journal of Antibiotics 49 (10), 1996, pp. 1014-1021; J. Agric. Food Chem. (2001) 49, p.2298-2301; WO 99/48889; WO 01/53290; WO 2005/01 1699; WO 2007/077201 and WO 2007/077247.
  • the object of the invention was to provide a process for preparing the piperazinedione derivatives of the formula I which is suitable for industrial use and makes the active compounds available in high purity.
  • the process according to the invention makes it possible, in particular, to suppress the formation of the O-alkylated by-product at least as far as possible. Usually, less than 20% and preferably less than 5% of the O-alkylated by-product are formed.
  • the epimerization of this group is also achieved, at least for the most part, ie in particular. to suppress more than 90%, preferably at least 95%.
  • This reaction is usually carried out at temperatures from -20 0 C to 180 0 C, preferably 0 0 C to 100 0 C, in an inert organic solvent in the presence of a base [see. CM. Starks, J. Am Chem Soc 93, 195-199 (1971); M. Makosza, Pure Appl. Chem. 72, 1399-1403 (2000)].
  • Suitable solvents are aliphatic hydrocarbons such as pentane, hexane, cyclohexane, petroleum ether and decalin; aromatic hydrocarbons such as benzene, toluene, o-, m- and p-xylene, ethylbenzene and mesitylene; halogenated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride, chlorobenzene and dichlorobenzene; Ethers, such as diethyl ether, diisopropyl ether, tert-butyl methyl ether (MTBE), cyclopentyl methyl ether (CPME), dioxane, dimethoxyethane, anisole and tetrahydrofuran (THF); Nitriles such as acetonitrile and propionitrile; Ketones such as acetone, methyl ethyl ketone, diethyl ketone,
  • liquid phase For a two-phase system of a solid and a liquid phase, all of the abovementioned solvents can be used as the liquid phase.
  • aromatic hydrocarbons in particular toluene
  • halogenated hydrocarbons in particular methylene chloride, chloroform and chlorobenzene
  • Ethers especially MTBE, CPME, dioxane, dimethoxyethane, and THF
  • Nitriles in particular acetonitrile
  • DMSO, DMF, DMA, NMP, DMI, and DMPU especially DMSO, DMF and DMA.
  • a two-phase system consisting of two liquid phases
  • mixtures of water and any of the abovementioned solvents, which forms two phases with water can be used.
  • aromatic hydrocarbons in particular toluene
  • halogenated hydrocarbons in particular methylene chloride, chloroform and chlorobenzene
  • ethers especially MTBE and CPME.
  • Suitable bases are in general alkali metal and alkaline earth metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal oxides such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alkaline earth metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate and calcium carbonate and alkali metal hydrogen carbonate - Bonates such as sodium bicarbonate and potassium bicarbonate, into consideration. Preference is given to alkali metal and alkaline earth metal hydroxides, such as lithium hydroxide,
  • Sodium hydroxide and potassium hydroxide, and alkali metal and alkaline earth metal carbonates such as lithium carbonate, potassium carbonate, sodium carbonate and cesium carbonate, especially sodium hydroxide, potassium hydroxide, potassium carbonate and cesium carbonate.
  • cesium carbonate is particularly preferred.
  • the base is the solid phase, for example as a cookie, as a coarse or finely ground powder.
  • the base is in the liquid phase.
  • the bases are generally used in equimolar amounts or in excess, preferably up to three, in particular up to two molar equivalents.
  • the phase transfer catalysts (PTK) used in the process according to the invention are known to the person skilled in the art [cf. Handbook of Phase Transfer Catalysis, editors Y. Sasson and R. Neumann, Blackie, London, 1997; WO 2006/11 1583; Organic Process Research & Development 12 (4), 2008, pp. 698-709].
  • quaternary eg tetraalkyl or tetraaryl or mixed alkyl-aryl ammonium and phosphonium salts, tetrakis (dialkyl or diarylamino) phosphonium halides, alkylguanidinium halide derivatives, polyglycols and also crown ethers are suitable.
  • the PTK are selected from: benzyl tributyl ammonium bromide; Benzyl tributyl ammonium chloride; Benzyl triethyl ammonium bromide; Benzyl triethyl ammonium chloride; Benzyl trimethyl ammonium chloride; Cetyl pyridinium bromide; Cetyl pyridinium chloride; Cetyl trimethyl ammonium bromide; Didecyl dimethyl ammonium chloride; Dimethyl distearyl ammonium bisulfate; Dimethyl distearyl ammonium methosulfate; Dodecyl trimethyl ammonium bromide; Dodecyl trimethyl ammonium chloride; Methyl tributyl ammonium chloride; Methyl tributyl ammonium hydr.
  • Tetrahexylammonium iodide Tetramethyl ammonium bromide; Tetramethyl ammonium chloride; Tetramethyl ammonium fluoride; Tetramethyl ammonium hydroxide; Tetramethyl ammonium iodide; Tetraoctyl ammonium bromide; Tetrapropyl ammonium bromide; Tetrapropyl ammonium chloride; Tetrapropyl ammonium hydroxide; Tributyl methyl ammonium chloride; Hexa-C 1 -C 6 -alkyl guanidinium chlorides and bromides; Benzyltriphenylphosphonium bromide; benzyltriphenylphosphonium; Butyltriphenylphosphonium bromide; Butyltriphenylphosphoniumchlorid; Ethyltriphenylphosphonium acetate; ethyltriphenylphosphonium; ethyltriphenylphosphonium; Methyl
  • quaternary ammonium chlorides such as benzyl tributyl ammonium chloride, benzyl triethyl ammonium chloride, dodecyl trimethyl ammonium chloride, methyl tributyl ammonium chloride and tetrabutyl ammonium chloride.
  • the PTK are generally employed in catalytic amounts, usually in 0.0001 to 0.5 molar equivalents (eq.) Of the compound of formula II, preferably in 0.001 to 0.1 molar equivalents.
  • the liquid polyglycols can also be used as a liquid phase.
  • the starting materials are generally reacted with one another in equimolar amounts. It may be advantageous for the yield to use III in an excess based on II.
  • those compounds of the formula II are used in which R 1 and R 2 are hydrogen. These compounds correspond to the formula II.3, in which the variables have the meaning according to formula I. In this embodiment of the method, only those compounds of formula I are available in which R 1 and R 2 have the same meaning.
  • alkylating agents RX of formula III X is a nucleophilic cleavable group such as halogen; alkyl sulfate; Alkyl sulfonate, eg methanesulfonate; Haloalkylsulfonate, eg trifluoromethanesulfonate; or alkyl carbonate.
  • Preferred alkylating agents are alkyl chlorides, alkyl bromides and dialkyl sulfates.
  • the abovementioned alkyl groups correspond to the groups R 1 or R 2 to be introduced .
  • reaction mixtures are worked up in the usual way, for example by separation of the phases, if appropriate after mixing with water; in the case of solid / liquid reactions washing, drying and concentration.
  • purification of the crude product thus obtained can be carried out by recrystallization, diges- tion, distillation or chromatography.
  • the starting materials required for the preparation of the compounds I are z. T. commercially available, known in the literature or can be prepared according to the literature.
  • the compounds of the formula I are suitable - both as isomer mixtures and in the form of pure isomers - as herbicides. They are suitable as such or as appropriately formulated agent.
  • Halogen fluorine, chlorine, bromine and iodine
  • Alkyl saturated, straight-chain or branched hydrocarbon radicals having 1 to 4, 6 or 8 carbon atoms, for example C 1 -C 6 -alkyl, such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methyl-propyl, 2-methylpropyl, 1, 1-dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1, 1-dimethylpropyl, 1, 2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1, 1-dimethylbutyl, 1, 2-dimethylbutyl, 1, 3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethyl
  • Haloalkyl straight-chain or branched alkyl groups having 1 to 2 or 4 carbon atoms (as mentioned above), in which groups the hydrogen atoms may be partially or completely replaced by halogen atoms as mentioned above: in particular C 1 -C 2 haloalkyl, such as chloromethyl, bromomethyl, Dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, Dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2, 2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl
  • Alkenyl unsaturated, straight-chain or branched hydrocarbon radicals having 2 to 4, 6 or 8 carbon atoms and one or two double bonds in any position, e.g. C2-C6 alkenyl such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1 Methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butyl, 2-methyl-1-butenyl, 3 Methyl-1-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl 3-butenyl, 1, 1-dimethyl-2-propen
  • Alkynyl straight-chain or branched hydrocarbon groups having 2 to 4, 6 or 8 carbon atoms and one or two triple bonds in any position, for example C 2 -C 6 alkynyl such as ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl , 3-butynyl,
  • Cycloalkyl mono- or bicyclic, saturated hydrocarbon groups having 3 to 6 or 8 carbon ring members, for example Cs-Cs-cycloalkyl, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl; Five to ten membered saturated, partially unsaturated or aromatic heterocycles containing one to four heteroatoms from the group O, N or S:
  • 5- or 6-membered saturated or partially unsaturated heterocyclyl containing one to three nitrogen atoms and / or one oxygen or sulfur atom or one or two oxygen and / or sulfur atoms e.g. 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydrothienyl, 3-tetrahydrothienyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 3-isoxazolidinyl, 4-isoxazolidinyl, 5-isoxazolidinyl, 3-isothiazolidinyl, 4-isothiazolidinyl, 5-isothiazolidinyl, 3-pyrazolidinyl, 4-pyrazolidinyl, 5-pyrazolidinyl, 2-oxazolidinyl, 4-oxazolidinyl, 5-oxazolidinyl, 2-thiazolidinyl, 4-thiazolidinyl, 5-thiazolidinyl, 2-imidazolidinyl
  • 5-membered heteroaryl containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom 5-membered heteroaryl groups, which besides carbon atoms can contain one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom as ring members.
  • 6-membered heteroaryl containing one to three or one to four nitrogen atoms 6-membered ring heteroaryl groups, which in addition to carbon atoms may contain one to three or one to four nitrogen atoms as ring members, e.g. 2-pyridinyl, 3-pyridinyl, 4-pyridinyl, 3-pyridazinyl, 4-pyridazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl and 2-pyrazinyl;
  • R 1 is C 1 -C 6 -alkyl, C 1 -C 6 -alkoxyalkyl, C 3 -C 6 -alkenyl, C 3 -C 6 -alkynyl and CH 2 CN, in particular methyl, ethyl, n-propyl, Allyl, propargyl or methoxymethyl.
  • R 1 in particular C 1 -C 6 -alkyl, bears a substituent R a , preferably CN or ZC (OO) -R a1 , such as C 1 -C 5 -alkoxy carbonyl.
  • R a preferably CN or ZC (OO) -R a1 , such as C 1 -C 5 -alkoxy carbonyl.
  • R 1 is thus monosubstituted alkyl, such as CH 2 CN or C 1 -C 8 -alkoxycarbonyl-C 1 -C 6 -alkyl.
  • One embodiment relates to compounds of the formula I in which the group A is linked via a single bond to the piperazinedione ring.
  • a further embodiment relates to compounds of the formula I in which the group A is bonded to the piperazinedione ring via a double bond.
  • the aryl or hetaryl ring in group A is pyridyl, especially 3-pyridyl, or phenyl, which rings preferably at least one ortho substituent, such as halogen, CN, NO 2 , acetyl, alkyl, haloalkyl, alkoxy or haloalkoxy.
  • ortho substituent is preferably in the 2-position.
  • the group B is benzyl, where the ring is unsubstituted or substituted by one or two groups R a , such as halogen, alkyl, haloalkyl or alkoxy.
  • the group B is a saturated or partially unsaturated heterocycle bonded via a C 1 -C 2 -alkylene, where the ring is unsubstituted or substituted by one or two groups R a , such as halogen, alkyl, Haloalkyl or alkoxy.
  • HPLC-MS High Performance Liquid Chromatography combined with mass spectrometry; HPLC column: RP-18 column (Chromolith Speed ROD from Merck KgaA, Germany), 50 * 4.6 mm; Eluent: acetonitrile + 0.1% trifluoroacetic acid (TFA) / water + 0.1% TFA, with a gradient of 5:95 to 100: 0 in 5 minutes at 40 ° C., flow rate 1, 8 ml / min MS: quadrupole Electrospray ionization, 80V (positive mode).]
  • KOH / NaOH powder crushed KOH or NaOH cookies

Abstract

Verfahren zur Herstellung von Piperazindion-Derivaten der Formel (I), worin die Variablen gemäß der Beschreibung definiert sind, deren landwirtschaftlich geeignete Salze, dadurch gekennzeichnet, dass Piperazindion-Derivate der Formel (II), in der mindestens eine Gruppe aus R1 und R2 Wasserstoff bedeutet und die anderen Variablen die Bedeutung gemäß Formel (I) aufweisen, mit Alkylierungsmitteln der Formel (III): R-X, worin die Variablen gemäß der Beschreibung definiert sind, unter basischen Bedingungen in einem Zweiphasensystem in Anwesenheit eines Phasentransferkatalysators umgesetzt werden.

Description

Verfahren zur Herstellung von Piperazindion-Derivaten
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Piperazindion- Derivaten der Formel I,
Figure imgf000003_0001
worin
R1 Ci-Cβ-Alkyl, Ci-C6-Alkoxy-Ci-C6-alkyl, C3-C6-Alkenyl, C3-C6-Al kinyl, CH2CN und d-Cβ-Alkylcarbonyl, wobei R1 teilweise oder vollständig durch Gruppen Ra substituiert sein kann;
R2 C-i-Ce-Alkyl, C3-C4-Alkenyl, C3-C4-Alkinyl und Ci-C8-Alkylcarbonyl; A, B unabhängig voneinander Aryl oder 5- oder 6-gliedriges monocyclisches oder 9- oder 10-gliedriges bicyclisches gesättigtes, teilweise ungesättigtes oder aromati- sches Heterozyklyl, enthaltend 1 , 2, 3 oder 4 Heteroatome ausgewählt aus O, N und S, welche zyklischen Gruppen über Ci-C4-Alkylen oder Ci -C4-Al kyliden gebunden sind und teilweise oder vollständig durch Gruppen Ra substituiert sein können,
Ra Halogen, CN, NO2, Ci -C4-Al kyl, Z-C3-C6-Cycloalkyl, Ci-C4-Haloalkyl, CrC4- Alkoxy, Ci-C4-Haloalkoxy, 0-Z-C3-C6-CyCl oa I kyl, S(O)nRy, C2-C6-Alkenyl,
Z-C3-C6-Cycloalkenyl, C3-C6-Alkenyloxy, C2-C6-Al kinyl, C3-C6-Alkinyloxy, NRARB, Tri-Ci-C4-alkylsilyl, Z-C(=O)-Ra1, Z-P(=O)(Ra1)2, Phenyl, Naphthyl, über C oder N gebundener 3- bis 7-gliedriger monocyclischer oder 9- oder 10-gliedriger bicyclischer gesättigter, ungesättigter oder aromatischer Hete- rozyklus, enthaltend 1 , 2, 3 oder 4 Heteroatome ausgewählt aus O, N und
S, der teilweise oder vollständig durch Gruppen Raa und/oder Ra1 substituiert sein kann; Ry Ci-Cβ-Alkyl, C3-C4-Alkenyl, C3-C4-Al kinyl, NRARB, und Ci-C4-Haloalkyl bedeutet und n für O, 1 oder 2 steht; RA,RB unabhängig voneinander Wasserstoff, Ci-C6-Alkyl, C3-C6-Alkenyl und
C3-C6-Al kinyl; RA,RB können auch gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen fünf- oder sechsgliedrigen gesättigten, teilweise oder vollständig ungesättigten Ring bilden, der neben Kohlenstoff- 1 , 2 oder 3 Heteroatome ausgewählt aus O, N und S enthalten kann, welcher Ring durch 1 bis 3 Gruppen Raa substituiert sein kann;
Z eine kovalente Bindung, Sauerstoff, Ci -C4-Al kylen, C2-C6-Alkenyl o- der C2-C6-Al kinyl; Ra1 Wasserstoff, OH, Ci -C8-Al kyl, Ci-C4-Haloalkyl, C3-C6-Cycloalkyl, C2- Cs-Alkenyl, C5-C6-Cycloalkenyl, C2-C8-Al kinyl, Ci-C6-Alkoxy, Ci-C4- Haloalkoxy, C3-C8-Alkenyloxy, C3-C8-Al kinyloxy, NRARB, Ci-C6-AIk- oxyamino, Ci-C6-Alkylsulfonylamino, Ci-CerAlkylaminosulfonylamino, [Di-(Ci-C6)-alkylamino]sulfonylamino, C3-C6-Alkenylamino, C3-C6-
Alkinylamino, N-(C2-C6-Alkenyl)-N-(Ci-C6-alkyl)-amino, N-(C2-C6-AI- kinyl)-N-(Ci-C6-alkyl)-amino, N-(Ci-C6-Alkoxy)-N-(Ci-C6-alkyl)-amino, N-(C2-C6-Alkenyl)-N-(Ci-C6-alkoxy)-amino, N-(C2-C6-Alkinyl)-N-(Ci- C6-alkoxy)-amino, Ci-C6-Alkylsulfonyl, Tri-Ci-C4-alkylsilyl, Phenyl, Phenoxy, Phenylamino und 5- oder 6-gliedriger monocyclischer oder
9- oder 10-gliedriger bicyclischer gesättigter, partiell ungesättigter o- der aromatischer Heterozyklus, enthaltend 1 , 2, 3 oder 4 Heteroato- me ausgewählt aus O, N und S, wobei die cyclischen Gruppen un- substituiert oder durch 1 , 2, 3 oder 4 Gruppen Raa substituiert sind, bedeutet;
Raa Halogen, OH, CN, NO2, Ci-C4-Alkyl, Ci-C4-Haloalkyl, Ci-C4-Alkoxy, Ci-C4-Haloalkoxy, S(O)nRy, Z-C(=O)-Ra1 und Tri-Ci-C4-alkylsilyl; und R3 Wasserstoff, Halogen, CN, NO2, OH, NH2, Ci-C4-Alkyl, Z-C3-C8-Cycloalkyl,
Z-Cs-Cs-Cycloalkenyl, Z-C7-C8-CyCl oa I kinyl, C3-C6-Al kenyl, C3-C6-Al kinyl, Z-[Tri-(Ci-C6)-alkylsilyl], Z-Phenyl, über Z gebundener 5- oder 6-gliedriger monocyclischer oder 9- oder 10-gliedriger bicyclischer gesättigter, partiell ungesättigter oder aromatischer Heterozyklus, enthaltend 1 , 2, 3 oder 4 He- teroatome ausgewählt aus O, N und S; bedeuten; dadurch gekennzeichnet, dass Piperazindion-Derivate der Formel II,
Figure imgf000004_0001
in der mindestens eine Gruppe aus R1 und R2 Wasserstoff bedeutet und die anderen
Variablen die Bedeutung gemäß Formel I aufweisen, mit Alkylierungsmitteln der Formel III,
R-X IN worin
X nucleophile Abgangsgruppe und
R Ci-C8-Alkyl, Ci-C6-Alkoxy-Ci-C6-alkyl, C3-C6-Alkenyl, C3-C6-Alkinyl und CH2CN bedeuten, unter basischen Bedingungen in einem Zweiphasensystem in Anwesenheit eines Pha- sentransferkatalysators umgesetzt werden.
Piperazindion-Derivate der Formel I sind wertvolle pharmazeutische und herbizide Wirkstoffe. Sie sind aus Journal of Antibiotics 49(10), 1996, S. 1014-1021 ; J. Agric. Food Chem. (2001) 49, S.2298-2301 ; WO 99/48889; WO 01/53290; WO 2005/01 1699; WO 2007/077201 und WO 2007/077247 bekannt.
Die bekannten Syntheserouten sind wegen z. T. teurer, toxischer Basen, von denen einige stark mit Wasser reagieren; langer Reaktionszeiten; aufwendiger Reinigungsschritte; Bildung von Nebenprodukten, besonders O-alkylierter Produkte; größerer Mengen Abfalls; sowie mäßiger Ausbeuten für eine ökonomische technische Herstellung der Piperazindion-Derivate oft unbefriedigend.
Aufgabe der Erfindung war es, ein Verfahren zur Herstellung der Piperazindion- Derivate der Formel I bereitzustellen, welches für die großtechnische Anwendung geeignet ist und die Wirkstoffe in hoher Reinheit zugänglich macht.
Demgemäß wurde das eingangs beschriebene Verfahren gefunden. Es geht aus von den Piperazindion-Derivaten der Formel II, die durch die in den eingangs genannten Dokumenten beschriebenen Verfahren leicht zugänglich sind.
Durch das erfindungsgemäße Verfahren gelingt es insbesondere, die Entstehung des O-alkylierten Nebenproduktes zumindest weitestgehend zu unterdrücken. Üblicherwei- se entstehen weniger als 20% und bevorzugt weniger als 5% des O-alkylierten Nebenproduktes. Für Verbindungen der Formel I, in denen die Gruppe A über eine Einfachbindung an den Piperazindionring gebunden ist, gelingt es auch insbesodere die Epi- mierisierung dieser Gruppe, zumindest weitestgehend, d.h. zu mehr als 90%, bevorzugt mindestens 95%, zu unterdrücken.
Die Umsetzung des Piperazindion-Derivates der Formel Il mit dem Alkylierungsmittel der Formel III erfolgt unter basischen Bedingungen in einem zweiphasigen System. Diese zwei
Figure imgf000005_0001
Diese Umsetzung erfolgt üblicherweise bei Temperaturen von -200C bis 1800C, vorzugsweise 00C bis 1000C, in einem inerten organischen Lösungsmittel in Gegenwart einer Base [vgl. CM. Starks, J. Am Chem Soc 93, 195-199 (1971 ); M. Makosza, Pure Appl. Chem 72, 1399-1403 (2000)].
Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan, Petrolether und Dekalin; aromatische Kohlenwasserstoffe wie Benzol, Toluol, o-, m- und p-Xylol, Ethylbenzol und Mesitylen; halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und Dichlorbenzol; Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether (MTBE), Cyclopentyl- methylether (CPME), Dioxan, Dimethoxyethan, Anisol und Tetrahydrofuran (THF); Nitrile wie Acetonitril und Propionitril; Ketone wie Aceton, Methylethylketon, Diethylke- ton, Cyclohexanon und tert.-Butylmethylketon; Alkohole wie Methanol, Ethanol, n- Propanol, Isopropanol, n-Butanol und tert.-Butanol; sowie Dimethylsulfoxid (DMSO), Sulfolan, Dimethylformamid (DMF), Dimethylacetamid (DMA), N-Methylpyrrolidon (NMP), Dimethylethylenharnstoff (DMI), Dimethylpropylenharnstoff (DMPU) und Tri- methylethylenharnstoff (TMI). In einer bevorzugten Ausführung des erfindungsgemäßen Verfahrens werden als Lösungsmittel Ether verwendet. In einer Ausführung wird als Lösungsmittel ein Ethergemisch verwendet.
Für ein Zweiphasensystem aus einer festen und einer flüssigen Phase sind alle oben genannten Lösungsmittel als flüssige Phase verwendbar. Bevorzugt sind aromatische Kohlenwasserstoffe, insbesondere Toluol; halogenierte Kohlenwasserstoffe, insbesondere Methylenchlorid, Chloroform und Chlorbenzol; Ether, insbesondere MTBE, CPME, Dioxan, Dimethoxyethan, und THF; Nitrile, insbesondere Acetonitril; sowie DMSO, DMF, DMA, NMP, DMI, und DMPU, insbesondere DMSO, DMF und DMA.
Für ein Zweiphasensystem aus zwei flüssigen Phasen sind Gemische aus Wasser und jedem oben genannten Lösungsmittel, das mit Wasser zwei Phasen bildet, verwend- bar. Bevorzugt sind aromatische Kohlenwasserstoffe, insbesondere Toluol; halogenierte Kohlenwasserstoffe, insbesondere Methylenchlorid, Chloroform und Chlorbenzol; und Ethern, insbesondere MTBE und CPME.
Als Basen kommen allgemein Alkalimetall- und Erdalkalimetallhydroxide wie Lithium- hydroxid, Natriumhydroxid, Kaliumhydroxid und Calziumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calziumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat, Natriumcarbonat, KaIi- umcarbonat, Caesiumcarbonat und Calziumcarbonat sowie Alkalimetallhydrogencar- bonate wie Natriumhydrogencarbonat und Kaliumhydrogencarbonat, in Betracht. Bevorzugt werden Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid,
Natriumhydroxid und Kaliumhydroxid, sowie Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat, Kaliumcarbonat, Natriumcarbonat und Caesiumcarbonat, insbesondere Natriumhydroxid, Kaliumhydroxid, Kaliumcarbonat und Caesiumcarbonat. Für Verbindungen der Formel I, in denen die Gruppe A über eine Einfachbindung an den Piperazindionring gebunden ist, ist Caesiumcarbonat besonders bevorzugt.
In einer Ausgestaltung des Verfahrens stellt die Base die feste Phase dar, beispielsweise als Plätzchen, als grobes oder als fein gemahlenes Pulver. In einer anderen Ausgestaltung des Verfahrens liegt die Base in flüssiger Phase vor. Die Basen werden im Allgemeinen in äquimolaren Mengen oder im Überschuss, bevorzugt bis zu drei, insbesondere bis zu zwei Moläquivalenten, eingesetzt. Die in dem erfindungsgemäßen Verfahren verwendeten Phasentransferkatalysatoren (PTK) sind dem Fachmann bekannt [vgl. Handbook of Phase Transfer Catalysis, edi- tors Y. Sasson und R. Neumann, Blackie, London, 1997; WO 2006/11 1583; Organic Process Research & Development 12(4), 2008, S. 698-709]. Üblicherweise kommen quatärnere (e.g. Tetraalkyl bzw. Tetraaryl bzw. gemischte Alkyl-Aryl) Ammonium- und Phosphoniumsalze, Tetrakis-(Dialkyl- bzw. diarylamino)phosphoniumhalogenide, Al- kylguanidiniumhalogenidderivate, Polyglycole, sowie Kronenether in Frage. Insbesondere werden die PTK ausgewählt aus: Benzyl Tributyl Ammonium Bromid; Benzyl Tributyl Ammonium Chlorid; Benzyl Triethyl Ammonium Bromid; Benzyl Triethyl Ammonium Chlorid; Benzyl Trimethyl Ammonium Chlorid; Cetyl Pyridinium Bromid; Cetyl Pyridinium Chlorid; Cetyl Trimethyl Ammonium Bromid; Didecyl Dimethyl Ammonium Chlorid; Dimethyl Distearyl Ammonium Bisulfat; Dimethyl Distearyl Ammonium Methosulfat; Dodecyl Trimethyl Ammonium Bromid; Dodecyl Trimethyl Ammonium Chlorid; Methyl Tributyl Ammonium Chlorid; Methyl Tri- butyl Ammonium Hydr. Sulfat; Methyl Tricaprylyl Ammonium Chlorid; Methyl Trioctyl Ammonium Chlorid; Myristyl Trimethyl Ammonium Bromid; Phenyl Trimethyl Ammonium Chlorid; Tetrabutyl Ammonium Bromid; Tetrabutyl Ammonium Chlorid; Tetrabutyl Ammonium Fluorid; Tetrabutyl Ammonium Hydrogen Sulfat; Tetrabutyl Ammonium Hydroxid; Tetrabutyl Ammonium lodid; Tetraethyl Ammonium Bromid; Tetraethyl Am- monium Chlorid; Tetraethyl Ammonium Hydroxid; Tetrahexyl Ammonium Bromid;
Tetrahexyl Ammonium lodid; Tetramethyl Ammonium Bromid; Tetramethyl Ammonium Chlorid; Tetramethyl Ammonium Fluorid; Tetramethyl Ammonium Hydroxid; Tetramethyl Ammonium lodid; Tetraoctyl Ammonium Bromid; Tetrapropyl Ammonium Bromid; Tetrapropyl Ammonium Chlorid; Tetrapropyl Ammonium Hydroxid; Tributyl Methyl Ammonium Chlorid; Hexa-Ci-Cβ-alkyl Guanidinium Chloride und Bromide; Benzyl- triphenylphosphoniumbromid; Benzyltriphenylphosphoniumchlorid; Butyltriphenyl- phosphoniumbromid; Butyltriphenylphosphoniumchlorid; Ethyltriphenylphosphoni- umacetat; Ethyltriphenylphosphoniumbromid; Ethyltriphenylphosphoniumiodid; Me- thyltπphenylphosphoniumbromid; Tetrabutylphosphoniumbromid; Tetraphenyl- phosphoniumbromid; Tetrakisdiethylaminophosphoniumbromid; 18-Krone-6; Aliplex DB186®; Butyl Diglyme; Dibenzo-18-Krone-6; Diethylenglycoldibutylether; Diethylen- glycoldimethylether; Diglyme; Dipropylenglycoldimethylether; Monoglyme; Polyethylen- glycoldibutylether; Polyglycol BB 300®; Polyglycol DME 200®; Polyglycol DME 250®; Polyglycol DME 500®; Polyglycol DME 1000®; Polyglycol DME 2000®; Monoethylen- glycoldimethylether; Tetraethylenglycoldimethylether; Tetraglyme; Triethylenglycoldi- methylether; und Triglyme. Besonders bevorzugt sind quaternäre Ammoniumchloride wie Benzyl Tributyl Ammonium Chlorid, Benzyl Triethyl Ammonium Chlorid, Dodecyl Trimethyl Ammonium Chlorid, Methyl Tributyl Ammonium Chlorid und Tetrabutyl Ammonium Chlorid. Die PTK werden im allgemeinen in katalytischen Mengen angewandt, üblicherweise in 0,0001 bis 0,5 Moläquivalenten (Äq.) zu der Verbindung der Formel II, bevorzugt in 0,001 bis 0,1 Moläquivalenten. Die flüssigen Polyglycole können auch als flüssige Phase verwendet werden.
Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, III in einem Überschuß bezogen auf Il einzusetzen.
In einer Ausführungsform des erfindungsgemäßen Verfahrens werden solche Verbindungen der Formel Il eingesetzt, in der R1 für Wasserstoff steht. Diese Verbindungen entsprechen der Formel 11.1 , in der die Variablen die Bedeutung gemäß Formel I haben.
Figure imgf000008_0001
In einer anderen Ausführungsform des erfindungsgemäßen Verfahrens werden solche Verbindungen der Formel Il eingesetzt, in der R2 für Wasserstoff steht. Diese Verbindungen entsprechen der Formel II.2, in der die Variablen die Bedeutung gemäß Formel
I haben.
Figure imgf000008_0002
In einer anderen Ausführungsform des erfindungsgemäßen Verfahrens werden solche Verbindungen der Formel Il eingesetzt, in der R1 und R2 für Wasserstoff stehen. Diese Verbindungen entsprechen der Formel II.3, in der die Variablen die Bedeutung gemäß Formel I haben. In dieser Ausgestaltung des Verfahrens sind nur solche Verbindungen der Formel I zugänglich, in denen R1 und R2 die gleiche Bedeutung haben.
Figure imgf000008_0003
In den Alkylierungsmitteln R-X der Formel III steht X für eine nucleophil abspaltbare Gruppe, wie Halogen; Alkylsulfat; Alkylsulfonat, z.B. Methansulfonat; Haloalkylsulfonat, z.B. Trifluormethansulfonat; oder Alkylcarbonat. Bevorzugte Alkylierungsmitteln sind Alkylchloride, Alkylbromide und Dialkylsulfate. Die vorgenannten Alkylgruppen entsprechen den einzuführenden Gruppen R1, bzw. R2. Die Reaktionsgemische werden in üblicher weise aufgearbeitet, z.B. durch Trennung der Phasen, gegebenenfalls nach Mischen mit Wasser; im Fall fest/flüssiger Reaktionen Waschen, Trocknung und Einengen. Je nach den Eigenschaften des Endproduktes kann Reinigung von dem so enthaltenen Rohprodukt durch Umkristallisation, Dige- rieren, Destillation oder Chromatographie erfolgen.
Die für die Herstellung der Verbindungen I benötigten Ausgangsstoffe sind z. T. kommerziell erhältlich, in der Literatur bekannt oder können gemäß der Literatur hergestellt werden.
Sofern einzelne Verbindungen I nicht auf den voranstehend beschriebenen Wegen zugänglich sind, können sie durch Derivatisierung anderer Verbindungen I hergestellt werden.
Die Verbindungen der Formel I eignen sich - sowohl als Isomerengemische als auch in Form der reinen Isomeren - als Herbizide. Sie eignen sich als solche oder als entsprechend formuliertes Mittel. Die herbiziden Mittel, die Verbindungen der Formel I, insbesondere die bevorzugten Ausgestaltungen davon, enthalten, bekämpfen Pflanzenwuchs auf Nichtkulturflächen sehr gut. In Kulturen wie Weizen, Reis, Mais, Soja und Baumwolle wirken sie gegen Unkräuter und Schadgräser, ohne die Kulturpflanzen nennenswert zu schädigen.
Bei den in den vorstehenden Formeln angegebenen Definitionen der Symbole wurden Sammelbegriffe verwendet, die allgemein repräsentativ für die folgenden Substituenten stehen:
Halogen: Fluor, Chlor, Brom und Jod;
Alkyl: gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 1 bis 4, 6 oder 8 Kohlenstoffatomen, z.B. Ci-C6-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methyl-propyl, 2-Methylpropyl, 1 ,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Me- thylbutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1-Ethylpropyl, Hexyl, 1 ,1-Dimethylpropyl, 1 ,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1 ,1-Dimethylbutyl, 1 ,2-Dimethylbutyl, 1 ,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dime- thylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1 ,1 ,2-Trimethylpropyl, 1 ,2,2-Tri- methylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl;
Halogenalkyl: geradkettige oder verzweigte Alkylgruppen mit 1 bis 2 oder 4 Kohlenstoffatomen (wie vorstehend genannt), wobei in diesen Gruppen teilweise oder voll- ständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können: insbesondere Ci-C2-Halogenalkyl wie Chlormethyl, Brommethyl, Dichlor- methyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluor- ethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl oder 1 ,1 ,1 -Trifluorprop-2-yl; 1 ,1 ,2,2-tetrafluorethyl, 2,2,2-trichlorethyl, 1 ,1 ,1 ,2,3,3-hexafluorisopropyl, 1 ,1 ,2,3,3,3- hexafluorisopropyl, 2-chloro-1 ,1 ,2-trifluoroethyl and heptafluorisopropyl.
Alkenyl: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 4, 6 oder 8 Kohlenstoffatomen und einer oder zwei Doppelbindungen in beliebiger Position, z.B. C2-C6-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-bu- tenyl, 2-Methyl-1-butenyl, 3-Methyl-1-butenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1 ,1- Dimethyl-2-propenyl, 1 ,2-Dimethyl-1-propenyl, 1 ,2-Dimethyl-2-propenyl, 1-Ethyl-1-pro- penyl, 1-Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1-pentenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, 1 ,1-Dimethyl-2-butenyl, 1 ,1-Dimethyl-3-butenyl, 1 ,2-Dimethyl-1-butenyl, 1 ,2-Dimethyl- 2-butenyl, 1 ,2-Dimethyl-3-butenyl, 1 ,3-Dimethyl-1-butenyl, 1 ,3-Dimethyl-2-butenyl, 1 ,3- Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-1-butenyl, 2,3-Dimethyl-2- butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-1-butenyl, 3,3-Dimethyl-2-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-1-butenyl, 2-Ethyl-2- butenyl, 2-Ethyl-3-butenyl, 1 ,1 ,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl, 1-Ethyl-2-methyl-1-propenyl und 1-Ethyl-2-methyl-2-propenyl;
Alkinyl: geradkettige oder verzweigte Kohlenwasserstoffgruppen mit 2 bis 4, 6 oder 8 Kohlenstoffatomen und einer oder zwei Dreifachbindungen in beliebiger Position, z.B. C2-C6-Alkinyl wie Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl,
1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1 -Methyl-3-butinyl, 2-Methyl-3-butinyl, 3-Methyl-1 -butinyl, 1 ,1-Dimethyl-2-propinyl, 1 -Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1 -Methyl-2- pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pen- tinyl, 3-Methyl-1-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-1-pentinyl, 4-Methyl-2-pentinyl, 1 ,1-Dimethyl-2-butinyl, 1 ,1-Dimethyl-3-butinyl, 1 ,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3- butinyl, 3, 3-Dimethyl-1 -butinyl, 1-Ethyl-2-butinyl, 1 -Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1 -Ethyl-1 -methyl-2-propinyl;
Cycloalkyl: mono- oder bicyclische, gesättigte Kohlenwasserstoffgruppen mit 3 bis 6 oder 8 Kohlenstoffringgliedern, z.B. Cs-Cs-Cycloalkyl wie Cyclopropyl, Cyclobutyl, Cyc- lopentyl, Cyclohexyl, Cycloheptyl und Cyclooctyl; fünf- bis zehngliedriger gesättigter, partiell ungesättigter oder aromatischer Heterozyk- lus, enthaltend ein bis vier Heteroatome aus der Gruppe O, N oder S:
5- oder 6-gliedriges gesättigter oder partiell ungesättigter Heterozyklyl, enthal- tend ein bis drei Stickstoffatome und/oder ein Sauerstoff- oder Schwefelatom oder ein oder zwei Sauerstoff- und/oder Schwefelatome, z.B. 2-Tetrahydrofuranyl, 3-Tetrahy- drofuranyl, 2-Tetrahydrothienyl, 3-Tetrahydrothienyl, 2-Pyrrolidinyl, 3-Pyrrolidinyl, 3-lsoxazolidinyl, 4-lsoxazolidinyl, 5-lsoxazolidinyl, 3-lsothiazolidinyl, 4-lsothiazolidinyl, 5-lsothiazolidinyl, 3-Pyrazolidinyl, 4-Pyrazolidinyl, 5-Pyrazolidinyl, 2-Oxazolidinyl, 4-Oxazolidinyl, 5-Oxazolidinyl, 2-Thiazolidinyl, 4-Thiazolidinyl, 5-Thiazolidinyl, 2-lmida- zolidinyl, 4-lmidazolidinyl, 2-Pyrrolin-2-yl, 2-Pyrrolin-3-yl, 3-Pyrrolin-2-yl, 3-Pyrrolin-3-yl, 2-Piperidinyl, 3-Piperidinyl, 4-Piperidinyl, 1 ,3-Dioxan-5-yl, 1 ,2,5,6-Tetrahydropyran-3- yl, 2-Tetrahydropyranyl, 4-Tetrahydropyranyl, 2-Tetrahydrothienyl, 3-Hexahydropyrid- azinyl, 4-Hexahydropyridazinyl, 2-Hexahydropyrimidinyl, 4-Hexahydropyrimidinyl, 5-Hexahydropyrimidinyl und 2-Piperazinyl;
5-gliedriges Heteroaryl, enthaltend ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom: 5-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom als Ringglieder enthalten können, z.B. 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Pyrazolyl, 4-Pyrazo- IyI, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazo- IyI, 2-lmidazolyl, 4-lmidazolyl, und 1 ,3,4-Triazol-2-yl;
6-gliedriges Heteroaryl, enthaltend ein bis drei bzw. ein bis vier Stickstoffatome: 6-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis drei bzw. ein bis vier Stickstoffatome als Ringglieder enthalten können, z.B. 2-Pyridinyl, 3-Pyridinyl, 4- Pyridinyl, 3-Pyridazinyl, 4-Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 5-Pyrimidinyl und 2- Pyrazinyl;
Die bevorzugten Ausführungsformen der Verbindungen der Formeln Il und III in Bezug auf die Variablen entsprechen denen der Gruppen der Formel I.
Im Hinblick auf ihre Verwendung der Piperazindione der Formel I sind die folgenden Bedeutungen der Substituenten, und zwar jeweils für sich allein oder in Kombination, besonders bevorzugt:
Verbindungen I werden bevorzugt, in denen R1 für Ci-Cβ-Alkyl, Ci-Cβ-Alkoxyalkyl, C3- Ce-Alkenyl, C3-C6-Alkinyl und CH2CN steht, insbesondere Methyl, Ethyl, n-Propyl, AIIyI, Propargyl oder Methoxymethyl.
In einer weiteren Ausgestaltung der Verbindungen I trägt R1 , insbesondere Ci-Cβ-Al- kyl, einen Substituenten Ra, bevorzugt CN oder Z-C(=O)-Ra1, wie d-Cs-Alkoxy- carbonyl. Eine bevorzugte Ausgestaltung von R1 ist somit einfach substituiertes Alkyl, wie CH2CN oder Ci-C8-Alkoxycarbonyl-Ci-C6-alkyl.
Gleichermaßen bevorzugt sind Verbindungen I, in denen R2 für Ci-C4-AIkVl, insbeson- dere Methyl steht.
Gleichermaßen bevorzugt sind Verbindungen I, in denen R3 für Ci-C4-AIkVl, insbesondere Methyl steht.
Eine Ausführungsform betrifft Verbindungen der Formel I, in denen die Gruppe A über eine Einfachbindung an den Piperazindionring gebunden ist.
Eine weitere Ausführungsform betrifft Verbindungen der Formel I, in denen die Gruppe A über eine Doppelbindung an den Piperazindionring gebunden ist.
In einer bevorzugten Ausgestaltung steht der Aryl- oder Hetarylring in Gruppe A für Pyridyl, besonders 3-Pyridyl, oder Phenyl, welche Ringe bevorzugt mindest einen or- tho-Substituenten, wie Halogen, CN, NO2, Acetyl, Alkyl, Haloalkyl, Alkoxy oder Haloal- koxy, aufweisen. Im Fall von 3-Pyridylderivaten ist der ortho-Substituent bevorzugt in der Position 2.
In einer weiteren bevorzugten Ausgestaltung der Verbindungen der Formel I steht die Gruppe B für Benzyl, wobei der Ring unsubstituiert oder durch eine oder zwei Gruppen Ra substituiert ist, wie Halogen, Alkyl, Haloalkyl oder Alkoxy.
In einer weiteren bevorzugten Ausgestaltung der Verbindungen der Formel I steht die Gruppe B für einen über eine Ci-C2-Alkylen gebundenen gesättigten oder teilweise ungesättigten Heterozyklus, wobei der Ring unsubstituiert oder durch eine oder zwei Gruppen Ra substituiert ist, wie Halogen, Alkyl, Haloalkyl oder Alkoxy.
Synthesebeispiele
Die in den nachstehenden Synthesebeispielen wiedergegebenen Vorschriften wurden unter entsprechender Abwandlung der Ausgangsverbindungen zur Gewinnung weiterer Verbindungen I benutzt.
Die Charakterisierung der im Folgenden gezeigten Produkte erfolgte durch Bestimmung des Schmelzpunktes, durch NMR-Spektroskopie oder anhand der durch HPLC-MS-Spektrometrie ermittelten Massen ([m/z]) oder Retentionszeit (RT; [min.]). [HPLC-MS = High Performance Liquid Chromatographie kombiniert mit Massen Spektrometrie; HPLC-Säule: RP-18 Säule (Chromolith Speed ROD von Merck KgaA, Deutschland), 50*4,6 mm; Eluent: Acetonitril + 0,1 % Trifluoressigsäure (TFA)/ Wasser + 0,1 % TFA, mit einem Gradienten von 5 : 95 bis 100 : 0 in 5 Minuten bei 400C, Flussrate 1 ,8 ml/min MS: Quadrupol Elektrospray-Ionisation, 80 V (Positiv-Modus).]
Beispiel 1 : Herstellung von 2-(5-Benzyl-4-ethyl-1 ,5-dimethyl-3,6-dioxo-piperazin-2- ylidenmethyl)-brombenzol
Eine Lösung von 200 mg (0,50 mmol) 2-(5-Benzyl-1 ,5-dimethyl-3,6-dioxo-piperazin-2- ylidenmethyl)-bromobenzol (vgl. WO 2008/152073) und 12 mg (0,05 mmol) Tributyl- methylammoniumchlorid (TBMACI) in 10 ml Cyclopentylmethylether (CPME) wurde mit 66 mg (1 ,0 mmol) 85% KOH Plätzchen versetzt, das Gemisch wurde verrührt bei 20- 25°C, dann 156 mg (1 ,0 mmol) Ethyljodid zugetropft. Nach 90 min Rühren bei 20-250C wurde das Gemisch auf 500C erwärmt, nach 2 Stunden bei dieser Temperatur dann gekühlt, mit 10ml 10%iger NH3-Lösung versetzt, und nach 10 min Rühren 3x mit Me- thyl-tert-butylether (MTBE) extrahiert. Die vereinten organischen Phasen wurden 2x mit gesätt. NaCI-Lösung gewaschen, dann getrocknet, filtriert und eingeengt. Es wurden 200mg eines harzigen Rückstandes erhalten, der in n-Hexan digeriert wurde, wobei eine Kristallmasse (170 mg, 80% d. Th.) entstand. 1H-NMR (DMSO-d6) zeigte reines N-alkyliertes Produkt (NCH2 bei δ 3,85, m); HPLC-MS: RT 3,771 min, m/z 426,7 und 428,7 [M+H]+.
Vergleichsbeispiel 1 : Reaktion in monophaser Lösung
Die gleiche Umsetzung, aber mit 15 ml DMF als Lösungsmittel und 0,6 mmol NaH als Base, gab nach 30 Minuten Rühren bei 0-250C und Aufarbeitung wie oben geschrieben ein Gemisch von 75% der Titelverbindung von Beispiel 1 (NCH2 bei δ 3,85, m; HPLC- MS: RT 3,771 min, m/z 426,7 und 428,7 [M+H]+) und 25% O-alkyliertem Nebenprodukt (OCH2 bei δ 4,25 q; HPLC-MS: RT 4,552 min, m/z 426,7 und 428,7 [M+H]+), gemäß 1H-NMR (DMSO-d6).
Beispiel 2: Herstellung von 2-(5-Benzyl-4-ethyl-1 ,5-dimethyl-3,6-dioxo-piperazin-2- ylidenmethyl)-brombenzol
Eine Lösung von 85,3 g (214 mmol) 2-(5-Benzyl-1 ,5-dimethyl-3,6-dioxo-piperazin-2- ylidenmethyl)-bromobenzol und 0,54 g (2,12 mmol) TBMACI in 2000 ml CPME wurde mit 28,2 g (427 mmol) 85% KOH Plätzchen versetzt, das Gemisch verrührt bei 20- 25°C, dann wurden 66,6 g (427 mmol) Ethyljodid zugetropft. Nach 6 Std. Rühren bei etwa 55°C wurde das Gemisch gekühlt, und mit 100 ml 10%iger NH3-Lösung versetzt. Nach 10 min Rühren wurden die Phasen getrennt, die anorganische Phase noch 1x mit MTBE extrahiert, und die vereinten organischen Phasen 2x mit gesätt. NaCI-Lösung gewaschen, dann getrocknet, filtriert und eingeengt. Es wurden 87,0 g eines Gemi- sches aus N-Ethyl und O-Ethyl-Verbindung (95:5 gemäß 1H-NMR) erhalten. Nach Verrühren dieses Rohproduktes mit MTBE, Filtrieren und Trocknung bei 400C über Nacht wurden 77,2g (85% d. Th.) der Titelverbindung erhalten. 1H-NMR (DMS0-d6) zeigte reines N-alkyliertes Produkt (NCH2 bei δ 3,85, m, kein Signal bei δ 4.25); HPLC-MS, RT 3.768 min, m/z 426,8 and 428,8 [M+H]+.
Beispiel 3: Herstellung von cis-4-Allyl-5-Benzyl-1 ,5-dimethyl-2-(2-nitrobenzyl)-3,6- dioxo-piperazindion
Zu einer Lösung von 367 mg (1 ,0 mmol) rasemischem cis-5-Benzyl-1 ,5-dimethyl-2-(2- nitrobenzyl)-3,6-dioxo-piperazindion in 5 ml CPME wurden 400 mg (1 ,2 mmol) CS2CO3, 20 mg (0,08 mmol) TBMACI und 500 mg (4,0 mmol) Allylbromid gegeben. Das Gemisch wurde 20 Std. bei 500C verrührt, gekühlt, und mit 50%iger wässriger Citronsäu- re-Lösung gewaschen. Nach Trennung der Phasen und Einengen der organischen Phase wurde 387 mg Rohprodukt erhalten. Nach Chromatographie an Kieselgel (E- thylacetat:n-Hexan, Gradient von 80:20 bis 100:0) wurden 168 mg (41 % d. Th.) der Titelverbindung erhalten (HPLC-MS: RT 3,284 min, m/z 407,9 [M+H]+ Es wurde auch 108 mg (29% der eingesetzten Menge) Ausgangsmaterial zurückge- wonnen, so dass die Ausbeute der Titelverbindung, bezogen auf verbrauchtes Ausgangsmaterial, 58% d. Th. ist.
10 mg (2,5% d. Th.) cis-O-alkyliertes Produkt (HPLC-MS: RT 3,779 min, m/z 407,8 [M+H]+) wurde isoliert. Es wurden keine cis-trans Epimierisierung beobachtet.
Analog wurden folgende Verbindungen der Formel I erhalten. Angegebene Ausbeuten beziehen sich auf reine Produkte, frei von O-alkylierten Nebenprodukten und cis-trans Epimierisierung. Alle Verbindungen sind racemisch.
Tabelle I:
Figure imgf000015_0001
Figure imgf000016_0001
Ol
Figure imgf000017_0001
Figure imgf000018_0001
Figure imgf000019_0001
Figure imgf000020_0001
Bz = Benzyl Ph = Phenyl 1) KOH fest = kommerzielle KOH Plätzchen; OO
CsCO3 Fest = kommerziell ehältliches CsCO3 Pulver;
KOH/NaOH Pulver = zermörsterte KOH, bzw. NaOH Plätzchen

Claims

Patentansprüche
1. Verfahren zur Herstellung von Piperazindion-Derivaten der Formel
Figure imgf000021_0001
worin
R1 Ci-Cβ-Alkyl, Ci-C6-Alkoxy-Ci-C6-alkyl, C3-C6-Alkenyl, C3-C6-Al kinyl, CH2CN und d-Cβ-Alkylcarbonyl, wobei R1 teilweise oder vollständig durch Gruppen Ra substituiert sein kann; R2 d-Ce-Alkyl, C3-C4-Alkenyl und C3-C4-Al kinyl; A, B unabhängig voneinander Aryl oder 5- oder 6-gliedriges monocyclisches o- der 9- oder 10-gliedriges bicyclisches gesättigtes, teilweise ungesättigtes oder aromatisches Heterozyklyl, enthaltend 1 , 2, 3 oder 4 Heteroatome ausgewählt aus O, N und S, welche zyklischen Gruppen über CrC4- Alkylen oder Ci-C4-Alkyliden gebunden sind und teilweise oder vollständig durch Gruppen Ra substituiert sein können,
Ra Halogen, CN, NO2, Ci -C4-Al kyl, Z-C3-C6-Cycloalkyl, Ci-C4-Haloalkyl, Ci-C4-Alkoxy, Ci-C4-Haloalkoxy, 0-Z-C3-C6-CyCl oa I kyl, S(O)nRy, C2- Ce-Alkenyl,
Z-Cs-Ce-Cycloalkenyl, C3-C6-Alkenyloxy, C2-C6-Al kinyl, C3-C6-Al kinyl- oxy, NRARB, Tri-Ci-C4-alkylsilyl, Z-C(=O)-Ra1, Z-P(=O)(Ra1)2, Phenyl,
Naphthyl, über C oder N gebundener 3- bis 7-gliedriger monocycli- scher oder 9- oder 10-gliedriger bicyclischer gesättigter, ungesättigter oder aromatischer Heterozyklus, enthaltend 1 , 2, 3 oder 4 Heteroatome ausgewählt aus O, N und S, der teilweise oder vollständig durch Gruppen Raa und/oder Ra1 substituiert sein kann;
Ry Ci-Cβ-Alkyl, C3-C4-Alkenyl, C3-C4-Al kinyl, NRARB, und CrC4-
Haloalkyl bedeutet und n für O, 1 oder 2 steht; RA,RB unabhängig voneinander Wasserstoff, Ci-C6-Alkyl, C3-C6-Al- kenyl und C3-C6-Al kinyl; RA,RB können auch gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen fünf- oder sechsgliedrigen gesättigten, teilweise oder vollständig ungesättigten Ring bilden, der neben Kohlenstoff- 1 , 2 oder 3 Heteroatome ausgewählt aus O, N und S enthalten kann, welcher Ring durch 1 bis 3 Gruppen Raa substituiert sein kann; Z eine kovalente Bindung, Ci -C4-Al kylen, C2-C6-Alkenyl oder
C2-C6-Al kinyl;
Ra1 Wasserstoff, OH, CrC8-AI kyl, CrC4-Haloalkyl, C3-C6-CyCIo- alkyl, C2-C8-Alkenyl, C5-C6-Cycloalkenyl, C2-C8-Al kinyl, CrC6- Alkoxy, CrC4-Haloalkoxy, C3-C8-Alkenyloxy, C3-C8-Alkinyloxy, NRARB, CrCe-Alkoxyamino, CrC6-Alkylsulfonylamino, CrC6- Alkylaminosulfonylamino, [Di-(Ci-C6)-alkylamino]sulfonylamino, C3-C6-Alkenylamino, C3-C6-Alkinylamino, N-(C2-C6-Alkenyl)-N- (Ci-C6-alkyl)-amino, N-(C2-C6-Alkinyl)-N-(Ci-C6-alkyl)-amino, N- (Ci-C6-Alkoxy)-N-(Ci-C6-alkyl)-amino, N-(C2-C6-Alkenyl)-N-(Ci- C6-alkoxy)-amino, N-(C2-C6-Alkinyl)-N-(Ci-C6-alkoxy)-amino,
Ci-Ce-Alkylsulfonyl, Tri-Ci-C4-alkylsilyl, Phenyl, Phenoxy, Phe- nylamino und 5- oder 6-gliedriger monocyclischer oder 9- oder 10-gliedriger bicyclischer Heterozyklus, enthaltend 1 , 2, 3 oder 4 Heteroatome ausgewählt aus O, N und S, wobei die cycli- sehen Gruppen unsubstituiert oder durch 1 , 2, 3 oder 4 Gruppen Raa substituiert sind, bedeutet;
Raa Halogen, OH, CN, NO2, Ci-C4-Alkyl, Ci-C4-Haloalkyl, Ci-C4-AIk- oxy, Ci-C4-Haloalkoxy, S(O)nRy, Z-C(=O)-Ra1 und Tn-CrC4- alkylsilyl; und R3 Wasserstoff, Halogen, CN, NO2, OH, NH2, Ci-C4-Alkyl, Z-C3-C8-CyC- loalkyl, Z-C5-C8-Cycloalkenyl, Z-C7-C8-Cycloalkinyl, C3-C6-Alkenyl, C3- C6-Al kinyl,
Z-[Tri-(Ci-C6)-alkylsilyl], Z-Phenyl, über Z gebundener 5- oder 6- gliedriger monocyclischer oder 9- oder 10-gliedriger bicyclischer ge- sättigter, partiell ungesättigter oder aromatischer Heterozyklus, enthaltend 1 , 2, 3 oder 4 Heteroatome ausgewählt aus O, N und S; bedeuten; bedeuten, dadurch gekennzeichnet, dass Piperazindion-Derivate der Formel II,
Figure imgf000022_0001
in der mindestens eine Gruppe aus R1 und R2 Wasserstoff bedeutet und die anderen Variablen die Bedeutung gemäß Formel I aufweisen, mit Alkylierungsmitteln der Formel III
R-X IN worin X nucleophile Abgangsgruppe und
R Ci-C8-Alkyl, Ci-C6-Alkoxy-Ci-C6-alkyl, C3-C6-Alkenyl, C3-C6-Alkinyl und
CH2CN bedeuten unter basischen Bedingungen in einem Zweiphasensystem in Anwesenheit eines Phasentransferkatalysators umgesetzt werden.
2. Verfahren nach Anspruch 1 , worin in Formel I R1 für Ci-C8-Alkyl, C-i-Cβ-Alkoxy- C-i-Ce-alkyl, C3-C6-Alkenyl, C3-C6-Al kinyl, CH2CN und d-Cs-Alkylcarbonyl, R2 für Ci-Cβ-Alkyl, C3-C4-Alkenyl und C3-C4-Alkinyl steht, und A und B unabhängig voneinander Aryl oder 5- oder 6-gliedriger monoeyclisches oder 9- oder 10-gliedriges bicyclisches Heteroaryl, enthaltend 1 , 2, 3 oder 4 Heteroatome ausgewählt aus O, N und S, welche aromatische Gruppen über Ci-C4-Alkylen oder C1-C4- Alkyliden gebunden sind und teilweise oder vollständig durch Gruppen Ra substituiert sein können, und Z eine kovalente Bindung, Ci-C4-Alkylen, C2-C6-Alkenyl oder C2-C6-Alkinyl bedeutet.
3. Verfahren nach Anspruch 1 oder 2, worin in Formel Il R1 für Wasserstoff steht und R2 die Bedeutung gemäß Formel I hat.
4. Verfahren nach Anspruch 1 oder 2, worin in Formel Il R1 die Bedeutung gemäß Formel I hat und R2 für Wasserstoff steht.
5. Verfahren nach Anspruch 1 oder 2, worin in Formel Il R1 und R2 für Wasserstoff stehen.
6. Verfahren nach einem der Ansprüche 1 bis 5, worin in Formel III die Gruppe R für d-Cs-Alkyl, C-i-Ce-Alkoxy-Ci-Ce-alkyl, C3-C6-Alkenyl, C3-C6-Alkinyl und CH2CN steht.
7. Verfahren nach einem der Ansprüche 1 bis 6, worin in Formel III die Gruppe X für Halogen steht.
8. Verfahren nach einem der Ansprüche 1 bis 7, worin der Phasentransferkatalysa- tor ausgewählt ist aus quaternäre Ammonium- und Phosphoniumsalzen, Tetra- kis-(Dialkyl- bzw. diarylamino)phosphoniumhalogeniden sowie Alkylguanidinium- halogenidderivaten.
9. Verfahren nach einem der Ansprüche 1 bis 8, worin der Phasentransferkatalysa- tor ausgewählt ist aus quaternären Ammoniumchloriden.
10. Verfahren nach Anspruch 7 oder 9, worin als Phasentransferkatalysator Benzyl Tributyl Ammonium Chlorid, Benzyl Triethyl Ammonium Chlorid, Dodecyl Tri- methyl Ammonium Chlorid, Methyl Tributyl Ammonium Chlorid oder Tetrabutyl Ammonium Chlorid verwendet wird.
1 1. Verfahren nach einem der Ansprüche 1 bis 10, welches zwischen fester und flüssiger Phase abläuft.
12. Verfahren nach einem der Ansprüche 1 bis 10, welches zwischen zwei flüssigen Phasen abläuft.
13. Verfahren nach einem der Ansprüche 1 bis 12, worin als Base Alkalimetall- und Erdalkalimetall-Hydroxide oder Carbonate verwendet werden.
14. Verfahren nach einem der Ansprüche 1 bis 13, worin ein Lösungsmittel aus der Gruppe der Ether verwendet wird.
15. Verfahren nach Anspruch 14, worin als als Lösungsmittel Cyclopentylmethylether oder tert-Butylmethylether verwendet wird.
PCT/EP2009/066615 2008-12-19 2009-12-08 Verfahren zur herstellung von piperazindion-derivaten WO2010069819A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08172397.5 2008-12-19
EP08172397 2008-12-19

Publications (1)

Publication Number Publication Date
WO2010069819A1 true WO2010069819A1 (de) 2010-06-24

Family

ID=42115335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/066615 WO2010069819A1 (de) 2008-12-19 2009-12-08 Verfahren zur herstellung von piperazindion-derivaten

Country Status (2)

Country Link
AR (1) AR074813A1 (de)
WO (1) WO2010069819A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077201A1 (de) * 2006-01-02 2007-07-12 Basf Se Piperazinverbindungen mit herbizider wirkung
WO2007077247A1 (de) * 2006-01-05 2007-07-12 Basf Se Piperazinverbindungen mit herbizider wirkung
WO2008152072A2 (de) * 2007-06-12 2008-12-18 Basf Se Piperazinverbindungen mit herbizider wirkung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077201A1 (de) * 2006-01-02 2007-07-12 Basf Se Piperazinverbindungen mit herbizider wirkung
WO2007077247A1 (de) * 2006-01-05 2007-07-12 Basf Se Piperazinverbindungen mit herbizider wirkung
WO2008152072A2 (de) * 2007-06-12 2008-12-18 Basf Se Piperazinverbindungen mit herbizider wirkung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FALORNI M ET AL: "A New Diketopiperazine tetra-Carboxylic Acid as Template for the Homogeneous Phase Synthesis of Chemical Libraries", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM, NL LNKD- DOI:10.1016/S0040-4039(97)00961-1, vol. 38, no. 26, 30 June 1997 (1997-06-30), pages 4663 - 4666, XP004074862, ISSN: 0040-4039 *
MIECZYSLAW MAKOSZA: "Phase-Transfer catalysis. A general green methodology in organic synthesis", PURE AND APPLIED CHEMISTRY, vol. 72, no. 7, 2000, pages 1399 - 1403, XP002580454 *

Also Published As

Publication number Publication date
AR074813A1 (es) 2011-02-16

Similar Documents

Publication Publication Date Title
EP2504322B1 (de) Verfahren zur herstellung 5,5-disubstituierter 4,5-dihydroisoxazol-3-thiocarboxamidin-salze
EP1414302B1 (de) 7-aminotriazolopyrimidine zur bekämpfung von schadpilzen
EP2406205B1 (de) Verfahren zur herstellung von chlor- und bromaromaten
EP1663976B1 (de) 4-pyridinylmethylsulfonamidderivate als fungizidwirksame pflanzenschutzmittel
JP6802416B2 (ja) 含フッ素ピリミジン化合物およびその製造方法
EP2164831A1 (de) Verfahren zur herstellung n-substituierter (3-dihalomethyl-1-methyl-pyrazol-4-yl)carboxamide
JP4080743B2 (ja) 除草剤誘導体の製法
CA2931016C (en) Synthesis of trans-8-chloro-5-methyl-1-[4-(pyridin-2-yloxy)-cyclohexyl]-5,6-dihydro-4h-2,3,5,10b-tetraaza-benzo[e]azulene and crystalline forms thereof
WO2010018067A1 (de) Verfahren zur herstellung von piperazindion-derivaten
EP1490372B1 (de) Fungizide triazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel
WO2005012261A1 (de) 2-substituierte pyrimidine
WO2010069819A1 (de) Verfahren zur herstellung von piperazindion-derivaten
Alkhathlan Synthesis of 4-alkoxy-4-methyl-and 4-alkoxy-4-fluoromethyl-1, 3-benzoxazinones
EP1633728A1 (de) 2-substituierte pyrimidine
WO2005120233A1 (de) Triazolopyrimidin-verbindungen und ihre verwendung zur bekämpfung von schadpilzen
WO2006039974A1 (de) Verfahren zur herstellung von monosubstituierten piperazinderivaten
WO2005019187A1 (de) 2-substituierte pyrimidine
DE2539676C3 (de) 3-Cyanopenamverbindungen und Verfahren zu deren Herstellung
WO2007065567A1 (de) Verfahren zur herstellung von haloalkyl(thio)vinimidiniumsalzen und 4- (haloalkyl(thio))-pyrazolen und deren umsetzung zu pflanzenschutzmitteln
Chi et al. Synthesis of novel heterocycles containing perfluoroalkyl groups: Reaction of perfluoro-2-methyl-2-pentene with 1, 3-binucleophilic reagents
WO2021165187A1 (de) Verfahren zur herstellung von 2-(phenylimino)-3-alkyl-1,3-thiazolidin-4-onen
EP1613605A1 (de) 2-substituierte pyrimidine
CH651036A5 (de) 1-benzyl-4-(4-(2-pyrimidinylamino)-benzyl)-2,3-dioxopiperazin-derivate, salze derselben, verfahren zur herstellung derselben und carcinostatische mittel mit einem gehalt derselben.
BR112019021122A2 (pt) Processo para preparar um composto e compostos
DE102008049431A1 (de) Substituierte Oxazole und Verfahren zu deren Herstellung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09768051

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09768051

Country of ref document: EP

Kind code of ref document: A1