WO2010069420A1 - Verfahren zur herstellung von mono-funktionalisierten dialkylphosphinsäuren, -estern und -salzen und ihre verwendung - Google Patents

Verfahren zur herstellung von mono-funktionalisierten dialkylphosphinsäuren, -estern und -salzen und ihre verwendung Download PDF

Info

Publication number
WO2010069420A1
WO2010069420A1 PCT/EP2009/007144 EP2009007144W WO2010069420A1 WO 2010069420 A1 WO2010069420 A1 WO 2010069420A1 EP 2009007144 W EP2009007144 W EP 2009007144W WO 2010069420 A1 WO2010069420 A1 WO 2010069420A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
salts
bis
alkyl
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2009/007144
Other languages
German (de)
English (en)
French (fr)
Inventor
Michael Hill
Harald Bauer
Werner Krause
Martin Sicken
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant International Ltd
Original Assignee
Clariant International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant International Ltd filed Critical Clariant International Ltd
Priority to CN200980137333.6A priority Critical patent/CN102164933B/zh
Priority to ES09778844.2T priority patent/ES2562226T3/es
Priority to EP09778844.2A priority patent/EP2379572B1/de
Priority to US13/140,555 priority patent/US9279085B2/en
Priority to JP2011541124A priority patent/JP5641657B2/ja
Publication of WO2010069420A1 publication Critical patent/WO2010069420A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]
    • C07F9/301Acyclic saturated acids which can have further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]
    • C07F9/32Esters thereof
    • C07F9/3205Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/3211Esters of acyclic saturated acids which can have further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'

Definitions

  • the invention relates to a process for the preparation of monofunctionalized dialkylphosphinic acids, esters and salts and to their use.
  • Monofunctionalized dialkylphosphinic acids are obtainable according to the prior art by addition of unsaturated compounds to phenylphosphonous acid derivatives or methylphosphonous acid derivatives.
  • the addition of alkenyl acetates to the latter is known.
  • Phenylphosphonous acid derivatives or methylphosphonous acid derivatives have hitherto been obtainable only by using phosphorus halide compounds (phosphorus trichloride), since the direct addition of a double bond-containing reaction partner (olefin, aldehyde, ketone, etc.) does not lead to these representatives.
  • stepwise addition of olefins to hypophosphorous acid or its salts or derivatives to unsymmetrical dialkyl acids is poorly known and not preferred because the radical addition of alkyl or arylphosphinic esters to unactivated alpha-olefins results in moderate yields and undesirable telomeric byproducts.
  • the addition is not selective stepwise, but leads to the double addition of the same olefin and considerable by-product proportions in the form of symmetrical dialkylphosphinic.
  • Non-free-radically produced functional derivatives of ethylphosphinic acid and amine-functionalized derivatives of ethylphosphinic acid are not known.
  • the object of the invention is to provide a halogen-free process for the preparation of monofunctionalized dialkylphosphinic acids, esters and salts.
  • the object is achieved by a process for the preparation of monofunctionalized dialkylphosphinic acids, esters and salts, characterized in that a) a phosphinic acid source (I)
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 are identical or different and independently of one another H, C 1 -C 18 -AlkVl, C 6 -C 8 -aryl, C 6 -C 18 aralkyl, C 6 -C 18 alkyl aryl, CN, CHO, OC (O) CH 2 CN, CH (OH) C 2 H 5 , CH 2 CH (OH) CH 3 , 9-anthracene, 2- Pyrrolidone, (CH 2 ) m OH, (CH 2 ) m NH 2 , (CH 2 ) m NCS, (CH 2 ) m NC (S) NH 2 l (CH 2 ) m SH, (CH 2 ) m S-2 -thiazoline, (CH 2 ) m SiMe 3 , CHR 7 (CH 2 ) m CH 3 , C (O) R 7 , (CH 2 ) m C (
  • the groups are C ⁇ -C-i ⁇ -Arvl, C 6 -C 8 -aralkyl and C ⁇ -C-i ⁇ -alkyl-aryl with SO 3 X 2 , C (O) CH 3 , OH, CH 2 OH, CH 3 SO 3 X 2 , PO 3 X 2 , NH 2 , NO 2 , OCH 3 , SH and / or OC (O) CH 3 substituted.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 8 are the same or different and are independently H, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert , Butyl and / or phenyl.
  • X is preferably H, Ca, Mg, Al, Zn, Ti, Fe, Ce, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert. Butyl, phenyl, ethylene glycol, propyl glycol, butyl glycol, pentyl glycol, hexyl glycol, allyl and / or glycerol.
  • transition metals and / or transition metal compounds are preferably those from the seventh and eighth secondary groups.
  • the transition metals and / or transition metal compounds are preferably rhodium, nickel, palladium, platinum and / or ruthenium.
  • W is hydrochloric, sulfuric, nitric, phosphoric, phosphonic, phosphinic, formic, acetic, propionic, butyric, lactic, palmitic, stearic, malonic, maleic, Fumaric, tartaric, citric, ascorbic, trimethylborane, triethylborane, tributylborane or triphenylborane.
  • the alcohol of the general formula M-OH is preferably linear or branched, saturated and unsaturated, monohydric organic alcohols having a carbon chain length of Ci-Ci 8 and in the alcohol of the general formula M'-OH to linear or branched, saturated and unsaturated polyhydric organic alcohol having a carbon chain length of C1-C 1 8.
  • Catalyst B is preferably metals, metal hydrides, metal hydroxides and / or metal alcoholates.
  • Catalyst B is preferably lithium, lithium hydride, lithium aluminum hydride, methyl lithium, butyl lithium, tert-butyl lithium, lithium diisopropylamide, sodium, sodium hydride, sodium borohydride, sodium hydroxide, sodium methoxide, sodium ethanolate or sodium butylate, potassium hydroxide, potassium methoxide, potassium ethoxide or potassium butylate.
  • the invention also relates to the use of monofunctionalized dialkylphosphinic acids, esters and salts prepared according to one or more of claims 1 to 15 as an intermediate for further syntheses, as binders, as crosslinkers or accelerators in the curing of epoxy resins, polyurethanes, unsaturated polyester resins, as polymer stabilizers, as crop protection agents, as therapeutic agent or additive in therapeutics for humans and animals, as sequestering agent, as mineral oil additive, as corrosion inhibitor, in detergent and cleaner applications, in electronic applications, as polymerization catalyst for polyester, as copolykondensierbares flame retardant for polyester and polyamide fibers, as polyester masterbatch, as heat, light stabilizer for polymers, as intermediates for angiotensin converting enzyme inhibitors, as alanylaminopeptidase inhibitors for functional cell influencing and treatment of immunological, entzü ndernal, neuronal and other Diseases or as an intermediate for their preparation, as a dipeptidyl peptidase IV inhibitor or as an
  • the invention also relates to the use of monofunctionalized dialkylphosphinic acids, salts and esters which have been prepared according to one or more of claims 1 to 15 as flame retardants, in particular flame retardants for clearcoats and intumescent coatings,
  • Flame retardant for wood and other cellulosic products as a reactive and / or non-reactive flame retardant for polymers, for the production of flame-retardant polymer molding compositions, for the production of flame-retardant polymer moldings and / or for flame-retardant finishing of polyester and cellulose pure and blended fabrics by impregnation.
  • the invention also encompasses flame-retardant thermoplastic or thermosetting polymer molding compositions containing from 0.5 to 45% by weight of monofunctionalized dialkylphosphinic acids, salts or esters prepared according to one or more of claims 1 to 15, from 0.5 to 99% by weight % thermoplastic or thermosetting polymer or blends thereof, 0 to 55% by weight of additives and 0 to 55% by weight of filler or reinforcing materials, the sum of the components being 100% by weight.
  • the invention also relates to flameproofed thermoplastic or thermosetting polymer moldings, films, filaments and fibers containing from 0.5 to 45% by weight of monofunctionalized dialkylphosphinic acids, salts or esters, which are according to one or more of the claims 1 to 15, 0.5 to 99 wt .-% thermoplastic or thermosetting polymer or mixtures thereof, 0 to 55 wt .-% additives and 0 to 55 wt .-% filler or reinforcing materials, wherein the sum of the components 100 Wt .-% is.
  • n is 0, 1/4, 1/3, 1/2, 1, 2, 3 and 4.
  • Suitable aldehydes are, for example, acetaldehyde, benzylglyceraldehyde, butyraldehyde, decanal, formaldehyde, glutardialdehyde, glyoxal, glyoxylic acid, glyoxylic acid monohydrate, hexanal, isobutyraldehyde, lauric aldehyde, 3-methylbutyraldehyde, octanal, enanthaldehyde, paraformaldehyde, pelargonaldehyde, 2-phenylpropionaldehyde, 3-phenylpropionaldehyde, Propionaldehyde, 2,5,7,7-tetramethyllocatal, undecanal, valeraldehyde, citral, citronellal, crotonaldehyde, trans-2-hexenal, alpha-methylcinnamaldehyde, trans-2-pentenal, cin
  • Preferred aldehydes are acetaldehyde, formaldehyde, paraformaldehyde, propionaldehyde, benzaldehyde.
  • R 8 CO 2 Y from the monofunctionalized dialkylphosphinic acid, its salts and esters (III) is achieved by acidic or alkaline hydrolysis using acids or bases in the presence of water, where Y is H, Mg, Ca, Al , Sb, Sn, Ge, Ti, Fe, Zr, Zn, Ce, Bi, Sr, Mn 1 Cu, Ni 1 Li : Na. K ; H and / or a protonated nitrogen base is.
  • R 9 and R 10 are the same or different and are each independently H, d-d ⁇ -alkyl, C 6 -C 18 -aryl, C 6 -C 8 -aralkyl, C 6 -C 18 -alkyl-aryl, CN, CHO, OC ( O) CH 2 CN, CH (OH) C 2 H 5 , CH 2 CH (OH) CH 3 , 9-anthracene, 2-pyrrolidone, (CH 2 ) m OH, (CH 2 ) m NH 2 , (CH 2 ) m NCS, (CH 2 ) m NC (S) NH 2 , (CH 2 ) m SH, (CH 2 ) m S-2-thiazoline, (CH 2 ) m SiMe 3 , CHR 7
  • the catalyst B is preferably used in amounts of from 0.001 to 110 mol%, based on the phosphorus-containing compound (II).
  • Suitable solvents are those used in process step a).
  • the catalyst B is at a rate of 0.01 to
  • Suitable mineral acids are, for example, hydrochloric acid, sulfuric acid, nitric acid or phosphoric acid or mixtures of the acids.
  • the acidic or alkaline hydrolysis can be carried out in the presence of water and an inert Harsmittles.
  • Suitable inert solvents are the solvents mentioned in process step a), preferably low molecular weight alcohols having 1 to 6 carbon atoms. The use of saturated aliphatic alcohols is particularly preferred.
  • suitable alcohols are methanol, ethanol, propanol, i-propanol, butanol, 2-methyl-1-propanol, n-pentanol, 2-pentanol, 3-pentanol, 2-methyl-2-butanol, 3-methyl-2-ol butanol, 2-methyl-3-butanol, 3-methyl-1-butanol or 2-methyl-1-butanol.
  • Preferred bases for carrying out the alkaline hydrolysis are metals, metal hydrides and metal alcoholates such as lithium, lithium hydride, lithium aluminum hydride, methyllithium, butyllithium, t-butyl lithium, lithium diisopropylamide, sodium, sodium hydride, sodium borohydride, sodium methoxide, sodium ethoxide or sodium butoxide, potassium methoxide, potassium ethoxide or potassium butylate and also sodium hydroxide, potassium hydroxide, lithium hydroxide, barium hydroxide and ammonium hydroxide. Preference is given to using sodium hydroxide, potassium hydroxide and barium hydroxide.
  • Preferred mineral acids for carrying out the acidic hydrolysis are, for example, sulfuric, nitric, salt, phosphoric acid or mixtures thereof. Sulfuric or hydrochloric acid are preferably used.
  • the amount of water can range from the stoichiometric requirement as a minimum amount to a surplus.
  • the hydrolysis is preferably carried out in a phosphorus / water molar ratio of from 1: 1 to 1: 1000, more preferably from 1: 1 to 1:10.
  • the hydrolysis is carried out in a phosphorus / base or acid molar ratio of 1: 1 to 1: 300, more preferably from 1, 1 to 1: 20.
  • the amount of alcohol used is generally from 0.5 kg to 1, 5 kg per kg of monofunctionalized dialkylphosphinic acid, their salts or esters (III), preferably from 0.6 kg to 1, 0 kg.
  • the reaction temperature is 50 to 140 ° C., preferably from 80 to 130 ° C.
  • the reaction is carried out at a total pressure of 1 to 100 bar, more preferably at a total pressure of 1 to 10 bar.
  • the reaction time is preferably from 0.2 to 20 hours, more preferably from 1 to 13 hours.
  • Suitable salts are derived from the reaction of NHR 2 , NH 2 R, NH 3 with hydrochloric acid, sulfuric acid, nitric acid or phosphoric acid, phosphonic acid, phosphinic acid, formic acid, acetic acid, propionic acid, butyric acid, lactic acid, palmitic acid, stearic acid, malonic acid, maleic acid, fumaric acid, Tartaric acid, citric acid, ascorbic acid, trimethylborane, triethylborane, tributylborane or triphenylborane from.
  • NH 2 R Preferred representatives of NH 2 R are NH 2 Et, H 2 NCH (C 6 Hs) 2 or their salts.
  • the group R is the mono-functionalized
  • Dialkylphosphinic acids, esters or salts (III) cleaved by reaction with mineral acids or by reaction with hydrogen in the presence of a catalyst C.
  • Preferred mineral acids for the removal of the group R are the mineral acids mentioned earlier.
  • the preferred catalytic elimination of R is carried out by means of hydrogen in the presence of a catalyst C and optionally a promoter.
  • Catalyst C as used for process step b) for the reaction of the monofunctionalized dialkylphosphinic acid derivative (III) with hydrogen and optionally a promoter to give the monofunctionalized dialkylphosphinic acid derivatives (III), may preferably be catalyst A.
  • Diisopropylphenylphosphonit Dimethylphenyl, diisopropylphenyl, ethyldiphenyl and methyldiphenylphosphinite.
  • bidentate ligands listed under Catalyst A the following compounds can also be used:
  • the proportion of catalyst C based on the monofunctionalized dialkylphosphinic acid (III) used is preferably 0.00001 to 20 mol%, more preferably 0.0001 to 10 mol%.
  • the hydrogenation reaction is preferably carried out in the presence of a promoter, preference being given as promoters to alkali metal and alkaline earth metal hydroxides and alcoholates.
  • promoters preference being given as promoters to alkali metal and alkaline earth metal hydroxides and alcoholates.
  • promoters are NaOH, KOH, Mg (OH) 2 , Ca (OH) 2 , Ba (OH) 2 and sodium or potassium methoxide,
  • the ratio of promoter to catalyst is preferably about 0.001: 1 to 0.5: 1, preferably about 0.01: 1 to 0.2: 1, more preferably 0.04: 1 to 0.1: 1.
  • the transition metals are used in their zerovalent state.
  • the heterogeneous catalyst acts during the reaction as a suspension or bound to a solid phase.
  • the reaction is preferably carried out in a solvent as a one-phase system in homogeneous or heterogeneous mixture and / or in the gas phase.
  • Suitable solvents are those as they are more advanced in process step a).
  • the reaction preferably takes place in a dialkylphosphinic acid solvent molar ratio of 1: 10,000 to 1: 0, more preferably in a dialkylphosphinic acid solvent molar ratio of 1:50 to 1: 1.
  • the reaction is carried out at temperatures of 20 to 200 0 C and more preferably from 40 to 150 0 C, in particular from 60 to 100 0 C.
  • the reaction time is preferably 0.1 to 20 hours.
  • the reaction is preferably carried out under the partial pressure of the hydrogen and / or of the solvent.
  • the process step of the process according to the invention is preferably carried out at a partial pressure of the hydrogen of 0.1 to 100 bar, particularly preferably 0.5 to 50 bar, in particular 1 to 20 bar.
  • the process step of the process according to the invention is preferably carried out at an absolute pressure of 0.1 to 150 bar, more preferably 0.5 to 70 bar, in particular 1 to 30 bar.
  • the hydrogenation according to the invention can be carried out in the liquid phase, in the gas phase or else in the supercritical phase.
  • the catalyst is preferably used homogeneously or as a suspension, while in the case of gas-phase or supercritical operation, a fixed-bed arrangement is advantageous.
  • R 7 is split off from the monofunctionalized dialkylphosphinic acids, esters or salts (III) by reaction with mineral acids or by reaction with hydrogen in the presence of a catalyst C.
  • the transition metals for the catalyst A are preferably elements of the seventh and eighth subgroups (according to modern nomenclature a metal of group 7, 8, 9 or 10), such as rhenium, ruthenium, cobalt, rhodium, iridium, nickel, palladium and platinum.
  • the metal salts used as the source of the transition metals and transition metal compounds are those of mineral acids containing the anions fluoride, chloride, bromide, iodide, fluorate, chlorate, bromate, iodate, fluorite, chlorite, bromite, iodite, hypofluorite,
  • transition metals and transition metal compounds are salts of the transition metals with tetraphenylborate and halogenated tetraphenylborate anions, such as perfluorophenylborate.
  • Suitable salts also include double salts and complex salts consisting of one or more transition metal ions and independently one or more alkali metal, alkaline earth metal, ammonium, organic ammonium, phosphonium and organic phosphonium ions and independently one or more of the abovementioned anions.
  • Suitable double salts provide z.
  • a source of the transition metals is the transition metal as an element and / or a transition metal compound in its zero-valent state.
  • the transition metal is used metallically or used as an alloy with other metals, preferably boron, zirconium, tantalum,
  • the transition metal content in the alloy used is preferably 45-99.95% by weight.
  • the transition metal is microdispersed (particle size 0.1 mm - 100 microns) used.
  • the transition metal on a metal oxide such as alumina, silica, titania, zirconia, zinc oxide, nickel oxide, vanadium oxide, chromium oxide, magnesium oxide, Celite ®, diatomaceous earth, on a metal carbonate such as barium carbonate, calcium carbonate, strontium carbonate, on a metal sulfate such as barium sulfate, it is preferred Calcium sulfate, strontium sulfate, on a metal phosphate such as aluminum phosphate, vanadium phosphate, on a metal carbide such as silicon carbide, on a metal aluminate such as calcium aluminate, on a metal silicate such as aluminum silicate, chalks, zeolites, bentonite, montmorillonite, hectorite, on functionalized silicates, functionalized silica gels such as Silia Bond
  • Suitable sources of the metal salts and / or transition metals are preferably also their complex compounds.
  • Complex compounds of the metal salts and / or transition metals are composed of the metal salts or
  • Transition metals and one or more complexing agents together.
  • Suitable complexing agents are, for. B. olefins, diolefins, nitriles, dinitriles,
  • Complex compounds of the metal salts and / or transition metals may be supported on the above-mentioned support materials.
  • the content of said supported transition metals 0.01 to 20 wt .-%, preferably 0.1 to 10 wt .-%, in particular 0.2 to 5 wt .-%, based on the total mass of the support material.
  • Suitable sources of transition metals and transition metal compounds are, for example, palladium, platinum, nickel, rhodium; Palladium platinum, nickel or rhodium, on alumina, on silica, on barium carbonate, on barium sulfate, on calcium carbonate, on strontium carbonate, on carbon, on activated charcoal; Platinum-palladium-gold, aluminum-nickel, iron-nickel, lanthanoid-nickel, zirconium-nickel, platinum-iridium, platinum-rhodium; Raney ® nickel, nickel-zinc-iron oxide; Palladium (II), nickel (II), platinum (II), rhodium chloride, bromide, iodide, fluoride, hydride, oxide, peroxide, cyanide, sulfate, nitrate, phosphide, boride, chromium oxide, cobalt oxide, carbonate hydroxide, cyclohexanebutyrate, hydrox
  • the ligands are phosphines of the formula (V) PR 11 3 (V) in which the radicals R 11 independently of one another represent hydrogen, straight-chain, branched or cyclic Ci-C 2 -alkyl, C 6 -C 2 o -Alkylaryl, C 2 -C 2 o-alkenyl, C 2 -C 2O - alkynyl, CrC 2 o-carboxylate, Ci-C 2 o-alkoxy, C 2 -C 20 -alkenyloxy, C 2 -C 2 o-alkynyloxy , C 2 -C 2 o-alkoxycarbonyl, C 1 -C 20 -alkylthio, C 1 -C 4 -alkylsulfonyl, C 1 -C 20 -alkylsulfinyl, SiIyI and / or derivatives thereof and / or phenyl which is substituted by at least one
  • R 12 is independently hydrogen, fluorine, chlorine, bromine, iodine, NH2, nitro, hydroxy, cyano, formyl, straight-chain, branched or cyclic -C 20 alkyl, C 1 -C 20 -alkoxy, HN (Ci-C 20 alkyl), N (C 1 -C 20 -alkyl) 2, -CO 2 - (20 -alkyl) -CON (C r C 2 o-alkyl) 2, -OCO (C r C 20 - alkyl), NHCO (20 -alkyl), C 1 -C 20 -acyl,
  • R 13 is hydrogen, fluorine, chlorine, bromine, iodine, straight-chain, branched or cyclic C 1 -C 4 -alkyl, C 2 -C 2 0-alkenyl, C 2 -C 20 -alkynyl, C 1 -C 20 - carboxylate, C 1 -C 20 -alkoxy, C 2 -C 2 o-alkenyloxy, C 2 -C 20 alkynyloxy, C 2 -C 20 - alkoxycarbonyl, CrC 20 -alkylthio, CrC 20 alkylsulfonyl, C r is C 20 -alkylsulfinyl, SiIy
  • phosphines (V) are trimethyl, triethyl, tripropyl, triisopropyl, tributyl, triisobutyl, triisopentyl, trihexyl, tricyclohexyl, trioctyl, tridecyl, triphenyl, diphenylmethyl, phenyldimethyl, tri (o-tolyl), tri (p-tolyl), ethyldiphenyl, dicyclohexylphenyl, 2-pyridyldiphenyl, bis (6-methyl-2-pyridyl) phenyl, tri (p-chlorophenyl), tri - (p-methoxyphenyl) -, diphenyl (2- sulfonatophenyl) phosphine; Potassium, sodium and ammonium salts of diphenyl (3-sulfonatophenyl) phosphine, bis (4,6-di
  • the ligands are bidentate ligands of the general formula
  • M in this formula, M "independently represent N, P, As or Sb.
  • the two M are the same and more preferably M" is one
  • Each group R 11 independently represents the radicals described under formula (V). Preferably, all groups R 11 are identical.
  • Z preferably represents a divalent bridging group which contains at least 1 bridging atom, preferably containing 2 to 6 bridging atoms.
  • Bridging atoms can be selected from C, N, O, Si, and S atoms.
  • Z is an organic bridging group containing at least one carbon atom.
  • Z is an organic bridging group containing from 1 to 6 bridging atoms of which at least two are carbon atoms which may be unsubstituted or substituted.
  • Preferred Z groups are -CH 2 -, -CH 2 -CH 2 -, -CH 2 -CH 2 -CH 2 -, -CH 2 -CH (CHa) -CH 2 -, -CH 2 -C (CH 3 ) 2 -CH 2 -, -CH 2 -C (C 2 Hs) -CH 2 -, -CH 2 -Si (CHs) 2 -CH 2 -, -CH 2 -O-CH 2 -, -CH 2 -CH 2 -CH 2 -CH 2 -, -CH 2 -CH (C 2 Hs) -CH 2 -, -CH 2 -CH (n-Pr) -CH and -CH 2 -CH (n-Bu) -CH 2 -, unsubstituted or substituted 1, 2-phenyl, 1, 2-cyclohexyl, 1, 1'- or 1, 2-ferrocenyl radicals, 2,2 '- (1, 1' -
  • Suitable bidentate phosphine ligands are, for example, 1, 2-bis (dimethyl), 1, 2-bis (diethyl). 1, 2-bis (dipropyl), 1, 2-bis (diisopropyl), 1, 2-bis (dibutyl), 1, 2-bis (di-tert-butyl), 1, 2-bis (dicyclohexyl) and 1, 2-bis (diphenylphosphino) ethane; I, S-bis-dicyclohexyl), 1, 3-bis (diisopropyl), 1, 3-bis (di-tert-butyl) and 1, 3-bis (diphenylphosphino) propane; 1,4-bis (diisopropyl) and 1,4-bis (diphenylphosphino) butane; 1, 5-bis (dicyclohexylphosphino) pentane; 1, 2-bis (di-tert-butyl), 1, 2-bis (di-phenyl), 1, 2-bis (dimethyl
  • the catalyst system has a transition metal-to-ligand molar ratio of from 1: 0.01 to 1: 100, preferably from 1: 0.05 to 1:10, and more preferably from 1: 1 to 1: 4.
  • the reactions in the process stages a), b) and optionally, c) optionally in an atmosphere the other gaseous components such as
  • Example nitrogen, oxygen, argon, carbon dioxide; the temperature is -20 to 340 0 C, in particular 20 to 180 0 C and the total pressure of 1 to 100 bar.
  • the isolation of the products and / or the component and / or the transition metal and / or the transition metal compound and / or catalyst system and / or the ligand and / or the reactants according to process steps a), b) and c) is carried out optionally by distillation or rectification , by crystallization or precipitation, by filtration or centrifugation, by adsorption or chromatography or other known methods.
  • solvents, adjuvants and optionally other volatile components are replaced by, for. As distillation, filtration and / or extraction.
  • the reactions in the process steps a), b) and optionally c) optionally in absorption columns, spray towers, bubble columns, stirred tanks, trickle bed reactors, Strömumgsrohren, loop reactors and / or kneaders.
  • Suitable mixing elements are z.
  • the reaction solutions / mixtures preferably have a mixing intensity which corresponds to a rotational Reynolds number of from 1 to 1,000,000, preferably from 100 to 100,000.
  • an intensive mixing of the respective reactants, etc. takes place under an energy input of 0.080 to 10 kW / m 3 , preferably 0.30 to 1.65 kW / m 3 .
  • the particular catalyst A preferably acts homogeneously and / or heterogeneously during the reaction. Therefore, the heterogeneous catalyst acts during the reaction as a suspension or bound to a solid phase.
  • the catalyst A is generated in situ before the reaction and / or at the beginning of the reaction and / or during the reaction.
  • the particular reaction is preferably carried out in a solvent as a one-phase system in homogeneous or heterogeneous mixture and / or in the gas phase.
  • phase transfer catalyst can additionally be used.
  • the reactions according to the invention can be carried out in the liquid phase, in the gas phase or in the supercritical phase.
  • the catalyst A is preferably used homogeneously or as a suspension, while a fixed-bed arrangement is advantageous in the gas-phase or supercritical mode of operation.
  • Suitable solvents for the process according to the invention are water, alcohols such. Methanol, ethanol, i-propanol, n-propanol, n-butanol, i-butanol, t-butanol, n-amyl alcohol, i-amyl alcohol, t-amyl alcohol, n-hexanol, n-octanol, i-octanol, n-Tridecanol, benzyl alcohol, etc.
  • glycols such as ethylene glycol, 1, 2-propanediol, 1, 3-propanediol, 1, 3-butanediol, 1, 4-butanediol, diethylene glycol, etc .
  • aliphatic hydrocarbons such as pentane, hexane, heptane, Octane, and petroleum ether, petroleum benzine, kerosene, petroleum, paraffin oil, etc .
  • aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, ethylbenzene, diethylbenzene, etc .
  • Halogenated hydrocarbons such as methylene chloride, chloroform, 1, 2-dichloroethane, chlorobenzene, carbon tetrachloride, tetrabromoethylene, etc .
  • alicyclic hydrocarbons such as cyclopentane, cyclohexane and
  • Methylcyclohexane, etc . Ethers such as anisole (methyl phenyl ether), t-butyl methyl ether, dibenzyl ether, diethyl ether, dioxane, diphenyl ether, methyl vinyl ether, tetrahydrofuran, triisopropyl ether, etc .; Glycol ethers such as diethylene glycol diethyl ether, diethylene glycol dimethyl ether (diglyme), diethylene glycol monobutyl ether, diethylene glycol monomethyl ether, 1,2-dimethoxyethane (DME mono-glyme), ethylene glycol monobutyl ether, triethylene glycol dimethyl ether (triglyme), triethylene glycol monomethyl ether, etc .; Ketones such as acetone, diisobutyl ketone, methyl n-propyl ketone; Methyl ethyl ketone, methyl i-but
  • Suitable solvents are also the olefins and phosphinic acid sources used. These offer advantages in the form of a higher space-time yield.
  • the reaction is carried out under its own vapor pressure of the olefin and / or the solvent.
  • R 1 , R 2 , R 3 , R 4 of the olefin (IV) are the same or different and are independently H, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl and / or phenyl.
  • olefins such as allyl isothiocyanate, allyl methacrylate, 2-allylphenol, N-allylthiourea, 2- (allylthio) -2-thiazoline, allyltrimethylsilane, allyl acetate, allylacetoacetate, allyl alcohol, allylamine, allylbenzene, allyl cyanide, allyl (cyanoacetate), allylanisole, trans-2-pentenal, cis-2-pentenenitrile, 1-penten-3-ol, 4-penten-i-ol, 4-penten-2-ol, trans-2-hexenal, trans-2-hexen-1-ol, cis-3-hexen-1-ol, 5-hexene-i-ol, styrene, methylstyrene, 4-methylstyrene, vinyl acetate, 9-vinylanthracene, 2-vinylpyridine
  • the reaction preferably takes place at a partial pressure of the olefin of 0.01-100 bar, more preferably at a partial pressure of the olefin of 0.1-10 bar.
  • the reaction is carried out in a phosphinic-olefin molar ratio of 1: 10,000 to 1: 0.001, more preferably in the ratio of 1: 30 to 1: 0.01.
  • the reaction preferably takes place in a phosphinic acid catalyst molar ratio of 1: 1 to 1: 0.00000001, more preferably 1: 0.01 to 1: 0.000001.
  • the reaction preferably takes place in a phosphinic acid / solvent molar ratio of 1: 10,000 to 1: 0, more preferably 1:50 to 1: 1.
  • a process according to the invention for the preparation of compounds of the formula (II) is characterized in that a phosphinic acid source is reacted with olefins in the presence of a catalyst and the product (II) (alkylphosphonous acid or salts, esters) of catalyst, transition metal or transition metal compound , Ligand, complexing agent, salts and by-products.
  • a phosphinic acid source is reacted with olefins in the presence of a catalyst and the product (II) (alkylphosphonous acid or salts, esters) of catalyst, transition metal or transition metal compound , Ligand, complexing agent, salts and by-products.
  • the catalyst, the catalyst system, the transition metal and / or the transition metal compound is separated by adding an adjuvant 1 and removing the catalyst, the catalyst system, the transition metal and / or the transition metal compound by extraction and / or filtration.
  • the ligand and / or complexing agent is separated by extraction with auxiliaries 2 and / or distillation with auxiliaries 2.
  • Auxiliary 1 is preferably water and / or at least one member of the family of metal scavengers.
  • Preferred metal scavengers are metal oxides such as alumina, silica, titania, zirconia, zinc oxide, nickel oxide, vanadium oxide, chromium oxide, magnesium oxide, Celite ®, diatomaceous earth;
  • Metal carbonates such as barium carbonate, calcium carbonate, strontium carbonate; Metal sulfates such as barium sulfate, calcium sulfate, strontium sulfate; Metal phosphates such as aluminum phosphate, vanadium phosphate, metal carbides such as silicon carbide; Metal aluminates such as calcium aluminate; Metal silicates such as aluminum silicate, chalks, zeolites, bentonite, montmorillonite, hectorite; functionalized silicates, functionalized silica gels, such as Silia Bond ®, QuadraSil TM; Polysiloxanes such as Deloxan ®; Metal nitrides, carbon, activated carbon, mullites, bauxites, antimonyites, scheelites, perovskites, hydrotalcites, functionalized and unfunctionalized cellulose, chitosan, keratin, heteropolyanions, ion exchangers such as Amberlite TM
  • Ambersep® TM Dowex ®, ® Lewatit, ScavNet ®; functionalized polymers such as Chelex ®, QuadraPure TM, Smopex ®, PolyOrgs® ®; polymer-bound phosphines, phosphine oxides, phosphinates, phosphonates, phosphates, amines, ammonium salts, amides, thioamides, ureas, thioureas, triazines, imidazoles, pyrazoles, pyridines, pyrimidines, pyrazines, thiols, thiol ethers, thiol esters, alcohols, alkoxides, ethers, esters, carboxylic acids , Acetates, acetals, peptides, hetarenes, polyethylenimine / silica and / or dendrimers.
  • Auxiliaries 1 are preferably added in quantities corresponding to a 0.1-40% by weight loading of the metal on the auxiliary 1.
  • Aid 1 at temperatures of 20 is preferred - 90 0 C.
  • the residence time of adjuvant 1 is preferably 0.5 to 360 minutes.
  • Auxiliary 2 is preferably the abovementioned solvent according to the invention.
  • step b) of the process according to the invention preferably takes place at a ratio of solvent to alkylphosphonous acid (II) of 100: 1 to 1: 10.
  • esterification of the monofunctionalized dialkylphosphinic acid (Ni) or the alkylphosphonous acid derivatives (II) and the phosphinic acid source (I) to the corresponding esters can be achieved, for example, by reaction with higher-boiling alcohols with removal of the water formed by azeotropic distillation or by reaction with epoxides (alkylene oxides) become.
  • M-OH are primary, secondary or tertiary alcohols having a carbon chain length of CrC 18 .
  • Particularly preferred are methanol, ethanol, propanol, isopropanol, n-butanol, 2-butanol, tert-butanol, amyl alcohol and / or hexanol.
  • M-OH and M'-OH are monohydric or polyhydric, unsaturated alcohols having a carbon chain length of Ci-Ci 8 , such as n-buten-2-ol-1, 1, 4-butenediol and allyl alcohol.
  • M-OH and M'-OH are reaction products of monohydric alcohols with one or more molecules of alkylene oxides, preferably with ethylene oxide and / or 1, 2-propylene oxide.
  • reaction products of monohydric alcohols with one or more molecules of alkylene oxides preferably with ethylene oxide and / or 1, 2-propylene oxide.
  • M-OH and M'-OH are also preferably reaction products of polyhydric alcohols with one or more molecules of alkylene oxide, in particular diglycol and triglycol, and adducts of 1 to 6 molecules of ethylene oxide or propylene oxide with glycerol, trishydroxymethylpropane or pentaerythritol.
  • reaction products of water with one or more molecules of alkylene oxide Preferred are
  • Polyethylene glycols and poly-1, 2-propylene glycols of various molecular sizes having an average molecular weight of 100 to 1000 g / mol, more preferably from 150 to 350 g / mol.
  • M-OH and M'-OH are reaction products of ethylene oxide with poly-1, 2-propylene glycols or fatty alcohol propylene glycols; also reaction products of 1, 2-propylene oxide with polyethylene glycols or fatty alcohol ethoxylates. Preference is given to those reaction products having an average molecular weight of 100-1,000 g / mol, particularly preferably 150-450 g / mol.
  • reaction products of alkylene oxides with ammonia, primary or secondary amines, hydrogen sulfide, mercaptans, oxygen acids of phosphorus and C 2 -C 6 -dicarboxylic acids are also suitable as M-OH and M'-OH.
  • reaction products of ethylene oxide with nitrogen compounds are triethanolamine, methyldiethanolamine, n-butyldiethanolamine, n-dodecyldiethanolamine, dimethylethanolamine, n-butylmethylethanolamine, di-n-butylethanolamine, n-dodecylmethylethanolamine, tetrahydroxyethylethylenediamine or pentahydroxyethyldiethylenetriamine.
  • Preferred alkylene oxides are ethylene oxide, 1, 2-propylene oxide, 1, 2-epoxybutane,
  • Suitable solvents are the solvents mentioned in process step a) and also the alcohols M-OH, M'-OH and the alkylene oxides used. These offer advantages in terms of a higher space-time yield.
  • the reaction is carried out under its own vapor pressure of the alcohol M-OH used 1 M'-OH and alkylene oxide and / or the solvent.
  • the reaction preferably takes place at a partial pressure of the alcohol M-OH, M'-OH and alkylene oxide used of 0.01 to 100 bar, more preferably at a partial pressure of the alcohol of 0.1 to 10 bar.
  • the reaction is preferably carried out at a temperature of -20 to 340 ° C., more preferably at a temperature of 20 to 180 ° C.
  • the reaction takes place at a total pressure of 1 to 100 bar.
  • the reaction preferably takes place in a molar ratio of the alcohol or alkylene oxide component to the phosphinic acid source (I) or
  • the reaction preferably takes place in a molar ratio of the phosphinic acid source (I) or alkylphosphonous acid (II) or monofunctionalized dialkylphosphinic acid (III) to the solvent of 1: 10,000 to 1: 0, particularly preferably in a phosphinic acid solvent molar ratio of 1: 50 to 1: 1.
  • the amino functionality of the monofunctionalized dialkylphosphinic acids, their salts and esters of the formula (III) can be subsequently reacted with mineral acids, carboxylic acids, Lewis acids, organic acids or mixtures of these acids to form further ammonium salts.
  • the reaction takes place at a temperature of 0 to 150 0 C, more preferably at a temperature of 20 to 70 0 C.
  • Suitable solvents are those which are used further in process step a) of processes 1 to 4.
  • Preferred mineral acids are, for example, hydrochloric acid, sulfuric acid, nitric acid or phosphoric acid, phosphonic acid, phosphinic acid.
  • Examples of preferred carboxylic acids are formic acid, acetic acid, propionic acid, butyric acid, lactic acid, palmitic acid, stearic acid, malonic acid, maleic acid, fumaric acid, tartaric acid, citric acid, ascorbic acid.
  • Preferred Lewis acids are boranes such as diborane, trialkylborane such as trimethylborane, triethylborane, tributylborane, triarylborane such as triphenylborane.
  • ammonium salts are particularly preferably salts of the abovementioned monomino-functionalized dialkylphosphinic acids, their salts and esters with hydrochloric acid, phosphoric acid, phosphonic acid, phosphinic acid, acetic acid, citric acid, ascorbic acid, triphenylborane.
  • the monofunctionalized dialkylphosphinic acid or its salt (III) can be reacted in the following in step c) to form further metal salts.
  • the metal compounds used in process step c) are preferably compounds of the metals Mg, Ca, Al, Sb, Sn, Ge, Ti, Fe, Zr, Zn, Ce, Bi, Sr, Mn, Li, Na, K. particularly preferably Ca, Al, Ti, Zn, Sn, Ce, Fe.
  • Suitable solvents for process step c) are those which are used further up in process step a).
  • the reaction is carried out in process step c) in an aqueous medium.
  • the reaction takes place in a molar ratio of monofunctionalized dialkylphosphinic acid / ester / salt (III) to metal of 8: 1 to 1: 3 (for tetravalent metal ions or metals having a stable tetravalent oxidation state) of from 6: 1 to 1 3 (for trivalent metal ions or metals with stable trivalent oxidation state), from 4 to 1 to 1 to 3 (for divalent metal ions or metals with stable divalent oxidation state) and from 3 to 1 to 1 to 4 (for monovalent metal ions or metals with stable monovalent oxidation state).
  • the monofunctionalized dialkylphosphinic ester / salt (III) obtained in process step b) of process 1 to 4 is preferably converted into the corresponding dialkylphosphinic acid and in process step c) it is reacted with metal compounds of Mg 1 Ca, Al, Zn, Ti, Sn. Zr, Ce or Fe to the monofunctionalized Dialkylphosphinklad (III) of these metals.
  • the monofunctionalized dialkylphosphinic acid ester (III) obtained in process step b) of process 1 to 4 is preferably converted into a dialkylphosphinic alkali salt and in process step c) this is reacted with metal compounds of Mg, Ca, Al, Zn, Ti, Sn 1 Zr 1 Ce or Fe to the monofunctionalized Dialkylphosphinklad (III) of these metals.
  • the metal compounds of Mg, Ca, Al 1 Zn, Ti 1 Sn, Zr 1 Ce or Fe for process step c) are preferably metals, metal oxides, hydroxides, oxide hydroxides, borates, carbonates, hydroxocarbonates, -hydroxocarbonate hydrates, mixed -hydroxocarbonates, mixed-hydroxocarbonate hydrates, -phosphates, -sulfates, -sulfate-hydrates, -hydroxosulfate-hydrates, mixed-hydroxysulfate-hydrates, -oxysulfates, -acetates, -nitrates, -fluorides, -fluoride-hydrates, -chlorides , -Chloride hydrates, -oxychlorides, bromides, iodides, iodide hydrates, carbonic acid derivatives and / or alkoxides.
  • the metal compounds are preferably aluminum chloride, aluminum hydroxide, aluminum nitrate, aluminum sulfate, titanyl sulfate, zinc nitrate, zinc oxide, zinc hydroxide and / or zinc sulfate.
  • metallic aluminum fluoride, hydroxychloride, bromide, iodide, sulfide, selenide; phosphide, hypophosphite, antimonide, nitride; carbide, hexafluorosilicate; hydride, calcium hydride, borohydride; chlorate; Sodium aluminum sulfate, aluminum potassium sulfate, aluminum ammonium sulfate, nitrate, metaphosphate, phosphate, silicate, magnesium silicate, carbonate, hydrotalcite, sodium carbonate, borate; thiocyanate; oxide, oxyhydroxide, their corresponding hydrates and / or polyaluminum hydroxy compounds, which preferably have an aluminum content of 9 to 40 wt .-%.
  • aluminum salts of mono-, di-, oligo-, polycarboxylic acids such as.
  • zinc halides zinc fluoride, zinc chlorides, zinc bromide, zinc iodide.
  • zinc borate carbonate, hydroxide carbonate, silicate, hexafluorosilicate, stannate, hydroxide stannate, magnesium aluminum
  • hydroxide carbonate nitrate, nitrite, phosphate, pyrophosphate; sulfate, phosphide,
  • Halpohalites halites, halogenates, eg zinc iodate, perhalates, eg.
  • Zinc perchlorate Zinc salts of pseudohalides (zinc thiocyanate, cyanate, cyanide); Zinc oxides, peroxides, hydroxides or mixed zinc oxide hydroxides.
  • Zinc salts of the oxo acids of the transition metals for example.
  • zinc salts of mono-, di-, oligo-, polycarboxylic acids such as. B. zinc formate, acetate, trifluoroacetate, propionate, butyrate, valerate, caprylate, oleate, stearate, oxalate, tartrate, citrate, benzoate, salicylate, lactate, acrylate, maleate, succinate, salts of amino acids (glycine), acidic hydroxy functions (zinc phenolate, etc.), zinc p-phenolsulfonate, acetylacetonate, stannate, dimethyldithiocarbamate, trifluoromethanesulfonate.
  • Suitable metal compounds are salts of an element of the first main group, preferably an alkali metal hydroxide, alkali metal hydroxide hydroxide, alkali metal hydroxide carbonate, alkali metal alcoholate, more preferably lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium methylate, sodium ethylate, sodium n-propylate, sodium i-propylate, sodium n-butylate, Sodium i-butoxide, Sodium tert-butylate, Sodium amylate and / or Sodium glycolate.
  • an alkali metal hydroxide preferably an alkali metal hydroxide, alkali metal hydroxide hydroxide, alkali metal hydroxide carbonate, alkali metal alcoholate, more preferably lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium methylate, sodium ethylate, sodium n-propylate, sodium i-propylate, sodium n-butylate, Sodium i-butoxide,
  • Suitable metal compounds are salts of an element of the second main group and subgroup, preferably alkaline earth metal hydroxide, Erdalkalimetalloxidhydroxid, Erdalkalimetallmetallhydroxidcarbonat, more preferably magnesium hydroxide (Magnifin ® H5, Alber Marie), hydrotalcite (Mg 6 Al 2 (OH) I6 CO 3 * nH 2 O), dihydrotalcite , Magnesium carbonates or magnesium calcium carbonates, calcium hydroxide.
  • alkaline earth metal hydroxide preferably alkaline earth metal hydroxide, Erdalkalimetalloxidhydroxid, Erdalkalimetallmetallhydroxidcarbonat, more preferably magnesium hydroxide (Magnifin ® H5, Alber Marie), hydrotalcite (Mg 6 Al 2 (OH) I6 CO 3 * nH 2 O), dihydrotalcite , Magnesium carbonates or magnesium calcium carbonates, calcium hydroxide.
  • Titanium compounds include metallic titanium, as well as titanium (III) and / or (IV) chloride, nitrate, sulfate, formate, acetate, bromide, fluoride, oxychloride, oxysulfate, oxide, n-propoxide, n-butoxide, isopropoxide, ethoxide, 2-ethylhexyl oxide.
  • metallic tin and tin salts tin (II) and / or (IV) chloride
  • Tin oxides and tin alkoxide such.
  • Tin (IV) tert-butoxide is also suitable.
  • cerium (III) fluoride is also suitable.
  • chloride is also suitable.
  • nitrate is also suitable.
  • zirconium compounds metallic zirconium and zirconium salts such as zirconium chloride, sulfate, zirconyl acetate, zirconyl chloride are preferred. Further preferred are zirconium oxides and zirconium (IV) tert-butoxide.
  • the reaction in process step c) takes place at a solids content of the monofunctionalized dialkylphosphinic acid salts of from 0.1 to 70% by weight, preferably from 5 to 40% by weight.
  • the reaction preferably takes place in process stage c) at a temperature of 20 to 250 ° C., preferably at a temperature of 80 to 120 ° C.
  • the reaction in process step c) preferably takes place at a pressure between 0.01 and 1000 bar, preferably 0.1 to 100 bar.
  • the reaction preferably takes place in process stage c) for a reaction time of 1 ⁇ 10 -7 to 1,000 h.
  • the monofunctionalized dialkylphosphinic acid salt (III) separated off from the reaction mixture by filtration and / or centrifuging is preferably dried after process step c).
  • the product mixture obtained after process step b) is reacted with the metal compounds without further purification.
  • Preferred solvents are the solvents mentioned in process step a).
  • reaction in process step b) and / or c) is preferably in the solvent system given by step a).
  • the reaction in process step c) is in a modified given solvent system.
  • acidic components, solubilizers, foam inhibitors, etc. are added.
  • the product mixture obtained after process stage a) and / or b) is worked up.
  • the product mixture obtained after process stage b) is worked up and then the monofunctionalized dialkylphosphinic acids and / or their salts or esters (III) obtained in process stage b) are reacted with the metal compounds in process stage c).
  • the product mixture is preferably worked up according to process stage b) by isolating the monofunctionalized dialkylphosphinic acids and / or their salts or esters (III) by removing the solvent system, eg. B. by evaporation.
  • the monofunctionalized dialkylphosphinic acid salt (III) of the metals Mg, Ca, Al, Zn, Ti, Sn, Zr, Ce or Fe preferably has a residual moisture content of from 0.01 to 10% by weight, preferably from 0.1 to 1 Wt .-%, an average particle size of 0.1 to 2000 .mu.m, preferably from 10 to 500 .mu.m, a bulk density of 80 to 800 g / l, preferably from 200 to 700 g / l, a flowability of Pfrengle of 0.5 to 10, preferably from 1 to 5, on.
  • the shaped bodies, films, threads and fibers particularly preferably contain 5 to 30% by weight of the monofunctionalized dialkylphosphinic acid / ester / salts prepared according to one or more of claims 1 to 15, 5 to 80% by weight.
  • the additives are preferably antioxidants, antistatics, blowing agents, other flame retardants, heat stabilizers, impact modifiers, process aids, lubricants, light stabilizers, anti-dripping agents, compatibilizers, reinforcing agents, nucleating agents, nucleating agents, additives for laser marking, hydrolysis stabilizers, chain extenders, color pigments, plasticizers and / or plasticizer.
  • a flame retardant containing 0.1 to 90 wt .-% of halogen-poor mono-functionalized dialkylphosphinic and 0.1 to 50 wt .-% further additives, more preferably diols.
  • Preferred additives are also aluminum trihydrate, antimony oxide, brominated aromatic or cycloaliphatic hydrocarbons, phenols, ethers, chlorinated paraffin, hexachloro-cyclopentadiene adducts, red phosphorus, Meiaminderivate, Meiamincyanurate, ⁇ mmoniumpoiyphosphate and magnesium hydroxide.
  • Preferred additives are also other flame retardants, in particular salts of dialkylphosphinic acids.
  • the invention relates to the use of the inventive monofunctionalized dialkylphosphinic acid, esters and salts (III) as flame retardants or as intermediates for the preparation of flame retardants for thermoplastic polymers such as polyester, polystyrene or polyamide and for thermosetting polymers such as unsaturated polyester resins, epoxy resins, Polyurethanes or acrylates.
  • thermoplastic polymers such as polyester, polystyrene or polyamide
  • thermosetting polymers such as unsaturated polyester resins, epoxy resins, Polyurethanes or acrylates.
  • Suitable polyesters are derived from dicarboxylic acids and their esters and diols and / or from hydroxycarboxylic acids or the corresponding lactones.
  • Suitable polyesters include polyethylene terephthalate, polybutylene terephthalate (Celanex ® 2500, Celanex ® 2002, from Celanese;. Ultradur ®, BASF), poly-1, 4- dimethylolcyclohexane terephthalate, polyhydroxybenzoates, and also block polyether esters derived from polyethers having hydroxyl end groups derived; also with polycarbonates or MBS modified polyester.
  • Synthetic linear polyesters with permanent flame retardancy are composed of dicarboxylic acid components, C 2 -C 6 -diol components of the monofunctionalized dialkylphosphinic acids and esters according to the invention and of the monofunctionalized compound prepared by the process according to the invention Dialkylphosphinic acids and esters as phosphorus-containing chain members together.
  • the monofunctionalized dialkylphosphinic acids and esters according to the invention are part of the polymer chain.
  • the phosphorus-containing chain members make up 2 to 20% by weight of the dicarboxylic acid component of the polyester.
  • the resulting linear polyesters with permanent flame retardancy are composed of dicarboxylic acid components, C 2 -C 6 -diol components of the monofunctionalized dialkylphosphinic acids and esters according to the invention and of the monofunctionalized compound prepared by the process according to the invention Dialkylphosphinic acids and esters as phosphorus-containing chain members together.
  • Phosphorus content in the polyester 0.1-5 particularly preferably 0.5-3 wt .-%.
  • the flame-retardant molding composition it is preferred to first esterify directly from the free dicarboxylic acid and diols and then to polycondensate to give a non-flameproof precondensate.
  • dicarboxylic acid esters in particular dimethyl esters
  • it is first transesterified and then polycondensed using the customary catalysts to form a non-flameproof precondensate.
  • the monomeric mono-functionalized Diaikyiphosphinklare, ester (III) is added and the polymerization completed.
  • the monomeric monofunctionalized diaikyiphosphinic acid, ester is then preferably randomly incorporated between the dicarboxylic acid diglycol units in the polymer chain.
  • conventional additives crosslinking agents, matting and stabilizing agents, nucleating agents, dyes and fillers, etc. may preferably be added during polyester production.
  • the ratio of dicarboxylic acid esters to diol components used for esterification and / or transesterification is 1: 1 to 1: 3 mol / mol.
  • Preferred dicarboxylic acids are aromatic acids such as terephthalic acid, isophthalic acid, 5-sulphoisophthalic acid, diphenyl-para-dicarboxylic acid and para-phenylenediacetic acid
  • naphthalenedicarboxylic acids such as 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphtha-1-dicarboxylic acid; saturated aliphatic dicarboxylic acids such as oxalic acids, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid,
  • Preferred alkylene glycols are ethylene glycol, 1, 3-propanediol, 1, 4-butanediol and higher homologues, diethylene glycol, triethylene glycol, neopentyl glycol, 1, 2-cyclohexanediol, 1, 3-cyclohexanediol, 1, 4-cyclohexanediol, 1, 2-cyclohexanedimethanol, 1, 3-cyclohexane-dimethanol,
  • aromatic glycols such as hydroquinone, 4,4'-dihydroxybisphenol, 1,4-bis (hydroxyethoxy) benzenes, 1,4-bis (hydroxyethoxyphenyl) sul
  • polyesters based on hydroxycarboxylic acids such as lactic acid, citric acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid and 4-hydroxycyclohexanecarboxylic acid.
  • the esterification and / or transesterification takes place in polyester production at temperatures from 100 to 300 0 C instead of, more preferably at 180-240 0 C.
  • the polycondensation takes place in the polyester production at pressures between 0.1 to 200 mbar and temperatures of 150-450 0 C, particularly preferably at 200-300 0 C.
  • Another embodiment is a composition containing monomer 10 - 75 mol%, dimer 10 - 75 mol% and trimer 0 to 35 mol%.
  • the oligomer is added to dicarboxylic acid components, C 2 -C 6 diol components and then esterified / transesterified and polycondensed. Preference is then given to P concentrations of from 0.1 to 5% by weight.
  • a masterbatch / concentrate Preference is then given to P concentrations of from 0.1 to 25% by weight, particularly preferably from 1 to 10% by weight.
  • the masterbatch is mixed under extrusion conditions with non-flame retarded polymer.
  • Preferred polymers are polyethylene terephthalate, polytrimethylene terephthalate and polybutylene terephthalate, polyamides.
  • An advantage of using the masterbatches is that there are no fluctuations in the melt viscosity of the flame-retardant polymer molding compound when adding increased amounts of monofunctionalized dialkylphosphinic acid, esters, salts (III), as with the addition of others
  • the flameproof polyester molding compositions prepared according to the invention are preferably used in flameproofed polyester moldings.
  • Preferred flame-retardant polyester moldings are threads, fibers, films and moldings containing as the dicarboxylic acid component mainly terephthalic acid and as the diol component mainly ethylene glycol.
  • the resulting phosphorus content in threads and fibers produced from flame-retardant polyester is preferably 0.1-18, preferably 0.5-15, and for films 0.2-15, preferably 0.9-12 wt%.
  • B preferred is a flame-retardant polymer molding composition in the
  • Polycondensation at least one alkyl dicarboxylic acid, at least one diamine and a monofunctionalized dialkylphosphinic acid contains 0.1 to 1% phosphorus.
  • the monofunctionalized dialkylphosphinic acid, ester (III) is preferably added to the monomer salts under Kondensaitons discipline and einkondnesiert in the polymer. It is then incorporated randomly into the monomer sequence alkyldicarboxylic acid diamine.
  • Suitable polystyrenes are polystyrene, poly (p-methylstyrene) and / or poly (alphamethylstyrene).
  • the suitable polystyrenes are copolymers of styrene or alpha-methylstyrene with dienes or acrylic derivatives, such as. Styrene-butadiene, styrene-acrylonitrile, styrene-alkyl methacrylate, styrene-butadiene-alkyl acrylate and methacrylate, styrene-maleic anhydride, styrene-acrylonitrile-methyl acrylate; Blends of high impact strength of styrene copolymers and another polymer, such as.
  • styrene such as. Styrene-butadiene-styrene, styrene-isoprene-styrene, styrene-ethylene / butylene-styrene or styrene-ethylene / propylene-styrene.
  • the suitable polystyrenes are also graft copolymers of styrene or of alpha-methylstyrene, such as. Styrene on polybutadiene, styrene on polybutadiene-styrene or polybutadiene-acrylonitrile copolymers, styrene and acrylonitrile (or methacrylonitrile) on polybutadiene; Styrene, acrylonitrile and methyl methacrylate on polybutadiene; Styrene and maleic anhydride on polybutadiene; Styrene, acrylonitrile and maleic anhydride or maleimide on polybutadiene; Styrene and maleimide
  • the polymers are also preferably polyamides and copolyamides derived from diamines and dicarboxylic acids and / or from aminocarboxylic acids or the corresponding lactams, such as polyamide 2,12, polyamide 4, polyamide 4,6, polyamide 6, polyamide 6, 6, polyamide 6,9, polyamide 6,10, polyamide 6,12, polyamide 6,66, polyamide 7,7, polyamide 8,8, polyamide 9,9, polyamide 10,9, polyamide 10,10, polyamide 11, Polyamide 12, etc.
  • Such polyamides are z. B. under the trade name Nylon ® , Fa. DuPont, .. Ultramid ®, Fa. BASF, Akulon ® K122, from DSM, Zytel ® 7301, from DuPont, Durethan ® B 29, Fa. Bayer and Grillamid ®, Fa. Ems Chemie known inter alia.
  • aromatic polyamides starting from m-xylene, diamine and adipic acid; Polyamides prepared from hexamethylenediamine and isophthalic and / or terephthalic acid and optionally an elastomer as a modifier, for.
  • polyethylene glycol polyethylene glycol
  • Polypropylene glycol or polytetramethylene glycol Further modified with EPDM or ABS polyamides or copolyamides; and during processing condensed polyamides ("RIM polyamide systems").
  • the monofunctionalized dialkylphosphinic acid / ester / salts prepared according to one or more of claims 1 to 15 are preferably used in molding compositions which are further used for the production of polymer moldings.
  • the flame-retardant molding composition particularly preferably comprises 5 to 30% by weight of monofunctionalized dialkylphosphinic acids, salts or esters prepared according to one or more of claims 1 to 15, 5 to 80% by weight of polymer or mixtures thereof, 5 to 40 wt .-% of additives and 5 to 40 wt .-% filler, wherein the sum of the components is always 100 wt .-%.
  • the invention also relates to flame retardants containing the monofunctionalized dialkylphosphinic acids, salts or esters prepared according to one or more of claims 1 to 15.
  • the invention relates to polymer molding compositions and polymer moldings, films, filaments and fibers, comprising the monosaccharide functionalized dialkylphosphinic salts of the metals Mg, Ca, Al 1 Zn, Ti, Sn, Zr, Ce or Fe.
  • the invention relates to the use of the inventively prepared monofunctionalized Dialkylphosphinklaresalze as
  • the flame retardant components are mixed with the polymer granules and any additives and on a twin-screw extruder (type Leistritz LSM ® 30/34) at temperatures of 230 to 260 0 C (PBT-GV) or from 260 to 280 0 C (PA 66 -GV) incorporated.
  • PBT-GV twin-screw extruder
  • PA 66 -GV twin-screw extruder
  • the molding compositions were processed on an injection molding machine (type Aarburg Allrounder) at melt temperatures of 240 to 270 ° C (PBT-GV) or 260 to 290 0 C (PA 66-GV) to test specimens.
  • the specimens are tested and classified for flame retardance (flame retardance) using the UL 94 (Underwriter Laboratories) test.
  • V-O no afterburning longer than 10 sec, sum of afterburning times at 10
  • V-1 no afterburning for more than 30 seconds after firing end, sum of afterburning times for 10 flame treatments not greater than 250 seconds, no afterglowing of samples longer than 60 seconds after flaming end, other criteria as in VO V-2: ignition of cotton wool due to burning Dripping, other criteria as for V-1 Not classifiable (nkl): does not meet fire class V-2.
  • the LOI value was also measured.
  • the LOI value (Limiting Oxygen Index) is determined according to ISO 4589. According to ISO 4589, the LOI corresponds to the lowest concentration by volume of oxygen which, in a mixture of oxygen and nitrogen, is just the combustion of the
  • Example 2 14.6 g of ethylphosphonous acid (prepared according to Example 1) are admixed with 21. 2 g of water, 207.3 g of ethanol and 35.0 g of benzaldehyde and in a multi-necked round bottom flask with attached KPG stirrer, thermometer and reflux condenser for 6 h heated to 110 0 C. In the reaction solution, 65 mol% ethyl-hydroxymethyl-phenyl-phosphinic acid are determined by 31 P-NMR spectroscopy.
  • Example 5 As in Example 1, in a laboratory autoclave from Berghoff 100.1 g of ethylphosphonous acid (96.3%) (prepared according to Example 1), 100.1 g of demin. Water and 34.0 g of paraformaldehyde (95%) used. After six hours of stirring at 170 0 C, the crude product is evaporated on a rotary evaporator and then reacted in a three-necked round bottom flask with attached KPG stirrer, reflux condenser and gas inlet tube with 88.7 g of ethylene oxide. There are obtained 229.5 g of glycol ester with a P content of 14.9% and a 31 P NMR signal at about 59 ppm. The content of free glycol is 4%.
  • Example 5 Example 5
  • Example 8 132 g of diphenylmethylaminophosphinic acid (prepared according to Example 7) are admixed with 715 g of 20% strength sulfuric acid and boiled at reflux for 2 hours. It is then evaporated to dryness, washed twice with 100 g of di-isopropyl ether and evaporated once more. It is taken up with ethanol and with Propylene oxide added. The precipitated solid is filtered off, washed with ethanol and dried. In 87% yield 56 g of (1-amino-1-methyl) -methyl-ethylphosphinic acid are obtained.
  • ethylphosphonous acid is prepared in the first step.
  • butanol is prepared analogously to Example 10 Ethylphosphonigkladre n-butyl ester.
  • 37.5 g of ethylphosphonous acid n-butyl ester and 10.8 g of vinyl acetate are initially charged with stirring and cooling to a maximum of 60 ° C., and a solution of 0.6 g of sodium butoxide in 20 g of butanol is added.
  • reaction solution is distilled under reduced pressure (0.5 mmHg) and 23 g of ethyl (1-hydroxyethyl acetate) -phosphinic acid n-butyl ester (C 2 H 5 -P (O) (OnC 4 H 9 ) -CH (O -COCH 3 ) -CH 3 ). This is concentrated with 9.9 g. Sulfuric acid and 6.7 g of demineralized water were reacted in 100 g of methanol and 17.2 g of ethyl (1-hydroxyethyl) phosphinic acid n-butyl ester.
  • the ester from Example 10 is mixed with 3 g of dibutyltin laurate (catalyst) in a 1 l double-walled stirred reactor and heated to 180.degree. Within 14 h, the pressure is lowered to 1 mmHg.
  • the product obtained (231 g) is an internal homooligomer produced under the evolution of butanol
  • Ethylhydroxymethylphosphin yarn has a P content of 29.2% (th 29.2%).
  • the resulting flame-retardant polymer has a P content of 9%, is processed to U -.- test specimens and shows a VO-Kiasstechnik.
  • a flame-retardant PBT granules were compounded with 1040 g of an oligomer according to Example 13 at 275 ° C to flame-retardant PBT granules.
  • the granules had a P content of 3.0% and shows a VO classification.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Fireproofing Substances (AREA)
PCT/EP2009/007144 2008-12-19 2009-10-06 Verfahren zur herstellung von mono-funktionalisierten dialkylphosphinsäuren, -estern und -salzen und ihre verwendung Ceased WO2010069420A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980137333.6A CN102164933B (zh) 2008-12-19 2009-10-06 用于制备单官能化的二烷基次膦酸、二烷基次膦酸酯和二烷基次膦酸盐的方法,以及它们的用途
ES09778844.2T ES2562226T3 (es) 2008-12-19 2009-10-06 Procedimiento para la preparación de ácidos dialquil-fosfínicos mono-funcionalizados y de sus ésteres y sales, y su utilización
EP09778844.2A EP2379572B1 (de) 2008-12-19 2009-10-06 Verfahren zur herstellung von mono-funktionalisierten dialkylphosphinsäuren, -estern und -salzen und ihre verwendung
US13/140,555 US9279085B2 (en) 2008-12-19 2009-10-06 Method for the production of monofunctionalized dialkylphosphinic acids, esters and salts, and use thereof
JP2011541124A JP5641657B2 (ja) 2008-12-19 2009-10-06 一官能化ジアルキルホスフィン酸、一官能化ジアルキルホスフィン酸エステル、および一官能化ジアルキルホスフィン酸塩の調製方法、およびそれらの使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008064003.4 2008-12-19
DE102008064003A DE102008064003A1 (de) 2008-12-19 2008-12-19 Verfahren zur Herstellung von mono-funktionalisierten Dialkylphosphinsäuren, -estern und -salzen und ihre Verwendung

Publications (1)

Publication Number Publication Date
WO2010069420A1 true WO2010069420A1 (de) 2010-06-24

Family

ID=41328608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/007144 Ceased WO2010069420A1 (de) 2008-12-19 2009-10-06 Verfahren zur herstellung von mono-funktionalisierten dialkylphosphinsäuren, -estern und -salzen und ihre verwendung

Country Status (7)

Country Link
US (1) US9279085B2 (enExample)
EP (1) EP2379572B1 (enExample)
JP (1) JP5641657B2 (enExample)
CN (1) CN102164933B (enExample)
DE (1) DE102008064003A1 (enExample)
ES (1) ES2562226T3 (enExample)
WO (1) WO2010069420A1 (enExample)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008055914A1 (de) * 2008-11-05 2010-05-06 Clariant International Limited Verfahren zur Herstellung von mono-hydroxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Acroleinen und ihre Verwendung
DE102008055916A1 (de) * 2008-11-05 2010-05-06 Clariant International Limited Verfahren zur Herstellung von mono-hydroxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Allylalkoholen und ihre Verwendung
CN102177164B (zh) * 2008-11-05 2015-02-11 科莱恩金融(Bvi)有限公司 利用烯丙醇/丙烯醛制备二烷基次膦酸、二烷基次膦酸酯和二烷基次膦酸盐的方法,以及它们的用途
DE102008056342A1 (de) * 2008-11-07 2010-05-12 Clariant International Limited Verfahren zur Herstellung von Dialkylphosphinsäuren, -estern und -salzen mittels Acrylnitrilen und ihre Verwendung
EP2352740B1 (de) * 2008-11-07 2014-09-24 Clariant Finance (BVI) Limited Verfahren zur herstellung von dialkylphosphinsäuren, -estern und -salzen mittels acrylsäurederivaten und ihre verwendung
DE102008056339A1 (de) * 2008-11-07 2010-05-12 Clariant International Limited Verfahren zur Herstellung von mono-aminofunktionalisierten Dialkylphosphinsäuren, -estern und -salzen und ihre Verwendung
DE102008056341A1 (de) * 2008-11-07 2010-05-12 Clariant International Limited Verfahren zur Herstellung von monoaminofunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Acrylnitrilen und ihre Verwendung
JP5743219B2 (ja) 2008-11-11 2015-07-01 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド アリル化合物を用いる、モノアリル官能性ジアルキルホスフィン酸、それらの塩およびエステルの製造方法およびそれらの使用
DE102008060035A1 (de) * 2008-12-02 2010-06-10 Clariant International Limited Verfahren zur Herstellung von mono-hydroxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Vinylester einer Carbonsäure und ihre Verwendung
DE102008060036A1 (de) * 2008-12-02 2010-06-10 Clariant International Limited Verfahren zur Herstellung von mono-carboxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Vinylester einer Carbonsäure und ihre Verwendung
DE102008060535A1 (de) 2008-12-04 2010-06-10 Clariant International Limited Verfahren zur Herstellung von mono-carboxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Vinylether und ihre Verwendung
KR101697948B1 (ko) 2008-12-18 2017-01-19 클라리언트 파이넌스 (비브이아이)리미티드 아세틸렌을 사용하는 에틸렌디알킬포스핀산, 에틸렌디알킬포스핀산 에스테르 및 에틸렌디알킬포스핀산 염의 제조방법 및 이의 용도
DE102008063642A1 (de) 2008-12-18 2010-06-24 Clariant International Limited Verfahren zur Herstellung von monocarboxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Alkylenoxiden und ihre Verwendung
DE102008063668A1 (de) 2008-12-18 2010-07-01 Clariant International Limited Verfahren zur Herstellung von Alkylphosponsäuren, -estern und -salzen mittels Oxidation von Alkylphosphonigsäuren und ihre Verwendung
DE102008063627A1 (de) 2008-12-18 2010-06-24 Clariant International Limited Verfahren zur Herstellung von monohydroxyfunktionalisierten Dialkylphosphinsäuren,-estern und -salzen mittels Ethylenoxid und ihre Verwendung
DE102008064012A1 (de) 2008-12-19 2010-06-24 Clariant International Limited Halogenfreie Addukte von Alkylphosphonigsäurederivaten und diesterbildenden Olefinen, halogenfreie Verfahren zu deren Herstellung und ihre Verwendung
EP2314442B1 (de) * 2009-10-23 2013-04-03 Rhein Chemie Rheinau GmbH Vernetzerbatches, enthaltend markierende Substanzen, neue vernetzbare Kautschukmischungen und ein Verfahren zu deren Herstellung und deren Verwendung
DE202011110300U1 (de) * 2011-10-31 2013-08-05 Performance Chemicals HGmbH Reaktive Oligomere
CN103073576B (zh) * 2012-09-19 2015-09-23 广州金凯新材料有限公司 一种二烷基次膦酸及其盐的制备方法
CN103172668A (zh) * 2013-03-04 2013-06-26 广州金凯新材料有限公司 一种单烷基/二烷基次膦酸盐及其制备方法
WO2015064469A1 (ja) * 2013-10-28 2015-05-07 帝人デュポンフィルム株式会社 難燃性二軸配向ポリエステルフィルム、それからなる難燃性ポリエステルフィルム積層体およびフレキシブル回路基板
CN103772428B (zh) * 2014-01-07 2016-05-04 山东兄弟科技股份有限公司 一种二丙基次膦酸铝的制备方法
CN104746168B (zh) * 2015-04-09 2016-10-12 泰索新材料科技(杭州)有限公司 一种阻燃尼龙66纤维及其制备方法
DE102015223432A1 (de) * 2015-11-26 2017-06-01 Clariant International Ltd Polymere Flammschutzmittelmischungen
US11401416B2 (en) 2017-10-17 2022-08-02 Celanese Sales Germany Gmbh Flame retardant polyamide composition
CN110726801A (zh) * 2019-10-31 2020-01-24 山东泰星新材料股份有限公司 一种监测烷基次膦酸反应状态的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013863A (en) * 1987-12-04 1991-05-07 Ciba-Geigy Corporation Substituted propane-phosphinic acid compounds
US20020187977A1 (en) * 2001-03-15 2002-12-12 Rodney Pearlman Methods for restoring cognitive function following systemic stress
WO2002100871A1 (en) * 2001-06-08 2002-12-19 Astrazeneca Ab New compounds useful in reflux disease
EP1905776A1 (de) * 2006-09-28 2008-04-02 Clariant International Ltd. Unsymmetrisch substituierte Phosphinsäuren

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE632264A (enExample) 1962-05-12
US3322716A (en) 1963-08-19 1967-05-30 American Cyanamid Co Flame retardant compositions consisting essentially of a thermoplastic material and a phosphinic acid
US3784638A (en) 1969-12-24 1974-01-08 Polaroid Corp Preparation of tertiary organo-phosphine oxides
DE2236037C3 (de) 1972-07-22 1975-04-17 Farbwerke Hoechst Ag Vormals Meister Lucius & Bruening, 6000 Frankfurt Schwer entflammbare Fäden und Fasern aus Polyester
DE2236036C3 (de) 1972-07-22 1982-02-04 Hoechst Ag, 6000 Frankfurt Diphosphinsäureester
DE2242002C3 (de) 1972-08-26 1978-08-24 Hoechst Ag, 6000 Frankfurt Flammwidrige synthetische lineare Polyester sowie deren Verwendung
DE2302523C3 (de) 1973-01-19 1982-04-08 Hoechst Ag, 6000 Frankfurt Verfahren zur Herstellung von Äthan-1,2-diphosphinsäurediestern
DE2313581A1 (de) 1973-03-19 1974-09-26 Hoechst Ag Verfahren zur herstellung von aethan1,2-diphosphinsaeurediestern
US4001352A (en) 1973-01-19 1977-01-04 Hoechst Aktiengesellschaft Process for the preparation of ethane-1,2-diphosphinic acid diesters
DE2344332C3 (de) 1973-09-03 1981-11-26 Hoechst Ag, 6000 Frankfurt Verfahren zur Herstellung von Vinylphosphinsäuren
DE2346787C3 (de) 1973-09-17 1980-05-08 Hoechst Ag, 6000 Frankfurt Schwer entflammbare lineare Polyester, Verfahren zu deren Herstellung und deren Verwendung
DE2441878B2 (de) 1974-08-31 1976-07-01 Hoechst Ag, 6000 Frankfurt Verfahren zur herstellung von phosphon- und phosphinsaeuren
DE2441783B2 (de) 1974-08-31 1976-09-09 Hoechst Ag, 6000 Frankfurt Verfahren zur herstellung von phosphon- und phosphinsaeuren
GB1491608A (en) 1975-05-28 1977-11-09 Ici Ltd Metal complex formazan dyestuffs and processes for their preparation
US4235991A (en) 1978-12-04 1980-11-25 Occidental Research Corporation Layered sulfonate end terminated organophosphorus inorganic polymers
US4168267A (en) 1978-10-23 1979-09-18 E. R. Squibb & Sons, Inc. Phosphinylalkanoyl prolines
US4337201A (en) 1980-12-04 1982-06-29 E. R. Squibb & Sons, Inc. Phosphinylalkanoyl substituted prolines
US4374131A (en) 1981-04-27 1983-02-15 E. R. Squibb & Sons, Inc. Amino and substituted amino phosphinyl-alkanoyl compounds
US4381297A (en) 1981-05-04 1983-04-26 E. R. Squibb & Sons, Inc. Substituted carbonyl phosphinyl-alkanoyl compounds
US4555506A (en) 1981-12-24 1985-11-26 E. R. Squibb & Sons, Inc. Phosphorus containing compounds and use as hypotensives
US4427665A (en) 1982-05-19 1984-01-24 E. R. Squibb & Sons, Inc. Phosphinylalkanoyl substituted imino acids and their use in hypotensive compositions
US4602092A (en) 1983-09-19 1986-07-22 E. R. Squibb & Sons, Inc. Method for making phosphinic acid intermediates
US4594199A (en) 1983-09-19 1986-06-10 E. R. Squibb & Sons, Inc. Method for making phosphinic acid intermediates
US4634689A (en) 1985-10-31 1987-01-06 Schering Corporation Phosphinylalkanoyl imino acids
US5190933A (en) * 1987-12-04 1993-03-02 Ciba-Geigy Corporation Substituted propane-phosphinic acid compounds
US5190934A (en) 1989-06-03 1993-03-02 Ciba-Geigy Corporation P-subsituted propane-phosphinic acid compounds
IL114631A (en) 1990-06-22 1998-12-06 Novartis Ag Anti-epileptic compositions containing gabab- antagonistic compounds
US5153347A (en) 1991-01-31 1992-10-06 E. R. Squibb & Sons, Inc. Phosphonate, phosphinate derivatives useful as antihypertensive agents
CA2066932A1 (en) * 1991-04-29 1992-10-30 Robert E. Rosen Phosphousulfonate herbicides
JP3109228B2 (ja) 1992-02-25 2000-11-13 東洋紡績株式会社 ホスフィニルカルボン酸又はその誘導体の製造方法
US5391743A (en) 1992-05-29 1995-02-21 Procter & Gamble Pharmaceuticals, Inc. Quaternary nitrogen-containing phosphonate compounds, pharmaceutical compositions, and methods of treating abnormal calcium and phosphate metabolism and methods of treating and preventing dental calculus and plaque
ZA938019B (en) 1992-11-13 1995-04-28 Upjohn Co Pyran-2-ones and 5,6-dihydropyran-2-ones useful for treating HIV and other retroviruses
IT1270260B (it) 1994-06-21 1997-04-29 Zambon Spa Derivati dell'acido fosfonico ad attivita' inibitrice delle metallopeptidasi
CA2196193A1 (en) * 1994-07-29 1996-02-15 Lee James Beeley Aryloxy and arylthiopropanolamine derivatives useful as beta 3-adrenoreceptor agonists and antagonists of the beta 1 and beta 2-adrenoreceptors and pharmaceutical composition thereof
DE4430932A1 (de) 1994-08-31 1996-03-07 Hoechst Ag Flammgeschützte Polyesterformmasse
US6384022B1 (en) 1996-06-17 2002-05-07 Guilford Pharmaceuticals Inc. Prodrugs of NAALAdase inhibitors
EP0858391B1 (en) 1996-07-03 2002-06-05 Baxter International Inc. Method of sealing a port tube in a container
DE19708725A1 (de) * 1997-03-04 1998-09-10 Hoechst Ag Aluminiumsalze von Alkyl-hydroxymethylphosphinsäuren
AU8687798A (en) 1997-08-04 1999-02-22 Eli Lilly And Company Cyclic peptide antifungal agents
KR100760170B1 (ko) 1997-11-28 2007-09-20 클라리안트 프로두크테 (도이칠란트) 게엠베하 디알킬포스핀산의 염의 제조방법
US6214812B1 (en) 1998-04-02 2001-04-10 Mbc Research, Inc. Bisphosphonate conjugates and methods of making and using the same
DE19828863C1 (de) 1998-06-29 1999-09-02 Clariant Gmbh Verfahren zur Herstellung von Phosphinsäureestern und deren Verwendung
DE19912920C2 (de) 1999-03-22 2001-06-21 Clariant Gmbh Polymere Phosphinsäuren und deren Salze
DE19923617C2 (de) * 1999-05-25 2001-10-31 Clariant Gmbh Verfahren zur Herstellung von Phosphinsäureestern
SE9904508D0 (sv) 1999-12-09 1999-12-09 Astra Ab New compounds
WO2001057050A1 (en) 2000-02-02 2001-08-09 Rhodia Consumer Specialties Limited Novel phosphorus compounds
US7135583B2 (en) 2001-02-14 2006-11-14 Japan Science And Technology Corporation Process for preparation of alkenylphosphine oxides or alkenylphosphinic esters
DE10153780C1 (de) 2001-11-02 2002-11-28 Clariant Gmbh Verfahren zur Herstellung von Carboxyethylmethylphosphinsäureglykolester und ihre Verwendung
DE10333042B4 (de) 2003-07-21 2005-09-29 Clariant Gmbh Verfahren zur Herstellung von cyclischen Phosphonsäureanhydriden und deren Verwendung
AU2004278042B2 (en) 2003-10-09 2012-02-09 University Of Tennessee Research Foundation LPA receptor agonists and antagonists and methods of use
CA2544203A1 (en) 2003-11-11 2005-05-19 F. Hoffmann-La Roche Ag Phosphinic acids derivatives, beta-secretase inhibitors for the treatment of alzheimer's disease
WO2005056646A1 (ja) 2003-12-09 2005-06-23 Toyo Boseki Kabushiki Kaisha マスターバッチ用熱可塑性樹脂組成物およびその成形材料の製造方法およびそれらを用いた熱可塑性樹脂組成物およびその製造方法
US20050187196A1 (en) 2004-02-23 2005-08-25 Saegis Pharmaceuticals, Inc. Treatment of attention disorders
DE102004023085A1 (de) 2004-05-11 2005-12-15 Clariant Gmbh Dialkylphosphinsäure-Salze, ein Verfahren zu ihrer Herstellung und ihre Verwendung
EA017982B1 (ru) 2005-02-24 2013-04-30 ДИФФЬЮЖН ФАРМАСЬЮТИКАЛЗ ЭлЭлСи Фармацевтическая композиция на основе транскаротиноидов и способы лечения опухоли
US20090170813A1 (en) 2005-10-18 2009-07-02 Francine Acher Hypophosphorous Acid Derivatives and their Therapeutical Applications
DE102006010361A1 (de) 2006-03-07 2007-09-13 Clariant International Limited Mischungen aus Mono-Carboxylfunktionalisierten Dialkylphosphinsäureestern und weiteren Komponenten
DE102006010352A1 (de) 2006-03-07 2007-09-13 Clariant International Limited Mischungen aus Mono-Carboxylfunktionalisierten Dialkylphosphinsäure-Salzen und weiteren Komponenten, ein Verfahren zu ihrer Herstellung und Verwendung
DE102006010362A1 (de) 2006-03-07 2007-09-13 Clariant International Limited Mischungen aus Mono-Carboxylfunktionalisierten Dialkylphosphinsäuren, ein Verfahren zu ihrer Herstellung und ihre Verwendung
US7585996B2 (en) 2006-09-15 2009-09-08 Xenoport, Inc. Acyloxyalkyl carbamate prodrugs, methods of synthesis and use
DE102006048698A1 (de) 2006-10-14 2008-04-17 Clariant International Limited Ethylendiphosphinsäuren
DE102008055914A1 (de) 2008-11-05 2010-05-06 Clariant International Limited Verfahren zur Herstellung von mono-hydroxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Acroleinen und ihre Verwendung
DE102008055916A1 (de) 2008-11-05 2010-05-06 Clariant International Limited Verfahren zur Herstellung von mono-hydroxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Allylalkoholen und ihre Verwendung
DE102008056228A1 (de) 2008-11-06 2010-05-12 Clariant International Limited Verfahren zur Herstellung von monoaminofunktionalisierten Dialkylphosphinsäuren, deren Salze und Ester und ihre Verwendung
DE102008056235A1 (de) 2008-11-06 2010-05-12 Clariant International Limited Verfahren zur Herstellung von monovinylfunktionalisierten Dialkylphosphinsäuren, deren Salze und Ester und ihre Verwendung
US20110213062A1 (en) 2008-11-06 2011-09-01 Clariant Finance (Bvi) Limited Method for Producing Mono-Hydroxyfunctionalized Dialkyphosphinic Acids and Esters and Salts Thereof and Use Thereof
DE102008056234A1 (de) 2008-11-06 2010-05-12 Clariant International Ltd. Verfahren zur Herstellung von momo-carboxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Vinylen/Nitrilen und ihre Verwendung
DE102008056227A1 (de) 2008-11-06 2010-05-12 Clariant International Limited Verfahren zur Herstellung von Dialkylphosphinsäuren, -estern und -salzen mittels Vinylverbindungen und ihre Verwendung
DE102008056339A1 (de) 2008-11-07 2010-05-12 Clariant International Limited Verfahren zur Herstellung von mono-aminofunktionalisierten Dialkylphosphinsäuren, -estern und -salzen und ihre Verwendung
EP2352740B1 (de) 2008-11-07 2014-09-24 Clariant Finance (BVI) Limited Verfahren zur herstellung von dialkylphosphinsäuren, -estern und -salzen mittels acrylsäurederivaten und ihre verwendung
DE102008056341A1 (de) 2008-11-07 2010-05-12 Clariant International Limited Verfahren zur Herstellung von monoaminofunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Acrylnitrilen und ihre Verwendung
DE102008056342A1 (de) 2008-11-07 2010-05-12 Clariant International Limited Verfahren zur Herstellung von Dialkylphosphinsäuren, -estern und -salzen mittels Acrylnitrilen und ihre Verwendung
JP5743219B2 (ja) 2008-11-11 2015-07-01 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド アリル化合物を用いる、モノアリル官能性ジアルキルホスフィン酸、それらの塩およびエステルの製造方法およびそれらの使用
DE102008060035A1 (de) 2008-12-02 2010-06-10 Clariant International Limited Verfahren zur Herstellung von mono-hydroxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Vinylester einer Carbonsäure und ihre Verwendung
DE102008060036A1 (de) 2008-12-02 2010-06-10 Clariant International Limited Verfahren zur Herstellung von mono-carboxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Vinylester einer Carbonsäure und ihre Verwendung
DE102008060535A1 (de) 2008-12-04 2010-06-10 Clariant International Limited Verfahren zur Herstellung von mono-carboxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Vinylether und ihre Verwendung
DE102008063668A1 (de) 2008-12-18 2010-07-01 Clariant International Limited Verfahren zur Herstellung von Alkylphosponsäuren, -estern und -salzen mittels Oxidation von Alkylphosphonigsäuren und ihre Verwendung
DE102008063627A1 (de) 2008-12-18 2010-06-24 Clariant International Limited Verfahren zur Herstellung von monohydroxyfunktionalisierten Dialkylphosphinsäuren,-estern und -salzen mittels Ethylenoxid und ihre Verwendung
DE102008063642A1 (de) 2008-12-18 2010-06-24 Clariant International Limited Verfahren zur Herstellung von monocarboxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Alkylenoxiden und ihre Verwendung
DE102008063640A1 (de) 2008-12-18 2010-06-24 Clariant International Limited Verfahren zur Herstellung von gemischtsubstituierten Dialkylphosphinsäuren, -estern und -salzen und ihre Verwendung
DE102008064012A1 (de) 2008-12-19 2010-06-24 Clariant International Limited Halogenfreie Addukte von Alkylphosphonigsäurederivaten und diesterbildenden Olefinen, halogenfreie Verfahren zu deren Herstellung und ihre Verwendung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013863A (en) * 1987-12-04 1991-05-07 Ciba-Geigy Corporation Substituted propane-phosphinic acid compounds
US20020187977A1 (en) * 2001-03-15 2002-12-12 Rodney Pearlman Methods for restoring cognitive function following systemic stress
WO2002100871A1 (en) * 2001-06-08 2002-12-19 Astrazeneca Ab New compounds useful in reflux disease
EP1905776A1 (de) * 2006-09-28 2008-04-02 Clariant International Ltd. Unsymmetrisch substituierte Phosphinsäuren

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
DATABASE BEILSTEIN [online] BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT-MAIN, DE; 1962, XP002557780, Database accession no. Reaction ID 938840 *
DIEL P J ET AL: "ORGANISCHE PHOSPHORVERBINDUNGEN 84. HERSTELLUNG, EIGENSCHAFTEN UND BIOLOGISCHE WIRKUNG VON HYDRAZINO-METHYL-PHOSPHON- UND PHOSPHINSAEUREN UND DERIVATEN", PHOSPHORUS AND SULFUR AND THE RELATED ELEMENTS, GORDON AND BREACH - HARWOOD ACADEMIC, CH, vol. 36, 1 January 1988 (1988-01-01), pages 85 - 98, XP001105809, ISSN: 0308-664X *
FROESTL W ET AL: "PHOSPHINIC ACID ANALOGUES OF GABA. 2. SELECTIVE, ORALLY ACTIVE GABAB ANTAGONISTS", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, WASHINGTON, US, vol. 38, no. 17, 1 January 1995 (1995-01-01), pages 3313 - 3331, XP000999491, ISSN: 0022-2623 *
KARLA BRAVO-ALTAMIRANOA ET AL: "A NOVEL APPROACH TO PHOSPHONIC ACIDS FROM HYPOPHOSPHOROUS ACID", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 48, no. 33, 23 June 2007 (2007-06-23), pages 5755 - 5759, XP022163552, ISSN: 0040-4039 *
KIELBASINSKI P ET AL: "Enzymatic reactions in ionic liquids: lipase-catalysed kinetic resolution of racemic, P-chiral hydroxymethanephosphinates and hydroxymethylphosphine oxides", TETRAHEDRON ASYMMETRY, PERGAMON PRESS LTD, OXFORD, GB, vol. 13, no. 7, 2 May 2002 (2002-05-02), pages 735 - 738, XP004354866, ISSN: 0957-4166 *
MAIER L: "ORGANIC PHOSPHORUS COMPOUNDS 91.1 SYNTHESIS AND PROPERTIES OF 1-AMINO-2-ARYLETHYLPHOSPHONIC AND -PHOSPHINIC ACIDS AS WELL AS PHOSPHINE OXIDES", PHOSPHORUS, SULFUR AND SILICON AND THE RELATED ELEMENTS, GORDON AND BREACH SCIENCE PUBLISHERS, AMSTERDAM, GB, vol. 53, no. 1/04, 1 January 1990 (1990-01-01), pages 43 - 67, XP000671624, ISSN: 1042-6507 *
MONTCHAMP J L: "Recent advances in phosphorus-carbon bond formation: synthesis of H-phosphinic acid derivatives from hypophosphorous compounds", JOURNAL OF ORGANOMETALLIC CHEMISTRY, ELSEVIER-SEQUOIA S.A. LAUSANNE, CH, vol. 690, no. 10, 16 May 2005 (2005-05-16), pages 2388 - 2406, XP004877374, ISSN: 0022-328X *
PATRICE RIBIÈRE ET AL: "NiCl2-Catalyzed Hydrophosphinylation", JOURNAL OF ORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, EASTON.; US, vol. 70, no. 10, 1 January 2005 (2005-01-01), pages 4064 - 4072, XP002530191, ISSN: 0022-3263 *
PAVEL REZANKA ET AL: "Synthesis of a Bifunctional Monophosphinate DOTA Derivative Having a Free Carboxylate Group in the Phosphorus Side Chain", SYNTHESIS, GEORG THIEME VERLAG, STUTTGART, DE, no. 9, 1 September 2008 (2008-09-01), pages 1431 - 1435, XP009126087, ISSN: 0039-7881 *
PIOTR MAJEWSKI: "A New Method for the Preparation of Bis(1-hydroxyalkyl)-phosphinic Acids", SYTHESIS,, vol. 6, 1 January 1987 (1987-01-01), pages 555 - 557, XP002558292 *
PUDOVIK, A. N. ET AL., J. GEN CHEM. USSR, vol. 32, 1962, pages 460 - 463 *
SASSE K ED - SASSE K: "Houben -Weyl Methoden der Organischen Chemie", 1 January 1963, ORGANISCHE PHOSPHOR-VERBINDUNGEN; [METHODEN DER ORGANISCHEN CHEMIE], STUTTGART, G. THIEME VERLAG, DE, pages: 228 - 229, XP002557781 *
SYLVINE DEPRÈLE ET AL: "Environmentally Benign Synthesis of H-Phosphinic Acids Using a Water-Tolerant, Recyclable Polymer-Supported Catalyst", ORGANIC LETTERS, AMERICAN CHEMICAL SOCIETY, US, vol. 6, no. 21, 1 January 2004 (2004-01-01), pages 3805 - 3808, XP002500861, ISSN: 1523-7060, [retrieved on 20040918] *
SYLVINE DEPRÈLE ET AL: "Palladium-Catalyzed Hydrophosphinylation of Alkenes and Alkynes", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC. US, vol. 124, no. 32, 1 January 2002 (2002-01-01), pages 9387, XP002500862, ISSN: 0002-7863 *

Also Published As

Publication number Publication date
CN102164933B (zh) 2014-12-10
ES2562226T3 (es) 2016-03-03
US9279085B2 (en) 2016-03-08
EP2379572A1 (de) 2011-10-26
EP2379572B1 (de) 2015-12-23
CN102164933A (zh) 2011-08-24
US20110251315A1 (en) 2011-10-13
JP5641657B2 (ja) 2014-12-17
DE102008064003A1 (de) 2010-06-24
JP2012512197A (ja) 2012-05-31

Similar Documents

Publication Publication Date Title
EP2379572B1 (de) Verfahren zur herstellung von mono-funktionalisierten dialkylphosphinsäuren, -estern und -salzen und ihre verwendung
EP2352741B1 (de) Verfahren zur herstellung von mono-aminofunktionalisierten dialkylphophinsäuren, -estern und -salzen und ihre verwendung
EP2367834B1 (de) Verfahren zur herstellung von mono-hydroxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels acroleinen und ihre verwendung
EP2373668B1 (de) Verfahren zur herstellung von mono-hydroxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels vinylester einer carbonsäure und ihre verwendung
EP2373666B1 (de) Verfahren zur herstellung von mono-aminofunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels acrylnitrilen und ihre verwendung
EP2352735B1 (de) Verfahren zur herstellung von mono-hydroxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels allylalkoholen und ihre verwendung
EP2379574B1 (de) Verfahren zur herstellung von mono-hydroxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels ethylenoxid und ihre verwendung
EP2367835B1 (de) Verfahren zur herstellung von mono-allylfunktionalisierten dialkylphosphinsäuren, deren salze und ester mit allylischen verbindungen und ihre verwendung
EP2373669B1 (de) Verfahren zur herstellung von mono-carboxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels vinylether und ihre verwendung
EP2346886A1 (de) Verfahren zur herstellung von mono-hydroxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen und ihre verwendung
DE102008063640A1 (de) Verfahren zur Herstellung von gemischtsubstituierten Dialkylphosphinsäuren, -estern und -salzen und ihre Verwendung
DE102008056227A1 (de) Verfahren zur Herstellung von Dialkylphosphinsäuren, -estern und -salzen mittels Vinylverbindungen und ihre Verwendung
EP2352736A1 (de) Verfahren zur herstellung von mono-aminofunktionalisierten dialkylphosphinsäuren, deren salze und ester und ihre verwendung
DE102008056342A1 (de) Verfahren zur Herstellung von Dialkylphosphinsäuren, -estern und -salzen mittels Acrylnitrilen und ihre Verwendung
DE102008056234A1 (de) Verfahren zur Herstellung von momo-carboxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Vinylen/Nitrilen und ihre Verwendung
EP2373667A1 (de) Verfahren zur herstellung von mono-carboxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels vinylester einer carbonsäure und ihre verwendung
EP3197905A1 (de) Verfahren zur herstellung von ethylendialkylphosphinsäuren, -estern und -salzen sowie deren verwendung als flammschutzmittel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980137333.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09778844

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009778844

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13140555

Country of ref document: US

Ref document number: 2011541124

Country of ref document: JP