WO2010069307A1 - Système et procédé pour mesurer le débit de phases multiples - Google Patents

Système et procédé pour mesurer le débit de phases multiples Download PDF

Info

Publication number
WO2010069307A1
WO2010069307A1 PCT/DE2009/050078 DE2009050078W WO2010069307A1 WO 2010069307 A1 WO2010069307 A1 WO 2010069307A1 DE 2009050078 W DE2009050078 W DE 2009050078W WO 2010069307 A1 WO2010069307 A1 WO 2010069307A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
channels
flow
channel
channel body
Prior art date
Application number
PCT/DE2009/050078
Other languages
German (de)
English (en)
Inventor
Uwe Hampel
Marco José DA SILVA
Original Assignee
Forschungszentrum Dresden - Rossendorf E.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Dresden - Rossendorf E.V. filed Critical Forschungszentrum Dresden - Rossendorf E.V.
Publication of WO2010069307A1 publication Critical patent/WO2010069307A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/363Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction with electrical or electro-mechanical indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/50Correcting or compensating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2823Raw oil, drilling fluid or polyphasic mixtures

Definitions

  • the invention relates to an arrangement for inline measurement of the partial volume flows of multiphase mixtures in a flow channel.
  • the multiphase flow measurement represents a very demanding and complex metrological problem.
  • Currently known methods for multiphase flow measurement are divided in principle into those with separation of the mixtures as well as those for inline flow measurement in flow channels.
  • An example of processes with separation is that in WO WO 2006/000771 -. disclosed arrangement.
  • Separation measuring methods are often unsuitable or not optimal for use in the process industry. The reasons for this are the space required for additional separation vessels, the increased complexity of the measuring devices due to the necessary shut-off valves and partial stream extraction, as well as the limited real-time capability due to the long time constant for the mixture separation.
  • Inline measurement techniques can overcome these disadvantages.
  • the method described here belongs to the group of in-line multiphase flow measurement methods.
  • the object of the present invention was therefore to provide an arrangement and a method for measuring the partial volume flows in a flow channel, which overcomes the above-mentioned disadvantages of known solutions and which is suitable for a wide range of applications, in particular with regard to the flow regime and mixture compositions.
  • the generally customary separate measurement of mixture velocity and mixture composition with different measurement methods is performed by a time-resolved and spatially resolved phase indicator measurement on a plurality of of measuring points in the channel body realized with a single measurement method.
  • phase indicator measurement at a plurality of measuring points can be advantageously realized by grid-shaped phase sensor arrangements.
  • Figure 1 Longitudinal section of an inventive arrangement
  • Figure 2 View of a channel body (2) according to the invention
  • Figure 3 Schematic representation of the waveform of the phase sensors (4) of a channel (3)
  • the arrangement consists of a segment of a flow channel (1) of any cross-sectional shape in which a channel body (2) is installed.
  • This channel body (2) is pierced by a plurality of flow in the channels (3) with a small hydraulic diameter.
  • the width of the channels should be chosen so that a single-phase or piston flow is formed at the expected mixture velocities in the channels. The information required for such a design is easily taken from a corresponding flow chart.
  • the arrangement of the channels (3) in cross section may be regular, for example in the form of a square lattice, or irregular.
  • phase sensors (4) At each of the channels (3) are at least two in the axial direction successively arranged phase sensors (4), which are able to identify the respective phase sensor (4) surrounding the material phase of the mixture (the phase indicator) with a high sampling rate.
  • the phase sensors (4) can be located inside the channels (3), on their inner surface or at the inlet and outlet of the channels (3) on the channel body (2).
  • the phase sensors (4) can operate according to an optical (reflection, transmission), electrical (capacitive, inductive, conductive, electromagnetic), acoustic (sound echo, sound transmission), electromechanical (surface waves, resonant resonance), radiometric or other measuring principle.
  • the flow channel flows through a two-phase mixture, it comes at the channel body (2) to a splitting of the flow to the individual channels (3).
  • a single-phase flow passage of a larger volume of liquid or gas
  • a piston flow intermittent passage of gas or diesstechniksspfropfen that occupy the entire cross-section of the channel (3).
  • the formation of a ring flow should be excluded by appropriate design of the channel body (2). It should be noted, however, that the case of a ring flow can also be treated in principle with this arrangement.
  • phase sensors (4) are executed so that they are able to detect the film thickness of the liquid film on the wall of each channel (3), or that the occurrence of a ring flow from the signals of the differential pressure sensor (5 ) and the flow of the two phases is derived from corresponding empirical formulas or tables.
  • phase sensors (4) With the help of in the channels (3) arranged phase sensors (4) and an associated measuring electronics, the at each of the phase sensors (4) currently applied phase is determined with high temporal resolution.
  • a signal curve is displayed which indicates in binary form the presence of the gas or liquid phase. It denotes S A ⁇ l (t) the phase indicator signal of the current upstream phase sensor A (4) of the i-th channel (3) and S B, t (t) is the phase indicator signal of the downstream phase sensor B (4) of the i-th channel (3).
  • FIG. 3 shows schematically the waveform for the two phase sensors (4) within a channel (3) for a piston flow.
  • the presence of the gas phase is coded by the signal value 1, the presence of the liquid phase by the signal value 0.
  • the gas content ⁇ and the phase velocity v within a channel (3) can be determined from the phase indicator signals
  • V 1 Calculate. It designates / the number of the considered channel (3), T 1 , T 2 the start and end time of the selected measurement interval, d the distance of the phase sensors (4) and AT the mean time difference of the passage of interfaces to the phase sensors (4). Furthermore let X e be ⁇ A, B ⁇ . It is an open question whether the mean time difference ⁇ T is extracted from the signal curve, either directly or by means of a time-averaging cross-correlation method. From the values determined for gas content and phase interface velocity, the partial volume flows for gas and liquid in the channel (3) result
  • A denotes the channel cross-sectional area and k denotes a correction term for taking into account the liquid film around the gas bubbles.
  • phase sensors (4) indicate that there is only one phase in the channel for a period of time which exceeds the average residence time of a phase boundary in the channel, the velocity of the relevant phase can be determined directly via the pressure loss at the channel body (2) become. This is measured by a differential pressure sensor (5). With the pressure loss Ap, the phase velocity is given by the relationship
  • Arrangement associated measuring electronics designed such that it realizes a detection of the phase indicator on each of the 2 x N phase sensors with a sufficiently high sampling rate.
  • the differential pressure at the channel body (2) must be recorded with a sufficiently high sampling rate.
  • a microprocessor or computer integrated or downstream in the measuring electronics accordingly performs the calculation of the phase speeds or partial volume flows from the detected phase indicator signals S A>! or S B of each channel (3) according to Eq. 1 to 3 and the subsequent averaging according to Eq. 4 numerically.
  • a temperature sensor (6) are arranged in the flow to compensate for the temperature dependence of measured variables with the measured mixture temperature.
  • an absolute pressure sensor (7) are arranged to measure the pressure-dependent density of the gas phase and taken into account in the calculation of mass flows.
  • an absolute pressure sensor (7) can be arranged to simultaneously measure the pressure-dependent density of the gas phase and the differential pressure at the channel body (2).
  • an additional measuring instrument can be integrated into the arrangement, which measures the density of the phases.
  • a particularly advantageous embodiment of the invention is the arrangement of the phase sensors according to the grid sensor principle.
  • the channel body is designed such that the channels are arranged in the cross section of the channel body in a regular shape (eg NxN grating, MxN grating).
  • NxN grid the electrodes are laid so that they form a grid, in whose crossing point in each case a channel of the channel body is located.
  • the electrodes do not touch, but are arranged so that the electric field at the intersection of two electrodes partially penetrates the respective associated channel.
  • the detection of the phase composition in the channel at the location of the grating crossing point is effected by successively applying a DC or AC voltage to a stimulating electrode of the grid and simultaneous measurement of transmitted in the crossing points DC or AC currents at the transverse electrodes, wherein the measured DC measured or AC amperage is a measure of the conductivity or electrical permittivity and thus the nature of the substance phase present at the point of intersection.
  • the particular advantage of this arrangement is that only 2xN electrodes are required for the simultaneous acquisition of the phase information in all NxN channels, whereby the electronic measurement and excitation scheme as well as the wiring complexity for the arranged in two levels phase sensors particularly can be easily implemented or is only practically possible with a high number of channels.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Volume Flow (AREA)

Abstract

L'invention concerne un système pour mesurer le débit de phases multiples. Le système est constitué d'un segment d'un canal d'écoulement (1) à section transversale de forme quelconque dans lequel un corps de canal (2) est encastré. Ce corps de canal (2) est percé par une pluralité de canaux (3) à petit diamètre hydraulique s'étendant dans le sens d'écoulement. La largeur des canaux est à choisir de telle manière qu'un courant monophasé ou un courant piston se forme dans les canaux aux vitesses de mélange attendues. Les informations nécessaires pour une telle conception ressortent mieux d'une carte d'écoulement correspondante. La disposition des canaux (3) en coupe transversale peut être régulière, par exemple sous la forme d'une grille quadratique, ou peut être irrégulière. Dans chacun des canaux (3) se trouvent au moins deux capteurs de phase (4) qui sont disposés l'un derrière l'autre en direction axiale et sont en mesure d'identifier avec des taux de détection élevés la phase de matière du mélange (l'indicateur de phase) entourant le capteur de phase (4) concerné. Les capteurs de phase (4) peuvent se trouvent à l'intérieur des canaux (3) sur leur surface intérieure ou à l'entrée et à la sortie des canaux (3) sur le corps de canal (2). Les capteurs de phase (4) peuvent fonctionner selon un principe optique (réflexion, transmission), électrique (capacitif, inductif, conducteur, électromagnétique), acoustique (écho sonore, transmission sonore) électromécanique (ondes de surface, résonance oscillatoire), radiométrique ou selon un autre principe de mesure.
PCT/DE2009/050078 2008-12-19 2009-12-21 Système et procédé pour mesurer le débit de phases multiples WO2010069307A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008055032.9 2008-12-19
DE200810055032 DE102008055032B4 (de) 2008-12-19 2008-12-19 Anordnung und Verfahren zur Mehrphasendurchflussmessung

Publications (1)

Publication Number Publication Date
WO2010069307A1 true WO2010069307A1 (fr) 2010-06-24

Family

ID=42077143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2009/050078 WO2010069307A1 (fr) 2008-12-19 2009-12-21 Système et procédé pour mesurer le débit de phases multiples

Country Status (2)

Country Link
DE (1) DE102008055032B4 (fr)
WO (1) WO2010069307A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278199A (zh) * 2013-05-13 2013-09-04 山西宏慧盛世科技有限公司 一种车辆燃油加油量测试装置
CN107687876A (zh) * 2016-08-06 2018-02-13 赵乐 一种测量流体流量的测量装置及测量方法
WO2019156785A1 (fr) * 2018-02-06 2019-08-15 Exxonmobil Research And Engineering Company Estimation de fraction/distribution de phase avec analyse de contraste diélectrique
DE102018124501B3 (de) * 2018-10-04 2020-02-13 Helmholtz-Zentrum Dresden - Rossendorf E.V. Sensor zur Vermessung von Strömungsprofilen in großen Kolonnen und Apparaten
WO2021242482A1 (fr) * 2020-05-26 2021-12-02 Exxonmobil Research And Engineering Company Mesure du débit de fluides à l'aide d'une analyse de contraste diélectrique

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019125243B4 (de) * 2019-09-19 2022-08-11 Helmholtz-Zentrum Dresden - Rossendorf E. V. Mehrphasen-messsystem mit kalibrierwertnachführung und strömungstechnische anordnung

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0536080A2 (fr) * 1991-10-04 1993-04-07 S.C.R. Engineers Ltd. Procédé pour la mesure d'un écoulement liquide
JPH08271309A (ja) 1995-03-29 1996-10-18 Yokogawa Electric Corp 多相流流量計
US5861556A (en) * 1994-06-03 1999-01-19 Tokyo Gas Co., Ltd. Flowmeter
WO2000045133A1 (fr) * 1999-01-11 2000-08-03 Flowsys As Mesure de flux multiphase dans un tuyau
CA2492522A1 (fr) 2001-07-16 2003-01-30 Baker Hughes Incorporated Debitmetre a impulseur de type helice pour mesure de debit multiphase compense
US20050268702A1 (en) 2003-01-21 2005-12-08 Weatherford/Lamb, Inc. Non-intrusive multiphase flow meter
WO2006000771A2 (fr) 2004-06-24 2006-01-05 Paul Crudge Debitmetre
US6993979B2 (en) 2001-08-20 2006-02-07 Schlumberger Technology Corporation Multiphase mass flow meter with variable venturi nozzle
WO2006127527A1 (fr) 2005-05-20 2006-11-30 Micro Motion, Inc. Appareil electronique de mesure et procedes permettant de determiner rapidement une fraction en masse d'une phase multiple issue d'un signal de debitmetre de coriolis
US20070124091A1 (en) 2003-12-09 2007-05-31 Multi Phase Meters As Method and flow meter for determining the flow rate of a multiphase fluid
DE102006019178A1 (de) * 2006-04-21 2007-11-08 Forschungszentrum Dresden - Rossendorf E.V. Anordnung zur zweidimensionalen Messung von verschiedenen Komponenten im Querschnitt einer Mehrphasenströmung
WO2008117024A2 (fr) 2007-03-27 2008-10-02 Schlumberger Technology B.V. Système et procédé d'analyse de contrôle par sondage ou d'échantillonnage sélectif d'un mélange à phases multiples s'écoulant dans un pipeline

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461932A (en) * 1991-07-15 1995-10-31 Texas A & M University System Slotted orifice flowmeter

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0536080A2 (fr) * 1991-10-04 1993-04-07 S.C.R. Engineers Ltd. Procédé pour la mesure d'un écoulement liquide
US5861556A (en) * 1994-06-03 1999-01-19 Tokyo Gas Co., Ltd. Flowmeter
JPH08271309A (ja) 1995-03-29 1996-10-18 Yokogawa Electric Corp 多相流流量計
WO2000045133A1 (fr) * 1999-01-11 2000-08-03 Flowsys As Mesure de flux multiphase dans un tuyau
CA2492522A1 (fr) 2001-07-16 2003-01-30 Baker Hughes Incorporated Debitmetre a impulseur de type helice pour mesure de debit multiphase compense
US6993979B2 (en) 2001-08-20 2006-02-07 Schlumberger Technology Corporation Multiphase mass flow meter with variable venturi nozzle
US20050268702A1 (en) 2003-01-21 2005-12-08 Weatherford/Lamb, Inc. Non-intrusive multiphase flow meter
US20070124091A1 (en) 2003-12-09 2007-05-31 Multi Phase Meters As Method and flow meter for determining the flow rate of a multiphase fluid
WO2006000771A2 (fr) 2004-06-24 2006-01-05 Paul Crudge Debitmetre
WO2006127527A1 (fr) 2005-05-20 2006-11-30 Micro Motion, Inc. Appareil electronique de mesure et procedes permettant de determiner rapidement une fraction en masse d'une phase multiple issue d'un signal de debitmetre de coriolis
DE102006019178A1 (de) * 2006-04-21 2007-11-08 Forschungszentrum Dresden - Rossendorf E.V. Anordnung zur zweidimensionalen Messung von verschiedenen Komponenten im Querschnitt einer Mehrphasenströmung
WO2008117024A2 (fr) 2007-03-27 2008-10-02 Schlumberger Technology B.V. Système et procédé d'analyse de contrôle par sondage ou d'échantillonnage sélectif d'un mélange à phases multiples s'écoulant dans un pipeline

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278199A (zh) * 2013-05-13 2013-09-04 山西宏慧盛世科技有限公司 一种车辆燃油加油量测试装置
CN107687876A (zh) * 2016-08-06 2018-02-13 赵乐 一种测量流体流量的测量装置及测量方法
WO2019156785A1 (fr) * 2018-02-06 2019-08-15 Exxonmobil Research And Engineering Company Estimation de fraction/distribution de phase avec analyse de contraste diélectrique
US11668593B2 (en) 2018-02-06 2023-06-06 ExxonMobil Technology and Engineering Company Estimating phase fraction/distribution with dielectric contrast analysis
DE102018124501B3 (de) * 2018-10-04 2020-02-13 Helmholtz-Zentrum Dresden - Rossendorf E.V. Sensor zur Vermessung von Strömungsprofilen in großen Kolonnen und Apparaten
WO2021242482A1 (fr) * 2020-05-26 2021-12-02 Exxonmobil Research And Engineering Company Mesure du débit de fluides à l'aide d'une analyse de contraste diélectrique
US11733079B2 (en) 2020-05-26 2023-08-22 ExxonMobil Technology and Engineering Company Measuring the flow rate of fluids with dielectric contrast analysis

Also Published As

Publication number Publication date
DE102008055032A1 (de) 2010-07-01
DE102008055032B4 (de) 2014-12-24

Similar Documents

Publication Publication Date Title
WO2010069307A1 (fr) Système et procédé pour mesurer le débit de phases multiples
EP2406585B1 (fr) Procédé et appareil de mesure d'écoulement tourbillonnaire, destinés à surveiller et/ou mesurer un écoulement pariétal d'un fluide traversant une conduite tubulaire et possédant deux phases ou plus
EP2406586B1 (fr) Appareil de mesure d'écoulement tourbillonnaire, destiné à surveiller et/ou mesurer un écoulement distribué de particules et/ou de gouttelettes
EP0046965A1 (fr) Procédé et appareil pour la détermination dynamique du débit massique independant de la densité
EP2659235B1 (fr) Procede pour la correction de la densité dans un débitmètre à tourbillons
Zhang et al. High GVF and low pressure gas–liquid two-phase flow measurement based on dual-cone flowmeter
EP2718703A1 (fr) Procédé à impédance et système pour déterminer la composition d'un mélange multiphase
EP0254160A1 (fr) Dispositif pour mesurer le débit massique dans un tube
EP2600119A1 (fr) Débitmètre à induction magnétique
EP3081908A1 (fr) Procede et dispositif destine a reconnaitre la presente de liquide dans un flux gazeux
EP2687824A2 (fr) Débitmètre à noyau magnétique
EP3762686A1 (fr) Débitmètre de fluide
DE102014111047B4 (de) Magnetisch-induktives Durchflussmessgerät mit mehreren Messelektrodenpaaren und unterschiedlichen Messrohrquerschnitten und Verfahren zur Messung des Durchflusses
WO2016041723A1 (fr) Débitmètre à induction magnétique pourvu d'un système magnétique à quatre bobines
EP2041523B1 (fr) Dispositif de mesure servant à la mesure du débit dans un canal
EP3325923A1 (fr) Débitmètre à effet vortex
DE102006031332A1 (de) Messvorrichtung zum Nachweis von Fremdstoffen in einer Flüssigkeit
EP2844957B1 (fr) Appareil de mesure de débit à induction magnétique
DE102007037394A1 (de) Vorrichtung zur Bestimmung und/oder Überwachung des Durchflusses eines Messmediums durch eine Rohrleitung bzw. durch ein Messrohr
DE102014113898A1 (de) Messanordnung
EP2072970A1 (fr) Procédé destiné à la détermination de la viscosité d'un liquide avec un débitmètre à tourbillons
DE102016011256A1 (de) Verfahren zur Durchflussbestimmung eines strömenden Mediums
DE102019125243B4 (de) Mehrphasen-messsystem mit kalibrierwertnachführung und strömungstechnische anordnung
DE102011050716B4 (de) Verfahren und Vorrichtung zur Online-Messung der Viskosität eines Fluids
WO2014016107A1 (fr) Détecteur de bulles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09810816

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 09810816

Country of ref document: EP

Kind code of ref document: A1