CN107687876A - 一种测量流体流量的测量装置及测量方法 - Google Patents

一种测量流体流量的测量装置及测量方法 Download PDF

Info

Publication number
CN107687876A
CN107687876A CN201610636753.0A CN201610636753A CN107687876A CN 107687876 A CN107687876 A CN 107687876A CN 201610636753 A CN201610636753 A CN 201610636753A CN 107687876 A CN107687876 A CN 107687876A
Authority
CN
China
Prior art keywords
differential pressure
fluid
porous media
pressure elements
measurement apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610636753.0A
Other languages
English (en)
Inventor
赵乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610636753.0A priority Critical patent/CN107687876A/zh
Publication of CN107687876A publication Critical patent/CN107687876A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

本发明涉及一种测量流体流量的测量装置,其包括以下构件:差压元件;温度、压力和压差传感器。所述的差压元件为多孔介质材料,流体流经差压元件时压力损失与速度呈二次多项式关系。本发明还涉及测量流体流量的测量方法,其使用上述测量装置。本发明的测量装置结构简单,制造成本低廉,测量精度高。

Description

一种测量流体流量的测量装置及测量方法
技术领域
本发明属于流体计量领域。具体地,本发明涉及一种用于测量单相流体流量的测量装置及测量方法,尤其适合在安装空间受限的环境中使用。
背景技术
为了发展工农业生产、节约能源、改进产品质量、提高经济效益和管理水平,人们无时无刻不使用流量计。日程生活中,对流量的精确计量关系到我们每个人的经济利益;在科研工作中,所采用流量计的精度直接关系到最终实验数据的价值。
目前的流量计中,比如层流流量计、超声波流量计、文丘里流量计和涡轮流量计等流量计量装置,其准确计量要求管道内的流动为充分发展流动。这些流量计的计量准确度受非充分发展流动(比如不稳定流动、速度分布畸变的流动、旋转流等)的影响较大。因而对其安装条件有较严格的限制。比如,要求安装流量计的上游有20-30倍管径的直管段、下游有5倍管径的直管段。然而,现实中流量计所安装的工况条件不可避免地存在阀门、弯管、双弯管、收缩管、三通管等管件或设备,这些设备均会对流体流动产生扰动,即引起流体产生旋涡、脉动流或速度畸变,从而改变管道内的流速分布,进而影响测量精度。
其次,现有流量计还存在结构复杂、加工精度要求高、计算过程复杂、价格昂贵等缺点。比如,超声波流量计通过声波信号反推管内速度,进而计算流量,抗干扰能力差,使用的温度、速度范围有限,测量介质属性的不确定性对测量结果影响大,可靠性和精度等级不高;层流流量计的加工精度要求高。文丘里流量计、涡街流量计和涡轮流量计等不适合计量小流量的情况。
综上所述,现有的流量计安装条件要求高、结构很复杂,制造成本较高,通用性差。本发明致力于同时解决上述问题。
发明内容
本发明的目的在于克服现有流量计技术系统结构复杂、测量精度不高、安装要求高的缺点,提出一种用于测量流体流量的测量装置及测量方法。本发明结构简单、通用性强、对安装条件要求低,且具有整流的效果。
为达到上述目的,本发明采用的技术方案是:一种单相流流量计,包括差压元件、温度传感器、压力传感器和差压传感器。所述的差压元件为多孔介质材料。
所述的多孔介质材料,孔隙率为0.4-0.98,特征尺度0.1-10mm;
所述的多孔介质材料,用于差压元件的多孔介质材料的厚度与多孔介质特征尺度之比值不小于10:1;
所述的多孔介质材料,用于差压元件的多孔介质材料的半径与多孔介质特征尺度之比值不小于10:1;
所述温度传感器、压力传感器和差压传感器分别用于测量流体的温度、压力和流经差压元件的压力降。
应用本装置测量流体流量时,流体流经差压元件,差压与流体的速度成二次多项式关系。通过测量的温度和压力,并根据流体物性,可以知道流动的密度和粘度,再通过压差大小即可计算流体流量的大小。
本发明创造性地利用流体流经多孔介质时,速度与压差呈二次多项式关系的原理,直接求流体速度,进而计算流体流量,具有很高的计量精度。
本发明的优点如下:
1、安装要求低。由于多孔介质对流体流动具有整流作用,在通常的管内流体流动速度范围内,一定厚度多孔介质的存在会使上下游的流速更加均匀,流动更加稳定。因此安装要求低。
2、成本低。差压元件可以直接采用具有一定强度的泡沫型多孔材料、蜂窝型多孔材料、管束等。计算流量公式中的渗透系数和惯性系数,通过标定得到,因而不需要差压元件具有太高的精度。
3、适合不同类型的管道。本发明的流量计,既适用于圆形,也适用于方形、多边形等管道。
4、精度高。本发明所披露的流量计,通过流体流经差压元件时的特性直接求得速度,没有中间过程,没有近似和假设,因而计量精度高。
附图说明
图1为本发明所涉及流量计的正视图;
图2为本发明所涉及流量计的剖面图;
附图标记含义如下:
1、安装法兰;2、4、组合传感器,其分别测量流体的温度、压力、流经节流管的压差;3、数据处理单元;5、差压元件。
具体实施方式
以下结合附图和具体实施方式对本发明作进一步说明。为了便于理解本发明,首先对一些有关术语简单介绍如下:
“多孔介质”是指是由多相物质所占据的共同空间,也是多相物质共存的一种组合体,没有固体骨架的那部分空间叫做孔隙,由液体或气体或气液两相共同占有,相对于其中一相来说,其他相都弥散在其中,并以固相为固体骨架,构成空隙空间的空洞相互连通。
“泡沫型多孔介质”是指多孔介质材料的微观结构为泡沫,通常微观孔径为0.1-5mm。
“蜂窝型多孔介质”是指多孔介质材料的微观结构为二维规则形状拉伸而成的蜂窝形状,蜂窝多孔介质的孔径为0.1-5mm
“各向同性多孔介质”是指多孔介质的特性,比如导热、渗透等不会因方向的不同而有所变化的多孔介质,即某一物体在不同的方向所测得的性能数值完全相同,亦称均质性。反之则为“各向异性多孔介质”。
“Darcy定律”又称线性渗透定律或达西定律,当流体流经多孔介质时速度较小,雷诺数小于一定界限(小于10)时,压力梯度与速度呈线性关系。这一现象首先由法国人HenryDarcy研究地下水渗流时发现,因而叫Darcy定律。Darcy定律只有在低速时(雷诺数小于10时)满足。
“Darcy-Forchhcimer定律”又称非线性渗透定律,当流体流经多孔介质时渗透速度较大,雷诺数超过一定界限(比如大于10)时,流体运动开始偏离达西定律,压力梯度与速度呈二次多项式关系,相当于在Darcy定律的右边增加一个二次项。
“表观速度”是指流体流经多孔介质时,忽略多孔介质存在时的流体速度。对于管流来说,表观速度等于管内速度,量纲为m/s。
“雷诺数(Reynolds number)”是一种可用来表征流体流动情况的无量纲数。,其中分别为流体的流速、密度与黏性系数,为特征长度,对于流体流经多孔介质来说,为多孔介质的特征尺度,通常取平均孔径或平均胞径。
下文重点对本发明单相流体流量测量方法进行详细介绍。
本发明中,使用新型的差压元件,通过差压的测量,由Darcy-Forchhcimer定律,根据流体流经多孔介质时速度与压力梯度的方程:
式中,为表观速度,为流体粘度,为流体密度,为压力梯度,负号表示沿流动方向压力降低。可以根据温度和压力传感器的测量值结合流体物性唯一确定,分别称为渗透系数和惯性系数,为差压元件的标定值。
假设流体为不可压流体,沿着在差压元件内部,压力梯度是线性的,设差压元件的厚度为,于是有:为测量值,通常不区分正负值,一列按正值,因此方程为 该方程为一元二次方程,可直接求解速度,根据速度的物理意义,有:
从而,体积流量为:
质量流量:
本发明所述的测量装置及测量方法,是针对单相不可压流的流量进行测量并计算进行阐述的,该装置及测量方法同样适用于单相可压流体,通过引入压缩修正因子,测量和计算流量的原理和方法可以根据上述内容进行类推。

Claims (8)

1.一种测量单相流体流量的测量装置,其包括以下构件:差压元件、温度传感器、压力传感器和用于测量压差的差压传感器,其特征在于:所述差压元件的材料为多孔介质。
2.根据权利要求1所述的测量装置,其特征在于:流体流经差压元件时,压差与表观速度呈二次多项式关系。
3.根据权利要求1所述的测量装置,其特征在于:用于差压元件的材料,根据其物理特性,可以是各向同性或各向异性多孔介质;根据其微观几何结构,可以是泡沫型多孔介质、蜂窝型多孔介质、规则多孔介质或不规则多孔介质。
4.根据权利要求1所述的测量装置,其特征在于:用于差压元件的多孔介质材料的厚度与多孔介质特征尺度之比值不小于10:1。
5.根据权利要求1所述的测量装置,其特征在于:用于差压元件的多孔介质材料的半径与多孔介质特征尺度之比值不小于10:1。
6.根据权利要求1所述的测量装置,其特征在于:用于差压元件的多孔介质材料,其孔隙率为0.4-0.98,特征尺度0.1-5mm。
7.根据权利要求1所述的测量装置,其特征在于:差压元件的横截面是圆形、椭圆形、正方形、长方形、梯形或其它多边形。
8.一种测量单相流体流量的测量方法,其使用前述权利要求中任一项所述的测量装置,其特征在于,包括以下步骤:
通过温度传感器测量流体温度,压力传感器测量差压元件下游流体压力,差压传感器测量差压元件上、下游之间的压差
通过流体温度、流体压力得到流体粘度和密度,用以下公式来计算流体总流量:
体积流量:
质量流量:
上述式中字母含义如下:
差压元件的横截面积;
差压元件厚度;
为流体流经差压元件的渗透系数,标定值;
为流体流经差压元件的惯性系数,标定值;
流体密度;
流体粘度;
差压,为测量值。
CN201610636753.0A 2016-08-06 2016-08-06 一种测量流体流量的测量装置及测量方法 Pending CN107687876A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610636753.0A CN107687876A (zh) 2016-08-06 2016-08-06 一种测量流体流量的测量装置及测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610636753.0A CN107687876A (zh) 2016-08-06 2016-08-06 一种测量流体流量的测量装置及测量方法

Publications (1)

Publication Number Publication Date
CN107687876A true CN107687876A (zh) 2018-02-13

Family

ID=61151736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610636753.0A Pending CN107687876A (zh) 2016-08-06 2016-08-06 一种测量流体流量的测量装置及测量方法

Country Status (1)

Country Link
CN (1) CN107687876A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109117579A (zh) * 2018-08-30 2019-01-01 沈阳云仿科技有限公司 一种多孔孔板流量计的设计计算方法
CN110662946A (zh) * 2018-03-28 2020-01-07 株式会社木幡计器制作所 流量计测装置和流量计测方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1955693A (zh) * 2005-10-25 2007-05-02 周志丹 一种气体微流量计
CN2935097Y (zh) * 2006-07-18 2007-08-15 中国石油天然气集团公司 多相计量装置用槽式孔板
CN201145593Y (zh) * 2007-07-24 2008-11-05 刘建华 多喉型孔板
CN101451865A (zh) * 2008-12-29 2009-06-10 杭州浙大人工环境工程技术有限公司 高精度可更换式差压流量计
CN101581589A (zh) * 2008-05-12 2009-11-18 姚贤卿 复合式质量流量计
CN201392216Y (zh) * 2009-04-30 2010-01-27 沈阳聚焦科技有限公司 一种节能型差压流量计
CN201476821U (zh) * 2009-07-03 2010-05-19 毛清芳 带旁通桥路的双通道孔板气体流量测量装置
CN201488758U (zh) * 2009-05-19 2010-05-26 沈阳聚焦科技有限公司 一种平衡圆缺孔板差压式流量计
WO2010069307A1 (de) * 2008-12-19 2010-06-24 Forschungszentrum Dresden - Rossendorf E.V. Anordnung und verfahren zur mehrphasendurchflussmessung
CN102840886A (zh) * 2012-08-31 2012-12-26 中国核动力研究设计院 一种基于多孔介质的流量测量装置及其实现方法
CN104197998A (zh) * 2014-08-28 2014-12-10 洛阳市明伟机械科技有限公司 低压损检漏型差压式流量检测装置及标定方法和测量方法
CN204854834U (zh) * 2015-07-31 2015-12-09 辽宁聚焦科技有限公司 一种缓冲型ab对称流量计
CN205002806U (zh) * 2015-09-07 2016-01-27 丹东通博电器(集团)有限公司 双法兰取压平衡式流量计

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1955693A (zh) * 2005-10-25 2007-05-02 周志丹 一种气体微流量计
CN2935097Y (zh) * 2006-07-18 2007-08-15 中国石油天然气集团公司 多相计量装置用槽式孔板
CN201145593Y (zh) * 2007-07-24 2008-11-05 刘建华 多喉型孔板
CN101581589A (zh) * 2008-05-12 2009-11-18 姚贤卿 复合式质量流量计
WO2010069307A1 (de) * 2008-12-19 2010-06-24 Forschungszentrum Dresden - Rossendorf E.V. Anordnung und verfahren zur mehrphasendurchflussmessung
CN101451865A (zh) * 2008-12-29 2009-06-10 杭州浙大人工环境工程技术有限公司 高精度可更换式差压流量计
CN201392216Y (zh) * 2009-04-30 2010-01-27 沈阳聚焦科技有限公司 一种节能型差压流量计
CN201488758U (zh) * 2009-05-19 2010-05-26 沈阳聚焦科技有限公司 一种平衡圆缺孔板差压式流量计
CN201476821U (zh) * 2009-07-03 2010-05-19 毛清芳 带旁通桥路的双通道孔板气体流量测量装置
CN102840886A (zh) * 2012-08-31 2012-12-26 中国核动力研究设计院 一种基于多孔介质的流量测量装置及其实现方法
CN104197998A (zh) * 2014-08-28 2014-12-10 洛阳市明伟机械科技有限公司 低压损检漏型差压式流量检测装置及标定方法和测量方法
CN204854834U (zh) * 2015-07-31 2015-12-09 辽宁聚焦科技有限公司 一种缓冲型ab对称流量计
CN205002806U (zh) * 2015-09-07 2016-01-27 丹东通博电器(集团)有限公司 双法兰取压平衡式流量计

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662946A (zh) * 2018-03-28 2020-01-07 株式会社木幡计器制作所 流量计测装置和流量计测方法
CN113029261A (zh) * 2018-03-28 2021-06-25 株式会社木幡计器制作所 流量计测装置
CN109117579A (zh) * 2018-08-30 2019-01-01 沈阳云仿科技有限公司 一种多孔孔板流量计的设计计算方法
CN109117579B (zh) * 2018-08-30 2022-12-27 沈阳云仿致准科技股份有限公司 一种多孔孔板流量计的设计计算方法

Similar Documents

Publication Publication Date Title
US8056424B2 (en) Multi-channel flow sensor with extended flow range and faster response
CN103353908B (zh) 一种基于数值计算的管路阻力系数精确计算方法
CN105067049B (zh) 一种基于旋流原理的差压式流量测量装置及方法
CN101881640A (zh) 涡街质量流量计
Hua et al. Wet gas meter based on the vortex precession frequency and differential pressure combination of swirlmeter
Hua et al. Wet gas metering technique based on slotted orifice and swirlmeter in series
Dobrowolski et al. A mathematical model of the self-averaging Pitot tube: A mathematical model of a flow sensor
CN107687876A (zh) 一种测量流体流量的测量装置及测量方法
CN114444343A (zh) 一种湿天然气文丘里管流量计虚高数值模拟方法
CN101393043A (zh) 一种高频响应流量计及其测量方法
von Backstro¨ m et al. Pressure drop in solar power plant chimneys
CN115307693B (zh) 一种多量程可调节式mems差压流量计
CN202903248U (zh) 井口简易孔板流量计
CN201707087U (zh) 涡街质量流量计
CN109443458A (zh) 一种凹弧形双流向均速管流量计
Singh et al. Design of a bluff body for development of variable area orifice-meter
CN209416421U (zh) 一种孔板平衡流量计
CN110186523B (zh) 差压式流量计测量液体动态流量方法
CN202362023U (zh) 翼型流量计
CN206670700U (zh) 一种渠道毕托管分流式量水计
CN105091967A (zh) 一种利用管道本身或管道内障碍物的流量测量方法
Sun et al. Influence of bluff body shape on wall pressure distribution in vortex flowmeter
CN204944560U (zh) 一种高在线性扩散管双矩形流量计
CN217133883U (zh) 一种伯努利演示实验装置
CN204085580U (zh) 一种调整型对称流量计

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination