WO2010067483A1 - Thin film transistor and method for manufacturing the thin film transistor - Google Patents

Thin film transistor and method for manufacturing the thin film transistor Download PDF

Info

Publication number
WO2010067483A1
WO2010067483A1 PCT/JP2009/003499 JP2009003499W WO2010067483A1 WO 2010067483 A1 WO2010067483 A1 WO 2010067483A1 JP 2009003499 W JP2009003499 W JP 2009003499W WO 2010067483 A1 WO2010067483 A1 WO 2010067483A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon layer
concentration region
layer
film transistor
low concentration
Prior art date
Application number
PCT/JP2009/003499
Other languages
French (fr)
Japanese (ja)
Inventor
岡部達
博彦 錦
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2010067483A1 publication Critical patent/WO2010067483A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78678Polycrystalline or microcrystalline silicon transistor with inverted-type structure, e.g. with bottom gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78669Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Definitions

  • the present invention relates to a thin film transistor and a manufacturing method thereof, and more particularly to a bottom gate (inverse stagger) type thin film transistor and a manufacturing method thereof.
  • TFTs Thin film transistors
  • organic EL electroactive electrowetting
  • FIG. 10 is a cross-sectional view of a general bottom gate type TFT 105.
  • the TFT 105 corresponds to the gate electrode 111 provided on the glass substrate 110, the gate insulating film 112 provided so as to cover the gate electrode 111, and the gate electrode 111 on the gate insulating film 112.
  • the semiconductor layer 113 provided in an island shape at a position where the source electrode 114a and the drain electrode 114b are provided so as to be separated from each other on the semiconductor layer 113.
  • the semiconductor layer 113 includes a lower intrinsic amorphous silicon layer 113a and an upper n + amorphous silicon layer 113b doped with phosphorus, and includes a source electrode 114a and a drain electrode. Intrinsic amorphous silicon layer 113a exposed from 114b constitutes channel portion C.
  • the n + amorphous silicon film constituting the n + amorphous silicon layer 113b by performing channel etching for removing by dry etching, the channel section C is formed.
  • the n + amorphous silicon film constituting the n + amorphous silicon layer 113b and the intrinsic amorphous silicon film constituting the intrinsic amorphous silicon layer 113a have similar film qualities, in the channel etching, It is difficult to increase the selectivity between the n + amorphous silicon film and the intrinsic amorphous silicon film.
  • substrates constituting liquid crystal display panels and organic EL display panels that is, substrates for forming TFTs are becoming larger and larger.
  • a TFT is formed on a large glass substrate having a side of 1500 mm or more.
  • the variation of the film thickness of the n + amorphous silicon layer becomes about ⁇ 20% within the substrate surface.
  • a gate electrode, a gate insulating film, an operating semiconductor layer, an n-type impurity semiconductor layer, and a conductor layer are formed on a glass substrate, and the conductor layer and the n-type impurity semiconductor layer are etched. Then, in the method of manufacturing a liquid crystal display device having a TFT in which the upper layer of the operating semiconductor layer on the gate electrode is exposed to form a source electrode and a drain electrode, the conductor layer and the n-type impurity semiconductor layer are etched. And forming a residual layer on the glass substrate that is etched simultaneously. According to this, it is described that a liquid crystal display device having a channel etch type TFT having stable characteristics can be manufactured by reliably detecting the end point of channel etching.
  • the n-type impurity semiconductor layer (n + amorphous silicon film) is used as the film thickness of the residual layer.
  • the film thickness in the substrate surface at the time of forming the n + amorphous silicon film and at the time of dry etching In view of the variation of the above, it is difficult to reliably form TFTs having stable characteristics.
  • the selection ratio at the time of dry etching of the intrinsic amorphous silicon film and the n + amorphous silicon film, that is, the semiconductor layer is formed. Therefore, it is desired to increase the selectivity during etching of the first silicon layer and the second silicon layer.
  • the present invention has been made in view of such a point, and an object of the present invention is to make the selectivity ratio of the first silicon layer and the second silicon layer constituting the semiconductor layer as high as possible. It is in.
  • the first silicon layer has a low concentration region having a hydrogen content of 3 atomic% or less.
  • a thin film transistor includes a gate electrode provided on a substrate, a gate insulating film provided so as to cover the gate electrode, and a channel provided on the gate insulating film so as to overlap the gate electrode.
  • the hydrogen content is 3 atomic% or less in the low concentration region of the first silicon layer, the hydrogen content (for example, about 10 atomic%) of the first silicon layer of the conventional thin film transistor. Is also low.
  • Table 1 the present inventors, for example, an intrinsic amorphous silicon film in which the hydrogen content of an intrinsic amorphous silicon film formed by a CVD method is 3 atomic% or less by laser annealing, The original knowledge that the etching rate is extremely slow (for example, about 1/18) in dry etching using hydrogen gas as a main component, compared to an intrinsic amorphous silicon film or n + amorphous silicon film formed by simply CVD. Obtained.
  • the first silicon layer and the first silicon layer constituting the semiconductor layer are suppressed. It becomes possible to increase the selectivity during etching of the two silicon layers as much as possible.
  • each film is wet etched using an etchant containing hydrogen peroxide and fluorine, as shown in Table 2 below. It was also confirmed that the etching rate of the intrinsic amorphous silicon film, which is 3 atomic% or less by annealing, is slower than the etching rate of the intrinsic amorphous silicon film or n + amorphous silicon film formed by the CVD method. Therefore, it is possible to increase the selectivity as in dry etching using hydrogen gas as a main component, so that it is not necessary to increase the thickness of an intrinsic amorphous silicon film as a sacrificial layer in the conventional manner. There is an advantage that tact time can be shortened and material cost can be reduced.
  • the low concentration region may be disposed on the entire first silicon layer.
  • the low concentration region is disposed on the entire first silicon layer, formation of the second silicon layer exposed from the source electrode and the drain electrode is formed in order to form the second silicon layer and the channel portion. Even if the layer is removed by dry etching, the removal of the first silicon layer below the layer is specifically suppressed.
  • the film thickness of the first silicon layer may be 200 mm or more and 800 mm or less.
  • the first silicon layer since the thickness of the first silicon layer is 200 mm or more and 800 mm or less, the first silicon layer has an appropriate film thickness to function as an intrinsic semiconductor layer. It becomes possible to improve.
  • the first silicon layer is disposed in the channel portion so as to correspond to the source electrode and the drain electrode on the outside of the low concentration region and the low concentration region, and has a higher hydrogen content than the low concentration region. And may have a region.
  • the low concentration region with a relatively low hydrogen content has a relatively high crystallinity
  • the high concentration region with a relatively high hydrogen content has a relatively low crystallinity.
  • the high-concentration region becomes a buffer region for relaxing the electric field between the low-concentration region and the source and drain electrodes, and the off-state current of the thin film transistor can be reduced.
  • the first silicon layer may have crystallinity.
  • the mobility of the first silicon layer is increased to, for example, about 1 cm 2 / Vs to 500 cm 2 / Vs, and the first silicon layer
  • a high-functional circuit such as a gate driver or a source driver can be configured.
  • the thin film transistor manufacturing method includes a gate electrode provided on a substrate, a gate insulating film provided so as to cover the gate electrode, and a gate insulating film provided on the gate insulating film so as to overlap the gate electrode.
  • a method of manufacturing a thin film transistor having a second silicon layer doped with an impurity between the first silicon layer and the source electrode and the drain electrode, wherein the first silicon film to be the first silicon layer is formed A low concentration region forming step for forming a low concentration region having a hydrogen content of 3 atomic% or less, and a substrate on which the low concentration region is formed, A semiconductor layer forming etching step of removing a part of the semiconductor layer forming layer to be the semiconductor layer by performing dry etching using an elementary gas or wet etching using an etchant containing hydrogen peroxide and fluorine. It is characterized by providing.
  • the low concentration region having a hydrogen content of 3 atomic% or less is formed in the first silicon film to be the first silicon layer.
  • the hydrogen content (for example, about 10 atomic%) of the first silicon layer of the thin film transistor is lower.
  • Table 1 below the present inventors, for example, an intrinsic amorphous silicon film in which the hydrogen content of an intrinsic amorphous silicon film formed by a CVD method is 3 atomic% or less by laser annealing, The original knowledge that the etching rate is extremely slow (for example, about 1/18) in dry etching using hydrogen gas as a main component, compared to an intrinsic amorphous silicon film or n + amorphous silicon film formed by simply CVD.
  • the hydrogen content of at least a part (low concentration region) of the first silicon film is suppressed to 3 atomic% or less by laser annealing, and further, semiconductor layer formation etching is performed.
  • semiconductor layer formation etching is performed.
  • each film is wet etched using an etchant containing hydrogen peroxide and fluorine, as shown in Table 2 below. It was also confirmed that the etching rate of the intrinsic amorphous silicon film, which is 3 atomic% or less by annealing, is slower than the etching rate of the intrinsic amorphous silicon film or n + amorphous silicon film formed by the CVD method.
  • the low concentration region may be formed by irradiating the first silicon film with laser light.
  • the crystallinity of the low concentration region of the first silicon film can be improved.
  • a high-performance thin film transistor having a mobility of about 1 cm 2 / Vs to 500 cm 2 / Vs can be manufactured.
  • the low-concentration region is formed in at least a region to be the channel portion of the first silicon film, and the second silicon layer is formed on the first silicon film in which the low-concentration region is formed.
  • the channel portion may be formed by removing the layer forming layer.
  • the low concentration region is formed in at least the region to be the channel portion of the first silicon film, and in the source / drain forming step, the second silicon layer forming layer is formed in the low concentration region.
  • a source electrode and a drain electrode are formed thereon, and the second silicon layer formation layer exposed from the source electrode and the drain electrode is removed in the semiconductor layer formation etching step. To be manufactured.
  • the low concentration region is formed in the first silicon layer forming layer that is the first silicon layer exposed from the source electrode and the drain electrode, and in the semiconductor layer forming etching step, the low concentration region is formed.
  • the channel portion is disposed corresponding to the source electrode and the drain electrode and has a higher hydrogen content than the low concentration region.
  • a concentration region may be formed.
  • the low concentration region is formed in the first silicon layer forming layer exposed from the source electrode and the drain electrode in the low concentration region forming step, and is disposed outside the low concentration region in the semiconductor layer forming etching step. A part of the first silicon layer forming layer to be removed is removed to form a high concentration region in the channel portion.
  • the low concentration region having a relatively low hydrogen content has a relatively high crystallinity
  • the high concentration region having a relatively high hydrogen content has a relatively low crystallinity.
  • the wavelength of the laser beam may be 248 nm or more and 355 nm or less.
  • the wavelength of the laser beam applied to the first silicon film is not less than 248 nm and not more than 355 nm, even if the first silicon film is formed thin, the laser beam is transmitted through the first silicon film. Is suppressed, and a high-performance thin film transistor can be manufactured without damaging the gate electrode and the gate insulating film.
  • the substrate may be a rectangular glass substrate having a short side of 1500 mm or more.
  • the substrate is a large glass substrate, the effects of the present invention are effectively exhibited.
  • the etching selectivity of the first silicon layer and the second silicon layer constituting the semiconductor layer can be made as high as possible.
  • FIG. 1 is a cross-sectional view of a TFT 5a according to the first embodiment.
  • FIG. 2 is a flowchart for manufacturing the TFT 5a.
  • FIG. 3 is a cross-sectional view of the substrate in the low concentration region forming step according to the first embodiment.
  • FIG. 4 is a cross-sectional view of the substrate in the hydrogen gas etching process according to the first embodiment.
  • FIG. 5 is a cross-sectional view of the TFT 5b according to the second embodiment.
  • FIG. 6 is a flowchart for manufacturing the TFT 5b.
  • FIG. 7 is a cross-sectional view of the substrate after the TFT pattern forming process according to the second embodiment.
  • FIG. 8 is a cross-sectional view of the substrate in the low concentration region forming step according to the second embodiment.
  • FIG. 9 is a cross-sectional view of the substrate in the hydrogen gas etching process according to the second embodiment.
  • FIG. 10 is a cross-sectional view of a general bottom gate type TFT 105.
  • Embodiment 1 of the Invention 1 to 4 show a first embodiment of a thin film transistor (TFT) and a method for manufacturing the same according to the present invention. Specifically, FIG. 1 is a cross-sectional view of the TFT 5a of this embodiment.
  • TFT thin film transistor
  • the TFT 5 a corresponds to the gate electrode 11 provided on the insulating substrate 10, the gate insulating film 12 provided so as to cover the gate electrode 11, and the gate electrode 11 on the gate insulating film 12.
  • the semiconductor layer 13 is provided in an island shape at a position where the source electrode 14 a and the drain electrode 14 b are provided so as to be separated from each other on the semiconductor layer 13.
  • the semiconductor layer 13 includes a lower intrinsic amorphous silicon layer 13a provided as a first silicon layer and an upper phosphorus-doped n + amorphous silicon layer 13b provided as a second silicon layer.
  • the intrinsic amorphous silicon layer 13a exposed from the source electrode 14a and the drain electrode 14b constitutes the channel portion C.
  • the entire intrinsic amorphous silicon layer 13a is a low concentration region Ra having a hydrogen content of 3 atomic% or less.
  • the TFT 5a having the above-described configuration is provided as a switching element connected to each pixel electrode of an active matrix substrate in which a plurality of pixel electrodes are arranged in a matrix, for example, and the active matrix substrate is opposed to the opposing one.
  • a liquid crystal display panel is constituted with a substrate and a liquid crystal layer sealed between the two substrates.
  • the manufacturing method of the TFT 5a of this embodiment includes a gate electrode formation step, a GI / i-Si layer formation step, a low concentration region formation step, an n + -Si film formation step, an n + A Si layer forming step, a source / drain forming step, a semiconductor layer forming etching step, and a resist stripping step;
  • FIG. 3 is a cross-sectional view of the substrate in the low concentration region forming step of the present embodiment
  • FIG. 4 is a cross-sectional view of the substrate in the semiconductor layer forming etching step of the present embodiment.
  • a first metal film such as an aluminum film, a copper film, or a titanium film is formed on the entire substrate of the insulating substrate 10 such as a glass substrate (for example, 0.7 mm ⁇ 1500 mm ⁇ 1800 mm) by a sputtering method to a thickness of 3000 mm. Film is formed to the extent.
  • a photosensitive resin film is applied to the entire substrate on which the first metal film has been formed by spin coating, and then patterned to form a first resist pattern.
  • the first resist pattern is peeled off to form the gate electrode 11.
  • a gate insulating film is formed by forming a silicon nitride film, a silicon oxide film, or the like with a thickness of about 4000 mm on the entire substrate on which the gate electrode 11 has been formed in the gate electrode formation step by a CVD (Chemical Vapor Deposition) method. 12 is formed.
  • an intrinsic amorphous silicon film is formed as a first silicon film with a thickness of about 200 to 800 mm on the entire substrate on which the gate insulating film 12 is formed by a CVD method.
  • the intrinsic amorphous silicon film formed by the CVD method is generally formed by introducing silane gas or hydrogen gas into the reaction chamber, the hydrogen content is 10 atomic% or more.
  • a second resist pattern is formed by applying a photosensitive resin film to the entire substrate on which the intrinsic amorphous silicon film has been formed by spin coating, followed by patterning.
  • the second resist pattern is peeled off to form an intrinsic amorphous silicon layer (13a).
  • ⁇ Low concentration region forming step (St13)> As shown in FIG. 3, laser light L (for example, excimer laser light having a wavelength of 308 nm) having a wavelength of 248 nm or more and 355 nm or less is applied to the intrinsic amorphous silicon layer (13a) formed in the GI / i-Si layer forming process. , The amorphous silicon is crystallized by laser annealing, and the hydrogen content is reduced to 3 atomic% or less to form the low concentration region Ra.
  • laser annealing is exemplified as a method for forming the low concentration region Ra, but lamp annealing, oven annealing, or the like may be used.
  • the ratio of H 2 gas flow rate / SiH 4 gas flow rate may be set.
  • the CVD conditions may be set so that the film is formed at a temperature of 20 or more and the hydrogen content is lowered.
  • n + amorphous silicon film doped with phosphorus as a second silicon film is formed to a thickness of about 500 mm on the entire substrate on which the low concentration region Ra has been formed in the low concentration region forming step by the CVD method.
  • the n + amorphous silicon film is formed by introducing hydrogen gas as in the case of the intrinsic amorphous silicon film described above, the hydrogen content is 10 atomic% or more.
  • a third resist pattern is formed by applying a photosensitive resin film to the entire substrate on which the n + amorphous silicon film has been formed in the n + -Si film forming process by spin coating, followed by patterning. Form.
  • the third resist pattern is peeled off to form a second silicon layer forming layer (semiconductor layer forming layer).
  • N + amorphous silicon layer forming layer 13ba is formed (see FIG. 4).
  • the n + amorphous silicon film can be easily formed by reactive dry etching using a fluorine-based gas such as sulfur hexafluoride gas or carbon tetrafluoride gas and a chlorine-based gas such as hydrogen chloride gas or chlorine gas. (See Table 1).
  • a second metal film such as an aluminum film, a copper film, or a titanium film is sputtered to a thickness of about 3000 mm on the entire substrate on which the n + amorphous silicon layer forming layer 13ba has been formed in the n + -Si layer forming step.
  • the film is formed by
  • a photosensitive resin film is applied to the entire substrate on which the second metal film has been formed by spin coating, and then patterned to form a fourth resist pattern.
  • the second metal film exposed from the fourth resist pattern is removed by dry etching to form the source electrode 14a and the drain electrode 14b (see FIG. 4).
  • n + amorphous silicon layer forming layer 13ba exposed from the source electrode 14a and the drain electrode 14b formed in the source / drain formation step is subjected to reactive ion etching or plasma using hydrogen gas as a main component.
  • reactive ion etching or plasma using hydrogen gas as a main component.
  • the n + amorphous silicon layer 13b is formed.
  • the intrinsic amorphous silicon layer 13a having a hydrogen content of 3 atomic% or less is hardly removed by the generated hydrogen radicals or hydrogen ions because the hydrogen content is small.
  • n + amorphous silicon layer forming layer 13ba whose amount is 10 atomic% or more, it is easily removed by the generated hydrogen radicals or hydrogen ions, and therefore between the intrinsic amorphous silicon layer 13a and the n + amorphous silicon layer forming layer 13ba. High selectivity can be realized.
  • the n + amorphous silicon layer forming layer 13ba exposed from the source electrode 14a and the drain electrode 14b formed in the source / drain formation step is oxidized as shown in FIG.
  • Wet etching may be performed with an etchant containing hydrogen and fluorine and using a fluorine compound as a main component.
  • the fluorine compound is known to etch silicon, but the n + amorphous silicon layer having a high hydrogen content has a higher etching rate than the intrinsic amorphous silicon layer 13a having a low hydrogen content.
  • the fluorine compound can etch titanium metal
  • the source / drain formation step (St16) can be performed at the same time when a single layer or a multilayer wiring is used for the source / drain metal. There is an advantage that can be reduced.
  • ⁇ Resist stripping step (St18)> The fourth resist pattern is peeled off from the substrate on which the n + amorphous silicon layer 13b is formed in the semiconductor layer formation etching step.
  • the TFT 5a of this embodiment can be manufactured.
  • the low concentration region Ra having a hydrogen content of 3 atomic% or less is formed in the intrinsic amorphous silicon layer 13a in the low concentration region forming step.
  • the hydrogen content for example, about 10 atomic% of the intrinsic amorphous silicon layer 113a of the conventional TFT 105 (see FIG. 10) is lower.
  • an intrinsic amorphous silicon film in which the hydrogen content of an intrinsic amorphous silicon film formed by a CVD method is 3 atomic% or less by laser annealing The etching rate is extremely slow (for example, about 1/18) in dry etching using hydrogen gas as a main component, as compared with an intrinsic amorphous silicon film or an n + amorphous silicon film formed simply by a CVD method.
  • an intrinsic amorphous silicon film in which the hydrogen content of the intrinsic amorphous silicon film formed by the CVD method is 3 atomic% or less by laser annealing is simply formed by the CVD method.
  • the hydrogen content of the intrinsic amorphous silicon layer 13a (low concentration region Ra) is suppressed to 3 atomic% or less by laser annealing, and in the semiconductor layer formation etching step, When the n + amorphous silicon layer forming layer 13ba exposed from the source electrode 14a and the drain electrode 14b is removed by performing dry etching using a gas or wet etching using an etchant containing hydrogen peroxide and fluorine, an intrinsic property is obtained.
  • the intrinsic amorphous silicon layer 13a and the n + amorphous silicon layer 13b (n + amorphous silicon layer forming layer 13ba) constituting the semiconductor layer 13 are etched. Selectivity It can be increased retroactively.
  • the film thickness of the intrinsic amorphous silicon layer 13a is not less than 200 mm and not more than 800 mm, the intrinsic amorphous silicon layer 13a has an appropriate film thickness to function as an intrinsic semiconductor layer. ON characteristics and productivity can be improved.
  • the semiconductor layer 13 including the intrinsic amorphous silicon layer 13a can constitute not only a TFT provided in each pixel of a liquid crystal display panel or an organic EL display panel, but also a high function circuit such as a gate driver or a source driver.
  • the wavelength of the laser light L applied to the intrinsic amorphous silicon layer 13a is not less than 248 nm and not more than 355 nm. Therefore, even if the intrinsic amorphous silicon layer 13a is formed thin. The transmission of the laser light L in the intrinsic amorphous silicon layer 13a is suppressed, and a high-performance TFT can be manufactured without damaging the gate electrode 11 and the gate insulating film 12.
  • FIG. 5 is a cross-sectional view of the TFT 5b of the second embodiment.
  • the same parts as those in FIGS. 1 to 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the TFT 5b includes a gate electrode 11 provided on the insulating substrate 10, a gate insulating film 12 provided so as to cover the gate electrode 11, and a gate, as shown in FIG.
  • a semiconductor layer 13 provided in an island shape at a position corresponding to the gate electrode 11 on the insulating film 12, and a source electrode 14 c and a drain electrode 14 d provided on the semiconductor layer 13 so as to be separated from each other are provided.
  • the semiconductor layer 13 includes a lower intrinsic amorphous silicon layer 13c provided as a first silicon layer, and an upper phosphorus + doped n + amorphous silicon layer 13d provided as a second silicon layer.
  • the intrinsic amorphous silicon layer 13c exposed from the source electrode 14c, the drain electrode 14d, and the n + amorphous silicon layer 13d constitutes the channel portion C.
  • the channel portion C of the intrinsic amorphous silicon layer 13c is disposed corresponding to the source electrode 14c and the drain electrode 14d on the outer side of the low concentration region Ra having a hydrogen content of 3 atomic% or less and the low hydrogen concentration.
  • the manufacturing method of the TFT 5b of this embodiment includes a TFT pattern forming step, a low concentration region forming step, and a hydrogen gas etching step (semiconductor layer forming etching step) as shown in the flowchart of FIG.
  • FIG. 7 is a cross-sectional view of the substrate after the TFT pattern forming process of the present embodiment
  • FIG. 8 is a cross-sectional view of the substrate in the low-concentration region forming process of the present embodiment
  • ⁇ TFT pattern forming step (St21)> First, for example, a first metal film such as an aluminum film, a copper film, or a titanium film is formed on the entire substrate of the insulating substrate 10 such as a glass substrate with a thickness of about 3000 mm by a sputtering method.
  • a first metal film such as an aluminum film, a copper film, or a titanium film is formed on the entire substrate of the insulating substrate 10 such as a glass substrate with a thickness of about 3000 mm by a sputtering method.
  • a photosensitive resin film is applied to the entire substrate on which the first metal film has been formed by spin coating, and then patterned to form a first resist pattern.
  • the first resist pattern is peeled off to form the gate electrode 11.
  • a gate insulating film 12 is formed on the entire substrate on which the gate electrode 11 has been formed by forming a silicon nitride film, a silicon oxide film, or the like with a thickness of about 4000 mm by a CVD (Chemical Vapor Deposition) method.
  • CVD Chemical Vapor Deposition
  • an intrinsic amorphous silicon film having a thickness of about 2000 mm is formed as a first silicon film on the entire substrate on which the gate insulating film 12 is formed by CVD, and then phosphorus is doped as the second silicon film.
  • + Amorphous silicon film is formed with a thickness of about 500 mm.
  • a second resist pattern is formed by applying a photosensitive resin film to the entire substrate on which the intrinsic amorphous silicon film and the n + amorphous silicon film are sequentially formed by spin coating, followed by patterning.
  • the second resist pattern is peeled off to form a semiconductor layer forming layer.
  • a second metal film such as an aluminum film, a copper film, or a titanium film is formed by sputtering on the entire substrate on which the semiconductor layer forming layer has been formed by sputtering.
  • a photosensitive resin film is applied to the entire substrate on which the second metal film is formed by spin coating, and then patterned to form a third resist pattern.
  • the second metal film exposed from the third resist pattern is removed by dry etching to form the source electrode 14c and the drain electrode 14d (see FIG. 7).
  • the upper layer portion of the n + amorphous silicon layer forming layer exposed from the source electrode 14c and the drain electrode 14d and the intrinsic amorphous silicon layer forming layer disposed below the n + amorphous silicon layer forming layer is made of fluorine such as sulfur hexafluoride gas or carbon tetrafluoride gas.
  • the TFT pattern 15 is formed as shown in FIG. 7 by removing by reactive dry etching using a system gas and a chlorine-based gas such as hydrogen chloride gas or chlorine gas.
  • ⁇ Low concentration region forming step (St22)> As shown in FIG. 8, laser light L (for example, excimer laser light having a wavelength of 308 nm) having a wavelength of 248 nm or more and 355 nm or less is applied to the intrinsic amorphous silicon layer forming layer 13ca of the TFT pattern 15 formed in the TFT pattern forming step. , The amorphous silicon is crystallized by laser annealing, and the hydrogen content is reduced to 3 atomic% or less to form the low concentration region Ra.
  • laser light L for example, excimer laser light having a wavelength of 308 nm
  • the amorphous silicon is crystallized by laser annealing, and the hydrogen content is reduced to 3 atomic% or less to form the low concentration region Ra.
  • the source electrode 14c and the drain electrode 14d are made of a highly reflective material such as an aluminum film or a silver film
  • the laser beam L is applied to the intrinsic amorphous silicon layer forming layer 13ca disposed below the source electrode 14c and the drain electrode 14d. Not irradiated. Therefore, the intrinsic amorphous silicon layer forming layer 13ca disposed below the source electrode 14c and the drain electrode 14d is not laser-annealed, so that the high concentration region Rb is formed outside the low concentration region Ra.
  • n + amorphous silicon layer formation layer 13da exposed from the source electrode 14a and the drain electrode 14b and the intrinsic amorphous silicon layer formation layer 13ca disposed below the n + amorphous silicon layer formation layer 13ca
  • a hydrogen plasma P generated by ionic dry etching using hydrogen gas as a main component is used for the upper layer portion by utilizing an isotropic high-density plasma etching apparatus using a coil or the like.
  • the intrinsic amorphous silicon layer 13c and the n + amorphous silicon layer 13d are formed by removing.
  • the intrinsic amorphous silicon layer formation layer 13ca has a low hydrogen concentration of 3 atomic% or less, but the low concentration region Ra has low ionicity and is hardly removed.
  • the high concentration region Rb having a hydrogen content of about 10 atomic% and the n + amorphous silicon layer forming layer 13ba having a hydrogen content of about 10 atomic% have high ionicity and are easily removed.
  • the amorphous silicon layer forming layer 13ca and the n + amorphous silicon layer da are removed by about 1 ⁇ m to the side.
  • the TFT 5b of this embodiment can be manufactured.
  • the hydrogen content in the intrinsic amorphous silicon layer forming layer 13ca to be the intrinsic amorphous silicon layer 13c is 3 atomic% or less in the low concentration region forming step. Since the low concentration region Ra is formed, the hydrogen concentration (for example, about 10 atomic%) of the intrinsic amorphous silicon layer 113a of the conventional TFT 105 (see FIG. 10) is lower in the low concentration region Ra.
  • an intrinsic amorphous silicon film in which the hydrogen content of the intrinsic amorphous silicon film formed by the CVD method is 3 atomic% or less by laser annealing is simply formed by the CVD method.
  • a low concentration region Ra having a hydrogen content of 3 atomic% or less is formed in the intrinsic amorphous silicon layer forming layer 13ca exposed from the source electrode 14c and the drain electrode 14d by laser annealing. Dry etch using By removing a part of the semiconductor layer forming layer that becomes the semiconductor layer by forming the high concentration region Rb in the channel portion C, the low concentration region Ra of the intrinsic amorphous silicon layer forming layer 13ca is removed.
  • the high concentration region Rb and the n + amorphous silicon layer formation layer da of the intrinsic amorphous silicon layer formation layer 13ca disposed outside the low concentration region Ra are removed, so that the intrinsic amorphous silicon layer constituting the semiconductor layer 13c is removed.
  • the selection ratio during dry etching of 13c (intrinsic amorphous silicon layer forming layer 13ca) and n + amorphous silicon layer 13d (n + amorphous silicon layer forming layer 13da) can be made as high as possible.
  • the low concentration region Ra having a relatively low hydrogen content has a relatively high crystallinity and a relatively high hydrogen content. Since the high concentration region Rb is relatively low in crystallinity, the high concentration region Rb becomes a buffer region for relaxing the electric field between the low concentration region Ra and the source electrode 14c and drain electrode 14d. The off current can be reduced.
  • the defect portion in the silicon generated after irradiation with the laser beam L can be terminated by hydrogen plasma, so that the TFT characteristics (mobility and off-current) are improved. Can be made.
  • St23 of this embodiment dry etching using hydrogen gas is performed, but wet etching using an etchant containing hydrogen peroxide and fluorine may be performed.
  • an n-channel TFT in which the second silicon layer is doped with phosphorus is exemplified, but the present invention is also applicable to a p-channel TFT in which the second silicon layer is doped with boron. Can do.
  • the present invention is useful for, for example, an active matrix liquid crystal display panel and an organic EL display panel.

Abstract

Disclosed is a thin film transistor (TFT) (5a) comprising a substrate (10), a gate electrode (11) provided on the substrate (10), a gate insulating film (12) provided so as to cover the gate electrode (11), and a semiconductor layer (13) provided on the gate insulating film (12).  The semiconductor layer (13) comprises a first silicon layer (13a) that has a channel part (C) provided so as to overlap with the gate electrode (11), and a source electrode (14a) and a drain electrode (14b) that are provided away from each other on the semiconductor layer (13) so as to expose the channel part (C).  The semiconductor layer (13) further comprises an impurity-doped second silicon layer (13b) provided between the first silicon layer (13a) and the source and drain electrodes (14a, 14b).  The first silicon layer (13a) has a low-concentration region (Ra) having a hydrogen content of not more than 3 atomic%.

Description

薄膜トランジスタ及びその製造方法Thin film transistor and manufacturing method thereof
 本発明は、薄膜トランジスタ及びその製造方法に関し、特に、ボトムゲート(逆スタガー)型の薄膜トランジスタ及びその製造方法に関するものである。 The present invention relates to a thin film transistor and a manufacturing method thereof, and more particularly to a bottom gate (inverse stagger) type thin film transistor and a manufacturing method thereof.
 薄膜トランジスタ(Thin Film Transistor 以下、TFTと省略する)は、アクティブマトリクス駆動方式の液晶表示パネルや有機EL(electroluminescence)表示パネルのスイッチング素子として、広く利用されている。 Thin film transistors (hereinafter referred to as TFTs) are widely used as switching elements for active matrix liquid crystal display panels and organic EL (electroluminescence) display panels.
 図10は、一般的なボトムゲート型のTFT105の断面図である。 FIG. 10 is a cross-sectional view of a general bottom gate type TFT 105.
 TFT105は、図10に示すように、ガラス基板110上に設けられたゲート電極111と、ゲート電極111を覆うように設けられたゲート絶縁膜112と、ゲート絶縁膜112上でゲート電極111に対応する位置に島状に設けられた半導体層113と、半導体層113上で互いに離間するように設けられたソース電極114a及びドレイン電極114bとを備えている。ここで、半導体層113は、例えば、図10に示すように、下層の真性アモルファスシリコン層113aと、その上層のリンがドープされたnアモルファスシリコン層113bとを備え、ソース電極114a及びドレイン電極114bから露出する真性アモルファスシリコン層113aがチャネル部Cを構成している。 As shown in FIG. 10, the TFT 105 corresponds to the gate electrode 111 provided on the glass substrate 110, the gate insulating film 112 provided so as to cover the gate electrode 111, and the gate electrode 111 on the gate insulating film 112. The semiconductor layer 113 provided in an island shape at a position where the source electrode 114a and the drain electrode 114b are provided so as to be separated from each other on the semiconductor layer 113. Here, for example, as shown in FIG. 10, the semiconductor layer 113 includes a lower intrinsic amorphous silicon layer 113a and an upper n + amorphous silicon layer 113b doped with phosphorus, and includes a source electrode 114a and a drain electrode. Intrinsic amorphous silicon layer 113a exposed from 114b constitutes channel portion C.
 このTFT105を製造する際には、ソース電極114a及びドレイン電極114bを形成した後に、nアモルファスシリコン層113bを構成するnアモルファスシリコン膜をドライエッチングで除去するチャネルエッチングを行うことにより、チャネル部Cが形成される。ここで、nアモルファスシリコン層113bを構成するnアモルファスシリコン膜と、真性アモルファスシリコン層113aを構成する真性アモルファスシリコン膜とは、互いに似通った膜質を有しているので、上記チャネルエッチングにおいて、nアモルファスシリコン膜と真性アモルファスシリコン膜との選択比を高くすることが困難である。また、近年、液晶表示パネルや有機EL表示パネルを構成する基板、すなわち、TFTを形成するための基板は、益々大型化しているので、例えば、1辺が1500mm以上の大型のガラス基板上にTFTを形成する場合には、nアモルファスシリコン膜を基板上に成膜する際の膜厚のばらつき、及びそのnアモルファスシリコン膜の一部をドライエッチングで除去する際のエッチング量のばらつきにより、nアモルファスシリコン層の膜厚のばらつきが基板面内で±20%程度になってしまう。そのため、従来のTFTの製造では、本来300Å程度に薄く形成すればよい真性アモルファスシリコン膜を3000Å近くまで厚く成膜する必要があるので、TFTの生産性を低下させるだけでなく、余分な真性アモルファスシリコン層が抵抗成分となることによりTFTのオン特性も低下させるという問題があった。 In making the TFT105, after forming the source electrode 114a and drain electrode 114b, the n + amorphous silicon film constituting the n + amorphous silicon layer 113b by performing channel etching for removing by dry etching, the channel section C is formed. Here, since the n + amorphous silicon film constituting the n + amorphous silicon layer 113b and the intrinsic amorphous silicon film constituting the intrinsic amorphous silicon layer 113a have similar film qualities, in the channel etching, It is difficult to increase the selectivity between the n + amorphous silicon film and the intrinsic amorphous silicon film. Also, in recent years, substrates constituting liquid crystal display panels and organic EL display panels, that is, substrates for forming TFTs are becoming larger and larger. For example, a TFT is formed on a large glass substrate having a side of 1500 mm or more. When forming the n + amorphous silicon film on the substrate, the variation in the film thickness, and the variation in the etching amount when removing a part of the n + amorphous silicon film by dry etching, The variation of the film thickness of the n + amorphous silicon layer becomes about ± 20% within the substrate surface. Therefore, in the manufacture of the conventional TFT, it is necessary to form an intrinsic amorphous silicon film that should be formed as thin as about 300 mm, so that it can be as thick as nearly 3000 mm. There is a problem in that the on-characteristics of the TFT are also lowered due to the silicon layer becoming a resistance component.
 そこで、例えば、特許文献1には、ガラス基板上にゲート電極、ゲート絶縁膜、動作半導体層、n型不純物半導体層、導電体層を形成し、導電体層とn型不純物半導体層とをエッチングして、ゲート電極上の動作半導体層の上層を露出させてソース電極及びドレイン電極を形成するTFTを備えた液晶表示装置の製造方法において、導電体層とn型不純物半導体層とのエッチングの際に同時にエッチングされる残存層をガラス基板上に形成することが開示されている。そして、これによれば、チャネルエッチングの終点を確実に検出することにより、特性の安定したチャネルエッチ型TFTを有する液晶表示装置を製造できる、と記載されている。 Therefore, for example, in Patent Document 1, a gate electrode, a gate insulating film, an operating semiconductor layer, an n-type impurity semiconductor layer, and a conductor layer are formed on a glass substrate, and the conductor layer and the n-type impurity semiconductor layer are etched. Then, in the method of manufacturing a liquid crystal display device having a TFT in which the upper layer of the operating semiconductor layer on the gate electrode is exposed to form a source electrode and a drain electrode, the conductor layer and the n-type impurity semiconductor layer are etched. And forming a residual layer on the glass substrate that is etched simultaneously. According to this, it is described that a liquid crystal display device having a channel etch type TFT having stable characteristics can be manufactured by reliably detecting the end point of channel etching.
特開2002-151694号公報JP 2002-151694 A
 ここで、特許文献1に開示された製造方法では、ダミーの残存膜が除去されると、ゲート絶縁膜が露出するので、n型不純物半導体層(nアモルファスシリコン膜)を残存層の膜厚分だけエッチングすることができるものの、チャネルエッチングの終点を時間で決めている方法と変わらないので、上述したように、nアモルファスシリコン膜の成膜時及びドライエッチング時の基板面内における膜厚のばらつきを考慮すると、特性の安定したTFTを確実に形成することは困難である。そのため、TFTの製造では、チャネルエッチングの絶対的な終点が決まらない根本の原因を解消するために、真性アモルファスシリコン膜及びnアモルファスシリコン膜のドライエッチング時の選択比、すなわち、半導体層を構成する第1シリコン層及び第2シリコン層のエッチング時の選択比を高くすることが要望されている。 Here, in the manufacturing method disclosed in Patent Document 1, since the gate insulating film is exposed when the dummy residual film is removed, the n-type impurity semiconductor layer (n + amorphous silicon film) is used as the film thickness of the residual layer. Although it can be etched by the amount of time, it is not different from the method of determining the end point of channel etching by time, so as described above, the film thickness in the substrate surface at the time of forming the n + amorphous silicon film and at the time of dry etching In view of the variation of the above, it is difficult to reliably form TFTs having stable characteristics. Therefore, in the manufacture of TFT, in order to eliminate the root cause that the absolute end point of channel etching is not determined, the selection ratio at the time of dry etching of the intrinsic amorphous silicon film and the n + amorphous silicon film, that is, the semiconductor layer is formed. Therefore, it is desired to increase the selectivity during etching of the first silicon layer and the second silicon layer.
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、半導体層を構成する第1シリコン層及び第2シリコン層のエッチング時の選択比を可及的に高くすることにある。 The present invention has been made in view of such a point, and an object of the present invention is to make the selectivity ratio of the first silicon layer and the second silicon layer constituting the semiconductor layer as high as possible. It is in.
 上記目的を達成するために、本発明は、第1シリコン層において、水素含有量が3アトミック%以下の低濃度領域を有するようにしたものである。 In order to achieve the above object, according to the present invention, the first silicon layer has a low concentration region having a hydrogen content of 3 atomic% or less.
 具体的に本発明に係る薄膜トランジスタは、基板に設けられたゲート電極と、上記ゲート電極を覆うように設けられたゲート絶縁膜と、上記ゲート絶縁膜上に設けられ上記ゲート電極に重なるようにチャネル部が配置された第1シリコン層を有する半導体層と、上記半導体層上に設けられ上記チャネル部が露出するように互いに離間して配置されたソース電極及びドレイン電極とを備え、上記半導体層が上記第1シリコン層と上記ソース電極及びドレイン電極との間に不純物がドープされた第2シリコン層を有する薄膜トランジスタであって、上記第1シリコン層は、水素含有量が3アトミック%以下の低濃度領域を有していることを特徴とする。 Specifically, a thin film transistor according to the present invention includes a gate electrode provided on a substrate, a gate insulating film provided so as to cover the gate electrode, and a channel provided on the gate insulating film so as to overlap the gate electrode. A semiconductor layer having a first silicon layer with a portion disposed thereon, and a source electrode and a drain electrode provided on the semiconductor layer and spaced apart from each other so that the channel portion is exposed, the semiconductor layer comprising: A thin film transistor having a second silicon layer doped with an impurity between the first silicon layer and the source and drain electrodes, wherein the first silicon layer has a low concentration of hydrogen content of 3 atomic% or less It has the area | region.
 上記の構成によれば、第1シリコン層の低濃度領域では、水素含有量が3アトミック%以下であるので、従来の薄膜トランジスタの第1シリコン層の水素含有量(例えば、10アトミック%程度)よりも低くなっている。ここで、本発明者らは、以下の表1に示すように、例えば、CVD法により成膜した真性アモルファスシリコン膜の水素含有量をレーザーアニールによって3アトミック%以下とした真性アモルファスシリコン膜が、単にCVD法により成膜した真性アモルファスシリコン膜やnアモルファスシリコン膜よりも、水素ガスを主成分として用いたドライエッチングにおいてエッチング速度が極端に遅い(例えば、1/18程度)という独自の知見を得た。そして、これによれば、例えば、レーザーアニールによって第1シリコン層の少なくとも一部(低濃度領域)の水素含有量を3アトミック%以下に抑えることにより、半導体層を構成する第1シリコン層及び第2シリコン層のエッチング時の選択比を可及的に高くすることが可能になる。 According to the above configuration, since the hydrogen content is 3 atomic% or less in the low concentration region of the first silicon layer, the hydrogen content (for example, about 10 atomic%) of the first silicon layer of the conventional thin film transistor. Is also low. Here, as shown in Table 1 below, the present inventors, for example, an intrinsic amorphous silicon film in which the hydrogen content of an intrinsic amorphous silicon film formed by a CVD method is 3 atomic% or less by laser annealing, The original knowledge that the etching rate is extremely slow (for example, about 1/18) in dry etching using hydrogen gas as a main component, compared to an intrinsic amorphous silicon film or n + amorphous silicon film formed by simply CVD. Obtained. According to this, for example, by suppressing the hydrogen content of at least a part (low concentration region) of the first silicon layer to 3 atomic% or less by laser annealing, the first silicon layer and the first silicon layer constituting the semiconductor layer are suppressed. It becomes possible to increase the selectivity during etching of the two silicon layers as much as possible.
Figure JPOXMLDOC01-appb-T000001
 加えて、水素ガスを主成分として用いたドライエッチングの代わりに、過酸化水素水及びフッ素を含むエッチャントを用いて、それぞれの膜をウエットエッチングすることによって、以下の表2に示すように、レーザーアニールによって3アトミック%以下とした真性アモルファスシリコン膜のエッチング速度が、単にCVD法により成膜した真性アモルファスシリコン膜やn+アモルファスシリコン膜のエッチング速度よりも遅いことも確認した。そのため、水素ガスを主成分として用いたドライエッチングと同様に選択比を高くすることが可能になるので、従来のように犠牲層として真性アモルファスシリコン膜を予め膜厚を厚くする必要がなく、生産タクトの短縮や材料コストの低減が可能になる、というメリットがある。
Figure JPOXMLDOC01-appb-T000001
In addition, instead of dry etching using hydrogen gas as a main component, each film is wet etched using an etchant containing hydrogen peroxide and fluorine, as shown in Table 2 below. It was also confirmed that the etching rate of the intrinsic amorphous silicon film, which is 3 atomic% or less by annealing, is slower than the etching rate of the intrinsic amorphous silicon film or n + amorphous silicon film formed by the CVD method. Therefore, it is possible to increase the selectivity as in dry etching using hydrogen gas as a main component, so that it is not necessary to increase the thickness of an intrinsic amorphous silicon film as a sacrificial layer in the conventional manner. There is an advantage that tact time can be shortened and material cost can be reduced.
Figure JPOXMLDOC01-appb-T000002
 上記低濃度領域は、上記第1シリコン層の全体に配置されていてもよい。
Figure JPOXMLDOC01-appb-T000002
The low concentration region may be disposed on the entire first silicon layer.
 上記の構成によれば、低濃度領域が第1シリコン層の全体に配置されているので、第2シリコン層及びチャネル部を形成するために、ソース電極及びドレイン電極から露出する第2シリコン層形成層がドライエッチングにより除去されても、その下層の第1シリコン層の除去が具体的に抑制される。 According to the above configuration, since the low concentration region is disposed on the entire first silicon layer, formation of the second silicon layer exposed from the source electrode and the drain electrode is formed in order to form the second silicon layer and the channel portion. Even if the layer is removed by dry etching, the removal of the first silicon layer below the layer is specifically suppressed.
 上記第1シリコン層の膜厚は、200Å以上且つ800Å以下であってもよい。 The film thickness of the first silicon layer may be 200 mm or more and 800 mm or less.
 上記の構成によれば、第1シリコン層の膜厚が200Å以上且つ800Å以下であるので、第1シリコン層が真性半導体層として機能させる適正な膜厚になり、薄膜トランジスタのオン特性及び生産性を向上させることが可能になる。 According to the above configuration, since the thickness of the first silicon layer is 200 mm or more and 800 mm or less, the first silicon layer has an appropriate film thickness to function as an intrinsic semiconductor layer. It becomes possible to improve.
 上記第1シリコン層は、上記チャネル部において、上記低濃度領域と、該低濃度領域の外側に上記ソース電極及びドレイン電極に対応して配置され該低濃度領域よりも水素含有量が高い高濃度領域とを有していてもよい。 The first silicon layer is disposed in the channel portion so as to correspond to the source electrode and the drain electrode on the outside of the low concentration region and the low concentration region, and has a higher hydrogen content than the low concentration region. And may have a region.
 上記の構成によれば、水素含有量が相対的に低い低濃度領域は、結晶性が相対的に高く、水素含有量が相対的に高い高濃度領域は、結晶性が相対的に低くなるので、高濃度領域が低濃度領域とソース電極及びドレイン電極との間の電界を緩和するための緩衝領域になり、薄膜トランジスタのオフ電流を低減させることが可能になる。 According to the above configuration, the low concentration region with a relatively low hydrogen content has a relatively high crystallinity, and the high concentration region with a relatively high hydrogen content has a relatively low crystallinity. The high-concentration region becomes a buffer region for relaxing the electric field between the low-concentration region and the source and drain electrodes, and the off-state current of the thin film transistor can be reduced.
 上記第1シリコン層は、結晶性を有していてもよい。 The first silicon layer may have crystallinity.
 上記の構成によれば、第1シリコン層が結晶性を有しているので、第1シリコン層の移動度が、例えば、1cm/Vs~500cm/Vs程度に高くなり、第1シリコン層を含む半導体層により、液晶表示パネルや有機EL表示パネルの各画素に設けられるスイッチング素子だけでなく、ゲートドライバやソースドライバなどの高機能回路を構成することが可能になる。 According to the above configuration, since the first silicon layer has crystallinity, the mobility of the first silicon layer is increased to, for example, about 1 cm 2 / Vs to 500 cm 2 / Vs, and the first silicon layer In addition to the switching element provided in each pixel of the liquid crystal display panel or the organic EL display panel, a high-functional circuit such as a gate driver or a source driver can be configured.
 また、本発明に係る薄膜トランジスタの製造方法は、基板に設けられたゲート電極と、上記ゲート電極を覆うように設けられたゲート絶縁膜と、上記ゲート絶縁膜上に設けられ上記ゲート電極に重なるようにチャネル部が配置された第1シリコン層を有する半導体層と、上記半導体層上に設けられ上記チャネル部が露出するように互いに離間して配置されたソース電極及びドレイン電極とを備え、上記半導体層が上記第1シリコン層と上記ソース電極及びドレイン電極との間に不純物がドープされた第2シリコン層を有する薄膜トランジスタを製造する方法であって、上記第1シリコン層となる第1シリコン膜に水素含有量が3アトミック%以下の低濃度領域を形成する低濃度領域形成工程と、上記低濃度領域が形成された基板に対して、水素ガスを用いたドライエッチング、又は、過酸化水素及びフッ素を含むエッチャントを用いたウエットエッチングを行うことにより、上記半導体層となる半導体層形成層の一部を除去する半導体層形成エッチング工程とを備えることを特徴とする。 The thin film transistor manufacturing method according to the present invention includes a gate electrode provided on a substrate, a gate insulating film provided so as to cover the gate electrode, and a gate insulating film provided on the gate insulating film so as to overlap the gate electrode. A semiconductor layer having a first silicon layer in which a channel portion is disposed, and a source electrode and a drain electrode provided on the semiconductor layer and spaced apart from each other so that the channel portion is exposed. A method of manufacturing a thin film transistor having a second silicon layer doped with an impurity between the first silicon layer and the source electrode and the drain electrode, wherein the first silicon film to be the first silicon layer is formed A low concentration region forming step for forming a low concentration region having a hydrogen content of 3 atomic% or less, and a substrate on which the low concentration region is formed, A semiconductor layer forming etching step of removing a part of the semiconductor layer forming layer to be the semiconductor layer by performing dry etching using an elementary gas or wet etching using an etchant containing hydrogen peroxide and fluorine. It is characterized by providing.
 上記の方法によれば、低濃度領域形成工程において、第1シリコン層となる第1シリコン膜に水素含有量が3アトミック%以下の低濃度領域が形成されるので、その低濃度領域では、従来の薄膜トランジスタの第1シリコン層の水素含有量(例えば、10アトミック%程度)よりも低くなっている。ここで、本発明者らは、以下の表1に示すように、例えば、CVD法により成膜した真性アモルファスシリコン膜の水素含有量をレーザーアニールによって3アトミック%以下とした真性アモルファスシリコン膜が、単にCVD法により成膜した真性アモルファスシリコン膜やnアモルファスシリコン膜よりも、水素ガスを主成分として用いたドライエッチングにおいてエッチング速度が極端に遅い(例えば、1/18程度)という独自の知見を得た。そして、これによれば、低濃度領域形成工程において、例えば、レーザーアニールによって第1シリコン膜の少なくとも一部(低濃度領域)の水素含有量を3アトミック%以下に抑え、さらに、半導体層形成エッチング工程において、水素ガスを主成分として用いたドライエッチングを行うことにより、半導体層となる半導体層形成層の一部を除去する際に、第1シリコン膜の低濃度領域の除去が抑制されるので、半導体層を構成する第1シリコン層及び第2シリコン層のエッチング時の選択比を可及的に高くすることが可能になる。 According to the above method, in the low concentration region forming step, the low concentration region having a hydrogen content of 3 atomic% or less is formed in the first silicon film to be the first silicon layer. The hydrogen content (for example, about 10 atomic%) of the first silicon layer of the thin film transistor is lower. Here, as shown in Table 1 below, the present inventors, for example, an intrinsic amorphous silicon film in which the hydrogen content of an intrinsic amorphous silicon film formed by a CVD method is 3 atomic% or less by laser annealing, The original knowledge that the etching rate is extremely slow (for example, about 1/18) in dry etching using hydrogen gas as a main component, compared to an intrinsic amorphous silicon film or n + amorphous silicon film formed by simply CVD. Obtained. According to this, in the low concentration region forming step, for example, the hydrogen content of at least a part (low concentration region) of the first silicon film is suppressed to 3 atomic% or less by laser annealing, and further, semiconductor layer formation etching is performed. By performing dry etching using hydrogen gas as a main component in the process, removal of the low-concentration region of the first silicon film is suppressed when removing a part of the semiconductor layer forming layer that becomes the semiconductor layer. It becomes possible to make the selection ratio of the first silicon layer and the second silicon layer constituting the semiconductor layer as high as possible.
Figure JPOXMLDOC01-appb-T000003
 加えて、水素ガスを主成分として用いたドライエッチングの代わりに、過酸化水素水及びフッ素を含むエッチャントを用いて、それぞれの膜をウエットエッチングすることによって、以下の表2に示すように、レーザーアニールによって3アトミック%以下とした真性アモルファスシリコン膜のエッチング速度が、単にCVD法により成膜した真性アモルファスシリコン膜やn+アモルファスシリコン膜のエッチング速度よりも遅いことも確認した。そのため、水素ガスを主成分として用いたドライエッチングと同様に選択比を高くすることが可能になるので、従来のように犠牲層として真性アモルファスシリコン膜を事前に膜厚を厚くする必要がなく、生産タクトの短縮や材料コストの低減が可能になる、というメリットがある。
Figure JPOXMLDOC01-appb-T000003
In addition, instead of dry etching using hydrogen gas as a main component, each film is wet etched using an etchant containing hydrogen peroxide and fluorine, as shown in Table 2 below. It was also confirmed that the etching rate of the intrinsic amorphous silicon film, which is 3 atomic% or less by annealing, is slower than the etching rate of the intrinsic amorphous silicon film or n + amorphous silicon film formed by the CVD method. Therefore, since it becomes possible to increase the selection ratio similarly to dry etching using hydrogen gas as a main component, it is not necessary to increase the thickness of the intrinsic amorphous silicon film as a sacrificial layer in advance as in the prior art, There is an advantage that production tact time can be shortened and material cost can be reduced.
Figure JPOXMLDOC01-appb-T000004
 上記低濃度領域形成工程では、上記第1シリコン膜に対してレーザー光を照射することにより、上記低濃度領域を形成してもよい。
Figure JPOXMLDOC01-appb-T000004
In the low concentration region forming step, the low concentration region may be formed by irradiating the first silicon film with laser light.
 上記の方法によれば、第1シリコン膜に対してレーザー光を照射することにより、低濃度領域が形成されるので、第1シリコン膜の低濃度領域の結晶性を高めることが可能になり、移動度が1cm/Vs~500cm/Vs程度の高性能の薄膜トランジスタを製造することが可能になる。 According to the above method, since the low concentration region is formed by irradiating the first silicon film with the laser beam, the crystallinity of the low concentration region of the first silicon film can be improved. A high-performance thin film transistor having a mobility of about 1 cm 2 / Vs to 500 cm 2 / Vs can be manufactured.
 上記低濃度領域形成工程では、上記第1シリコン膜の少なくとも上記チャネル部となる領域に上記低濃度領域を形成し、上記低濃度領域が形成された第1シリコン膜上に上記第2シリコン層となる第2シリコン層形成層を形成した後に、上記ソース電極及びドレイン電極を形成するソースドレイン形成工程を有し、上記半導体層形成エッチング工程では、上記ソース電極及びドレイン電極から露出する上記第2シリコン層形成層を除去して、上記チャネル部を形成してもよい。 In the low-concentration region forming step, the low-concentration region is formed in at least a region to be the channel portion of the first silicon film, and the second silicon layer is formed on the first silicon film in which the low-concentration region is formed. A source / drain formation step of forming the source electrode and the drain electrode after forming the second silicon layer formation layer, and the second silicon exposed from the source electrode and the drain electrode in the semiconductor layer formation etching step. The channel portion may be formed by removing the layer forming layer.
 上記の方法によれば、低濃度領域形成工程において、第1シリコン膜の少なくともチャネル部となる領域に低濃度領域を形成し、ソースドレイン形成工程において、低濃度領域に第2シリコン層形成層を積層した後に、その上にソース電極及びドレイン電極を形成し、半導体層形成エッチング工程において、ソース電極及びドレイン電極から露出する第2シリコン層形成層を除去するので、チャネルエッチ型の薄膜トランジスタが具体的に製造される。 According to the above method, in the low concentration region forming step, the low concentration region is formed in at least the region to be the channel portion of the first silicon film, and in the source / drain forming step, the second silicon layer forming layer is formed in the low concentration region. After stacking, a source electrode and a drain electrode are formed thereon, and the second silicon layer formation layer exposed from the source electrode and the drain electrode is removed in the semiconductor layer formation etching step. To be manufactured.
 上記低濃度領域形成工程では、上記ソース電極及びドレイン電極から露出する上記第1シリコン層となる第1シリコン層形成層に上記低濃度領域を形成し、上記半導体層形成エッチング工程では、上記低濃度領域の外側に配置する上記第1シリコン層形成層の一部を除去することにより、上記チャネル部に上記ソース電極及びドレイン電極に対応して配置され上記低濃度領域よりも水素含有量が高い高濃度領域を形成してもよい。 In the low concentration region forming step, the low concentration region is formed in the first silicon layer forming layer that is the first silicon layer exposed from the source electrode and the drain electrode, and in the semiconductor layer forming etching step, the low concentration region is formed. By removing a part of the first silicon layer forming layer disposed outside the region, the channel portion is disposed corresponding to the source electrode and the drain electrode and has a higher hydrogen content than the low concentration region. A concentration region may be formed.
 上記の方法によれば、低濃度領域形成工程において、ソース電極及びドレイン電極から露出する第1シリコン層形成層に低濃度領域を形成し、半導体層形成エッチング工程において、低濃度領域の外側に配置する第1シリコン層形成層の一部を除去して、チャネル部に高濃度領域を形成することになる。ここで、水素含有量が相対的に低い低濃度領域は、結晶性が相対的に高く、水素含有量が相対的に高い高濃度領域は、結晶性が相対的に低くなるので、高濃度領域が低濃度領域とソース電極及びドレイン電極との間の電界を緩和するための緩衝領域になり、オフ電流を低減させた薄膜トランジスタが具体的に製造される。 According to the above method, the low concentration region is formed in the first silicon layer forming layer exposed from the source electrode and the drain electrode in the low concentration region forming step, and is disposed outside the low concentration region in the semiconductor layer forming etching step. A part of the first silicon layer forming layer to be removed is removed to form a high concentration region in the channel portion. Here, the low concentration region having a relatively low hydrogen content has a relatively high crystallinity, and the high concentration region having a relatively high hydrogen content has a relatively low crystallinity. Becomes a buffer region for relaxing the electric field between the low concentration region and the source and drain electrodes, and a thin film transistor with reduced off-current is specifically manufactured.
 上記レーザー光の波長は、248nm以上且つ355nm以下であってもよい。 The wavelength of the laser beam may be 248 nm or more and 355 nm or less.
 上記の方法によれば、第1シリコン膜に対して照射するレーザー光の波長が248nm以上且つ355nm以下であるので、第1シリコン膜が薄く形成されても、第1シリコン膜におけるレーザー光の透過が抑制され、ゲート電極やゲート絶縁膜を損傷させることなく、高性能の薄膜トランジスタを製造することが可能になる。 According to the above method, since the wavelength of the laser beam applied to the first silicon film is not less than 248 nm and not more than 355 nm, even if the first silicon film is formed thin, the laser beam is transmitted through the first silicon film. Is suppressed, and a high-performance thin film transistor can be manufactured without damaging the gate electrode and the gate insulating film.
 上記基板は、短辺が1500mm以上の矩形状のガラス基板であってもよい。 The substrate may be a rectangular glass substrate having a short side of 1500 mm or more.
 上記の方法によれば、基板が大型のガラス基板であるので、本発明の作用効果が有効に奏される。 According to the above method, since the substrate is a large glass substrate, the effects of the present invention are effectively exhibited.
 本発明によれば、第1シリコン層において、水素含有量が3アトミック%以下の低濃度領域を有しているので、半導体層を構成する第1シリコン層及び第2シリコン層のエッチングの選択比を可及的に高くすることができる。 According to the present invention, since the first silicon layer has a low concentration region with a hydrogen content of 3 atomic% or less, the etching selectivity of the first silicon layer and the second silicon layer constituting the semiconductor layer Can be made as high as possible.
図1は、実施形態1に係るTFT5aの断面図である。FIG. 1 is a cross-sectional view of a TFT 5a according to the first embodiment. 図2は、TFT5aを製造するためのフローチャートである。FIG. 2 is a flowchart for manufacturing the TFT 5a. 図3は、実施形態1に係る低濃度領域形成工程における基板の断面図である。FIG. 3 is a cross-sectional view of the substrate in the low concentration region forming step according to the first embodiment. 図4は、実施形態1に係る水素ガスエッチング工程における基板の断面図である。FIG. 4 is a cross-sectional view of the substrate in the hydrogen gas etching process according to the first embodiment. 図5は、実施形態2に係るTFT5bの断面図である。FIG. 5 is a cross-sectional view of the TFT 5b according to the second embodiment. 図6は、TFT5bを製造するためのフローチャートである。FIG. 6 is a flowchart for manufacturing the TFT 5b. 図7は、実施形態2に係るTFTパターン形成工程後の基板の断面図である。FIG. 7 is a cross-sectional view of the substrate after the TFT pattern forming process according to the second embodiment. 図8は、実施形態2に係る低濃度領域形成工程における基板の断面図である。FIG. 8 is a cross-sectional view of the substrate in the low concentration region forming step according to the second embodiment. 図9は、実施形態2に係る水素ガスエッチング工程における基板の断面図である。FIG. 9 is a cross-sectional view of the substrate in the hydrogen gas etching process according to the second embodiment. 図10は、一般的なボトムゲート型のTFT105の断面図である。FIG. 10 is a cross-sectional view of a general bottom gate type TFT 105.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の各実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiments.
 《発明の実施形態1》
 図1~図4は、本発明に係る薄膜トランジスタ(TFT)及びその製造方法の実施形態1を示している。具体的に、図1は、本実施形態のTFT5aの断面図である。
Embodiment 1 of the Invention
1 to 4 show a first embodiment of a thin film transistor (TFT) and a method for manufacturing the same according to the present invention. Specifically, FIG. 1 is a cross-sectional view of the TFT 5a of this embodiment.
 TFT5aは、図1に示すように、絶縁基板10上に設けられたゲート電極11と、ゲート電極11を覆うように設けられたゲート絶縁膜12と、ゲート絶縁膜12上でゲート電極11に対応する位置に島状に設けられた半導体層13と、半導体層13上で互いに離間するように設けられたソース電極14a及びドレイン電極14bとを備えている。 As shown in FIG. 1, the TFT 5 a corresponds to the gate electrode 11 provided on the insulating substrate 10, the gate insulating film 12 provided so as to cover the gate electrode 11, and the gate electrode 11 on the gate insulating film 12. The semiconductor layer 13 is provided in an island shape at a position where the source electrode 14 a and the drain electrode 14 b are provided so as to be separated from each other on the semiconductor layer 13.
 半導体層13は、図1に示すように、第1シリコン層として設けられた下層の真性アモルファスシリコン層13aと、第2シリコン層として設けられた上層のリンがドープされたnアモルファスシリコン層13bとを備え、ソース電極14a及びドレイン電極14bから露出する真性アモルファスシリコン層13aがチャネル部Cを構成している。 As shown in FIG. 1, the semiconductor layer 13 includes a lower intrinsic amorphous silicon layer 13a provided as a first silicon layer and an upper phosphorus-doped n + amorphous silicon layer 13b provided as a second silicon layer. The intrinsic amorphous silicon layer 13a exposed from the source electrode 14a and the drain electrode 14b constitutes the channel portion C.
 真性アモルファスシリコン層13aの全体は、水素含有量が3アトミック%以下の低濃度領域Raになっている。 The entire intrinsic amorphous silicon layer 13a is a low concentration region Ra having a hydrogen content of 3 atomic% or less.
 上記構成のTFT5aは、例えば、複数の画素電極がマトリクス状に配置されたアクティブマトリクス基板の各画素電極に接続されたスイッチング素子として設けられ、そのアクティブマトリクス基板と、それに対向して配置される対向基板と、それらの両基板の間に封入される液晶層と共に、液晶表示パネルを構成するものである。 The TFT 5a having the above-described configuration is provided as a switching element connected to each pixel electrode of an active matrix substrate in which a plurality of pixel electrodes are arranged in a matrix, for example, and the active matrix substrate is opposed to the opposing one. A liquid crystal display panel is constituted with a substrate and a liquid crystal layer sealed between the two substrates.
 次に、本実施形態のTFT5aの製造方法について、図2~図4を用いて説明する。 Next, a manufacturing method of the TFT 5a of this embodiment will be described with reference to FIGS.
 本実施形態のTFT5aの製造方法は、図2のフローチャートに示すように、ゲート電極形成工程、GI/i-Si層形成工程、低濃度領域形成工程、n-Si膜成膜工程、n-Si層形成工程、ソースドレイン形成工程、半導体層形成エッチング工程及びレジスト剥離工程を備える。ここで、図3は、本実施形態の低濃度領域形成工程における基板の断面図であり、図4は、本実施形態の半導体層形成エッチング工程における基板の断面図である。 As shown in the flowchart of FIG. 2, the manufacturing method of the TFT 5a of this embodiment includes a gate electrode formation step, a GI / i-Si layer formation step, a low concentration region formation step, an n + -Si film formation step, an n + A Si layer forming step, a source / drain forming step, a semiconductor layer forming etching step, and a resist stripping step; Here, FIG. 3 is a cross-sectional view of the substrate in the low concentration region forming step of the present embodiment, and FIG. 4 is a cross-sectional view of the substrate in the semiconductor layer forming etching step of the present embodiment.
 <ゲート電極形成工程(St11)>
 まず、ガラス基板(例えば、0.7mm×1500mm×1800mm)などの絶縁基板10の基板全体に、スパッタリング法により、例えば、アルミニウム膜、銅膜やチタン膜などの第1の金属膜を厚さ3000Å程度で成膜する。
<Gate electrode formation step (St11)>
First, a first metal film such as an aluminum film, a copper film, or a titanium film is formed on the entire substrate of the insulating substrate 10 such as a glass substrate (for example, 0.7 mm × 1500 mm × 1800 mm) by a sputtering method to a thickness of 3000 mm. Film is formed to the extent.
 続いて、上記第1の金属膜が成膜された基板全体にスピンコーティング法により、感光性樹脂膜を塗布した後に、パターニングすることにより、第1のレジストパターンを形成する。 Subsequently, a photosensitive resin film is applied to the entire substrate on which the first metal film has been formed by spin coating, and then patterned to form a first resist pattern.
 さらに、上記第1のレジストパターンから露出する第1の金属膜をドライエッチングにより除去した後に、その第1のレジストパターンを剥離させることにより、ゲート電極11を形成する。 Further, after removing the first metal film exposed from the first resist pattern by dry etching, the first resist pattern is peeled off to form the gate electrode 11.
 <GI/i-Si層形成工程(St12)>
 まず、上記ゲート電極形成工程でゲート電極11が形成された基板全体に、CVD(Chemical Vapor Deposition)法により窒化シリコン膜や酸化シリコン膜などを厚さ4000Å程度で成膜することにより、ゲート絶縁膜12を形成する。
<GI / i-Si layer forming step (St12)>
First, a gate insulating film is formed by forming a silicon nitride film, a silicon oxide film, or the like with a thickness of about 4000 mm on the entire substrate on which the gate electrode 11 has been formed in the gate electrode formation step by a CVD (Chemical Vapor Deposition) method. 12 is formed.
 続いて、ゲート絶縁膜12が形成された基板全体に、CVD法により第1シリコン膜として真性アモルファスシリコン膜を厚さ200Å~800Å程度で成膜する。ここで、通常、CVD法で成膜された真性アモルファスシリコン膜は、反応室内にシランガスや水素ガスを導入して成膜されるので、その水素含有量が10アトミック%以上になっている。 Subsequently, an intrinsic amorphous silicon film is formed as a first silicon film with a thickness of about 200 to 800 mm on the entire substrate on which the gate insulating film 12 is formed by a CVD method. Here, since the intrinsic amorphous silicon film formed by the CVD method is generally formed by introducing silane gas or hydrogen gas into the reaction chamber, the hydrogen content is 10 atomic% or more.
 そして、上記真性アモルファスシリコン膜が成膜された基板全体にスピンコーティング法により、感光性樹脂膜を塗布した後に、パターニングすることにより、第2のレジストパターンを形成する。 Then, a second resist pattern is formed by applying a photosensitive resin film to the entire substrate on which the intrinsic amorphous silicon film has been formed by spin coating, followed by patterning.
 さらに、上記第2のレジストパターンから露出する真性アモルファスシリコン膜をドライエッチングにより除去した後に、その第2のレジストパターンを剥離させることにより、真性アモルファスシリコン層(13a)を形成する。 Further, after removing the intrinsic amorphous silicon film exposed from the second resist pattern by dry etching, the second resist pattern is peeled off to form an intrinsic amorphous silicon layer (13a).
 <低濃度領域形成工程(St13)>
 上記GI/i-Si層形成工程で形成された真性アモルファスシリコン層(13a)に対し、図3に示すように、波長248nm以上且つ355nm以下のレーザー光L(例えば、波長308nmのエキシマレーザー光)を照射することにより、アモルファスシリコンをレーザーアニールによって結晶化させると共に、水素含有量を3アトミック%以下にして、低濃度領域Raを形成する。ここで、本実施形態では、低濃度領域Raを形成する方法として、レーザーアニールを例示したが、ランプアニールやオーブンアニールなどでもよく、また、例えば、Hガス流量/SiHガス流量の比を20以上に高めて成膜し水素含有量が低くなるようにCVD条件を設定してもよい。
<Low concentration region forming step (St13)>
As shown in FIG. 3, laser light L (for example, excimer laser light having a wavelength of 308 nm) having a wavelength of 248 nm or more and 355 nm or less is applied to the intrinsic amorphous silicon layer (13a) formed in the GI / i-Si layer forming process. , The amorphous silicon is crystallized by laser annealing, and the hydrogen content is reduced to 3 atomic% or less to form the low concentration region Ra. Here, in this embodiment, laser annealing is exemplified as a method for forming the low concentration region Ra, but lamp annealing, oven annealing, or the like may be used. For example, the ratio of H 2 gas flow rate / SiH 4 gas flow rate may be set. The CVD conditions may be set so that the film is formed at a temperature of 20 or more and the hydrogen content is lowered.
 <n-Si膜成膜工程(St14)>
 上記低濃度領域形成工程で低濃度領域Raが形成された基板全体に、CVD法により第2シリコン膜としてリンがドープされたnアモルファスシリコン膜を厚さ500Å程度で成膜する。ここで、nアモルファスシリコン膜は、上述した真性アモルファスシリコン膜と同様に、水素ガスを導入して成膜されるので、その水素含有量が10アトミック%以上になっている。
<N + -Si film formation step (St14)>
An n + amorphous silicon film doped with phosphorus as a second silicon film is formed to a thickness of about 500 mm on the entire substrate on which the low concentration region Ra has been formed in the low concentration region forming step by the CVD method. Here, since the n + amorphous silicon film is formed by introducing hydrogen gas as in the case of the intrinsic amorphous silicon film described above, the hydrogen content is 10 atomic% or more.
 <n-Si層形成工程(St15)>
 まず、上記n-Si膜成膜工程でnアモルファスシリコン膜が成膜された基板全体にスピンコーティング法により、感光性樹脂膜を塗布した後に、パターニングすることにより、第3のレジストパターンを形成する。
<N + -Si layer forming step (St15)>
First, a third resist pattern is formed by applying a photosensitive resin film to the entire substrate on which the n + amorphous silicon film has been formed in the n + -Si film forming process by spin coating, followed by patterning. Form.
 続いて、上記第3のレジストパターンから露出するnアモルファスシリコン膜をドライエッチングにより除去した後に、その第3のレジストパターンを剥離させることにより、第2シリコン層形成層(半導体層形成層)として、nアモルファスシリコン層形成層13baを形成する(図4参照)。ここで、nアモルファスシリコン膜は、六フッ化硫黄ガスや四フッ化炭素ガスなどのフッ素系ガスと、塩化水素ガスや塩素ガスなどの塩素系ガスとを用いた反応性ドライエッチングによって、容易に除去することができる(表1参照)。 Subsequently, after removing the n + amorphous silicon film exposed from the third resist pattern by dry etching, the third resist pattern is peeled off to form a second silicon layer forming layer (semiconductor layer forming layer). , N + amorphous silicon layer forming layer 13ba is formed (see FIG. 4). Here, the n + amorphous silicon film can be easily formed by reactive dry etching using a fluorine-based gas such as sulfur hexafluoride gas or carbon tetrafluoride gas and a chlorine-based gas such as hydrogen chloride gas or chlorine gas. (See Table 1).
 <ソースドレイン形成工程(St16)>
 まず、上記n-Si層形成工程でnアモルファスシリコン層形成層13baが形成された基板全体に、アルミニウム膜、銅膜やチタン膜などの第2の金属膜を厚さ3000Å程度でスパッタリング法により成膜する。
<Source / Drain Formation Step (St16)>
First, a second metal film such as an aluminum film, a copper film, or a titanium film is sputtered to a thickness of about 3000 mm on the entire substrate on which the n + amorphous silicon layer forming layer 13ba has been formed in the n + -Si layer forming step. The film is formed by
 続いて、上記第2の金属膜が成膜された基板全体にスピンコーティング法により、感光性樹脂膜を塗布した後に、パターニングすることにより、第4のレジストパターンを形成する。 Subsequently, a photosensitive resin film is applied to the entire substrate on which the second metal film has been formed by spin coating, and then patterned to form a fourth resist pattern.
 さらに、上記第4のレジストパターンから露出する第2の金属膜をドライエッチングにより除去することにより、ソース電極14a及びドレイン電極14bを形成する(図4参照)。 Further, the second metal film exposed from the fourth resist pattern is removed by dry etching to form the source electrode 14a and the drain electrode 14b (see FIG. 4).
 <半導体層形成エッチング工程(St17)>
 上記ソースドレイン形成工程で形成されたソース電極14a及びドレイン電極14bから露出するnアモルファスシリコン層形成層13baを、図4に示すように、水素ガスを主成分として用いた反応性イオンエッチングやプラズマエッチングなどのドライエッチングで発生する水素ラジカルや水素イオンによって、除去することにより、nアモルファスシリコン層13bを形成する。ここで、水素ガスによるドライエッチングにおいて、水素含有量が3アトミック%以下の真性アモルファスシリコン層13aは、水素含有量が少ないために、発生した水素ラジカルや水素イオンによって、ほとんど除去されないものの、水素含有量が10アトミック%以上のnアモルファスシリコン層形成層13baでは、発生した水素ラジカルや水素イオンによって、容易に除去されるので、真性アモルファスシリコン層13a及びnアモルファスシリコン層形成層13baの間で高い選択性を実現することができる。
<Semiconductor layer formation etching step (St17)>
As shown in FIG. 4, the n + amorphous silicon layer forming layer 13ba exposed from the source electrode 14a and the drain electrode 14b formed in the source / drain formation step is subjected to reactive ion etching or plasma using hydrogen gas as a main component. By removing with hydrogen radicals or hydrogen ions generated by dry etching such as etching, the n + amorphous silicon layer 13b is formed. Here, in the dry etching using hydrogen gas, the intrinsic amorphous silicon layer 13a having a hydrogen content of 3 atomic% or less is hardly removed by the generated hydrogen radicals or hydrogen ions because the hydrogen content is small. In the n + amorphous silicon layer forming layer 13ba whose amount is 10 atomic% or more, it is easily removed by the generated hydrogen radicals or hydrogen ions, and therefore between the intrinsic amorphous silicon layer 13a and the n + amorphous silicon layer forming layer 13ba. High selectivity can be realized.
 また、上記水素ガスによるドライエッチングの代わりに、上記ソースドレイン形成工程で形成されたソース電極14a及びドレイン電極14bから露出するnアモルファスシリコン層形成層13baを、図4に示すように、過酸化水素及びフッ素を含み、フッ素化合物を主成分として用いたエッチャントによって、ウエットエッチングしてもよい。ここで、フッ素化合物は、シリコンをエッチングすることが知られているが、水素含有量の多いnアモルファスシリコン層は、水素含有量の少ない真性アモルファスシリコン層13aに比べてエッチング速度が速くなるために、真性アモルファスシリコン層13aの膜厚を厚くする必要がない。さらに、フッ素化合物は、チタンメタルをエッチングすることができるため、ソースドレインメタルに単層もしくは複層配線にチタン膜を用いた場合には、ソースドレイン形成工程(St16)も同時に処理できるため、工程を削減することができる、というメリットがある。 Further, instead of the dry etching with hydrogen gas, the n + amorphous silicon layer forming layer 13ba exposed from the source electrode 14a and the drain electrode 14b formed in the source / drain formation step is oxidized as shown in FIG. Wet etching may be performed with an etchant containing hydrogen and fluorine and using a fluorine compound as a main component. Here, the fluorine compound is known to etch silicon, but the n + amorphous silicon layer having a high hydrogen content has a higher etching rate than the intrinsic amorphous silicon layer 13a having a low hydrogen content. In addition, it is not necessary to increase the thickness of the intrinsic amorphous silicon layer 13a. Further, since the fluorine compound can etch titanium metal, the source / drain formation step (St16) can be performed at the same time when a single layer or a multilayer wiring is used for the source / drain metal. There is an advantage that can be reduced.
 <レジスト剥離工程(St18)>
 上記半導体層形成エッチング工程でnアモルファスシリコン層13bが形成された基板から第4のレジストパターンを剥離させる。
<Resist stripping step (St18)>
The fourth resist pattern is peeled off from the substrate on which the n + amorphous silicon layer 13b is formed in the semiconductor layer formation etching step.
 以上のようにして、本実施形態のTFT5aを製造することができる。 As described above, the TFT 5a of this embodiment can be manufactured.
 以上説明したように、本実施形態のTFT5a及びその製造方法によれば、低濃度領域形成工程において、真性アモルファスシリコン層13aに水素含有量が3アトミック%以下の低濃度領域Raが形成されるので、その低濃度領域Raでは、従来のTFT105(図10参照)の真性アモルファスシリコン層113aの水素含有量(例えば、10アトミック%程度)よりも低くなっている。ここで、本発明者らは、上述した表1に示すように、例えば、CVD法により成膜した真性アモルファスシリコン膜の水素含有量をレーザーアニールによって3アトミック%以下とした真性アモルファスシリコン膜が、単にCVD法により成膜した真性アモルファスシリコン膜やnアモルファスシリコン膜よりも、水素ガスを主成分として用いたドライエッチングにおいてエッチング速度が極端に遅い(例えば、1/18程度)、また、上述した表2に示すように、例えば、CVD法により成膜した真性アモルファスシリコン膜の水素含有量をレーザーアニールによって3アトミック%以下とした真性アモルファスシリコン膜が、単にCVD法により成膜した真性アモルファスシリコン膜やnアモルファスシリコン膜よりも、過酸化水素及びフッ素を含むエッチャントを用いたウエットエッチングにおいてエッチング速度が遅いという独自の知見を得た。そして、これによれば、低濃度領域形成工程において、レーザーアニールによって真性アモルファスシリコン層13a(低濃度領域Ra)の水素含有量を3アトミック%以下に抑え、さらに、半導体層形成エッチング工程において、水素ガスを用いたドライエッチング又は過酸化水素及びフッ素を含むエッチャントを用いたウエットエッチングを行うことにより、ソース電極14a及びドレイン電極14bから露出するnアモルファスシリコン層形成層13baを除去する際に、真性アモルファスシリコン層13a(低濃度領域Ra)の除去が抑制されるので、半導体層13を構成する真性アモルファスシリコン層13a及びnアモルファスシリコン層13b(nアモルファスシリコン層形成層13ba)のエッチング時の選択比を可及的に高くすることができる。 As described above, according to the TFT 5a of this embodiment and the manufacturing method thereof, the low concentration region Ra having a hydrogen content of 3 atomic% or less is formed in the intrinsic amorphous silicon layer 13a in the low concentration region forming step. In the low concentration region Ra, the hydrogen content (for example, about 10 atomic%) of the intrinsic amorphous silicon layer 113a of the conventional TFT 105 (see FIG. 10) is lower. Here, as shown in Table 1 above, the inventors of the present invention, for example, an intrinsic amorphous silicon film in which the hydrogen content of an intrinsic amorphous silicon film formed by a CVD method is 3 atomic% or less by laser annealing, The etching rate is extremely slow (for example, about 1/18) in dry etching using hydrogen gas as a main component, as compared with an intrinsic amorphous silicon film or an n + amorphous silicon film formed simply by a CVD method. As shown in Table 2, for example, an intrinsic amorphous silicon film in which the hydrogen content of the intrinsic amorphous silicon film formed by the CVD method is 3 atomic% or less by laser annealing is simply formed by the CVD method. than or n + amorphous silicon film, peroxide And etch rate in wet etching to obtain a unique finding that slow using an etchant containing fluorine. According to this, in the low concentration region formation step, the hydrogen content of the intrinsic amorphous silicon layer 13a (low concentration region Ra) is suppressed to 3 atomic% or less by laser annealing, and in the semiconductor layer formation etching step, When the n + amorphous silicon layer forming layer 13ba exposed from the source electrode 14a and the drain electrode 14b is removed by performing dry etching using a gas or wet etching using an etchant containing hydrogen peroxide and fluorine, an intrinsic property is obtained. Since removal of the amorphous silicon layer 13a (low concentration region Ra) is suppressed, the intrinsic amorphous silicon layer 13a and the n + amorphous silicon layer 13b (n + amorphous silicon layer forming layer 13ba) constituting the semiconductor layer 13 are etched. Selectivity It can be increased retroactively.
 また、本実施形態のTFT5aによれば、真性アモルファスシリコン層13aの膜厚が200Å以上且つ800Å以下であるので、真性アモルファスシリコン層13aが真性半導体層として機能させる適正な膜厚になり、TFTのオン特性及び生産性を向上させることができる。 Further, according to the TFT 5a of the present embodiment, since the film thickness of the intrinsic amorphous silicon layer 13a is not less than 200 mm and not more than 800 mm, the intrinsic amorphous silicon layer 13a has an appropriate film thickness to function as an intrinsic semiconductor layer. ON characteristics and productivity can be improved.
 また、本実施形態のTFT5aによれば、真性アモルファスシリコン層13aが結晶性を有しているので、真性アモルファスシリコン層13aの移動度が、例えば、1cm/Vs~100cm/Vs程度に高くなり、真性アモルファスシリコン層13aを含む半導体層13により、液晶表示パネルや有機EL表示パネルの各画素に設けられるTFTだけでなく、ゲートドライバやソースドライバなどの高機能回路を構成することができる。 Further, according to the TFT5a of this embodiment, since the intrinsic amorphous silicon layer 13a has crystallinity, the mobility of the intrinsic amorphous silicon layer 13a is, for example, as high as 1cm 2 / Vs ~ 100cm 2 / Vs Thus, the semiconductor layer 13 including the intrinsic amorphous silicon layer 13a can constitute not only a TFT provided in each pixel of a liquid crystal display panel or an organic EL display panel, but also a high function circuit such as a gate driver or a source driver.
 また、本実施形態のTFT5aの製造方法によれば、真性アモルファスシリコン層13aに対して照射するレーザー光Lの波長が248nm以上且つ355nm以下であるので、真性アモルファスシリコン層13aが薄く形成されても、真性アモルファスシリコン層13aにおけるレーザー光Lの透過が抑制され、ゲート電極11やゲート絶縁膜12を損傷させることなく、高性能のTFTを製造することができる。 In addition, according to the manufacturing method of the TFT 5a of the present embodiment, the wavelength of the laser light L applied to the intrinsic amorphous silicon layer 13a is not less than 248 nm and not more than 355 nm. Therefore, even if the intrinsic amorphous silicon layer 13a is formed thin. The transmission of the laser light L in the intrinsic amorphous silicon layer 13a is suppressed, and a high-performance TFT can be manufactured without damaging the gate electrode 11 and the gate insulating film 12.
 《発明の実施形態2》
 図5は、本実施形態2のTFT5bの断面図である。なお、以下の実施形態において、図1~図4と同じ部分については同じ符号を付して、その詳細な説明を省略する。
<< Embodiment 2 of the Invention >>
FIG. 5 is a cross-sectional view of the TFT 5b of the second embodiment. In the following embodiments, the same parts as those in FIGS. 1 to 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
 TFT5bは、上記実施形態1のTFT5aと同様に、図5に示すように、絶縁基板10上に設けられたゲート電極11と、ゲート電極11を覆うように設けられたゲート絶縁膜12と、ゲート絶縁膜12上でゲート電極11に対応する位置に島状に設けられた半導体層13と、半導体層13上で互いに離間するように設けられたソース電極14c及びドレイン電極14dとを備えている。 Like the TFT 5a of the first embodiment, the TFT 5b includes a gate electrode 11 provided on the insulating substrate 10, a gate insulating film 12 provided so as to cover the gate electrode 11, and a gate, as shown in FIG. A semiconductor layer 13 provided in an island shape at a position corresponding to the gate electrode 11 on the insulating film 12, and a source electrode 14 c and a drain electrode 14 d provided on the semiconductor layer 13 so as to be separated from each other are provided.
 半導体層13は、図5に示すように、第1シリコン層として設けられた下層の真性アモルファスシリコン層13cと、第2シリコン層として設けられた上層のリンがドープされたnアモルファスシリコン層13dとを備え、ソース電極14c及びドレイン電極14d並びにnアモルファスシリコン層13dから露出する真性アモルファスシリコン層13cがチャネル部Cを構成している。 As shown in FIG. 5, the semiconductor layer 13 includes a lower intrinsic amorphous silicon layer 13c provided as a first silicon layer, and an upper phosphorus + doped n + amorphous silicon layer 13d provided as a second silicon layer. The intrinsic amorphous silicon layer 13c exposed from the source electrode 14c, the drain electrode 14d, and the n + amorphous silicon layer 13d constitutes the channel portion C.
 真性アモルファスシリコン層13cのチャネル部Cは、水素含有量が3アトミック%以下の低濃度領域Raと、低濃度領域Raの外側にソース電極14c及びドレイン電極14dに対応して配置され、水素含有量が10アトミック%程度の高濃度領域Rbとを有している。 The channel portion C of the intrinsic amorphous silicon layer 13c is disposed corresponding to the source electrode 14c and the drain electrode 14d on the outer side of the low concentration region Ra having a hydrogen content of 3 atomic% or less and the low hydrogen concentration. Has a high concentration region Rb of about 10 atomic%.
 次に、本実施形態のTFT5bの製造方法について、図6~図9を用いて説明する。 Next, a manufacturing method of the TFT 5b of this embodiment will be described with reference to FIGS.
 本実施形態のTFT5bの製造方法は、図6のフローチャートに示すように、TFTパターン形成工程、低濃度領域形成工程及び水素ガスエッチング工程(半導体層形成エッチング工程)を備える。ここで、図7は、本実施形態のTFTパターン形成工程後の基板の断面図であり、図8は、本実施形態の低濃度領域形成工程における基板の断面図であり、図9は、本実施形態の水素ガスエッチング工程における基板の断面図である。 The manufacturing method of the TFT 5b of this embodiment includes a TFT pattern forming step, a low concentration region forming step, and a hydrogen gas etching step (semiconductor layer forming etching step) as shown in the flowchart of FIG. Here, FIG. 7 is a cross-sectional view of the substrate after the TFT pattern forming process of the present embodiment, FIG. 8 is a cross-sectional view of the substrate in the low-concentration region forming process of the present embodiment, and FIG. It is sectional drawing of the board | substrate in the hydrogen gas etching process of embodiment.
 <TFTパターン形成工程(St21)>
 まず、ガラス基板などの絶縁基板10の基板全体に、スパッタリング法により、例えば、アルミニウム膜、銅膜やチタン膜などの第1の金属膜を厚さ3000Å程度で成膜する。
<TFT pattern forming step (St21)>
First, for example, a first metal film such as an aluminum film, a copper film, or a titanium film is formed on the entire substrate of the insulating substrate 10 such as a glass substrate with a thickness of about 3000 mm by a sputtering method.
 続いて、上記第1の金属膜が成膜された基板全体にスピンコーティング法により、感光性樹脂膜を塗布した後に、パターニングすることにより、第1のレジストパターンを形成する。 Subsequently, a photosensitive resin film is applied to the entire substrate on which the first metal film has been formed by spin coating, and then patterned to form a first resist pattern.
 さらに、上記第1のレジストパターンから露出する第1の金属膜をドライエッチングにより除去した後に、その第1のレジストパターンを剥離させることにより、ゲート電極11を形成する。 Further, after removing the first metal film exposed from the first resist pattern by dry etching, the first resist pattern is peeled off to form the gate electrode 11.
 その後、ゲート電極11が形成された基板全体に、CVD(Chemical Vapor Deposition)法により窒化シリコン膜や酸化シリコン膜などを厚さ4000Å程度で成膜することにより、ゲート絶縁膜12を形成する。 Thereafter, a gate insulating film 12 is formed on the entire substrate on which the gate electrode 11 has been formed by forming a silicon nitride film, a silicon oxide film, or the like with a thickness of about 4000 mm by a CVD (Chemical Vapor Deposition) method.
 続いて、ゲート絶縁膜12が形成された基板全体に、CVD法により、第1シリコン膜として真性アモルファスシリコン膜を厚さ2000Å程度で成膜した後に、第2シリコン膜としてリンがドープされたnアモルファスシリコン膜を厚さ500Å程度で成膜する。 Subsequently, an intrinsic amorphous silicon film having a thickness of about 2000 mm is formed as a first silicon film on the entire substrate on which the gate insulating film 12 is formed by CVD, and then phosphorus is doped as the second silicon film. + Amorphous silicon film is formed with a thickness of about 500 mm.
 そして、上記真性アモルファスシリコン膜及びnアモルファスシリコン膜が順に成膜された基板全体にスピンコーティング法により、感光性樹脂膜を塗布した後に、パターニングすることにより、第2のレジストパターンを形成する。 A second resist pattern is formed by applying a photosensitive resin film to the entire substrate on which the intrinsic amorphous silicon film and the n + amorphous silicon film are sequentially formed by spin coating, followed by patterning.
 さらに、上記第2のレジストパターンから露出する真性アモルファスシリコン膜及びnアモルファスシリコン膜をドライエッチングにより除去した後に、その第2のレジストパターンを剥離させることにより、半導体層形成層を形成する。 Further, after removing the intrinsic amorphous silicon film and the n + amorphous silicon film exposed from the second resist pattern by dry etching, the second resist pattern is peeled off to form a semiconductor layer forming layer.
 その後、上記半導体層形成層が形成された基板全体に、スパッタリング法により、アルミニウム膜、銅膜やチタン膜などの第2の金属膜を厚さ3000Å程度でスパッタリング法により成膜する。 Thereafter, a second metal film such as an aluminum film, a copper film, or a titanium film is formed by sputtering on the entire substrate on which the semiconductor layer forming layer has been formed by sputtering.
 続いて、上記第2の金属膜が成膜された基板全体にスピンコーティング法により、感光性樹脂膜を塗布した後に、パターニングすることにより、第3のレジストパターンを形成する。 Subsequently, a photosensitive resin film is applied to the entire substrate on which the second metal film is formed by spin coating, and then patterned to form a third resist pattern.
 さらに、上記第3のレジストパターンから露出する第2の金属膜をドライエッチングにより除去することにより、ソース電極14c及びドレイン電極14dを形成する(図7参照)。 Further, the second metal film exposed from the third resist pattern is removed by dry etching to form the source electrode 14c and the drain electrode 14d (see FIG. 7).
 その後、ソース電極14c及びドレイン電極14dから露出するnアモルファスシリコン層形成層及びその下層に配置する真性アモルファスシリコン層形成層の上層部を、六フッ化硫黄ガスや四フッ化炭素ガスなどのフッ素系ガスと、塩化水素ガスや塩素ガスなどの塩素系ガスとを用いた反応性ドライエッチングによって除去することにより、図7に示すように、TFTパターン15を形成する。 Thereafter, the upper layer portion of the n + amorphous silicon layer forming layer exposed from the source electrode 14c and the drain electrode 14d and the intrinsic amorphous silicon layer forming layer disposed below the n + amorphous silicon layer forming layer is made of fluorine such as sulfur hexafluoride gas or carbon tetrafluoride gas. The TFT pattern 15 is formed as shown in FIG. 7 by removing by reactive dry etching using a system gas and a chlorine-based gas such as hydrogen chloride gas or chlorine gas.
 <低濃度領域形成工程(St22)>
 上記TFTパターン形成工程で形成されたTFTパターン15の真性アモルファスシリコン層形成層13caに対し、図8に示すように、波長248nm以上且つ355nm以下のレーザー光L(例えば、波長308nmのエキシマレーザー光)を照射することにより、アモルファスシリコンをレーザーアニールによって結晶化させると共に、水素含有量を3アトミック%以下にして、低濃度領域Raを形成する。ここで、ソース電極14c及びドレイン電極14dは、アルミニウム膜や銀膜などの高反射性の材料により構成されているので、その下層に配置する真性アモルファスシリコン層形成層13caには、レーザー光Lが照射されない。そのため、ソース電極14c及びドレイン電極14dの下層に配置する真性アモルファスシリコン層形成層13caは、レーザーアニールされないので、低濃度領域Raの外側に高濃度領域Rbが形成される。
<Low concentration region forming step (St22)>
As shown in FIG. 8, laser light L (for example, excimer laser light having a wavelength of 308 nm) having a wavelength of 248 nm or more and 355 nm or less is applied to the intrinsic amorphous silicon layer forming layer 13ca of the TFT pattern 15 formed in the TFT pattern forming step. , The amorphous silicon is crystallized by laser annealing, and the hydrogen content is reduced to 3 atomic% or less to form the low concentration region Ra. Here, since the source electrode 14c and the drain electrode 14d are made of a highly reflective material such as an aluminum film or a silver film, the laser beam L is applied to the intrinsic amorphous silicon layer forming layer 13ca disposed below the source electrode 14c and the drain electrode 14d. Not irradiated. Therefore, the intrinsic amorphous silicon layer forming layer 13ca disposed below the source electrode 14c and the drain electrode 14d is not laser-annealed, so that the high concentration region Rb is formed outside the low concentration region Ra.
 <水素ガスエッチング工程(St23)>
 上記低濃度領域形成工程で低濃度領域Raが形成された基板において、ソース電極14a及びドレイン電極14bから露出するnアモルファスシリコン層形成層13da及びその下層に配置する真性アモルファスシリコン層形成層13caの上層部を、例えば、コイルなどを用いた等方性の高密度プラズマエッチング装置を利用して、図9に示すように、水素ガスを主成分として用いたイオン性ドライエッチングで発生する水素プラズマPによって、除去することにより、真性アモルファスシリコン層13c及びnアモルファスシリコン層13dを形成する。ここで、水素ガスによるイオン性ドライエッチングにおいて、真性アモルファスシリコン層形成層13caの水素含有量が3アトミック%以下の低濃度領域Raは、イオン性が低く、ほとんど除去されないものの、真性アモルファスシリコン層形成層13caの水素含有量が10アトミック%程度の高濃度領域Rb、及び水素含有量が10アトミック%程度のnアモルファスシリコン層形成層13baは、イオン性が高く、容易に除去されるので、真性アモルファスシリコン層形成層13ca及びnアモルファスシリコン層daは、図9に示すように、側方に1μm程度除去される。
<Hydrogen gas etching process (St23)>
In the substrate on which the low concentration region Ra is formed in the low concentration region formation step, the n + amorphous silicon layer formation layer 13da exposed from the source electrode 14a and the drain electrode 14b and the intrinsic amorphous silicon layer formation layer 13ca disposed below the n + amorphous silicon layer formation layer 13ca For example, as shown in FIG. 9, a hydrogen plasma P generated by ionic dry etching using hydrogen gas as a main component is used for the upper layer portion by utilizing an isotropic high-density plasma etching apparatus using a coil or the like. Thus, the intrinsic amorphous silicon layer 13c and the n + amorphous silicon layer 13d are formed by removing. Here, in the ionic dry etching using hydrogen gas, the intrinsic amorphous silicon layer formation layer 13ca has a low hydrogen concentration of 3 atomic% or less, but the low concentration region Ra has low ionicity and is hardly removed. The high concentration region Rb having a hydrogen content of about 10 atomic% and the n + amorphous silicon layer forming layer 13ba having a hydrogen content of about 10 atomic% have high ionicity and are easily removed. As shown in FIG. 9, the amorphous silicon layer forming layer 13ca and the n + amorphous silicon layer da are removed by about 1 μm to the side.
 以上のようにして、本実施形態のTFT5bを製造することができる。 As described above, the TFT 5b of this embodiment can be manufactured.
 以上説明したように、本実施形態のTFT5b及びその製造方法によれば、低濃度領域形成工程において、真性アモルファスシリコン層13cとなる真性アモルファスシリコン層形成層13caに水素含有量が3アトミック%以下の低濃度領域Raが形成されるので、その低濃度領域Raでは、従来のTFT105(図10参照)の真性アモルファスシリコン層113aの水素含有量(例えば、10アトミック%程度)よりも低くなっている。ここで、上記実施形態1と同様に、例えば、CVD法により成膜した真性アモルファスシリコン膜の水素含有量をレーザーアニールによって3アトミック%以下とした真性アモルファスシリコン膜が、単にCVD法により成膜した真性アモルファスシリコン膜やnアモルファスシリコン膜よりも、水素ガスを主成分として用いたドライエッチングにおいてエッチング速度が極端に遅い(例えば、1/18程度)という独自の知見により、低濃度領域形成工程において、例えば、レーザーアニールによって、ソース電極14c及びドレイン電極14dから露出する真性アモルファスシリコン層形成層13caに水素含有量を3アトミック%以下の低濃度領域Raを形成し、水素ガスエッチング工程において、水素ガスを用いたドライエッチングを行うことにより、半導体層となる半導体層形成層の一部を除去して、チャネル部Cに高濃度領域Rbを形成する際に、真性アモルファスシリコン層形成層13caの低濃度領域Raの除去が抑制され、低濃度領域Raの外側に配置する真性アモルファスシリコン層形成層13caの高濃度領域Rb及びnアモルファスシリコン層形成層daが除去されるので、半導体層13cを構成する真性アモルファスシリコン層13c(真性アモルファスシリコン層形成層13ca)及びnアモルファスシリコン層13d(nアモルファスシリコン層形成層13da)のドライエッチング時の選択比を可及的に高くすることができる。 As described above, according to the TFT 5b and the manufacturing method thereof of the present embodiment, the hydrogen content in the intrinsic amorphous silicon layer forming layer 13ca to be the intrinsic amorphous silicon layer 13c is 3 atomic% or less in the low concentration region forming step. Since the low concentration region Ra is formed, the hydrogen concentration (for example, about 10 atomic%) of the intrinsic amorphous silicon layer 113a of the conventional TFT 105 (see FIG. 10) is lower in the low concentration region Ra. Here, as in the first embodiment, for example, an intrinsic amorphous silicon film in which the hydrogen content of the intrinsic amorphous silicon film formed by the CVD method is 3 atomic% or less by laser annealing is simply formed by the CVD method. In the low-concentration region forming process, the unique knowledge that the etching rate is extremely slow (for example, about 1/18) in dry etching using hydrogen gas as a main component compared to an intrinsic amorphous silicon film or an n + amorphous silicon film. For example, a low concentration region Ra having a hydrogen content of 3 atomic% or less is formed in the intrinsic amorphous silicon layer forming layer 13ca exposed from the source electrode 14c and the drain electrode 14d by laser annealing. Dry etch using By removing a part of the semiconductor layer forming layer that becomes the semiconductor layer by forming the high concentration region Rb in the channel portion C, the low concentration region Ra of the intrinsic amorphous silicon layer forming layer 13ca is removed. Is suppressed, and the high concentration region Rb and the n + amorphous silicon layer formation layer da of the intrinsic amorphous silicon layer formation layer 13ca disposed outside the low concentration region Ra are removed, so that the intrinsic amorphous silicon layer constituting the semiconductor layer 13c is removed. The selection ratio during dry etching of 13c (intrinsic amorphous silicon layer forming layer 13ca) and n + amorphous silicon layer 13d (n + amorphous silicon layer forming layer 13da) can be made as high as possible.
 また、本実施形態のTFT5b及びその製造方法によれば、真性アモルファスシリコン層13cにおいて、水素含有量が相対的に低い低濃度領域Raは、結晶性が相対的に高く、水素含有量が相対的に高い高濃度領域Rbは、結晶性が相対的に低くなるので、高濃度領域Rbが低濃度領域Raとソース電極14c及びドレイン電極14dとの間の電界を緩和するための緩衝領域になり、オフ電流を低減させることができる。 Further, according to the TFT 5b and the manufacturing method thereof of the present embodiment, in the intrinsic amorphous silicon layer 13c, the low concentration region Ra having a relatively low hydrogen content has a relatively high crystallinity and a relatively high hydrogen content. Since the high concentration region Rb is relatively low in crystallinity, the high concentration region Rb becomes a buffer region for relaxing the electric field between the low concentration region Ra and the source electrode 14c and drain electrode 14d. The off current can be reduced.
 また、本実施形態のTFT5b及びその製造方法によれば、レーザー光Lを照射後に発生したシリコン内の欠陥部分を水素プラズマによって終端することができるので、TFT特性(移動度やオフ電流)を向上させることができる。 In addition, according to the TFT 5b and the manufacturing method thereof of the present embodiment, the defect portion in the silicon generated after irradiation with the laser beam L can be terminated by hydrogen plasma, so that the TFT characteristics (mobility and off-current) are improved. Can be made.
 なお、本実施形態のSt23では、水素ガスを用いたドライエッチングを行ったが、過酸化水素及びフッ素を含むエッチャントを用いたウエットエッチングを行ってもよい。 In St23 of this embodiment, dry etching using hydrogen gas is performed, but wet etching using an etchant containing hydrogen peroxide and fluorine may be performed.
 上記各実施形態では、第2シリコン層にリンがドープされたnチャネル型のTFTを例示したが、本発明は、第2シリコン層にボロンがドープされたpチャネル型のTFTにも適用することができる。 In each of the above embodiments, an n-channel TFT in which the second silicon layer is doped with phosphorus is exemplified, but the present invention is also applicable to a p-channel TFT in which the second silicon layer is doped with boron. Can do.
 以上説明したように、本発明は、TFTの特性を向上させることができるので、例えば、アクティブマトリクス駆動方式の液晶表示パネルや有機EL表示パネルについて有用である。 As described above, since the characteristics of the TFT can be improved, the present invention is useful for, for example, an active matrix liquid crystal display panel and an organic EL display panel.
C      チャネル部
L      レーザー光
P      水素プラズマ
Ra     低濃度領域
Rb     高濃度領域
5a,5b  TFT
10     絶縁基板
11     ゲート電極
12     ゲート絶縁膜
13     半導体層
13a,13c  真性アモルファスシリコン層(第1シリコン層、第1シリコン膜)
13b,13d  nアモルファスシリコン層(第2シリコン層)
13ba   nアモルファスシリコン層形成層(第2シリコン層形成層、半導体層形成層)
13ca   真性アモルファスシリコン層形成層(第1シリコン層形成層、半導体層形成層)
13da   nアモルファスシリコン層形成層(第2シリコン層形成層、半導体層形成層)
14a,14c  ソース電極
14b,14d  ドレイン電極
C channel portion L laser beam P hydrogen plasma Ra low concentration region Rb high concentration region 5a, 5b TFT
DESCRIPTION OF SYMBOLS 10 Insulating substrate 11 Gate electrode 12 Gate insulating film 13 Semiconductor layer 13a, 13c Intrinsic amorphous silicon layer (1st silicon layer, 1st silicon film)
13b, 13dn + amorphous silicon layer (second silicon layer)
13ba n + amorphous silicon layer formation layer (second silicon layer formation layer, semiconductor layer formation layer)
13ca Intrinsic amorphous silicon layer formation layer (first silicon layer formation layer, semiconductor layer formation layer)
13 dan + amorphous silicon layer forming layer (second silicon layer forming layer, semiconductor layer forming layer)
14a, 14c Source electrode 14b, 14d Drain electrode

Claims (11)

  1.  基板に設けられたゲート電極と、
     上記ゲート電極を覆うように設けられたゲート絶縁膜と、
     上記ゲート絶縁膜上に設けられ上記ゲート電極に重なるようにチャネル部が配置された第1シリコン層を有する半導体層と、
     上記半導体層上に設けられ上記チャネル部が露出するように互いに離間して配置されたソース電極及びドレイン電極とを備え、
     上記半導体層が上記第1シリコン層と上記ソース電極及びドレイン電極との間に不純物がドープされた第2シリコン層を有する薄膜トランジスタであって、
     上記第1シリコン層は、水素含有量が3アトミック%以下の低濃度領域を有していることを特徴とする薄膜トランジスタ。
    A gate electrode provided on the substrate;
    A gate insulating film provided to cover the gate electrode;
    A semiconductor layer having a first silicon layer provided on the gate insulating film and having a channel portion disposed so as to overlap the gate electrode;
    A source electrode and a drain electrode, which are provided on the semiconductor layer and spaced apart from each other so as to expose the channel portion;
    The semiconductor layer is a thin film transistor having a second silicon layer doped with impurities between the first silicon layer and the source and drain electrodes,
    The thin film transistor according to claim 1, wherein the first silicon layer has a low concentration region having a hydrogen content of 3 atomic% or less.
  2.  請求項1に記載された薄膜トランジスタにおいて、
     上記低濃度領域は、上記第1シリコン層の全体に配置されていることを特徴とする薄膜トランジスタ。
    The thin film transistor according to claim 1,
    The thin film transistor according to claim 1, wherein the low concentration region is disposed on the entire first silicon layer.
  3.  請求項2に記載された薄膜トランジスタにおいて、
     上記第1シリコン層の膜厚は、200Å以上且つ800Å以下であることを特徴とする薄膜トランジスタ。
    The thin film transistor according to claim 2,
    The thin film transistor, wherein the first silicon layer has a thickness of 200 to 800 mm.
  4.  請求項1に記載された薄膜トランジスタにおいて、
     上記第1シリコン層は、上記チャネル部において、上記低濃度領域と、該低濃度領域の外側に上記ソース電極及びドレイン電極に対応して配置され該低濃度領域よりも水素含有量が高い高濃度領域とを有していることを特徴とする薄膜トランジスタ。
    The thin film transistor according to claim 1,
    The first silicon layer is disposed in the channel portion so as to correspond to the source electrode and the drain electrode on the outside of the low concentration region and the low concentration region, and has a higher hydrogen content than the low concentration region. A thin film transistor having a region.
  5.  請求項1乃至4の何れか1つに記載された薄膜トランジスタにおいて、
     上記第1シリコン層は、結晶性を有していることを特徴とする薄膜トランジスタ。
    The thin film transistor according to any one of claims 1 to 4,
    The thin film transistor, wherein the first silicon layer has crystallinity.
  6.  基板に設けられたゲート電極と、
     上記ゲート電極を覆うように設けられたゲート絶縁膜と、
     上記ゲート絶縁膜上に設けられ上記ゲート電極に重なるようにチャネル部が配置された第1シリコン層を有する半導体層と、
     上記半導体層上に設けられ上記チャネル部が露出するように互いに離間して配置されたソース電極及びドレイン電極とを備え、
     上記半導体層が上記第1シリコン層と上記ソース電極及びドレイン電極との間に不純物がドープされた第2シリコン層を有する薄膜トランジスタを製造する方法であって、
     上記第1シリコン層となる第1シリコン膜に水素含有量が3アトミック%以下の低濃度領域を形成する低濃度領域形成工程と、
     上記低濃度領域が形成された基板に対して、水素ガスを用いたドライエッチング、又は、過酸化水素及びフッ素を含むエッチャントを用いたウエットエッチングを行うことにより、上記半導体層となる半導体層形成層の一部を除去する半導体層形成エッチング工程とを備えることを特徴とする薄膜トランジスタの製造方法。
    A gate electrode provided on the substrate;
    A gate insulating film provided to cover the gate electrode;
    A semiconductor layer having a first silicon layer provided on the gate insulating film and having a channel portion disposed so as to overlap the gate electrode;
    A source electrode and a drain electrode, which are provided on the semiconductor layer and spaced apart from each other so as to expose the channel portion;
    A method of manufacturing a thin film transistor, wherein the semiconductor layer has a second silicon layer doped with impurities between the first silicon layer and the source and drain electrodes,
    A low concentration region forming step of forming a low concentration region having a hydrogen content of 3 atomic% or less in the first silicon film to be the first silicon layer;
    A semiconductor layer forming layer which becomes the semiconductor layer by performing dry etching using hydrogen gas or wet etching using an etchant containing hydrogen peroxide and fluorine on the substrate on which the low concentration region is formed A method for producing a thin film transistor, comprising: a semiconductor layer forming etching step for removing a part of the semiconductor layer.
  7.  請求項6に記載された薄膜トランジスタの製造方法において、
     上記低濃度領域形成工程では、上記第1シリコン膜に対してレーザー光を照射することにより、上記低濃度領域を形成することを特徴とする薄膜トランジスタの製造方法。
    In the manufacturing method of the thin-film transistor according to claim 6,
    In the low concentration region forming step, the low concentration region is formed by irradiating the first silicon film with a laser beam.
  8.  請求項6又は7に記載された薄膜トランジスタの製造方法において、
     上記低濃度領域形成工程では、上記第1シリコン膜の少なくとも上記チャネル部となる領域に上記低濃度領域を形成し、
     上記低濃度領域が形成された第1シリコン膜上に上記第2シリコン層となる第2シリコン層形成層を形成した後に、上記ソース電極及びドレイン電極を形成するソースドレイン形成工程を有し、
     上記半導体層形成エッチング工程では、上記ソース電極及びドレイン電極から露出する上記第2シリコン層形成層を除去して、上記チャネル部を形成することを特徴とする薄膜トランジスタの製造方法。
    In the manufacturing method of the thin-film transistor described in Claim 6 or 7,
    In the low-concentration region forming step, the low-concentration region is formed in a region that becomes at least the channel portion of the first silicon film,
    A source drain forming step of forming the source electrode and the drain electrode after forming a second silicon layer forming layer to be the second silicon layer on the first silicon film in which the low concentration region is formed;
    In the semiconductor layer formation etching step, the channel portion is formed by removing the second silicon layer formation layer exposed from the source electrode and the drain electrode.
  9.  請求項6又は7に記載された薄膜トランジスタの製造方法において、
     上記低濃度領域形成工程では、上記ソース電極及びドレイン電極から露出する上記第1シリコン層となる第1シリコン層形成層に上記低濃度領域を形成し、
     上記半導体層形成エッチング工程では、上記低濃度領域の外側に配置する上記第1シリコン層形成層の一部を除去することにより、上記チャネル部に上記ソース電極及びドレイン電極に対応して配置され上記低濃度領域よりも水素含有量が高い高濃度領域を形成することを特徴とする薄膜トランジスタの製造方法。
    In the manufacturing method of the thin-film transistor described in Claim 6 or 7,
    In the low-concentration region forming step, the low-concentration region is formed in a first silicon layer forming layer that becomes the first silicon layer exposed from the source electrode and the drain electrode,
    In the semiconductor layer formation etching step, by removing a part of the first silicon layer formation layer disposed outside the low concentration region, the channel portion is disposed corresponding to the source electrode and the drain electrode. A method for manufacturing a thin film transistor, wherein a high concentration region having a higher hydrogen content than a low concentration region is formed.
  10.  請求項7に記載された薄膜トランジスタの製造方法において、
     上記レーザー光の波長は、248nm以上且つ355nm以下であることを特徴とする薄膜トランジスタの製造方法。
    In the manufacturing method of the thin-film transistor described in Claim 7,
    The method of manufacturing a thin film transistor, wherein the laser beam has a wavelength of 248 nm to 355 nm.
  11.  請求項6乃至10の何れか1つに記載された薄膜トランジスタの製造方法において、
     上記基板は、短辺が1500mm以上の矩形状のガラス基板であることを特徴とする薄膜トランジスタの製造方法。
    In the manufacturing method of the thin-film transistor as described in any one of Claims 6 thru | or 10,
    The method of manufacturing a thin film transistor, wherein the substrate is a rectangular glass substrate having a short side of 1500 mm or more.
PCT/JP2009/003499 2008-12-11 2009-07-24 Thin film transistor and method for manufacturing the thin film transistor WO2010067483A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-316012 2008-12-11
JP2008316012 2008-12-11

Publications (1)

Publication Number Publication Date
WO2010067483A1 true WO2010067483A1 (en) 2010-06-17

Family

ID=42242482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003499 WO2010067483A1 (en) 2008-12-11 2009-07-24 Thin film transistor and method for manufacturing the thin film transistor

Country Status (1)

Country Link
WO (1) WO2010067483A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014172853A1 (en) * 2013-04-22 2014-10-30 深圳市华星光电技术有限公司 Switch tube and preparation method therefor, and display panel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352265A (en) * 1989-07-20 1991-03-06 Sanyo Electric Co Ltd Thin film transistor
JPH0563172A (en) * 1991-09-02 1993-03-12 Hitachi Ltd Semiconductor device and its manufacture
JPH05315616A (en) * 1992-05-08 1993-11-26 Hitachi Ltd Semiconductor device and thin-film transistor
JP2002134426A (en) * 2000-04-04 2002-05-10 Matsushita Electric Ind Co Ltd Method and apparatus for manufacturing thin film, thin- film transistor and its manufacturing method
JP2002158173A (en) * 2000-09-05 2002-05-31 Sony Corp Method for manufacturing thin film, semiconductor thin film, semiconductor device, method for manufacturing semiconductor thin film, and system for manufacturing semiconductor thin film
JP2002313718A (en) * 2001-04-10 2002-10-25 Nec Corp Thin film transistor manufacturing method
JP2003273206A (en) * 2002-03-18 2003-09-26 Fujitsu Ltd Semiconductor and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352265A (en) * 1989-07-20 1991-03-06 Sanyo Electric Co Ltd Thin film transistor
JPH0563172A (en) * 1991-09-02 1993-03-12 Hitachi Ltd Semiconductor device and its manufacture
JPH05315616A (en) * 1992-05-08 1993-11-26 Hitachi Ltd Semiconductor device and thin-film transistor
JP2002134426A (en) * 2000-04-04 2002-05-10 Matsushita Electric Ind Co Ltd Method and apparatus for manufacturing thin film, thin- film transistor and its manufacturing method
JP2002158173A (en) * 2000-09-05 2002-05-31 Sony Corp Method for manufacturing thin film, semiconductor thin film, semiconductor device, method for manufacturing semiconductor thin film, and system for manufacturing semiconductor thin film
JP2002313718A (en) * 2001-04-10 2002-10-25 Nec Corp Thin film transistor manufacturing method
JP2003273206A (en) * 2002-03-18 2003-09-26 Fujitsu Ltd Semiconductor and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014172853A1 (en) * 2013-04-22 2014-10-30 深圳市华星光电技术有限公司 Switch tube and preparation method therefor, and display panel

Similar Documents

Publication Publication Date Title
JP5015471B2 (en) Thin film transistor and manufacturing method thereof
JP5015470B2 (en) Thin film transistor and manufacturing method thereof
KR101491567B1 (en) Display with thin film transistor devices having different electrical characteristics in pixel and driving regions and method for fabricating the same
JP5015472B2 (en) Thin film transistor and manufacturing method thereof
CN110867458B (en) Metal oxide semiconductor thin film transistor array substrate and manufacturing method thereof
WO2016098651A1 (en) Semiconductor device and method for manufacturing same, and display device provided with semiconductor device
WO2009093410A1 (en) Semiconductor element and method for manufacturing the same
CN100339964C (en) Method for making MOS having light doped drain electrode
CN108550625A (en) A kind of thin film transistor and its manufacturing method
US10529750B2 (en) LTPS array substrate and method for producing the same
US10361261B2 (en) Manufacturing method of TFT substrate, TFT substrate, and OLED display panel
US20090039354A1 (en) Tft array substrate and manufacturing method thereof
US20180122840A1 (en) Ltps array substrate and method for producing the same
CN100590818C (en) Thin film transistor and fabrication method thereof
WO2010067483A1 (en) Thin film transistor and method for manufacturing the thin film transistor
WO2011024510A1 (en) Thin-film transistor and method for manufacturing same
TWI609496B (en) Thin film transistor and manufacturing method thereof
KR100248119B1 (en) Thin-film transistor and method for manufacturing thereof
JP2007033786A (en) Display device
CN110178226B (en) Thin film transistor, pixel structure, display device and manufacturing method
US10749036B2 (en) Oxide semiconductor thin film transistor having spaced channel and barrier strips and manufacturing method thereof
TWI699892B (en) Electronic device and manufacturing method thereof
JP4304374B2 (en) Top gate type thin film transistor
CN109638034A (en) The manufacturing method of display panel
EP3598479A1 (en) Thin-film transistor and method for manufacturing same, and display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP