WO2010066972A1 - Production d'hydrogene a partir de gaz reforme et capture simultanee du co2 co-produit - Google Patents

Production d'hydrogene a partir de gaz reforme et capture simultanee du co2 co-produit Download PDF

Info

Publication number
WO2010066972A1
WO2010066972A1 PCT/FR2009/052210 FR2009052210W WO2010066972A1 WO 2010066972 A1 WO2010066972 A1 WO 2010066972A1 FR 2009052210 W FR2009052210 W FR 2009052210W WO 2010066972 A1 WO2010066972 A1 WO 2010066972A1
Authority
WO
WIPO (PCT)
Prior art keywords
psa
fraction
enriched
unit
hydrogen
Prior art date
Application number
PCT/FR2009/052210
Other languages
English (en)
Inventor
Christian Monereau
Céline CARRIERE
Original Assignee
L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to JP2011540153A priority Critical patent/JP2012511491A/ja
Priority to AU2009326953A priority patent/AU2009326953A1/en
Priority to CA2742206A priority patent/CA2742206A1/fr
Priority to US13/130,541 priority patent/US8746009B2/en
Priority to CN200980149500.9A priority patent/CN102245500B/zh
Priority to EP09795459A priority patent/EP2376373A1/fr
Publication of WO2010066972A1 publication Critical patent/WO2010066972A1/fr
Priority to ZA2011/04038A priority patent/ZA201104038B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/506Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification at low temperatures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0266Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40013Pressurization
    • B01D2259/40016Pressurization with three sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40035Equalization
    • B01D2259/40041Equalization with more than three sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40043Purging
    • B01D2259/4005Nature of purge gas
    • B01D2259/40052Recycled product or process gas
    • B01D2259/40054Recycled product or process gas treated before its reuse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40075More than ten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/406Further details for adsorption processes and devices using more than four beds
    • B01D2259/4067Further details for adsorption processes and devices using more than four beds using ten beds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/0445Selective methanation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/046Purification by cryogenic separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/145At least two purification steps in parallel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/86Carbon dioxide sequestration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry

Definitions

  • the present invention relates to a process for the production of hydrogen with capture of CO 2 produced simultaneously.
  • the hydrogen is supplied from reforming with hydrocarbon vapor, more particularly methane (SMR).
  • SMR methane
  • the reformed gas is usually sent to a “shift” reactor (Water gas shift reactor) to produce more hydrogen.
  • the "water gas shift reaction” is a reaction between carbon monoxide and water to form carbon dioxide and water.
  • the gas produced generally has the following characteristics:
  • H 2 Temperature close to room temperature (after cooling), - Composition in molar percentage H 2 : between 60 and 80%; CO 2 : between 15 and 25%; CO: between 0.5 and 5%; CH4: between 3 and 7%; N 2 : between 0 and 6%, saturated with water,
  • Such a gas is then usually sent directly to a PSA (Pressure Swing Adsorption) hydrogen to produce high purity hydrogen (99% to 99.9999 mol%).
  • PSA Pressure Swing Adsorption
  • the residual PSA contains all the CO 2 , the great majority of CH4 and CO, a large part of the N 2 and hydrogen in an amount depending on the PSA unit yield (from 75 to 90% depending on the desired efficiency). ).
  • This residual, with the CO 2 content, is burned at the steam reforming furnace.
  • the waste gas from this unit is vented after recovering some of the available heat.
  • EP 0 341 879 B1 treats the PSA H 2 waste to extract the CO 2 via a PSA and a refrigeration.
  • WO 2006/054008 also treats the PSA H 2 waste via a PSA and a cryogenic unit.
  • US 5,026,406 discloses the production of two high purity fractions using a PSA.
  • Example 2 corresponds in part to the problem that arises here.
  • a fraction rich in CO 2 (99.7 mol%) and a fraction containing approximately 90 mol% of H 2 are obtained.
  • this fraction will have to be treated in a second unit, for example PSA type PSA H 2 , to obtain an H 2 purity of 99%.
  • the use of vacuum pumps and / or recycling is necessary to achieve the intended performance.
  • the document FR2884304 describes an adsorption unit operating at a maximum pressure of 10 bar absolute, producing a gas enriched in CO 2 which is sent to a cryogenic unit which enriches this gas to a minimum of 80 mol%.
  • the CO 2 depleted gas of the adsorption unit is expanded, after cooling or not, to provide the cooling capacity of the cryogenic unit.
  • At least a portion of the CO 2 -cooled gas of the cryogenic unit is recycled to the PSA, after or without expansion.
  • At least a portion of the low CO 2 gas of the cryogenic unit is used as fuel.
  • Said adsorption unit may be a VSA, a VPSA or a PSA
  • PSA as described in FR2884304 is effectively not suitable a priori when it is desired to extract CO 2 in a high pressure gas such as synthesis gas when it is also desired to recover as a priority the majority of one of the least adsorbable constituents.
  • a high pressure gas such as synthesis gas
  • a moderate partial pressure of the order of the bar
  • the use of a high pressure does not contribute anything to the cessation of CO 2 but is unfavorable when it is desired to keep under pressure components such as hydrogen.
  • This last component adsorbs very weakly, it is mainly present in the adsorber in the gas phases, whether it is the porous volumes of the adsorbent, the intergranular volume or dead volumes at the inlet and outlet. At a given volume, the loss of hydrogen is then proportional to the pressure. In such an application, it is normal to rather consider treating the PSA H 2 waste to sequester CO 2 knowing that it is a low-pressure flow, enriched in CO2 and depleted of hydrogen.
  • WO 2006/054008 and EP 0 341 879 B1 are based on these considerations.
  • a problem is to provide a process capable of economically producing hydrogen with CO2 capture and without significant loss of hydrogen.
  • a solution of the invention is a process for producing hydrogen from a gaseous mixture 21 comprising hydrogen (H2), carbon dioxide (CO2), carbon monoxide (CO), methane ( CH4) and water (H2O), implementing a CO2 PSA unit 30, a cryogenic unit 40 and a PSA H2 unit 50, wherein: a) introducing said gaseous mixture 21 into a PSA unit CO 2 30, producing a fraction 32 enriched in CO 2 and a fraction 31 depleted in CO 2 ; b) introducing the fraction 32 rich in CO 2 into a cryogenic unit 40, producing a fraction 41 enriched in CO2 and a fraction 43 enriched in H2; c) the fraction 43 enriched in H2 is recycled upstream of the PSA H2 50 unit; and d) introducing the fraction 31 depleted in CO2 PSA unit H2 50, producing a stream 51 enriched with hydrogen and a waste gas 52.
  • the process according to the invention may have one or more of the following characteristics: the fraction enriched in H2 represents more than 90% of the quantity of hydrogen contained in fraction 32 rich in CO2.
  • step a) the fraction 32 enriched with CO2 is compressed at a pressure greater than the pressure of the gaseous mixture 21.
  • the PSA CO2 comprises at least one adsorber with at least one adsorbent and in that said adsorber is subjected to a pressure cycle comprising a step of sweeping the adsorbent by a portion of the fraction 32 enriched in CO2 and compressed.
  • fraction 32 enriched with CO2 is at least partially dried using a dryer 35.
  • the gaseous mixture 21 is at least partially dried using a dryer 25.
  • step a) the gaseous mixture 21 is at least partially dried using a dryer 25 and in step c) the following substeps are carried out: at least a part of the fraction enriched in H2 is reheated in a heater 44; said portion of the heated fraction 43 is used to regenerate the dryer or dryer 25, then said portion of the fraction 43 is recycled upstream of the PSA unit H2 50 after refrigeration and separation of the condensed water.
  • step c) at least a portion of the fraction enriched in H2 is recycled upstream of the PSA CO 2 unit 30.
  • the waste gas 52 is partly recycled upstream of the PSA H 2 50; PSA H 2 50 is regenerated at a pressure less than or equal to atmospheric pressure.
  • the fraction 41 enriched in CO 2 comprises more than 90% CO 2 , preferably more than 97% CO 2 , more preferably more than 99% CO 2 .
  • the fraction 41 enriched in CO2 is packaged in a bottle or tank or feeds a CO2 line for industrial use or storage in the basement, or is produced in liquid form.
  • the subject of the invention is also an installation for producing hydrogen from a gaseous mixture 21 comprising hydrogen H 2, carbon dioxide C 2, carbon monoxide CO, methane CH 4 and water H 2 O , characterized in that said installation comprises a PSA CO 2 and PSA H 2 50 in series, the PSA CO 2 30 being upstream of the PSA H 2 50 and combined with a cryogenic unit 40.
  • the installation may have at least one of the following characteristics:
  • the PSA CO 2 comprises at least 5 adsorbers comprising at least silica gel as adsorbent; in each adsorber of the PSA CO 2 30, the silica gel represents at least 50% of the total volume of adsorbent and a zeolite of type A or X at most 25% of the total volume;
  • the cryogenic unit comprises a stripping device of at least a portion of the fraction 32 of CO 2 , previously liquefied, to extract hydrogen, and generally incondensable, dissolved in said fraction.
  • FIG. 1 represents an installation according to the invention with different options for recycling flows from the cryogenic unit.
  • the natural gas (or, more generally, the hydrocarbons) 1 and the vapor 2 are introduced into the reforming unit 10.
  • the reformed gas comprising hydrogen (H 2 ), carbon dioxide (CO 2 ), carbon dioxide carbon monoxide (CO), methane (CH4), optionally argon (Ar) and nitrogen (N 2 ), and water (H 2 O) is shifted in a shift reactor 20, wherein at least a portion of the carbon monoxide reacts with at least a portion of the water to form hydrogen and carbon dioxide.
  • the gas thus reformed and shifted corresponds to the gaseous mixture 21.
  • the gaseous mixture 21 feeds the PSA CO 2 30.
  • the fluid 32 is the rich residue CO 2 of the PSA CO 2 30.
  • This fluid is at low pressure, that is, to say at a pressure less than 3 bar abs, usually around atmospheric pressure. Being compressed to feed the cryogenic unit 40, this fluid could be found in slight depression (for example 0.9 bar abs) without departing from the teaching of the invention.
  • the cryogenic unit 40 makes it possible on the one hand to supply the CO 2 at the required purity (41) for its use (sequestration, injection into oil or gas wells, chemistry, food, etc.) and secondly to recycle 43 the essential (more than 90%, pref over 95, preferably still more than 99%) of the hydrogen contained in the stream 32.
  • the cryogenic unit 40 may optionally produce a methane-enriched stream 42 which will be recycled to unit 1 or used elsewhere. Fraction 43 enriched in H 2 can be recycled at various locations of unit 1:
  • hydrogen - or if there is also a need for impure hydrogen - all or part of the hydrogen-enriched stream 43 may be used in another unit or mixed with the production. principal of hydrogen 51.
  • a complementary treatment 60 for example permeation or catalysis (methanation ..), can be envisaged to adapt the purity of this flow to needs.
  • the flows 46 and / or 48 may be mixed with the main feed streams, respectively 21 and 31 or constitute a second feed.
  • Streams 47 and / or 49 may be used internally to the PSAs, for example to perform all or part of the purge or repressurization.
  • this flow would be injected at the PSA other than as a main or secondary feed, at a pressure lower than the adsorption pressure, it is possible to insert a permeation unit to enrich part of the flow of hydrogen. .
  • the fraction 31, produced by the PSA CO 2 30, is depleted in CO 2 and feeds the PSA H2 50.
  • the waste 52 of the PSA H 2 can be recycled in total at the reformer 10, as a fuel and / or as a reagent 71 after compression in the compressor 70. It is also possible to recycle a portion of this waste at the PSA H 2 level. even, or even use all or part of this flow in an outdoor unit. These variants, which do not alter the spirit of the invention, are not shown in FIG.
  • the process according to the invention uses a unit for capturing CO 2 by adsorption of PSA type, that is to say not using a vacuum regeneration, coupled to a cryogenic unit which allows both to obtain the required purity for the CO 2 and to recycle the majority of the hydrogen contained in the CO 2 fraction 32 from the PSA CO 2 30 to the reformed gas line.
  • the hydrogen extracted at the level of the PSA CO 2 is reinjected into the high pressure circuit going from the feed of the SMR to the hydrogen production, that is to say at a pressure of about fifteen bars abs. at 40 bar maximum.
  • Coupling with a cryogenic unit thus makes it possible to compensate for the average performance of the PSA (compared with a unit using vacuum regeneration) thanks to further purification of CO 2 and improved recycling of incondensables.
  • Incondensable means H 2 , N 2 , CH 4, CO, Ar. It turns out that the modifications made to the cryogenic unit - as compared to a conventional unit for purification and production of CO 2 - such as the choice of a high operating pressure suitable for recycling, a partial re-boiling of the liquid CO 2 in order to expel the dissolved hydrogen, a partial expansion of the liquid CO 2 to recover the vapor fraction rich in incondensables ...
  • cryogenic units associated with PSA making it possible to obtain the performance required both for capturing CO 2 and for recycling incondensables, more particularly hydrogen.
  • the cryogenic unit will be supplied at a pressure greater than the pressure of the hydrogen production, in practice always greater than 15 bar abs and will preferably comprise a so-called "stripping" device of the hydrogen contained in the CO 2 - and more generally incondensable: N 2 , CH 4, CO, Ar-device involving a pressure drop and / or reheating and / or injection of gas in a liquefied fraction of CO 2 .
  • Figure 2 corresponds to a preferred installation of the invention.
  • the fraction 32 enriched in CO 2 and supplying the cryogenic unit 40 will be compressed via the compressor 34 at a pressure greater than the pressure of the gaseous mixture 21 so as to be able to recycle the hydrogen-rich gas 43 without any other compression means.
  • this fluid rich in CO 2 from the PSA CO 2 containing water vapor, this fluid will be at least partially dried before or after compression and cooling (or at the outlet of an intermediate compression stage after cooling).
  • the residual water content will be compatible with the proper functioning of the cryogenic unit, the correct use of the retained materials (corrosion) and the specification of CO2 purity.
  • FIG. 2 for the sake of clarity, only the post-compression position 34 has been shown for said desiccation 35.
  • the regeneration of said drying unit may be carried out with a fraction of the dried fluid 32, or with an external fluid such as nitrogen, or with the residue of the PSA H2 50, but preferably with all or part of the hydrogen-rich recycled fraction 43.
  • the flow 43 may be cyclically heated in the exchanger 44 (electric, steam, heat recovery on a hot fluid) and then cooled in the exchanger 45 with evacuation of condensed water. This flow 46 is then reintroduced into the reformed gas.
  • the dryer may be of any type, but preferably TSA type as indicated above.
  • the adsorbers may be cylindrical type vertical axis, cylindrical horizontal axis or radial type for larger flow rates.
  • the technology of the radial adsorbers may be that used for the overhead treatment in front of the cryogenic air separation units or that of the VSA 02.
  • the waste 32 of the PSA CO2 can also feed a gasometer 33 or a buffer capacity before being compressed and then dried. This storage then has the double effect of homogenizing the composition of the waste and regulating its flow rate.
  • the reformed and shifted gas 21 is mixed with the gas 46 enriched in H2 and derived from the cryogenic unit which contains all the hydrogen contained in the CO2-rich fraction (32), CO2 - as a function of the thermodynamic equilibria achieved in the Cryonic methane unit, carbon monoxide and possibly nitrogen and argon. These levels depend essentially on the required purity for CO 2 .
  • the fraction 31 depleted in CO 2 , resulting from PSA CO 2 30 has a residual CO 2 content generally in the range from 0.5 to 7.5 mol%, more generally from 1.5 to 3.5%.
  • PSA H 2 50 purifies said gas with CO 2 , CH 4 , CO, N 2 ... and produces pure hydrogen 51, that is to say with a purity greater than 98% and generally between 99 and 99.9999%.
  • the PSA H 2 low pressure waste stream 52 is generally used as a fuel (SMR furnace) and / or as a feedstock of the SMR after compression.
  • this recycling can be mixed with the main feed (31) or constitute a second feed.
  • PSA CO 2 as a means of drying the reformed gas before supplying PSA H 2 is one of the advantages of this process. Since the waste 52 of PSA H 2 is dry, it is possible to envisage, at reduced costs, improving the performance of said PSA not only via recycling as described above but also by lowering the pressure of this waste. In fact, in the case of a conventional PSA H 2 , the PSA waste is sent to the furnace burners of the SMR. The adjustment means and the pressure drops in the pipes and accessories make the low pressure of the PSA cycle is of the order of
  • the cryogenic unit is conventional, of the partial condensation type as used for the production of liquid CO 2 for industrial or food use.
  • a first example is given in EP 0341 879 B1.
  • a more complex example is shown in FIG. 6 of document FR 2 884 304.
  • document WO 2006/054008 describes variations of cryogenic unit.
  • the unit may comprise a device enabling to extract the dissolved hydrogen in the liquid CO 2 in order to make the losses negligible. This device may consist in partially boiling off liquid CO 2 , the light constituents then being preferentially in the gas phase.
  • This cryogenic unit will therefore be characterized by its operating pressure greater than or equal to the pressure of the shifted gas, that is to say in practice always greater than 15 bar abs and by a recycling in hydrogen greater than 90%, preferably greater than 95. %, still more preferably equal to or greater than 99% of the hydrogen contained in the waste 32 of the PSA CO2.
  • the HP 43 recycle containing hydrogen is used to regenerate the dryer after passing through the heater 44 to provide the water desorbing energy. This fluid is then cooled 45 for removal of the condensed water and injection into the main stream 21.
  • the PSA CO2 30 can operate in a PSA H 2 type cycle.
  • the PSA CO 2 30 comprises at least two equilibria, preferably still 3 or 4 equilibrations, and is capable of producing under pressure a hydrogen-rich gas containing from 0.5 to 7.5% CO 2 , preferably from 1.5 to 3.5 mol% CO 2 , 0.5 to 7% CO, 3 to 10% CH 4 , 0 to 10% N 2 .
  • This gas is essentially dry, that is to say it contains on average less than 1 ppm of water.
  • the waste gas 32 produced at low pressure is rich in CO 2 (from 80 to 95 mol%), the remainder consisting of H 2 , CO, CH 4 , optionally nitrogen. This gas also contains water vapor.
  • the overall extraction rate of CO 2 is in a range of approximately 70 to 98%, preferably around 85 to 90%.
  • phase times will generally be between 20 and 120 seconds depending on the number of adsorbers used. It is recalled that the cycle time corresponds to the time T that an adsorber returns to a given state and that for a cycle with N adsorbers, the phase time is by definition equal to TYN.
  • a cycle 10-3-4 will be described, which is, according to the conventionally accepted terminology, a PSA type adsorption cycle involving 10 identical adsorbers each in a cycle comprising 3 production phases and 4 balancing.
  • Such a cycle can be represented according to the table below:
  • Such a table means, on the one hand, that a given adsorber will chronologically follow all the steps starting from the upper left box to the lower right box and that on the other hand, at a given moment, the adsorbers will be found. in a state corresponding to a column.
  • a line corresponds to a phase as defined previously. We see that each phase has several stages that correspond to special times in the control system (switching from one step to another usually involves at least one valve movement for the PSA). More particularly, the 10-3-4 cycle described herein thus comprises:
  • a phase of "purge providing” that is to say producing a fraction rich in hydrogen and light component (CO, CH 4 , N 2 ) which serves as elution gas for an adsorber then in low pressure
  • Such a step makes it possible to partially purge the adsorber of the hydrogen that it contains making it possible to obtain a residue that is richer in CO 2 .
  • Such a step is integrated in the cycle during the depressurization and before the "Blow Down" stage. The performance improvement thus obtained is to be compared with the greater complexity of the PSA CO 2 .
  • adsorbents having a compromise between the adsorption capacity and the desorption facility will have to be used since the vacuum is not used for desorption purposes.
  • the use of X or A type zeolites, widely recommended for this application should be proscribed or at least limited, preferably as a final layer at the outlet of the adsorber, where the CO 2 content is reduced.
  • this layer of zeolite A or X will represent less than 25% of the total volume adsorbent.
  • silica gel for example the product manufactured by BASF under the reference LE 32.
  • activated alumina from 5 to 25% of the total volume adsorbent
  • activated carbon from 5 to 20%
  • Some molecular sieves (NaY ..) having a limited affinity with CO 2 may be used to optimize performance depending on the objective of extraction of CO 2 retained.
  • Recently synthesized adsorbents such as MOFs (Metal Organic Frame) also correspond to the criteria of choice.
  • the geometry of the adsorbers, PSA CO 2 30, can be of varied type. Vertical cylindrical adsorbers will preferably be used for small flow rates, up to a few thousand or tens of thousands of Nm3 / h of feedstock flow, then horizontal axis cylindrical adsorbers or radial adsorbers for larger flow rates.
  • the technology of the radial adsorbers may be that used for the overhead treatment in front of the cryogenic air separation units or that of the VSA 02.
  • the PSA H 2 50 is a conventional PSA H 2 with distribution of the adsorbents adapted to the composition of the food. It may comprise a particular preprogrammed cycle in the event of a change in composition, for example related to the decommissioning of the CO 2 PSA.
  • cycles will be used comprising several adsorbers, generally 8 and more.
  • the extraction yield of hydrogen may be of the order of 90%, of the order of 92% with booster on the waste going to the burners, of the order of 92 to 95% with recycling.
  • a variant shown in FIG. 3 consists of drying the synthesis gas in a unit 25 after the shift unit 20 and before the CO 2 PSA 30. This makes it possible to eliminate the dryer 35.
  • the interest of such a unit 25 is that it allows the use of standard materials downstream, particularly at the PSA CO 2 , the compressor 34 (see Fig 2).
  • Such a dryer 25 also makes it possible to avoid any water / CO 2 interferences at the level of the adsorbents of the PSA CO 2 and thus to facilitate the stopping of CO 2 .
  • the unit 25 must process all the flow of synthesis gas.
  • the choice of the basic solution or of said variant will depend on operating conditions, local economic conditions ... This choice is part of the optimization work of the person skilled in the art.
  • Figure 3 shows variant in which the desiccation 25 is TSA type and is regenerated under pressure by the cyclically heated stream 43 in the exchanger 44 (up to a temperature of the order of 100 to 250 0 C) and after desorption of water retained in 25, cooled in the exchanger 45 where the condensed water is removed. The resulting stream 46 is then re-injected upstream of desiccation 25.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Procédé de production d'hydrogène à partir d'un mélange gazeux comprenant de l'hydrogène, du CO2, du CO, du CH4 et de l'eau, mettant en œuvre un PSA CO2, une unité cryogénique et un PSA H2, dans lequel : a) on introduit ledit mélange gazeux dans le PSA CO2, produisant une fraction enrichie en CO2 et une fraction appauvrie en CO2; b) on introduit la fraction enrichie en CO2 dans l'unité cryogénique, produisant une fraction enrichie en CO2 et une fraction enrichie en H2; c) on recycle la fraction enrichie en H2 en amont de l'unité PSA H2; et d) on introduit la fraction appauvrie en CO2, issue de l'étape b), dans l'unité PSA H2, produisant un flux enrichie en hydrogène et un gaz résiduaire.

Description

Production d'hydrogène à partir de gaz réformé et capture simultanée du CCh co-produit
La présente invention concerne un procédé de production d'hydrogène avec capture du CO2 produit simultanément.
L'essentiel de l'hydrogène est fourni à partir de réformage à la vapeur d'hydrocarbures, plus particulièrement de méthane (SMR). Le gaz réformé est généralement envoyé à un réacteur de « shift » (Water gas shift reactor) pour produire plus d'hydrogène. La « water gas shift reaction » est une réaction entre le monoxyde de carbone et l'eau pour former du dioxyde de carbone et de l'eau. Le gaz produit a en général les caractéristiques suivantes :
- Pression de 15 à 40 bar abs,
- Température proche de la température ambiante (après refroidissement), - Composition en pourcentage molaire H2 : entre 60 et 80 % ; CO2 : entre 15 et 25 % ; CO : entre 0.5 et 5% ; CH4 : entre 3 et 7 % ; N2 : entre 0 et 6 %, saturée en eau,
- Débit : de quelques milliers à quelques centaines de milliers de Nm3/h
Un tel gaz est alors généralement envoyé directement à un PSA (Pressure Swing Adsorption = adsorption avec variation de pression) Hydrogène pour produire de l'hydrogène à haute pureté (de 99% à 99.9999 mole %).
Le résiduaire du PSA contient tout le CO2, la grande majorité du CH4 et CO, une grande partie du N2 et de l'hydrogène en quantité dépendant du rendement de l'unité PSA (de 75 à 90% suivant l'efficacité désirée).
Ce résiduaire, avec le CO2 contenu, est brûlé au niveau du four du reformage à la vapeur. Le gaz résiduaire de cette unité est mis à l'air après récupération d'une partie de la chaleur disponible.
Cependant, les changements climatiques constituent l'un des plus grands défis environnementaux. L'accroissement de la concentration en dioxyde de carbone dans l'atmosphère est en très grande partie la cause du réchauffement global. Dans l'optique de la réduction des émissions de CO2, la capture d'au moins une partie du CO2 émis doit être envisagée. II est connu de retirer le CO2 d'un tel fluide en utilisant un lavage, par exemple aux aminés, à l'amont du PSA.
L'inconvénient d'une telle solution est essentiellement son coût énergétique inadapté à la problématique de capture. D'autres solutions sont basées sur l'adsorption.
Le document EP 0 341 879 Bl traite le résiduaire du PSA H2 pour en extraire le CO2 via un PSA et une réfrigération.
Le document WO 2006/054008 traite également le résiduaire du PSA H2 via un PSA et une unité cryogénique Le document US 5,026,406 décrit la production de deux fractions à haute pureté à l'aide d'un PSA. L'exemple 2 correspond en partie au problème que l'on se pose ici. On obtient une fraction riche en CO2 (99.7% molaire) et une fraction contenant environ 90% molaire de H2. En pratique cette fraction devra être traitée dans une deuxième unité, par exemple un PSA type PSA H2, pour obtenir une pureté H2 de 99%. L'utilisation de pompes à vide et/ ou de recyclages sont nécessaires pour atteindre les performances visées.
Le document US 2007/0227353 traite également le même problème technique. La solution préconisée est là encore l'utilisation d'un PVSA, c'est-à-dire une unité d'adsorption avec des étapes sous vide. Il est connu que de telles étapes, si elles sont efficaces en termes de performances, sont coûteuses en capital (pompes à vide) et en énergie.
Par ailleurs, le document FR2884304 décrit une unité d'adsorption fonctionnant à une pression maximum de 10 bar absolus, produisant un gaz enrichi en CO2 qui est envoyé à une unité cryogénique qui enrichit ce gaz jusqu'à un minimum de 80% molaire. Le gaz appauvri en CO2 de l'unité d'adsorption est détendu, après ou non refroidissement, pour fournir la puissance frigorifique de l'unité cryogénique. Au moins une partie du gaz pauvre en CO2 de l'unité cryogénique est recyclé vers le PSA, après ou non détente. Au moins une partie du gaz pauvre en CO2 de l'unité cryogénique est utilisée comme combustible. Ladite unité d'adsorption peut être un VSA, un VPSA ou un PSA
Le procédé et/ou l'installation envisagée dans le document FR2884304 ne comporte qu'une seule unité d'adsorption. Ce document essentiellement basé sur la récupération de CO2 dans un fluide de pression inférieure à 10 bar abs, ne traite pas de la production associée d'hydrogène. En particulier, il ne concerne pas les gaz issus de SMR.
L'utilisation de PSA tel que décrit dans FR2884304 n'est effectivement pas adapté à priori lorsqu'on veut extraire du CO2 dans un gaz à pression élevée tel que le gaz de synthèse dès lors que l'on veut également récupérer en priorité la majorité d'un des constituants les moins adsorbables. En effet, le CO2 étant un constituant facilement adsorbable, une pression partielle modérée, de l'ordre du bar, est suffisante pour obtenir la quasi saturation des adsorbants utilisés classiquement tels que zéolite ou charbons actifs. L'utilisation d'une pression élevée n'apporte donc rien à l'arrêt du CO2 mais est défavorable lorsqu'on veut conserver sous pression des constituants tels que l'hydrogène. Ce dernier constituant s'adsorbant très faiblement, il est surtout présent dans l'adsorbeur dans les phases gaz, qu'il s'agisse des volumes poreux de l'adsorbant, du volume intergranulaire ou des volumes morts en entrée et sortie. A volume donné, la perte en hydrogène est alors proportionnelle à la pression. Dans une telle application, il est normal d'envisager plutôt de traiter le résiduaire du PSA H2 pour séquestrer le CO2 sachant qu'il s'agit d'un débit basse pression, enrichi en CO2 et appauvri en hydrogène. WO 2006/054008 et EP 0 341 879 Bl sont basés sur ces considérations.
Une solution envisagée pour contourner partiellement ces inconvénients est, comme on l'a vu, l'utilisation de cycle PSA complexe mettant en œuvre le vide pour extraire le CO2. Dans ces conditions, l'adsorbant peut être utilisé de façon efficace et l'utilisation de recyclages internes permet alors de limiter la perte en hydrogène. Cela se paye en termes d'investissement et de consommation d'énergie.
Partant de là, un problème qui se pose est de fournir un procédé capable de produire de façon économique de l'hydrogène avec capture du CO2 et sans perte sensible d'hydrogène.
Une solution de l'invention est un procédé de production d'hydrogène à partir d'un mélange gazeux 21 comprenant de l'hydrogène (H2), du dioxyde de carbone (CO2), du monoxyde de carbone (CO), du méthane (CH4) et de l'eau (H2O), mettant en œuvre une unité PSA CO2 30, une unité cryogénique 40 et une unité PSA H2 50, dans lequel : a) on introduit ledit mélange gazeux 21 dans une unité PSA CO2 30, produisant une fraction 32 enrichie en CO2 et une fraction 31 appauvrie en CO2 ; b) on introduit la fraction 32 riche en CO2 dans une unité cryogénique 40, produisant une fraction 41 enrichie en CO2 et une fraction 43 enrichie en H2 ; c) on recycle la fraction 43 enrichie en H2 en amont de l'unité PSA H2 50 ; et d) on introduit la fraction 31 appauvrie en CO2 dans l'unité PSA H2 50, produisant un flux 51 enrichie en hydrogène et un gaz résiduaire 52.
Selon le cas, le procédé selon l'invention peut présenter une ou plusieurs des caractéristiques suivantes : - la fraction 43 enrichie en H2 représente plus de 90% de la quantité d'hydrogène contenu dans fraction 32 riche en CO2.
- entre l'étape a) et l'étape b), la fraction 32 enrichie en CO2 est comprimée à une pression supérieure à la pression du mélange gazeux 21.
- le PSA CO2 30 comprend au moins un adsorbeur avec au moins un adsorbant et en ce ledit adsorbeur est soumis à un cycle de pression comprenant une étape de balayage de l' adsorbant par une partie de la fraction 32 enrichie en CO2 et comprimée.
- entre l'étape a) et l'étape b), la fraction 32 enrichie en CO2 est au moins partiellement séchée à l'aide d'un sécheur 35.
- à l'amont de l'étape a), le mélange gazeux 21 est au moins partiellement séché à l'aide d'un sécheur 25.
- à l'amont de l'étape a), le mélange gazeux 21 est au moins partiellement séchée à l'aide d'un sécheur 25 et en ce qu'à l'étape c) on réalise les sous-étapes suivantes : au moins une partie de la fraction 43 enrichie en H2 est réchauffée dans un réchauffeur 44 ; ladite partie de la fraction 43 réchauffée est utilisée pour régénérer le sécheur 35 ou le sécheur 25, puis ladite partie de la fraction 43 est recyclée en amont de l'unité PSA H2 50, après réfrigération et séparation de l'eau condensée.
- à l'étape c) on recycle au moins une partie de la fraction 43 enrichie en H2 à l'amont de l'unité PSA CO2 30.
- le gaz résiduaire 52 est en partie recyclé en amont du PSA H2 50 ; - le PSA H2 50 est régénéré à une pression inférieure ou égale à la pression atmosphérique.
- le mélange gazeux 21 est un gaz réformé et shifté. - la fraction 41 enrichie en CO2 comprend plus 90% de CO2, préférentiellement plus de 97% de CO2, de préférence encore plus de 99% de CO2.
- la fraction 41 enrichie en CO2 est conditionnée en bouteille ou réservoir ou alimente une canalisation de CO2 pour un usage industriel ou un stockage en sous-sol, ou est produite sous forme liquide.
L'invention a également pour objet une installation de production d'hydrogène à partir d'un mélange gazeux 21 comprenant de l'hydrogène H2, du dioxyde de carbone CO2, du monoxyde de carbone CO, du méthane CH4 et de l'eau H2O, caractérisé en ce que ladite installation comprend un PSA CO2 30 et PSA H2 50 en série, le PSA CO2 30 étant en amont du PSA H2 50 et combiné à une unité cryogénique 40.
Selon le cas, l'installation peut présenter au moins une des caractéristiques suivantes :
- le PSA CO2 30 comprend au moins 5 adsorbeurs comprenant au moins du gel de silice comme adsorbant ; - dans chaque adsorbeur du PSA CO2 30, le gel de silice représente au minimum 50% du volume total d'adsorbant et une zéolite de type A ou X au maximum 25% du volume total ;
- l'unité cryogénique comprend un dispositif de stripage d'au moins une partie de la fraction 32 de CO2, préalablement liquéfiée, pour en extraire l'hydrogène, et de façon générale les incondensables, dissous dans cette dite fraction. L'invention va à présent être décrite au moyen des figures 1 et 2.
La figure 1 représente une installation selon l'invention avec différentes options de recyclage des flux issus de l'unité cryogénique.
Le gaz naturel (ou de façon plus générale les hydrocarbures) 1 et la vapeur 2 sont introduits dans l'unité de réformage 10. Le gaz réformé comprenant de l'hydrogène (H2), du dioxyde de carbone (CO2), du monoxyde de carbone (CO), du méthane (CH4), éventuellement de l'argon (Ar) et de l'azote (N2), et de l'eau (H2O) est shifté dans un réacteur de shift 20, où au moins une partie du monoxyde de carbone réagit avec au moins une partie de l'eau pour former de l'hydrogène et du dioxyde de carbone. Le gaz ainsi réformé et shifté correspond au mélange gazeux 21. Le mélange gazeux 21 alimente le PSA CO2 30. Le fluide 32 est le résiduaire riche en CO2 du PSA CO2 30. Ce fluide est en basse pression, c'est-à-dire à une pression inférieure à 3 bar abs, généralement autour de la pression atmosphérique. Etant comprimé pour alimenter l'unité cryogénique 40, ce fluide pourrait se retrouver en légère dépression (par exemple 0.9 bar abs) sans sortir de l'enseignement de l'invention.
L'unité cryogénique 40 permet d'une part de fournir le CO2 à la pureté requise (41) pour son utilisation (séquestration, injection dans les puits de pétrole ou de gaz, chimie, alimentaire...) et d'autre part de recycler 43 l'essentiel (plus de 90%, pref plus de 95, préférentiellement encore plus de 99%) de l'hydrogène contenu dans le flux 32.
L'unité cryogénique 40 peut éventuellement produire un flux 42 enrichi en méthane qui sera recyclé dans l'unité 1 ou utilisé par ailleurs. La fraction 43 enrichie en H2 peut être recyclé à divers endroits de l'unité 1 :
- par le chemin 44 à l'amont de l'unité de réformage, et/ou
- par le chemin 45 à l'amont du shift, et/ou
- par le chemin 46 à l'aval du shift et à l'amont du PSA CO2 30, et/ou
- par le chemin 47 directement au niveau du PSA CO2 30, et/ou - par le chemin 48 à l'amont du PSA H2, et/ou
- par le chemin 49 directement au niveau du PSA H2 50.
Suivant la spécification de l'hydrogène - ou s'il existe par ailleurs des besoins en hydrogène impur -, tout ou partie du flux enrichi en hydrogène 43 peut être soit utilisé -62- dans une autre unité ou mélangé -61- à la production principale d'hydrogène 51. Un traitement complémentaire 60, par exemple perméation ou catalyse (méthanation..), peut être envisagé pour adapter la pureté de ce flux aux besoins.
Les flux 46 et/ou 48 peuvent être mélangés aux flux d'alimentation principaux, respectivement 21 et 31 ou constituer une seconde alimentation.
Les flux 47 et/ou 49 peuvent être utilisés de façon interne aux PSA par exemple pour effectuer tout ou partie de la purge ou de la repressurisation. Dans le cas où ce flux serait injecté au niveau du PSA autrement que comme alimentation principale ou secondaire, à une pression inférieure à la pression d'adsorption, on a la possibilité d'intercaler une unité de perméation pour enrichir en hydrogène une partie du flux.
La fraction 31, produite par le PSA CO2 30 est appauvrie en CO2 et alimente le PSA H2 50. Celui-ci produit une fraction riche en H2 51 qui constitue la production principale de l'unité et un résiduaire 52 qui comprend la fraction non produite d'hydrogène, le CO2 résiduel et l'essentiel du CH4, CO, N2, Ar contenus dans l'alimentation 31 du PSA H2 50.
Le résiduaire 52 du PSA H2 peut être recyclé en totalité au niveau du réformeur 10, comme combustible et/ou comme réactif 71 après compression dans le compresseur 70. On peut également recycler une partie de ce résiduaire au niveau du PSA H2 lui-même, voire utiliser tout ou partie de ce flux dans une unité extérieure. Ces variantes qui ne modifient en rien l'esprit de l'invention, ne sont pas représentées sur la Figure 1.
En effet, de façon générale, le procédé selon l'invention utilise une unité de capture du CO2 par adsorption de type PSA, c'est-à-dire ne faisant pas appel à une régénération sous vide, couplée à une unité cryogénique qui permet à la fois d'obtenir la pureté requise pour le CO2 et de recycler la majorité de l'hydrogène contenue dans la fraction CO2 32 issue du PSA CO2 30, vers la ligne de gaz réformé. Autrement dit, l'hydrogène extrait au niveau du PSA CO2 est réinjecté dans le circuit haute pression allant de l'alimentation du SMR à la production hydrogène, c'est-à-dire à une pression allant d'une quinzaine de bars abs à 40 bars maximum. Le couplage avec une unité cryogénique permet ainsi de compenser les performances moyennes du PSA (par rapport à une unité faisant appel à une régénération sous vide) grâce à une épuration plus poussée du CO2 et un recyclage amélioré des incondensables. Par incondensable, on entend H2, N2, CH4, CO, Ar. Il s'avère que les modifications apportées à l'unité cryogénique - par rapport à une unité classique d'épuration et de production de CO2- telles que le choix d'une pression opératoire élevée adaptée au recyclage, un re-bouillage partiel du CO2 liquide pour en chasser l'hydrogène dissout, une détente partielle du CO2 liquide pour récupérer la fraction vapeur riche en incondensables... sont d'un coût largement inférieur au choix du vide comme moteur de la régénération de l'unité d'adsorption. Il n'entre pas dans le cadre de la dite invention de décrire en détail les unités cryogéniques associées au PSA permettant d'obtenir les performances requises tant pour la capture du CO2 que pour le recyclage des incondensables, plus particulièrement de l'hydrogène. On retiendra que l'unité cryogénique sera alimentée à une pression supérieure à la pression de la production hydrogène, en pratique toujours supérieure à 15 bar abs et comprendra de préférence un dispositif dit de « stripage » de l'hydrogène contenu dans le CO2 - et de façon plus générale des incondensables : N2, CH4, CO, Ar- dispositif mettant enjeu une baisse de pression et/ou un réchauffage et/ou une injection de gaz dans une fraction de CO2 liquéfié.
La figure 2 correspond à une installation préférentielle de l'invention.
La fraction 32 enrichie en CO2 et alimentant l'unité cryogénique 40 sera comprimée via le compresseur 34 à une pression supérieure à la pression du mélange gazeux 21 de façon à pouvoir recycler sans autre moyen de compression le gaz riche en hydrogène 43. Le gaz riche en CO2 32 issu du PSA CO2 contenant de la vapeur d'eau, ce fluide sera au moins partiellement séché avant ou après compression et refroidissement (ou en sortie d'un étage intermédiaire de compression après refroidissement). La teneur résiduelle en eau sera compatible avec le bon fonctionnement de l'unité cryogénique, la bonne utilisation des matériaux retenus (corrosion) et la spécification de pureté du CO2. Sur la Figure 2, par souci de clarté, seule la position après compression 34 a été représentée pour la dite dessiccation 35. La régénération de la dite unité de séchage peut s'effectuer avec une fraction du fluide 32 séchée, ou avec un fluide extérieur tel que de l'azote, ou avec le résiduaire du PSA H2 50, mais préférentiellement avec tout ou partie de la fraction recyclée riche en hydrogène 43. Pour assurer la régénération de l'unité de dessiccation 35, qui sera préférentiellement de type TSA (Température Swing Adsorption), le flux 43 pourra être cycliquement réchauffé dans l'échangeur 44 (électrique, à vapeur, à récupération de calories sur un fluide chaud) puis refroidi dans l'échangeur 45 avec évacuation de l'eau condensée. Ce flux 46 est alors réintroduit dans le gaz réformé.
Le sécheur peut être d'un type quelconque, mais préférentiellement de type TSA comme indiqué plus haut. Les adsorbeurs peuvent être de type cylindrique à axe vertical, cylindriques à axe horizontal ou de type radial pour les plus gros débits. La technologie des adsorbeurs radiaux pourra être celle utilisée pour les épurations en tête devant les unités cryogéniques de séparation d'air ou celle des VSA 02.
Le résiduaire 32 du PSA CO2 peut également alimenter un gazomètre 33 -ou une capacité tampon- avant d'être comprimé 34 puis séché 35. Ce stockage a alors le double effet d'homogénéiser la composition du résiduaire et de réguler son débit.
Le gaz réformé et shifté 21 est mélangé au gaz 46 enrichi en H2 et issu de l'unité cryogénique qui renferme tout l'hydrogène contenu dans la fraction riche en CO2 (32), du CO2 - en fonction des équilibres thermodynamiques atteints dans l'unité cryo- du méthane, du monoxyde de carbone et éventuellement de l'azote et de l'argon. Ces teneurs dépendent essentiellement de la pureté requise pour le CO2.
La fraction 31 appauvrie en CO2, issue du PSA CO2 30 a une teneur résiduelle en CO2 généralement comprise dans la fourchette allant de 0.5 à 7.5% molaire, plus généralement encore de 1.5 à 3.5%.
Le PSA H2 50 épure ledit gaz en CO2, CH4, CO, N2... et produit l'hydrogène pur 51, c'est-à-dire avec une pureté supérieure à 98% et généralement comprise entre 99 et 99.9999 %.
Le résiduaire 52 basse pression du PSA H2 est utilisé généralement comme combustible (four du SMR) et/ou comme charge du SMR après compression.
Le gaz de charge du PSA H2 ayant été déballasté en CO2, sa teneur en hydrogène peut être égale ou dépasser 85% molaire. Il peut être alors intéressant économiquement de comprimer une partie de ce résiduaire afin de le recycler au niveau du PSA H2 augmentant ainsi la production d'hydrogène. Ce principe de recyclage est décrit par exemple dans les documents US 5,254,154 et
6,315,818.
Comme décrit précédemment, ce recyclage peut être mélangé à l'alimentation principale (31) ou constituer une seconde alimentation.
On notera que le résiduaire 52 du PSA H2 étant sec - l'eau ayant été retirée au niveau du PSA CO2- et pauvre en CO2 - pour la même raison-, la compression de ce résiduaire ne présente aucun problème particulier. Ce n'est évidemment pas le cas en l'absence du PSA CO2 ou on se retrouve avec un flux contenant simultanément de l'eau et du CO2 (problème de corrosion).
Le fait d'utiliser le PSA CO2 comme moyen de sécher le gaz réformé avant d'alimenter le PSA H2 est un des avantages liés à ce procédé. Le résiduaire 52 du PSA H2 étant sec, on peut envisager à coûts réduits l'amélioration des performances dudit PSA non seulement via un recyclage tel que décrit plus haut mais également en baissant la pression de ce résiduaire. En effet, dans le cas d'un PSA H2 classique, le résiduaire du PSA est envoyé aux brûleurs du four du SMR. Les moyens de réglage et les pertes de charge dans les tuyauteries et accessoires font que la pression basse du cycle PSA est de l'ordre de
1.350 bar abs. Or les performances d'un tel PSA sont très sensibles à la pression basse de régénération. Il a donc été envisagé de contre -balancer les diverses pertes de charge du circuit allant vers les brûleurs par l'utilisation d'un surpresseur de type ventilateur ou Roots. La présence simultanée de CO2 et d'humidité fait que soit la maintenance, soit l'utilisation de matériaux nobles résistant à la corrosion contrebalance les gains liés à une augmentation du rendement d'extraction en hydrogène. Le fait de pouvoir utiliser de l'acier carbone ordinaire diminue considérablement l'investissement de telles machines et peut justifier leur utilisation. De la sorte, la pression de régénération du PSA H2 peut être au niveau de la pression atmosphérique, voire légèrement en dessous de cette pression.
L'unité cryogénique est classique, du type à condensation partielle comme utilisé pour la production de CO2 liquide à usage industriel ou alimentaire. Un premier exemple figure dans le document EP 0341 879 Bl . Un exemple plus complexe est montré dans la Figure 6 du document FR 2 884 304. Enfin, le document WO 2006/054008 décrit des variantes d'unité cryogénique En fonction du niveau de pression et température utilisés, l'unité pourra comprendre un dispositif permettant d'extraire l'hydrogène dissous dans le CO2 liquide afin de rendre négligeable les pertes. Ce dispositif peut consister à faire un re- bouillage partiel de CO2 liquide, les constituants légers se retrouvant alors préférentiellement en phase gazeuse. Cette unité cryogénique sera donc caractérisée par sa pression de fonctionnement supérieure ou égale à la pression du gaz shifté c'est-à-dire en pratique toujours supérieure à 15 bar abs et par un recyclage en hydrogène supérieur à 90%, préférentiellement supérieur à 95%, encore préférentiellement égal ou supérieur à 99% de l'hydrogène contenu dans le résiduaire 32 du PSA CO2.
Le recyclage HP 43 contenant l'hydrogène est utilisé pour régénérer le sécheur 35 après passage dans le réchauffeur 44 pour apporter l'énergie de désorption de l'eau. Ce fluide est ensuite refroidi 45 pour élimination de l'eau condensée et injection dans le flux principal 21.
Associé à l'unité cryogénique, le PSA CO2 30 peut fonctionner selon un cycle de type PSA H2.
De préférence, le PSA CO2 30 comporte au moins deux équilibrages, préférentiellement encore 3 ou 4 équilibrages, et est susceptible de produire sous pression un gaz riche en hydrogène contenant de 0.5 à 7.5% de CO2, préférentiellement de 1.5 à 3.5% molaire de CO2, de 0.5 à 7% de CO, de 3 à 10% de CH4, de O à 10% de N2. Ce gaz est essentiellement sec, c'est-à-dire qu'il contient en moyenne moins de 1 ppm d'eau.
Le gaz résiduaire 32 produit en basse pression est riche en CO2 (de 80 à 95% molaire), le reste étant constitué de H2, CO, CH4, éventuellement d'azote. Ce gaz contient également de la vapeur d'eau.
Le taux d'extraction global du CO2 est dans une fourchette allant approximativement de 70 à 98%, préférentiellement autour de 85 à 90%.
En fonction du débit traité, il comprendra de 5 à 14 et plus adsorbeurs. Les temps de phase seront généralement compris entre 20 et 120 secondes en fonction du nombre d' adsorbeurs utilisés. On rappelle que le temps de cycle correspond au temps T que met un adsorbeur à revenir dans un état donné et que pour un cycle à N adsorbeurs, le temps de phase est par définition égal à TYN.
A titre d'exemple, on va décrire un cycle 10-3-4, qui est suivant la terminologie classiquement admise, un cycle d'adsorption de type PSA mettant en jeu 10 adsorbeurs identiques chacun suivant un cycle comprenant 3 phases de production et 4 équilibrages. Un tel cycle peut se représenter selon le tableau ci-dessous :
Figure imgf000013_0001
Un tel tableau signifie d'une part qu'un adsorbeur donné va suivre chronologiquement toutes les étapes en partant de la case supérieure gauche jusqu'à la case inférieure droite et que d'autre part, à un moment donné, les 10 adsorbeurs se trouvent dans un état correspondant à une colonne. Une ligne correspond à une phase telle que définit précédemment. On voit que chaque phase comprend plusieurs étapes qui correspondent à des temps particulier dans le système de contrôle-commande (le passage d'une étape à l'autre implique généralement au moins un mouvement de vanne pour le PSA). Plus particulièrement, le cycle 10-3-4 décrit ici comprend donc :
• 3 phases successives d'adsorption (A) • Une phase constituée successivement d'un équilibrage(El), d'un temps mort
(I : adsorbeur isolé par exemple), d'un second équilibrage(E2)
• Une phase relative aux troisième et quatrième équilibrages (E3 et E4)
• Une phase de « purge providing » (PP), c'est-à-dire produisant une fraction riche en hydrogène et constituant léger (CO, CH4, N2) qui sert comme gaz d'élution pour un adsorbeur alors en basse pression
• Une phase constituée de la dépressurisation finale à contre-courant (Blow Down) jusqu'à la basse pression, suivie d'étapes de balayage(Purge)
• Une phase comprenant la fin du balayage (P) et le début de la repressurisation via le quatrième équilibrage (E '4) • Une phase avec le troisième (E'3) et deuxième (E'2) équilibrages
• Une dixième phase constituée du premier équilibrage (E' 1) et de la repressurisation finale.
On notera qu'à partir du moment où l'on recomprime le résiduaire 32, il est potentiellement possible de rajouter une étape de balayage sous haute ou moyenne pression de l'adsorbant. Une telle étape -souvent appelée RINSE- est par exemple décrite dans Pressure Swing Adsorption de Ruthven and ail, 1994, page 69 table3.1.
Une telle étape permet de purger en partie l'adsorbeur de l'hydrogène qu'il contient permettant d'obtenir un résiduaire plus riche en CO2. Une telle étape est intégrée au cycle pendant la dépressurisation et avant l'étape de « Blow Down ». L'amélioration des performances ainsi obtenue est à comparer avec la plus grande complexité du PSA CO2.
On devra utiliser, dans le PSA CO2 30, des adsorbants présentant un compromis entre la capacité d'adsorption et la facilité de désorption puisqu'on n'utilise pas le vide à fin de désorption. Plus précisément, l'emploi de zéolites de type X ou A, largement préconisé pour cette application devra être proscrit ou tout du moins limité, de préférence comme couche finale en sortie d' adsorbeur, là où la teneur en CO2 est réduite. De manière préférentielle, cette couche de zéolite A ou X représentera moins de 25% du volume total d'adsorbant. Un des meilleurs adsorbants testés pour cette application est le gel de silice, par exemple le produit fabriqué par BASF sous la référence LE 32. Il pourra être appliqué en particulier en association avec de l'alumine activée (de 5 à 25% du volume total d'adsorbant ) placée préférentiellement en amont, avec du charbon actif ( de 5 à 20%). Certains tamis moléculaires (NaY..) présentant une affinité limitée avec le CO2 pourront être utilisés pour optimiser les performances en fonction de l'objectif d'extraction du CO2 retenu. Des adsorbants récemment synthétisés tels les MOF (Métal Organic Frame) correspondent également aux critères de choix.
La géométrie des adsorbeurs, du PSA CO2 30, peut être de type variée. On utilisera préférentiellement des adsorbeurs cylindriques à axe vertical pour les petits débits, jusqu'à quelques milliers ou dizaines de milliers de Nm3/h de débit de charge puis des adsorbeurs cylindriques à axe horizontal ou des adsorbeurs radiaux pour les plus gros débits. La technologie des adsorbeurs radiaux pourra être celle utilisée pour les épurations en tête devant les unités cryogéniques de séparation d'air ou celle des VSA 02. Le PSA H2 50 est un PSA H2 classique avec répartition des adsorbants adaptée à la composition d'alimentation. Il peut comporter un cycle particulier préprogrammé en cas de changement de composition lié par exemple à la mise hors service du PSA CO2. Le principe de tels cycles additionnels est décrit dans le document US 1 ,255,121. S'agissant à priori de PSA H2 de grosse capacité pour être associé à une capture du CO2, on utilisera des cycles comportant plusieurs adsorbeurs, généralement 8 et plus. Le rendement d'extraction en hydrogène pourra être de l'ordre de 90%, de l'ordre de 92% avec surpresseur sur le résiduaire allant vers les brûleurs, de l'ordre de 92 à 95% avec un recyclage.
Une variante représentée sur la Figure 3 consiste à sécher le gaz de synthèse dans une unité 25 après l'unité de shift 20 et avant le PSA CO2 30. Cela permet de supprimer le sécheur 35. L'intérêt d'une telle unité 25 est qu'elle permet d'utiliser des matériaux standards à l'aval, en particulier au niveau du PSA CO2, du compresseur 34 (cf Fig 2).
Un tel sécheur 25 permet également d'éviter toutes interférences eau/ CO2 au niveau des adsorbants du PSA CO2 et de faciliter ainsi l'arrêt du CO2. En revanche, l'unité 25 doit traiter tout le débit de gaz de synthèse. Le choix de la solution de base ou de ladite variante va dépendre des conditions opératoires, des conditions économiques locales... Ce choix fait partie du travail d'optimisation de l'homme de l'Art. On a représenté sur la Figure 3 la variante dans laquelle la dessiccation 25 est de type TSA et est régénéré sous pression par le flux 43 cycliquement chauffé dans l'échangeur 44 (jusqu'à une température de l'ordre de 100 à 2500C) puis après désorption de l'eau retenue dans 25, refroidi dans l'échangeur 45 où l'eau condensée est éliminée. Le flux résultant 46 est alors réinjecté à l'amont de la dessiccation 25.
On notera que placer le sécheur en cette position (25) permet évidement de conserver les avantages du séchage effectué simultanément avec l'arrêt du CO2, avantages décrits précédemment.

Claims

Revendications
1. Procédé de production d'hydrogène à partir d'un mélange gazeux (21) comprenant de l'hydrogène (H2), du dioxyde de carbone (CO2), du monoxyde de carbone (CO), du méthane (CH4) et de l'eau (H2O), mettant en œuvre une unité PSA CO2 (30), une unité cryogénique (40) et une unité PSA H2 (50), dans lequel : a) on introduit ledit mélange gazeux (21) dans une unité PSA CO2 (30), produisant une fraction (32) enrichie en CO2 et une fraction (31) appauvrie en CO2 ; b) on introduit la fraction (32) riche en CO2 dans une unité cryogénique (40), produisant une fraction (41) enrichie en CO2 et une fraction (43) enrichie en H2 ; c) on recycle la fraction (43) enrichie en H2 en amont de l'unité PSA H2 (50) ; et d) on introduit la fraction (31) appauvrie en CO2 dans l'unité PSA H2 (50), produisant un flux (51) enrichi en hydrogène et un gaz résiduaire (52).
2. Procédé de production selon la revendication 1, caractérisé en ce que la fraction (43) enrichie en H2 représente plus de 90% de la quantité d'hydrogène contenu dans la fraction (32) riche en CO2.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'entre l'étape a) et l'étape b), la fraction (32) enrichie en CO2 est comprimée à une pression supérieure à la pression du mélange gazeux (21).
4. Procédé selon la revendication 3, caractérisé en ce que le PSA CO2 (30) comprend au moins un adsorbeur avec au moins un adsorbant et en ce que ledit adsorbeur est soumis à un cycle de pression comprenant une étape de balayage de l' adsorbant par une partie de la fraction (32) enrichie en CO2 et comprimée.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'entre l'étape a) et l'étape b), la fraction (32) enrichie en CO2 est au moins partiellement séchée à l'aide d'un sécheur (35).
6. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'à l'amont de l'étape a), le mélange gazeux 21 est au moins partiellement séchée à l'aide d'un sécheur (25).
7. Procédé selon la revendication 5, caractérisé en ce qu'à l'amont de l'étape a), le mélange gazeux 21 est au moins partiellement séchée à l'aide d'un sécheur (25) et en ce qu'à l'étape c) on réalise les sous-étapes suivantes :
- au moins une partie de la fraction (43) enrichie en H2 est réchauffée dans un réchauffeur (44) ;
- ladite partie de la fraction (43) réchauffée est utilisée pour régénérer le sécheur (35) ou le sécheur (25), puis
- ladite partie de la fraction (43) est recyclée en amont de l'unité PSA H2 (50).
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce qu'à l'étape c) on recycle au moins une partie de la fraction (43) enrichie en H2 à l'amont de l'unité PSA CO2 (30).
9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que le gaz résiduaire (52) est en partie recyclé en amont du PSA H2.
10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que le PSA H2 (50) est régénéré à une pression inférieure ou égale à la pression atmosphérique.
11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que le mélange gazeux (21) est un gaz réformé et shifté.
12. Procédé selon l'une des revendications 1 à 11, caractérisé en ce que la fraction (41) enrichie en CO2 comprend plus 90% de CO2, préférentiellement plus de 97% de CO2, de préférence encore plus de 99% de CO2.
13. Procédé selon la revendication 12, caractérisé en ce que la fraction (41) enrichie en CO2 est conditionné en bouteille, en réservoir mobile ou alimente une canalisation de CO2 pour un usage industriel ou un stockage en sous-sol, ou est produite sous forme liquide.
14. Installation de production d'hydrogène à partir d'un mélange gazeux (21) comprenant de l'hydrogène (H2), du dioxyde de carbone (CO2), du monoxyde de carbone (CO), du méthane (CH4) et de l'eau (H2O), caractérisé en ce que ladite installation comprend un PSA CO2 (30) et PSA H2 (50) en série, le PSA CO2 (30) étant en amont du PSA H2 (50) et combiné à une unité cryogénique (40).
15. Installation selon la revendication 14, caractérisé en ce que le PSA CO2 (30) comprend au moins 5 adsorbeurs comprenant au moins du gel de silice comme adsorbant.
16. Installation selon la revendication 15, caractérisé en ce que dans chaque adsorbeur du PSA CO2 (30), le gel de silice représente au minimum 50% du volume total d'adsorbant et une zéolite de type A ou X au maximum 25% du volume total.
17. Installation selon l'une des revendications 14 à 16, caractérisé en ce que l'unité cryogénique comprend un dispositif de stripage d'au moins une partie de la fraction (32) de CO2, préalablement liquéfiée, pour en extraire l'hydrogène, et les incondensables, dissous dans cette dite fraction.
18. Installation selon l'une des revendications 14 à 17, caractérisé en ce que ladite installation comprend un sécheur (25) en amont du PSA CO2 (30).
PCT/FR2009/052210 2008-12-11 2009-11-18 Production d'hydrogene a partir de gaz reforme et capture simultanee du co2 co-produit WO2010066972A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011540153A JP2012511491A (ja) 2008-12-11 2009-11-18 改質ガスからの水素の製造および副生するco2の同時捕捉
AU2009326953A AU2009326953A1 (en) 2008-12-11 2009-11-18 Production of hydrogen from a reforming gas and simultaneous capture of CO2 co-product
CA2742206A CA2742206A1 (fr) 2008-12-11 2009-11-18 Production d'hydrogene a partir de gaz reforme et capture simultanee du co2 co-produit
US13/130,541 US8746009B2 (en) 2008-12-11 2009-11-18 Production of hydrogen from a reforming gas and simultaneous capture of CO2 co-product
CN200980149500.9A CN102245500B (zh) 2008-12-11 2009-11-18 由重整气体生产氢并同时捕捉共产生的co2
EP09795459A EP2376373A1 (fr) 2008-12-11 2009-11-18 Production d'hydrogene a partir de gaz reforme et capture simultanee du co2 co-produit
ZA2011/04038A ZA201104038B (en) 2008-12-11 2011-05-31 Production of hydrogen from a reforming gas and simultaneous capture of co2 co-product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0858472 2008-12-11
FR0858472A FR2939785B1 (fr) 2008-12-11 2008-12-11 Production d'hydrogene a partir de gaz reforme et capture simultanee du co2 coproduit.

Publications (1)

Publication Number Publication Date
WO2010066972A1 true WO2010066972A1 (fr) 2010-06-17

Family

ID=40601160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/052210 WO2010066972A1 (fr) 2008-12-11 2009-11-18 Production d'hydrogene a partir de gaz reforme et capture simultanee du co2 co-produit

Country Status (9)

Country Link
US (1) US8746009B2 (fr)
EP (1) EP2376373A1 (fr)
JP (1) JP2012511491A (fr)
CN (1) CN102245500B (fr)
AU (1) AU2009326953A1 (fr)
CA (1) CA2742206A1 (fr)
FR (1) FR2939785B1 (fr)
WO (1) WO2010066972A1 (fr)
ZA (1) ZA201104038B (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011066245A3 (fr) * 2009-11-30 2011-07-21 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de diminution ou d'élimination de produits hydrocarbonés ou oxygénés indésirables issus des réactions de synthèse fisher-tropsch dans une unité de traitement de gaz synthétique
US8163809B2 (en) 2009-11-30 2012-04-24 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for decreasing or eliminating unwanted hydrocarbon and oxygenate products caused by Fisher Tropsch Synthesis reactions in a syngas treatment unit
US8202914B2 (en) 2010-02-22 2012-06-19 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for decreasing or eliminating unwanted hydrocarbon and oxygenate products caused by Fisher Tropsch Synthesis reactions in a syngas treatment unit

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2939785B1 (fr) * 2008-12-11 2012-01-27 Air Liquide Production d'hydrogene a partir de gaz reforme et capture simultanee du co2 coproduit.
US8535638B2 (en) 2010-11-11 2013-09-17 Air Liquide Large Industries U.S. Process for recovering hydrogen and carbon dioxide
US20120291484A1 (en) * 2011-05-18 2012-11-22 Air Liquide Large Industries U.S. Lp Process For The Production Of Hydrogen And Carbon Dioxide
FR3021044B1 (fr) 2014-05-15 2018-01-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de traitement pour la separation de dioxyde de carbone et d’hydrogene d’un melange
JP6238842B2 (ja) * 2014-06-12 2017-11-29 大阪瓦斯株式会社 水素製造装置およびその運転方法
AU2018342064A1 (en) 2017-09-29 2020-02-20 Research Triangle Institute Internal combustion engine as a chemical reactor to produce synthesis gas from hydrocarbon feeds
IL273219B2 (en) * 2017-09-29 2024-01-01 Res Triangle Inst Methods and device to generate hydrogen
CN110921616B (zh) * 2019-10-28 2023-08-01 中科液态阳光(苏州)氢能科技发展有限公司 二氧化碳混合余气重整方法
NO347086B1 (en) * 2020-12-17 2023-05-08 Sintef Tto As Method for production of H2 with high carbon capture ratio and efficiency
WO2022170188A1 (fr) 2021-02-08 2022-08-11 TerraH2 LLC Production, stockage et récupération d'hydrogène
EP4201878A1 (fr) * 2021-12-21 2023-06-28 Linde GmbH Procédé de production d'hydrogène à faible émission de dioxyde de carbone
FR3139477A1 (fr) * 2022-09-12 2024-03-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de séparation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026406A (en) * 1989-05-18 1991-06-25 Air Products And Chemicals, Inc. Adsorptive process for producing two gas streams from a gas mixture
FR2884304A1 (fr) * 2005-04-08 2006-10-13 Air Liquide Procede integre d'absorption et de separation cryogenique pour la production de co2 et installation pour la mise en oeuvre du procede
US20070227353A1 (en) * 2006-04-03 2007-10-04 Ravi Kumar Process and apparatus to recover medium purity carbon dioxide
US20070232706A1 (en) * 2006-04-03 2007-10-04 Shah Minish M Carbon dioxide production method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1381112A (en) * 1971-04-20 1975-01-22 Petrocarbon Dev Ltd Separation of gas mixtures
GB8426393D0 (en) * 1984-10-18 1984-11-21 Ici Plc Gas recovery
DE3566878D1 (en) * 1984-10-18 1989-01-26 Ici Plc Production of ammonia synthesis gas
JPS61197403A (ja) * 1985-02-27 1986-09-01 Jgc Corp 水素製造法
US5000925A (en) * 1988-05-04 1991-03-19 The Boc Group, Inc. Hydrogen and carbon dioxide coproduction apparatus
US4952223A (en) * 1989-08-21 1990-08-28 The Boc Group, Inc. Method and apparatus of producing carbon dioxide in high yields from low concentration carbon dioxide feeds
JPH0565518A (ja) * 1991-09-09 1993-03-19 Kawasaki Steel Corp 液体水素、液化炭酸ガス及びドライアイスの製造方法
ZA945891B (en) * 1993-09-07 1995-06-13 Boc Group Inc Production of hydrogen and carbon monoxide from oxyfuel furnace off-gas
DE10035053C2 (de) 2000-07-19 2001-12-06 Georg Moser Parkhinweisschild für Behindertenkraftfahrzeug
US6500241B2 (en) * 2000-12-19 2002-12-31 Fluor Corporation Hydrogen and carbon dioxide coproduction
FR2832141B1 (fr) * 2001-11-14 2004-10-01 Ceca Sa Procede de purification de gaz de synthese
US20030221555A1 (en) * 2002-05-31 2003-12-04 Golden Timothy Christopher Purification of gas streams using composite adsorbent
CN101056817A (zh) * 2004-09-09 2007-10-17 赫多特普索化工设备公司 用于制备氢和/或一氧化碳的方法
FR2877939B1 (fr) * 2004-11-16 2007-02-02 Air Liquide Procede et installation pour la production combinee d'hydrogene et de dioxyde de carbone
JP5134252B2 (ja) * 2007-01-23 2013-01-30 東邦瓦斯株式会社 水素製造装置およびその方法
US8460630B2 (en) * 2007-03-29 2013-06-11 Nippon Oil Corporation Method and apparatus for producing hydrogen and recovering carbon dioxide
FR2939785B1 (fr) * 2008-12-11 2012-01-27 Air Liquide Production d'hydrogene a partir de gaz reforme et capture simultanee du co2 coproduit.
US8394174B2 (en) * 2009-05-18 2013-03-12 American Air Liquide, Inc. Processes for the recovery of high purity hydrogen and high purity carbon dioxide
US8241400B2 (en) * 2009-07-15 2012-08-14 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for the production of carbon dioxide utilizing a co-purge pressure swing adsorption unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026406A (en) * 1989-05-18 1991-06-25 Air Products And Chemicals, Inc. Adsorptive process for producing two gas streams from a gas mixture
FR2884304A1 (fr) * 2005-04-08 2006-10-13 Air Liquide Procede integre d'absorption et de separation cryogenique pour la production de co2 et installation pour la mise en oeuvre du procede
US20070227353A1 (en) * 2006-04-03 2007-10-04 Ravi Kumar Process and apparatus to recover medium purity carbon dioxide
US20070232706A1 (en) * 2006-04-03 2007-10-04 Shah Minish M Carbon dioxide production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011066245A3 (fr) * 2009-11-30 2011-07-21 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de diminution ou d'élimination de produits hydrocarbonés ou oxygénés indésirables issus des réactions de synthèse fisher-tropsch dans une unité de traitement de gaz synthétique
US8163809B2 (en) 2009-11-30 2012-04-24 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for decreasing or eliminating unwanted hydrocarbon and oxygenate products caused by Fisher Tropsch Synthesis reactions in a syngas treatment unit
US8168687B2 (en) 2009-11-30 2012-05-01 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for decreasing or eliminating unwanted hydrocarbon and oxygenate products caused by Fisher Tropsch synthesis reactions in a syngas treatment unit
US8202914B2 (en) 2010-02-22 2012-06-19 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for decreasing or eliminating unwanted hydrocarbon and oxygenate products caused by Fisher Tropsch Synthesis reactions in a syngas treatment unit

Also Published As

Publication number Publication date
FR2939785A1 (fr) 2010-06-18
JP2012511491A (ja) 2012-05-24
CA2742206A1 (fr) 2010-06-17
CN102245500B (zh) 2014-11-05
US20110223100A1 (en) 2011-09-15
EP2376373A1 (fr) 2011-10-19
AU2009326953A1 (en) 2011-06-23
US8746009B2 (en) 2014-06-10
CN102245500A (zh) 2011-11-16
ZA201104038B (en) 2012-04-25
FR2939785B1 (fr) 2012-01-27

Similar Documents

Publication Publication Date Title
WO2010066972A1 (fr) Production d'hydrogene a partir de gaz reforme et capture simultanee du co2 co-produit
EP1869385B1 (fr) Procede et installation integres d'adsorption et de separation cryogenique pour la production de co2
TWI521056B (zh) Methane recovery method and methane recovery unit
TWI421345B (zh) 高爐氣體之分離方法及裝置
EP2168913B1 (fr) Procédé de production d'hydrogène avec captation totale du c02 et recyclage du méthane non converti
US20110005389A1 (en) Plant and process for recovering carbon dioxide
CN102596798A (zh) 与二氧化碳俘获组合的氢气生产方法
CA3024382C (fr) Procede de separation cryogenique d'un debit d'alimentation contenant du methane et des gaz de l'air, installation pour la production de bio methane par epuration de biogaz issus d'installations de stockage de dechets non-dangereux (isdnd) mettant en oeuvre le procede
FR2910457A1 (fr) Procede de purification par adsorption d'hydrogene avec cogeneration d'un flux de co2 en pression
FR2872890A1 (fr) Procede integre d'adsorption et de separation cryogenique pour la production de co2 et installation pour la mise en oeuvre du procede
WO2010001038A2 (fr) Traitement de gaz humide contenant des poussieres
US11351499B2 (en) Treatment of a methane stream comprising VOCs and carbon dioxide by a combination of an adsorption unit and a membrane separation unit
EP2709745B1 (fr) Procédé de purification par adsorption avec régénération au moyen d'un gaz comprenant un constituant non désire dans le gaz purifie
EP2179776B1 (fr) Repressurisation d'un VSA CO2 traitant un mélange gazeux comprenant un combustible
AU2021377152B2 (en) A process and plant for producing ultrahigh-purity hydrogen from low-grade hydrogen gas
FR2890575A1 (fr) Procede d'adsorption pour la production de co2 et installation pour la mise en oeuvre du procede
FR2836058A1 (fr) Procede de separation d'un melange gazeux et installation de mise en oeuvre d'un tel procede
FR2884304A1 (fr) Procede integre d'absorption et de separation cryogenique pour la production de co2 et installation pour la mise en oeuvre du procede
FR3120232A3 (fr) Procédé d’ultra-purification d’une fraction de l’hydrogène issu d’un PSA H2
FR2889971A1 (fr) Prcede de valorisation du gaz de depressurisation d'une unite vpsa co2

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980149500.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09795459

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009795459

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009795459

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2742206

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 3234/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13130541

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011540153

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009326953

Country of ref document: AU

Date of ref document: 20091118

Kind code of ref document: A