WO2010066163A1 - 风机偏航试验机构及风机整机试验台 - Google Patents

风机偏航试验机构及风机整机试验台 Download PDF

Info

Publication number
WO2010066163A1
WO2010066163A1 PCT/CN2009/075147 CN2009075147W WO2010066163A1 WO 2010066163 A1 WO2010066163 A1 WO 2010066163A1 CN 2009075147 W CN2009075147 W CN 2009075147W WO 2010066163 A1 WO2010066163 A1 WO 2010066163A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
fan
fixed
yaw
wind turbine
Prior art date
Application number
PCT/CN2009/075147
Other languages
English (en)
French (fr)
Inventor
吴佳梁
曾赣生
余铁辉
孙林
Original Assignee
三一电气有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三一电气有限责任公司 filed Critical 三一电气有限责任公司
Publication of WO2010066163A1 publication Critical patent/WO2010066163A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/06Measuring arrangements specially adapted for aerodynamic testing
    • G01M9/062Wind tunnel balances; Holding devices combined with measuring arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/83Testing, e.g. methods, components or tools therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to the testing of structural components or equipment of a wind power generator, in particular to a fan yaw test mechanism and a fan test bench.
  • wind turbines MW-class wind turbines
  • the patents applied abroad are not many, mainly focusing on VESTAS, GAMESA, GE and other wind turbine designs.
  • Manufacture large-scale enterprises Manufacture large-scale enterprises.
  • the fan test bench (hereinafter referred to as the test bench) has a relatively simple function and a high construction cost.
  • the test rig can perform multiple fan tests at the same time, but there are still major defects: First, no yaw test mechanism, can not test the yaw performance of the fan; Second, no axial force application system, can not simulate the wind to the fan machine The axial force acts.
  • the yaw performance of the fan is an important test item in the wind turbine test and the factory test.
  • the fan yaw performance is the machine to grab the rotation around the tower.
  • a feasible method is to separate the fan drag test from the fan yaw test, ie, after removing the coupling, and then perform the yaw test of the fan.
  • the present invention provides a yaw test mechanism for a fan, which can perform a yaw test of the fan at the same time as the fan drag test, which is beneficial to improving test efficiency and simplifying test operation.
  • the present invention also provides a test bench for a complete fan.
  • the fan yaw test mechanism provided by the present invention includes:
  • the machine grabs the bracket, the lower end is fixed on the yaw basis, and the upper end fixed fan is grabbed;
  • the tower tooling is connected to the tower tooling driving device through a transmission mechanism, and rotates around the tower tooling axis under the action of the tower tooling driving device;
  • An upper slewing bearing is mounted on a lower portion of the chassis of the machine for performing movement of the tower tooling relative to the engine room;
  • a lower slewing bearing mounted on the yaw base for effecting movement of the tower tooling relative to the yaw base.
  • the upper slewing inner ring is fixed to the bottom portion of the machine grab, and the outer ring is fixed to the upper end of the tower tool;
  • the lower slewing outer ring is fixed to the yaw base, and the inner ring and the lower end of the tower tool are fixed.
  • the upper slewing inner ring is fixed to the bottom portion of the machine grab, and the outer ring is fixed to the upper end of the tower tool;
  • the lower slewing inner ring is fixed to the yaw base, and the outer ring is fixed to the lower end of the tower tooling.
  • the upper slewing bearing outer ring is fixed to the bottom portion of the machine grabbing, and the inner ring is fixed to the upper end of the tower tooling;
  • the lower slewing outer ring is fixed to the yaw base, and the inner ring and the lower end of the tower tool are fixed.
  • the upper slewing bearing outer ring is fixed to the bottom portion of the machine grabbing inner ring, the inner ring and the tower The upper end of the tube is fixed;
  • the lower slewing inner ring is fixed to the yaw base, and the outer ring is fixed to the lower end of the tower tooling.
  • a yaw friction disc is further included between the upper slewing bearing and the upper end of the tower tooling.
  • a hydraulic brake is further included, mounted at the bottom of the machine; the actuator of the hydraulic brake acts on the tower tooling.
  • a brake friction disc is further included between the lower slewing bearing and the lower end of the tower tooling.
  • a tower tool mounting flange for mounting the lower slewing ring on the yaw base
  • the wind turbine test bench provided by the invention comprises a test bench mechanical device and a test bench control device;
  • the test bench mechanical device comprises a fan drag mechanism for providing power of the wind turbine complete machine;
  • the test bench control device comprises a test a controller for controlling the operation of the mechanical equipment of the test bench;
  • the mechanical equipment of the test bench further comprises the above-mentioned wind turbine yaw test mechanism.
  • a tower tooling mounting flange is further included for mounting the lower slewing ring on the yaw base.
  • the test stand mechanism further comprises a fan axial force applying mechanism, including an axial force actuator, an actuator support tool, a self-aligning thrust bearing, a bearing support, a bearing front baffle, a bearing tailgate, a fork shape Frame, axial force foundation, where:
  • the axial force applying base is configured to install the actuator tool and the bearing support;
  • the axial force actuator has one end fixed to the actuator supporting tool and the other end fixed to the bearing rear baffle;
  • the self-aligning thrust bearing is radially fixed by the bearing; one end outer ring is fixed by the bearing back baffle, and the inner ring is fixed by a retaining ring; the other end outer ring is fixed by the bearing front baffle, the inner ring Secured by the shoulder of the fork frame;
  • the fork frame is coupled to a hub of the fan for transmitting the force of the axial force actuator to the hub of the fan.
  • the test bench controller stores a fan dynamics parameter for the axial force
  • the actuator performs load and frequency control.
  • the axial force actuator is one of a cylinder, a cylinder, a jack or an electric push rod.
  • the plurality of axial force actuators are hooked on the bearing tailgate.
  • the test stand mechanical device further comprises a test hub and a weight paddle mechanism; the test hub is connected to the fan main shaft for transmitting the fan blade load; the weight paddle is fixed to the test wheel hub Above, used to simulate fan blades.
  • the test wheel hub is an actual fan hub product; the test front end of the test wheel is machined with a circle of process holes for mounting a hub front tooling, and the hub front tooling is used to connect the output of the fan drag mechanism end.
  • the weighting paddle includes a weight mounting flange, a weight mounting bracket, a weight; the weight mounting bracket is attached to the weight mounting flange; and the weight is at one end of the weight
  • the ribs of the mounting bracket are fixed and the other end is fixed by a fastening nut.
  • the number of weights on each of the weighting blades can be adjusted.
  • the weight paddle is provided with a shield.
  • the fan drag mechanism includes a prime mover, a first coupling, a reduction box, and a second coupling; the prime mover is connected to the reduction gear box through the first coupling, and is connected via the second coupling On the hub of the fan, it is used to drive the fan to rotate.
  • the fan drag mechanism further includes a reduction box support tooling and a prime mover support tool, which are respectively installed on the drag end base, and are respectively used for adjusting the level of the speed reducer and the prime mover.
  • the prime mover is an electric motor.
  • the electric motor is powered by an energy feedback method.
  • the motor is connected to a frequency converter for adjusting an output speed of the motor.
  • a plurality of sensors are installed inside the fan and at the relevant part of the mechanical device; the test stand controller receives the output signals of the sensors and controls the operation of the sub-units of the mechanical device according to the test bench process requirements.
  • the test bench provides an output signal of the relevant sensor to the fan controller, and the fan controller controls the fan components to operate in actual working conditions.
  • the present invention can achieve the following technical effects: setting a wind turbine yaw test mechanism, when the wind turbine yaw test, the tower tooling rotates, and the machine grabs the fixed motion; on the one hand, the wind turbine drag test During the inspection, the yaw test can be carried out simultaneously, saving the test time, improving the test efficiency and facilitating the test operation. On the other hand, the yaw test does not require machine deflection, which saves space for test and is easy to install.
  • test bench of the present invention can also achieve further technical effects, specifically:
  • the axial force applying mechanism of the fan is set, so that the axial force is applied while the fan is rotating, and the actual operating condition of the fan is better simulated.
  • the test wheel hub and the weight paddle mechanism are set up. Due to the actual fan wheel hub product, the reliability of the hub can be further verified in the test; the weight paddle saves the test space, avoids the huge civil construction volume, and makes the test bench run. It is safer in the process; and, by adjusting the weights of the weights on the weight paddles, the wind wheel generates an eccentric load and provides the vibration source of the system, which can better simulate the actual running condition of the fan.
  • the fan drive mechanism is improved, and the electrical design adopts a closed-loop energy feedback scheme, which improves the power utilization rate of the device and saves the test cost.
  • test bench can also be used as a test platform for the development of fan components such as fan controllers, converters and pitch systems.
  • the test bench of the invention is a full-featured test bench, which has a plurality of test functions such as yaw, axial force application, blade weight, and wheel drag of the tower tooling.
  • the test bench basically covers the relevant test items specified in the test standard of the wind turbine, and can carry out the type test of the newly developed model and the factory inspection of the fan product.
  • the test bench has the advantages of low design and manufacturing cost, convenient and quick test and installation.
  • FIG. 1 is a perspective view of a preferred embodiment of a fan yaw test mechanism of the present invention
  • Figure 2 is a cross-sectional view of the symmetry plane of the yaw test mechanism of Figure 1 of the wind turbine.
  • FIG. 3 is a general structural view of a preferred embodiment of the wind turbine test bench of the present invention.
  • Figure 4 is an isometric view of the axial force applying mechanism of the fan of Figure 3;
  • Figure 5 is an exploded view of Figure 4.
  • Figure 6 is a cross-sectional view of the symmetrical center plane of Figure 5 with respect to the axial force applying mechanism of the fan;
  • Figure 7 is a perspective view of the test hub and the weight paddle mechanism of Figure 3;
  • FIG 8 is a structural view of the single weight paddle of Figure 7 after the weight paddle shield is hidden; detailed description
  • the basic idea of the present invention is to set a fan yaw test mechanism; when the fan yaw test, the tower tooling rotates, and the machine grabs the fixed motion; thus, while the prime mover drags the fan to rotate, the fan yaw test can be performed. .
  • FIG. 1 is a perspective view of a preferred embodiment of the yaw test mechanism of the fan of the present invention
  • FIG. 2 is a cross-sectional view of the symmetry plane of the yaw test mechanism of the fan of FIG.
  • the fan yaw test mechanism 100 includes:
  • the machine grabs the bracket 107, and the lower end portion is fixed on the yaw foundation 108, and the upper end portion fixes the cabin of the wind turbine 200;
  • the tower tooling 104 is connected to the tower tooling driving device (not shown) through a transmission mechanism (not shown), and rotates around the tower tooling axis under the action of the tower tooling driving device;
  • An upper slewing bearing 105 is mounted on a lower portion of the chassis grabbed for moving the tower tooling 104 relative to the nacelle;
  • a lower slewing ring 102 is mounted on the yaw base 108 for effecting movement of the tower tooling 104 relative to the yaw base 108.
  • the tower tool 104 rotates, and the machine is fixed; according to the principle of relative motion, the yaw motion of the fan 200 can be simulated by the deflection of the tower tool 104; thus, the prime mover drags the fan 200 to rotate. At the same time, the fan yaw test can be performed.
  • the inner ring of the upper slewing bearing 105 is fixed to the lower part of the chassis, and the outer ring is fixed to the upper end of the tower tool 104; and the outer ring of the lower slewing bearing 102 is fixed with the yaw base 108, the inner ring and the tower tooling The lower end of 104 is fixed.
  • the inner ring of the upper slewing bearing 105 is fixed to the lower part of the chassis, and the outer ring is fixed to the upper end of the tower tool 104; and the inner ring of the lower slewing bearing 102 is fixed with the yaw base 108, the outer ring and the tower tooling The lower end of 104 is fixed.
  • the outer ring of the upper slewing bearing 105 is fixed to the lower part of the chassis, and the inner ring is fixed to the upper end of the tower tool 104; and the inner ring of the lower slewing bearing 102 is fixed with the yaw base 108, the outer ring and the tower crane The lower end of the assembly 104 is fixed.
  • the outer ring of the upper slewing bearing 105 is fixed to the lower part of the chassis, and the inner ring is fixed to the upper end of the tower tool 104; and the outer ring of the lower slewing bearing 102 is fixed with the yaw base 108, the inner ring and the tower tooling The lower end of 104 is fixed.
  • the tower tooling 104 can be fixed between the upper slewing bearing 105 and the lower slewing bearing 102; preferably, the end surface is fixed, and the tower tooling 104 can be conveniently supported by the upper and lower slewing bearings by screws or bolts. (Inner) The ring is fixed.
  • a yaw friction disc 106 is further disposed between the upper slewing bearing 105 and the upper end of the tower tool 104; during the yaw test, a frictional resistance torque is generated by the yaw friction disc 106 for inspection The yaw performance of the fan.
  • a hydraulic brake 109 is also included, the actuator of the hydraulic brake 109 acting on the tower tool 104 to quickly brake the tower tool 104 when activated.
  • the brake friction disc 103 is further disposed between the lower slewing bearing 102 and the lower end of the tower tool 104; when the yaw test is to be ended, a frictional resistance torque is generated by the brake friction disc 103, the resistance The moment slows the tower tooling 104.
  • a tower tooling mounting flange 101 is further included for mounting the lower slewing ring 102 on the yaw base 108 to facilitate installation and removal of the slewing ring 102.
  • the upper slewing bearing 105, the yaw friction disk 106, and the hydraulic brake 109 are retention mechanisms in the fan 200, and the use of these existing devices can save investment.
  • the specific connection relationship between the components is as follows:
  • the machine grabs the bracket 107, and the lower end portion fixes the yaw foundation 108, and the upper end portion fixes the fan 200; preferably, the machine grabs the bracket 107 to two, and is fixed on the yaw foundation 108 by a screw connection.
  • the outer ring of the upper slewing bearing 105, the yaw friction disk 106, and the upper end portion of the tower tool 104 are fixed, specifically, fixed by screws 111.
  • the inner ring of the upper slewing bearing 105 is fixed to the fan 200, and is specifically fixed by the screw 110 to the nacelle frame of the wind turbine 200.
  • the outer ring of the lower slewing bearing 102 is fixed to the yaw base 108 by the tower tool mounting flange 101,
  • the outer ring of the middle and lower slewing bearings 102 can be coupled to the tower tool mounting flange 101 by bolts 113.
  • the inner ring of the lower slewing bearing 102 and the brake friction disc 103 are fixed to the lower end portion of the tower tool 104, and can be specifically fixed by bolts 112.
  • the hydraulic brake 109 is mounted on the bottom of the machine; the actuator of the hydraulic brake 109 acts on the tower tool 104 to quickly brake the tower tool 104 when starting.
  • the above-mentioned fan yaw test mechanism 100 can synchronously perform the fan yaw test while the prime mover drags the fan 200 to rotate, which is briefly described as follows:
  • the fan yaw motor (or other prime mover) drives the outer ring of the upper slewing bearing 105, the yaw friction disk 106, the tower tooling 104, the brake friction disk 103, and the inner ring of the lower slewing bearing 102 to be positive (reverse The direction rotation; at the same time, the fan 200, the inner ring of the upper slewing bearing 105, the hydraulic brake 109, the outer ring of the lower slewing ring 102, and the tower mounting flange 101 are fixed; thereby, while the prime mover drags the fan 200 to rotate , the yaw test can also be performed simultaneously.
  • the yaw base 108 and the tower tool 104 cooperate with each other to ensure that the center line of the drive shaft of the fan 200 and the drive shaft of the drag end are substantially identical, and a small amount of deviation can be passed through the second end of the drag end.
  • the coupling is corrected to maximize the efficiency and stability of the entire drive chain on the drag end.
  • the resistance torque of the fan yaw test mechanism 100 when rotating is slightly larger than the resistance torque of the fan 200 during actual yaw, which is due to the action of the lower slewing bearing 102.
  • the resistance torque deviation is within the allowable working range, and a deviation value can also be determined by experiment and deducted. Therefore, the yaw test mechanism 100 of the present fan simulates the operation and the force of the actual yaw of the fan 200 on the one hand, and simplifies the mechanical structure of the test rig on the other hand; It saves space for testing and is easy to install.
  • the fan yaw test mechanism 100 is specially provided, so that when the prime mover drags the fan 200 to rotate, the fan yaw test can be simultaneously performed.
  • the following is a detailed description of the fan test bench of the present invention.
  • FIG. 3 is a general structural view of a preferred embodiment of the wind turbine test bench of the present invention.
  • the whole test bench of the fan comprises a test stand mechanical device and a test stand control device (not shown), wherein the test stand control device comprises a test stand controller for controlling the mechanical device action of the test stand;
  • the mechanical equipment includes: The fan yaw test mechanism 100 is used for the fan yaw test while the fan 200 is dragged; the fan axial force applying mechanism 300 is used for simulating the axial force of the wind to the fan drive shaft; the test wheel hub and the counterweight paddle
  • the leaf mechanism 400 is configured to simulate the gravity load and the overturning moment of the blade to the fan hub and the transmission shaft;
  • the fan drag mechanism 500 is used to provide the power of the wind turbine generator 200 (hereinafter referred to as the fan), and realizes the no-load drag test, the noise temperature rise test, and the fatigue test of the fan 200.
  • the fan yaw test mechanism 100 is the core of the present invention.
  • the fan yaw test mechanism 100 is the core of the present invention.
  • the following is a detailed description of the other subsystems of the test bench.
  • the present embodiment provides a fan axial force applying mechanism 300: a load is applied by the axial force actuator and transmitted to the fan 200 by the self-aligning thrust bearing; At the same time, an axial force is applied to the fan 200.
  • FIG. 4 is an isometric view of the axial force applying mechanism of the fan of FIG. 3.
  • FIG. 5 is an exploded view of FIG. 4.
  • the fan axial force applying mechanism 300 includes: an axial force actuator 302, an actuator supporting tool 301, a self-aligning thrust bearing 306, a bearing support 303, a bearing front baffle 307, a bearing tailgate 304, a fork frame 305
  • the axial force applying base 308 is fixed on the base platform 600 for mounting the actuator tool 301 and the bearing support 303;
  • the axial force actuator 302 is fixed on the actuator supporting tool 301, and the other end is fixed to the bearing tailgate 304.
  • the axial force actuator 302 is a plurality of, preferably four, uniform. Acting on the bearing tailgate 304;
  • the axial force actuator 302 can be one of a cylinder, a cylinder, a jack, and an electric push rod, which can be specifically selected according to test requirements.
  • the self-aligning thrust bearing 306 is fixed radially by the bearing support 303, and one end outer ring is fixed by the bearing back baffle 304, the inner ring is fixed by a retaining ring (not shown), and the other end outer ring is fixed by the bearing front baffle 307.
  • the inner ring is fixed by the shoulder of the fork frame 305.
  • a yoke 305 is coupled to the hub of the blower 200 for transmitting the force of the axial force actuator 302 to the hub of the blower 200.
  • the axial force actuator 302 operates, which acts on the bearing tailgate 304; passes through the aligning thrust bearing 306 to the fork frame 305; and passes through the hub front tooling to the test wheel hub.
  • the axial force loading of the fan 200 is completed.
  • the axial force applying mechanism 300 ensures that the prime mover 101 rotates the fan 200 while applying an axial force to the test hub 401, thereby more realistically simulating the operating condition of the fan 200.
  • a fan aerodynamic model is established in the test bench controller and the relevant aerodynamic parameters are stored; thus, the test bench controller performs load and frequency control on the axial force actuator 302 based on the aerodynamic parameters of the wind turbine to simulate The axial force of the variable wind or gust to the test hub 401.
  • the amount of control of the actuator 302 such as the pressure of the cylinder hydraulic oil and the electric signal of the electric push rod
  • the axial force can be simulated under various wind conditions.
  • the fan hub is the main component of the fan 200:
  • the blade In the actual product, the blade is connected to the main shaft of the fan 200 through the fan hub, and the energy captured by the wind wheel is transmitted to the fan drive system; in the test, the axial direction applied to the fan 200 is completed.
  • the force and torque are transmitted through the test 3 full-purpose hub 401; therefore, the test horse full-use hub 401 is a key component of the test stand, and functions as a support.
  • the weight paddle mechanism is set up as follows:
  • FIG. 7 is an isometric view of the test hub and the counterweight paddle mechanism of FIG. 3;
  • FIG. 8 is a single configuration of FIG. 7 after the hidden weight paddle shield is removed.
  • the test horse full-purpose hub mechanism and the weight paddle mechanism 400 include a test 3 full-purpose hub 401, a weight paddle 402, and a hub front tooling 403, wherein:
  • the test hub 401 is connected to the blower main shaft for transmitting the fan blade load; preferably the actual fan hub product is selected to enhance the realness of the test; specifically, processing a circle of process holes at the front end of the fan hub product, Used to install the hub front tooling 403.
  • the weight paddles 402 are fixed on the test hub 401 for simulating the fan blades of the fan 200; wherein the number of the weight paddles 402 can be two, three, etc., depending on the design of the fan 200. set. Wherein, the weight paddle 402 is fixed to the test hub 401 by bolts to ensure reliable fixing; in particular, the test wheel hub 401 and the weight paddle 402 have the same thread size as the actual blade mounting thread, which is convenient for installation. Actual blade.
  • the hub front tooling 403, the end is connected to the fork frame 405, and the other end is connected to the test hub 401 for transmitting torque and axial force; specifically, the hub front tooling 403-end and the fork frame 405 are bolted Connected, the other end is bolted to the test hub 401 to ensure torque and axial force transfer Rely on.
  • the weight paddle 402 is composed of a weight mounting flange 4021, a weight mounting bracket 4022, a weight 4023, a fastening nut, and a weight paddle shield (not shown); Wherein: the weight mounting bracket 4022 is attached to the weight mounting flange 4021. One end of the weight 4023 is fixed by the rib of the weight mounting bracket 4022, and the other end is fixed by a fastening nut.
  • the weight paddle 402 rotates around the axis of the weight 4023; thus, the relevant pitch test of the fan 200 can be performed on the test hub and the weight paddle mechanism 400. I will not repeat them here.
  • the effect of the actual blade on the gravity load and the overturning moment of the test hub 401 and the transmission shaft can be simulated.
  • different types of blade weights can be simulated by adjusting the number of weights 4023, and the specific number of weights 4023 is determined based on actual blade parameters.
  • the number of weights 4023 on each of the weighting blades 402 is varied such that the weights of the weighting blades 402 are unequal to generate an eccentric load, such that vibrations on the fan drive shaft are generated when the test hub 401 is rotated. Thereby the operating conditions of the fan 200 are more realistically simulated.
  • the fan drag mechanism includes a prime mover 501, a first coupling 502 (preferably a diaphragm coupling), a reduction box 503, and a second coupling 504 (preferably a universal joint)
  • the prime mover 501 is coupled to the reduction gearbox 503 through the first coupling 502, and is coupled to the front tooling of the test hub 401 via the second coupling 504 for dragging the fan 200 to rotate.
  • the gearbox supporting tooling 505 and the prime mover supporting tooling 506 are used to adjust the level of the transmission shaft of the fan drag mechanism 500, specifically by adjusting the level of the prime mover 501 and the speed reducer 503, to ensure transmission efficiency and stability;
  • the drag end base 507 is used to support the main components of the fan drag mechanism; as shown in FIG. 3, the drag end base 507 is built on the base platform 600 (mounted on the foundation 700), and the main part of the fan drag mechanism 500 The components are mounted on the drag end base 507 to ensure the stability of the fan drag mechanism 500.
  • the prime mover 501 outputs a high rotation speed and a small torque power, and is loaded onto the test hub 401 via the transmission chain of the fan drag mechanism 500 (including the first coupling 502, the reduction case 503, and the second coupling 504). .
  • the fan 200 is input with low-speed, high-torque power, which simulates the reality well. The driving force of the wind.
  • the prime mover 501 can be an electric motor, a hydraulic motor, a pneumatic motor, etc., and the prime mover 501 performs a continuous rotary motion, and the drag fan 200 rotates.
  • the prime mover 501 is an electric motor, and an AC asynchronous motor is specifically selected.
  • the test bench supplies power to the motor using energy closed loop feedback.
  • the fan 200 converts kinetic energy into electrical energy during dragging, feeds back to the grid through the converter, and supplies power to the motor via a high-power inverter.
  • the motor is connected to the inverter, so that the output speed of the motor is steplessly adjusted by the inverter to meet the requirements of different speeds of the test hub 401 under different wind conditions, so that the fan 200 can operate according to predetermined requirements.
  • test bench control equipment for controlling each subsystem, as follows:
  • the prime mover 501, the reduction box 503, the fan axial force applying mechanism 300, and the corresponding part of the fan yaw test mechanism 500 in the test stand are equipped with sensors from which the test stand controller is
  • the signals are collected and the sub-mechanisms are reasonably controlled according to the test bench process requirements.
  • the rotational speed of the prime mover 501 is controlled according to certain algorithm requirements to ensure that the power input to the wind turbine 200 is close to the power input during actual operation.
  • the test bench controller and the associated sensors and actuators disposed on the test bench may constitute a test bench control system.
  • the test bed control system Through the test bed control system, the actual wind condition can be simulated, the rotational force and the axial force applied to the fan 200 are controlled; and the relevant sensor signals are provided to the fan controller, so that the components of the fan 200 are operated in actual conditions. Under working conditions. Further, by integrating the above-mentioned test bed control system and related mechanical mechanisms, a platform for developing and debugging fan components such as a fan controller, a converter, and a pitch system can be constructed.
  • the above is a detailed description of the wind turbine test bench of the present invention.
  • the main advantages are: setting the fan yaw test mechanism 100, and in the aspect of the fan drag test, the yaw test can be synchronously performed, saving test time and facilitating test operation. On the other hand, the yaw test does not require machine deflection, which saves space for testing and is easy to install.
  • the axial force applying mechanism 300 is provided such that the axial force is applied while the fan 200 is rotating, which better simulates the actual operating condition of the fan.
  • the test wheel hub and the weight paddle mechanism 400 are provided.
  • the test wheel hub 401 can further verify the reliability of the fan hub in the test due to the actual fan hub product; the weight pad 402 saves the test space and avoids huge civil construction.
  • the amount makes the test rig more safe during operation; and, by adjusting the weight of the weight on the weight paddle 402, the eccentric load is generated by the wind wheel, and the vibration source of the system is provided, which can better simulate the actual running condition of the fan.
  • the improved wind turbine drag mechanism 500 has an energy design that uses a closed-loop energy feedback scheme to improve the power utilization of the equipment and save test costs.
  • test bench can also be used as a test platform for the development of fan components such as fan controllers, converters and pitch systems.
  • test bench is a full-featured test bench with test functions such as tower yaw yaw, axial force application, blade weight, and hub drag.
  • the test bench basically covers the relevant test items specified in the test standard of the wind turbine, and can carry out the stereotype test of the newly developed model and the factory inspection of the fan product. Compared with other manufacturers' fan test rigs, this test rig not only has the features of complete functions, but also has the advantages of low design and manufacturing cost, convenient and quick test and installation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Wind Motors (AREA)

Description

风机偏航试验机构及风机整机试验台
本申请要求于 2008 年 12 月 11 日提交中国专利局、 申请号为 200810204572.6, 发明名称为"风机偏航试验机构及风机整机试验台"的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及风力发电机结构部件或设备的测试,具体来说是风机偏航试验 机构及风机整机试验台。
背景技术
目前, 国内对于 MW级风力发电机(以下简称风机)整机试验台的设计 研究及专利申请未见相关文献; 而国外申请的相关专利也不是很多, 主要集中 在 VESTAS、 GAMESA、 GE等风机设计制造规模较大的企业。在这些专利中, 风机整机试验台 (以下简称试验台) 的功能较为单一, 且建设成本很高。
申请号为 WO2007/141003、 名称为 "A test bench and a method for testing wind turbine equipment"( 风力涡轮设备的试验台及测试方法)的专利申请由 VESTAS公司 2007年 7月向国际知识产权局申请。 该专利申请的技术方案主 要内容为: (1 )设计平台, 实现拖动端传动轴与地平面成一特定角度, 以满足 轮毂的轴心线倾角要求; (2 )原动机拖动部分有消除噪音装置; (3 )被测风机 整机部分有模拟天气系统, 温度可调范围达 -10。C〜 90。C; ( 4 )有径向力施加 系统,模拟风轮对风机传动轴的重力作用。该试验台可同时进行多项风机试验, 但仍存在较大的缺陷: 一是无偏航试验机构, 无法测试风机偏航性能; 二是无 轴向力施加系统, 无法模拟风对风机整机的轴向力作用。
实际上, 风机偏航性能是风机定型试验和出厂试验中的一个重要试验项 目。在实际运行过程中,风机偏航表现为机抢围绕塔架旋转。在试验台设计中, 要使机抢旋转的同时保持电机拖动, 不仅给机械结构设计带来极大的困难, 而 且可预见成本很高。 可行的方法是, 使风机拖动试验与风机偏航试验分开, 即 动, 再拆下联轴器后, 然后进行风机的偏航试验。
但这种实验方式存在明显的缺陷: 一方面, 机抢外型尺寸较大, 偏转时需 要占用较大的空间, 不利于安装; 另一方面, 风机拖动试验与偏航试验不可同 时进行, 从而增加试验时间, 降低试验效率, 也使试验操作更加复杂。
此外,为提高试验结果的逼真度,需要模拟真实风对风机的作用力及力矩、 叶片对风机传动轴的作用力及力矩等方面的因素,但现有试验台并不能完全满 足要求。
发明内容
有鉴于此, 本发明提供一种风机偏航试验机构,在风机拖动试验的同时可 进行风机偏航试验, 有利于提高试验效率、 简化试验操作。 在此基础上, 本发 明还提供一种风机整机试验台。
为解决以上技术问题, 本发明提供的风机偏航试验机构, 包括:
机抢支架, 下端部固定在偏航基础上, 上端部固定风机的机抢;
塔筒工装, 通过传动机构与塔筒工装驱动装置连接,在所述塔筒工装驱动 装置作用下绕塔筒工装轴线旋转;
上回转支承,安装在所述机抢的底架下部, 用于实现所述塔筒工装相对于 所述机舱运动;
下回转支承,安装在所述偏航基础上, 用于实现所述塔筒工装相对于所述 偏航基础运动。
优选地, 所述上回转支承内圈与所述机抢的底架下部固定, 外圈与所述塔 筒工装上端部固定;
所述下回转支承外圈与所述偏航基础固定,内圈与所述塔筒工装下端部固 定。
优选地, 所述上回转支承内圈与所述机抢的底架下部固定, 外圈与所述塔 筒工装上端部固定;
所述下回转支承内圈与所述偏航基础固定,外圈与所述塔筒工装下端部固 定。
优选地, 所述上回转支承外圈与所述机抢的底架下部固定, 内圈与所述塔 筒工装上端部固定;
所述下回转支承外圈与所述偏航基础固定,内圈与所述塔筒工装下端部固 定。
优选地, 所述上回转支承外圈与所述机抢的底架下部固定, 内圈与所述塔 筒工装上端部固定;
所述下回转支承内圈与所述偏航基础固定,外圈与所述塔筒工装下端部固 定。
优选地,还包括偏航摩擦盘, 夹设于所述上回转支承与所述塔筒工装上端 部之间。
优选地, 还包括液压制动器, 安装在所述机抢的底部; 所述液压制动器的 执行机构作用于所述塔筒工装上。
优选地,还包括刹车摩擦盘, 夹设于所述下回转支承与所述塔筒工装下端 部之间。
优选地,还包括塔筒工装安装法兰, 用于将所述下回转支承安装在所述偏 航基础上
本发明提供的风机整机试验台, 包括试验台机械设备和试验台控制设备; 所述试验台机械设备包括风机拖动机构, 用于提供风机整机的动力; 所述试验 台控制设备包括试验台控制器, 用于控制所述试验台机械设备的动作; 所述试 验台机械设备还包括上述的风机偏航试验机构。
优选地,还包括塔筒工装安装法兰, 用于将所述下回转支承安装在所述偏 航基础上。
优选地, 所述试验台机械设备还包括风机轴向力施加机构, 包括轴向力执 行器、执行器支撑工装、调心推力轴承、 轴承支撑、 轴承前挡板、轴承后挡板、 叉形架、 轴向施力基础, 其中:
所述轴向施力基础, 用于安装所述执行器工装及所述轴承支撑;
所述轴向力执行器,一端固定在所述执行器支撑工装上, 另一端与所述轴 承后挡板固定;
所述调心推力轴承,径向由所述轴承支撑固定; 一端外圈由所述轴承后挡 板固定, 内圈由挡圈固定; 另一端外圈由所述轴承前挡板固定, 内圈由所述叉 形架的轴肩固定;
所述叉形架, 连接风机的轮毂, 用于将所述轴向力执行器的作用力传递到 风机的轮毂上。
优选地, 所述试验台控制器中储存有风机动力学参数, 用于对所述轴向力 执行器进行载荷和频率控制。
优选地, 所述轴向力执行器为油缸、 气缸、 千斤顶或电动推杆之一。 优选地, 所述轴向力执行器为多个, 均勾作用在所述轴承后挡板上。 优选地, 所述试验台机械设备还包括试验用轮毂及配重桨叶机构; 所述试 验用轮毂连接风机主轴, 用于传递风机叶片载荷; 所述配重桨叶固定在所述试 验用轮毂上, 用于模拟风机叶片。
优选地, 所述试验用轮毂为实际的风机轮毂产品; 所述试验用轮毂前端加 工一圈工艺孔, 用于安装一轮毂前工装, 该轮毂前工装用于连接所述风机拖动 机构的输出端。
优选地, 所述包括配重桨叶包括珐码安装法兰、 珐码安装支架、 珐码; 所 述砝码安装支架接在砝码安装法兰上;所述砝码一端由所述砝码安装支架的加 强筋定位固定, 另一端由紧固螺母固定。
优选地, 所述各配重桨叶上的珐码数量可以调节。
优选地, 所述配重桨叶设置有屏蔽罩。
优选地, 所述风机拖动机构包括原动机、 第一联轴器、 减速箱、 第二联轴 器; 所述原动机通过第一联轴器与减速箱连接, 经第二联轴器连接到风机的轮 毂上, 用以拖动风机整机旋转。
优选地, 所述风机拖动机构还包括减速箱支撑工装、 原动机支撑工装, 分 别安装在拖动端基础上, 分别用于调整所述减速箱、 原动机的水平高度。
优选地, 所述原动机为电动机。
优选地, 所述电动机采用能量回馈方式供电。
优选地, 所述电动机连接变频器, 用于调节所述电动机的输出转速。 优选地,在风机内部及所述机械设备的相关部安装若干传感器; 所述试验 台控制器接受所述各传感器的输出信号,并根据试验台工艺要求控制所述机械 设备各子机构工作。
优选地, 所述试验台向风机控制器提供相关传感器的输出信号, 用于所述 风机控制器控制风机各零部件运行在实际工况
与现有技术相比, 本发明可取得以下技术效果: 设置风机偏航试验机构, 在风机偏航试验时, 塔筒工装旋转, 而机抢固定不动; 一方面, 在风机拖动试 验时, 可同步进行偏航试验, 节省试验时间, 提高试验效率, 方便试验操作; 另一方面, 偏航试验时无需机抢偏转, 可节省试验用空间, 并方便安装。
此外, 本发明试验台的多项改进技术方案也可取得进一步的技术效果, 具 体而言:
设置风机轴向力施加机构, 使得在风机在旋转的同时受到轴向力的作用, 较好地模拟了风机的实际运行状况。
设置试验用轮毂及配重桨叶机构, 由于采用实际风机轮毂产品, 可在试验 中进一步验证轮毂的可靠性; 配重桨叶节省试验用空间,避免巨大的土建施工 量, 使试验台在运行过程中更加安全; 并且, 通过调整配重桨叶上珐码重量不 等, 使风轮产生偏心载荷, 提供系统的振动源, 能更好地模拟风机实际运行状 况。
改进风机拖动机构, 其电气设计采用能量闭环回馈的方案,提高了设备的 电能利用率, 节省试验成本。
通过试验台机械设备、试验台控制设备配合,有利于模拟风机的运行工况; 此外, 本试验台还可以作为风机控制器、 变流器、 变桨系统等风机零部件研发 的试验平台。
本发明的试验台是一种全功能性试验台,具有塔筒工装偏航、轴向力施加、 浆叶配重、轮毂拖动等多项试验功能。 该试验台基本上涵盖了风机试验标准上 所规定的相关试验项目, 可进行新研发机型的定型试验及风机产品的出厂检 验。 该试验台具有设计制造成本较低, 试验、 安装方便快捷等优点。
附图说明
图 1是本发明风机偏航试验机构一较优实施例的轴测图;
图 2是图 1沿风机偏航试验机构对称面的剖视图。
图 3是本发明风机整机试验台一较优实施例的结构总图;
图 4是图 3中风机轴向力施加机构的轴测图;
图 5是图 4的分解图;
图 6是图 5相对于风机轴向力施加机构对称中心面的剖视图;
图 7是图 3中试验用轮毂及配重桨叶机构的轴测图;
图 8是图 7在隐去配重桨叶屏避罩后的单个配重桨叶结构图; 具体实施方式
本发明的基本构思是, 设置风机偏航试验机构; 风机偏航试验时, 塔筒工 装旋转, 而机抢固定不动; 由此, 在原动机拖动风机旋转的同时, 可进行风机 偏航试验。
下面结合附图对本发明的实施例进行说明。
请同时参见图 1、 图 2 , 其中, 图 1是本发明风机偏航试验机构一较优实 施例的轴测图; 图 2是图 1沿风机偏航试验机构对称面的剖视图。该风机偏航 试验机构 100, 包括:
机抢支架 107 , 下端部固定在偏航基础 108上, 上端部固定风机 200的机 舱;
塔筒工装 104, 通过传动机构 (图未示)与塔筒工装驱动装置 (图未示) 连接, 在所述塔筒工装驱动装置作用下绕塔筒工装轴线旋转;
上回转支承 105 ,安装在所述机抢的底架下部,用于实现所述塔筒工装 104 相对于所述机舱运动;
下回转支承 102,安装在所述偏航基础 108上,用于实现所述塔筒工装 104 相对于所述偏航基础 108运动。
由此, 塔筒工装 104旋转, 而机抢固定不动; 根据相对运动的原理, 通过 塔筒工装 104的偏转, 可以模拟风机 200的偏航运动; 由此, 在原动机拖动风 机 200旋转的同时, 可进行风机偏航试验。
本发明中采用两个回转支承, 因而塔筒工装 104具有四种不同的方式, 具 体是:
其一、 上回转支承 105内圈与机抢的底架下部固定, 外圈与塔筒工装 104 上端部固定; 并且, 下回转支承 102外圈与偏航基础 108固定, 内圈与塔筒工 装 104下端部固定。
其二、 上回转支承 105内圈与机抢的底架下部固定, 外圈与塔筒工装 104 上端部固定; 并且, 下回转支承 102内圈与偏航基础 108固定, 外圈与塔筒工 装 104下端部固定。
其三、 上回转支承 105外圈与机抢的底架下部固定, 内圈与塔筒工装 104 上端部固定; 并且, 下回转支承 102内圈与偏航基础 108固定, 外圈与塔筒工 装 104下端部固定。
其四、 上回转支承 105外圈与机抢的底架下部固定, 内圈与塔筒工装 104 上端部固定; 并且, 下回转支承 102外圈与偏航基础 108固定, 内圈与塔筒工 装 104下端部固定。
上述塔筒工装 104与上回转支承 105、 下回转支承 102之间固定方式可为 多种; 优选地采用端面固定, 通过螺钉或螺栓可方便地将塔筒工装 104 与上、 下回转支承的外 (内) 圈固定。
优选地, 还包括偏航摩擦盘 106, 夹设于所述上回转支承 105与所述塔筒 工装 104上端部之间; 偏航试验时, 通过偏航摩擦盘 106产生摩擦阻力矩, 以 便检验风机的偏航性能。
优选地, 还包括液压制动器 109, 该液压制动器 109的执行机构作用于塔 筒工装 104上, 起动时使塔筒工装 104快速制动。
优选地, 还包括刹车摩擦盘 103 , 夹设于所述下回转支承 102与所述塔筒 工装 104下端部之间; 需结束偏航试验时,通过刹车摩擦盘 103产生摩擦阻力 矩, 该阻力矩使塔筒工装 104减速。
优选地, 还包括塔筒工装安装法兰 101 , 用于将所述下回转支承 102安装 在所述偏航基础 108上, 方便下回转支承 102的安装、 拆卸。
以下进一步对第一种安装方式详细说明,其它三种安装方式可方便地参照 实施, 在此不再赘述。
如图 1、 图 2所示, 该风机偏航试验机构 100中, 上回转支承 105、 偏航摩擦 盘 106、 液压制动器 109为风机 200中的保留机构, 利用这些现有设备, 可节省 投资成。 各部件之间的具体连接关系如下:
机抢支架 107 ,下端部固定偏航基础 108上,上端部固定风机 200的机抢; 优选地, 机抢支架 107为两个, 通过螺紋连接固定在偏航基础 108上。
上回转支承 105的外圈、 偏航摩擦盘 106和塔筒工装 104的上端部固定, 具体可通过螺钉 111固定。
上回转支承 105的内圈与风机 200的机抢固定,具体由螺钉 110固定在风 机 200的机舱底架上。
下回转支承 102外圈, 通过塔筒工装安装法兰 101固定偏航基础 108上, 其 中, 下回转支承 102外圈可通过螺栓 113与塔筒工装安装法兰 101连接。 下回转支承 102内圈、刹车摩擦盘 103与塔筒工装 104的下端部固定, 具 体可通过螺栓 112固定。
液压制动器 109, 安装在机抢的底部; 该液压制动器 109的执行机构作用 塔筒工装 104上, 起动时使塔筒工装 104快速制动。
上述风机偏航试验机构 100 , 可在原动机拖动风机 200旋转的同时, 同步 进行风机偏航试 3全, 简述如下:
在偏航试验中,风机偏航电机(或其它原动机)带动上回转支承 105外圈、 偏航摩擦盘 106、 塔筒工装 104、 刹车摩擦盘 103、 下回转支承 102内圈做正 (反)方向旋转; 同时, 风机 200、 上回转支承 105内圈、 液压制动器 109、 下回转支承 102外圈、 塔筒工装安装法兰 101固定不动; 由此, 在原动机拖动 风机 200旋转的同时, 也可同步进行偏航试验。
上述风机偏航试验机构 100中, 偏航基础 108和塔筒工装 104相互配合, 保证风机 200传动轴中心线与拖动端传动轴心线基本一致,其少量的偏差可以 通过拖动端的第二联轴器纠正,从而最大程度地来保证拖动端整个传动链的效 率和稳定性。
经载荷分析计算, 本风机偏航试验机构 100旋转时的阻力矩比风机 200 实际偏航时的阻力矩稍大, 这是因为下回转支承 102的作用结果。 但是, 该阻 力矩偏差在允许工作范围之内, 也可通过试验确定一偏差数值并予以扣除。 由 此 , 本风机偏航试验机构 100 , 一方面很好地模拟了风机 200实际偏航时的运 行及受力情况, 另一方面也简化了试验台的机械结构; 同时, 由于机抢无需偏 转, 可节省试验用空间, 并方便安装。
本发明风机整机试验台中, 特别设置风机偏航试验机构 100, 使得原动机 拖动风机 200旋转的时, 可同步进行风机偏航试验, 下面对本发明风机整机试 验台具体说明。
请参见图 3 , 该图是本发明风机整机试验台一较优实施例的结构总图。 该 风机整机试验台, 包括试验台机械设备和试验台控制设备(图未示出), 其中, 试验台控制设备包括试验台控制器, 用于控制所述试验台机械设备动作; 所述 试验台机械设备包括: 风机偏航试验机构 100, 用于风机 200拖动的同时进行风机偏航试验; 风机轴向力施加机构 300, 用于模拟风对风机传动轴的轴向作用力; 试验用轮毂及配重桨叶机构 400, 用于模拟叶片对风机轮毂及传动轴的重 力载荷和倾覆力矩;
风机拖动机构 500,用于提供风力发电机 200 (以下简称风机)整机的动力, 实现风机 200的空载拖动试验、 噪音温升试验、 疲劳试验等。
上述机构中, 风机偏航试验机构 100为本发明的核心所在, 具体内容请参 见前文, 在此不再赘述。 以下对试验台其它各子系统详细说明。
为了模拟风的轴向作用, 本实施例设置风机轴向力施加机构 300: 通过轴 向力执行器施加载荷, 并由调心推力轴承传递到风机 200上; 由此, 在拖动风 机 200转动的同时, 对风机 200施加轴向力。
请同时参见图 4、 图 5、 图 6, 其中: 图 4是图 3中风机轴向力施加机构的轴 测图; 图 5是图 4的分解图; 图 6是图 4相对于风机轴向力施加机构对称中心面的 剖视图。 所述风机轴向力施加机构 300包括: 轴向力执行器 302、 执行器支撑 工装 301、 调心推力轴承 306、 轴承支撑 303、 轴承前挡板 307、 轴承后挡板 304、 叉形架 305、 轴向施力基础 308 , 其中:
所述轴向施力基础 308 , 固定在基础平台 600上, 用于安装所述执行 器工 装 301及轴承支撑 303;
所述轴向力执行器 302 , —端固定在执行器支撑工装 301上, 另一端与轴 承后挡板 304固定; 其中, 所述轴向力执行器 302为多个, 优选为 4个, 均匀作 用在轴承后挡板 304; 优选地, 轴向力执行器 302可为油缸、 气缸、 千斤顶、 电动推杆之一, 可根据试验要求具体选定。
所述调心推力轴承 306, 径向由轴承支撑 303固定, 一端外圈由轴承后挡 板 304固定, 内圈由挡圈(图未示)固定, 另一端外圈由轴承前挡板 307固定, 内圈由叉形架 305轴肩固定。
叉形架 305 , 连接风机 200的轮毂, 用于将所述轴向力执行器 302的作用 力传递到风机 200的轮毂上。
工作时, 轴向力执行器 302动作, 其均勾作用在轴承后挡板 304上; 经过 调心推力轴承 306传递到叉形架 305上;再经过轮毂前工装传递到试验用轮毂 401上, 完成风机 200的轴向力加载。
该轴向力施加机构 300, 保证原动机 101拖动风机 200旋转的同时, 对试 验用轮毂 401施加轴向作用力 , 从而更加真实地模拟风机 200的运行状况。
特别地,在试验台控制器中建立风机空气动力学模型, 并存储有关气动参 数; 由此, 试验台控制器依据风机空气动力学参数对轴向力执行器 302 进行 载荷和频率控制, 以模拟可变风或者阵风对试验用轮毂 401的轴向作用力。具 体地, 通过调整执行器 302 的控制量(如油缸液压油的压力、 电动推杆的电 信号), 可模拟各种风况下轴向作用力的大小。
风机轮毂是风机 200的主要部件: 实际产品中, 叶片通过风机轮毂连接到 风机 200的主轴上, 并将风轮捕捉的能量传递给风机传动系统; 试验中, 对风 机 200整机施加的轴向力和转矩, 通过试 3全用轮毂 401进行传递; 因此, 试马全 用轮毂 401是试验台的关键部件, 起承上启下的作用。 另外, 由于风机叶片实 际产品体积庞大,使用实际叶片将给试验台机械结构设计和基建施工带来极大 困难; 为此, 设置配重桨叶机构, 简述如下:
请同时参见图 7、 图 8 , 其中: 图 7是图 3中试验用轮毂及配重桨叶机构 的轴测图; 图 8是图 7在隐去配重桨叶屏避罩后的单个配重桨叶结构图。 所述 试马全用轮毂机构及配重桨叶机构 400, 包括试 3全用轮毂 401、 配重桨叶 402、 轮毂前工装 403 , 其中:
所述试验用轮毂 401 , 连接接风机主轴, 用于传递风机叶片载荷; 优选地 选用实际的风机轮毂产品, 以增强试验的真实度; 具体是, 在风机轮毂产品的 前端加工一圈工艺孔, 用来安装轮毂前工装 403。
所述配重桨叶 402, 固定在试验用轮毂 401上, 用于模拟风机 200的风机 叶片; 其中配重桨叶 402的数量可为 2片、 3片等, 具体视风机 200的设计方 案而定。 其中, 配重桨叶 402通过螺栓固定在试验用轮毂 401上, 保证两者可 靠固定; 特别地, 试验用轮毂 401、 配重桨叶 402螺紋孔尺寸与实际的叶片安 装螺紋尺寸相同, 便于安装实际叶片。
所述轮毂前工装 403 , —端与叉形架 405连接, 另一端与试验用轮毂 401 连接, 用于传递扭矩和轴向力; 具体地, 轮毂前工装 403 —端与叉形架 405 用螺栓连接, 另一端与试验用轮毂 401用螺栓连接,保证扭矩和轴向力传递可 靠。
优选地, 所述配重桨叶 402由珐码安装法兰 4021、 珐码安装支架 4022、 珐码 4023、 紧固螺母以及配重桨叶屏避罩 (未在图中给出)等组成; 其中: 砝码安装支架 4022接在砝码安装法兰 4021上。 砝码 4023一端由砝码安装支 架 4022的加强筋定位固定, 另一端由紧固螺母固定。 在进行风机变桨系统试 验时, 配重桨叶 402围绕珐码 4023的轴心线旋转; 由此, 可在该试验用轮毂 及配重桨叶机构 400上进行风机 200的相关变桨试验, 在此不再赘述。
通过在配重桨叶的安装支架 4022上固定一定数量的珐码 4023 , 可模拟实 际叶片对试验用轮毂 401 及传动轴带来的重力载荷和倾覆力矩作用。 具体而 言, 不同类型的叶片重量, 可通过调整珐码 4023的数量来模拟, 而珐码 4023 的具体数量依据实际的叶片参数确定。
进一步地, 改变各配重桨叶 402上的砝码 4023数量, 使各配重桨叶 402 的重量不相等, 以便产生偏心载荷,使得在试验用轮毂 401旋转时产生风机传 动轴上的振动, 从而更加真实地模拟风机 200的运行状况。
如图 3所示, 风机拖动机构包括原动机 501、 第一联轴器 502 (优选为膜片 式联轴器)、 减速箱 503、 第二联轴器 504 (优选为万向式联轴器)、 减速箱支撑 工装 505、 原动机支撑工装 506、拖动端基础 507 (优选为 T型槽平板基础), 其 中:
原动机 501通过第一联轴器 502与减速箱 503连接,经第二联轴器 504连接到 试验用轮毂 401的前工装上, 用以拖动风机 200整机旋转;
减速箱支撑工装 505、 原动机支撑工装 506, 用以调整风机拖动机构 500传 动轴的水平高度, 具体通过调整原动机 501、 减速箱 503的水平高度实现, 以保 证传动效率与稳定性;
拖动端基础 507, 用于支撑风机拖动机构的主要部件; 如图 3所示, 拖动端 基础 507搭建在基础平台 600上(安装在地基 700上), 而风机拖动机构 500的主 要部件安装在拖动端基础 507上, 保证风机拖动机构 500的稳定性。
由此, 原动机 501输出高转速、 小扭矩动力, 经由风机拖动机构 500的传动 链(包括第一联轴器 502、 减速箱 503、 第二联轴器 504 )加载到试验用轮毂 401 上。 由此, 风机 200被输入为低转速、 大扭矩的动力, 从而很好地模拟了真实 风的传动作用力。
本实施例中, 原动机 501 可为电动机、 液压马达、 气动马达等, 原动机 501作连续回转运动, 拖动风机 200转动。 优选地, 原动机 501为电动机, 具 体选用交流异步电动机。
使用电动机时,试验台采用能量闭环回馈的方式对电动机供电。具体而言, 风机 200在拖动中把动能转变成电能, 通过变流器回馈到电网中,再经大功率 变频器给该电动机供电。
由于采用电动机, 易于调整风机 200转速。具体而言,电动机连接变频器, 使电动机输出转速由变频器无级调节, 以满足模拟不同风况下试验用轮毂 401 不同转速的要求, 使得风机 200能够按照预定要求运转。
在以上试验台机械设备的基础上, 本发明试验台还设置试验台控制设备, 以便对各子系统进行控制, 简述如下:
除风机 200内部放置的相关传感器外,试验台中的原动机 501、减速箱 503、 风机轴向力施加机构 300、风机偏航试验机构 500中的相应部位均安装传感器, 试验台控制器从这些传感器采集信号,并根据试验台工艺要求合理地控制各个 子机构。 例如, 按一定的算法要求来控制原动机 501 的转速, 以保证至风机 200拖动时的动力输入与实际运行时的动力输入接近。
上述试验台控制器、及布置在试验台上的相关传感器及执行器, 可构成试 验台控制系统。 通过该试验台控制系统可以模拟实际风况, 控制施加在风机 200上的旋转作用力和轴向作用力; 以及, 向风机控制器提供相关的传感器信 号, 使得风机 200各零部件运行在实际的工况下。 进一步地, 将上述试验台控 制系统和相关机械机构集成, 即可构建研发调试风机控制器、 变流器、 变桨系 统等风机零部件的平台。
需指出的是, 本发明的电气控制部分均可按现有技术实施, 具体内容请参 照有关文献, 在此不再赘述。
以上对本发明风机整机试验台进行了详尽描述, 其主要优点是: 设置风机偏航试验机构 100 , —方面, 在风机拖动试验时, 可同步进行偏 航试验, 节省试验时间,方便试验操作; 另一方面,偏航试验时无需机抢偏转, 可节省试验用空间, 并方便安装。 设置轴向力施加机构 300, 使得在风机 200在旋转的同时受到轴向力的作 用, 较好地模拟了风机的实际运行状况。
设置试验用轮毂及配重桨叶机构 400, 试验用轮毂 401由于采用实际风机 轮毂产品, 可在试验中进一步验证风机轮毂的可靠性; 配重桨叶 402节省试验 用空间, 避免巨大的土建施工量, 使试验台在运行过程中更加安全; 并且, 通 过调整配重桨叶 402上珐码重量, 使风轮产生偏心载荷, 提供系统的振动源, 能更好地模拟风机实际运行状况。
改进风机拖动机构 500, 其电气设计采用能量闭环回馈的方案, 提高了设 备的电能利用率, 节省试验成本。
通过试验台机械设备、试验台控制设备配合,有利于模拟风机的运行工况; 此外, 本试验台还可以作为风机控制器、 变流器、 变桨系统等风机零部件研发 的试验平台。
上述试验台是一种全功能性试验台, 具有塔筒工装偏航、 轴向力施加、 浆 叶配重、轮毂拖动等试验功能。该试验台基本上涵盖了风机试验标准上所规定 的相关试验项目, 可进行新研发机型的定型试验及风机产品的出厂检验。相比 其他厂家的风机试验台, 本试验台不仅具有功能齐全的特点,还具有设计制造 成本较低, 试验、 安装方便快捷等优点。
以上所述仅是本发明的优选实施方式, 应当指出的是, 上述优选实施方式 不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为 准。 对于本技术领域的普通技术人员来说, 在不脱离本发明的精神和范围内, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。
+

Claims

权 利 要 求
1、 一种风机偏航试验机构, 其特征在于, 包括:
机抢支架, 下端部固定在偏航基础上, 上端部固定风机的机抢; 塔筒工装, 通过传动机构与塔筒工装驱动装置连接,在所述塔筒工装驱动 装置作用下绕塔筒工装轴线旋转;
上回转支承,安装在所述机抢的底架下部, 用于实现所述塔筒工装相对于 所述机舱运动;
下回转支承,安装在所述偏航基础上, 用于实现所述塔筒工装相对于所述 偏航基础运动。
2、 如权利要求 1所述的风机偏航试验机构, 其特征在于,
所述上回转支承内圈与所述机抢的底架下部固定,外圈与所述塔筒工装上 端部固定;
所述下回转支承外圈与所述偏航基础固定,内圈与所述塔筒工装下端部固 定。
3、 如权利要求 1所述的风机偏航试验机构, 其特征在于,
所述上回转支承内圈与所述机抢的底架下部固定,外圈与所述塔筒工装上 端部固定;
所述下回转支承内圈与所述偏航基础固定,外圈与所述塔筒工装下端部固 定。
4、 如权利要求 1所述的风机偏航试验机构, 其特征在于,
所述上回转支承外圈与所述机抢的底架下部固定,内圈与所述塔筒工装上 端部固定;
所述下回转支承外圈与所述偏航基础固定,内圈与所述塔筒工装下端部固 定。
5、 如权利要求 1所述的风机偏航试验机构, 其特征在于,
所述上回转支承外圈与所述机抢的底架下部固定,内圈与所述塔筒工装上 端部固定;
所述下回转支承内圈与所述偏航基础固定,外圈与所述塔筒工装下端部固 定。
6、 如权利要求 1所述的风机偏航试验机构, 其特征在于, 还包括偏航摩 擦盘, 夹设于所述上回转支承与所述塔筒工装上端部之间。
7、 如权利要求 1所述的风机偏航试验机构, 其特征在于, 还包括液压制 动器,安装在所述机抢的底部; 所述液压制动器的执行机构作用于所述塔筒工 装上。
8、 如权利要求 1所述的风机偏航试验机构, 其特征在于, 还包括刹车摩 擦盘, 夹设于所述下回转支承与所述塔筒工装下端部之间。
9、 如权利要求 1-8任一项所述的风机偏航试验机构, 其特征在于, 还包 括塔筒工装安装法兰, 用于将所述下回转支承安装在所述偏航基础上。
10、 一种风机整机试验台, 包括试验台机械设备和试验台控制设备; 所述 试验台机械设备包括风机拖动机构, 用于提供风机整机的动力; 所述试验台控 制设备包括试验台控制器,用于控制所述试验台机械设备的动作,其特征在于, 包括如权利要求 1 -8任一项所述的风机偏航试验机构。
11、 如权利要求 10所述的风机整机试验台, 其特征在于, 还包括塔筒工装 安装法兰, 用于将所述下回转支承安装在所述偏航基础上。
12、 如权利要求 10所述的风机整机试验台, 其特征在于, 所述试验台机械 设备还包括风机轴向力施加机构, 包括轴向力执行器、 执行器支撑工装、 调心 推力轴承、 轴承支撑、 轴承前挡板、 轴承后挡板、 叉形架、 轴向施力基础, 其 中:
所述轴向施力基础, 用于安装所述执行器工装及所述轴承支撑;
所述轴向力执行器, 一端固定在所述执行器支撑工装上, 另一端与所述轴 承后挡板固定;
所述调心推力轴承,径向由所述轴承支撑固定; 一端外圈由所述轴承后挡 板固定, 内圈由挡圈固定; 另一端外圈由所述轴承前挡板固定, 内圈由所述叉 形架的轴肩固定;
所述叉形架, 连接风机的轮毂, 用于将所述轴向力执行器的作用力传递到 风机的轮毂上。
13、 如权利要求 12所述的风机整机试验台, 其特征在于, 所述试验台控 制器中储存有风机动力学参数, 用于对所述轴向力执行器进行载荷和频率控 制。
14、 如权利要求 12所述的风机整机试验台, 其特征在于, 所述轴向力执 行器为油缸、 气缸、 千斤顶或电动推杆之一。
15、 如权利要求 12所述的风机整机试验台, 其特征在于, 所述轴向力执行 器为多个, 均匀作用在所述轴承后挡板上。
16、 如权利要求 10所述的风机整机试验台, 其特征在于, 所述试验台机 械设备还包括试验用轮毂及配重桨叶机构; 所述试验用轮毂连接风机主轴, 用 于传递风机叶片载荷; 所述配重桨叶固定在所述试验用轮毂上, 用于模拟风机 叶片。
17、 如权利要求 16所述的风机整机试验台, 其特征在于, 所述试验用轮 毂为实际的风机轮毂产品; 所述试验用轮毂前端加工一圈工艺孔, 用于安装一 轮毂前工装, 该轮毂前工装用于连接所述风机拖动机构的输出端。
18、 如权利要求 16所述的风机整机试验台, 其特征在于, 所述包括配重 桨叶包括珐码安装法兰、 砝码安装支架、 珐码; 所述珐码安装支架接在珐码安 装法兰上; 所述珐码一端由所述珐码安装支架的加强筋定位固定, 另一端由紧 固螺母固定。
19、 如权利要求 18所述的风机整机试验台, 其特征在于, 所述各配重桨 叶上的砝码数量可以调节。
20、 如权利要求 18所述的风机整机试验台, 其特征在于, 所述配重桨叶 设置有屏蔽罩。
21、 如权利要求 10所述的风机整机试验台, 其特征在于, 所述风机拖动机 构包括原动机、 第一联轴器、 减速箱、 第二联轴器; 所述原动机通过第一联轴 器与减速箱连接,经第二联轴器连接到风机的轮毂上,用以拖动风机整机旋转。
22、 如权利要求 21所述的风机整机试验台, 其特征在于, 所述风机拖动机 构还包括减速箱支撑工装、 原动机支撑工装, 分别安装在拖动端基础上, 分别 用于调整所述减速箱、 原动机的水平高度。
23、 如权利要求 21所述的风机整机试验台, 其特征在于, 所述原动机为电 动机。
24、 如权利要求 23所述的风机整机试验台, 其特征在于, 所述电动机采 用能量回馈方式供电。
25、 如权利要求 23所述的风机整机试验台, 其特征在于, 所述电动机连 接变频器, 用于调节所述电动机的输出转速。
26、 如权利要求 10所述的风机整机试验台, 其特征在于, 在风机内部及 所述机械设备的相关部安装若干传感器;所述试验台控制器接受所述各传感器 的输出信号, 并根据试验台工艺要求控制所述机械设备各子机构工作。
27、 如权利要求 26所述的风机整机试验台, 其特征在于, 所述试验台向 风机控制器提供相关传感器的输出信号,用于所述风机控制器控制风机各零部 件运行在实际工况。
PCT/CN2009/075147 2008-12-11 2009-11-26 风机偏航试验机构及风机整机试验台 WO2010066163A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008102045726A CN101464213B (zh) 2008-12-11 2008-12-11 风机偏航试验机构及风机整机试验台
CN200810204572.6 2008-12-11

Publications (1)

Publication Number Publication Date
WO2010066163A1 true WO2010066163A1 (zh) 2010-06-17

Family

ID=40804892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075147 WO2010066163A1 (zh) 2008-12-11 2009-11-26 风机偏航试验机构及风机整机试验台

Country Status (2)

Country Link
CN (1) CN101464213B (zh)
WO (1) WO2010066163A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2674618A1 (en) * 2012-06-14 2013-12-18 Siemens Aktiengesellschaft Nacelle test apparatus
CN109299532A (zh) * 2018-09-17 2019-02-01 许继集团有限公司 一种风机主机架与后机架连接螺栓强度校核方法及系统
CN111677628A (zh) * 2020-06-18 2020-09-18 盘锦华晨石油装备制造有限公司 一种自调节转向的风力发电机
CN112067301A (zh) * 2020-09-10 2020-12-11 宁波大学科学技术学院 一种s型水轮机组合方式综合性能测试实验装置
CN112985797A (zh) * 2021-03-23 2021-06-18 江苏省特种设备安全监督检验研究院 一种密闭式风电制动器模拟试验装置及试验方法
CN113627046A (zh) * 2021-07-12 2021-11-09 许昌许继风电科技有限公司 一种风机偏航制动盘建模与极限强度校核方法
CN113651238A (zh) * 2021-07-15 2021-11-16 巨力索具研究院(天津)有限公司 海上风电机组整体吊装用导向定位及缓冲装置
CN115217723A (zh) * 2022-07-05 2022-10-21 朱建峰 用于工程风力发动机装配后的测试装置
CN115597820A (zh) * 2022-12-15 2023-01-13 中国空气动力研究与发展中心超高速空气动力研究所(Cn) 一种大型高超声速高温风洞模型送进系统的偏航机构
CN116358867A (zh) * 2023-05-09 2023-06-30 南京工大数控科技有限公司 一种超大型重载轴承试验台
CN113651238B (zh) * 2021-07-15 2024-06-07 巨力索具研究院(天津)有限公司 海上风电机组整体吊装用导向定位及缓冲装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464213B (zh) * 2008-12-11 2010-09-15 三一电气有限责任公司 风机偏航试验机构及风机整机试验台
CN101871844B (zh) * 2010-06-13 2011-11-30 清华大学 风力机性能分析与故障模拟实验系统
CN103217279A (zh) * 2013-01-16 2013-07-24 青岛华瑞丰机械有限公司 一种风力发电机偏航系统试验台
CN103603821B (zh) * 2013-12-09 2015-10-28 重庆宗申通用动力机械有限公司 一种发动机风扇研究装置
CN107327374A (zh) * 2016-12-13 2017-11-07 云南能投海装新能源设备有限公司 一种风力发电机组车间模拟调试平台
CN107975459A (zh) * 2017-11-22 2018-05-01 内蒙古科技大学 风力发电机塔架与机舱的连接装置及其混凝土塔架
CN107860579B (zh) * 2017-12-13 2024-05-03 索特传动设备有限公司 用于回转支承的固定装置及试验设备
CN110398387B (zh) * 2019-07-11 2024-03-26 明阳智慧能源集团股份公司 一种风力发电机组偏航与变桨系统六自由度加载试验台
CN111207035B (zh) * 2020-01-13 2021-02-05 山东中车风电有限公司 一种用于风力发电机组叶片纠偏的方法
CN111504681A (zh) * 2020-05-11 2020-08-07 大连理工大学 一种偏航制动系统摩擦试验设备及偏航制动试验方法
CN112345228B (zh) * 2020-11-10 2022-11-01 长春理工大学 用于检测炮塔座圈动态摩擦力矩的试验机
CN113155461B (zh) * 2021-06-02 2022-08-02 南京工业大学 一种风电主轴轴承试验台

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060037402A1 (en) * 2002-07-03 2006-02-23 Walter Musial Resonance test system
US7178406B2 (en) * 2004-02-10 2007-02-20 Jose Ignacio Llorente Gonzalez Test bench for wind turbines
CN1991326A (zh) * 2005-12-20 2007-07-04 通用电气公司 用于测试风力涡轮机的系统和方法
CN101464213A (zh) * 2008-12-11 2009-06-24 三一电气有限责任公司 风机偏航试验机构及风机整机试验台

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060037402A1 (en) * 2002-07-03 2006-02-23 Walter Musial Resonance test system
US7178406B2 (en) * 2004-02-10 2007-02-20 Jose Ignacio Llorente Gonzalez Test bench for wind turbines
CN1991326A (zh) * 2005-12-20 2007-07-04 通用电气公司 用于测试风力涡轮机的系统和方法
CN101464213A (zh) * 2008-12-11 2009-06-24 三一电气有限责任公司 风机偏航试验机构及风机整机试验台

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512715A (zh) * 2012-06-14 2014-01-15 西门子公司 机舱测试设备
US9404830B2 (en) 2012-06-14 2016-08-02 Siemens Aktiengesellschaft Nacelle test apparatus
EP2674618A1 (en) * 2012-06-14 2013-12-18 Siemens Aktiengesellschaft Nacelle test apparatus
CN109299532A (zh) * 2018-09-17 2019-02-01 许继集团有限公司 一种风机主机架与后机架连接螺栓强度校核方法及系统
CN109299532B (zh) * 2018-09-17 2022-12-13 许继集团有限公司 一种风机主机架与后机架连接螺栓强度校核方法及系统
CN111677628A (zh) * 2020-06-18 2020-09-18 盘锦华晨石油装备制造有限公司 一种自调节转向的风力发电机
CN112067301A (zh) * 2020-09-10 2020-12-11 宁波大学科学技术学院 一种s型水轮机组合方式综合性能测试实验装置
CN112985797B (zh) * 2021-03-23 2023-04-18 江苏省特种设备安全监督检验研究院 一种密闭式风电制动器模拟试验装置及试验方法
CN112985797A (zh) * 2021-03-23 2021-06-18 江苏省特种设备安全监督检验研究院 一种密闭式风电制动器模拟试验装置及试验方法
CN113627046A (zh) * 2021-07-12 2021-11-09 许昌许继风电科技有限公司 一种风机偏航制动盘建模与极限强度校核方法
CN113627046B (zh) * 2021-07-12 2023-08-08 许昌许继风电科技有限公司 一种风机偏航制动盘建模与极限强度校核方法
CN113651238A (zh) * 2021-07-15 2021-11-16 巨力索具研究院(天津)有限公司 海上风电机组整体吊装用导向定位及缓冲装置
CN113651238B (zh) * 2021-07-15 2024-06-07 巨力索具研究院(天津)有限公司 海上风电机组整体吊装用导向定位及缓冲装置
CN115217723A (zh) * 2022-07-05 2022-10-21 朱建峰 用于工程风力发动机装配后的测试装置
CN115597820B (zh) * 2022-12-15 2023-03-21 中国空气动力研究与发展中心超高速空气动力研究所 一种大型高超声速高温风洞模型送进系统的偏航机构
CN115597820A (zh) * 2022-12-15 2023-01-13 中国空气动力研究与发展中心超高速空气动力研究所(Cn) 一种大型高超声速高温风洞模型送进系统的偏航机构
CN116358867A (zh) * 2023-05-09 2023-06-30 南京工大数控科技有限公司 一种超大型重载轴承试验台

Also Published As

Publication number Publication date
CN101464213B (zh) 2010-09-15
CN101464213A (zh) 2009-06-24

Similar Documents

Publication Publication Date Title
WO2010066163A1 (zh) 风机偏航试验机构及风机整机试验台
CN107826970B (zh) 风力发电机组单叶片安装吊具
US9651020B2 (en) Portable crane for use in wind turbines
CN102774509B (zh) 直升机反扭矩装置的性能试验台
CA2522280A1 (en) Wind turbine with friction drive power take off on outer rim
CN103502635B (zh) 风能设备及用于安装或拆卸风能设备的转子叶片的方法
CN204594693U (zh) 固体火箭发动机离心过载试验系统
CN106853580A (zh) 一种机械手及利用机械手进行风机叶片安装的方法
WO2024055834A1 (zh) 一种风电机组载荷解耦加载装置、方法、系统及控制系统
CN202362140U (zh) 用于风力发电机组的变桨试验系统的加载装置
CN111859649A (zh) 基于虚拟仿真的风电机组传动链地面试验工况建立方法
CN105185206B (zh) 一种风力发电机组风况载荷模拟器
CN105181307A (zh) 双叶片模型风力发电机实验台及实验方法
CN207108306U (zh) 提升机和风力发电机组
CN103758693A (zh) 一种大型垂直轴风力发电机叶片转角调节和锁定装置
CN106829722A (zh) 大型风力发电机组变桨齿轮箱安装工具
CN104847598A (zh) 风力发电机组及变桨驱动部件的更换装置和更换方法
CN202073704U (zh) 收放式水平风叶风能发电机
CN203069373U (zh) 风力发电偏航系统的试验机
CN201118428Y (zh) 发电装置
CN102519720A (zh) 一种风电机组变桨系统的试验装置
CN204783476U (zh) 风力发电机组及变桨驱动部件的更换装置
EP3730783B1 (en) System and method for repairing a gearbox of a wind turbine uptower
WO2022134519A1 (zh) 传动系统以及风力发电机组
CN104502110A (zh) 变桨电机加载装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831440

Country of ref document: EP

Kind code of ref document: A1