WO2010064687A1 - 医用画像表示装置及び医用画像表示方法 - Google Patents

医用画像表示装置及び医用画像表示方法 Download PDF

Info

Publication number
WO2010064687A1
WO2010064687A1 PCT/JP2009/070328 JP2009070328W WO2010064687A1 WO 2010064687 A1 WO2010064687 A1 WO 2010064687A1 JP 2009070328 W JP2009070328 W JP 2009070328W WO 2010064687 A1 WO2010064687 A1 WO 2010064687A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
false
display
medical image
developed
Prior art date
Application number
PCT/JP2009/070328
Other languages
English (en)
French (fr)
Inventor
角村 卓是
白旗 崇
中澤 哲夫
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to US13/131,062 priority Critical patent/US8791957B2/en
Priority to JP2010541353A priority patent/JP5536669B2/ja
Publication of WO2010064687A1 publication Critical patent/WO2010064687A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/7425Displaying combinations of multiple images regardless of image source, e.g. displaying a reference anatomical image with a live image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/08Volume rendering

Definitions

  • the present invention relates to a medical image display apparatus that displays a luminal organ of a subject as a developed image, and particularly to a technique for calculating a false image rate according to a position in the developed image and presenting it to an operator.
  • a method for virtual endoscopic display of the lumen of a luminal organ such as a blood vessel or large intestine using an image taken with a medical diagnostic imaging apparatus such as an X-ray CT apparatus or an MRI apparatus is used for the inner wall of the luminal organ.
  • a medical diagnostic imaging apparatus such as an X-ray CT apparatus or an MRI apparatus.
  • MPR Multi-Planner Reconstruction
  • a developed image has been devised (Patent Document 1).
  • the developed image is an image that is cut open in the long axis direction and displayed like a specimen, and since the state of the inner wall of the hollow organ can be viewed, it is expected as a method for reducing the burden of interpretation.
  • observing the inner wall of the large intestine it is possible to observe the inner wall of the large intestine on a flat surface in the developed image, so it is easy to find polyps etc. that exist between the large intestine folds that could have been overlooked in the virtual endoscopic image become.
  • the developed image radiates virtual rays radially from each point on the center line of the large intestine area lumen, and the pixel values and reflected light of the part where the virtual rays hit the inner wall of the large intestine are placed on the inner surface of one linear cylindrical model It is created by projecting, opening the cylindrical model in the long axis direction, and expanding the inner surface of the cylindrical model on a plane.
  • the developed image may not correctly display the shape of the inner wall depending on the position of the luminal organ.
  • bent parts such as the ascending colon to the transverse colon, the transverse colon to the descending colon, and the sigmoid colon.
  • the image of the bent part is distorted .
  • the inner side of the bent portion is an image stretched in the long axis direction of the hollow organ, and conversely, the outer side of the bent portion is a compressed image.
  • Such distortion can cause misdiagnosis in image diagnosis.
  • a spherical polyp that exists in a bent part may appear like a heel when it is displayed extending or contracting in the long axis direction of the large intestine. May appear like a polyp.
  • the operator must observe the developed image in consideration that the shape of the inner wall may not be correctly displayed depending on the position of the luminal organ. However, it is difficult to determine whether or not the display of the observation site is correct only by observing the developed image.
  • the present invention has been made in view of such circumstances, and in a medical image display device that displays a luminal organ of a subject as a developed image, an operator determines whether the display of an observation site on the developed image is correct.
  • the purpose is to enable easy judgment.
  • the present invention provides a medical image display device comprising a developed image creating means for creating a developed image of a luminal organ of a subject and a display means for displaying the developed image. And a control unit that displays the false image rate in association with the developed image.
  • the present invention provides a medical image display device including a developed image creating unit that creates a developed image of a luminal organ of a subject and a display unit that displays the developed image, according to a position in the developed image.
  • the image processing apparatus includes: a false image rate calculation unit that calculates a false image rate at the position; and a control unit that displays the developed image based on the false image rate.
  • the present invention provides a medical image display method comprising a developed image creating step for creating a developed image of a luminal organ of a subject and a display step for displaying the developed image according to a position in the developed image.
  • a false image rate calculating step for calculating a false image rate at the position; and a control step for displaying the display step false image rate in association with the developed image.
  • a medical image display method comprising a developed image creating step of creating a developed image of a luminal organ of a subject and a display step of displaying the developed image
  • the position of the false image is determined according to the position in the developed image.
  • the operator in a medical image display device that displays a luminal organ of a subject as a developed image, the operator can easily determine whether or not the display of the observation site on the developed image is correct. Since the operator can easily determine whether or not the display of the observation site on the developed image is correct, it is possible to reduce misdiagnosis of the image diagnosis based on the developed image.
  • FIG. 9 is a diagram showing a display example 2.
  • FIG. 10 is a diagram showing a display example 3.
  • FIG. 10 is a diagram showing a display example 4.
  • FIG. 10 is a diagram showing a display example 5.
  • FIG. 1 is a diagram showing a hardware configuration of the medical image display apparatus 1.
  • the medical image display device 1 includes a CPU (Central Processing Unit) 2, a main memory 3, a storage device 4, a display memory 5, a display device 6, a mouse 8 and keyboard 9 connected to the controller 7, and a network adapter 10 including a system bus 11. Connected and configured.
  • the medical image display device 1 is connected to a medical image photographing device 13 and a medical image database 14 via a network 12.
  • the CPU2 is a device that controls the operation of each component.
  • the CPU 2 loads a program stored in the storage device 4 and data necessary for program execution into the main memory 3 and executes it.
  • the storage device 4 is a device that stores medical image information captured by the medical image capturing device 13.
  • the medical image information is acquired from the medical image capturing device 13 and the medical image database 14 via a network 12 such as a LAN (Local Area Network).
  • the storage device 4 stores a program executed by the CPU 2 and data necessary for program execution.
  • the main memory 3 stores programs executed by the CPU 2 and the progress of arithmetic processing.
  • the mouse 8 and the keyboard 9 are operation devices for an operator to give an operation instruction to the medical image display apparatus 1.
  • the mouse 8 may be another pointing device such as a trackpad or a trackball.
  • the display memory 5 stores display data for display on a display device 6 such as a liquid crystal display or a CRT (Cathode Ray Tube).
  • the controller 7 detects the state of the mouse 8, detects the position of the mouse pointer on the display device 6, and outputs a detection signal to the CPU 2.
  • the network adapter 10 is for connecting the medical image display apparatus 1 to a network 12 such as a LAN, a telephone line, or the Internet.
  • the medical image photographing device 13 is a device that acquires medical image information such as a tomographic image of a subject.
  • the medical imaging apparatus 13 is, for example, an MRI apparatus, an X-ray CT apparatus, or an ultrasonic diagnostic apparatus.
  • the medical image database 14 is a database system that stores medical image information captured by the medical image capturing device 13.
  • a developed image of the luminal organ is created, and the created developed image is displayed on the display device 6. Since there are portions in the developed image that are not correctly displayed depending on the position of the luminal organ, the operator must observe in consideration of which portion in the developed image is not correctly displayed. However, it is difficult to determine whether or not the display of the observation site is correct only by observing the developed image.
  • the false image rate of the position that is, the degree to which the display of the position is not correct is calculated according to the position in the developed image, and the calculated false image rate is displayed on the display device 6 in correspondence with the developed image.
  • the developed image is displayed on the display device 6 based on the calculated false image rate.
  • a portion having a high false image rate in the developed image includes a bent portion of a luminal organ, for example, a sigmoid colon in the large intestine region. The greater the degree of bending, that is, the degree of bending of the luminal organ in the long axis direction, the greater the false image rate.
  • FIG. 2 shows, in the present embodiment, the false image rate at the position calculated according to the position in the developed image is displayed corresponding to the developed image, or the developed image is displayed according to the calculated false image rate. It is a figure which shows the flow of the process for making it do. Hereinafter, each step of FIG. 2 will be described in detail.
  • Step S201 The CPU 2 acquires the volume image data of the subject from the medical image photographing device 13 or the medical image database 14 via the network 12.
  • the volume image data is several to several hundred tomographic images obtained by imaging a subject, and is configured to be continuously arranged in a certain direction, for example, a direction perpendicular to the tomographic plane. .
  • Step S202 The CPU 2 extracts a luminal organ region from the volume image data acquired in step S201.
  • a region extraction method there are a method of extraction by threshold processing using an upper limit value and a lower limit value of pixel values corresponding to a hollow organ to be extracted, a known region expansion method (Region Growing method), and the like.
  • the CPU 2 performs processing such as setting a flag on the extracted area so that it can be distinguished from other areas.
  • FIG. 3 shows an example in which the large intestine is extracted as a luminal organ from the volume image data area 301 and a flag is set in the extracted area.
  • the extraction method of the luminal organ region and the data format of the extraction result used in the present embodiment are not limited to the above method, and any method can be used as long as the extraction result can be output to a subsequent processing step.
  • the data format of the extraction result is a format in which a flag is set on the coordinates on the extraction area as shown in FIG.
  • Step S203 The CPU 2 calculates a false image rate based on the extraction result in step S202.
  • FIG. 4 shows a procedure for obtaining the degree of bending of the luminal organ in the long axis direction as a false image rate as an example of the processing flow for calculating the false image rate. Each step will be described below.
  • Step S401 The CPU 2 obtains the center line of the luminal organ and obtains the coordinate data of the obtained center line.
  • a method of obtaining the center line there are a method of obtaining a geometrical organ by thinning a luminal organ, and a method of obtaining a known deepest part search method from a specified point in the luminal organ region.
  • MPR Multi Planner Reconstruction
  • the CPU 2 treats the obtained center line 511 as a set of points, sets a plurality of points Cn on the center line 511 at equal intervals, and stores the coordinates of each point Cn in the main memory 3 to Get coordinate data.
  • Step S402 The CPU 2 selects a point of interest C from among a plurality of points Cn as a target location for obtaining the degree of bending of the luminal organ in the long axis direction.
  • Step S403 The CPU 2 sets, as tangent vector calculation points, points that are separated by a certain distance in the front-rear direction, for example, points C1 and C2 adjacent to C, as neighboring points of the target point C selected in step S402 (see FIG. 6).
  • Step S404 CPU2 calculates tangent vectors D1 and D2 of center line 511 at points C1 and C2.
  • Step S405 The CPU 2 calculates the inner product P of the tangent vectors D1 and D2 as a curvature at the point of interest C using (Equation 1) and sets the degree of bending of the luminal organ in the long axis direction.
  • the radius R of the luminal organ lumen is set to the distances R 1 , R 2 , R 3 ,... R N at each angle from the point of interest C on the center line 511 as shown in FIG. It may be obtained as an average value of.
  • the degree of bending of the luminal organ in the long axis direction obtained in this step is stored in the main memory 3 or the storage device 4 in association with each point on the center line 511.
  • the degree of bending and each point on the center line 511 in association with each other for example, the curvature as shown in FIG. 10 and the center line position that is the position on the center line 511 in the long axis direction of the luminal organ can be obtained.
  • Graphs can be created.
  • Step S204 CPU2 creates a developed image for the luminal organ region extracted in step S202.
  • the method described in Patent Document 1 may be used to create the developed image.
  • an outline of a developed image creation method will be described with reference to FIG.
  • a plurality of virtual rays 1100 are set in the radial direction from the point of interest C on the center line 511 as shown in FIG. At this time, the angles between the virtual rays are preferably equal.
  • the volume image data acquired in step S201 is associated with the points B 1 , B 2 , B 3 , B 4 ,..., B N on the inner wall of the luminal organ. Then, as shown in FIG. 11 (b), the projection plane with the vertical axis as the angular direction shown in FIG. 11 (a) and the horizontal axis as the center line position which is the position on the center line 511 in the long axis direction of the luminal organ. The image data associated with the above is projected.
  • the developed image is created by the CPU 2 executing the processes (1) to (3) described above while changing the center line position.
  • Step S205 The CPU 2 displays the false image rate for each center line position calculated in step S203 in association with the developed image created in step S204, or displays the developed image according to the false image rate.
  • a display example will be described below. In the following display examples, the curvature, which is one of the degrees of bending of the luminal organ in the long axis direction, is used as the false image rate.
  • Display example 1 This display example is shown in FIG.
  • a developed image 1200 and a color bar 1201 are displayed on the screen 1202 of the display device 6.
  • the color bar 1201 is assigned a different color for each center line position, and a different color is assigned according to the curvature determined for each center line position in step S203. For example, since the distortion in the developed image increases at a position where the curvature is large, red is used to alert the operator, and blue is used because the distortion in the developed image does not increase at a position where the curvature is small. Each position is assigned a yellow color.
  • the operator can know which observation part on the developed image has a large curvature, that is, a high false image rate, and misdiagnosis of image diagnosis based on the developed image. Can be reduced.
  • Display example 2 This display example is shown in FIG. In this display example, a developed image 1300 having partially different transparency is displayed on the screen 1202 of the display device 6. Note that a dotted line portion in the developed image 1300 represents a portion displayed with the transparency changed.
  • the transparency of the developed image 1300 differs depending on the curvature, and a high transparency is set at a position where the curvature in the developed image has a large distortion and a low transparency is set at a position where the curvature is small.
  • the operator can concentrate and observe the portion of the developed image where the curvature is small, that is, the portion where the false image rate is low, and misdiagnosis of image diagnosis based on the developed image. Can be reduced.
  • Display example 3 An example of this display is shown in FIG.
  • the developed image 1200 and the graph 1400 are displayed side by side on the screen 1202 of the display device 6.
  • a graph 1400 is the same as that shown in FIG. 10, and shows the relationship between the curvature and the center line position.
  • the operator can know which observation part on the developed image has a large curvature, that is, a high false image rate, and misdiagnosis of image diagnosis based on the developed image. Can be reduced.
  • the developed image is displayed by treating the curvature, which is a false image rate, as a continuous value.
  • the threshold value is determined for the curvature, which is the false image rate, based on the determination result.
  • a developed image may be displayed.
  • FIG. 15 is a diagram illustrating an example of a flow of threshold determination processing. Hereinafter, each step of FIG. 15 will be described.
  • Step S151 CPU2 acquires the threshold value.
  • the acquired threshold value may be a value stored in advance in the storage device 4, or may be an upper limit value and / or a lower limit value set by the operator using the threshold setting screen 1600 shown in FIG.
  • Step S152 The CPU 2 compares the threshold obtained in step S151 with the curvature obtained for each center line position in S203, and determines whether the curvature is within the threshold range. As a result of the determination, if the curvature is within the threshold range, the process proceeds to step S153, and if not within the range, the process ends.
  • Step S153 The CPU 2 displays the curvature on the screen 1202 of the display device 6 together with the developed image 1200.
  • a display example of this step is shown in FIG.
  • a curvature display bar 1700 is displayed on the screen 1202 together with the developed image 1200.
  • the curvature display bar 1700 displays a bar at a location where the curvature is within a threshold range. For example, the bar is displayed at a location where the curvature is larger than the threshold acquired in step S151.
  • the operator can know which observation site on the developed image has a high false image rate, and can reduce misdiagnosis of image diagnosis based on the developed image. It becomes like this.
  • Display example 5 This display example is shown in FIG.
  • the developed image 1200 is scroll-displayed on the screen 1202 of the display device 6.
  • the scroll direction is from left to right, but it may be reversed.
  • the scroll speed of the portion determined to be within the threshold range by the threshold determination shown in FIG. Is scrolled.
  • the present invention is not limited to these examples.
  • the display on the developed image is performed. Any device may be used as long as it provides the operator with the false image rate of the observation site.
  • the scroll speed may be continuously changed according to the curvature value.
  • 1 medical image display device 2 CPU, 3 main memory, 4 storage device, 5 display memory, 6 display device, 7 controller, 8 mouse, 9 keyboard, 10 network adapter, 11 system bus, 12 network, 13 medical imaging device , 14 medical image database, 301 volume image data area, 302 luminal organ area, 501 axial section, 502 sagittal section, 503 coronal section, 511 center line, 512 set point, 700 section, 1100 virtual ray, 1200 unfolded image, 1201 Color bar, 1202 screen, 1300 expanded image, 1400 graph, 1600 threshold setting screen, 1700 curvature display bar

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Pulmonology (AREA)
  • Human Computer Interaction (AREA)
  • Computer Graphics (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

 被検体の管腔臓器を展開画像として表示する医用画像表示装置において、展開画像上の観察部位の表示が正しいか否かを操作者が容易に判断できるようにする。  被検体の管腔臓器の展開画像を作成する展開画像作成手段と、前記展開画像を表示する表示手段を備えた医用画像表示装置において、前記展開画像中の位置に応じて当該位置の偽像率を算出する偽像率算出手段と、前記偽像率を前記展開画像に対応付けて表示させる制御手段と、を備える。  また、被検体の管腔臓器の展開画像を作成する展開画像作成手段と、前記展開画像を表示する表示手段を備えた医用画像表示装置において、前記展開画像中の位置に応じて当該位置の偽像率を算出する偽像率算出手段と、前記偽像率に基づいて前記展開画像を表示させる制御手段と、を備える。

Description

医用画像表示装置及び医用画像表示方法
 本発明は被検体の管腔臓器を展開画像として表示する医用画像表示装置に関し、特に展開画像中の位置に応じて偽像率を算出し、操作者に提示する技術に関する。
 X線CT装置やMRI装置などの医用画像診断装置を用いて撮影した画像を用いて、血管や大腸などの管腔臓器の内腔を仮想内視鏡表示する方法は、管腔臓器の内壁の形状を観察するのに有用である。特に大腸領域では体内に内視鏡を挿入せずに大腸内壁の観察が可能であるため、低侵襲であり、被検体への精神的、身体的負担が少ない検査方法として注目されている。
 医用画像診断装置を用いて大腸検査する際に用いる画像としては、前述した方法により作成される仮想内視鏡画像のほかにMPR(Multi Planner Reconstruction)画像などがあるが、特徴的な表示画像として展開画像が考案されている(特許文献1)。展開画像は管腔臓器を長軸方向に切り開いて標本のように表示する画像であり、管腔臓器の内壁の様子を一望できるため、読影の負担を軽減する方法として期待されている。特に大腸内壁を観察する場合、展開画像では大腸内壁を平面上で観察することができるため、仮想内視鏡画像では見落とす可能性があった大腸の襞の間に存在するポリープなどの発見が容易になる。
 展開画像は、大腸領域内腔の中心線上の各点から径方向に仮想光線を放射し、仮想光線が大腸内壁にあたった部分の画素値や反射光を1本の直線円筒モデルの内面上に投影し、円筒モデルを長軸方向に切り開き、円筒モデルの内面を平面に展開することで作成される。
特許第03627066号公報
 ところで、展開画像は、管腔臓器の位置によっては内壁の形状を正しく表示しない場合がある。例えば、大腸領域には上行結腸から横行結腸、横行結腸から下行結腸、S状結腸などの屈曲している部分があるが、円筒を切り開いて平面に展開すると、屈曲した部分の画像に歪が生ずる。具体的には屈曲部分の内側は管腔臓器の長軸方向に引き伸ばされた画像となり、反対に屈曲部分の外側では圧縮された画像となる。このような歪は画像診断において誤診の原因となりうる。例えば、屈曲部分に存在する球状のポリープは大腸の長軸方向に伸びて表示されたり縮んで表示されたりすることで襞のように見える場合があり、逆に屈曲部分の外側にある襞は伸びて表示されることによりポリープのように見える場合がある。
 操作者は、展開画像には管腔臓器の位置によって内壁の形状を正しく表示しない場合があることを考慮して観察しなければならない。しかし、展開画像を観察するだけでは観察部位の表示が正しいか否かを判断することは困難である。
 本発明はこのような事情を鑑みてなされたもので、被検体の管腔臓器を展開画像として表示する医用画像表示装置において、展開画像上の観察部位の表示が正しいか否かを操作者が容易に判断できるようにすることを目的とする。
 前記目的を達成するために本発明は、被検体の管腔臓器の展開画像を作成する展開画像作成手段と、前記展開画像を表示する表示手段を備えた医用画像表示装置において、前記展開画像中の位置に応じて当該位置の偽像率を算出する偽像率算出手段と、前記偽像率を前記展開画像に対応付けて表示させる制御手段と、を備えることを特徴とする。
 また、本発明は、被検体の管腔臓器の展開画像を作成する展開画像作成手段と、前記展開画像を表示する表示手段を備えた医用画像表示装置において、前記展開画像中の位置に応じて当該位置の偽像率を算出する偽像率算出手段と、前記偽像率に基づいて前記展開画像を表示させる制御手段と、を備えることを特徴とする。
 また、本発明は、被検体の管腔臓器の展開画像を作成する展開画像作成ステップと、前記展開画像を表示する表示ステップを備えた医用画像表示方法において、前記展開画像中の位置に応じて当該位置の偽像率を算出する偽像率算出ステップと、前記表示ステップ偽像率を前記展開画像に対応付けて表示させる制御ステップと、を備えることを特徴とする。
 また、被検体の管腔臓器の展開画像を作成する展開画像作成ステップと、前記展開画像を表示する表示ステップを備えた医用画像表示方法において、前記展開画像中の位置に応じて当該位置の偽像率を算出する偽像率算出ステップと、前記偽像率に基づいて前記展開画像を表示させる制御ステップと、を備えることを特徴とする。
 本発明によれば、被検体の管腔臓器を展開画像として表示する医用画像表示装置において、展開画像上の観察部位の表示が正しいか否かを操作者が容易に判断できる。展開画像上の観察部位の表示が正しいか否かを操作者が容易に判断できることにより、展開画像に基づく画像診断の誤診を低減することができるようになる。
本発明の医用画像表示装置のハードウェア構成を示す図。 第1の実施形態の処理の流れを示す図。 ボリューム画像データから管腔臓器領域を抽出した例を示す図。 偽像率算出の処理の流れの一例を示す図。 中心線データを取得する方法を補足説明する図。 注目点Cにおける曲がりの度合いを求める手順を補足説明する図。 中心線に直交する断面を補足説明する図。 中心線に直交する断面での管腔臓器内腔を補足説明する図。 管腔臓器内腔の半径Rを求める方法の一例を補足説明する図。 曲率と中心線位置とのグラフの一例。 展開画像を作成する手順を補足説明する図。 表示例1を示す図。 表示例2を示す図。 表示例3を示す図。 閾値判定の処理の流れの一例を示す図。 閾値を設定する画面の一例を示す図。 表示例4を示す図。 表示例5を示す図。
 以下、添付図面に従って本発明に係る医用画像表示装置の好ましい実施形態について説明する。なお、以下の説明及び添付図面において、同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略することにする。
 図1は医用画像表示装置1のハードウェア構成を示す図である。医用画像表示装置1は、CPU(Central Processing Unit)2、主メモリ3、記憶装置4、表示メモリ5、表示装置6、コントローラ7に接続されたマウス8やキーボード9、ネットワークアダプタ10がシステムバス11によって接続されて構成される。医用画像表示装置1は、ネットワーク12を介して医用画像撮影装置13や医用画像データベース14に接続される。
 CPU2は、各構成要素の動作を制御する装置である。CPU2は、記憶装置4に格納されるプログラムやプログラム実行に必要なデータを主メモリ3にロードして実行する。記憶装置4は、医用画像撮影装置13により撮影された医用画像情報を格納する装置である。医用画像情報はLAN(Local Area Network)等のネットワーク12を介して医用画像撮影装置13や医用画像データベース14から取得される。また、記憶装置4には、CPU2が実行するプログラムやプログラム実行に必要なデータが格納される。主メモリ3は、CPU2が実行するプログラムや演算処理の途中経過を記憶するものである。
 マウス8やキーボード9は、操作者が医用画像表示装置1に対して操作指示を行う操作デバイスである。マウス8はトラックパッドやトラックボールなどの他のポインティングデバイスであっても良い。表示メモリ5は、液晶ディスプレイやCRT(Cathode Ray Tube)等の表示装置6に表示するための表示データを格納するものである。コントローラ7は、マウス8の状態を検出して、表示装置6上のマウスポインタの位置を検出し、検出信号をCPU2へ出力するものである。ネットワークアダプタ10は、医用画像表示装置1をLAN、電話回線、インターネット等のネットワーク12に接続するためのものである。
 医用画像撮影装置13は、被検体の断層画像等の医用画像情報を取得する装置である。医用画像撮影装置13は、例えば、MRI装置やX線CT装置や超音波診断装置である。医用画像データベース14は、医用画像撮影装置13によって撮影された医用画像情報を記憶するデータベースシステムである。
 CPU2が後述する方法を実行することにより、管腔臓器の展開画像が作成され、作成された展開画像は表示装置6に表示される。展開画像には、管腔臓器の位置によって正しく表示されない箇所があるので、操作者は、展開画像中のどの箇所が正しく表示されていないかを考慮して観察しなければならない。しかし、展開画像を観察するだけでは観察部位の表示が正しいか否かを判断することは困難である。
 そこで本発明では展開画像中の位置に応じて当該位置の偽像率、すなわち当該位置の表示が正しくない度合いを算出し、算出された偽像率を展開画像に対応させて表示装置6に表示させたり、算出された偽像率に基づいて展開画像を表示装置6に表示させたりする。
展開画像において偽像率の高い箇所としては管腔臓器の屈曲部、例えば大腸領域のS状結腸などがある。屈曲の程度、すなわち管腔臓器の長軸方向の曲がりの度合いが大きいほど偽像率は大きくなる。
 (第1の実施形態)
 図2は、本実施形態において、展開画像中の位置に応じて算出される当該位置の偽像率を展開画像に対応させて表示させたり、算出された偽像率に応じて展開画像を表示させたりするための処理の流れを示す図である。以下、図2の各ステップについて詳細に説明する。
 (ステップS201)
 CPU2は、被検体のボリューム画像データを医用画像撮影装置13または医用画像データベース14からネットワーク12を介して取得する。ここでボリューム画像データとは被検体を撮影して得られた数枚から数百枚の断層画像であり、ある方向、例えば断層面に垂直な方向に連続して並んで構成されるものである。
 (ステップS202)
 CPU2は、ステップS201にて取得したボリューム画像データの中から管腔臓器領域を抽出する。領域抽出の方法としては、抽出対象の管腔臓器に相当する画素値の上限値と下限値を用いた閾値処理によって抽出する方法や、公知の領域拡張法(Region Growing法)などがある。CPU2は、抽出された領域にフラグを立てる等の処理を行い、その他の領域と識別可能なようにする。図3に、ボリューム画像データ領域301の中から管腔臓器として大腸を抽出し、抽出した領域にフラグを立てた例を示す。
 本実施形態で用いる管腔臓器領域の抽出方法及び抽出結果のデータ形式は上記の方法に限らず、抽出した結果を後段の処理ステップに出力できる方法であればいかようでも良い。なお本実施形態の説明では、簡略化のために抽出結果のデータ形式は図3に示したように抽出領域上の座標にフラグを立てた形式をとることとする。
 (ステップS203)
 CPU2は、ステップS202の抽出結果に基づき偽像率を算出する。図4に偽像率算出の処理の流れの一例として、管腔臓器の長軸方向の曲がりの度合いを偽像率として求める手順を示し、以下で各ステップについて説明する。
 (ステップS401)
 CPU2は、管腔臓器の中心線を求め、求めた中心線の座標データを取得する。中心線を求める方法としては、管腔臓器を細線化することにより幾何学的に求める方法や、管腔臓器領域内の指定した点から公知の最深部検索法によって求める方法がある。また図5に示すようなアキシャル断面501、サジタル断面502、コロナル断面503のMPR(Multi Planner Reconstruction)画像から操作者がマウス8を操作することによりマニュアルで設定した自由曲線を中心線とする方法や、操作者が設定した複数の設定点512を通る曲線をスプライン補間などにより求めて中心線とする方法などが挙げられる。
 CPU2は、求めた中心線511を点の集合体として扱うとして、中心線511上に複数の点Cnを等間隔に設定し、各点Cnの座標を主メモリ3に保持することで中心線の座標データを取得する。
 (ステップS402)
 CPU2は、管腔臓器の長軸方向の曲がりの度合いを求める対象箇所として、複数の点Cnの中から注目点Cを選択する。
 (ステップS403)
 CPU2は、ステップS402で選択された注目点Cの近傍点として前後に一定距離離れた点、例えばCに隣接する点C1とC2を接線ベクトル算出点として設定する(図6参照)。
 (ステップS404)
 CPU2は、点C1とC2における中心線511の接線ベクトルD1とD2を算出する。
 (ステップS405)
 CPU2は、(式1)を用いて、接線ベクトルD1とD2の内積Pを注目点Cにおける曲率として算出し、管腔臓器の長軸方向の曲がりの度合いとする。
     P=D1・D2           (式1)
 図4の処理の流れでは、接線ベクトルD1とD2の内積Pを注目点Cにおける曲率として算出したが、(式2)を用いて求められる角度θを管腔臓器の長軸方向の曲がりの度合いとしても良い。
     θ=cos-1(D1・D2/(|D1||D2|)) (式2)
 また、図7に示すような注目点Cにおいて中心線511に直交する断面700での管腔臓器内腔の半径R(図8参照)を内積Pに乗じたものを長軸方向の曲がりの度合いとしても良い。管腔臓器の長軸方向の曲がりによる展開画像中の歪の程度は、管腔臓器内腔の半径Rが大きくなるほど大きくなるので、半径Rを乗ずることにより、偽像率をより正確に求めることができる。
 なお、管腔臓器内腔の半径Rを、図9に示すような中心線511上の注目点Cから管腔臓器の内壁までの各角度における距離R1、R2、R3、…RNの平均値として求めても良い。
 本ステップで求められた管腔臓器の長軸方向の曲がりの度合いは、中心線511上の各点と関連付けられて主メモリ3若しくは記憶装置4に記憶される。曲がりの度合いと中心線511上の各点を関連付けて記憶しておくことにより、例えば図10に示すような曲率と管腔臓器の長軸方向の中心線511上の位置である中心線位置とのグラフを作成することができる。
 (ステップS204)
 CPU2は、ステップS202で抽出された管腔臓器領域について、展開画像を作成する。展開画像の作成には、例えば特許文献1に記載の方法を用いれば良い。ここでは展開画像の作成方法について図11を用いて概要を説明する。
 (1)中心線511に直交する断面700において、中心線511上の注目点Cから径方向に複数の仮想光線1100を図11(a)に示すように設定する。この際、仮想光線間の角度は等角度とすることが好ましい。
 (2)ステップS202で抽出した管腔臓器の領域のデータを参照しながら、仮想光線1100上を走査しながら管腔臓器の内壁上の点B1、B2、B3、B4、…、BNを探索する。
 (3)管腔臓器の内壁上の点B1、B2、B3、B4、…、BNにステップS201 で取得したボリューム画像データを対応づける。そして図11(b)に示すような、縦軸を図11(a)に示す角度方向、横軸を管腔臓器の長軸方向の中心線511上の位置である中心線位置とした投影平面上に対応づけられた画像データを投影する。
 以上述べた(1)~(3)の処理を、中心線位置を変えながらCPU2が実行することにより、展開画像が作成される。
 (ステップS205)
 CPU2は、ステップS203で算出した中心線位置毎の偽像率を、ステップS204で作成した展開画像に対応付けて表示させたり、偽像率に応じて展開画像を表示させたりする。表示例について以下説明する。なお、以下の表示例では、管腔臓器の長軸方向の曲がりの度合いの一つである曲率を偽像率としている。
 (表示例1)
 本表示例を図12に示す。本表示例では、表示装置6の画面1202に、展開画像1200とカラーバー1201が表示される。カラーバー1201は中心線位置毎に異なる色が割り付けられたものであり、ステップS203で中心線位置毎に求められた曲率に応じて異なる色が割り付けられる。例えば、曲率が大きい位置では展開画像中の歪が大きくなるので操作者に注意喚起を促すために赤色が、曲率が小さい位置では展開画像中の歪が大きくならないので青色が、曲率が中間的な位置には黄色がそれぞれ割り付けられる。
 以上のように展開画像が表示されることにより、操作者は展開画像上のどの観察部位の曲率が大きいか、すなわち偽像率が高いかを知ることができ、展開画像に基づく画像診断の誤診を低減することができるようになる。
 (表示例2)
 本表示例を図13に示す。本表示例では、表示装置6の画面1202に、部分的に透明度の異なる展開画像1300が表示される。なお、展開画像1300中の点線部は透明度を変えて表示された部分を表している。展開画像1300の透明度は曲率に応じて異なり、展開画像中の歪が大きくなる曲率が大きい位置では高い透明度が設定され、曲率の小さい位置では低い透明度が設定される。
 以上のように展開画像が表示されることにより、操作者は展開画像上の曲率の小さい箇所、すなわち偽像率が低い箇所に集中して観察することができ、展開画像に基づく画像診断の誤診を低減することができるようになる。
 (表示例3)
 本表示例を図14に示す。本表示例では、表示装置6の画面1202に、展開画像1200とグラフ1400が並べて表示される。グラフ1400は図10に示したものと同様であり、曲率と中心線位置との関係を示すものである。
 以上のように展開画像が表示されることにより、操作者は展開画像上のどの観察部位の曲率が大きいか、すなわち偽像率が高いかを知ることができ、展開画像に基づく画像診断の誤診を低減することができるようになる。
 (表示例4)
 表示例1~3では、偽像率である曲率を連続値として扱って展開画像を表示させているが、ステップS205において偽像率である曲率に対して閾値判定を行い、判定結果に基づいて展開画像を表示させても良い。閾値判定の結果に基づいて展開画像を表示させることにより、操作者が観察すべき箇所とそうでない箇所の区分けが容易になる。
 図15は、閾値判定の処理の流れの一例を示す図である。以下、図15の各ステップについて説明する。
 (ステップS151)
 CPU2は閾値を取得する。取得される閾値は、予め記憶装置4に記憶された値でも良いし、図16に示す閾値設定画面1600を用いて操作者が設定した上限値及び/又は下限値であっても良い。
 (ステップS152)
 CPU2はステップS151 で取得した閾値とS203で中心線位置毎に求められた曲率を比較し、曲率が閾値の範囲内にあるかどうかを判定する。判定の結果、曲率が閾値の範囲内にあればステップS153へ進み、範囲内になければ終了となる。
 (ステップS153)
 CPU2は曲率を表示装置6の画面1202に展開画像1200とともに表示させる。本ステップの表示例を図17に示す。本表示例では、展開画像1200とともに曲率表示バー1700が画面1202に表示される。曲率表示バー1700は曲率が閾値の範囲内にある箇所にバーが表示されるものであり、例えば曲率がステップS151で取得された閾値よりも大きい箇所にバーが表示される。
 以上のように展開画像が表示されることにより、操作者は展開画像上のどの観察部位の偽像率が高いかを知ることができ、展開画像に基づく画像診断の誤診を低減することができるようになる。
 (表示例5)
 本表示例を図18に示す。本表示例では、表示装置6の画面1202に、展開画像1200がスクロール表示される。図18ではスクロール方向を左から右としているが、逆方向でも良い。本表示例のスクロール表示では、図15に示した閾値判定により閾値範囲内と判定された箇所のスクロール速度を高速にし、閾値範囲外と判定された箇所のスクロール速度を低速にして、展開画像1200がスクロール表示される。閾値判定の対象には、画面1202の横方向の中央部に表示される中心線位置の曲率を用いるのが、観察のしやすさの点から好ましい。
以上のように展開画像が表示されることにより、操作者は展開画像上の曲率の小さい箇所、すなわち偽像率が低い箇所に集中して観察することができ、展開画像に基づく画像診断の誤診を低減することができるようになる。
 展開画像の表示例について表示例1~5で説明したが、本発明はこれらに限定されるものではなく、被検体の管腔臓器を展開画像として表示する医用画像表示装置において、展開画像上の観察部位の偽像率を操作者に提示する装置であればどのようなものでも良い。
 例えば、表示例2で説明した部分的に透明度の異なる展開画像を表示する際、図15を用いて説明した閾値判定処理の結果に基づき、閾値範囲内の曲率である箇所のみを透明表示にしても良い。
 また、表示例5で説明したスクロール表示する際、曲率の値に応じてスクロール速度を連続的に変化させても良い。
 1 医用画像表示装置、2 CPU、3 主メモリ、4 記憶装置、5 表示メモリ、6 表示装置、7 コントローラ、8 マウス、9 キーボード、10 ネットワークアダプタ、11 システムバス、12 ネットワーク、13 医用画像撮影装置、14 医用画像データベース、301 ボリューム画像データ領域、302 管腔臓器領域、501 アキシャル断面、502 サジタル断面、503 コロナル断面、511 中心線、512 設定点、700 断面、1100 仮想光線、1200 展開画像、1201 カラーバー、1202 画面、1300 展開画像、1400 グラフ、1600 閾値設定画面、1700 曲率表示バー

Claims (14)

  1.  被検体の管腔臓器の展開画像を作成する展開画像作成手段と、前記展開画像を表示する表示手段を備えた医用画像表示装置において、
     前記展開画像中の位置に応じて当該位置の偽像率を算出する偽像率算出手段と、
     前記偽像率を前記展開画像に対応付けて表示させる制御手段と、
    を備えることを特徴とする医用画像表示装置。
  2.  被検体の管腔臓器の展開画像を作成する展開画像作成手段と、前記展開画像を表示する表示手段を備えた医用画像表示装置において、
     前記展開画像中の位置に応じて当該位置の偽像率を算出する偽像率算出手段と、
     前記偽像率に基づいて前記展開画像を表示させる制御手段と、
     を備えることを特徴とする医用画像表示装置。
  3.  請求項1または2に記載の医用画像表示装置において、
     前記偽像率算出手段は前記管腔臓器の長軸方向の曲がり度合いに基づいて前記偽像率を算出することを特徴とする医用画像表示装置。
  4.  請求項3に記載の医用画像表示装置において、
     前記偽像率算出手段は、
     前記管腔臓器の中心線データを取得する中心線データ取得手段と、
     前記中心線上の位置に応じて前記曲がり度合いを算出する曲がり度合い算出手段と、
     を有することを特徴とする医用画像表示装置。
  5.  請求項4に記載の医用画像表示装置において、
     前記曲がり度合い算出手段は前記中心線上の点における接線ベクトルと当該点の近傍であって前記中心線上の点における接線ベクトルとを用いて求めた曲率及び曲率半径、当該点における前記管腔臓器の径のうちの少なくとも1つを用いて曲がり度合いを算出することを特徴とする医用画像表示装置。
  6.  請求項1に記載の医用画像表示装置において、
     前記制御手段は前記偽像率に応じて異なる色を割り付けたカラーバーを作成し、前記カラーバーを展開画像中の位置に合わせて前記表示手段に表示させることを特徴とする医用画像表示装置。
  7.  請求項2に記載の医用画像表示装置において、
     前記制御手段は前記偽像率に基づいて前記展開画像の少なくとも一部の透明度を変えて前記表示手段に表示させることを特徴とする医用画像表示装置。
  8.  請求項2に記載の医用画像表示装置において、
     予め定められたしきい値と前記偽像率を比較する比較手段をさらに備え、
     前記制御手段は前記比較結果に基づき前記展開画像を前記表示手段に表示させることを特徴とする医用画像表示装置。
  9.  請求項8に記載の医用画像表示装置において、
     前記制御手段は前記比較結果に基づき前記展開画像の少なくとも一部の透明度を変えて前記表示手段に表示させることを特徴とする医用画像表示装置。
  10.  請求項8に記載の医用画像表示装置において、
     前記制御手段は前記比較結果に基づき前記展開画像の画面スクロール速度を変えて前記表示手段に表示させることを特徴とする医用画像表示装置。
  11.  請求項1に記載の医用画像表示装置において、
     前記制御手段は前記偽像率に基づいてグラフを作成し、前記グラフを展開画像と並べて前記表示手段に表示させることを特徴とする医用画像表示装置。
  12.  請求項1に記載の医用画像表示装置において、
     予め定められたしきい値と前記偽像率を比較する比較手段をさらに備え、
     前記制御手段は前記比較結果に基づき比較結果表示バーを作成し、前記比較結果表示バーを展開画像中の位置に合わせて前記表示手段に表示させることを特徴とする医用画像表示装置。
  13.  被検体の管腔臓器の展開画像を作成する展開画像作成ステップと、前記展開画像を表示する表示ステップを備えた医用画像表示方法において、
     前記展開画像中の位置に応じて当該位置の偽像率を算出する偽像率算出ステップと、
    前記表示ステップ偽像率を前記展開画像に対応付けて表示させる制御ステップと、
    を備えることを特徴とする医用画像表示方法。
  14.  被検体の管腔臓器の展開画像を作成する展開画像作成ステップと、前記展開画像を表示する表示ステップを備えた医用画像表示方法において、
     前記展開画像中の位置に応じて当該位置の偽像率を算出する偽像率算出ステップと、
     前記偽像率に基づいて前記展開画像を表示させる制御ステップと、
    を備えることを特徴とする医用画像表示方法。
PCT/JP2009/070328 2008-12-05 2009-12-03 医用画像表示装置及び医用画像表示方法 WO2010064687A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/131,062 US8791957B2 (en) 2008-12-05 2009-12-03 Medical image display device and method of medical image display
JP2010541353A JP5536669B2 (ja) 2008-12-05 2009-12-03 医用画像表示装置及び医用画像表示方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008310790 2008-12-05
JP2008-310790 2008-12-05

Publications (1)

Publication Number Publication Date
WO2010064687A1 true WO2010064687A1 (ja) 2010-06-10

Family

ID=42233334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070328 WO2010064687A1 (ja) 2008-12-05 2009-12-03 医用画像表示装置及び医用画像表示方法

Country Status (3)

Country Link
US (1) US8791957B2 (ja)
JP (1) JP5536669B2 (ja)
WO (1) WO2010064687A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012187161A (ja) * 2011-03-09 2012-10-04 Fujifilm Corp 画像処理装置、方法、及びプログラム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5745947B2 (ja) * 2011-06-20 2015-07-08 株式会社日立メディコ 医用画像処理装置、医用画像処理方法
US8803885B1 (en) * 2011-09-07 2014-08-12 Infragistics, Inc. Method for evaluating spline parameters for smooth curve sampling
CN103903298B (zh) * 2012-12-27 2017-03-01 同方威视技术股份有限公司 三维数据处理和识别方法
CN103900503B (zh) 2012-12-27 2016-12-28 清华大学 提取形状特征的方法、安全检查方法以及设备
CN103903297B (zh) 2012-12-27 2016-12-28 同方威视技术股份有限公司 三维数据处理和识别方法
KR101466153B1 (ko) 2013-05-02 2014-11-27 삼성메디슨 주식회사 의료 영상 장치 및 그 제어 방법
US10117563B2 (en) * 2014-01-09 2018-11-06 Gyrus Acmi, Inc. Polyp detection from an image

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002253545A (ja) * 2001-02-28 2002-09-10 Nippon Telegr & Teleph Corp <Ntt> 医用画像読影記録装置と、医用画像読影支援装置と、医用画像読影支援システムと、医用画像読影記録処理用プログラム及びそのプログラムの記録媒体と、医用画像読影支援処理用プログラム及びそのプログラムの記録媒体
JP2004194782A (ja) * 2002-12-17 2004-07-15 Fuji Photo Film Co Ltd 画素欠陥の判別支援方法およびその装置
JP2006302103A (ja) * 2005-04-22 2006-11-02 Ziosoft Inc 展開画像投影方法、展開画像投影プログラム、展開画像投影装置
JP2008100107A (ja) * 2007-12-27 2008-05-01 Ziosoft Inc 展開画像投影方法、展開画像投影プログラム、展開画像投影装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6708055B2 (en) * 1998-08-25 2004-03-16 University Of Florida Method for automated analysis of apical four-chamber images of the heart
US20050148848A1 (en) * 2003-11-03 2005-07-07 Bracco Imaging, S.P.A. Stereo display of tube-like structures and improved techniques therefor ("stereo display")
JP5384473B2 (ja) * 2008-03-21 2014-01-08 株式会社日立メディコ 画像表示装置及び画像表示方法
DE102008028945A1 (de) * 2008-06-18 2009-12-31 Siemens Aktiengesellschaft Verfahren und Visualisierungsmodul zur Visualisierung von Unebenheiten der Innen-Oberfläche eines Hohlorgans, Bildbearbeitungseinrichtung und Tomographiesystem
WO2010024331A1 (ja) * 2008-09-01 2010-03-04 株式会社 日立メディコ 画像処理装置、及び画像処理方法
US8977020B2 (en) * 2010-05-10 2015-03-10 Hitachi Medical Corporation Image processing device and image processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002253545A (ja) * 2001-02-28 2002-09-10 Nippon Telegr & Teleph Corp <Ntt> 医用画像読影記録装置と、医用画像読影支援装置と、医用画像読影支援システムと、医用画像読影記録処理用プログラム及びそのプログラムの記録媒体と、医用画像読影支援処理用プログラム及びそのプログラムの記録媒体
JP2004194782A (ja) * 2002-12-17 2004-07-15 Fuji Photo Film Co Ltd 画素欠陥の判別支援方法およびその装置
JP2006302103A (ja) * 2005-04-22 2006-11-02 Ziosoft Inc 展開画像投影方法、展開画像投影プログラム、展開画像投影装置
JP2008100107A (ja) * 2007-12-27 2008-05-01 Ziosoft Inc 展開画像投影方法、展開画像投影プログラム、展開画像投影装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012187161A (ja) * 2011-03-09 2012-10-04 Fujifilm Corp 画像処理装置、方法、及びプログラム

Also Published As

Publication number Publication date
JPWO2010064687A1 (ja) 2012-05-10
US20110261072A1 (en) 2011-10-27
US8791957B2 (en) 2014-07-29
JP5536669B2 (ja) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5536669B2 (ja) 医用画像表示装置及び医用画像表示方法
US8538113B2 (en) Image processing device and method for processing image to detect lesion candidate region
US8199984B2 (en) System that assists in observing a luminal organ using the structure of the luminal organ
JP4676021B2 (ja) 診断支援装置、診断支援プログラムおよび診断支援方法
US8939892B2 (en) Endoscopic image processing device, method and program
JP5191989B2 (ja) 医用画像表示装置、医用画像表示方法
CN102596003B (zh) 使用内窥镜判定气道直径的系统
US20080219533A1 (en) Apparatus and Method For Correlating First and Second 3D Images of Tubular Object
US9196057B2 (en) Medical image diagnosis apparatus, medical image display apparatus, medical image processing apparatus, and medical image processing program
US7310095B2 (en) Method, computer program product, and device for projecting an exfoliated picture
US8542896B2 (en) Medical image processing device and medical image processing method
JP5301197B2 (ja) 断面画像表示装置および方法ならびにプログラム
US9198603B2 (en) Device, method and program for searching for the shortest path in a tubular structure
CN101744633B (zh) 图像显示装置及x射线ct装置
US20160350911A1 (en) Medical image processing apparatus and image display control method for the same
EP2216751A2 (en) Preventing thoracic bones from being displayed in 3D images
JP2009018005A (ja) ブルズアイマップ作成装置、ブルズアイマップ作成方法、及び画像処理装置
JP4146438B2 (ja) 識別方法
JP5572555B2 (ja) 医用画像表示装置及び方法
JP2007275318A (ja) 画像表示装置、画像表示方法およびそのプログラム
CN113643176A (zh) 一种肋骨显示方法和装置
JP4686279B2 (ja) 医用診断装置及び診断支援装置
JP4463817B2 (ja) 脈管構造の局部画像を自動的に配向する方法及びシステム
JP2009165718A (ja) 医用画像表示装置
JP5624336B2 (ja) 医用画像処理装置、及び医用画像処理プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830453

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010541353

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13131062

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830453

Country of ref document: EP

Kind code of ref document: A1