WO2010064365A1 - 基地局装置、基地局装置の制御方法、処理装置、記憶媒体、及び無線通信システム - Google Patents

基地局装置、基地局装置の制御方法、処理装置、記憶媒体、及び無線通信システム Download PDF

Info

Publication number
WO2010064365A1
WO2010064365A1 PCT/JP2009/006087 JP2009006087W WO2010064365A1 WO 2010064365 A1 WO2010064365 A1 WO 2010064365A1 JP 2009006087 W JP2009006087 W JP 2009006087W WO 2010064365 A1 WO2010064365 A1 WO 2010064365A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
frequency channel
base station
neighboring
secondary cell
Prior art date
Application number
PCT/JP2009/006087
Other languages
English (en)
French (fr)
Inventor
網中洋明
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN200980148131.1A priority Critical patent/CN102227931B/zh
Priority to US13/129,532 priority patent/US8824390B2/en
Priority to JP2010541200A priority patent/JP5594146B2/ja
Priority to EP09830136.9A priority patent/EP2355568B1/en
Publication of WO2010064365A1 publication Critical patent/WO2010064365A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources

Definitions

  • the present invention relates to a base station that can autonomously determine a frequency channel used for wireless communication with a transfer station.
  • DC-HSDPA Dual Cell-HSDPA operation
  • HSDPA High Speed Downlink Packet Access
  • the second serving HS-DSCH cell is referred to as a “secondary serving HS-DSCH cell”.
  • the first serving HS-DSCH cell is simply referred to as a “serving HS-DSCH cell”.
  • the secondary serving HS-DSCH cell is formed subordinately on condition that the serving HS-DSCH cell is generated.
  • a serving HS-DSCH cell may be called a “primary carrier” or a “base carrier”.
  • the secondary serving HS-DSCH cell may be referred to as a “secondary carrier” or an “extended carrier”.
  • the first serving HS-DSCH cell is referred to as a “primary serving HS-DSCH cell” in order to clarify the identification of the two serving HS-DSCH cells.
  • the primary serving HS-DSCH cell is abbreviated as “primary cell”
  • the secondary serving HS-DSCH cell is abbreviated as “secondary cell”.
  • the primary cell and the non-HSDPA cell are collectively referred to as “non-secondary cell”.
  • a non-HSDPA cell is a normal cell generated by a base station that does not support HSDPA and DC-HSDPA.
  • FIG. 13 shows a physical channel used for performing packet communication by DC-HSDPA between a base station (Node B) 91 supporting DC-HSDPA and a mobile station 92.
  • the HS-PDSCH is a downlink physical channel for data transmission that transfers the transport channel HS-DSCH.
  • HS-SCCH is used for transmission of downlink signaling information related to HS-DSCH transmission.
  • HS-DPCCH is an uplink physical channel used for transmitting feedback information regarding HS-DSCH transmission from the mobile station 92 to the base station 91.
  • the feedback information includes an ACK response related to hybrid ARQ (Automatic repeat-request) and CQI (channel quality indication).
  • Uplink DPCH and downlink DPCH are used for transmission and reception of control information related to DC-HSDPA.
  • P-CPICH Primary Common Pilot Channel
  • DPCH Dedicated Physical Channel
  • HS-DPCCH Dedicated Physical Control Channel (uplink) for HS-DSCH
  • HS-DSCH High Speed Downlink Shared Channel
  • HS-PDSCH High Speed Physical Downlink Shared Channel
  • HS-SCCH Shared Control Channel for HS-DSCH
  • P-CCPCH Primary Common Control Physical Channel
  • S-CCPCH Secondary Common Control Physical Channel SCH: Synchronization Channel
  • HS-SCCH Order for instructing the mobile station (UE) from the base station to enable and disable the secondary cell is transmitted to the mobile station using HS-SCCH which is a downlink control channel.
  • RRC Radio Network Controller
  • the small base station is installed, for example, in a home or small office by the owner of the small base station, and is connected to a higher-level device on the core network side using ADSL (Asymmetric Digital Subscriber Line) or an optical fiber line.
  • ADSL Asymmetric Digital Subscriber Line
  • 3GPP defines such a small base station as “Home NodeB” and “Home eNodeB” and is proceeding with standardization work (see Non-Patent Document 4, for example).
  • Home NodeB is a small base station for UMTS (Universal Mobile Telecommunications System), and "Home node B” is a small base station for LTE (Long Term Evolution).
  • UMTS Universal Mobile Telecommunications System
  • Home node B is a small base station for LTE (Long Term Evolution).
  • LTE Long Term Evolution
  • home base station a small base station
  • home cell a cell generated by the home base station
  • radio resources used by the base station for communication with the mobile station are determined in advance.
  • the home base station it is considered that the home base station autonomously selects a radio resource.
  • the radio resource is, for example, a frequency channel in an FDMA (Frequency Division Multiple Access) system and a spread code in a CDMA (Code Division Multiple Access) system.
  • FDMA Frequency Division Multiple Access
  • CDMA Code Division Multiple Access
  • W-CDMA Wideband-CDMA
  • the radio resource is a frequency channel and a scrambling code.
  • the radio resource is a physical resource block.
  • a physical resource block is a basic unit of radio resources used for downlink data transmission from a base station to a mobile station, includes a plurality of OFDM subcarriers in the frequency domain, and includes at least one symbol time in the time domain.
  • a home base station receives a permission list including a plurality of radio resources (specifically, frequency channels and scrambling codes) candidates from a management system connected by an xDSL line or an optical fiber line, It describes that the radio signal reception signal strength and CIR (Carrier-to-Interference-Ratio) are measured for each radio resource candidate included in the permission list. Furthermore, the home base station of Patent Document 1 autonomously selects a radio resource candidate with the minimum received signal strength and uses it for communication with the mobile station. The reason for selecting a radio resource candidate with the minimum reception level is that it is considered that interference with cells formed by neighboring base stations can be minimized.
  • radio resources specifically, frequency channels and scrambling codes
  • the home base station of Patent Literature 1 determines the initial transmission power based on the selected radio resource using the received signal strength and CIR measured previously. Specifically, the initial transmission power is determined so as to provide a sufficient communication service in a desired communication range (for example, within 20 m) in consideration of the interference level from the neighboring base stations.
  • the inventors of the present application examined the frequency channel selection of the home base station when the home base station is installed around the base station supporting DC-HSDPA.
  • DC-HSDPA the priority of communication service provision by the secondary cell is considered to be relatively lower than communication service provision by non-secondary cells (primary cell and non-HSDPA cell).
  • the secondary cell is considered to be temporarily used when high-speed data transfer is necessary. For this reason, it is assumed that the average interference amount which a secondary cell exerts on surrounding cells is lower than that of a non-secondary cell that is always used.
  • the home base station disclosed in Patent Document 1 determines a frequency channel to be assigned to a cell formed by itself based on the reception power of a signal transmitted by radio from a neighboring base station.
  • the neighboring base station uses the secondary cell during the period in which the home base station disclosed in Patent Document 1 is measuring a signal from the neighboring base station.
  • the received power from the peripheral secondary cells in the home base station may be larger than the received power from the peripheral primary cells and non-HSDPA cells.
  • the home base station disclosed in Patent Document 1 is the same as that used in the neighboring primary cell or non-HSDPA cell in order to avoid interference with the neighboring secondary cell that is temporarily used. May be selected as a frequency channel to be assigned to a cell formed by itself. Such an operation reduces the validity of the frequency channel selection of the home base station.
  • the present invention has been made based on the above-described studies, and suppresses interference from a base station that can autonomously select a frequency channel to be used in a cell (self cell) formed by itself to surrounding non-secondary cells.
  • the purpose is to do.
  • the base station apparatus includes a radio communication unit and a frequency channel control unit.
  • the wireless communication unit performs wireless communication with a mobile station.
  • the frequency channel control unit determines a frequency channel used in the own cell formed by the wireless communication unit. Further, the frequency channel control unit identifies whether or not a peripheral cell formed by a peripheral base station is a secondary cell that is formed subordinately on the condition that a primary cell is generated.
  • the frequency channel different from the one used in the above is preferentially selected as the frequency channel used in the own cell.
  • a second aspect of the present invention is a control method for a base station apparatus.
  • the method includes the following steps (a) and (b). (A) identifying whether a neighboring cell formed by a neighboring base station is a secondary cell that is subordinately formed on the condition that a primary cell is generated; and (b) a neighboring non-secondary cell. The step of selecting a frequency channel different from that used as a frequency channel used in the own cell formed by the base station apparatus in preference to the frequency channel used in the non-secondary cells in the vicinity.
  • a third aspect of the present invention is a processing apparatus for base station equipment that performs wireless communication with a mobile station.
  • the processing apparatus uses a process for identifying whether or not a neighboring cell formed by a neighboring base station is a secondary cell that is formed dependently on the condition that a primary cell is generated, and a neighboring non-secondary cell.
  • a process of preferentially selecting a frequency channel different from that used as a frequency channel to be used in the own cell formed by the base station device is executed.
  • a fourth aspect of the present invention is a program for causing a computer to execute control processing related to a base station device that performs wireless communication with a mobile station.
  • the control process includes the following steps (a) and (b). (A) identifying whether a neighboring cell formed by a neighboring base station is a secondary cell that is subordinately formed on the condition that a primary cell is generated; and (b) a neighboring non-secondary cell. A step of selecting a frequency channel different from that used as a frequency channel used in the own cell formed by the base station device in preference to a frequency channel used in the surrounding non-secondary cells.
  • the wireless communication system includes first and second base stations.
  • the first base station includes a radio communication unit and a frequency channel control unit.
  • the wireless communication unit performs wireless communication with the mobile station.
  • the frequency channel control unit identifies whether or not a neighboring cell formed by the second base station is a secondary cell that is formed subordinately on the condition that a primary cell is generated. A frequency channel different from that used is preferentially selected as a frequency channel used in the own cell formed by the wireless communication unit.
  • the base station that can autonomously select the frequency channel of its own cell can effectively suppress the interference exerted on the peripheral non-secondary cells in preference to the interference exerted on the peripheral secondary cells.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system including a home base station 1 according to the present embodiment.
  • the radio communication system according to the present embodiment will be described as an FDD (Frequency Division Duplex) -CDMA, more specifically, a W-CDMA radio communication system.
  • FDD Frequency Division Duplex
  • the home base station 1 is connected to a core network 83 of a mobile communication carrier via a home gateway (home GW) 81, and relays traffic between the mobile station 6-1 and the core network 83.
  • the home base station 1 is used by connecting to a fixed communication line such as an ADSL (Asymmetric Digital Subscriber Line), an optical fiber, a coaxial cable, etc., and is connected to the home GW 81 via an IP (Internet Protocol) communication network or the Internet. Connected.
  • ADSL Asymmetric Digital Subscriber Line
  • IP Internet Protocol
  • the home base station 1 is a base station that supports DC-HSDPA, and generates a primary cell and a secondary cell having different frequency channels.
  • the home base station 1 transmits a common physical channel (P-CPICH, SCH, etc.) for forming a primary cell and a secondary cell, and carries a HS-DSCH in each of two serving HS-DSCH cells ( HS-PDSCH).
  • the home base station 1 determines the frequency channel of the primary cell in consideration of the frequency channel used in the neighboring cells. More specifically, the home base station 1 generates as little overlap as possible between the frequency channel assigned to its primary cell and the frequency channel used in the surrounding non-secondary cells (primary cell and non-HSDPA cell). To be determined. In other words, the home base station 1 uses a frequency channel in which a neighboring cell is not used or a frequency channel used in a neighboring secondary cell in a neighboring non-secondary cell (a neighboring primary cell and a non-HSDPA cell). It is assigned to its own primary cell with priority over existing frequency channels. In order to perform such frequency channel assignment, the home base station 1 identifies attributes of neighboring cells. A specific example of the procedure in which the home base station 1 determines the frequency channel for the primary cell will be described later.
  • the peripheral base station 7 generates a peripheral cell and communicates with the mobile station 6-2.
  • the neighboring cell is an upper layer macro cell formed so as to cover the home cell (primary cell and secondary cell) generated by the home base station 1.
  • the peripheral base station 7 is connected to the core network 83 via a radio network controller (RNC: Radio Network Controller) 82 and relays traffic between the mobile station 6-2 and the core network 83.
  • RNC Radio Network Controller
  • the peripheral base station 7 may be a home base station that forms a home cell.
  • the neighboring base station 7 is a base station that supports DC-HSDPA.
  • the neighboring base station 7 may be a base station that supports only single-cell HSDPA operation.
  • the neighboring base station 7 may be a base station that does not support HSDPA and DC-HSDPA and forms a non-HSDPA cell.
  • the home GW 81 performs information transfer between the home base station 1 and the core network 83.
  • the RNC 82 performs communication control and information transfer between the mobile station 6-2 and the core network 83 existing in the peripheral cell formed by the subordinate peripheral base station 7.
  • FIG. 2 is a block diagram illustrating a configuration example of the home base station 1.
  • the wireless communication unit 11 receives an uplink signal transmitted from the mobile station 6-1 via the antenna 10.
  • the received data processing unit 12 restores received data by performing various processes such as despreading of received uplink signals, RAKE combining, deinterleaving, channel decoding, and error correction.
  • the obtained reception data is transferred to the home GW 81 via the wired communication unit 14.
  • the home base station has an RNC function for autonomous radio resource control by the home base station. Therefore, the home base station 1 may have an RNC function.
  • the home base station 1 has the RNC function, if the received data obtained by the received data processing unit 12 is a location registration request or a radio channel establishment request of the mobile station 6-1, to execute these controls
  • the received data is sent to an RNC function unit (not shown) of the home base station 1.
  • the transmission data processing unit 13 acquires transmission data transmitted to the mobile station 6-1 from the wired communication unit 14, and performs error correction coding, rate matching, interleaving, and the like to generate a transport channel. Further, the transmission data processing unit 13 adds a control information such as a TPC (Transmit Power Control) bit to the data sequence of the transport channel to generate a radio frame. Further, the transmission data processing unit 13 performs a spreading process and symbol mapping to generate a transmission symbol string.
  • the radio communication unit 11 performs a process such as orthogonal modulation, frequency conversion, and signal amplification on the transmission symbol sequence to generate a downlink signal, and transmits this to the mobile station 6-1.
  • the frequency channel control unit 15 determines a frequency channel to be assigned to the primary cell and the secondary cell.
  • the mobile station mode receiving unit 16 receives a radio signal transmitted from the neighboring base station 7 and measures the signal quality.
  • the signal quality to be measured may be a physical quantity that changes according to the attenuation of the radio signal transmitted from the neighboring base station 7.
  • the mobile station mode receiving unit 16 may measure the received power (RSCP: Received Signal Code Power) of the common pilot channel P-CPICH from neighboring cells.
  • RSCP Received Signal Code Power
  • the reception circuit of the mobile station mode reception unit 16 may also be used as the reception circuit of the wireless communication unit 11.
  • FIG. 3 is a flowchart showing the overall procedure for determining a frequency channel.
  • the mobile station mode reception unit 16 performs signal reception for at least one frequency channel. As described above, in order to obtain the signal quality of the signal transmitted from the neighboring cell, the mobile station mode receiving unit 16 measures the received power (RSCP) of the P-CPICH transmitted from the neighboring base station 7 and the like. Just do it.
  • the mobile station mode receiving unit 16 may receive a predetermined physical channel (for example, P-CCPCH) in order to identify neighboring cells described later.
  • P-CCPCH predetermined physical channel
  • the frequency channel control unit 15 identifies cell attributes of neighboring cells that use the measured frequency channel. Specifically, the frequency channel control unit 15 may identify whether or not the neighboring cell is a secondary cell formed for DC-HSDPA.
  • the procedure for identifying the cell attribute will be described with reference to the flowcharts of FIGS.
  • FIG. 4 is a flowchart showing an example of the cell attribute identification procedure.
  • the frequency channel control unit 15 determines whether a neighboring cell is detected in the measured frequency channel. This determination may be made based on whether or not the common pilot channel (P-CPICH) is received in the frequency channel for which the measurement is performed. For example, when the received power (RSCP) of P-CPICH is below a predetermined threshold (for example, ⁇ 100 dBm), the frequency channel control unit 15 may determine that the frequency channel is unused.
  • P-CPICH common pilot channel
  • the frequency channel control unit 15 determines whether or not the detected neighboring cell is a secondary cell (step S202). In addition, the said determination can also be paraphrased as determining whether a surrounding cell is a non-secondary cell (a primary cell or a non-HSDPA cell).
  • the first determination method is a method of identifying a secondary cell based on whether or not a predetermined physical channel is transmitted. This method can be used, for example, when a broadcast channel (P-CCPCH) is transmitted in a non-secondary cell (primary cell or non-HSDPA cell) and no P-CCPCH is transmitted in a secondary cell.
  • P-CCPCH is a downlink common physical channel that transfers a transport channel (BCH: Broadcast channel) that transmits broadcast information.
  • FIG. 5A is a flowchart showing an execution procedure of the first determination method.
  • the frequency channel control unit 15 determines whether or not a broadcast channel (P-CCPCH) is received on the measured frequency channel. When P-CCPCH is received, it determines with the surrounding cell using the said frequency channel being a non-secondary cell (step S302). On the other hand, when P-CCPCH is not received, the frequency channel control unit 15 determines that the neighboring cell using the frequency channel is a secondary cell (step S303).
  • P-CCPCH broadcast channel
  • the second determination method is a method for identifying a secondary cell based on the content of predetermined information included in a received signal from a neighboring cell. This method can be used when there is a difference in the content of transmission information between the secondary cell and the non-secondary cell.
  • the access restriction information (Cell Barred) included in the broadcast information is set to “valid value” indicating “access restricted” in the secondary cell, and “invalid value” indicating “no access restriction” in the non-secondary cell.
  • the frequency channel control unit 15 may determine whether or not it is a secondary cell with reference to the access restriction information.
  • access restriction information Cell Barred
  • RRC Radio Resource Control
  • FIG. 5B is a flowchart showing an execution procedure of the second determination method.
  • the frequency channel control unit 15 determines the value of the access restriction information received on the measured frequency channel. When the access restriction information indicates an invalid value, it is determined that the neighboring cell that uses the frequency channel is a non-secondary cell (step S402). On the other hand, when the access restriction information indicates a valid value, the frequency channel control unit 15 determines that the neighboring cell that uses the frequency channel is a secondary cell (step S403).
  • identification information that can identify the secondary cell may be included in the broadcast information transmitted through the broadcast channel (P-CCPCH).
  • the frequency channel control unit 15 may determine the cell attribute with reference to the identification information included in the broadcast information.
  • the frequency channel control unit 15 stores the identification result of the cell attribute in step S102.
  • 6A and 6B are tables showing examples of stored data of frequency channel measurement information including cell attribute identification results.
  • the table in FIG. 6A includes the measurement results of the three frequency channels F1 to F3.
  • “usability status” indicates a temporary determination result as to whether or not each of the frequency channels F1 to F3 is usable for the primary cell.
  • the frequency channel control unit 15 may set the availability status of the corresponding frequency channel to “available” when the neighboring cell is not detected and when it is determined that the neighboring cell is the secondary cell. Further, when it is determined that the neighboring cell is a non-secondary cell, the frequency channel control unit 15 may set the availability status of the corresponding frequency channel to “unusable”.
  • the status of the frequency channel F1 is set to “available” because it is determined that the RSCP is not used by the neighboring cells because RSCP is equal to or less than a predetermined threshold (for example, -100 dBm) . Further, the status of the frequency channel F2 is set to “available” because it is determined that it is used by the secondary cell. On the other hand, the status of the frequency channel F3 is set to “unusable” because it is determined that it is used by a non-secondary cell.
  • a predetermined threshold for example, -100 dBm
  • the meaning of the information held in the table of FIG. 6B is the same as that of FIG. 6A.
  • the statuses of all frequency channels F1 to F3 are set to “unusable” because they are used by non-secondary cells.
  • the frequency channel control unit 15 displays the availability status of the frequency channel when the RSCP is equal to or less than a predetermined threshold (for example, ⁇ 85 dBm). It may be “available”.
  • a predetermined threshold for example, ⁇ 85 dBm
  • the frequency channel control unit 15 determines a frequency channel to be allocated to the primary cell. The determination of the frequency channel to be assigned to the primary cell is performed using the identification result of the cell attribute in step S102. Specifically, the frequency channel control unit 15 prioritizes frequency channels that are not used by neighboring cells and frequency channels that are used by neighboring secondary cells over frequency channels that are used by neighboring non-secondary cells. To its primary cell.
  • FIG. 7 is a flowchart showing an example of the processing procedure of step S103.
  • the flowchart of FIG. 7 shows a procedure for determining the frequency channel for the primary cell with reference to the frequency channel measurement information as shown in FIGS. 6A and 6B.
  • step S501 the frequency channel measurement information is referred to, and it is determined whether or not there is a frequency channel whose use status is labeled as “available”.
  • the frequency channel control unit 15 selects the frequency channel with the smallest RSCP from the frequency channels labeled “available” as the primary cell. (Step S502). For example, when the frequency channel measurement information shown in FIG. 6A is obtained, the frequency channel F1 is selected for the primary cell of the home base station 1.
  • the frequency channel control unit 15 selects the frequency channel with the smallest RSCP from the frequency channels labeled “unavailable” as the primary cell. (Step S503). For example, when the frequency channel measurement information shown in FIG. 6B is obtained, the frequency channel F3 is selected for the primary cell of the home base station 1.
  • FIG. 8 is a sequence diagram showing the interaction between the peripheral base station 7, the home base station 1, the mobile station 6-1, and the mobile station 6-2 when determining a frequency channel to be assigned to the primary cell of the home base station 1. It is.
  • FIG. 8 shows a case where the channel configuration is different between the primary cell and the secondary cell. Specifically, the broadcast-use common physical channel P-CCPCH is transmitted in the primary cell, but the P-CCPCH is not transmitted in the secondary cell.
  • the neighboring base station 1 transmits a physical channel group related to P-CPICH, P-CCPCH, and HSDPA of the primary cell.
  • the physical channel group indicated by “HSDPA @ PRIMARY” in the figure includes downlink HS-SCCH, downlink HS-PDSCH, and uplink HS-DPCCH.
  • the neighboring base station 1 transmits a physical channel group related to P-CPICH and HSDPA of the secondary cell.
  • the physical channel group indicated by “HSDPA @ SECONDARY” in the figure includes downlink HS-SCCH and downlink HS-PDSCH. Note that the order of describing steps S601 to S605 is convenient, and these physical channels are transmitted in accordance with a predetermined timing relationship based on the SCH.
  • step S606 the home base station 1 receives a radio signal from a neighboring cell and performs quality measurement.
  • Step S606 corresponds to step S101 in FIG.
  • steps S607 and S608 the home base station 1 identifies attributes of neighboring cells and determines a frequency channel to be allocated to its own primary cell.
  • steps S607 and S608 correspond to steps S102 and S103 in FIG.
  • step S609 the home base station 1 sets up a primary cell and a secondary cell.
  • steps S610 to S614 the home base station 1 performs data transmission (HS-DSCH transfer) by the primary cell and the secondary cell.
  • FIGS. 9A, 9C and 9E are conceptual diagrams showing how the frequency channels of the primary cells of the four home base stations 1 (HNB1 to HNB4) are sequentially determined.
  • HNB1 to HNB4 home base stations 1
  • FIGB, 9D, and 9F are graphs showing the received power of HNB1 to HNB4.
  • FIG. 9A shows a case where HNB2 is newly arranged in an environment where HNB1 is arranged.
  • HNB1 uses F1 as a primary cell and F2 as a secondary cell.
  • FIG. 9B is a graph showing received power (RSCP) in HNB 2 of P-CPICH transmitted by HNB 1 and the identification result of the secondary cell.
  • HNB2 uses F2 for its primary cell. This is because both F1 and F2 are used by HNB1 and F2 is used for the secondary cell.
  • FIG. 9C shows a case where HNB3 is newly arranged in an environment where HNB1 and HNB2 are arranged.
  • HNB1 uses F1 as a primary cell and F2 as a secondary cell.
  • HNB2 uses F1 for a secondary cell and uses F2 for a primary cell.
  • the received power in HNB3 is as shown in FIG. 9D.
  • the HNB 3 uses F2 as its primary cell. Both F1 and F2 are used for neighboring primary cells, but the reason why RSCP is relatively small is that F2.
  • FIG. 9E shows a case where HNB4 is newly arranged in an environment where HNB1, HNB2 and HNB3 are arranged.
  • HNB1 uses F1 as a primary cell and F2 as a secondary cell.
  • HNB2 and HNB3 use F1 as a secondary cell and F2 as a primary cell.
  • the received power in HNB4 is as shown in FIG. 9F.
  • the HNB 4 uses F1 for its primary cell. Both F1 and F2 are used for neighboring primary cells, but the reason why RSCP is relatively small is that F1.
  • the home base station 1 identifies the attributes of neighboring cells and preferentially assigns a frequency channel different from that used in neighboring non-secondary cells to its own primary cell. assign. For this reason, the probability that the same frequency channel as the surrounding non-secondary cell is selected as the frequency channel of the primary cell of the home base station 1 decreases. Therefore, the home base station 1 can effectively suppress the interference to the peripheral primary cell and the non-HSDPA cell in preference to the interference to the peripheral secondary cell.
  • the home base station 1 may determine the frequency channel to be allocated to the secondary cell, similarly to the determination of the frequency channel to be allocated to the primary cell. Further, in the present embodiment, the home base station 1 has been described as a base station that supports DC-HSDPA. However, the home base station 1 may be a base station that supports only single cell operation HSDPA. The home base station 1 may be a base station that does not support both HSDPA and DC-HSDPA. In this case, the home base station 1 may determine a frequency channel to be allocated to its own non-HSDPA cell according to the above-described primary cell frequency channel determination procedure.
  • the allocation frequency channel determination process performed by the frequency channel control unit 15 described above may be realized using a semiconductor processing device such as an ASIC or DSP.
  • the allocation frequency channel determination process causes a computer such as a microprocessor to execute a control program describing the processing procedure described with reference to FIGS. 3 to 7 (except for step S101 by the mobile station mode reception unit 16). May be realized.
  • This control program can be stored in various types of storage media, and can be transmitted via a communication medium.
  • the storage medium includes, for example, a flexible disk, a hard disk, a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD, a ROM cartridge, a RAM memory cartridge with battery backup, a flash memory cartridge, a nonvolatile RAM cartridge, and the like.
  • the communication medium includes a wired communication medium such as a telephone line, a wireless communication medium such as a microwave line, and the Internet.
  • the home base station 2 also executes the frequency channel determination process of the primary cell similar to the above-described first embodiment of the present invention during operation.
  • the home base station 2 once determines the frequency channel of the primary cell and the secondary cell and starts operation, when the home base station 2 discovers another frequency channel having a better condition than the frequency channel currently used for the primary cell, Switch the frequency channel for a cell.
  • the home base station 2 monitors neighboring cells during operation when a frequency channel overlapping with neighboring non-secondary cells (primary cell or non-HSDPA cell) is assigned to its own primary cell. The monitoring of neighboring cells includes measurements of other frequency channels that are different from the current primary cell.
  • the home base station 2 finds a frequency channel that is not used in the surrounding non-secondary cells (that is, a frequency channel with good conditions)
  • the home base station 2 switches the frequency channel for the primary cell.
  • FIG. 10 is a block diagram illustrating a configuration example of the home base station 2.
  • the functions and operations of the antenna 10, the wireless communication unit 11, the reception data processing unit 12, the transmission data processing unit 13, the wired communication unit 14, and the mobile station mode reception unit 16 in FIG. 10 have already been described in the first embodiment of the invention. Similar to the corresponding components described.
  • the frequency channel control unit 25 determines a frequency channel to be assigned to the primary cell and the secondary cell in the same procedure as the frequency channel control unit 15 already described before the dual cell operation is started. Furthermore, the frequency channel control unit 25 acquires measurement information from the mobile station mode receiving unit 16 even after communication with the mobile station 6-1 is started, and searches for a frequency channel that is not used for a non-secondary cell. When a frequency channel that is not used for a non-secondary cell is found, the frequency channel control unit 25 assigns the found frequency channel to the primary cell.
  • FIG. 11 is a flowchart showing a processing procedure of the home base station 5 regarding reselection of the frequency channel of the primary cell.
  • the process of the flowchart shown in FIG. 11 may be executed when the same frequency channel used in the surrounding non-secondary cells is used in the primary cell of the home base station 2 in an overlapping manner.
  • the reselection of the frequency channel of the primary cell may be executed periodically at a predetermined time period.
  • step S701 the frequency channel control unit 25 determines whether the secondary cell is being used.
  • the frequency channel control unit 25 stops the HS-DSCH transfer in the secondary cell, and notifies the mobile station 6-1 of the stop of the secondary cell (step S702).
  • the notification of the secondary cell stop to the mobile station 6-1 may be performed by transmitting a command such as RRC MESSAGE (Deactivation) or HS-SCCH ORDER (Deactivation).
  • steps S101 to S103 subsequent to step S702 the same processing as in steps S101 to S103 in FIG. 2 described above may be performed. However, measurement of the frequency channel currently assigned to the primary cell may be omitted.
  • step S103 When a frequency channel that is not used by a neighboring cell or a frequency channel that is used by a neighboring secondary cell is found, switching of the frequency channel for the primary cell is determined in step S103.
  • the frequency channel control unit 25 When switching of the frequency channel for the primary cell is determined, the frequency channel control unit 25 notifies the mobile station 6-1 of the change of the frequency channel for the primary cell (steps S703 and S704).
  • the notification may be performed, for example, by transmitting RRC (MESSAGE (Reconfiguration).
  • the frequency channel control unit 25 When a frequency channel that is not used in the non-secondary cell is not found, the frequency channel control unit 25 notifies the mobile station 6-1 to resume the secondary cell (steps S703 and S705).
  • the notification may be performed by transmitting a command such as RRC ⁇ MESSAGE (Activation) or HS-SCCH ORDER (Activation).
  • FIG. 12 is a sequence diagram showing the interaction between the peripheral base station 7, the home base station 2, the mobile station 6-1, and the mobile station 6-2.
  • the home base station 2 stops the secondary cell by transmitting HS-SCCH ORDER (Deactivation) to the mobile station 6-1.
  • Steps S601 to S608 in FIG. 12 are the same as the corresponding steps S601 to S608 in FIG.
  • step S802 the home base station 2 notifies the mobile station 6-1 of the change of the frequency channel for the primary cell by transmitting RRC MESSAGE (Reconfiguration). As described above, when the frequency channel for the primary cell is not changed, the home base station 2 may notify the mobile station 6-1 of the resumption of the secondary cell.
  • RRC MESSAGE Reconfiguration
  • Steps S610 to S614 in FIG. 12 are the same as the corresponding steps S610 to S614 in FIG. 8 described above.
  • the home base station 2 once determines the frequency channel of the primary cell and the secondary cell, and after starting communication with the mobile station 6-1, the frequency is continuously increased. Monitor channel usage. For this reason, the home base station 2 can dynamically respond to changes in the usage status of the frequency channel, and can more effectively suppress interference with the surrounding primary cells and non-HSDPA cells.
  • the home base station 2 may be a base station supporting only HSDPA operated in a single cell.
  • the home base station 2 may be a base station that does not support both HSDPA and DC-HSDPA.
  • the frequency channel determination process performed by the frequency channel control unit 25 may be realized using an ASIC, DSP, microprocessor, or the like.
  • At least part of the frequency channel determination processing by the frequency channel controllers 15 and 25 described in the first and second embodiments of the invention may be executed by a device (for example, RNC) arranged in the home GW 81 or the core network 83.
  • a device for example, RNC
  • each process included in the procedure for determining the frequency channel for the primary cell described as being performed by the home base stations 1 and 2 is arbitrary between the home base stations 1 and 2 and a higher-level device to which the base base stations 1 and 2 are connected. Can be shared.
  • the present invention is applied to a base station supporting W-CDMA DC-HSDPA.
  • the application destination of the present invention is not limited to a base station supporting W-CDMA DC-HSDPA. That is, the present invention can be applied to any base station that can autonomously determine the frequency channel used for wireless communication with the transfer station regardless of whether the downlink multiple access method is CDMA or not. Is possible.
  • each physical channel is identified by a difference in orthogonal code (channelization code).
  • each physical channel is identified by a difference in tone (subcarrier).
  • the home base stations 1 and 2 determine whether or not the neighboring cell is a secondary cell.
  • the determination of whether or not a neighboring cell is a secondary cell is only one specific example of the priority determination of neighboring cells.
  • an aspect of the present invention includes a base station device described below.
  • the base station apparatus according to an aspect of the present invention includes a radio communication unit that performs radio communication with a mobile station, and a frequency channel control that determines a frequency channel used in the own cell formed by the radio communication unit. Part.
  • the frequency channel control unit determines a priority of at least one neighboring cell formed by at least one neighboring base station, and a frequency used in a cell having a lower priority among the at least one neighboring cell.
  • a channel is selected as a frequency channel used in the own cell in preference to a frequency channel used in a cell having a high priority.
  • the said base station apparatus should just determine the priority of a periphery cell based on the alerting

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 自身が形成するセル(自セル)で使用する周波数チャネルを自律的に選択可能な基地局から周辺のプライマリセルおよび非HSDPAセルに及ぶ干渉を抑制する。基地局1は、無線通信部11及び周波数チャネル制御部15を有する。無線通信部11は、移動局との間で無線通信を行う。周波数チャネル制御部15は、無線通信部11が形成する自セルで使用される周波数チャネルを決定する。さらに、周波数チャネル制御部15は、周辺の基地局によって形成される周辺のセルがプライマリセルの生成を条件として従属的に形成されるセカンダリセルであるか否かを識別し、周辺の非セカンダリセルで使用されているのと異なる周波数チャネルを優先的に自セルで使用する周波数チャネルとして選択する。

Description

基地局装置、基地局装置の制御方法、処理装置、記憶媒体、及び無線通信システム
 本発明は、移送局との無線通信に使用する周波数チャネルを自律的に決定することが可能な基地局に関する。
 3GPP(3rd Generation Partnership Project)では、セル端の移動局の通信速度を高速化する技術の1つとして、既存のHSDPA(High Speed Downlink Packet Access)を用いたDC-HSDPA(Dual Cell-HSDPA operation)が検討されている。DC-HSDPAは、同じ周波数バンドに含まれる2つの周波数チャネル(各々5MHz)を同時に使用することで、下り方向の高速化を図る。以下では、3GPPにおいて検討中のDC-HSDPAの概要について説明する。なお、現在提案されているDC-HSDPAの技術内容の詳細については、以下の非特許文献1~3を参照されたい。
 DC-HSDPAでは、第2のサービングHS-DSCHセルは、"セカンダリ・サービングHS-DSCHセル"と呼ばれる。また、第1のサービングHS-DSCHセルは、単に"サービングHS-DSCHセル"と呼ばれている。セカンダリ・サービングHS-DSCHセルは、サービングHS-DSCHセルの生成を条件として従属的に形成される。なお、サービングHS-DSCHセルは、"プライマリキャリア"又は"ベースキャリア"と呼ばれる場合がある。また、セカンダリ・サービングHS-DSCHセルは、"セカンダリキャリア"又は"エクステンディッドキャリア"と呼ばれる場合がある。
 本明細書では、2つのサービングHS-DSCHセルの識別を明確にするため、第1のサービングHS-DSCHセルを"プライマリ・サービングHS-DSCHセル"と呼ぶ。また、以下では、プライマリ・サービングHS-DSCHセルを略して "プライマリセル"と呼び、セカンダリ・サービングHS-DSCHセルを略して"セカンダリセル"と呼ぶ。また、セカンダリセルとその他のセルを区別するため、プライマリセル及び非HSDPAセルを総称して、"非セカンダリセル"と呼ぶ。非HSDPAセルとは、HSDPA及びDC-HSDPAをサポートしない基地局によって生成される通常のセルである。
 図13は、DC-HSDPAをサポートする基地局(Node B)91と移動局92との間で、DC-HSDPAによるパケット通信を行うために使用される物理チャネルを示している。HS-PDSCHは、トランスポートチャネルHS-DSCHを転送するデータ送信用のダウンリンク物理チャネルである。HS-SCCHは、HS-DSCH転送に関するダウンリンクのシグナリング情報の送信に使用される。HS-DPCCHは、HS-DSCH転送に関するフィードバック情報を移動局92から基地局91に送信するために使用されるアップリンク物理チャネルである。当該フィードバック情報には、ハイブリッドARQ(Automatic repeat-request)に関するACK応答及びCQI(channel Quality Indication)が含まれる。アップリンクDPCH及びダウンリンクDPCHは、DC-HSDPAに関する制御情報の送受信に使用される。なお、プライマリセルの生成に必要な他の共通物理チャネル(P-CPICH、SCH、P-CCPCH、S-CCPCHなど)及びセカンダリセルの生成に必要な他の共通物理チャネル(P-CPICH、SCHなど)も使用されることはもちろんである。省略表記された物理チャネル及びトランスポートチャネルの正式名称を以下に示す。
 P-CPICH:Primary Common Pilot Channel
 DPCH:Dedicated Physical Channel
 HS-DPCCH:Dedicated Physical Control Channel (uplink) for HS-DSCH
 HS-DSCH:High Speed Downlink Shared Channel
 HS-PDSCH:High Speed Physical Downlink Shared Channel
 HS-SCCH:Shared Control Channel for HS-DSCH
 P-CCPCH:Primary Common Control Physical Channel
 S-CCPCH:Secondary Common Control Physical Channel
 SCH:Synchronisation Channel
 DC-HSDPAをサポートする基地局において2つのサービングHS-DSCHセルが設定されている場合、セカンダリセルの有効化(activation)と無効化(deactivation)は、基地局によって切り替えられる。セカンダリセルの有効化および無効化を基地局から移動局(UE)に指示するためのコマンド(HS-SCCH Order)は、下り制御チャネルであるHS-SCCHを用いて移動局に送信される。また、セカンダリセルの有効化および無効化は、基地局又は無線ネットワーク制御装置(RNC:Radio Network Controller)から移動局にRRC messageを送信することによっても変更可能である。RRC MESSAGEのメッセージ構造等の詳細については、3GPP TS 25.331 V8.4.0 (2008-09) "Radio Resource Control (RRC)"を参照されたい。
 一方、携帯電話の普及による屋内での音声通信やデータ通信の需要の増大に伴い、利用者宅内、オフィス内などに設置可能な小型基地局の開発が進められている。この小型基地局は、例えば小型基地局の所有者によって宅内や小規模オフィス等に設置され、ADSL(Asymmetric Digital Subscriber Line)や光ファイバ回線を用いてコアネットワーク側の上位装置と接続される。3GPPは、このような小型基地局を"Home NodeB"及び"Home eNodeB"と定義して標準化作業を進めている(例えば非特許文献4を参照)。"Home NodeB"はUMTS(Universal Mobile Telecommunications System)向けの小型基地局であり、"Home eNodeB"はLTE(Long Term Evolution)向けの小型基地局である。本明細書では、このような小型基地局を"ホーム基地局"と呼び、ホーム基地局によって生成されるセルを"ホームセル"と呼ぶ。
 既存の移動体通信網(セルラ通信網)で使用される基地局では、基地局が移動局との通信に使用する無線リソースが予め定められている。これに対して、ホーム基地局に関しては、ホーム基地局が自律的に無線リソースの選択を行なうことが検討されている。なお、無線リソースとは、例えば、FDMA(Frequency Division Multiple Access)システムであれば周波数チャネルであり、CDMA(Code Division Multiple Access)システムであれば拡散コードである。3GPP UMTS(W-CDMA:Wideband-CDMA)であれば、無線リソースは、周波数チャネル及びスクランブリングコードである。また、アップリンクにSC-FDMA(Single Carrier FDMA)を採用し、ダウンリンクにOFDMA(Orthogonal FDMA)を採用する3GPP LTEであれば、無線リソースは物理リソースブロックである。物理リソースブロックとは、基地局から移動局への下りデータ伝送に使用する無線リソースの基本単位であり、周波数領域で複数のOFDMサブキャリアを含み、時間領域で少なくとも1つのシンボル時間を含む。
 特許文献1には、ホーム基地局が、xDSL回線又は光ファイバ回線等で接続された管理システムから複数の無線リソース(具体的には周波数チャネル及びスクランブリングコード)候補を含む許可リストを受信し、当該許可リストに含まれる無線リソース候補の各々に関して無線信号の受信信号強度、CIR(Carrier to Interference Ratio)を測定することが記載されている。さらに、特許文献1のホーム基地局は、受信信号強度が最小の無線リソース候補を自律的に選択して移動局との通信に用いる。受信レベルが最小となる無線リソース候補を選択する理由は、周辺の基地局によって形成されるセルとの干渉を最小化できると考えられるためである。また、特許文献1のホーム基地局は、選択した無線リソースによる初期送信電力を、先に測定した受信信号強度及びCIRを用いて決定する。具体的には、初期送信電量は、周辺基地局からの干渉レベルを考慮して、所望の通信範囲(例えば20m以内)で十分な通信サービスを提供できるように決定される。
英国特許出願公開第2428937号明細書(14ページ8行目~15ページ21行目)
3GPP, R1-084029, 25.211 CR0257R3 (Rel-8, B) "Introduction of Dual-Cell HSDPA Operation on Adjacent Carriers", 2008年10月 3GPP, R1-084030, 25.212 CR0267R3 (Rel-8, B) "Introduction of Dual-Cell HSDPA Operation on Adjacent Carriers", 2008年10月 3GPP, R1-084031, 25.214 CR0497R4 (Rel-8, B) "Introduction of Dual-Cell HSDPA Operation on Adjacent Carriers", 2008年10月 3GPP, TR25.820 V8.2.0, "3G Home NodeB Study Item Technical Report", 2008年9月
 本願の発明者等は、DC-HSDPAをサポートする基地局の周囲にホーム基地局が設置される場合におけるホーム基地局の周波数チャネル選択に関して検討を行った。DC-HSDPAを使用する場合、セカンダリセルによる通信サービス提供の優先度は、非セカンダリセル(プライマリセル及び非HSDPAセル)による通信サービス提供に比べて相対的に低いと考えられる。また、セカンダリセルは、高速データ転送が必要である場合に一時的に使用されると考えられる。このため、セカンダリセルが周辺のセルに及ぼす平均干渉量は、常時使用される非セカンダリセルに比べて低いと想定される。
 特許文献1に開示されたホーム基地局は、周辺基地局から無線送信される信号の受信電力に基づいて自身が形成するセルに割り当てる周波数チャネルを決定する。ここで、特許文献1のホーム基地局が周辺基地局からの信号を測定している期間中に、周辺基地局がセカンダリセルを使用している場合を考える。この場合、ホーム基地局における周辺のセカンダリセルからの受信電力が、周辺のプライマリセルや非HSDPAセルからの受信電力に比べて大きくなることがある。このため、特許文献1に開示されたホーム基地局は、一時的に使用されている周辺のセカンダリセルとの干渉を避けるために、周辺のプライマリセル又は非HSDPAセルで使用されているのと同一の周波数チャネルを自身が形成するセルに割り当てる周波数チャネルとして選んでしまうおそれがある。このような動作は、ホーム基地局の周波数チャネル選択の妥当性を低下させる。
 本発明は上述した検討に基づいてなされたものであって、自身が形成するセル(自セル)で使用する周波数チャネルを自律的に選択可能な基地局から周辺の非セカンダリセルに及ぶ干渉を抑制することを目的とする。
 本発明の第1の態様にかかる基地局装置は、無線通信部及び周波数チャネル制御部を有する。前記無線通信部は、移動局との間で無線通信を行う。前記周波数チャネル制御部は、前記無線通信部が形成する自セルで使用される周波数チャネルを決定する。さらに、前記周波数チャネル制御部は、周辺の基地局によって形成される周辺のセルがプライマリセルの生成を条件として従属的に形成されるセカンダリセルであるか否かを識別し、周辺の非セカンダリセルで使用されているのと異なる周波数チャネルを優先的に前記自セルで使用する周波数チャネルとして選択する。
 本発明の第2の態様は、基地局装置の制御方法である。当該方法は、以下のステップ(a)及び(b)を含む。
(a)周辺の基地局によって形成される周辺のセルがプライマリセルの生成を条件として従属的に形成されるセカンダリセルであるか否かを識別するステップ、及び
(b)周辺の非セカンダリセルで使用されているのと異なる周波数チャネルを前記周辺の非セカンダリセルで使用されている周波数チャネルより優先して前記基地局装置が形成する自セルで使用される周波数チャネルとして選択するステップ。
 本発明の第3の態様は、移動局との間で無線通信を行う基地局機器用の処理装置である。当該処理装置は、周辺の基地局によって形成される周辺のセルがプライマリセルの生成を条件として従属的に形成されるセカンダリセルであるか否かを識別する処理と、周辺の非セカンダリセルで使用されているのと異なる周波数チャネルを優先的に前記基地局機器が形成する自セルで使用する周波数チャネルとして選択する処理を実行する。
 本発明の第4の態様は、移動局との間で無線通信を行う基地局機器に関する制御処理をコンピュータに実行させるためのプログラムである。前記制御処理は、以下のステップ(a)及び(b)を含む。
(a)周辺の基地局によって形成される周辺のセルがプライマリセルの生成を条件として従属的に形成されるセカンダリセルであるか否かを識別するステップ、及び
(b)周辺の非セカンダリセルで使用されているのと異なる周波数チャネルを前記周辺の非セカンダリセルで使用されている周波数チャネルより優先して前記基地局機器が形成する自セルで使用される周波数チャネルとして選択するステップ。
 本発明の第5の態様にかかる無線通信システムは、第1及び第2の基地局を含む。前記第1の基地局は、無線通信部及び周波数チャネル制御部を有する。無線通信部は、移動局との間で無線通信を行う。周波数チャネル制御部は、前記第2の基地局によって形成される周辺のセルがプライマリセルの生成を条件として従属的に形成されるセカンダリセルであるか否かを識別し、周辺の非セカンダリセルで使用されているのと異なる周波数チャネルを前記無線通信部が形成する自セルで使用する周波数チャネルとして優先的に選択する。
 本発明によれば、自セルの周波数チャネルを自律的に選択可能な基地局が、周辺の非セカンダリセルに及ぼす干渉を、周辺のセカンダリセルに及ぼす干渉より優先して効果的に抑制できる。
発明の実施の形態1にかかるホーム基地局を含む無線通信システムの構成図である。 発明の実施の形態1にかかるホーム基地局の構成例を示すブロック図である。 発明の実施の形態1にかかるホーム基地局によるプライマリセルに割り当てる周波数を決定する処理の全体的な手順を示すフローチャートである。 セル属性の識別処理の具体例を示すフローチャートである。 セカンダリセルであるか否かを判定する処理の具体例を示すフローチャートである。 セカンダリセルであるか否かを判定する処理の具体例を示すフローチャートである。 周波数チャネル測定情報の具体例を示す図である。 周波数チャネル測定情報の具体例を示す図である。 周波数チャネル測定情報に基づいてプライマリセルへの割り当て周波数を決定する処理の具体例を示すフローチャートである。 発明の実施の形態1におけるプライマリセル周波数チャネルの決定手順の一例を示すシーケンス図である。 プライマリセルの周波数チャネルが順次決定される様子を示す概念図である。 ホーム基地局の受信電力を示すグラフである。 プライマリセルの周波数チャネルが順次決定される様子を示す概念図である。 ホーム基地局の受信電力を示すグラフである。 プライマリセルの周波数チャネルが順次決定される様子を示す概念図である。 ホーム基地局の受信電力を示すグラフである。 発明の実施の形態2にかかるホーム基地局の構成例を示すブロック図である。 発明の実施の形態2にかかるホーム基地局によるプライマリセルに割り当てる周波数を決定する処理の全体的な手順を示すフローチャートである。 発明の実施の形態2におけるプライマリセル周波数チャネルの決定手順の一例を示すシーケンス図である。 DC-HSDPAによるパケット通信を行うために使用される物理チャネルを示す図である。
 以下では、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。各図面において、同一要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。
<発明の実施の形態1>
 図1は、本実施の形態にかかるホーム基地局1を含む無線通信システムの構成例を示す図である。なお、本実施の形態にかかる無線通信システムは、FDD(Frequency division Duplex)-CDMA、より具体的にはW-CDMA方式の無線通信システムであるとして説明を行う。
 ホーム基地局1は、ホームゲートウェイ(ホームGW)81を介して移動体通信事業者のコアネットワーク83に接続されており、移動局6-1とコアネットワーク83との間でトラフィックを中継する。ホーム基地局1は、例えば、ADSL(Asymmetric Digital Subscriber Line)、光ファイバ、同軸ケーブル等の固定通信回線に接続して使用され、IP(Internet Protocol)通信網やインターネット等を経由してホームGW81に接続される。
 ホーム基地局1は、DC-HSDPAをサポートする基地局であり、周波数チャネルが互いに異なるプライマリセル及びセカンダリセルを生成する。ホーム基地局1は、プライマリセル及びセカンダリセルを形成するための共通物理チャネル(P-CPICH、SCH等)を送信するとともに、2つのサービングHS-DSCHセルの各々においてHS-DSCHを運ぶ物理チャネル(HS-PDSCH)を送信する。
 また、ホーム基地局1は、プライマリセルの周波数チャネルを、周辺セルで使用されている周波数チャネルを考慮して決定する。より具体的に述べると、ホーム基地局1は、自身のプライマリセルに割り当てる周波数チャネルを、周辺の非セカンダリセル(プライマリセル及び非HSDPAセル)で使用されている周波数チャネルとの重複が極力発生しないように決定する。言い換えると、ホーム基地局1は、周辺セルが未使用の周波数チャネル又は周辺のセカンダリセルで使用されている周波数チャネルを、周辺の非セカンダリセル(周辺のプライマリセル及び非HSDPAセル)で使用されている周波数チャネルより優先して自身のプライマリセルに割り当てる。このような周波数チャネル割り当てを行うために、ホーム基地局1は、周辺セルの属性を識別する。なお、ホーム基地局1がプライマリセル用の周波数チャネルを決定する手順の具体例については後述する。
 周辺基地局7は、周辺セルを生成し、移動局6-2と通信を行う。図1の例では、周辺セルは、ホーム基地局1が生成するホームセル(プライマリセル及びセカンダリセル)を覆うように形成される上位階層のマクロセルである。周辺基地局7は、無線ネットワーク制御装置(RNC:Radio Network Controller)82を介してコアネットワーク83に接続されており、移動局6-2とコアネットワーク83との間でトラフィックを中継する。なお、周辺基地局7は、ホームセルを形成するホーム基地局であってもよい。また、以下では、周辺基地局7がDC-HSDPAをサポートする基地局であるとして説明を行うが、周辺基地局7は、シングルセル運用のHSDPAのみをサポートする基地局であってもよい。また、周辺基地局7は、HSDPA及びDC-HSDPAをサポートせず、非HSDPAセルを形成する基地局であってもよい。
 ホームGW81は、ホーム基地局1とコアネットワーク83との間の情報転送を行う。RNC82は、配下の周辺基地局7が形成する周辺セル内に存在する移動局6-2とコアネットワーク83との間の通信制御および情報転送を行う。
 続いて以下では、ホーム基地局1の構成例と、プライマリセル用の周波数チャネルの決定手順の具体例について順に説明を行う。図2は、ホーム基地局1の構成例を示すブロック図である。図2において、無線通信部11は、移動局6-1から送信されたアップリンク信号をアンテナ10を介して受信する。
 受信データ処理部12は、受信されたアップリンク信号の逆拡散、RAKE合成、デインタリービング、チャネル復号、エラー訂正等の各処理を行って受信データを復元する。得られた受信データは、有線通信部14を経由してホームGW81に転送される。なお、ホーム基地局による自律的な無線リソース制御のために、ホーム基地局にRNC機能を持たせることが検討されている。よって、ホーム基地局1にRNC機能を持たせてもよい。ホーム基地局1にRNC機能を持たせる場合、受信データ処理部12によって得られた受信データが移動局6-1の位置登録要求や無線チャネル確立要求であれば、これらの制御を実行するために当該受信データは、ホーム基地局1が有するRNC機能部(不図示)に送られる。
 送信データ処理部13は、移動局6-1に向けて送信される送信データを有線通信部14から取得し、誤り訂正符号化、レートマッチング、インタリービング等を行なってトランスポートチャネルを生成する。さらに、送信データ処理部13は、トランスポートチャネルのデータ系列にTPC(Transmit Power Control)ビット等の制御情報を付加して無線フレームを生成する。また、送信データ処理部13は、拡散処理、シンボルマッピングを行って送信シンボル列を生成する。無線通信部11は、送信シンボル列の直交変調、周波数変換、信号増幅等の各処理を行ってダウンリンク信号を生成し、これを移動局6-1に送信する。
 周波数チャネル制御部15は、プライマリセル及びセカンダリセルに割り当てる周波数チャネルを決定する。
 移動局モード受信部16は、周辺基地局7から送信される無線信号を受信し、信号品質を測定する。測定する信号品質は、周辺基地局7から送信された無線信号の減衰に応じて変化する物理量であればよい。例えば、移動局モード受信部16は、周辺セルからの共通パイロットチャネルP-CPICHの受信電力(RSCP:Received Signal Code Power)を測定すればよい。なお、移動局モード受信部16の受信回路は、無線通信部11の受信回路と兼用されてもよい。
 次に、ホーム基地局1がプライマリセルに割り当てる周波数チャネルを決定する手順の具体例について説明する。図3は、周波数チャネルの決定手順の全体を示すフローチャートである。ステップS101では、移動局モード受信部16は、少なくとも1つの周波数チャネルについて信号受信を行う。上述したように、周辺セルから送信される信号の信号品質を得るために、移動局モード受信部16は、周辺基地局7から送信されるP-CPICHの受信電力(RSCP)の測定等を行えばよい。また、後述する周辺セルの識別のために、移動局モード受信部16は、所定の物理チャネル(例えばP-CCPCH)の受信を行えばよい。
 ステップS102では、周波数チャネル制御部15は、測定された周波数チャネルを使用している周辺セルのセル属性を識別する。具体的には、周波数チャネル制御部15は、周辺セルがDC-HSDPA用に形成されたセカンダリセルであるか否かを識別すればよい。ここで、セル属性を識別する手順の具体例を図4~6のフローチャートを用いて説明する。
 図4は、セル属性識別手順の一例を示すフローチャートである。ステップS201では、周波数チャネル制御部15は、測定を行った周波数チャネルにおいて周辺セルが検出されたか否かを判定する。当該判定は、測定を行った周波数チャネルにおいて共通パイロットチャネル(P-CPICH)が受信されたか否かによって行えばよい。例えば、P-CPICHの受信電力(RSCP)が所定の閾値(例えば-100 dBm)を下回る場合に、周波数チャネル制御部15は、当該周波数チャネルが未使用であると判定すればよい。
 測定を行った周波数チャネルで周辺セルが検出された場合(ステップS201でYES)、周波数チャネル制御部15は、検出された周辺セルがセカンダリセルであるか否かを判定する(ステップS202)。なお、当該判定は、周辺セルが非セカンダリセル(プライマリセル又は非HSDPAセル)であるか否かを判定すると言い換えることもできる。
 ここで、周辺セルがセカンダリセルであるか否かを判定するための具体的方法を2つ紹介する。第1の判定方法は、予め定められた物理チャネルが送信されているか否かによってセカンダリセルを識別する方法である。この方法は、例えば、非セカンダリセル(プライマリセル又は非HSDPAセル)で報知チャネル(P-CCPCH)が送信され、セカンダリセルではP-CCPCHが送信されない場合に使用可能である。なお、P-CCPCHは、報知情報を送信するトランスポートチャネル(BCH:Broadcast channel)を転送するダウンリンク共通物理チャネルである。
 図5Aは、第1の判定方法の実行手順を示すフローチャートである。ステップS301では、周波数チャネル制御部15は、測定を行った周波数チャネルで報知チャネル(P-CCPCH)が受信されたか否かを判定する。P-CCPCHが受信された場合、当該周波数チャネルを使用する周辺セルが非セカンダリセルであると判定する(ステップS302)。一方、P-CCPCHが受信されなかった場合、周波数チャネル制御部15は、当該周波数チャネルを使用する周辺セルがセカンダリセルであると判定する(ステップS303)。
 次に、周辺セルがセカンダリセルであるか否かを判定する第2の方法を説明する。第2の判定方法は、周辺セルからの受信信号に含まれる予め定められた情報の内容によってセカンダリセルを識別する方法である。この方法は、セカンダリセルと非セカンダリセルとで送信情報の内容に相違がある場合に利用可能である。例えば、報知情報に含まれるアクセス制限情報(Cell Barred)が、セカンダリセルでは"アクセス制限有り"を示す"有効値"に設定され、非セカンダリセルでは"アクセス制限無し"を示す"無効値"に設定される場合に、第2の方法が利用できる。この場合、周波数チャネル制御部15は、アクセス制限情報を参照してセカンダリセルであるか否かを判定すればよい。なお、アクセス制限情報(Cell Barred)の詳細については、3GPP TS 25.331 V8.4.0 (2008-09) "Radio Resource Control (RRC)"を参照されたい。
 図5Bは、第2の判定方法の実行手順を示すフローチャートである。ステップS401では、周波数チャネル制御部15は、測定を行った周波数チャネルで受信されたアクセス制限情報の値を判定する。アクセス制限情報が無効値を示す場合、当該周波数チャネルを使用する周辺セルが非セカンダリセルであると判定する(ステップS402)。一方、アクセス制限情報が有効値を示す場合、周波数チャネル制御部15は、当該周波数チャネルを使用する周辺セルがセカンダリセルであると判定する(ステップS403)。
 なお上述した判定方法は一例に過ぎない。例えば、報知チャネル(P-CCPCH)で送信される報知情報にセカンダリセルを識別可能な識別情報を含めてもよい。この場合、周波数チャネル制御部15は、報知情報に含まれる識別情報を参照して、セル属性を判定すればよい。
 図3に戻って説明を続ける。ステップS103で使用するために、周波数チャネル制御部15は、ステップS102でのセル属性の識別結果を保存する。図6A及び6Bは、セル属性の識別結果を含む周波数チャネル測定情報の保存データ例を示すテーブルである。図6Aのテーブルは、3つの周波数チャネルF1~F3の測定結果を含む。
 図6Aにおいて"使用可否ステータス"は、周波数チャネルF1~F3の各々が、プライマリセルに使用可能であるか否かの一時的な判定結果を示している。周波数チャネル制御部15は、周辺セルが検出されなかった場合および周辺セルがセカンダリセルであると判定した場合に、該当する周波数チャネルの使用可否ステータスを"使用可能"にセットすればよい。また、周波数チャネル制御部15は、周辺セルが非セカンダリセルであると判定した場合に、該当する周波数チャネルの使用可否ステータスを"使用不可"にセットすればよい。
 図6Aでは、周波数チャネルF1のステータスは、RSCPが所定の閾値(例えば -100 dBm)以下であることから、周辺セルによって使用されていないと判定されたために、 "使用可能"にセットされている。また、周波数チャネルF2のステータスは、セカンダリセルによって使用されていると判定されたために"使用可能"にセットされている。これらに対して周波数チャネルF3のステータスは、非セカンダリセルによって使用されていると判定されたために"使用不可"にセットされている。
 図6Bのテーブルで保持されている情報の意味は、図6Aと同様である。図6Bでは、全ての周波数チャネルF1~F3のステータスは、非セカンダリセルによって使用されているために"使用不可"にセットされている。
 なお、周波数チャネル制御部15は、周波数チャネルが非セカンダリセルによって使用されている場合であっても、RSCPが所定の閾値(例えば -85dBm)以下である場合に、当該周波数チャネルの使用可否ステータスを"使用可能"としてもよい。
 図3のステップS103では、周波数チャネル制御部15は、プライマリセルに割り当てる周波数チャネルを決定する。プライマリセルに割り当てる周波数チャネルの決定は、ステップS102でのセル属性の識別結果を用いて行われる。具体的には、周波数チャネル制御部15は、周辺セルによって使用されていない周波数チャネルおよび周辺のセカンダリセルによって使用されている周波数チャネルを、周辺の非セカンダリセルによって使用されている周波数チャネルより優先的に自身のプライマリセルに割り当てる。
 図7は、ステップS103の処理手順の一例を示すフローチャートである。図7のフローチャートは、図6A及び6Bに示したような周波数チャネル測定情報を参照して、プライマリセル用の周波数チャネルを決定する手順を示している。
 ステップS501では、周波数チャネル測定情報を参照し、使用可否ステータスが"使用可能"とラベルされた周波数チャネルが存在するか否かを判定する。"使用可能"とラベルされた周波数チャネルが存在する場合(ステップS501でYES)、周波数チャネル制御部15は、"使用可能"とラベルされた周波数チャネルのうち、RSCPが最小の周波数チャネルをプライマリセル用に選択する(ステップS502)。例えば、図6Aに示す周波数チャネル測定情報が得られた場合、周波数チャネルF1がホーム基地局1のプライマリセル用として選択される。
 "使用可能"とラベルされた周波数チャネルが存在しない場合(ステップS501でNO)、周波数チャネル制御部15は、"使用不可"とラベルされた周波数チャネルのうち、RSCPが最小の周波数チャネルをプライマリセル用に選択する(ステップS503)。例えば、図6Bに示す周波数チャネル測定情報が得られた場合、周波数チャネルF3がホーム基地局1のプライマリセル用として選択される。
 図8は、ホーム基地局1のプライマリセルに割り当てる周波数チャネルを決定する際の、周辺基地局7、ホーム基地局1、移動局6-1、及び移動局6-2の相互作用を示すシーケンス図である。なお、図8は、プライマリセルとセカンダリセルとでチャネル構成が異なる場合を示している。具体的には、プライマリセルでは報知用の共通物理チャネルP-CCPCHが送信されるが、セカンダリセルではP-CCPCHが送信されない。
 ステップS601~S603では、周辺基地局1は、プライマリセルのP-CPICH、P-CCPCH、及びHSDPAに関する物理チャネル群を送信する。図中の「HSDPA @ PRIMARY」によって示される物理チャネル群には、ダウンリンクHS-SCCH、ダウンリンクHS-PDSCH、及びアップリンクHS-DPCCHが含まれる。ステップS604及びS605では、周辺基地局1は、セカンダリセルのP-CPICH及びHSDPAに関する物理チャネル群を送信する。図中の「HSDPA @ SECONDARY」によって示される物理チャネル群には、ダウンリンクHS-SCCHおよびダウンリンクHS-PDSCHが含まれる。なお、ステップS601~S605の記載順序は便宜的なものであり、これらの物理チャネルはSCHを基準とする所定のタイミング関係に従って送信される。
 ステップS606では、ホーム基地局1は、周辺セルからの無線信号を受信し、品質測定を行う。ステップS606は、図3のステップS101に対応する。ステップS607及びS608では、ホーム基地局1は、周辺セルの属性を識別し、自身のプライマリセルに割り当てる周波数チャネルを決定する。ステップS607及びS608は、図3のステップS102及びS103に対応する。
 ステップS609では、ホーム基地局1がプライマリセル及びセカンダリセルのセットアップを行う。ステップS610~S614では、ホーム基地局1は、プライマリセル及びセカンダリセルによるデータ送信(HS-DSCH転送)を行う。
 本実施の形態に関する説明の最後として、以下では、互いに隣接して配置される複数のホーム基地局1がプライマリセルの周波数チャネルを順番に決定していく動作を紹介する。図9A、9C及び9Eは、4つのホーム基地局1(HNB1~HNB4)のプライマリセルの周波数チャネルが順次決定される様子を示す概念図である。なお、ここでは、HNB1~HNB4は、2つの周波数チャネルF1及びF2のみが使用可能であるとする。図9B、9D及び9Fは、HNB1~HNB4の受信電力を示すグラフである。
 図9Aは、HNB1が配置されている環境に、HNB2が新たに配置された場合を示している。HNB1は、F1をプライマリセルに使用し、F2をセカンダリセルに使用している。図9Bは、HNB1によって送信されたP-CPICHのHNB2における受信電力(RSCP)と、セカンダリセルの識別結果を示すグラフである。HNB2は、F2を自身のプライマリセルに使用する。F1及びF2が共にHNB1によって使用されており、かつF2がセカンダリセルに使用されているためである。
 図9Cは、HNB1及びHNB2が配置されている環境に、HNB3が新たに配置された場合を示している。HNB1は、F1をプライマリセルに使用し、F2をセカンダリセルに使用している。また、HNB2は、F1をセカンダリセルに使用し、F2をプライマリセルに使用している。HNB3における受信電力は、図9Dに示す通りである。この場合、HNB3は、F2を自身のプライマリセルに使用する。F1及びF2ともに周辺のプライマリセルに使用されているが、相対的にRSCPが小さいのはF2であるためである。
 図9Eは、HNB1、HNB2及びHNB3が配置されている環境に、HNB4が新たに配置された場合を示している。HNB1は、F1をプライマリセルに使用し、F2をセカンダリセルに使用している。また、HNB2及びHNB3は、F1をセカンダリセルに使用し、F2をプライマリセルに使用している。HNB4における受信電力は、図9Fに示す通りである。この場合、HNB4は、F1を自身のプライマリセルに使用する。F1及びF2ともに周辺のプライマリセルに使用されているが、相対的にRSCPが小さいのはF1であるためである。
 上述したように、本実施の形態にかかるホーム基地局1は、周辺セルの属性を識別し、周辺の非セカンダリセルで使用されているのとは異なる周波数チャネルを優先的に自身のプライマリセルに割り当てる。このため、周辺の非セカンダリセルと同一の周波数チャネルが、ホーム基地局1のプライマリセルの周波数チャネルとして選択される確率が減少する。よって、ホーム基地局1は、周辺のプライマリセルおよび非HSDPAセルへの干渉を、周辺のセカンダリセルへの干渉より優先して効果的に抑制できる。
 なお、ホーム基地局1は、プライマリセルに割り当てる周波数チャネルの決定と同様に、セカンダリセルに割り当てる周波数チャネルの決定を行ってもよい。また、本実施の形態では、ホーム基地局1は、DC-HSDPAをサポートする基地局であるとして説明を行った。しかしながら、ホーム基地局1は、シングルセル運用のHSDPAのみをサポートする基地局であってもよい。また、ホーム基地局1は、HSDPA及びDC-HSDPAを共にサポートしていない基地局であってもよい。この場合、ホーム基地局1は、上述したプライマリセルの周波数チャネル決定手順に従って、自身の非HSDPAセルに割り当てる周波数チャネルを決定すればよい。
 上述した周波数チャネル制御部15が行う割り当て周波数チャネルの決定処理は、ASIC、DSP等の半導体処理装置を用いて実現してもよい。また、割り当て周波数チャネルの決定処理は、図3~7を用いて説明した処理手順(ただし、移動局モード受信部16によるステップS101を除く)を記述した制御プログラムをマイクロプロセッサ等のコンピュータに実行させることによって実現してもよい。この制御プログラムは、様々な種類の記憶媒体に格納することが可能であり、また、通信媒体を介して伝達されることが可能である。ここで、記憶媒体には、例えば、フレキシブルディスク、ハードディスク、磁気ディスク、光磁気ディスク、CD-ROM、DVD、ROMカートリッジ、バッテリバックアップ付きRAMメモリカートリッジ、フラッシュメモリカートリッジ、不揮発性RAMカートリッジ等が含まれる。また、通信媒体には、電話回線等の有線通信媒体、マイクロ波回線等の無線通信媒体等が含まれ、インターネットも含まれる。
<発明の実施の形態2>
 本実施の形態にかかるホーム基地局2は、上述した発明の実施の形態1と同様のプライマリセルの周波数チャネル決定処理を運用中にも実行する。ホーム基地局2は、いったんプライマリセル及びセカンダリセルの周波数チャネルを決定して運用を開始した後に、現在プライマリセルに使用している周波数チャネルよりも条件の良い他の周波数チャネルを発見した場合、プライマリセル用の周波数チャネルを切り替える。ホーム基地局2は、周辺の非セカンダリセル(プライマリセル又は非HSDPAセル)と重複する周波数チャネルを自身のプライマリセルに割り当てている場合、運用中に周辺セルの監視を行う。周辺セルの監視は、現在のプライマリセルとは異なる他の周波数チャネルの測定を含む。ホーム基地局2は、周辺の非セカンダリセルに使用されていない周波数チャネル(つまり条件の良い周波数チャネル)を発見した場合に、プライマリセル用の周波数チャネルを切り替える。
 図10は、ホーム基地局2の構成例を示すブロック図である。図10中のアンテナ10、無線通信部11、受信データ処理部12、送信データ処理部13、有線通信部14、および移動局モード受信部16の機能及び動作は、発明の実施の形態1で既に説明した対応する構成要素と同様である。
 周波数チャネル制御部25は、デュアルセル運用の開始前に、すでに説明した周波数チャネル制御部15と同様の手順でプライマリセル及びセカンダリセルに割り当てる周波数チャネルを決定する。さらに、周波数チャネル制御部25は、移動局6-1との通信開始後においても、移動局モード受信部16による測定情報を取得し、非セカンダリセルに使用されていない周波数チャネルを探索する。非セカンダリセルに使用されていない周波数チャネルを発見した場合、周波数チャネル制御部25は、この発見された周波数チャネルをプライマリセルに割り当てる。
 続いて以下では、プライマリセルの周波数チャネルの再選択を行う具体的な手順について図11及び12を参照して説明する。図11は、プライマリセルの周波数チャネルの再選択に関するホーム基地局5の処理手順を示すフローチャートである。図11に示すフローチャートの処理は、周辺の非セカンダリセルで使用されているのと同じ周波数チャネルをホーム基地局2のプライマリセルでも重複して使用している場合に実行すればよい。プライマリセルの周波数チャネルの再選択は、所定の時間周期で定期的に実行すればよい。
 ステップS701では、周波数チャネル制御部25は、セカンダリセルを使用中であるか否かを判定する。セカンダリセルを使用中である場合、周波数チャネル制御部25は、セカンダリセルでのHS-DSCH転送を停止し、セカンダリセルの停止を移動局6-1に通知する(ステップS702)。セカンダリセル停止の移動局6-1への通知は、RRC MESSAGE(Deactivation)又はHS-SCCH ORDER(Deactivation)等のコマンドを送信することによって行えばよい。
 ステップS702に引き続くステップS101~S103では、上述した図2の対応するステップS101~S103と同様の処理を行えばよい。ただし、現在プライマリセルに割り当てている周波数チャネルの測定は省略してもよい。
 周辺セルによって使用されていない周波数チャネル又は周辺のセカンダリセルによって使用されている周波数チャネルが発見された場合、ステップS103では、プライマリセル用の周波数チャネルの切り替えが決定される。プライマリセル用の周波数チャネルの切り替えが決定された場合、周波数チャネル制御部25は、プライマリセル用の周波数チャネルの変更を移動局6-1に通知する(ステップS703及びS704)。当該通知は、例えば、RRC MESSAGE(Reconfiguration)を送信することによって行えばよい。
 非セカンダリセルで使用されていない周波数チャネルが発見されなかった場合、周波数チャネル制御部25は、セカンダリセルの再開を移動局6-1に通知する(ステップS703及びS705)。当該通知は、例えば、RRC MESSAGE(Activation)又はHS-SCCH ORDER(Activation)等のコマンドを送信することによって行えばよい。
 図12は、周辺基地局7、ホーム基地局2、移動局6-1及び移動局6-2の相互作用を示すシーケンス図である。ステップS801では、ホーム基地局2は、HS-SCCH ORDER(Deactivation)を移動局6-1に送信することで、セカンダリセルを停止する。図12のステップS601~S608は、上述した図8の対応するステップS601~S608と同様である。
 ステップS802では、ホーム基地局2は、RRC MESSAGE(Reconfiguration)を送信することによって、プライマリセル用の周波数チャネルの変更を移動局6-1に通知する。なお、プライマリセル用の周波数チャネルの変更を行わない場合、ホーム基地局2がセカンダリセルの再開を移動局6-1に通知すればよいことは、上述した通りである。
 図12のステップS610~S614は、上述した図8の対応するステップS610~S614と同様である。
 以上に述べたように、本実施の形態にかかるホーム基地局2は、プライマリセル及びセカンダリセルの周波数チャネルをいったん決定し、移動局6-1との通信を開始した後にも、継続的に周波数チャネルの使用状況を監視する。このため、ホーム基地局2は、周波数チャネルの使用状況の変化に動的に対応でき、周辺のプライマリセルおよび非HSDPAセルへの干渉を一層効果的に抑制できる。
 なお、発明の実施の形態1で述べたのと同様に、ホーム基地局2は、シングルセル運用のHSDPAのみをサポートする基地局であってもよい。また、ホーム基地局2は、HSDPA及びDC-HSDPAを共にサポートしていない基地局であってもよい。
 また、発明の実施の形態1で述べたのと同様に、周波数チャネル制御部25が行う周波数チャネルの決定処理は、ASIC、DSP、マイクロプロセッサ等を用いて実現してもよい。
<その他の実施の形態>
 発明の実施の形態1及び2で述べた周波数チャネル制御部15及び25による周波数チャネルの決定処理の少なくとも一部は、ホームGW81又はコアネットワーク83に配置された装置(例えばRNC)によって実行されてもよい。つまり、ホーム基地局1及び2が行うものとして説明したプライマリセル用の周波数チャネルの決定手順に含まれる各処理は、ホーム基地局1及び2とこれが接続される上位側の装置との間で任意に分担することが可能である。
 また、上述した発明の実施の形態1及び2では、W-CDMA方式のDC-HSDPAをサポートする基地局に本発明を適用する場合について説明した。しかしながら、本発明の適用先は、W-CDMA方式のDC-HSDPAをサポートする基地局に限定されるものではない。つまり、移送局との無線通信に使用する周波数チャネルを自律的に決定することが可能な基地局であれば、下りチャネルの多重アクセス方式がCDMAであるか否かにかかわらず、本発明は適用可能である。上述したW-CDMA方式のDC-HSDPAであれば、各物理チャネルは直交コード(チャネライゼイションコード)の違いによって識別される。一方、WiMAX及びLTEのように下りチャネルの多重アクセス方式にOFDMA(Orthogonal Frequency Division Multiplexing Access)を採用する基地局であれば、各物理チャネルはトーン(サブキャリア)の違いによって識別される。
 また、上述した発明の実施の形態1及び2では、ホーム基地局1及び2は、周辺セルがセカンダリセルであるか否かを判別する。しかしながら、周辺セルがセカンダリセルであるか否かの判別は、周辺セルの優先度判別の一具体例に過ぎない。つまり、本発明の一態様には以下に述べる基地局装置が含まれる。すなわち、本発明の一態様に係る基地局装置は、移動局との間で無線通信を行う無線通信部と、前記無線通信部が形成する自セルで使用される周波数チャネルを決定する周波数チャネル制御部とを有する。さらに、前記周波数チャネル制御部は、少なくとも1つの周辺基地局によって形成される少なくとも1つの周辺セルの優先度を判別し、前記少なくとも1つの周辺セルのうち優先度の低いセルで使用されている周波数チャネルを、優先度の高いセルで使用されている周波数チャネルより優先して前記自セルで使用する周波数チャネルに選択する。また、当該基地局装置は、例えば、前記少なくとも1つの周辺セルから送信される無線信号に含まれる報知情報に基づいて、周辺セルの優先度を判別すればよい。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2008年12月3日に出願された日本出願特願2008-308709を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1、2 ホーム基地局
6-1、6-2 移動局
7 周辺基地局
10 アンテナ
11 無線通信部
12 受信データ処理部
13 送信データ処理部
14 有線通信部
15、25 周波数チャネル制御部
16 移動局モード受信部
81 ホームゲートウェイ(ホームGW)
82 無線ネットワーク制御装置(RNC)
83 コアネットワーク

Claims (29)

  1.  移動局との間で無線通信を行う無線通信手段と、
     前記無線通信手段が形成する自セルで使用される周波数チャネルを決定する周波数チャネル制御手段とを備え、
     前記周波数チャネル制御手段は、
     周辺の基地局によって形成される周辺のセルがプライマリセルの生成を条件として従属的に形成されるセカンダリセルであるか否かを識別し、
     周辺の非セカンダリセルで使用されているのと異なる周波数チャネルを優先的に前記自セルで使用する周波数チャネルとして選択する、
    基地局装置。
  2.  前記周波数チャネル制御手段は、周辺のセカンダリセルで使用されている周波数チャネルを前記周辺の非セカンダリセルで使用されている周波数チャネルより優先して前記自セルで使用する周波数チャネルとして選択する、請求項1に記載の基地局装置。
  3.  前記周波数チャネル制御手段は、前記周辺のセルからの受信信号に予め定められた物理チャネルが含まれるか否かによって、前記周辺のセルが前記セカンダリセルであるか否かを識別する、請求項1又は2に記載の基地局装置。
  4.  前記セカンダリセルは報知チャネルを送信しないセルであり、前記非セカンダリセルは前記報知チャネルを送信するセルであって、
     前記周波数チャネル制御手段は、前記報知チャネルを送信していない周辺のセルで使用されている周波数チャネルを、前記報知チャネルを送信している周辺のセルで使用されている周波数チャネルより優先して前記自セルで使用する周波数チャネルとして選択する、請求項1~3のいずれか1項に記載の基地局装置。
  5.  前記周波数チャネル制御手段は、前記周辺のセルから送信される無線信号に含まれる報知情報に基づいて、前記周辺のセルが前記セカンダリセルであるか否かを識別する、請求項1又は2に記載の基地局装置。
  6.  前記報知情報は、移動局のセルへのアクセス制限に関するアクセス制限情報を含み、
     前記周波数チャネル制御手段は、前記アクセス制限情報が無効値を示すか否かによって、前記周辺のセルが前記セカンダリセルであるか否かを識別する、請求項5に記載の基地局装置。
  7.  前記セカンダリセルによって送信される前記アクセス制限情報は有効値を示し、前記非セカンダリセルによって送信される前記アクセス制限情報は無効値を示し、
     前記周波数チャネル制御手段は、前記有効値を示す前記アクセス制限情報を送信する周辺のセルで使用されている周波数チャネルを、前記無効値を示す前記アクセス制限情報を送信する周辺のセルで使用されている周波数チャネルより優先して前記自セルで使用する周波数チャネルとして選択する、請求項6に記載の基地局装置。
  8.  前記無線通信手段は、第1のセル及び前記第1のセルとは異なる周波数チャネルを用いて前記第1のセルの形成を条件として従属的に形成される第2のセルを形成し、
     前記自セルは、少なくとも前記第1のセルを含む、請求項1~7のいずれか1項に記載の基地局装置。
  9.  前記基地局装置は、前記第1及び第2のセルで同時に高速ダウンリンクパケットアクセス(HSDPA)の提供を行うデュアルセルHSDPAオペレーション(DC-HSDPA)をサポートし、
     前記第1のセルは、サービングHS-DSCHセルであり、
     前記第2のセルは、セカンダリ・サービングHS-DSCHセルである、
    請求項8に記載の基地局装置。
  10.  前記第1及び第2のセルは、互いに異なる無線通信方式を用いて形成される、請求項8又は9に記載の基地局装置。
  11.  前記第1及び第2のセルの各々に用いられる無線通信方式は、W-CDMA、モバイルWiMAX、およびLTE(Long Term Evolution)のいずれかである、請求項8~10のいずれか1項に記載の基地局装置。
  12.  前記周波数チャネル制御手段は、前記周辺のセルとして複数のセカンダリセルが存在する場合に、前記複数のセカンダリセルのうち優先度が最も低いセルで使用されている周波数チャネルを前記自セルで使用する周波数として選択する、請求項1~11のいずれか1項に記載の基地局装置。
  13.  基地局装置の制御方法であって、
     周辺の基地局によって形成される周辺のセルがプライマリセルの生成を条件として従属的に形成されるセカンダリセルであるか否かを識別するステップ(a)と、
     周辺の非セカンダリセルで使用されているのと異なる周波数チャネルを前記周辺の非セカンダリセルで使用されている周波数チャネルより優先して前記基地局装置が形成する自セルで使用される周波数チャネルとして選択するステップ(b)と、
    を備える基地局装置の制御方法。
  14.  前記ステップ(b)では、周辺のセカンダリセルで使用されている周波数チャネルを前記周辺の非セカンダリセルで使用されている周波数チャネルより優先して前記自セルで使用する周波数チャネルとして選択する、請求項13に記載の方法。
  15.  前記ステップ(b)では、前記周辺のセルからの受信信号に予め定められた物理チャネルが含まれるか否かによって、前記周辺のセルが前記セカンダリセルであるか否かを識別する、請求項13又は14に記載の方法。
  16.  前記ステップ(b)では、前記周辺のセルから送信される無線信号に含まれる報知情報に基づいて、前記周辺のセルが前記セカンダリセルであるか否かを識別する、請求項13又は14に記載の方法。
  17.  前記報知情報は、移動局のセルへのアクセス制限に関するアクセス制限情報を含み、
     前記ステップ(b)では、前記アクセス制限情報が無効値を示すか否かによって、前記周辺のセルが前記セカンダリセルであるか否かを識別する、請求項16に記載の方法。
  18.  移動局との間で無線通信を行う基地局機器用の処理装置であって、
     周辺の基地局によって形成される周辺のセルがプライマリセルの生成を条件として従属的に形成されるセカンダリセルであるか否かを識別するセル属性識別手段と、
     周辺の非セカンダリセルで使用されているのと異なる周波数チャネルを優先的に前記基地局機器が形成する自セルで使用する周波数チャネルとして選択するチャネル決定手段と、
    を備える処理装置。
  19.  前記チャネル決定手段は、周辺のセカンダリセルで使用されている周波数チャネルを前記周辺の非セカンダリセルで使用されている周波数チャネルより優先して前記自セルで使用する周波数チャネルとして選択する、請求項18に記載の処理装置。
  20.  前記セル属性識別手段は、前記周辺のセルからの受信信号に予め定められた物理チャネルが含まれるか否かによって、前記周辺のセルが前記セカンダリセルであるか否かを識別する、請求項18又は19に記載の処理装置。
  21.  前記セル属性識別手段は、前記周辺のセルから送信される無線信号に含まれる報知情報に基づいて、前記周辺のセルが前記セカンダリセルであるか否かを識別する、請求項18又は19に記載の処理装置。
  22.  前記報知情報は、移動局のセルへのアクセス制限に関するアクセス制限情報を含み、
     前記セル属性識別手段は、前記アクセス制限情報が無効値を示すか否かによって、前記周辺のセルが前記セカンダリセルであるか否かを識別する、請求項21に記載の処理装置。
  23.  移動局との間で無線通信を行う基地局機器に関する制御処理をコンピュータに実行させるためのプログラムが格納された記憶媒体であって、
     前記制御処理は、
     周辺の基地局によって形成される周辺のセルがプライマリセルの生成を条件として従属的に形成されるセカンダリセルであるか否かを識別するステップ(a)と、
     周辺の非セカンダリセルで使用されているのと異なる周波数チャネルを前記周辺の非セカンダリセルで使用されている周波数チャネルより優先して前記基地局機器が形成する自セルで使用される周波数チャネルとして選択するステップ(b)と、
    を含むプログラムが格納された記憶媒体。
  24.  前記ステップ(b)では、周辺のセカンダリセルで使用されている周波数チャネルを前記周辺の非セカンダリセルで使用されている周波数チャネルより優先して前記自セルで使用する周波数チャネルとして選択する、請求項23に記載のプログラムが格納された記憶媒体。
  25.  第1及び第2の基地局を備える無線通信システムであって、
     前記第1の基地局は、
     移動局との間で無線通信を行う無線通信手段と、
     前記第2の基地局によって形成される周辺のセルがプライマリセルの生成を条件として従属的に形成されるセカンダリセルであるか否かを識別し、周辺の非セカンダリセルで使用されているのと異なる周波数チャネルを前記無線通信手段が形成する自セルで使用する周波数チャネルとして優先的に選択する周波数チャネル制御手段と、
    を備える、無線通信システム。
  26.  前記周波数チャネル制御手段は、周辺のセカンダリセルで使用されている周波数チャネルを前記周辺の非セカンダリセルで使用されている周波数チャネルより優先して前記自セルで使用する周波数チャネルとして選択する、請求項25に記載の無線通信システム。
  27.  前記周波数チャネル制御手段は、前記第2の基地局からの受信信号に予め定められた物理チャネルが含まれるか否かによって、前記周辺のセルが前記セカンダリセルであるか否かを識別する、請求項25又は26に記載の無線通信システム。
  28.  前記第2の基地局は、報知情報を含む無線信号を送信し、
     前記周波数チャネル制御手段は、前記第2の基地局から送信される無線信号に含まれる前記報知情報に基づいて、前記周辺のセルが前記セカンダリセルであるか否かを識別する、請求項25又は26に記載の無線通信システム。
  29.  前記報知情報は、移動局のセルへのアクセス制限に関するアクセス制限情報を含み、
     前記周波数チャネル制御手段は、前記アクセス制限情報が無効値を示すか否かによって、前記周辺のセルが前記セカンダリセルであるか否かを識別する、請求項28に記載の無線通信システム。
PCT/JP2009/006087 2008-12-03 2009-11-13 基地局装置、基地局装置の制御方法、処理装置、記憶媒体、及び無線通信システム WO2010064365A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980148131.1A CN102227931B (zh) 2008-12-03 2009-11-13 基站装置、基站装置的控制方法、处理装置、存储介质和无线电通信系统
US13/129,532 US8824390B2 (en) 2008-12-03 2009-11-13 Method and apparatus for determining a frequency channel for use in radio communication with a mobile terminal
JP2010541200A JP5594146B2 (ja) 2008-12-03 2009-11-13 基地局装置、基地局装置の制御方法、処理装置、プログラム、及び無線通信システム
EP09830136.9A EP2355568B1 (en) 2008-12-03 2009-11-13 Base station apparatus, method for controlling base station apparatus, processor unit, storage medium, and wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-308709 2008-12-03
JP2008308709 2008-12-03

Publications (1)

Publication Number Publication Date
WO2010064365A1 true WO2010064365A1 (ja) 2010-06-10

Family

ID=42233024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006087 WO2010064365A1 (ja) 2008-12-03 2009-11-13 基地局装置、基地局装置の制御方法、処理装置、記憶媒体、及び無線通信システム

Country Status (5)

Country Link
US (1) US8824390B2 (ja)
EP (1) EP2355568B1 (ja)
JP (1) JP5594146B2 (ja)
CN (1) CN102227931B (ja)
WO (1) WO2010064365A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110673A (ja) * 2011-11-24 2013-06-06 Sumitomo Electric Ind Ltd 信号を測定する方法、端末装置、及び基地局装置
JP2013524701A (ja) * 2010-04-30 2013-06-17 ソニー株式会社 コンポーネントキャリアを選択する方法、基地局、端末及び通信システム
JP2013529426A (ja) * 2010-04-30 2013-07-18 ソニー株式会社 コンポーネントキャリアを更新する方法、基地局、端末及び通信システム
JP2013535177A (ja) * 2010-06-28 2013-09-09 クアルコム,インコーポレイテッド Multi−pointhsdpa通信ネットワークにおけるモビリティのためのシステムおよび方法
EP2695480A1 (en) * 2011-04-01 2014-02-12 Intel Corporation Opportunistic carrier aggregation using short range extension carriers
JP2014060510A (ja) * 2012-09-14 2014-04-03 Ntt Docomo Inc 移動通信システム、無線基地局及び移動局
US8891356B2 (en) 2010-06-28 2014-11-18 Qualcomm Incorporated System and method for multi-point HSDPA communication utilizing a multi-link RLC sublayer
US8989004B2 (en) 2010-11-08 2015-03-24 Qualcomm Incorporated System and method for multi-point HSDPA communication utilizing a multi-link PDCP sublayer
US9125098B2 (en) 2011-08-03 2015-09-01 Qualcomm Incorporated Method and apparatus for flow congestion control in multiflow networks

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264131B (zh) * 2010-05-29 2015-03-11 华为技术有限公司 无线网络中的数据传输方法和装置
US8737211B2 (en) 2011-08-03 2014-05-27 Qualcomm Incorporated Methods and apparatuses for network configuration of user equipment communication modes in multiflow systems
US9392542B2 (en) * 2012-03-16 2016-07-12 Samsung Electronics Co., Ltd. Method and device for detecting inter-frequency cell signals in a heterogeneous network
WO2014017869A1 (ko) * 2012-07-27 2014-01-30 엘지전자 주식회사 셀 스위칭 방법 및 장치
WO2014157828A1 (en) * 2013-03-29 2014-10-02 Lg Electronics Inc. Method for configuring a receiver bandwidth and device therefor
WO2014171872A1 (en) * 2013-04-16 2014-10-23 Telefonaktiebolaget L M Ericsson (Publ) A user equipment and a method therein for channel interference cancellation
US9414384B2 (en) 2013-09-17 2016-08-09 Telefonaktiebolaget Lm Ericsson (Publ) State-driven secondary cell activation and deactivation
US10299272B2 (en) * 2016-11-04 2019-05-21 Nokia Solutions And Networks Oy Switching carrier frequency while user equipment is in off cycle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054341A1 (ja) * 2004-11-18 2006-05-26 Mitsubishi Denki Kabushiki Kaisha 移動無線基地局の無線チャネル設定方法
JP2007529915A (ja) * 2003-12-19 2007-10-25 アイビス・テレコム・インコーポレイテッド タイムスロットリソース管理による基地局の干渉制御
JP2008308709A (ja) 2007-06-13 2008-12-25 Panasonic Corp 半導体装置の製造方法及び製造装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442806A (en) * 1993-06-08 1995-08-15 Oki Telecom Preferred carrier selection method for selecting any available cellular carrier frequency when neither home nor preferred cellular carrier frequencies are available
US6405048B1 (en) * 1996-08-28 2002-06-11 Telefonaktiebolaget L M Ericsson Method and system for autonomously allocating frequencies to a radio system sharing frequencies with an overlapping macro radio system
FI109956B (fi) * 1998-12-16 2002-10-31 Nokia Corp Menetelmä lähisolujen tietojen välittämiseksi sekä menetelmän toteuttava järjestelmä ja matkaviestin
US7424268B2 (en) * 2002-04-22 2008-09-09 Cisco Technology, Inc. System and method for management of a shared frequency band
US7555300B2 (en) 2002-10-25 2009-06-30 Intel Corporation Base station interference control using timeslot resource management
JP4278530B2 (ja) * 2004-02-13 2009-06-17 富士通株式会社 符号分割多重通信システム及びその周波数割当て方法
US7634277B2 (en) * 2005-04-28 2009-12-15 Cisco Technology, Inc. Method for allocating channel resources for improving frequency utilization efficiency of wireless communication systems
DE202005021930U1 (de) * 2005-08-01 2011-08-08 Corning Cable Systems Llc Faseroptische Auskoppelkabel und vorverbundene Baugruppen mit Toning-Teilen
JP2008072381A (ja) * 2006-09-13 2008-03-27 Toshiba Corp 基地局、移動体通信システム、及びチャネル割当方法
US8744466B2 (en) * 2006-10-10 2014-06-03 Broadcom Corporation Sensing RF environment to manage mobile network resources
JP4525684B2 (ja) * 2007-01-05 2010-08-18 船井電機株式会社 デジタル放送受信装置
JP2008178030A (ja) * 2007-01-22 2008-07-31 Mitsubishi Electric Corp 周波数割当方法および基地局
GB0715560D0 (en) * 2007-08-10 2007-09-19 Nortel Networks Ltd Sub banded frequency arrangement for femtocells
US9078269B2 (en) * 2007-09-21 2015-07-07 Qualcomm Incorporated Interference management utilizing HARQ interlaces
JP5255125B2 (ja) * 2008-11-25 2013-08-07 インターデイジタル パテント ホールディングス インコーポレイテッド 複数のアップリンクキャリアおよび複数のダウンリンクキャリアを利用するための方法および装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007529915A (ja) * 2003-12-19 2007-10-25 アイビス・テレコム・インコーポレイテッド タイムスロットリソース管理による基地局の干渉制御
WO2006054341A1 (ja) * 2004-11-18 2006-05-26 Mitsubishi Denki Kabushiki Kaisha 移動無線基地局の無線チャネル設定方法
JP2008308709A (ja) 2007-06-13 2008-12-25 Panasonic Corp 半導体装置の製造方法及び製造装置

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"3G Home NodeB Study Item Technical Report", 3GPP, TR25.820 V8.2.0, September 2008 (2008-09-01)
"Introduction of Dual-Cell HSDPA Operation on Adjacent Carriers", 3GPP, RI-084030, 25.212 CR0267R3 (REL-8, B, October 2008 (2008-10-01)
"Introduction of Dual-Cell HSDPA Operation on Adjacent Carriers", 3GPP, RL-084029, 25.211 CR0257R3 (REL-8, B, October 2008 (2008-10-01)
"Introduction of Dual-Cell HSDPA Operation on Adjacent Carriers", 3GPP, RL-084031, 25.214 CR0497R4 (REL-8, B, October 2008 (2008-10-01)
"Radio Resource Control (RRC", 3GPP TS 25.331 V8,4.0, September 2008 (2008-09-01)
"Radio Resource Control (RRC", 3GPP TS 25.331 V8.4.0, September 2008 (2008-09-01)
See also references of EP2355568A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524701A (ja) * 2010-04-30 2013-06-17 ソニー株式会社 コンポーネントキャリアを選択する方法、基地局、端末及び通信システム
JP2013529426A (ja) * 2010-04-30 2013-07-18 ソニー株式会社 コンポーネントキャリアを更新する方法、基地局、端末及び通信システム
US8891356B2 (en) 2010-06-28 2014-11-18 Qualcomm Incorporated System and method for multi-point HSDPA communication utilizing a multi-link RLC sublayer
JP2013535177A (ja) * 2010-06-28 2013-09-09 クアルコム,インコーポレイテッド Multi−pointhsdpa通信ネットワークにおけるモビリティのためのシステムおよび方法
EP2586246B1 (en) * 2010-06-28 2018-08-29 Qualcomm Incorporated(1/3) Mobility in a multi-point hsdpa communication network
US8989140B2 (en) 2010-06-28 2015-03-24 Qualcomm Incorporated System and method for mobility in a multi-point HSDPA communication network
US8989004B2 (en) 2010-11-08 2015-03-24 Qualcomm Incorporated System and method for multi-point HSDPA communication utilizing a multi-link PDCP sublayer
EP2695480A4 (en) * 2011-04-01 2014-10-08 Intel Corp OPPORTUNISTIC CARRIER AGGREGATION USING CLOSED SUPPORT STRUCTURES
CN103718639A (zh) * 2011-04-01 2014-04-09 英特尔公司 使用短程扩展载波的机会性载波聚合
US9288742B2 (en) 2011-04-01 2016-03-15 Intel Corporation Opportunistic carrier aggregation using short range extension carriers
US9955481B2 (en) 2011-04-01 2018-04-24 Intel Corporation Opportunistic carrier aggregation using short range extension carriers
EP2695480A1 (en) * 2011-04-01 2014-02-12 Intel Corporation Opportunistic carrier aggregation using short range extension carriers
US9125098B2 (en) 2011-08-03 2015-09-01 Qualcomm Incorporated Method and apparatus for flow congestion control in multiflow networks
JP2013110673A (ja) * 2011-11-24 2013-06-06 Sumitomo Electric Ind Ltd 信号を測定する方法、端末装置、及び基地局装置
JP2014060510A (ja) * 2012-09-14 2014-04-03 Ntt Docomo Inc 移動通信システム、無線基地局及び移動局

Also Published As

Publication number Publication date
US20110222502A1 (en) 2011-09-15
JP5594146B2 (ja) 2014-09-24
CN102227931B (zh) 2015-03-25
US8824390B2 (en) 2014-09-02
EP2355568A1 (en) 2011-08-10
JPWO2010064365A1 (ja) 2012-05-10
EP2355568A4 (en) 2016-06-15
EP2355568B1 (en) 2018-06-27
CN102227931A (zh) 2011-10-26

Similar Documents

Publication Publication Date Title
JP5594146B2 (ja) 基地局装置、基地局装置の制御方法、処理装置、プログラム、及び無線通信システム
JP5578081B2 (ja) 基地局装置、基地局装置の制御方法、通信システム、及びプログラム
JP6382864B2 (ja) セルラ通信ネットワークにおけるノード検出
US8706132B2 (en) Radio communication system, base station, mobile station, control method of base station, control method of mobile station, and storage medium storing program
US8638685B2 (en) Base station, transmission power control method for base station, processing apparatus, storage medium storing program, and communication system
US9918318B2 (en) Mobile communication system and mobile communication method
US8880109B2 (en) Radio communication system, high-power base station, low-power base station, and communication control method
WO2010078273A2 (en) Centralized control of peer-to-peer communication
JP5375836B2 (ja) 基地局装置、移動局装置、通知システム、基地局装置の制御方法、移動局装置の制御方法、及びプログラム
JP2019531039A (ja) 情報伝送方法および装置
JP5516410B2 (ja) 基地局、基地局による無線リソースの決定方法、処理装置、及びプログラム
KR20120007997A (ko) 소형 셀 커버리지 확장을 위한 기지국 및 단말의 간섭 제어 방법
WO2010086975A1 (ja) 無線通信方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980148131.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830136

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13129532

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2010541200

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009830136

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE