WO2010063368A1 - Kraftfahrzeug mit einer abwärmenutzungsvorrichtung zur einspeisung der abwärme in nutzbare mechanische arbeit - Google Patents

Kraftfahrzeug mit einer abwärmenutzungsvorrichtung zur einspeisung der abwärme in nutzbare mechanische arbeit Download PDF

Info

Publication number
WO2010063368A1
WO2010063368A1 PCT/EP2009/008120 EP2009008120W WO2010063368A1 WO 2010063368 A1 WO2010063368 A1 WO 2010063368A1 EP 2009008120 W EP2009008120 W EP 2009008120W WO 2010063368 A1 WO2010063368 A1 WO 2010063368A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste heat
motor vehicle
electrical energy
power
cooling
Prior art date
Application number
PCT/EP2009/008120
Other languages
English (en)
French (fr)
Inventor
Jan GÄRTNER
Thomas Koch
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2010063368A1 publication Critical patent/WO2010063368A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • F01K15/02Adaptations of plants for special use for driving vehicles, e.g. locomotives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/11Electric energy storages
    • B60Y2400/114Super-capacities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a motor vehicle with a device for waste heat utilization, in particular by feeding the waste heat converted into usable power into the drive of the motor vehicle having the features of the preamble of claim 1.
  • EP 1 326 017 B1 describes a hybrid vehicle with an internal combustion engine and an electric motor in each case for generating a drive power for the hybrid vehicle.
  • the internal combustion engine generates a driving power by burning a fuel stored in the tank while the electric motor is driven by an electric power of an electric energy storage device. Furthermore, charging of the electrical energy storage device by the electric motor is described.
  • the hybrid vehicle further includes a heat engine configured as a Clausius-Rankine cycle. This heat engine converts the waste heat of the internal combustion engine into mechanical work during operation. By means of a power generator, which is provided in addition to the electric motor, the mechanical work generated from the waste heat can be converted into electrical energy. On the one hand, this electrical energy can be fed into a drive via the electric motor or used for charging the electrical energy store. Further, the heat engine is configured so that the mechanical work converted from the waste heat can be fed directly into the drive of the hybrid vehicle as a mechanical drive power.
  • the present invention is now concerned with the problem of providing for a motor vehicle with a waste heat recovery device, an improved or at least another embodiment, which is particularly characterized in that a higher efficiency can be achieved for the motor vehicle. According to the invention, this object is achieved by the subject matter of the independent claim. Advantageous embodiments are the subject of the dependent claims.
  • the invention is based on the general idea to convert a portion of the waste heat of several waste heat sources of a motor vehicle by means of one or more waste heat recovery devices and the present in the case of a hybrid vehicle electric motor or at least another, additional power generator into usable electrical energy.
  • the electrical energy is either directly into the electric motor, which is available to drive the motor vehicle, fed or charged in an electrical energy storage device for later use.
  • Particularly advantageous in this construction is an electrical feed of the electrical energy recovered from the waste heat.
  • the respective waste heat sources can be used by one or more waste heat utilization facilities, and each circuit can be optimized for itself, since the electrical energy is used as the central form of energy.
  • an optimized control of the individual circuits is possible via a non-mechanical, but electrical feed of the energy obtained from the waste heat.
  • Another advantage of this embodiment is the lack of need for multiple mechanical feeds into the drive, since in this embodiment, a central supply of electrical energy via an electrical energy storage and an electric motor is preferred.
  • at least one mechanical feed of the power obtained from the waste heat in the case of large waste heat sources, such as the exhaust heat source, should not be excluded.
  • the use of mechanical feed of the power recovered from the waste heat compared to the electrical feed, especially in the case of several electric motors has disadvantages, since the electrical feed is significantly more flexible in terms of power distribution, and constructive much easier to implement.
  • FIG. 1 shows a drive train with the essential, usable by a waste heat recovery device waste heat sources of a motor vehicle and with an electric motor,
  • FIG. 2 shows a drive train with a waste heat recovery device and a
  • Fig. 6 shows a drive train with a decoupled via a power generator
  • a motor vehicle comprises a drive device 1 with a drive train 2 and a power supply device 3 for feeding in the energy of additional energy sources.
  • the drive train 2 is equipped with an aggregate 4, with a tank 5 connected to the unit 4, at least one power generator / electric motor 6, a transmission 7 and a drive shaft 8.
  • the unit 4 can be used to generate mechanical drive power, z. B. as an internal combustion engine or as a gas turbine and / or for the production of electric power, for. B. be designed as a fuel cell. In the case of the fuel cell, however, the unit 4 is not directly connected to the drive shaft 8, but electrically connected to the power generator / electric motor 6.
  • the tank 5 may thus be fueled with liquid fuels, such as with oil, gasoline, simple alcohols or the like, or with gaseous fuels, such as gaseous hydrocarbons, hydrogen or the like. It can also be installed more than one power generator / electric motor 6 in the drive train 2. These power generators / electric motors 6 can each act as a power generator and electric motor or only as a power generator and only as an electric motor. Accordingly, a current generator / electric motor 6 acting as a current generator would convert a mechanical work transmitted via the drive shaft 8 into electrical energy, while an electric motor / electric motor 6 would convert electrical energy into a drive power transmitted via the drive shaft 8 to the transmission 7 is forwarded. It is essential, however, that these power generators / electric motors 6 are arranged directly in the drive train.
  • the energy supply device 3 for the use of additional energy sources has as an essential component at least one waste heat utilization device 9.
  • at least one power generator 10 and at least one electrical energy storage 11 are provided.
  • Such a waste heat utilization device 9 converts a portion of the waste heat from waste heat sources, such as an exhaust system 12, an engine cooling system 13, a charge air cooling system 14 or an exhaust gas recirculation cooling system 15 into usable mechanical work.
  • waste heat sources such as an exhaust system 12, an engine cooling system 13, a charge air cooling system 14 or an exhaust gas recirculation cooling system 15 into usable mechanical work.
  • waste heat utilization device 9 it is also conceivable here for such a waste heat utilization device 9 to be connected to a plurality of waste heat sources or to other waste heat sources, such as, for example, a pump cooling, a turbine cooling, a brake fluid cooling, a compressor cooling or the like.
  • waste heat sources of the motor vehicle or other so far not listed waste heat sources represent heat potentials of different temperature and energy density and thus the waste heat sources have a different power output
  • At least one such power generator 10 converts the mechanical work of the waste heat utilization device 9 into electrical energy.
  • a further usable energy source is a braking energy utilization device 16, 16 'conceivable that converts the resulting braking energy during the braking process via the power generator 10 or by means of at least one power generator / electric motor 6 into electrical energy. In this case, it should be possible to charge the electrical energy converted by at least one such current generator 10 and / or by at least one such current generator / electric motor 6 into at least one electrical energy storage device 11.
  • a solar system 17 is conceivable that charges the electrical energy storage device 11 during a light incidence.
  • the components 6, 10, 17 can be used to charge the electrical energy storage device 11 and the components 6, 10, 17 are provided with different power, it makes sense between these components 6, 10, 17 and the electrical Energy storage 11 to provide at least one current transformer, so that the electrical energy can be optimally loaded into the electrical energy storage device 11.
  • an external charging device such as, for example, a household power grid or an electric filling station, should also be connectable to the electrical energy storage device 11.
  • the electric energy storage device 11 may be formed as a battery, as a capacitor, as a double-layer capacitor or the like, or any combination thereof.
  • the waste heat utilization device 9 is expediently designed as a cyclic process.
  • An embodiment is advantageous as a Camot cycle, as a Clausius-Rankine cycle, as a Stirling cycle or as a Joule cycle.
  • the waste heat utilization device 9 converts the heat of the waste heat sources 12, 13, 14, 15 into mechanical work.
  • the power generator 10 and the power generator / electric motor 6 convert the mechanical work into electrical energy.
  • As energy supply the tank 5 and the electric energy storage device 11 is used.
  • the current generator / electric motor 6 already provides the maximum torque when starting up, and only lets up in torque at a higher speed.
  • both motors 4, 6 By combining both motors 4, 6, the motor vehicle can accelerate faster and both units 4, 6 can be configured with a lower engine power, since both units 4, 6 contribute to the drive. On a separate starter can be omitted because the power generator / electric motor 6 takes over this function.
  • the energy for starting the unit 4 by the power generator / electric motor 6 is taken from the electric energy storage device 11. In the low speed range and when starting, the power generator / electric motor 6 will primarily produce the drive power. Thus, it is conceivable in city traffic, so with frequent stopping and starting, the aggregate 4 completely off.
  • the unit 4 can be idle or the like, so for example when holding at a red light, the mechanical work obtained from the waste heat through the waste heat recovery device 9 via the power generator 10 or the power generator / electric motor 6 into electrical energy are converted, which can be loaded into the electrical energy storage device 11.
  • the power generator / electric motor 6 can be turned off and the waste heat generated by the waste heat utilization device 9 and the power generator 10 as electrical Power are loaded into the electrical energy storage device 11.
  • At least one such power generator / electric motor 6 can be used both as a power generator and as an electric motor.
  • the unit 4 running to convert the recovered from the waste heat through the waste heat recovery device 9 mechanical work into electrical energy and to load it into the electrical energy storage device 11.
  • at least one such current generator / electric motor 6 as a current generator in coupling with a braking energy utilization device 16 'in order to generate the braking energy which is produced during braking in electrical energy. which can be loaded into the electrical energy storage device 11, to convert.
  • the power generator / electric motor 6 acts as an electric motor and contributes its part to the drive. If the current generator / electric motor 6 is equipped with a flywheel, the current generator / electric motor 6 can also store a certain amount of energy as mechanical energy in the form of the flywheel's momentum.
  • FIG. 2 it is possible to install a coupling 18 in the drive train 2 between the unit 4 and the current generator / electric motor 6.
  • the unit 4 can be disconnected from the drive train, so that in the case of a shutdown of the unit 4, for example in city traffic, this is not unnecessarily connected to the drive shaft 8. On the one hand, this reduces wear and, on the other hand, no unnecessary energy is consumed, since the unit 4 is not kept in motion in the decoupled state with the drive shaft 8.
  • the residual heat of the unit 4 can still contribute to the drive by conversion into mechanical work by means of the waste heat utilization device 9 or be loaded after conversion into the electrical energy storage device 11 as electrical energy.
  • This embodiment corresponds to a parallel hybrid drive.
  • the transmission 7 may be formed manually or preferably automatically, with a torque converter is required in an automatic transmission.
  • FIG. 4 shows a combination of the embodiments according to FIG. 2 and FIG. 3, in which in the drive train 2 between the unit 4 and the power generator / electric motor 6, a clutch 18 and between the power generator / electric motor 6 and the transmission 7 also a another clutch 19 is installed.
  • This embodiment combines the advantages of the embodiments according to FIGS. 2 and 3.
  • FIG. 5 an embodiment is shown in the manner of a serial hybrid drive.
  • the unit 4 is coupled to a power generator 20 and not integrated in the drive train 2.
  • the electric motor 21 drives the motor vehicle.
  • Any mechanical power of the unit 4 is converted by the power generator 20 into electrical power, which in turn is fed to the electric motor 21, which is connected to the drive train.
  • the waste heat utilization device 9 feeds in this case also via the power generator 20 or the power generator 10, the converted into mechanical waste heat of the waste heat sources as electrical energy either in the electric motor 21 or the electric energy storage device 11 a.
  • the unit 4 with at least one such waste heat utilization device 9 thus contributes only indirectly via the power generators 10, 20 to the drive.
  • the transmission 22 is equipped with a clutch or an idling.
  • the unit 4 of the direct supply of mechanical work in the drive. Accordingly, the entire energy flow around the transmission 22 can thus be introduced into at least one such electric motor 21.
  • the waste heat utilization device 9 initiates the mechanical work obtained from the waste heat into the power generator 20, whereby such a power generator 10 is no longer necessary.
  • This embodiment uses a load point shift of the unit in the respect of the efficiency better high load range.
  • At least one such electric motor 21 is connected to another drive train, which acts directly on the wheels or the wheel axles.

Abstract

Die Erfindung betrifft ein Kraftfahrzeug mit einer Abwärmenutzungseinrichtung (9) zur Nutzung mehrerer Abwärmequellen eines Kraftfahrzeugs durch Wandlung der nutzbaren Abwärme in mechanische Arbeit und/oder elektrische Energie. Da die aus der Abwärme gewonnene mechanische Arbeit durch zumindest einen Stromgenerator (6, 10, 20) in nutzbare elektrische Energie gewandelt wird, ist es möglich, ein solches vorhandenes Abwärmenutzungsgesamtsystem stückweise um weitere Abwärmenutzungskomponenten oder Abwärmequellen zu erweitern, ohne das Gesamtkonzept ändern zu müssen.

Description

KRAFTFAHRZEUG MIT EINER ABWARMENUTZUNGSVORRICHTUNG ZUR EINSPEISUNG DER ABWÄRME IN NUTZBARE MECHANISCHE ARBEIT
Die vorliegende Erfindung betrifft ein Kraftfahrzeug mit einer Vorrichtung zur Abwärmenutzung insbesondere durch Einspeisung der in nutzbare Leistung umgewandelten Abwärme in den Antrieb des Kraftfahrzeugs mit den Merkmalen des Oberbegriffs des Anspruchs 1.
Die EP 1 326 017 B1 beschreibt ein Hybridfahrzeug mit einem Verbrennungsmotor und einem Elektromotor jeweils zum Erzeugen einer Antriebsleistung für das Hybridfahrzeug. Der Verbrennungsmotor erzeugt eine Antriebsleistung durch Verbrennen eines im Tank bevorrateten Brennstoffes, während der Elektromotor durch eine elektrische Energie einer elektrischen Energiespeichereinrichtung angetrieben wird. Des Weiteren ist ein Laden der elektrischen Energiespeichereinrichtung durch den Elektromotor beschrieben. Das Hybridfahrzeug weist weiterhin eine Wärmekraftmaschine auf, die als Clausius- Rankine-Kreisprozess ausgestaltet ist. Diese Wärmekraftmaschine wandelt die Abwärme des Verbrennungsmotors während des Betriebs in mechanische Arbeit um. Mittels eines Stromgenerators, der zusätzlich zu dem Elektromotor vorgesehen ist, kann die aus der Abwärme erzeugte mechanische Arbeit in elektrische Energie umgewandelt werden. Diese elektrische Energie kann zum einen über den Elektromotor in einen Antrieb \ eingespeist werden oder zum Laden des elektrischen Energiespeichers genutzt werden. Des Weiteren ist die Wärmekraftmaschine so ausgebildet, dass die aus der Abwärme umgewandelte mechanische Arbeit direkt in den Antrieb des Hybridfahrzeugs als eine mechanische Antriebsleistung eingespeist werden kann.
Die vorliegende Erfindung beschäftigt sich nun mit dem Problem, für ein Kraftfahrzeug mit einer Abwärmenutzungsvorrichtung eine verbesserte oder zumindest eine andere Ausführungsform anzugeben, die sich insbesondere dadurch auszeichnet, dass für das Kraftfahrzeug ein höherer Wirkungsgrad erzielt werden kann. Erfindungsgemäß wird diese Aufgabe durch den Gegenstand des unabhängigen Anspruchs gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
Die Erfindung beruht auf dem allgemeinen Gedanken, einen Teil der Abwärme mehrerer Abwärmequellen eines Kraftfahrzeugs mittels einer oder mehrerer Abwärmenutzungsvorrichtungen und des im Falle eines Hybridfahrzeugs vorhandenen Elektromotors oder zumindest eines weiteren, zusätzlichen Stromgenerators in nutzbare elektrische Energie umzuwandeln. Die elektrische Energie wird dabei entweder direkt in den Elektromotor, der zum Antrieb des Kraftfahrzeugs vorhanden ist, einspeist oder in einen elektrischen Energiespeicher zur späteren Verwendung geladen.
Besonders vorteilhaft an dieser Bauweise ist eine elektrische Einspeisung der aus der Abwärme gewonnenen elektrischen Energie. Durch die Einspeisung der aus der Abwärme gewonnen mechanischen Arbeit unter Zuhilfenahme des elektrischen Energiespeichers oder des Elektromotors ist es möglich, ein vorhandenes Abwärmenutzungsgesamtsystem stückweise um weitere Abwärmequellen, wie zum Beispiel eine Abgasrückführungseinrichtung, eine Motorkühlungseinrichtung, eine Ladeluftkühlung oder dergleichen, zu erweitern, ohne ein Gesamtkonzept ändern zu müssen. Dabei können die jeweiligen Abwärmequellen durch eine oder mehrere Abwärmenutzungseinrichtungen genutzt werden, und jeder Kreislauf kann für sich selbst optimiert werden, da die elektrische Energie als die zentrale Energieform verwendet wird. Zudem ist über eine nicht-mechanische, sondern elektrische Einspeisung der aus der Abwärme gewonnenen Energie eine optimierte Regelung der Einzelkreisläufe möglich.
Ein weiterer Vorteil dieser Ausführungsform ist die fehlende Notwendigkeit von mehreren mechanischen Einspeisungen in den Antrieb, da in dieser Ausführungsform eine zentrale Einspeisung der elektrischen Energie über einen elektrischen Energiespeicher und einen Elektromotor bevorzugt ist. Es soll jedoch zumindest eine mechanische Einspeisung der aus der Abwärme gewonnenen Leistung im Falle der großen Abwärmequellen, wie zum Beispiel der Abgaswärmequelle, nicht ausgeschlossen werden. Jedoch hat die Verwendung der mechanischen Einspeisung der aus der Abwärme gewonnenen Leistung gegenüber der elektrischen Einspeisung gerade im Fall mehrere Elektromotoren Nachteile, da die elektrische Einspeisung bezüglich der Leistungsverteilung deutlich flexibler ist, und konstruktiv um vieles einfacher zu realisieren ist. Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Bauteile beziehen.
Es zeigen, jeweils schematisch:
Fig. 1 einen Antriebsstrang mit den wesentlichen, durch eine Abwärmenutzungsvorrichtung nutzbaren Abwärmequellen eines Kraftfahrzeugs und mit einem Elektromotor,
Fig. 2 einen Antriebsstrang mit einer Abwärmenutzungsvorrichtung und einer
Kupplung zwischen einem Aggregat und dem Elektromotor,
Fig. 3 einen Antriebsstrang ohne eine Kupplung,
Fig. 4 einen Antriebsstrang mit einer Kupplung zwischen dem Elektromotor und einem Getriebe,
Fig. 5 einen Antriebsstrang mit einem separatem Stromgenerator und dem Elektromotor im Antriebsstrang,
Fig. 6 einen Antriebsstrang mit einem über einen Stromgenerator entkoppelten
Aggregat.
Gemäß Fig. 1 umfasst ein nicht gezeigtes Kraftfahrzeug eine Antriebseinrichtung 1 mit einem Antriebsstrang 2 und einer Energieeinspeisungseinrichtung 3 zur Einspeisung der Energie zusätzlicher Energiequellen. Der Antriebsstrang 2 ist mit einem Aggregat 4, mit einem an das Aggregat 4 angeschlossenen Tank 5, zumindest einem Stromgenerator/Elektromotor 6, einem Getriebe 7 und einer Antriebswelle 8 ausgestattet. Das Aggregat 4 kann zur Erzeugung von mechanischer Antriebsleistung, z. B. als Verbrennungsmotor oder als Gasturbine und/oder zur Erzeugung von elektrischem Strom, z. B. als Brennstoffzelle ausgestaltet sein. Im Fall der Brennstoffzelle ist das Aggregat 4 jedoch nicht direkt an die Antriebswelle 8 angebunden, sondern elektrisch mit dem Stromgenerator/Elektromotor 6 verschaltet. Der Tank 5 kann somit mit flüssigen Brennstoffen, wie zum Beispiel mit öl, Benzin, einfachen Alkoholen oder dergleichen, oder mit gasförmigen Brennstoffen, wie zum Beispiel mit gasförmigen Kohlenwasserstoffen, Wasserstoff oder dergleichen, betankt sein. Es kann auch mehr als ein Stromgenerator/Elektromotor 6 im Antriebsstrang 2 installiert sein. Diese Stromgeneratoren/Elektromotoren 6 können dabei jeweils als Stromgenerator und Elektromotor oder nur als Stromgenerator und nur als Elektromotor wirken. Dementsprechend würde ein als Stromgenerator wirkender Stromgenerator/Elektromotor 6 eine über die Antriebswelle 8 übertragene mechanische Arbeit in eine elektrische Energie umwandeln, während ein als Elektromotor wirkender Stromgenerator/Elektromotor 6 eine elektrische Energie in eine Antriebsleistung umwandeln würde, die über die Antriebswelle 8 an das Getriebe 7 weitergeleitet wird. Wesentlich ist jedoch, dass diese Stromgeneratoren/Elektromotoren 6 direkt im Antriebsstrang angeordnet sind.
Die Energieeinspeisungseinrichtung 3 für die Nutzung von zusätzlichen Energiequellen weist als eine wesentliche Komponente zumindest eine Abwärmenutzungseinrichtung 9 auf. Außerdem sind zumindest ein Stromgenerator 10 und zumindest ein elektrischen Energiespeicher 11 vorgesehen. Eine solche Abwärmenutzungseinrichtung 9 wandelt einen Teil der Abwärme von Abwärmequellen, wie zum Beispiel einer Abgasanlage 12, einer Motorkühlung 13, einer Ladeluftkühlung 14 oder einer Abgasrückführungskühlung 15, in nutzbare mechanische Arbeit. Es ist hierbei aber auch denkbar, dass eine solche Abwärmenutzungseinrichtung 9 mit mehreren Abwärmequellen oder mit anderen Abwärmequellen, wie zum Beispiel einer Pumpenkühlung, einer Turbinenkühlung, einer Bremsflüssigkeitskühlung, einer Kompressorkühlung oder dergleichen, verbunden ist. Da die genannten Abwärmequellen des Kraftfahrzeugs oder auch weitere, bis jetzt noch nicht aufgeführte Abwärmequellen Wärmepotentiale unterschiedlicher Temperatur und Energiedichte darstellen und somit die Abwärmequellen eine unterschiedliche Leistungsausbeute aufweisen, ist es zweckmäßig, mehr als nur eine Abwärmenutzungseinrichtung 9 vorzusehen und die jeweilige Abwärmenutzungseinrichtung 9 auf die entsprechende Abwärmequelle zu optimieren. Es ist aber auch denkbar, mehrere Abwärmequellen in einem Arbeitsfluidkreislauf hintereinander zu schalten, um ein Arbeitsfluid stufenweise auf eine optimale Arbeitstemperatur der Abwärmenutzungseinrichtung 9 zu erhitzen. Zumindest ein solcher Stromgenerator 10 wandelt dabei die mechanische Arbeit der Abwärmenutzungseinrichtung 9 in elektrische Energie um. Als weitere nutzbare Energiequelle ist eine Bremsenergienutzungseinrichtung 16, 16' denkbar, die die anfallende Bremsenergie während des Bremsvorgangs über den Stromgenerator 10 oder aber mittels zumindest eines Stromgenerators/Elektromotors 6 in elektrische Energie umwandelt. Dabei soll es möglich sein, die durch zumindest einen solchen Stromgenerator 10 und/oder durch zumindest einen solchen Stromgenerator/Elektromotor 6 umgewandelte elektrische Energie in zumindest eine elektrische Energiespeichereinrichtung 11 zu laden. Als weitere nutzbare Energiequelle ist im Fall der elektrischen Energiespeichereinrichtung 11 eine Solaranlage 17 denkbar, die während eines Lichteinfalls die elektrische Energiespeichereinrichtung 11 lädt. Da zum Beispiel die Komponenten 6, 10, 17 dazu verwendet werden können, die elektrische Energiespeichereinrichtung 11 zu laden und die Komponenten 6, 10, 17 mit unterschiedlicher Leistung ausgestattet sind, ist es sinnvoll, zwischen diesen Komponenten 6, 10, 17 und dem elektrischen Energiespeicher 11 zumindest einen Stromspannungswandler vorzusehen, damit die elektrische Energie optimal in die elektrische Energiespeichereinrichtung 11 geladen werden kann. Als weitere externe Energiequelle soll auch eine externe Ladeeinrichtung, wie zum Beispiel ein Hausstromnetz oder eine Elektrotankstelle, an die elektrische Energiespeichereinrichtung 11 anschließbar sein. Ebenfalls denkbar ist der komplette Austausch der elektrischen Energiespeichereinrichtung 11 im entladenen Zustand durch eine geladene elektrische Energiespeichereinrichtung, zum Beispiel an einer dafür ausgerüsteten Energiespeichertankstelle. Die elektrische Energiespeichereinrichtung 11 kann dabei als eine Batterie, als ein Kondensator, als ein Doppelschicht-Kondensator oder dergleichen oder einer beliebigen Kombination daraus ausgebildet sein.
Die Abwärmenutzungseinrichtung 9 ist zweckmäßig als Kreisprozess ausgestaltet. Dabei ist eine Ausgestaltung als Camot-Kreisprozess, als Clausius-Rankine-Kreisprozess, als Stirling-Kreisprozess oder als Joule-Kreisprozess vorteilhaft. Die Abwärmenutzungseinrichtung 9 wandelt dabei die Wärme der Abwärmequellen 12, 13, 14, 15 in mechanische Arbeit um. Der Stromgenerator 10 und der Stromgenerator/Elektromotor 6 wandeln die mechanische Arbeit in eine elektrische Energie um. Als Energievorrat dient der Tank 5 und die elektrische Energiespeichereinrichtung 11. Das Aggregat 4, insbesondere der Verbrennungsmotor oder die Gasturbine, liefert erst ab einem bestimmten Drehzahlbereich ein hohes Drehmoment. Der Stromgenerator/Elektromotor 6 dagegen stellt schon beim Anfahren das maximale Drehmoment zur Verfügung und lässt erst bei höherer Drehzahl im Drehmoment nach. Durch die Kombination beider Motoren 4, 6 kann das Kraftfahrzeug schneller beschleunigen und beide Aggregate 4, 6 können mit einer geringeren Motorleistung ausgestaltet werden, da beide Aggregate 4, 6 zum Antrieb beitragen. Auf einen separaten Anlasser kann verzichtet werden, weil der Stromgenerator/Elektromotor 6 diese Funktion übernimmt. Die Energie zum Anlassen des Aggregats 4 durch den Stromgenerator/Elektromotor 6 wird der elektrischen Energiespeichereinrichtung 11 entnommen. Im niedrigen Drehzahlbereich sowie beim Anfahren wird vorrangig der Stromgenerator/Elektromotor 6 die Antriebsleistung produzieren. So ist denkbar, im Stadtverkehr, also bei häufigem Stoppen und Anfahren, das Aggregat 4 komplett auszuschalten. Falls das Aggregat 4 allerdings nicht ausgeschaltet wird, so kann im Leerlauf oder dergleichen, also zum Beispiel beim Halten an einer roten Ampel, die aus der Abwärme über die Abwärmenutzungseinrichtung 9 gewonnene mechanische Arbeit über den Stromgenerator 10 oder den Stromgenerator/Elektromotor 6 in elektrische Energie umgewandelt werden, die in die elektrischen Energiespeichereinrichtung 11 geladen werden kann. Im hohen Drehzahlbereich, so zum Beispiel beim Fahren auf der Autobahn mit hoher Geschwindigkeit, bei dem über lange Zeit eine hohe Motorleistung benötigt wird, kann gegebenenfalls der Stromgenerator/Elektromotor 6 abgeschaltet werden und die anfallende Abwärme über die Abwärmenutzungseinrichtung 9 und den Stromgenerator 10 als elektrische Leistung in die elektrische Energiespeichereinrichtung 11 geladen werden. Ebenso ist es denkbar, dass bei laufendem Aggregat 4 und aktivem Stromgenerator/Elektromotor 6 die aus der Abwärme über die Abwärmenutzungseinrichtung 9 gewonnene mechanische Leistung direkt dem Stromgenerator/Elektromotor 6 zugeführt wird und somit die nutzbare Abwärme direkt zum Antrieb des Kraftfahrzeugs beiträgt.
Zumindest ein solcher Stromgenerator/Elektromotor 6 kann sowohl als Stromgenerator als auch als Elektromotor eingesetzt werden. So ist es möglich, im Leerlauf oder dergleichen bei laufendem Aggregat 4 die aus der Abwärme über die Abwärmenutzungseinrichtung 9 gewonnene mechanische Arbeit in elektrische Energie zu wandeln und diese in die elektrische Energiespeichereinrichtung 11 zu laden. Es ist aber auch denkbar zumindest einen solchen Stromgenerator/Elektromotor 6 als Stromgenerator in Koppelung mit einer Bremsenergienutzungseinrichtung 16' zu verwenden, um bei einer Bremsung die anfallende Bremsenergie in elektrische Energie, die in die elektrische Energiespeichereinrichtung 11 geladen werden kann, zu wandeln. Im singulären Antriebsmodus bzw. im dualen Betrieb zusammen mit dem Aggregat 4 wirkt der Stromgenerator/Elektromotor 6 als Elektromotor und trägt seinen Teil zum Antrieb bei. Wird der Stromgenerator/Elektromotor 6 mit einem Schwungrad ausgestattet, so kann der Stromgenerator/Elektromotor 6 ebenfalls eine gewisse Menge an Energie als mechanische Energie in Form des Schwunges des Schwungrades speichern.
Gemäß Fig. 2 ist es möglich, zwischen Aggregat 4 und Stromgenerator/Elektromotor 6 eine Kupplung 18 im Antriebsstrang 2 zu installieren. Durch diese Kupplung 18 kann das Aggregat 4 vom Antriebsstrang getrennt werden, damit im Fall einer Abschaltung des Aggregats 4, zum Beispiel im Stadtverkehr, dieser nicht unnötigerweise mit der Antriebswelle 8 verbunden bleibt. Dies reduziert zum einen den Verschleiß und zum anderen wird dadurch keine unnötige Energie verbraucht, da das Aggregat 4 im entkoppelten Zustand mit der Antriebswelle 8 nicht in Bewegung gehalten wird. Nach Abschaltung des Aggregats 4 kann allerdings die Restwärme des Aggregats 4 durch Wandlung in mechanische Arbeit mittels der Abwärmenutzungseinrichtung 9 dennoch zum Antrieb beitragen bzw. nach Wandlung in die elektrische Energiespeichereinrichtung 11 als elektrische Energie geladen werden. Diese Ausführungsform entspricht einem parallelen Hybridantrieb. Das Getriebe 7 kann dabei manuell oder bevorzugt automatisch ausgebildet sein, wobei bei einem Automatikgetriebe ein Drehmomentwandler benötigt wird.
Gemäß Fig. 3 ist es nun möglich, eine Kupplung 19 im Antriebsstrang 2 zwischen dem Stromgenerator/Elektromotor 6 und dem Getriebe 7 zu installieren. In dieser zweckmäßigen Ausführungsform besteht die Möglichkeit, im Leerlauf bzw. beim Stehen des Kraftfahrzeuges aber bei angeschaltetem Aggregat 4 über den Stromgenerator/Elektromotor 6, der in diesem Fall als Stromgenerator wirkt, sowohl die über die Antriebswelle 8 übertragbare mechanische Motorleistung des Aggregats 4 als auch die Abwärme über die Abwärmenutzungseinrichtung 9 in elektrische Energie zu wandeln und dieselbe in die elektrische Energiespeichereinrichtung 11 zu laden. In diesem Fall könnte man gegebenenfalls auf eine Ladeeinrichtung zum Laden der elektrischen Energiespeichereinrichtung 11 aus einem externen Energiereservoir verzichten, da es möglich ist, direkt durch das Aggregat 4 und die Abwärmenutzungseinrichtung 9 die elektrische Energiespeichereinrichtung 11 vollständig zu laden, indem man das Aggregat 4 des Kraftfahrzeugs im Stand laufen lässt. Die Fig. 4 zeigt nun eine Kombination der Ausführungsformen gemäß Fig. 2 und Fig. 3, bei der im Antriebsstrang 2 zwischen dem Aggregat 4 und dem Stromgenerator/Elektromotor 6 eine Kupplung 18 und zwischen dem Stromgenerator/Elektromotor 6 und dem Getriebe 7 ebenfalls eine weitere Kupplung 19 installiert ist. Diese Ausführungsform vereinigt die Vorteile der Ausführungsformen gemäß Fig. 2 und Fig. 3.
In Fig. 5 wird eine Ausführungsform nach Art eines seriellen Hybridantriebs dargestellt. Das Aggregat 4 ist dabei mit einem Stromgenerator 20 gekoppelt und nicht im Antriebsstrang 2 integriert. In dieser Ausführungsform treibt alleinig der Elektromotor 21 das Kraftfahrzeug an. Jedwede mechanische Leistung des Aggregats 4 wird durch den Stromgenerator 20 in elektrische Leistung gewandelt, die wiederum in den Elektromotor 21 , der mit dem Antriebsstrang verbunden ist, eingespeist wird. Die Abwärmenutzungseinrichtung 9 speist in diesem Fall ebenfalls über den Stromgenerator 20 oder den Stromgenerator 10 die in mechanische Arbeit gewandelte Abwärme der Abwärmequellen als elektrische Energie entweder in den Elektromotor 21 oder die elektrische Energiespeichereinrichtung 11 ein. Das Aggregat 4 mit zumindest einer solchen Abwärmenutzungseinrichtung 9 trägt somit nur indirekt über die Stromgeneratoren 10, 20 zum Antrieb bei.
In einer weiteren bevorzugten Ausführungsform gemäß Fig. 6 mit zumindest einem im Antriebsstrang installierten Stromgenerator 20 und zumindest einem im Antriebsbereich installierten Elektromotor 21 ist das Getriebe 22 mit einer Kupplung oder einem Leerlauf ausgestattet. Durch diese Anordnung ist es möglich, über die aktivierte Kupplung oder den aktivierten Leerlauf des Getriebes 22 das Aggregat 4 von der direkten Einspeisung mechanischer Arbeit in den Antrieb zu trennen. Dementsprechend kann somit der gesamte Energiefluss um das Getriebe 22 herum in zumindest einen solchen Elektromotor 21 eingeleitet werden. Die Abwärmenutzungseinrichtung 9 leitet die aus der Abwärme gewonnene mechanische Arbeit in den Stromgenerator 20 ein, wodurch ein solcher Stromgenerator 10 nicht mehr notwendig ist. Diese Ausführungsform nutzt eine Lastpunktverschiebung des Aggregats in den bzgl. des Wirkungsgrades besseren Hochlastbereich. Zumindest ein solcher Elektromotor 21 ist mit einem weiteren Antriebsstrang, der direkt auf die Räder oder die Radachsen wirkt, verbunden.
Bezugszeichenliste
Antriebseinrichtung
Antriebsstrang
Energieeinspeisungseinrichtung
Aggregat
Tank
Stromgenerator/Elektromotor
Getriebe
Antriebswelle
Abwärmenutzungseinrichtung
Stromgenerator elektrische Energiespeichereinrichtung
Abgasanlage
Motorkühlung
Ladeluftkühlung
Abgasrückführungskühlung
Bremsenergienutzungseinrichtung
Solaranlage
Kupplung
Kupplung
Stromgenerator
Elektromotor
Getriebe mit Kupplung/Leerlauf

Claims

Patentansprüche
1. Kraftfahrzeug, umfassend
- ein Aggregat (4) zur Erzeugung von mechanischer Antriebsleistung und/oder von elektrischem Strom,
- zumindest einen Elektromotor (21) zur Erzeugung von Antriebsleistung,
- zumindest einen Stromgenerator (10, 20),
- zumindest eine Abwärmenutzungseinrichtung (9), dadurch gekennzeichnet, dass die zumindest eine Abwärmenutzungseinrichtung (9) mit mehreren Abwärmequellen (12, 13, 14, 15) des Kraftfahrzeugs gekoppelt ist, um deren Abwärme in nutzbare mechanische Arbeit und/oder mittels des zumindest einen Stromgenerators in nutzbare elektrische Energie umzuwandeln.
2. Kraftfahrzeug nach Anspruch 1 , dadurch gekennzeichnet, dass das Aggregat (4) als ein Mitglied folgender Gruppe oder einer beliebigen Kombination daraus ausgebildet ist:
- ein Verbrennungsmotor zur Erzeugung von mechanischer Antriebsleistung,
- eine Brennstoffzelle zur Erzeugung von elektrischem Strom,
- eine Gasturbine zur Erzeugung von mechanischer Antriebsleistung.
3. Kraftfahrzeug nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die zumindest eine Abwärmenutzungseinrichtung (9) mit zumindest zwei Abwärmequellen (12, 13, 14, 15) aus folgender Gruppe gekoppelt ist: - eine Abgasanlage (12),
- ein Kühlwasserkreislauf (13), z. B. eines Verbrennungsmotors,
- eine Ladeluftkühlung (14), z. B. eines Turboladers,
- eine Abgasrückführungskühlung (15),
- eine Schmiermittelkühlung, z. B. von öl eines Turboladers oder eines Verbrennungsmotors,
- eine Brennstoffzellenkühlung,
- eine Stromgeneratorkühlung,
- eine Elektromotorkühlung,
- eine Turbinenkühlung,
- eine Kompressorkühlung,
- eine Pumpenkühlung.
4. Kraftfahrzeug nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die zumindest eine Abwärmenutzungseinrichtung (9) als Kreisprozess ausgestaltet ist, der insbesondere als Carnot-Kreisprozess oder als Clausius-Rankine- Kreisprozess oder als Stirling-Kreisprozess oder als Joule-Kreisprozess oder dergleichen ausgestaltet sein kann.
5. Kraftfahrzeug nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die zumindest eine Abwärmenutzungseinrichtung (9) zur Nutzung der aus der Abwärme gewonnenen nutzbaren Arbeit mit zumindest einer Komponente aus der Gruppe folgender Komponenten des Kraftfahrzeugs gekoppelt ist:
- eine elektrische und/oder mechanische Antriebseinrichtung,
- eine elektrische Lichterzeugungseinrichtung,
- eine elektrische Heizeinrichtung,
- elektronische Komponenten, wie z.B. Radio, Bordcomputer oder dergleichen.
6. Kraftfahrzeug nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Kraftfahrzeug mit einer mechanischen Antriebseinrichtung (1) ausgestattet ist, die mit der zumindest einen Abwärmenutzungseinrichtung (9) so gekoppelt ist, dass die aus der Abwärme über die zumindest eine Abwärmenutzungseinrichtung (9) gewonnene nutzbare mechanische Arbeit direkt als Antriebsleistung verwendbar ist.
7. Kraftfahrzeug nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Kraftfahrzeug eine elektrische Energiespeichereinrichtung (11) aufweist, in die die durch die zumindest eine Abwärmenutzungseinrichtung (9) gewonnene und durch den zumindest einen Stromgenerator (6, 10, 20) umgewandelte, nutzbare e- lektrische Energie zur weiteren Verwendung speicherbar ist.
8. Kraftfahrzeug nach Anspruch 7, dadurch gekennzeichnet, dass die elektrische Energiespeichereinrichtung (11) als ein Mitglied folgender Gruppe oder einer beliebigen Kombination daraus ausgebildet ist:
- Batterie
- Kondensator,
- Doppelschichtkondensator.
9. Kraftfahrzeug nach den Ansprüchen 7 oder 8, dadurch gekennzeichnet, dass die elektrische Energiespeichereinrichtung (11) als ein zentraler elektrischer Energiespeicher und zur elektrischen Versorgung aller elektrischen und/oder elektronischen Komponenten des Kraftfahrzeugs ausgebildet ist.
10. Kraftfahrzeug nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Kraftfahrzeug zumindest eine weitere Energiegewinnungseinrichtung (16, 16', 17), wie z.B. eine Bremsenergienutzungseinrichtung (16, 16'), eine Solaranlage (17) oder dergleichen, aufweist, durch die ebenfalls die jeweilige nicht genutzte Energieform in nutzbare mechanische Arbeit und/oder mittels des zumindest einen Stromgenerators (10, 20) in nutzbare elektrische Energie umwandelbar ist.
11. Kraftfahrzeug nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Verbrennungsmotor oder die Gasturbine mit dem Elektromotor (6, 21) parallel und direkt mechanisch mit einem Getriebe (7) des Kraftfahrzeugs koppelbar sind und/oder dass der Verbrennungsmotor oder die Gasturbine über eine elektrische Leistungskopplung mit dem Elektromotor (6, 21) koppelbar ist, der wiederum mechanisch mit dem Getriebe (7) koppelbar ist.
PCT/EP2009/008120 2008-12-06 2009-11-14 Kraftfahrzeug mit einer abwärmenutzungsvorrichtung zur einspeisung der abwärme in nutzbare mechanische arbeit WO2010063368A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008060950.1 2008-12-06
DE102008060950A DE102008060950A1 (de) 2008-12-06 2008-12-06 Kraftfahrzeug mit einer Abwärmenutzungsvorrichtung insbesondere zur Einspeisung der in nutzbare Leistung umgewandelten Abwärme in den Antrieb des Kraftfahrzeugs

Publications (1)

Publication Number Publication Date
WO2010063368A1 true WO2010063368A1 (de) 2010-06-10

Family

ID=41581945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/008120 WO2010063368A1 (de) 2008-12-06 2009-11-14 Kraftfahrzeug mit einer abwärmenutzungsvorrichtung zur einspeisung der abwärme in nutzbare mechanische arbeit

Country Status (2)

Country Link
DE (1) DE102008060950A1 (de)
WO (1) WO2010063368A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9541027B2 (en) 2014-07-11 2017-01-10 Caterpillar Inc. System and method for recovering waste heat

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010055926A1 (de) 2010-12-23 2012-06-28 Daimler Ag Abwärmenutzungsvorrichtung
DE102011076093A1 (de) * 2011-05-19 2012-11-22 Robert Bosch Gmbh Vorrichtung und Verfahren zur Nutzung der Abwärme einer Brennkraftmaschine
DE102017101288A1 (de) 2017-01-24 2018-07-26 Karlsruher Institut für Technologie Verbrennungskraftmaschine mit fluidisch gekühltem Abgasturbolader und Abgaswärmetauscher

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1326017A1 (de) * 2000-10-10 2003-07-09 Honda Giken Kogyo Kabushiki Kaisha Hybridfahrzeug
WO2005103453A1 (fr) * 2004-04-09 2005-11-03 Armines Systeme pour recuperer l’energie thermique d’un vehicule a moteur thermique
WO2006097089A2 (de) * 2005-03-15 2006-09-21 Kuepfer Ewald Verfahren und vorrichtungen zur verbesserung des wirkungsgrades von energieumwandlungseinrichtungen
DE102006005477A1 (de) * 2006-02-03 2007-08-09 Veit Wilhelm Vorrichtung zur Erzeugung von Strom, sowie Kraftfahrzeug mit Elektroantrieb und solcher Vorrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1326017A1 (de) * 2000-10-10 2003-07-09 Honda Giken Kogyo Kabushiki Kaisha Hybridfahrzeug
WO2005103453A1 (fr) * 2004-04-09 2005-11-03 Armines Systeme pour recuperer l’energie thermique d’un vehicule a moteur thermique
WO2006097089A2 (de) * 2005-03-15 2006-09-21 Kuepfer Ewald Verfahren und vorrichtungen zur verbesserung des wirkungsgrades von energieumwandlungseinrichtungen
DE102006005477A1 (de) * 2006-02-03 2007-08-09 Veit Wilhelm Vorrichtung zur Erzeugung von Strom, sowie Kraftfahrzeug mit Elektroantrieb und solcher Vorrichtung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9541027B2 (en) 2014-07-11 2017-01-10 Caterpillar Inc. System and method for recovering waste heat

Also Published As

Publication number Publication date
DE102008060950A1 (de) 2010-06-10

Similar Documents

Publication Publication Date Title
DE112005001368B4 (de) Thermoelektrisch verstärktes, hybrid-elektrisches Antriebssystem
EP3138148B1 (de) Kraft-wärme-kopplungsanlage zur dezentralen strom- und wärmeversorgung
DE10152809B4 (de) Verfahren zum Betreiben eines Hybridantriebssystems
EP1923288B1 (de) Hybrid-Antrieb mit Brennstoffzelle für ein Kraftfahrzeug
DE102005047653A1 (de) Hybridantriebseinheit mit Niedertemperatur-Kreislauf
EP2448782A1 (de) System zum antrieb einer aggregatanordnung für ein kraftfahrzeug
WO2013131642A1 (de) Abwärmenutzungsvorrichtung für ein kraftfahrzeug
DE102007004172A1 (de) Kraftfahrzeug
EP3026237A1 (de) Verfahren und vorrichtung zum betrieb eines elektromotorisch unterstützten abgasturboladers eines kraftfahrzeugs
DE102010047518A1 (de) Vorrichtung zur Energierückgewinnung aus einem Abgasstrom einer Verbrennungskraftmaschine
DE10047200A1 (de) Startvorrichtung für mobile Brennstoffzellensysteme
WO2010063368A1 (de) Kraftfahrzeug mit einer abwärmenutzungsvorrichtung zur einspeisung der abwärme in nutzbare mechanische arbeit
WO2008138562A1 (de) Fahrzeugantrieb
DE102007013873A1 (de) Verfahren und Vorrichtung zum Laden eines Energiespeichers
DE102009045979A1 (de) Antriebsvorrichtung für ein Fahrzeug, Elektrofahrzeug, Verfahren zum Betreiben einer Antriebsvorrichtung
DE102012017194A1 (de) Wirtschaftliche und energieefiziente Nutzung von Hybridmotoren und Wärmespeichern für den mobilen Einsatz in Kraftfahrzeugen und für den stationären Einsatz als Blockheizkraftwerk (BHKW)
DE102008030566A1 (de) Elektrofahrzeug mit einer Wärmeerzeugungseinrichtung
DE102011116425A1 (de) Reichweitenverlängerungsmodul eines elektrisch betreibbaren Fahrzeuges, mit zumindest einer Verbrennungskraftmaschine und einem mit dieser gekoppelten Generator sowie dessen Anwendung
DE102006005477B4 (de) Vorrichtung zur Erzeugung von Strom, sowie Kraftfahrzeug mit Elektroantrieb und solcher Vorrichtung
DE10142923A1 (de) Hybridantriebsvorrichtung und Verfahren zum Betreiben der Hybridantriebsvorrichtung
DE102016224484A1 (de) Elektrofahrzeug mit einer Traktionsbatterie und einem Range-Extender und Verfahren zu dessen Betrieb
DE102015009636A1 (de) Vorrichtung und Verfahren für eine kombinierte elektrische und mechanische Nutzung der Energie einer Expansionsmaschine
WO2023001828A1 (de) Batteriemanagement-verfahren und batteriemanagement-system für eine bordnetz-batterie eines hybrid-kraftfahrzeugs
DE112016001163T5 (de) Schnelllaufender fahrmotor für ein fahrzeug mit auch einem nach dem offenen brayton-kreisprozess arbeitenden zusatz-hilfsantrieb und range-extender
DE102013202999A1 (de) Verfahren zum Erwärmen der Traktionsbatterie im Antriebssystem eines Elektrohybrid-Fahrzeuges

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09760101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09760101

Country of ref document: EP

Kind code of ref document: A1