WO2010060324A1 - 一种物料分离与传热于一体循环流化床锅炉 - Google Patents

一种物料分离与传热于一体循环流化床锅炉 Download PDF

Info

Publication number
WO2010060324A1
WO2010060324A1 PCT/CN2009/074449 CN2009074449W WO2010060324A1 WO 2010060324 A1 WO2010060324 A1 WO 2010060324A1 CN 2009074449 W CN2009074449 W CN 2009074449W WO 2010060324 A1 WO2010060324 A1 WO 2010060324A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
flue
material separation
drum
fluidized bed
Prior art date
Application number
PCT/CN2009/074449
Other languages
English (en)
French (fr)
Inventor
王森
Original Assignee
Wang Sen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Sen filed Critical Wang Sen
Publication of WO2010060324A1 publication Critical patent/WO2010060324A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
    • F23C10/10Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/0007Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed
    • F22B31/0084Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed with recirculation of separated solids or with cooling of the bed particles outside the combustion bed
    • F22B31/0092Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed with recirculation of separated solids or with cooling of the bed particles outside the combustion bed with a fluidized heat exchange bed and a fluidized combustion bed separated by a partition, the bed particles circulating around or through that partition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/40Arrangements of partition walls in flues of steam boilers, e.g. built-up from baffles

Definitions

  • the invention relates to an industrial boiler, which is widely applicable to non-sealed low and high temperature hot water, phase change hot water, high, medium and low pressure steam; in particular, relates to a small-scale cogeneration low- and medium-cycle multiplication circulating fluidization Bed boiler, and can be developed into a new type of circulating fluidized bed boiler with medium and large high cycle rate.
  • Background technique
  • Circulating fluidized bed boiler technology is a generation of high-efficiency, low-pollution clean combustion technology developed in the world in recent years. Its main features are low emission, high combustion efficiency, wide fuel adaptability, good load regulation performance, and ash. It is easy to comprehensively utilize and so on, so it has been rapidly commercialized internationally. Under the background of global warming, the contradiction between coal burning and environmental protection, and the development of a low-carbon economy in the world, circulating fluidized bed boilers have become the preferred high-efficiency and low-pollution thermal power equipment.
  • the new technology of vortex separation is high separation efficiency, the disadvantage is high volume, complicated process, high cost; high resistance, high power consumption, easy high temperature coking, large heat loss of boiler start and stop; poor load regulation performance, soot
  • the initial emission concentration is high.
  • the advantage of the separation in the cold vortex is that the structure is compact and small, and high temperature coking can be avoided.
  • the disadvantages are complicated manufacturing process, high resistance and high power consumption, high fly ash content, high carbon content, and high initial emission concentration of soot.
  • the present invention provides a circulating fluidized bed boiler with energy saving, emission reduction, emission reduction, process advancement, simple manufacturing, low cost, material separation and heat transfer in order to solve the technical problems existing in the prior art.
  • a circulating fluidized bed boiler in which material separation and heat transfer are integrated, including a front wall, a rear wall, symmetric walls on both sides, and a ceiling wall above. And a body formed by the lower silo; the main body is provided with a main combustion chamber and a drum; the drum is connected to the lower header, the lower header is connected to the upper header; and the rear of the main combustion chamber is provided with a a first-stage material separation unit, wherein the first-stage material separation unit is divided into a descending smoke chamber and an upstream smoke chamber from front to back by guiding the flue gas to the upper folding wall, and the descending smoke chamber and the upstream smoke chamber are sealed and installed in them
  • the lower chamber having the expansion space of the turning passage communicates with the front upper portion of the first-stage material separation unit and the main combustion chamber, and the rear upper portion of the first-stage material separation unit communicates with the flue, the first stage
  • the four walls of the material separation unit are
  • the drum is a vertical type; the flue is an annular flue, the annular flue includes a left and right longitudinal flue and a horizontal flue, and the vertical flue is provided with a plurality of rows of convection tubes, the plurality of rows of convection
  • the innermost tube of the tube bundle forms a side symmetrical water wall of the longitudinal flue; the side symmetrical water wall is sealed with the corresponding side symmetrical wall to form the longitudinal flue; the lateral flue is from the main combustion chamber
  • the front wall is formed in a sealed connection with the front wall of the boiler.
  • a second-stage material separation unit is disposed behind the first-stage material separation unit, and a front upper portion of the second-stage material separation unit is in communication with the first-stage material separation unit, and the second-stage material separation unit is The rear upper portion communicates with the flue.
  • the structure of the second-stage material separation unit is the same as that of the first-stage material separation unit.
  • the drum is of a horizontal type
  • the front end of the horizontally-shaped drum is a first-stage material separation unit
  • the flue is a vertical-type flue
  • the horizontal-shaped drum comprises an upper drum and a lower drum. The connection between the drum and the lower drum is described.
  • the second stage material separation unit comprises a downcomer and a silo sealed to the lower portion thereof.
  • An economizer is disposed in the downwind chamber of the second-stage material separation unit.
  • the flue is a shaft type flue.
  • the heated hot wall is a full-membrane wall structure or a semi-membrane wall structure or a full-light tube cast refractory structure.
  • the deflecting wall of the guiding flue gas is a full-membrane wall structure or a semi-membrane wall structure or a full-light tube cast refractory material structure or a dry refractory wall structure.
  • the invention has the advantages and positive effects that: the flue gas flows in multiple backflows under a plurality of radiation heat transfer spaces in the furnace, and the multi-stage horizontal superheater and the reheater are conveniently arranged in the radiation heat transfer space, in the same and large Under the condition of reducing the height of the furnace body, the radiation heating area is large, the flue gas flow is long, the residence time of the combustibles in the furnace is increased, the fly ash amount and the carbon content of the fly ash are reduced, and the thermal efficiency is improved; the boiler body is connected vertically and horizontally, not only the whole It has strong anti-shock ability and water distribution, automatic adjustment of natural circulation of boiler water, and safe and reliable water circulation.
  • the boiler capacity is as small as 4 tons from the current minimum to 1 ton and can achieve the desired performance index and low cost and high quality.
  • Low and medium cycle rates can achieve 1-220 tons for larger capacity development.
  • the circulating fluidized bed boiler with high cycle rate adopts two-stage combination of inertial gravity separation or two-stage combination of inertial gravity separation and cyclone separation to develop medium and large-scale new circulating fluidized bed boilers.
  • the vertical structure of the drum in the invention completely changes the homogenization structure of the circulating fluidized bed boilers which are popular in the world, and significantly improves the performance of the boiler, greatly reduces the cost of the boiler, and achieves six major breakthroughs in the six major changes. .
  • the first is the structural form change, which consists of a single-drum transverse convection heating surface and a drum body structure, which is changed into a single-pot vertical-type full-membrane wall radiation and a convective heating surface and a drum integrated structure.
  • the second is the change of the material separation mode, which is changed from a cyclone separator or an inertial separator with a non-heated surface to a membrane type water wall inertial gravity separator which naturally consists of the radiation heating surface space without any special device and separation element.
  • the third is the boiler body The support mode is changed, and the non-heated surface steel frame is suspended to be self-supported by the heating surface of the boiler body.
  • the fourth is that the convection of the radiation is changed by the heat form, and the one-side heating of the water-cooled wall and the horizontal arrangement of the convection tube bundle are changed to all the double-sided heating of the water-cooled wall, and the convection tube bundle is vertically arranged.
  • the fifth is the change of the combustion chamber and the flue gas return, which is mainly changed from the single combustion chamber and the flue gas, and the secondary combustion chamber and the exhaust chamber and the flue gas are four to six return strokes.
  • the sixth is the change of the hood distance and the coal-conducting wind tunnel. The strict control of the conventional hood distance and the matching hood aperture and the wind direction angle are reduced. The sowing wind is changed from a single air duct to an upper and lower double air duct.
  • the first is to reduce the separation space of non-heated surface materials, compact structure and small volume, 75 tons of boilers under the condition of reducing furnace height by 20% _30%, the radiation heating area is large, the flue gas flow is long; advanced technology and simple structure .
  • the second is to achieve the dual function of material separation and radiation heat transfer, high material separation efficiency, no coking; boiler start and stop fast, load regulation performance is good. It saves 100% of the heat-resistant steel skeleton of the separator, saves 90% of the high-temperature and wear-resistant materials of the separator, saves 70% of the installation cost of the saving separator, and saves electricity consumption of the induced draft fan by more than 20%.
  • the third is to save 30%-50% of the non-heated surface steel frame.
  • the fourth is to significantly improve the effective utilization and heat transfer effect of the heated surface, greatly reduce the convection heating area ash, reduce the ash strength, and facilitate the stability of operation efficiency.
  • the fifth is that the radiation heating area is large and the flue gas flow is long; the soot is decelerated by the multi-return capacity in the furnace to slow down the gravity settlement, which not only helps to improve the thermal efficiency, but also the original emission concentration of the soot is 3-5 times lower than the Chinese national standard, saving the dust collector investment 30 %.
  • the sixth is to significantly improve the fuel fluidization and combustion conditions in the dense phase zone, so that the combustion efficiency of small boilers, that is, the slag carbon content can be comparable to that of large boilers.
  • Figure 1 is a front elevational view of a first aspect of the present invention
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
  • Figure 3 is a cross-sectional view taken along line B-B of Figure 1;
  • Figure 4 is a front elevational view of a second aspect of the present invention.
  • Figure 5 is a cross-sectional view taken along line B-B of Figure 4.
  • Figure 6 is a front elevational view of a third aspect of the present invention.
  • Figure 7 is a front elevational view of a fourth aspect of the present invention.
  • Figure 8 is a front elevational view of a fifth aspect of the present invention.
  • Figure 9 is a front elevational view of a sixth aspect of the present invention.
  • 1 is the slag pipe
  • 2 is the isostatic bellows
  • 3 is the hood
  • 4 is the coal feeder
  • 5 is the high temperature wear resistant material
  • 6 is the horizontal box
  • 7 is the steel frame
  • 8 is the water wall
  • 9 is Side symmetrical lower header
  • 10 is lower transverse box
  • 11 is ash removal door
  • 12 is front transverse water wall
  • 13 is rear transverse water wall
  • 14 is front wall water wall
  • 15 is horizontal flu
  • 16 is Guided to the bottom of the wall
  • 17 is the down tube
  • 18 is the main combustion chamber
  • 19 is the secondary combustion chamber
  • 20 is the side symmetrical upper header
  • 21 is the upper transverse box
  • 22 is the front wall
  • 25 is an upper horizontal box
  • 26 is an upper horizontal box
  • 27 is a smoke wall
  • 28 is an upper horizontal box
  • 29 is an upper horizontal box
  • 30 is a burn-out room
  • 31 is Horizon
  • the invention relates to an industrial boiler, which is widely applicable to non-closed low-temperature, high-temperature hot water, phase-changing hot water, high-, medium-low pressure steam; in particular to a small-scale cogeneration low- and medium-cycle circulating fluidized bed Boiler, a new type of circulating fluidized bed boiler that can be developed to medium and large high cycle rates. It involves improving the structural design of various circulating fluidized bed boilers and retrofitting old and old chain chain boilers and conventional circulating fluidized bed boilers.
  • the object of the present invention is to completely change the shortcomings of the existing small circulating fluidized bed boiler, and provide a remarkable energy saving, emission reduction, advanced technology, simple manufacturing and installation, and the boiler capacity is as small as 1 ton to 220 tons or more.
  • a longitudinal full-membrane wall material separation and heat transfer integrated circulating fluidized bed boiler including a front wall 22, a rear wall, two side symmetrical walls, an upper ceiling wall 52 and a lower material.
  • the silos 43, 39 constitute a material separation and heat transfer in an integrated circulating fluidized bed boiler body, and the boiler is provided with a main combustion chamber 18 and a drum 24, and its characteristics Yes, the first stage or the second stage two-stage material separation unit is sequentially connected to the rear of the main combustion chamber 18, wherein the first-stage material separation unit includes a pair of the upper and lower turning walls 16 which are guided by the guiding flue gas.
  • the combustion chamber 19 and the burn-out chamber 30, the sub-combustion chamber 19 and the burn-out chamber 30 are communicated by a silo 43 having a flue gas turning passage expansion space 41 which is sealedly connected below them, the upper portion of the sub-combustion chamber 19 and the main combustion chamber 18 communicating, the upper portion of the burnout chamber 30 is in communication with the second-stage material separation unit, and the main combustion chamber 18 is separated from the first-stage material separation unit by the rear cross-water cold wall 13, and the first-stage material separation unit and the second-stage material are separated.
  • the unit is separated by a cross-sectional panel 31, and the second-stage material separation unit includes a burn-out chamber 33 in which the lower portion is sealed and connected to the silo 39.
  • the main combustion chamber 18 and the side of the first-stage and second-stage two-stage material separation unit are side-symmetrical water-cooling walls 54 sealed thereto, and the main combustion chamber 18 is provided with a front cross-water wall 12 which is sealingly connected to the side-symmetric water-cooling wall 54.
  • the burnout two chambers 33 are provided with a rear wall water wall 35 that is sealingly connected to the side symmetrical water wall 54.
  • the upper ends of the front horizontal water wall 12, the rear horizontal water wall 13, the guide flue gas upper folding wall 16, the horizontal tube screen 31 and the rear wall water wall 35 are respectively arranged with the upper horizontal headers 21, 25, 26, 28
  • the lower portions of the 29 are connected to and sealed to the outside, and the lower ends thereof are respectively communicated with the upper portions of the lower cross boxes 10, 46, 40, 36, 38 and are sealedly connected to the outside, and are arranged above the flue gas upper folding wall 16
  • the outer ends of 25, 26, 28, 29 are connected to the side symmetric upper header 20, and the outer sides of the lower cross boxes 10, 46, 40, 36, 38 are symmetrically symmetrical lower headers 9, and the bottom of the drum 24 is lowered by a plurality of
  • the tube 17 is connected to the side symmetrical lower header 9, the horizontal
  • This embodiment is provided with an annular flue comprising a left longitudinal flue 48, a transverse flue 15 and a right longitudinal flue 56 which are in communication with each other, said annular flue
  • the flue gas inlet 32 of the road is disposed at the rear of the left symmetric water wall 54, and the outlet is in communication with the exhaust port 34 of the boiler.
  • the structure of the left vertical flue 48 is: the upper end of the left symmetric water wall 54 is in communication with the left symmetric upper header 20 and is sealedly connected to the outer side thereof, and the lower end is connected to the left symmetric lower header 9 and is sealedly connected to the outer side;
  • the side wall 57 is provided with a side symmetrical convection film wall 55.
  • the upper end of the side symmetrical convection film wall 55 communicates with the left symmetrical upper header 20 and is sealedly connected to the outer side thereof, and the outer side of the side symmetrical convection film wall 55 and the left side wall 57 Between the refractory insulation material, the lower end is open, the lower part of the open is sealed with a falling hopper 60, and the side wall 57 is provided with a ash blowing port 37, which is formed between the left symmetric water wall 54 and the left side wall 57.
  • Left longitudinal flue 48 is
  • the structure of the horizontal flue 15 is: the upper end of the front cross-water wall 12 is in communication with the upper cross box 21 and is sealingly connected to the outer side thereof, and the lower end is connected to the lower cross box 10 and is outside thereof Sealed connection; the upper end of the front wall water wall 14 is in communication with the upper cross box 21 and is sealingly connected to the outer side thereof, and the lower end is in communication with the lower cross box 10 and is sealingly connected to the outer side thereof, between the front wall water wall 14 and the front cross water wall 12 A lateral flue 15 is formed, and a ash removing door 11 is provided at the bottom outer end of the lateral flue 15.
  • a right longitudinal flue 56 is formed between the right symmetric water wall 54 and the right side wall 57, the structure being symmetrical with the structure of the left longitudinal flue 48.
  • a plurality of rows of convection tube bundles 58 are laterally disposed in the left longitudinal chimney 48 and the right longitudinal chimney 56.
  • the upper end of the convection tube bundle 58 is in communication with the side symmetrical upper header 20, and the lower end is in communication with the side symmetrical lower header 9.
  • the first-stage material separation unit in this example consists of a sub-combustion chamber, a burn-out chamber, a turning passage expansion space, and a silo.
  • the front wall of the auxiliary combustion chamber is on the same wall as the rear wall of the main combustion chamber, the rear wall is the upper folding wall for guiding the flue gas, the side wall is the water-cooled wall, and the top is the water-cooled ceiling; after burning the front wall of the chamber and the sub-combustion chamber
  • the wall is the same wall, the side wall and the top are extensions integral with the auxiliary combustion chamber, the rear wall is the same as the burning chamber of the second-stage material separation unit, and the bottom is the silo; the second-stage material separation unit is burned out
  • the chamber is extended from the sides of the back wall of the burning room and the ceiling to the rear to add a burnout two chamber and a silo, and the flue gas outlet enters the annular convection flue from the upper part.
  • the material separation is controlled by the flue gas.
  • the forced flue gas is turned from the main combustion chamber outlet to the sub-combustion chamber, and the centrifugal force and the gravitational force of the flue gas are sharply turned.
  • the inertial gravity separation performance is significantly improved.
  • the flue gas is greatly expanded by the turning channel, the gravity is settled in the silo, and the material is expanded backwards, downwards, and upwards to achieve high-efficiency inertial gravity separation and sufficient heat exchange with the heating surface.
  • This embodiment is a combination of low and medium cycle magnification inertial gravity separation of the vertical drum, 1.5-stage combination, radiation and convection and the integrated structure of the drum, and the flue gas has six return strokes.
  • Radiation convection flue is easy to adopt full-film wall structure, membrane water wall and membrane screen are all heated on both sides, furnace body sealing performance is good, reducing smoke loss, convection tube bundle vertical arrangement lateral flushing, thermal resistance small heat transfer coefficient High, reduce the ash of the heated area, stabilize the operation efficiency, and reduce the operation intensity of cleaning.
  • the upper end of the smoke wall 27 is tightly sealed with the bottom of the drum 24 and the ceiling pipe 51, and the lower end thereof is tightly sealed with the upper portion of the upper horizontal header 26.
  • the communication pipe 49 and the communication pipe 50 are integrally formed with refractory material in the middle thereof.
  • the smoke wall structure of the upper part of the pipe screen 31 and the connection structure of the upper and lower ends thereof are the same as the smoke wall 27, except that the smoke wall 27 of the folding wall is closed, and the smoke wall on the horizontal pipe screen 31 is provided with a small cross section of smoke.
  • the outlet 53 is oriented laterally opposite the left longitudinal flue gas inlet 32.
  • the upper cross box 21, 25, 26, 28, 29 and the lower cross box 10, 46, 40, 36, 38 are arranged at different pitches or the same pitch from front to back, and their two ends are respectively symmetrically connected to the side box 20 It is in communication with the inner longitudinal center of the side symmetrical lower header 9.
  • the front and rear transverse water walls 12, 13, the guiding flue gas upper folding wall 16, the horizontal pipe panel 31, the rear wall water cooling wall 35, and the front wall water cooling wall 14 are respectively sealed and connected to the side symmetrical water cooling wall 54 to Forming the main combustion chamber 18, sub-combustion
  • the burning chamber 19 burns out a room 30 and burns out two chambers 33.
  • the upper ends of the silos 43 are sealed to the lower ends of the lower cross boxes 46, 36 and the side symmetrical lower headers 9, respectively, to form a primary material separation; the upper ends of the silos 39 are front, rear, and left.
  • the right side is sealingly mounted with the lower ends of the lower cross boxes 36, 38 and the side symmetrical lower headers 9, respectively, to form a secondary material separation.
  • the upper end of the side symmetrical water wall 54 communicates with the inner side of the side symmetrical upper header 20, and the lower end communicates with the inner side of the side symmetrical lower header 9.
  • the convection tube bundle 58 and the side symmetrical water wall 54 are spaced apart from the longitudinal, cross row or in the row. Arranged in rows or outside, the outermost row of the convection tube bundle 58 forms a side-symmetric convective diaphragm wall 55.
  • the upper and lower ends of the convection tube bundle 58 are in radial communication with the laterally symmetric upper and lower headers 20, 9, respectively, and the laterally symmetric water-cooled wall 54
  • the left side of the gap between the convective tube bundle and the side symmetrical convection membrane wall 55 is the flue gas passage of the left longitudinal flue 48
  • the right side is the flue gas passage of the right longitudinal flue 56
  • the space between the cross-wall cold walls 12 is a lateral flue 15 . Burning out a small section of the flue gas of the upper part of the room 30.
  • the flue gas inlet 32 of the left longitudinal flue 48, the exhaust port 34 may be round, rectangular or square.
  • the upper end of the plurality of downcomers 17 communicates with both sides of the front and rear ends of the drum 24, and the lower end communicates with the side symmetrical lower header 9, the horizontal header 6, and the small vertical box 61; the front and rear transverse water walls 12, 13 , Side symmetrical water wall 54, front and rear wall water wall 14, 35, guide flue gas upper turn wall 16, side symmetrical wall water wall, full membrane wall structure, semi-membrane wall structure, full light pipe Sealing structure with refractory material, semi-light tube and refractory sealing structure.
  • the plurality of rows of convection tube bundles 58 communicating with the upper and lower headers 20 and 9 are convectively transferred to the flue gas, the front cross water wall 12, the rear cross water wall 13, the flue gas lower folding wall 16, and the horizontal tube screen. 31 and the rear wall water wall 35 radiate heat transfer with the flue gas. Six strokes of smoke.
  • the ash hopper 60 is longitudinally arranged in plurality, the upper end of which is connected with the outer lower part of the side symmetrical lower header 9 and the steel frame 59, and is insulated and sealed by refractory material, and the lower end thereof communicates with the ash pipe, and the ash pipe is installed at a convenient position.
  • the ash discharge valve has a bottom end connected to the ash discharge pipe, and an inspection hole (manhole) is installed on either side of the silo 43, 39 for easy operation or entry.
  • the slag pipe 1, the isobaric bellows 2, the hood 3, the coal feeder 4, the high-temperature wear-resistant material 5 in the dense phase zone, and the various instrument valves on the top of the drum 24 are arranged according to the prior art, and the furnace wall and the water wall 8 It is a common sense and is not described here.
  • the front, rear, left and right sides of the furnace body and the upper ceiling pipe 52 are filled with insulation material and a packaging board seal.
  • the secondary air outlet, the measuring hole, the observation hole, the explosion-proof door, and the like are respectively installed on the lower side of the side symmetrical lower header 9 or on the side of the upper side of the side symmetrical upper header 20, and the side symmetrical upper and lower header single row tube arrangement is not limited by this.
  • Concrete support piers or steel frames can be used at the front and rear ends of the bottom support of the boiler.
  • the middle section is made of steel frame or concrete according to the specific conditions.
  • the convection heat transfer of the vertical drum is integrated into the integrated structure, and the convection tube bundles on both sides of the furnace body reduce the temperature of the flue gas, and the light furnace wall can be used to reduce the weight of the furnace body and save the installation cost and the refractory insulation material.
  • Longitudinal furnace body The hot surface self-supporting can save 30% of the steel frame.
  • Inertial gravity separation replaces cyclone separation.
  • Longitudinal and horizontal placement can save 100% of the separator skeleton, save 90% of wear-resistant materials, save 20% of the power consumption of the induced draft fan, save 70% of the installation cost of the separator, and save 30% of the investment of the dust collector. , reduce the de-ashing strength of the heated surface by 60%, and the initial emission concentration of soot is 3-5 times lower than the national standard.
  • Embodiment 1 The working principle of Embodiment 1 is as follows:
  • Fluidized bed combustion is a kind of combustion in which the bed material is fluidized.
  • the fuel can be fossil fuel, industrial and agricultural waste and various inferior fuels, biomass fluidized combustion or mixed combustion of biomass and coal.
  • the coarse particles are burned in the lower portion of the main combustion chamber 18, and the fine particles are burned in the upper portion of the main combustion chamber 18.
  • the fine particles blown out of the main combustion chamber 18 pass through the sub-combustion chamber 19 and the burn-out chamber 30, and the burn-out chamber 33 continues to burn.
  • the particles are gravity-sedimented in a large space, and then separated by inertial flow to a 180-degree sharp turn, so that unburned particles are separated into the hoppers 43 and 39, and the flue gas enters the burnout through the small-section outlet 53 of the flue gas chamber.
  • the chamber 33 is further passed through the left vertical flue gas inlet 32 into the left longitudinal flue 48 to the lateral flue 15 and the flue gas enters the other side end, passes through the longitudinal flue 56, and passes backward through the exhaust port 34, the smoke
  • the gas is returned to the furnace 6 times in the furnace, and then enters the dust collector for dust removal.
  • the air blower is discharged to the chimney to enter the atmosphere.
  • the circulating fluidized bed boiler is combusted throughout the main combustion chamber 18, and has a high particle concentration in the main combustion chamber.
  • the high concentration particles pass through the bed, the main combustion chamber 18, the secondary combustion chamber 19, the burnout chamber 30, and the combustion.
  • the two chambers 33 and the material separation silos 43, 39 returning device legs 44, 42, the return valve 45 are returned to the main combustion chamber 18 for multiple cycles, and the particles are fully combusted and heat transferred during the cycle.
  • the boiler feed water After the boiler feed water is treated, it enters the drum 24, and enters the side symmetrical lower header 9, the horizontal header box 6, and the small vertical box 61 through the plurality of downcomers 17; the heat generated by the fuel is conducted by radiation and convection in the main combustion chamber.
  • the front and rear transverse water walls 12, 13, the side symmetrical water wall 54, the guiding flue gas upper folding wall 16, the horizontal tube screen 31, the front and rear wall water walls 14, 35, and the ceiling tube 51 are absorbed for heating the water supply. Steam and water mixture.
  • the resulting soda mixture enters the drum 24 where it is separated by steam and water.
  • the separated water enters the downcomer 17 to continue to participate in the water cycle, and the separated saturated steam enters the superheater 23 to continue heating to become superheated steam to supply thermal power.
  • Fluidized bed combustion is a kind of combustion in which the bed material is fluidized.
  • the fuel can be fossil fuel, industrial and agricultural waste and various inferior fuels, biomass fluidized combustion or mixed combustion of biomass and coal.
  • coarse particles are burned in the lower portion of the main combustion chamber 18, fine particles are burned in the upper portion of the main combustion chamber 18, and fine particles blown out of the main combustion chamber are forced to gas-solid two-phase passages under the action of deflecting the wall 16 under the guiding flue gas.
  • the combustion chamber 19 directly flushes the silo 43, the flue gas expands through the turning passage 41, and the fine particles continue to gravity settle in the silo 43 and the flue gas is turned to 180 degrees.
  • Sub-inertial separation through the burnout chamber 30 the solid particles continue to settle naturally at a flow rate lower than 5 meters, and enter the burnout two chambers 33 at a flow rate of 7-8 meters when passing through the flue gas outlet 53 of the burnout chamber, thereby improving the capacity expansion and deceleration gravity settlement.
  • the performance of the inertial separation and expansion of the gravity-precipitated fine particles into the silo 39, the material from the silo 43 and the silo 39, through the material legs 44, 42 into the return valve 45 through the return leg 47 into the main combustion chamber 18 Multiple cycles of combustion; the particles undergo full combustion and heat transfer during the cycle.
  • the flue gas enters the left vertical flue 48 through the left vertical flue gas inlet 32 to the horizontal flue 15 and turns to the right.
  • the right vertical flue 56 goes backward to the exhaust port 34.
  • the flue gas is returned in the furnace 6 to enter the dust removal.
  • the device performs dust removal and is finally discharged by the induced draft fan to the chimney to enter
  • the boiler feed water After the boiler feed water is treated, it enters the drum 24, and passes through a plurality of downcomers 17, respectively, into the bottommost small vertical box 61, and the horizontal header box 6 or the side symmetrical lower header box 9 facilitates the location required for the ascending water.
  • the heat generated by the fuel is conducted by radiation and convection in the main combustion chamber 18, from the front cross water wall 12, the rear cross water wall 13, the side symmetrical water wall 54, the flue gas lower turn wall 16, and the horizontal tube screen 31.
  • the front and rear wall water walls 14, 35, the convection tube bundle 58, and the ceiling tube 51 are absorbed for heating to form a steam-water mixture.
  • the generated steam-water mixture enters the drum separately and is separated by steam and water.
  • the separated water enters the downcomer 17 and is repeatedly distributed to the original points to continue to participate in the water cycle.
  • the separated saturated steam enters the superheater 23 to continue heating to become superheated steam to supply thermal power. .
  • Embodiment 2 differs from Embodiment 1 in that: (1) a second-stage material separation unit disposed behind the main combustion chamber, the second-stage material separation unit includes a second guide
  • the flue gas lower folding wall 67 is divided into a burning two chamber 33 and a burnout three chamber 64 and a silo 72 having a turning passage expansion space 71 sealed under them, and is guided to the upper air deflecting wall 67.
  • the sealing smoke wall is provided, and the upper end of the guiding upper flute wall 67 is connected with the upper cross box 62, and the lower end is connected with the lower horizontal box 68, and the connecting structure is the same as the connecting structure of the two ends of the deflecting wall 16 of the guiding flue gas. .
  • the flue communicating with the second-stage material separation unit is a shaft type flue 65, and the economizer 66, 69 and the air preheater 70 are disposed in the shaft type flue 65, and the inlet of the shaft type flue 65 is introduced. It is in communication with the flue gas large-section outlet 63 of the upper portion of the burn-out three chambers of the second-stage material separation unit.
  • the rest of the structure is the same as in Embodiment 1.
  • the embodiment is a two-stage combination of a vertical circulation high-cycle multiplication inertial gravity separation, and a side-symmetric header single-row tube bundle arrangement to form a two-layer membrane water wall 74 or a light pipe water wall, a convective heat-reducing economizer, and air preheating.
  • the device is arranged in the shaft, the flue gas is six return strokes, and the smoke exhaust port 73 is disposed at the rear of the shaft type flue 65.
  • the two burn-out chambers and one silo are continuously extended from the two sides of the rear wall of the burn-out chamber and the ceiling, and the flue gas outlet enters the convection shaft flue from the upper portion.
  • the flue gas rises from the main combustion chamber 18 to the top rear outlet into the sub-combustion chamber 19, and under the action of the lower upper folding wall 16,
  • the forced gas-solid two-phase is directly flushed into the silo 43 through the auxiliary combustion chamber 19, so that the fine particles fall into the silo; the flue gas expands into the space through the turning passage 41, and the fine particles continue to gravity settle, and the flue gas returns upwards into the burning chamber 30 upward.
  • the flue gas expands the space 71 through the second turning passage. The fine particles continue to gravity settle, and the flue gas returns to the upward line.
  • the flue is a shaft type flue 65; the lower part of the burnout two chamber 33 cancels the silo and connects the shaft flue 65, and burns out a chamber 30 upper portion.
  • a flue gas large-section outlet 63 leading to the burnout two chambers 33 is provided, and economizers 66 and 69 are disposed in the burn-out two chambers 33, and an air preheater 70 is disposed in the shaft-type flue 65.
  • the side-to-side collection box single-row tube bundle arrangement constitutes two-sided membrane water wall or tube water wall (same embodiment 2), and the convection heating surface and the tail heating surface are arranged in the burnout two chambers 33 and the shaft 65, and the remaining structure and Example 1 is the same.
  • the single-stage separation of the low- and medium-cycle multiplication inertial gravity of the vertical drum is arranged, and the single-row tube bundle arrangement of the side-to-side collection box constitutes a membrane water-cooled wall or a water-cooled wall of both sides, and the convection heating surface is arranged in the burn-out two-chamber In the 33 and the shaft 65, the smoke has four return strokes.
  • the smoke path of the present embodiment the flue gas is the same as that of Embodiment 1 from the main combustion chamber 18 to the burnout chamber 30, and the flue gas enters the shaft flue 65 and the economizer 66 from the large-section flue gas outlet 63 of the burnout chamber. 69.
  • the air preheater 70 is discharged after convection heat exchange.
  • the difference between the embodiment 4 and the embodiment 1 is as follows: (1) the flue is a vertical flue 65; (2) a primary material separation unit is arranged after the main combustion chamber, and the primary material separation unit passes The flue gas large section outlet 63 is connected with the shaft type flue 65.
  • the shaft type flue 65 is provided with an economizer 66, 69, a lower exhaust cyclone 75, and an air preheater 70 from top to bottom.
  • the structure is the same as that of the first embodiment.
  • the vertical circulation drum has a high cycle ratio, inertial gravity separation and cyclone separation, which can shorten the length of the furnace body, and the side of the single-row tube bundle arrangement of the collection box constitutes a membrane water wall or a water-cooled wall of the two sides, and the convection
  • the heated economizer and air preheater are arranged in the shaft and the flue gas has four return strokes.
  • the smoke path of the present embodiment the flue gas is from the main combustion chamber 18 to the economizer 69 in the same manner as in the fourth embodiment, and the flue gas is again discharged through the cyclone 75 installed in the shaft flue and the air preheater 70.
  • the drum is horizontal.
  • Horizontally placed pot A plurality of rows of convection tube bundles 58 are disposed laterally between the barrel 77 and the lower drum 81.
  • the lower end of the convection tube bundle 58 is in communication with the lower drum 81, and the upper end is in communication with the upper drum 77.
  • the front row of the convection tube bundle 58 forms a first stage material separation unit.
  • the horizontal tube panel 31 of the first chamber 30 is burned out, and the vertical section of the last row of the convection tube bundle 58 forms the water wall of the shaft front wall 80.
  • the outermost convection tube bundles on the left and right sides of the convection tube bundle 58 respectively form a side symmetrical water wall, and the side symmetrical water wall
  • the upper and lower ends are respectively sealedly connected to the outer surfaces of the upper and lower drums 77 and 81.
  • the front ends of the side symmetrical water-cooling walls are sealingly connected with the two sides of the horizontal pipe panel 31, and the rear end is sealedly connected with the front wall 80 of the shaft.
  • the upper portion is provided with a smoke outlet, and the second guiding flue gas upper folding wall 67, which is connected to the upper drum 76 and is sealedly connected to the outside, divides the space between the horizontal pipe panel 31 and the shaft front wall 80 into a convection.
  • the ash hopper 60 and the convection upstream flue 79, the convection downwind tract 78 and the convection upstream flue 79 are sealed to the underside of the ash hopper 60.
  • the rest of the structure is similar to that of Embodiment 4.
  • the flue gas of the present example rises from the main combustion chamber 18 to the top rear portion, enters the auxiliary combustion chamber 19 through the main combustion chamber flue gas outlet, and forces the flue gas through the auxiliary combustion chamber under the action of the deflecting wall 16 under the guiding flue gas. 19 directly flushing the silo 43, the flue gas flows back into the burnout chamber 30 through the turning passage expansion space 41, and goes up to the rear rear portion into the convection downwind flue 78, and goes to the bottom rear portion to enter the convective ascending flue 79, to The rear part of the top enters the shaft flue 65 and is discharged by convection heat transfer by the economizers 66 and 69.
  • the boiler feed water may first enter the economizer 66, 69, and then enter the upper drum 77, through the plurality of downcomers 17, respectively, into the bottommost small vertical box 61, the transverse box 6 or the side
  • the position of the symmetrical lower header 82 which is required for the ascending water is fed into the side symmetrical upper header through the heated tube bundle, and then enters the upper drum 77 through the steam guiding tube 76; the water in the convection tube bundle 58 rises and falls, and the temperature rises.
  • the soda water mixture is subjected to steam-water separation, and the separated water enters the downcomer 17 and is again distributed to the original points to continue to participate in the water cycle; the separated saturated steam enters the superheater 23 to continue heating to become superheated steam to supply thermal power.
  • the horizontal and vertical circulation magnification single-stage inertial gravity separation is carried out in the transversely-shaped drum, and the side-symmetric upper and lower headers are respectively connected with the upper and lower drums, and the single-row tube bundles form the membrane water-cooling wall or the water-cooling wall of the two sides, and the secondary combustion chamber
  • the roof of the burnout room is a drywall structure, and the convection heating surface is vertically arranged.
  • the tail heating surface economizer and the air preheater are arranged in the shaft, and the flue gas is six return strokes.
  • the difference between this embodiment and the embodiment 5 is as follows: (1) the side symmetrical upper header and the side symmetrical lower header pass through the upper center header 83 and the steam conduit 76 and the upper drum connected thereto 77 connected; (2) silo The position of the 43 and the position of the upper deflecting wall 16 for guiding the flue gas are the same as those of the first embodiment, and the rest of the structure is the same as that of the fifth embodiment.
  • the single-stage inertial gravity separation of the horizontal and vertical circulation ratios of the horizontally-disposed drum is respectively connected, and the upper and lower headers and the horizontal headers respectively communicate with the radiation-heated surface tube bundle, and the steam is taken from the upper steam tube.
  • the central collecting box is introduced into the upper drum, and the convection heating surface tube bundle is connected with the upper and lower drums to be installed at the upper center collecting box and the rear end of the upper and lower collecting boxes, and the tail heating surface economizer and the air preheater are arranged in the shaft, the flue gas is six Return trip.
  • the flue gas lower folding wall 67 and the side symmetrical water cooling walls 54, 74 can adopt a full-membrane wall structure, a semi-membrane wall structure, and a full-light tube casting refractory structure.
  • the guide vane deflecting wall 16 and the second guiding flue gas lower folding wall 67 can adopt a full film screen structure, a semi-membrane screen structure, a full-light pipe water wall casting refractory structure, and a dry smoke wall structure.
  • the low- and medium-cycle circulating fluidized bed boiler of the present invention can be used for inertial gravity separation of single stage and 1.5 stages. Circulating fluidized bed boiler with high cycle rate, two-stage combination of inertial gravity separation.
  • the single-stage separated solid particles are separated by inertia twice in the furnace, one gravity sedimentation, and one low-speed upward natural settlement; the two-stage separation solid particles are separated four times in the furnace, and two gravity settlements are achieved, and the material separation efficiency is high, and no coking is achieved.
  • the boiler starts and stops quickly and the load regulation performance is good.
  • the design can be selected among a variety of options according to actual needs.
  • the technical key to low and medium cycle rates is the different flue gas flow rates under the flue gas, the upward flue gas flow rate and the flue gas flow rate in the turning channel; the key to the high cycle rate is the flue gas flow rate in the turning channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

一种物料分离与传热于一体循环流化床锅炉
技术领域
本发明涉及一种工业锅炉,广泛适用于非密闭低、高温热水,相变换热热水, 高、 中、 低压蒸汽; 尤其涉及一种小型热电联产低、 中循环倍率的循环流化床锅炉, 并可 向中、 大型高循环倍率发展的新型循环流化床锅炉。 背景技术
循环流化床锅炉技术是近些年来在国际上发展起来的一代高效、低污染清洁燃烧 技术, 其主要特点在于低排放、 燃烧效率高, 而且具有燃料适应性广, 负荷调节性能 好,灰渣易于综合利用等优点,因此在国际上得到迅速的商业推广。在全球气候变暖、 燃煤与环保的矛盾日益突出、全球发展低碳经济的大背景下,循环流化床锅炉已成为 首选的高效低污染热能动力设备。
据工业锅炉杂志报导, 目前中国工业锅炉在用总台数 52万台, 〈 35t/h的锅炉 约占总容量的 98. 9%, l〜10t/h的占 80%, 根据中国国情小型工业锅炉的数量在较长 时间内仍占据首位。据节能环保杂志报导, 美国卡特执政期间出台一项政策, 使原来 各宾馆、 学校、 医院、 厂矿等的小型供热锅炉, 绝大多数都改为先发电后供热的小热 电, 全国一下子就增加了几千万千瓦电力, 而且是高效率、 低能耗的电力。 北欧的丹 麦为提高能源利用率, 也做到了充分利用热用户发展没有冷端损失的热电项目, 全国 没有只供热不发电的锅炉房。 实践证实小热电比最现代化的大火电都节能显著。
中国现有 52万台工业锅炉, 如果向美国、 丹麦那样, 每年可减少二氧化碳排放 1000 亿 t以上, 因此发展节能、 降耗、 减排的小型热电联产循环流化床锅炉和工业 蒸汽循环流化床锅炉, 具有全球战略意义。 目前现有循环流化床锅炉结构处于同质化, ≥35吨大都是横置单锅筒, <35吨到 最小 4吨大都是横置双锅筒,尤其是<35吨的锅炉其性能和成本严重影响着市场推广, 主要原因是物料分离方式的影响, 市场上流行的较好的物料分离方式有两种, 一种是 国际上普遍流行的旋风分离成熟技术,一种是中国流行的水冷旋涡内分离新技术; 旋 风分离的优点是分离效率高, 缺点是体积高大、 工艺复杂、 成本高; 阻力大电耗高, 容易高温结焦, 锅炉启停慢热损失大; 负荷调节性能差, 烟尘的初始排放浓度高。 水 冷旋涡内分离的优点是结构紧凑体积小, 可避免高温结焦, 缺点是制造工艺复杂、 阻 力大电耗高, 飞灰量大含炭量高、 烟尘的初始排放浓度高。
物料分离称为循环流化床锅炉的心脏, 直接影响着锅炉的性能和成本, 影响着高 效、 低污染清洁燃烧技术的推广和应用, 突破这一技术关键和锅炉结构的全面创新, 可显著提高锅炉性能, 大幅度降低锅炉成本, 在全球发展低碳经济的大背景下, 具有 重要的现实意义。 发明内容
本发明为解决公知技术中存在的技术问题而提供一种节能降耗减排显著、工艺先 进、 制造安装简单、 成本低的物料分离与传热于一体的循环流化床锅炉。
本发明为解决公知技术中存在的技术问题所采取的技术方案是: 一种物料分离 与传热于一体的循环流化床锅炉, 包括由前墙、 后墙、 两侧对称墙、 上方顶棚墙和 下方料仓构成的本体; 所述本体内设置有主燃室和锅筒; 所述锅筒连通下集箱, 所 述下集箱连通上集箱; 所述主燃室的后面设置有第一级物料分离单元, 所述第一级 物料分离单元通过导向烟气下上折转墙从前向后分隔成下行烟室和上行烟室, 所述 下行烟室和上行烟室通过密封安装在它们下面具有转弯通道扩大空间的料仓连通, 所述第一级物料分离单元的前上部与所述主燃室连通, 所述第一级物料分离单元的 后上部连通烟道, 所述第一级物料分离单元的四壁均为连接在所述上集箱和下集箱 之间的受热水冷壁。
所述锅筒为纵置式; 所述烟道为环形烟道, 所述环形烟道包括左右纵向烟道和 横向烟道, 所述纵向烟道内设有多排对流管束, 所述多排对流管束的最内侧管形成 所述纵向烟道的侧对称水冷壁; 所述侧对称水冷壁与对应的所述侧对称墙密封形成 所述纵向烟道; 所述横向烟道由所述主燃烧室的前墙和该锅炉的前墙密封连接形成。
所述第一级物料分离单元的后面设置有第二级物料分离单元,所述第二级物料分 离单元的前上部与所述第一级物料分离单元连通,所述第二级物料分离单元的后上部 连通所述烟道。
所述第二级物料分离单元的结构与所述第一级物料分离单元的结构相同。
所述锅筒为横置式, 所述横置式锅筒的前端为第一级物料分离单元,所述烟道为 竖井式烟道; 所述横置式锅筒包括上锅筒和下锅筒,所述上锅筒和下锅筒之间连通有 多排对流管束, 所述多排对流管束的最前排管束形成第一级物料分离单元的横管屏, 所述多排对流管束的最后排管束的垂直段形成所述竖井式烟道前墙的水冷壁,所述对 流管束左右侧最外侧的对流管束分别形成侧对称水冷壁,所述侧对称水冷壁的上下端 分别与上、下锅筒的外面密封连接,所述侧对称水冷壁的前端与所述横管屏的两侧密 封连接, 所述侧对称水冷壁的后端与所述竖井式烟道的前墙密封连接,所述横管屏的 上部设有出烟口;上端与所述上锅筒连通并与其外面密封连接的第二导向烟气下上折 转墙将所述横管屏和所述竖井式烟道的前墙之间的空间分割成对流下行烟道和对流 上行烟道, 所述对流下行烟道和所述对流上行烟道的下面密封安装有灰斗。
所述第二级物料分离单元包括下行烟室及密封连接在其下部的料仓。
所述第二级物料分离单元的下行烟室内设置有省煤器。
所述烟道为竖井式烟道。
所述受热水冷壁为全膜式壁结构或半膜式壁结构或全光管浇注耐火材料结构。 所述导向烟气下上折转墙为全膜式壁结构或半膜式壁结构或全光管浇注耐火材 料结构或干耐火墙结构。
本发明具有的优点和积极效果是: 烟气在炉内多个辐射传热空间下上多回程流 动, 在辐射传热空间内便于布置多级卧式过热器和再热器,在相同和大幅度降低炉体 高度的条件下, 辐射受热面积大、 烟气流程长, 增加可燃物在炉内的停留时间, 降低 飞灰量和飞灰含碳量, 提高热效率; 锅炉本体纵横连通, 不仅整体性防震能力强而且 水分配均勾、锅水自然循环上升下降自动调节, 水循环安全可靠; 锅炉容量由目前最 小到 4吨实现最小到 1吨并能达到理想的性能指标和低成本高品质。低、中循环倍率 实现 1-220吨可向更大容量发展。高循环倍率的循环流化床锅炉采用惯性重力分离两 级组合或惯性重力分离与旋风分离两级组合向中、 大型新型循环流化床锅炉发展。
本发明中锅筒为纵置式结构的彻底改变了目前国际国内流行的循环流化床锅炉同 质化的结构形式, 显著提高了锅炉性能, 大幅度降低了锅炉成本, 实现六大改变六大 突破。
六大改变: 第一是结构形式改变, 由单锅筒横置式对流受热面与锅筒两体结构, 改变为单锅筒纵置式全膜式壁辐射和对流受热面与锅筒一体结构。第二是物料分离方 式改变,由采用非受热面的旋风分离器或惯性分离器改变为不用任何专门装置及分离 元件, 由辐射受热面空间自然构成的膜式水冷壁惯性重力分离器。第三是锅炉本体支 撑方式改变, 由非受热面钢架悬吊改变为锅炉本体受热面自支撑。第四是辐射对流受 热形式改变, 由水冷壁单面受热和对流管束横式布置改变为水冷壁全部双面受热, 对 流管束立式布置。第五是燃烧室和烟气回程改变,由单燃烧室和烟气两回程改变为主、 副燃烧室和燃尽室及烟气四至六回程。第六是风帽间距和播煤风风道的改变, 缩小常 规风帽间距和与其相匹配的风帽孔径以及风向角度的严格控制,播煤风由单风道改为 上下双风道。
六大突破: 第一是减少非受热面物料分离空间, 结构紧凑体积小, 75 吨锅炉 在降低炉体高度 20%_30%的条件下辐射受热面积大、 烟气流程长; 工艺先进、 结构简 单。第二是实现物料分离与辐射传热双功能,物料分离效率高、不结焦;锅炉启停快, 负荷调节性能好。节省分离器耐热钢骨架 100%, 节省分离器耐高温耐磨材料 90%, 节 省分离器安装成本 70%,节省引风机电耗 20%以上。第三是节省非受热面钢架 30%-50%。 第四是显著提高受热面的有效利用率和换热效果, 大大减少对流受热面积灰, 降低清 灰强度, 利于运行效率的稳定。 第五是辐射受热面积大、 烟气流程长; 烟尘经炉内多 回程扩容减速重力沉降, 不仅利于提高热效率, 而且烟尘的原始排放浓度低于中国国 家标准 3-5倍,节省除尘器投资 30%。第六是显著改善燃料流化和密相区的燃烧工况, 使小型锅炉的燃烧效率即炉渣含炭量可与大型锅炉相媲美。 附图说明
图 1是本发明第一方案的主视图;
图 2是图 1的 A-A剖视图;
图 3是图 1的 B-B剖视图;
图 4是本发明第二方案的主视图;
图 5是图 4的 B-B剖视图;
图 6是本发明第三方案的主视图;
图 7是本发明第四方案的主视图;
图 8是本发明第五方案的主视图;
图 9是本发明第六方案的主视图。
图中: 1是落渣管、 2是等压风箱、 3是风帽、 4是给煤机、 5是高温耐磨材料、 6是横集箱、 7是钢架、 8是水冷壁、 9是侧对称下集箱、 10是下横集箱、 11是除灰 门、 12是前横水冷壁、 13是后横水冷壁、 14是前墙水冷壁、 15是横向烟道、 16是 导向烟气下上折转墙、 17是下降管、 18是主燃室、 19是副燃室、 20是侧对称上集箱、 21是上横集箱、 22是前墙、 23是过热器、 24是纵置锅筒、 25是上横集箱、 26是上 横集箱、 27是烟墙、 28是上横集箱、 29是上横集箱、 30是燃尽一室、 31是横管屏、 32是左纵向烟气进口、 33是燃尽二室、 34是排烟口、 35是后墙水冷壁、 36是下横 集箱、 37是吹灰口、 38是下横集箱、 39是料仓、 40是下横集箱、 41是转弯通道扩 大空间、 42是料腿、 43是料仓、 44是料腿、 45是返料阀、 46是下横集箱、 47是返 料腿、 48是左纵向烟道、 49是连通管、 50是连通管、 51是顶棚管、 52是顶棚墙、 53是烟气小截面出口、 54是侧对称水冷壁、 55是侧对称对流膜式壁、 56是右纵向烟 道、 57是侧对称墙、 58是对流管束、 59是钢架、 60是落灰斗、 61是小纵集箱、 62 是上横集箱、 63是烟气大截面出口、 64是燃尽三室、 65是竖井烟道、 66是省煤器、 67是第二导向烟气下上折转墙、 68是下横集箱、 69是省煤器、 70是空气预热器、 71 是转弯通道扩大空间、 72是料仓、 73是排烟口、 74是侧对称水冷壁、 75是下排气旋 风分离器、 76是导汽管、 77是横置上锅筒、 78是对流下行烟道、 79是对流上行烟道、 80是竖井式烟道的前墙、 81是横置下锅筒、 82是侧对称下集箱、 83是上中心集箱。 具体实施方式
为能进一步了解本发明的发明内容、特点及功效, 兹例举以下实施例, 并配合附 图详细说明如下:
本发明涉及一种工业锅炉,广泛适用于非密闭低、高温热水、相变换热热水, 高、 中低压蒸汽; 尤其涉及一种小型热电联产低、 中循环倍率的循环流化床锅炉, 并可向 中、大型高循环倍率发展的新型循环流化床锅炉。涉及改进各种循环流化床锅炉的结 构设计和对旧层燃链条锅炉和传统循环流化床锅炉的改造。
本发明的目的是彻底改变现有小型循环流化床锅炉的缺点, 提供一种节能降耗 减排显著、 工艺先进、 制造安装简单, 锅炉容量最小到 1吨大到 220吨或更大空间 发展的小型低、 中循环倍率的循环流化床锅炉, 并向中、 大型高循环倍率的新型循 环流化床锅炉发展。
实施例 1 :
请参阅图 1〜图 3, 一种纵置全膜式壁物料分离与传热于一体循环流化床锅炉, 包括由前墙 22、 后墙、 两侧对称墙、 上方顶棚墙 52和下方料仓 43、 39构成物料分 离与传热于一体循环流化床锅炉本体,所述锅炉设有主燃烧室 18和锅筒 24,其特点 是, 所述主燃烧室 18的后面依次连通有第一级或第二级两级物料分离单元, 其中第 一级物料分离单元包括由导向烟气下上折转墙 16前后依次分隔成的副燃烧室 19和 燃尽一室 30, 副燃烧室 19和燃尽一室 30通过它们下面密封连接的具有烟气转弯通 道扩大空间 41的料仓 43连通, 副燃烧室 19的上部与主燃烧室 18相通, 燃尽一室 30的上部与第二级物料分离单元连通,主燃烧室 18与第一级物料分离单元通过后横 水冷壁 13分隔, 第一级物料分离单元和第二级物料分离单元通过横管屏 31分隔, 第二级物料分离单元包括下部密封连接有料仓 39的燃尽二室 33。 主燃烧室 18和第 一级、 第二级两级物料分离单元的侧面为与其密封的侧对称水冷壁 54, 主燃烧室 18 设有与侧对称水冷壁 54密封连接的前横水冷壁 12, 燃尽二室 33设有与侧对称水冷 壁 54密封连接的后墙水冷壁 35。 相互并列的前横水冷壁 12、 后横水冷壁 13、 导向 烟气下上折转墙 16、横管屏 31和后墙水冷壁 35的上端分别与上横集箱 21、 25、 26、 28、 29的下部连通并与外侧密封连接, 它们的下端分别与下横集箱 10、 46、 40、 36、 38的上部连通并与外侧密封连接, 导向烟气下上折转墙 16的上方设有燃尽一室 30 的密封烟墙 27, 所述上横集箱 21、 25、 26、 28、 29的上部与锅筒 24的下部通过连 通管 49、 50连通, 所述上横集箱 21、 25、 26、 28、 29的外侧端连通侧对称上集箱 20, 下横集箱 10、 46、 40、 36、 38的外侧连通侧对称下集箱 9, 锅筒 24底部通过多 根下降管 17连通侧对称下集箱 9、 横集箱 6、 小纵集箱 61, 两根侧对称下集箱 9之 间连通有多根下横集箱 10、 46、 41、 36、 38。 顶棚墙 52内设有顶棚管 51, 顶棚管 51的上端与锅筒 24连通并与其外侧密封, 下端与侧对称上集箱 20连通并与其外侧 密封。
本实施例的另一个特点是烟道: 本实施例设有环形烟道, 所述环形烟道包括相 互连通的左纵向烟道 48、 横向烟道 15和右纵向烟道 56, 所述环形烟道的烟气进口 32设在左侧对称水冷壁 54后部, 出口与该锅炉的排烟口 34连通。 其中, 左纵向烟 道 48的结构为: 左侧对称水冷壁 54上端与左侧对称上集箱 20连通并与其外侧密封 连接, 下端与左侧对称下集箱 9连通并与其外侧密封连接; 左侧墙 57设置有侧对称 对流膜式壁 55, 侧对称对流膜式壁 55的上端与左侧对称上集箱 20连通并与其外侧 密封连接, 侧对称对流膜式壁 55外侧与左侧墙 57之间装有耐火保温材料, 下端敞 口, 敞口的下方密封连接有落灰斗 60, 侧墙 57内设有吹灰口 37, 在左侧对称水冷 壁 54和左侧墙 57之间形成左纵向烟道 48。 横向烟道 15的结构为: 前横水冷壁 12 上端与上横集箱 21连通并与其外侧密封连接, 下端与下横集箱 10连通并与其外侧 密封连接; 前墙水冷壁 14上端与上横集箱 21连通并与其外侧密封连接, 下端与下 横集箱 10连通并与其外侧密封连接,在前墙水冷壁 14和前横水冷壁 12之间形成横 向烟道 15, 横向烟道 15的底部外端设有除灰门 11。 在右侧对称水冷壁 54和右侧墙 57之间形成右纵向烟道 56, 结构与左纵向烟道 48的结构对称。 在左纵向烟道 48和 右纵向烟道 56内横向设有多排对流管束 58, 所述对流管束 58的上端与侧对称上集 箱 20连通, 下端与侧对称下集箱 9连通。
本实例中的第一级物料分离单元: 由副燃室、 燃尽一室、 转弯通道扩大空间和 料仓自然构成。 副燃室的前壁与主燃室后壁同壁, 后壁是导向烟气下上折转墙, 侧 壁是水冷壁, 顶部是水冷顶棚; 燃尽一室的前壁与副燃室后壁同壁, 侧壁和顶部是 与副燃室一体的延长段, 后壁与第二级物料分离单元的燃尽二室同壁, 底部是料仓; 第二级物料分离单元的燃尽二室由燃尽一室后壁两侧和顶棚依次向后延续增加一个 燃尽二室和一个料仓, 烟气出口从上部进入环形对流烟道。 物料分离由导向烟气下 上折转墙强制烟气从主燃室出口急转直下经副燃室直冲料仓, 烟气急转的离心力和 拽引力, 气固同向直下的吹力加重力, 显著提高了惯性重力分离性能, 当烟气经转 弯通道大扩容又重力沉降于料仓, 依次向后、 下、 上往返大扩容实现物料高效惯性 重力分离和与受热面充分换热。
本实施例为纵置锅筒低、中循环倍率惯性重力分离 1.5级组合,辐射和对流与锅 筒一体结构, 烟气六回程。 辐射对流烟道便于采用全膜式壁结构, 膜式水冷壁和膜 式屏全部双面受热, 炉体密封性能好, 降低排烟损失, 对流管束立式布置横向冲刷, 热阻小传热系数高, 减少受热面积灰, 稳定运行效率, 降低清灰操作强度。
烟墙 27的上端与锅筒 24底部、 顶棚管 51紧靠密封, 其下端与上横集箱 26的 上部紧靠密封, 连通管 49和连通管 50在其中间用耐火材料浇筑成一体, 横管屏 31 上部的烟墙构造及其上下端的连接结构和烟墙 27相同, 不同的是, 折转墙上的烟墙 27是封闭的, 横管屏 31上的烟墙设有烟气小截面出口 53其方位与左纵向烟气进口 32横向相反一侧。
上横集箱 21、 25、 26、 28、 29和下横集箱 10、 46、 40、 36、 38从前至后依次 不同间距或相同间距布置, 它们的两端分别与侧对称上集箱 20和侧对称下集箱 9的 内侧纵向中心连通。
前、 后横水冷壁 12、 13、 导向烟气下上折转墙 16、 横管屏 31、 后墙水冷壁 35、 前墙水冷壁 14的两侧分别与侧对称水冷壁 54密封连接, 以构成主燃烧室 18、副燃 烧室 19、 燃尽一室 30、 燃尽二室 33。
料仓 43的上端前、 后、 左、 右分别与下横集箱 46、 36和侧对称下集箱 9的下 端密封安装, 以形成一级物料分离; 料仓 39的上端前、 后、 左、 右分别与下横集箱 36、 38和侧对称下集箱 9的下端密封安装, 以形成二级物料分离。
侧对称水冷壁 54的上端与侧对称上集箱 20的内侧连通,下端与侧对称下集箱 9 的内侧连通, 对流管束 58与侧对称水冷壁 54均距纵、 横叉排或顺排多排或外侧排 列, 对流管束 58的最外侧一排形成侧对称对流膜式壁 55, 对流管束 58的上下两端 分别与侧对称上、下集箱 20、 9径向连通, 侧对称水冷壁 54与侧对称对流膜式壁 55 之间对流管束的间距间隙左侧组为左纵向烟道 48的烟气通道,右侧组为右纵向烟道 56的烟气通道, 前墙水冷壁 14和前横水冷壁 12之间的空间为横向烟道 15。 燃尽一 室 30上部的烟气小截面出口 53, 左纵向烟道 48的烟气进口 32、 排烟口 34可是圆 形、 矩形或方形。
多根下降管 17的上端与锅筒 24前、后端底部两侧连通,下端与侧对称下集箱 9、 横集箱 6、 小纵集箱 61连通; 前、 后横水冷壁 12、 13, 侧对称水冷壁 54、 前、 后墙 水冷壁 14、 35、 导向烟气下上折转墙 16、 侧对称墙水冷壁, 可采用全膜式壁结构, 半膜式壁结构, 全光管与耐火材料密封结构, 半光管与耐火材料密封结构。
侧对称上、 下集箱 20、 9连通的多排对流管束 58与烟气进行对流传热, 前横水 冷壁 12、后横水冷壁 13、 导向烟气下上折转墙 16、横管屏 31和后墙水冷壁 35与烟 气进行辐射传热。 烟气六回程。
落灰斗 60纵向布置多个, 其上端与侧对称下集箱 9的外侧下部及钢架 59连接, 并用耐火材料保温和密封,其下端连通落灰管,落灰管在便于操作的位置安装放灰阀, 底端连通排灰管, 检查孔(人孔)安装在料仓 43、 39的任意一侧便于操作或进入处。 落渣管 1、 等压风箱 2、 风帽 3、 给煤机 4、 密相区高温耐磨材料 5以及锅筒 24顶部 的各种仪表阀门均按现有技术设计布置, 炉墙和水冷壁 8属公知常识, 在此不累述。 炉体前、 后、 左、 右两侧和上部顶棚管 52均装填保温材料外加包装板密封。 二次风 口、 测量孔、 观察孔、 防爆门等分别安装在侧对称下集箱 9下部或侧对称上集箱 20 上部任意一侧, 侧对称上下集箱单排管布置的不受此局限。锅炉底部支撑前、后两端 可用混凝土支墩或钢架 7, 中间段采用钢架或混凝土根据具体情况设计布置。
本实施例为纵置锅筒辐射对流传热于一体结构、炉体两侧多排对流管束降低烟气 温度, 可采用轻型炉墙降低炉体重量节省安装成本和耐火保温材料。纵置式炉本体受 热面自支撑可节省钢架 30%。用惯性重力分离替代旋风分离, 纵、横置式可节省分离 器骨架 100%, 节省耐磨材料 90%, 节省引风机电耗 20%以上, 节省分离器安装成本 70%, 节省除尘器投资 30%, 降低受热面清灰强度 60%, 烟尘的初始排放浓度低于国 标 3-5倍。
实施例 1的工作原理:
流化床燃烧是床料在流化状态下进行的一种燃烧, 其燃料可以为化石燃料、 工农 业废弃物和各种劣质燃料, 生物质流化燃烧或生物质与煤混合燃烧。一般粗重的粒子 在主燃烧室 18下部燃烧, 细粒子在主燃烧室 18上部燃烧, 被吹出主燃烧室 18的细 粒子经过副燃烧室 19和燃尽一室 30、 燃尽二室 33继续燃烧, 颗粒物在大空间内重 力沉降, 再经流向 180度急转弯的惯性分离, 使未燃尽的颗粒物分离到料斗 43、 39 内, 烟气通过燃尽室烟气小截面出口 53进入燃尽二室 33, 再通过左纵向烟气进口 32 进入左纵向烟道 48向前行至横向烟道 15, 烟气进入另一侧端, 通过纵向烟道 56, 向 后行通过排烟口 34, 烟气在炉内 6回程, 进入除尘器进行除尘, 最后由引风机排至 烟筒进入大气。
循环流化床锅炉燃烧在整个主燃烧室 18内进行, 而且主燃烧室内具有很高的颗 粒浓度, 高浓度颗粒通过床层、 主燃烧室 18、 副燃烧室 19、 燃尽一室 30、 燃尽二室 33和物料分离料仓 43、 39返料装置料腿 44、 42, 返料阀 45再返回主燃烧室 18进行 多次循环, 颗粒在循环过程中进行充分燃烧和传热。
锅炉给水经处理后进入锅筒 24, 经多根下降管 17进入侧对称下集箱 9、 横集箱 6、 小纵集箱 61 ; 燃料所产生的热量在主燃烧室内通过辐射和对流传导, 由前、 后横 水冷壁 12、 13、 侧对称水冷壁 54、 导向烟气下上折转墙 16、 横管屏 31、 前后墙水冷 壁 14、 35, 顶棚管 51吸收, 用以加热给水生成汽水混合物。 生成的汽水混合物进入 锅筒 24, 在锅筒 24内进行汽水分离。 分离出的水进入下降管 17继续参与水循环, 分离出来的饱和蒸汽进入过热器 23继续加热变为过热蒸汽供给热能动力。
本实施例的烟路:
流化床燃烧是床料在流化状态下进行的一种燃烧, 其燃料可以为化石燃料、 工 农业废弃物和各种劣质燃料, 生物质流化燃烧或生物质与煤混合燃烧。 一般粗重的 粒子在主燃室 18下部燃烧, 细粒子在主燃室 18上部燃烧, 被吹出主燃室的细粒子 在导向烟气下上折转墙 16的作用下强制气固两相经副燃室 19直冲料仓 43, 烟气经 转弯通道扩大空间 41扩容减速细颗粒继续重力沉降于料仓 43,烟气经 180度转向两 次惯性分离经燃尽室 30以低于 5米流速上行固体颗粒继续自然沉降, 当通过燃尽室 烟气出口 53时又以 7-8米流速进入燃尽二室 33,提高扩容减速重力沉降的性能,使 惯性分离和扩容重力沉降的细颗粒进入料仓 39, 物料从料仓 43和料仓 39, 经料腿 44、 42进入返料阀 45经返料腿 47进入主燃室 18进行多次循环燃烧; 颗粒在循环过 程中进行充分燃烧和传热。 烟气经左纵向烟气进口 32进入左纵向烟道 48向前行至 横向烟道 15转向右行进入右纵向烟道 56向后行至排烟口 34烟气在炉内 6回程, 进 入除尘器进行除尘, 最后由引风机排至烟筒进入大气。
水路: 锅炉给水经处理后进入锅筒 24, 经多根下降管 17, 分别进入最底部小纵 集箱 61, 横集箱 6或侧对称下集箱 9的利于均勾供上升水需要的位置, 燃料所产生 的热量在主燃室 18内通过辐射和对流传导, 由前横水冷壁 12、 后横水冷壁 13、 侧 对称水冷壁 54、 烟气下上折转墙 16、 横管屏 31、 前后墙水冷壁 14、 35、 对流管束 58、 顶棚管 51吸收, 用于加热生成汽水混合物。 生成的汽水混合物分别进入锅筒后 并进行汽水分离, 分离出的水进入下降管 17反复分配至原各点继续参与水循环; 分 离出来的饱和蒸汽进入过热器 23继续加热变为过热蒸汽供给热能动力。
实施例 2:
请参见图 4〜图 5, 实施例 2与实施例 1的不同之处在于: (一) 主燃室后设有 的第二级物料分离单元, 该第二级物料分离单元包括通过第二导向烟气下上折转墙 67分隔成的燃尽二室 33和燃尽三室 64以及密封安装在它们下面的具有转弯通道扩 大空间 71的料仓 72组成, 导向烟气下上折转墙 67上设有密封烟墙, 导向烟气下上 折转墙 67上端与上横集箱 62连接, 下端与下横集箱 68连接, 连接结构与导向烟气 下上折转墙 16两端的连接结构相同。 (二)与第二级物料分离单元连通的烟道为竖 井式烟道 65, 竖井式烟道 65内设置省煤器 66、 69和空气预热器 70, 竖井式烟道 65 的进烟口与第二级物料分离单元的燃尽三室上部的烟气大截面出口 63连通。其余结 构与实施例 1相同。 本实施例为纵置锅筒高循环倍率惯性重力分离两级组合, 侧对 称集箱单排管束布置构成两侧膜式水冷壁 74或光管水冷壁, 对流受热的省煤器、 空 气预热器布置在竖井中, 烟气六回程, 排烟口 73设置在竖井式烟道 65的后部。
本实施例的第二级物料分离单元为由燃尽一室后壁两侧和顶棚依次向后延续增 加两个燃尽室和一个料仓, 烟气出口从上部进入对流竖井烟道。
本实施例的烟路为:
烟气从主燃室 18上升至顶后部出口进入副燃室 19,在下上折转墙 16的作用下, 强制气固两相经副燃室 19直冲料仓 43,使细颗粒落入料仓;烟气经转弯通道扩大空 间 41细颗粒继续重力沉降, 烟气返向上行进入燃尽一室 30上行到顶部出口进入燃 尽二室 33直冲料仓 72, 烟气又经第二转弯通道扩大空间 71, 细颗粒继续重力沉降, 烟气返向上行,经燃尽三室 64上行至顶后部燃尽三室烟气大截面出口 63,进入竖井 烟道 65, 与省煤器 66、 69、 空气预热器 70对流换热后, 烟气从排烟口 73进入除尘 器、 最后由引风机排至烟筒进入大气。
实施例 3:
请参见图 6, 实施例 3与实施例 1的不同之处在于: 烟道为竖井式烟道 65; 燃尽 二室 33的下部取消料仓连通竖井式烟道 65, 燃尽一室 30上部设有通向燃尽二室 33 的烟气大截面出口 63, 燃尽二室 33内设置省煤器 66、 69, 竖井式烟道 65内设置空 气预热器 70。 侧对承集箱单排管束布置构成两侧膜式水冷壁或光管水冷壁 (同实施 例 2) , 对流受热面和尾部受热面布置在燃尽二室 33和竖井 65中, 其余结构与实施 例 1相同。本实施例为纵置锅筒低、 中循环倍率惯性重力单级分离, 侧对承集箱单排 管束布置构成两侧膜式水冷壁或光管水冷壁, 对流受热面布置在燃尽二室 33和竖井 65中, 烟气四回程。
本实施例的烟路: 烟气从主燃室 18至燃尽一室 30与实施例 1相同,烟气从燃尽 一室的大截面烟气出口 63进入竖井烟道 65与省煤器 66、 69、 空气预热器 70对流换 热后排出。
实施例 4:
请参见图 7, 实施例 4与实施例 1 的不同之处在于: (一) 烟道为竖井式烟道 65; (二) 主燃室后设有一级物料分离单元, 一级物料分离单元通过其烟气大截面 出口 63与竖井式烟道 65连通, 竖井式烟道 65内从上至下依次设有省煤器 66、 69, 下排气旋风分离器 75、 空气预热器 70, 其余结构与实施例 1相同。 本实施例为纵置 锅筒高循环倍率惯性重力分离与旋风分离两级组合, 可缩短炉体长度, 侧对承集箱 单排管束布置构成两侧膜式水冷壁或光管水冷壁, 对流受热的省煤器、 空气预热器 布置在竖井中、 烟气四回程。
本实施例的烟路: 烟气从主燃室 18至省煤器 69与实施例 4相同, 烟气再流经 竖井烟道中安装的旋风分离器 75、 空气预热器 70后排出。
实施例 5:
请参见图 8, 本实施例与实施例 4的不同之处在于: 锅筒为横置式。横置式上锅 筒 77和下锅筒 81之间横向布置多排对流管束 58, 对流管束 58的下端与下锅筒 81 连通, 上端与上锅筒 77连通, 对流管束 58的最前排形成第一级物料分离单元燃尽 一室 30的横管屏 31,对流管束 58的最后排的垂直段形成竖井前墙 80的水冷壁,对 流管束 58左右侧最外侧的对流管束分别形成侧对称水冷壁,侧对称水冷壁的上下端 分别与上、 下锅筒 77、 81 的外面密封连接, 上述侧对称水冷壁的前端与横管屏 31 的两侧密封连接, 后端与竖井前墙 80密封连接, 横管屏 31的上部设有出烟口, 上 端与上锅筒 77连通并与其外面密封连接的第二导向烟气下上折转墙 67将横管屏 31 和竖井前墙 80之间的空间分割成对流下行烟道 78和对流上行烟道 79, 对流下行烟 道 78和对流上行烟道 79的下面密封安装有灰斗 60。 其余结构与实施例 4的结构相 近。
本实例的烟气从主燃室 18上升至顶后部, 通过主燃室烟气出口进入副燃室 19, 在导向烟气下上折转墙 16的作用下, 强制烟气经副燃室 19直冲料仓 43, 烟气经转 弯通道扩大空间 41返向上进入燃尽室 30, 上行至顶后部进入对流下行烟道 78, 行 至底后部进入对流上行烟道 79, 行至顶后部进入竖井烟道 65, 通过省煤器 66、 69 对流换热后排出。
本实例的水路, 锅炉给水经处理后可首先进入省煤器 66、 69, 然后进入上锅筒 77, 经多根下降管 17, 分别进入最底部小纵集箱 61, 横集箱 6或侧对称下集箱 82 的利于均勾供上升水需要的位置, 通过被加热管束进入侧对称上集箱, 再通过导汽 管 76进入上锅筒 77; 对流管束 58内的水混合上升下降, 高温水上升至上锅筒 77, 低温水供给侧对称下集箱 82再供给侧对称水冷壁,然后上升到侧对称上集箱 20,再 通过导汽管 76进入上锅筒 77, 上锅筒 77内的汽水混合物进行汽水分离, 分离出的 水进入下降管 17再次分配至原各点继续参与水循环; 分离出来的饱和蒸汽进入过热 器 23继续加热变为过热蒸汽供给热能动力。
本实施例为横置锅筒低、 中循环倍率单级惯性重力分离, 侧对称上下集箱分别 与上下锅筒连通, 单排管束构成两侧膜式水冷壁或光管水冷壁, 副燃室和燃尽室顶 棚为干墙结构, 对流受热面立式布置, 尾部受热面省煤器和空气预热器布置在竖井 中、 烟气六回程。
实施例 6:
请参见图 9, 本实施例与实施例 5的不同之处在于: (一)侧对称上集箱和侧对 称下集箱通过上中心集箱 83及与其连通的导汽管 76与上锅筒 77连通; (二)料仓 43的位置及导向烟气下上折转墙 16的位置与实施例 1相同, 其余结构与实施例 5 相同。
本实施例为横置锅筒低、 中循环倍率单级惯性重力分离, 由上中心集箱、 侧对 承上下集箱和横集箱分别连通辐射受热面管束, 由导出蒸汽管将蒸汽从上中心集箱 导入上锅筒,对流受热面管束与上下锅筒连通安装在上中心集箱和上下侧集箱后端, 尾部受热面省煤器和空气预热器布置在竖井中, 烟气六回程。
综上所述: 本发明的前横水冷壁 12、 后横水冷壁 13、 导向烟气下上折转墙 16、 横管屏 31、 前墙水冷壁 14、 后墙水冷壁 35、 第二导向烟气下上折转墙 67、 侧对称 水冷壁 54、 74可采用全膜式壁结构、 半膜式壁结构, 全光管浇筑耐火材料结构。 导 向烟气下上折转墙 16和第二导向烟气下上折转墙 67可采用全膜式屏结构、 半膜式 屏结构、 全光管水冷壁浇筑耐火材料结构、 干烟墙结构。
采用本发明的低、中循环倍率循环流化床锅炉,惯性重力分离单级和 1.5级即可。 高循环倍率的循环流化床锅炉, 惯性重力分离两级组合。 单级分离固体颗粒在炉内 两次惯性分离, 一次重力沉降, 一次低速上行自然沉降; 两级分离固体颗粒在炉内 四次惯性分离, 两次重力沉降, 均实现物料分离效率高、 不结焦、 锅炉启停快, 负 荷调节性能好。 根据实际需要可在多种方案中选择设计。 低、 中循环倍率的技术关 键是烟气下、 上行的不同烟气流速和转弯通道的烟气流速; 高循环倍率的技术关键 是转弯通道的烟气流速。
尽管上面结合附图对本发明的优选实施例进行了描述,但是本发明并不局限于上 述的具体实施方式, 上述的具体实施方式仅仅是示意性的, 并不是限制性的, 本领域 的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情 况下, 还可以作出很多形式, 这些均属于本发明的保护范围之内。

Claims

权 利 要 求
1 . 一种物料分离与传热于一体的循环流化床锅炉, 包括由前墙、 后墙、 两侧对 称墙、 上方顶棚墙和下方料仓构成的本体; 所述本体内设置有主燃室和锅筒; 所述锅 筒连通下集箱, 所述下集箱连通上集箱; 其特征在于, 所述主燃室的后面设置有第一 级物料分离单元,所述第一级物料分离单元通过导向烟气下上折转墙从前向后分隔成 下行烟室和上行烟室,所述下行烟室和上行烟室通过密封安装在它们下面具有转弯通 道扩大空间的料仓连通, 所述第一级物料分离单元的前上部与所述主燃室连通,所述 第一级物料分离单元的后上部连通烟道,所述第一级物料分离单元的四壁均为连接在 所述上集箱和下集箱之间的受热水冷壁。
2. 根据权利要求 1所述的物料分离与传热于一体循环流化床锅炉,其特征在于, 所述锅筒为纵置式; 所述烟道为环形烟道,所述环形烟道包括左右纵向烟道和横向烟 道, 所述纵向烟道内设有多排对流管束,所述多排对流管束的最内侧管形成所述纵向 烟道的侧对称水冷壁;所述侧对称水冷壁与对应的所述侧对称墙密封形成所述纵向烟 道; 所述横向烟道由所述主燃烧室的前墙和该锅炉的前墙密封连接形成。
3. 根据权利要求 1所述的物料分离与传热于一体循环流化床锅炉,其特征在于, 所述第一级物料分离单元的后面设置有第二级物料分离单元,所述第二级物料分离单 元的前上部与所述第一级物料分离单元连通,所述第二级物料分离单元的后上部连通 所述烟道。
4. 根据权利要求 3所述的物料分离与传热于一体循环流化床锅炉,其特征在于, 所述第二级物料分离单元的结构与所述第一级物料分离单元的结构相同。
5. 根据权利要求 1所述的物料分离与传热于一体循环流化床锅炉,其特征在于, 所述锅筒为横置式, 所述横置式锅筒的前端为第一级物料分离单元,所述烟道为竖井 式烟道; 所述横置式锅筒包括上锅筒和下锅筒,所述上锅筒和下锅筒之间连通有多排 对流管束, 所述多排对流管束的最前排管束形成第一级物料分离单元的横管屏, 所述 多排对流管束的最后排管束的垂直段形成所述竖井式烟道前墙的水冷壁,所述对流管 束左右侧最外侧的对流管束分别形成侧对称水冷壁,所述侧对称水冷壁的上下端分别 与上、下锅筒的外面密封连接,所述侧对称水冷壁的前端与所述横管屏的两侧密封连 接, 所述侧对称水冷壁的后端与所述竖井式烟道的前墙密封连接,所述横管屏的上部 设有出烟口;上端与所述上锅筒连通并与其外面密封连接的第二导向烟气下上折转墙 将所述横管屏和所述竖井式烟道的前墙之间的空间分割成对流下行烟道和对流上行 烟道, 所述对流下行烟道和所述对流上行烟道的下面密封安装有灰斗。
6. 根据权利要求 3所述的物料分离与传热于一体的循环流化床锅炉, 其特征在 于, 所述第二级物料分离单元包括下行烟室及密封连接在其下部的料仓。
7. 根据权利要求 6所述的物料分离与传热于一体的循环流化床锅炉, 其特征在 于, 所述第二级物料分离单元的下行烟室内设置有省煤器。
8. 根据权利要求 1所述的物料分离与传热于一体循环流化床锅炉,其特征在于, 所述烟道为竖井式烟道。
9. 根据权利要求 1所述的物料分离与传热于一体循环流化床锅炉,其特征在于, 所述受热水冷壁为全膜式壁结构或半膜式壁结构或全光管浇注耐火材料结构。
10.根据权利要求 1所述的物料分离与传热于一体循环流化床锅炉,其特征在于, 所述导向烟气下上折转墙为全膜式壁结构或半膜式壁结构或全光管浇注耐火材料结 构或干耐火墙结构。
PCT/CN2009/074449 2008-11-26 2009-10-14 一种物料分离与传热于一体循环流化床锅炉 WO2010060324A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN200810181160.5 2008-11-26
CN200810181160 2008-11-26
CN200910000312.1 2009-01-05
CN200910000312 2009-01-05
CN200910135954.2 2009-05-07
CN200910135954 2009-05-07
CN2009103081601A CN101725966B (zh) 2008-11-26 2009-10-10 一种物料分离与传热于一体循环流化床锅炉
CN200910308160.1 2009-10-10

Publications (1)

Publication Number Publication Date
WO2010060324A1 true WO2010060324A1 (zh) 2010-06-03

Family

ID=42225238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074449 WO2010060324A1 (zh) 2008-11-26 2009-10-14 一种物料分离与传热于一体循环流化床锅炉

Country Status (2)

Country Link
CN (1) CN101725966B (zh)
WO (1) WO2010060324A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104806994A (zh) * 2015-04-29 2015-07-29 鲍守明 膜式壁隔烟墙螺纹管对流管束纵向换热式水管锅炉
CN107327826A (zh) * 2017-08-17 2017-11-07 仲伟军 卧式单锅筒多用燃料锅炉
CN108410514A (zh) * 2018-04-03 2018-08-17 山西阳煤化工机械(集团)有限公司 气化炉膜式水冷壁双集箱
CN109737370A (zh) * 2019-03-07 2019-05-10 广州海诚能源科技有限公司 一种燃生物质气的蒸汽锅炉
CN109974303A (zh) * 2019-04-16 2019-07-05 廊坊一萍锅炉保养工程有限公司 一种燃气热水锅炉用节能器
CN110630994A (zh) * 2019-10-25 2019-12-31 上海九荣环境能源科技有限公司 一种余热锅炉蒸发受热面及其使用方法
CN112032695A (zh) * 2020-09-23 2020-12-04 江苏双良锅炉有限公司 一种小容量次高压水管锅炉
CN112762613A (zh) * 2021-01-19 2021-05-07 上海工业锅炉研究所有限公司 一种燃生物质角管式有机热载体锅炉

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012075727A1 (zh) * 2010-12-05 2012-06-14 Wang Sen 循环流化床锅炉气固分离器及含有该气固分离器的锅炉
CN102200271B (zh) * 2011-05-13 2012-12-19 江苏双良锅炉有限公司 大型模块组装水管锅炉
CN102679556A (zh) * 2012-05-30 2012-09-19 无锡锡能锅炉有限公司 燃水煤浆锅炉尾部受热面结构组件
CN102798120A (zh) * 2012-08-07 2012-11-28 青岛艳阳天环保锅炉有限公司 一种小型锅炉燃烧ⅱ、ⅲ类烟煤燃烧消烟除尘的方法
CN105164469B (zh) * 2014-02-19 2018-06-08 王森 包括多功能惯性重力分离器的流化床锅炉
CN104791750A (zh) * 2015-04-08 2015-07-22 阜新盛康机械制造有限公司 一种生物质气化燃烧卧式水管蒸汽中央空调机组
CN107477859B (zh) * 2017-08-31 2019-10-29 北京热华能源科技有限公司 一种带断电保护的热水炉及水循环方法
CN108640090B (zh) * 2018-08-03 2023-07-04 山东大学 一种碳热还原so2制备硫磺的装置及方法
CN114939384A (zh) * 2022-04-13 2022-08-26 东方电气集团东方锅炉股份有限公司 一种具有冷却式隔墙的流化床

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2097268A (en) * 1935-11-19 1937-10-26 Keeler Company E Steam generator
US4449482A (en) * 1982-04-28 1984-05-22 Dorr-Oliver Incorporated Fluidized bed boilers
US4542716A (en) * 1983-06-21 1985-09-24 Creusot-Loire Fluidized bed compact boiler
CN2264299Y (zh) * 1996-06-18 1997-10-08 杜益茂 燃煤垃圾焚烧炉
CN2505704Y (zh) * 2001-10-21 2002-08-14 广西绿洲热能设备有限公司 燃烧酒精废液浓缩液锅炉
CN101210686A (zh) * 2006-12-31 2008-07-02 顾利平 一种蒸汽循环流化床锅炉

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2097268A (en) * 1935-11-19 1937-10-26 Keeler Company E Steam generator
US4449482A (en) * 1982-04-28 1984-05-22 Dorr-Oliver Incorporated Fluidized bed boilers
US4542716A (en) * 1983-06-21 1985-09-24 Creusot-Loire Fluidized bed compact boiler
CN2264299Y (zh) * 1996-06-18 1997-10-08 杜益茂 燃煤垃圾焚烧炉
CN2505704Y (zh) * 2001-10-21 2002-08-14 广西绿洲热能设备有限公司 燃烧酒精废液浓缩液锅炉
CN101210686A (zh) * 2006-12-31 2008-07-02 顾利平 一种蒸汽循环流化床锅炉

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104806994A (zh) * 2015-04-29 2015-07-29 鲍守明 膜式壁隔烟墙螺纹管对流管束纵向换热式水管锅炉
CN104806994B (zh) * 2015-04-29 2016-07-27 鲍守明 膜式壁隔烟墙螺纹管对流管束纵向换热式水管锅炉
CN107327826A (zh) * 2017-08-17 2017-11-07 仲伟军 卧式单锅筒多用燃料锅炉
CN108410514A (zh) * 2018-04-03 2018-08-17 山西阳煤化工机械(集团)有限公司 气化炉膜式水冷壁双集箱
CN109737370A (zh) * 2019-03-07 2019-05-10 广州海诚能源科技有限公司 一种燃生物质气的蒸汽锅炉
CN109974303A (zh) * 2019-04-16 2019-07-05 廊坊一萍锅炉保养工程有限公司 一种燃气热水锅炉用节能器
CN109974303B (zh) * 2019-04-16 2024-04-26 廊坊一萍锅炉保养工程有限公司 一种燃气热水锅炉用节能器
CN110630994A (zh) * 2019-10-25 2019-12-31 上海九荣环境能源科技有限公司 一种余热锅炉蒸发受热面及其使用方法
CN112032695A (zh) * 2020-09-23 2020-12-04 江苏双良锅炉有限公司 一种小容量次高压水管锅炉
CN112762613A (zh) * 2021-01-19 2021-05-07 上海工业锅炉研究所有限公司 一种燃生物质角管式有机热载体锅炉

Also Published As

Publication number Publication date
CN101725966B (zh) 2011-10-05
CN101725966A (zh) 2010-06-09

Similar Documents

Publication Publication Date Title
WO2010060324A1 (zh) 一种物料分离与传热于一体循环流化床锅炉
CN105164469B (zh) 包括多功能惯性重力分离器的流化床锅炉
CN101949535B (zh) 低倍率生物质循环流化床锅炉及其燃烧方法
CN102588959B (zh) 循环流化床锅炉气固分离器及含有该气固分离器的锅炉
CN102537943B (zh) 一种带有水平旋风分离器的卧式循环流化床锅炉
WO2015127836A1 (zh) 一种卧式循环流化床过热蒸汽锅炉
CN101514811B (zh) 无夹廊角管全膜式壁循环流化床锅炉
CN204388046U (zh) 生物质循环流化床锅炉
CN102042600B (zh) 一种循环流化床垃圾焚烧锅炉
CN107741004A (zh) 生物质气体燃料蒸汽锅炉
CN101387403A (zh) 流化床焚烧炉、循环流化床焚烧炉以及焚烧系统
CN201526976U (zh) 一种循环流化床垃圾焚烧锅炉
CN102980177B (zh) 一种燃生物质流化床锅炉
CN201396743Y (zh) 一种角管式循环流化床锅炉
CN201281346Y (zh) 用于污泥和垃圾混烧的cfb焚烧锅炉
CN203757694U (zh) 一种节能减排高效燃烧生物质锅炉
CN103388820B (zh) 洁净煤粉燃烧工业锅炉装置
CN114413255A (zh) 一种水冷气固分离器与四、七回程水冷烟道的流化床锅炉
CN201281345Y (zh) 流化床焚烧炉、循环流化床焚烧炉以及焚烧系统
CN201368450Y (zh) 燃生物质移动气化节能锅炉
CN111140835A (zh) 一种配备外置流化床的生物质锅炉
CN203687352U (zh) 节能环保锅筒纵置式斜推往复炉排热水锅炉
CN2473525Y (zh) 一种机械移动炉排下燃式煤气化环保型燃煤锅炉
CN219656035U (zh) 一种燃生物质水管蒸汽锅炉
CN201335374Y (zh) 水冷旋涡内分离循环流化床锅炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09828585

Country of ref document: EP

Kind code of ref document: A1