WO2010057463A1 - Ionenantrieb für ein raumfahrzeug - Google Patents

Ionenantrieb für ein raumfahrzeug Download PDF

Info

Publication number
WO2010057463A1
WO2010057463A1 PCT/DE2009/001600 DE2009001600W WO2010057463A1 WO 2010057463 A1 WO2010057463 A1 WO 2010057463A1 DE 2009001600 W DE2009001600 W DE 2009001600W WO 2010057463 A1 WO2010057463 A1 WO 2010057463A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency generator
voltages
ion
ion drive
drive according
Prior art date
Application number
PCT/DE2009/001600
Other languages
German (de)
English (en)
French (fr)
Inventor
Hans Leiter
Johann Müller
Horst Neumann
Frank Scholze
Original Assignee
Astrium Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astrium Gmbh filed Critical Astrium Gmbh
Priority to KR1020117011357A priority Critical patent/KR101208289B1/ko
Priority to EP09799010.5A priority patent/EP2346737B1/de
Priority to JP2011535873A priority patent/JP5478633B2/ja
Priority to US13/129,943 priority patent/US9060412B2/en
Priority to RU2011124504/11A priority patent/RU2533378C2/ru
Publication of WO2010057463A1 publication Critical patent/WO2010057463A1/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/54Plasma accelerators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/405Ion or plasma engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/411Electric propulsion
    • B64G1/413Ion or plasma engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0018Arrangements or adaptations of power supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/428Power distribution and management

Definitions

  • the invention relates to an ion propulsion for a spacecraft, comprising a high-frequency generator for generating an alternating electromagnetic field for the ionization of a fuel and a suitable system for ion acceleration.
  • electric engines are increasingly used to power satellites or spacecraft after their separation from the launcher.
  • stationkeeping electric engines are used.
  • ion engines and SPT plasma engines are used. Both types generate their thrust by ejecting accelerated ions.
  • the ejected ion beam is neutralized.
  • the customarily required electrons are provided from a separate electron source and introduced into the ion beam by means of plasma coupling.
  • Radio Frequency Ion Thrusters the fuel is ionized by an alternating electromagnetic field and then accelerated to produce thrust in an electrostatic field. After passage of a neutralizer which re-introduces electrons to the ion beam and compensates for the generated positive space charge, the particles are expelled in the form of a jet.
  • a gas supply an HF generator for generating the electromagnetic alternating field and high voltage sources for generating a charge carrier accelerating field are required.
  • the voltages of the high voltage generator and the grid system are to be coordinated with each other for thrust generation.
  • For the neutralizer to Neutralization of the positive ion beam by electrons from an electron source also requires at least one voltage source.
  • the ion drive is characterized by a simple structure and high reliability. However, due to the required electronic assemblies for powering the components described a high complexity.
  • the invention provides an ion propulsion for a spacecraft, comprising a high frequency generator for generating an alternating electromagnetic field for the ionization of a fuel, in particular a gas, and a system for accelerating the generated charge carriers.
  • the ion drive comprises a first means with which the high voltages required for the system for accelerating the generated charge carriers can be derived from the currents and / or voltages generated by the high-frequency generator for generating the electromagnetic alternating field.
  • the ion drive according to the invention is a high-frequency ion engine, in particular a radio frequency ion engine (Radio Frequency Ion Thruster, RIT).
  • the fuel used in particular is a gas such as xenon.
  • the ion drive according to the invention has the advantage that, by simplifying the power supply system, the mass of the ion drive can be reduced compared to conventional ion drives. At the same time, the reliability can be increased and the control effort minimized.
  • the first means is adapted to those of the
  • High frequency generator generated currents and / or voltages for generating the electromagnetic alternating field to derive at least the required for the ion acceleration (s) high voltage (s).
  • the first grid is in particular a screen grid.
  • the second grid is in particular an acceleration grid.
  • Grid system more than the said two grids, so the high voltages required for the other grid are derived by the first means from the currents and / or voltages generated by the high frequency generator.
  • the first means for decoupling a part of the power generated by the high-frequency generator comprises at least one capacitor coupled to the high-frequency generator.
  • the first means for decoupling a portion of the power generated by the high-frequency generator comprises at least one coupled to the high-frequency generator coupling coil at the coil terminals, the voltages required for the grid system are provided.
  • the at least one coupling coil is designed in the form of a secondary winding of a transformer, which couples with a coil of the high-frequency generator as the primary winding of the transformer.
  • the in the high-frequency system integrable high-voltage transformer provides at its output the voltages for the acceleration system.
  • the at least one coupling coil each having one or more taps, which is electrically isolated from a coil of the high-frequency generator or are.
  • a second means for rectifying the voltages derived from the high frequency generator for the grid system may be provided.
  • a rectification of the voltages for the acceleration system of the ion drive, the ion sources, the neutralizers or the electron sources is provided.
  • the smoothing can be formed by a network of coils (L) and / or capacitors (C) and / or resistors (R).
  • L coils
  • C capacitors
  • R resistors
  • an LC, an L, a C or an RLC network may be provided for smoothing.
  • the network of coils and / or capacitors and / or resistors also serves to optimize the phase angle on the acceleration system.
  • the phase angle and voltages on the acceleration system are preferably set such that the average ion current corresponds to a mean electron current.
  • the latter can, as explained above, also be provided by a separate neutralizer.
  • a determination of the voltage ratio between respective voltages of the grid system and the voltage of the high frequency generator is carried out according to an embodiment by a high voltage cascade, comprising a number of capacitors and diodes, and / or by the turns ratio of the coil of the high frequency generator to the coupling coil (s).
  • a High voltage cascade By a High voltage cascade, the voltage provided by the high frequency generator voltage can be increased.
  • Such a cascade connection is also known by the term charge pump.
  • At least one controllable switch is provided between the high-frequency generator and the acceleration system for the time control of the charge carrier current.
  • the at least one controllable switch can be designed as a mechanical or electronic switch.
  • semiconductor switches can be provided.
  • a fourth means for reversing the voltages on the grid system is provided for the extraction and acceleration of ions and electrons.
  • the voltages on the acceleration system are expediently to be selected such that preferably the ion current becomes equivalent to the electron current.
  • the phase relationship at the components of the acceleration system can, as explained, be influenced by suitable RCL networks. Another advantage of this
  • Embodiment is that can be dispensed with a separate neutralizer, resulting in a further simplification of the ion drive.
  • the ion drive on a neutralizer wherein a voltage necessary for its operation from that of the
  • High-frequency generator generated currents and / or voltages for generating the electromagnetic alternating field is derived and in particular provided by the first means.
  • the ion drive according to the invention allows in this embodiment the elimination of a separate voltage source for the operation of the neutralizer. This results in the already explained simpler structural design with reduced mass of the ion engine.
  • the invention further provides a method for operating an ion propulsion for a spacecraft, comprising a high frequency generator for generating an alternating electromagnetic field for the ionization of a fuel and an acceleration system for generating an electrostatic field for ion acceleration.
  • the high voltages required for the acceleration system are derived from the currents and / or voltages generated by the high-frequency generator for generating the electromagnetic alternating field.
  • the single FIGURE shows a schematic representation of a cross section through an ion drive according to the invention.
  • the ion drive 1 has a discharge space 2 (ionizer).
  • fuel for example xenon gas
  • a coil 5 wound around the discharge space 2 is formed with a high frequency generator 4 for generating an electromagnetic alternating field inside the discharge space 2 for ionization of the fuel.
  • an outlet 6 is provided at an inlet 3 opposite the end of the discharge space 2.
  • Adjacent to the outlet 6 is a grid system 7, which has a screen grid (plasma gripping armature) as the first grid 8 and an acceleration grid as the second grid 9.
  • the first grid 8 requires a positive and the second grid 9 a negative high voltage.
  • the positive supply voltage is at a potential terminal 10 for the first grid 8 and the negative high voltage are provided at a potential terminal 11 for the second grid 9.
  • a neutralizer 14 which comprises a chamber 15, at whose inlet 17 a gas, e.g. Xenon, is introduced into the chamber 15.
  • the chamber 15 is surrounded by electrodes 16a, 16b, so that at an outlet 18 of the chamber 15 an electron beam 24 equivalent to the ion beam 19 can be generated for neutralizing the ion beam 19.
  • a high voltage is provided to the neutralizer.
  • an electron current equivalent to the ion current can be adjusted. In this case, can be dispensed with the neutralizer 14.
  • the ion drive 1 thus comprises in a known manner three functional areas: an area 50 for ion generation, an area 52 for ion acceleration and an optional area 54 for neutralization of the ion beam.
  • High voltages for the grating 7 and the optional neutralizer 14 are not provided by their own voltage sources, but by a first means 12, with which the high voltages required for the grating system 7 and the optional neutralizer can be derived from the currents and / or voltages generated by the high frequency generator 4 , In the figure, deriving the corresponding one High voltages symbolized by a coupling (arrow 13) between the high-frequency generator 4 and the first means 12.
  • the derivation of the high voltages and provision at the potential terminals 10, 11 and optionally 25a, 25b can be effected, for example, by a part of the high-frequency power being coupled out of the high-frequency generator 4 coupled to the coil 5 by capacitors (not shown).
  • the voltage applied to the capacitors is rectified by a second means for rectification 22 and optionally smoothed by a third means 23. If the required voltage at the gratings 8, 9 of the grid system 7 is higher than the voltage which can be removed from the high-frequency circuit, a cascade circuit comprising capacitors and diodes, which increases the voltage to the required level, can be provided in the first means 12.
  • a corresponding cascade connection may also be provided for the electrodes 16a, 16b of the neutralizer.
  • the voltages required for the operation of the grid system 7 and the optional neutralizer 14 can be provided by at least one coupling coil (not shown), at the coil terminals of which the voltages required for the grid system can be tapped.
  • a high-voltage transformer can be integrated into the high-frequency system, so that the necessary voltages for the grid system are available at its output.
  • one or more coupling coils with optionally one or more taps can be arranged directly on the discharge space 2 (not shown). The coupling coil or coils are designed such that they are galvanically separated from the coil 5 for ionization of the fuel.
  • the coupling coils are or are mounted such that a good coupling between the coil 5 and the one or more coils for the grid system 7 and the optional neutralizer 14 is given.
  • the above-described means 22 and 23 for rectifying and smoothing the voltages may also be provided in the case of the coupling coils.
  • a further simplification of the drive system is possible with the power output by means of coils, since the downstream rectification can likewise be dispensed with.
  • the polarity of the grids 8, 9 of the grating system to each other changes, so that alternately electrons and ions are generated.
  • the voltages at the gratings 8, 9 are to be selected such that preferably the ion current becomes equivalent to the electron current. If necessary, an adjustment of the phase position on the plasma grating armature 8 and on the acceleration grating 9 is necessary, which can be influenced by suitable RCL circuits (not shown).
  • the rectification and smoothing means 22 and 23 may generally be omitted for ion drive operating without neutralizer 14.
  • a drive by reversing the polarity of the voltages on the gratings 8, 9 both electrons and ions are extracted from the discharge space 2 and accelerated.
  • LC, L, C or RLC members can be used to optimize the phase relationship at the gratings 8, 9. Preference is given to adjusting the phase position and voltages such that the average ion current corresponds to the average electron current.
  • switches 20, 21, which may be formed as a mechanical or electronic switch, shown.
  • the switches 20, 21 serve to keep the screen grid 8 and / or the accelerating grid 9 de-energized, even if fuel is ionized in the discharge space 2.
  • a single switch can be provided for all grids of the grid system 7.
  • the voltages at the potential terminals 10, 11 for the gratings ⁇ , 9 also increase. This is favorable in terms of the ion optics the plasma density increase associated with the higher RF power also requires a higher extraction voltage.
  • An ion drive according to the invention has the advantage that the power supply system can be greatly simplified. As a result, the saving of mass is possible. In addition, the operational safety is increased and the control effort is minimized. Furthermore, a drive can be realized without a separate neutralizer. This is made possible by a voltage supply means with which high voltages required can be derived from the currents and / or voltages generated by the high-frequency generator. In particular, voltages may be provided for the gratings for high frequency ion engines, high frequency ion sources, high frequency neutralizers, or high frequency electron sources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)
  • Plasma Technology (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
PCT/DE2009/001600 2008-11-19 2009-11-11 Ionenantrieb für ein raumfahrzeug WO2010057463A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020117011357A KR101208289B1 (ko) 2008-11-19 2009-11-11 우주선용 이온 드라이브
EP09799010.5A EP2346737B1 (de) 2008-11-19 2009-11-11 Ionenantrieb für ein raumfahrzeug
JP2011535873A JP5478633B2 (ja) 2008-11-19 2009-11-11 宇宙船のためのイオン駆動装置
US13/129,943 US9060412B2 (en) 2008-11-19 2009-11-11 Ion drive for a spacecraft
RU2011124504/11A RU2533378C2 (ru) 2008-11-19 2009-11-11 Ионный двигатель для космического аппарата

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008058212.3 2008-11-19
DE102008058212A DE102008058212B4 (de) 2008-11-19 2008-11-19 Ionenantrieb für ein Raumfahrzeug

Publications (1)

Publication Number Publication Date
WO2010057463A1 true WO2010057463A1 (de) 2010-05-27

Family

ID=42027830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2009/001600 WO2010057463A1 (de) 2008-11-19 2009-11-11 Ionenantrieb für ein raumfahrzeug

Country Status (7)

Country Link
US (1) US9060412B2 (ja)
EP (1) EP2346737B1 (ja)
JP (1) JP5478633B2 (ja)
KR (1) KR101208289B1 (ja)
DE (1) DE102008058212B4 (ja)
RU (1) RU2533378C2 (ja)
WO (1) WO2010057463A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020002348A1 (de) 2020-04-17 2021-10-21 Johanna von Pokrzywnicki Verfahren und Vorrichtung zur Steuerung eines Ionenantriebes

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2011129508A (ru) * 2011-07-18 2012-02-20 Закрытое акционерное общество "Техмаш" (RU) Способ создания пондеромоторного эффекта воздействия и "аннигиляционные" движители
US9856862B2 (en) * 2013-03-13 2018-01-02 Wesley Gordon Faler Hybrid electric propulsion for spacecraft
DE102014206945B4 (de) 2014-04-10 2016-09-15 Justus-Liebig-Universität Giessen Verfahren zum Betreiben eines Ionenantriebs
FR3020235B1 (fr) * 2014-04-17 2016-05-27 Ecole Polytech Dispositif de formation d'un faisceau quasi-neutre de particules de charges opposees.
FR3040442B1 (fr) * 2015-08-31 2019-08-30 Ecole Polytechnique Propulseur ionique a grille avec propergol solide integre
US20180023550A1 (en) * 2016-04-07 2018-01-25 Busek Co., Inc. Iodine propellant rf ion thruster with rf cathode
RU2618761C1 (ru) * 2016-05-23 2017-05-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Ионный источник для электростатического ракетного двигателя
US10377511B2 (en) * 2016-10-17 2019-08-13 Jerome Drexler Interplanetary spacecraft using fusion-powered constant-acceleration thrust
DE102017107177A1 (de) * 2017-04-04 2018-10-04 Tesat-Spacecom Gmbh & Co. Kg Frequenzregelung für einen Frequenzgenerator eines Ionentriebwerks
US10219364B2 (en) * 2017-05-04 2019-02-26 Nxp Usa, Inc. Electrostatic microthruster
RU2692594C2 (ru) * 2017-08-07 2019-06-25 Акционерное общество "НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МАШИНОСТРОЕНИЯ" (АО "НИИМаш") Ионный ракетный двигатель
US10236163B1 (en) 2017-12-04 2019-03-19 Nxp Usa, Inc. Microplasma generator with field emitting electrode
CN111801273A (zh) * 2018-01-22 2020-10-20 科伦·克拉斯诺夫 无人机系统和方法
US10940931B2 (en) 2018-11-13 2021-03-09 Jerome Drexler Micro-fusion-powered unmanned craft
US20220003222A1 (en) * 2020-07-01 2022-01-06 Raytheon Company System and method to maintain vacuum, or to selectively exclude/admit electromagnetic energy
DE102022103408B4 (de) 2022-02-14 2024-02-08 Technische Universität Dresden, Körperschaft des öffentlichen Rechts Elektronenemitter für Raumfahrtanwendungen
DE102022001474A1 (de) 2022-04-27 2023-11-02 Tim Konrad Ionenstromgenerator eine Kombination aus einem Kanal, Ionenantrieb und einer Turbine mit Generator zur Erzeugung von elektrischer Energie
DE102022112149A1 (de) 2022-05-16 2023-11-16 Leibniz-Institut für Oberflächenmodifizierung e.V. Vorrichtung und Verfahren zur Ionenerzeugung durch ein Plasma

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5924277A (en) * 1996-12-17 1999-07-20 Hughes Electronics Corporation Ion thruster with long-lifetime ion-optics system
DE19835512C1 (de) * 1998-08-06 1999-12-16 Daimlerchrysler Aerospace Ag Ionentriebwerk
DE19948229C1 (de) 1999-10-07 2001-05-03 Daimler Chrysler Ag Hochfrequenz-Ionenquelle
US6293090B1 (en) * 1998-07-22 2001-09-25 New England Space Works, Inc. More efficient RF plasma electric thruster

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3223038A (en) * 1964-09-10 1965-12-14 Company Wachovia Bank An Trust Electrical thrust producing device
US4838021A (en) * 1987-12-11 1989-06-13 Hughes Aircraft Company Electrostatic ion thruster with improved thrust modulation
SU1570549A1 (ru) * 1988-12-16 1995-03-20 Харьковский государственный университет им.А.М.Горького Высокочастотный источник ионов
EP0426110B1 (en) 1989-10-31 1996-04-03 Nec Corporation Ion thruster for interplanetary space mission
US5519213A (en) * 1993-08-20 1996-05-21 Ebara Corporation Fast atom beam source
US5947421A (en) 1997-07-09 1999-09-07 Beattie; John R. Electrostatic propulsion systems and methods
US6518693B1 (en) 1998-11-13 2003-02-11 Aerojet-General Corporation Method and apparatus for magnetic voltage isolation
DE19927063B4 (de) * 1999-06-15 2005-03-10 Christof Luecking Verfahren zur Bestimmung der elektrischen Eigenschaften von hochfrequenzangeregten Gasentladungen durch Berechnung mit einer inversen Matrix, die durch einmalige Kalibrierung bestimmt wird
US6724160B2 (en) * 2002-04-12 2004-04-20 Kaufman & Robinson, Inc. Ion-source neutralization with a hot-filament cathode-neutralizer
US7365518B2 (en) * 2004-10-07 2008-04-29 L-3 Communications Electron Technologies, Inc. Ion engine power supply
JP2006147449A (ja) 2004-11-24 2006-06-08 Japan Aerospace Exploration Agency 高周波放電プラズマ生成型二段式ホール効果プラズマ加速器
EP1739716A1 (de) * 2005-07-02 2007-01-03 HÜTTINGER Elektronik GmbH + Co. KG HF-Plasmaprozesssystem
GB0614342D0 (en) 2006-07-19 2006-08-30 Qinetiq Ltd Electric propulsion system
JP4925132B2 (ja) 2007-09-13 2012-04-25 公立大学法人首都大学東京 荷電粒子放出装置およびイオンエンジン
DE102008022181B4 (de) 2008-05-05 2019-05-02 Arianegroup Gmbh Ionentriebwerk

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5924277A (en) * 1996-12-17 1999-07-20 Hughes Electronics Corporation Ion thruster with long-lifetime ion-optics system
US6293090B1 (en) * 1998-07-22 2001-09-25 New England Space Works, Inc. More efficient RF plasma electric thruster
DE19835512C1 (de) * 1998-08-06 1999-12-16 Daimlerchrysler Aerospace Ag Ionentriebwerk
DE19948229C1 (de) 1999-10-07 2001-05-03 Daimler Chrysler Ag Hochfrequenz-Ionenquelle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020002348A1 (de) 2020-04-17 2021-10-21 Johanna von Pokrzywnicki Verfahren und Vorrichtung zur Steuerung eines Ionenantriebes

Also Published As

Publication number Publication date
KR20110086084A (ko) 2011-07-27
JP5478633B2 (ja) 2014-04-23
RU2533378C2 (ru) 2014-11-20
US9060412B2 (en) 2015-06-16
EP2346737B1 (de) 2014-06-11
JP2012508840A (ja) 2012-04-12
US20110277444A1 (en) 2011-11-17
DE102008058212B4 (de) 2011-07-07
RU2011124504A (ru) 2012-12-27
KR101208289B1 (ko) 2012-12-05
EP2346737A1 (de) 2011-07-27
DE102008058212A1 (de) 2010-05-27

Similar Documents

Publication Publication Date Title
EP2346737B1 (de) Ionenantrieb für ein raumfahrzeug
DE19948229C1 (de) Hochfrequenz-Ionenquelle
EP1269020B1 (de) Plasma-beschleuniger-anordnung
EP0349555A1 (de) Hochfrequenz-ionenquelle.
EP1269803B1 (de) Plasma-beschleuniger-anordnung
DE112009005542B3 (de) Massenspektrometer mit spannungsstabilisierung mittels dummy-last
DE102004005770B4 (de) Schaltung zur Steuerung mehrerer Magnetantriebe und Leistungsschaltvorrichtung mit einer derartigen Schaltung
EP2188180A1 (de) Antriebsanordnung in einem raumflugkörper
DE10130464A1 (de) Plasmabeschleuniger-Anordnung
EP2277188B1 (de) Plasmaerzeuger und verfahren zum steuern eines plasmaerzeugers
EP3129653B1 (de) Ionenantrieb und verfahren zum betreiben eines ionenantriebs
EP1442640B1 (de) Plasmabeschleuniger-anordnung
EP1353352B1 (de) Hochfrequenz-Elektronenquelle, insbesondere Neutralisator
EP4022753A1 (de) Hilfsspannungsversorgung für stromrichter und ihr einsatz in fahrzeugen
DE2222736A1 (de) Verfahren zur ionenimplantation
EP4022752A1 (de) Hilfsspannungsversorgung für stromrichter und ihr einsatz in fahrzeugen
EP4271144A1 (en) Synchronous polyphase alternating current electrostatic ion thruster (space-it) for propulsion of spacecraft, such as for example satellites, mini-rockets, etc
WO2023222626A1 (de) Vorrichtung und verfahren zur ionenerzeugung durch ein plasma
DE102022112292B3 (de) Mikrowellen-zyklotron-resonanz-plasma-triebwerk und zugehöriges betriebsverfahren sowie verwendung
EP3133634B1 (de) Vorrichtung zum zünden einer vakuumbogenentladung und verfahren zu deren anwendung
DE102022112148A1 (de) Vorrichtung und Verfahren zur Ionenerzeugung durch ein Plasma
DE19611679C2 (de) Fremdgezündete Gasentladungsvorrichtung
DE102020002348A1 (de) Verfahren und Vorrichtung zur Steuerung eines Ionenantriebes
AT523882A2 (de) Verfahren und Vorrichtung zum Betreiben einer Flüssigmetall-Ionenquelle oder Flüssigmetall-Elektronenquelle sowie Flüssigmetall-Ionenquelle oder Flüssigmetall-Elektronenquelle
WO2004079188A2 (de) Antriebsvorrichtung eines raumflugkörpers und verfahren zur lagesteuerung eines raumflugkörpers mit einer solchen antriebsvorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09799010

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009799010

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 989/MUMNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011535873

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117011357

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011124504

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13129943

Country of ref document: US