WO2010052651A1 - Système d'économie d'énergie par recyclage de concentrat - Google Patents

Système d'économie d'énergie par recyclage de concentrat Download PDF

Info

Publication number
WO2010052651A1
WO2010052651A1 PCT/IB2009/054896 IB2009054896W WO2010052651A1 WO 2010052651 A1 WO2010052651 A1 WO 2010052651A1 IB 2009054896 W IB2009054896 W IB 2009054896W WO 2010052651 A1 WO2010052651 A1 WO 2010052651A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
concentrated
diluted
separation element
chambers
Prior art date
Application number
PCT/IB2009/054896
Other languages
English (en)
Inventor
Jean-François TREYVAUD
Renaud De Watteville
Jean-Luc Mossier
Hans Jaeger
Original Assignee
Swiss Fresh Water Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swiss Fresh Water Sa filed Critical Swiss Fresh Water Sa
Publication of WO2010052651A1 publication Critical patent/WO2010052651A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • B01D61/026Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/06Energy recovery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • B01D2311/253Bypassing of feed
    • B01D2311/2531Bypassing of feed to permeate side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/022Reject series
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to the field of the purification of a liquid by passage through membranes.
  • the present invention relates to the field of desalination of water, in particular for example seawater.
  • Reverse osmosis is one of the processes used, especially for desalination of seawater. This process is extensively described in the literature (for example in the Degrémont Water Survey).
  • Reverse osmosis is a water purification system by passing under pressure through a semi-permeable membrane which preferentially retains the dissolved compounds while allowing water to pass under the effect of the applied pressure.
  • the disadvantages of reverse osmosis are: - the energy consumed by the pressurizing pump: the pressure applied must be greater than the osmotic pressure.
  • the osmotic pressure is about 29 bar and the pressure usually applied to cause sufficient reverse osmosis flow is usually of the order from 50 to 60 bars.
  • US Pat. No. 6,187,200 describes a device using reverse osmosis to desalt seawater in two stages.
  • the water to be desalinated is injected under pressure (by a pump) into a first reverse osmosis stage from which a first diluted stream and a first concentrated stream flow.
  • This first concentrated stream is injected under pressure (by a pump) into a second reverse osmosis stage which in turn exits a second diluted stream and a second concentrated stream.
  • the second stream diluted and mixed with first diluted stream and the second concentrated stream is used in an energy recovery system.
  • An object of the invention is to improve known processes and devices for the purification of water (eg salt water) or other liquids by reverse osmosis.
  • Another object of the invention is to provide a system and a method that are simple to implement and inexpensive.
  • FIG. 1 illustrates a first embodiment of the system according to the invention
  • FIG. 2 illustrates a second embodiment of the system according to the invention
  • FIG. 1 a first embodiment of the system according to the invention is illustrated.
  • this system of the liquid to be treated for example, but not limited to, salt water
  • a container 1 In this system of the liquid to be treated (for example, but not limited to, salt water) is in a container 1.
  • This liquid is brought under pressure into the separation device 4, according to the principles set forth in the aforementioned applications and incorporated by reference, which is provided with a bypass 3 and a valve 9 by a pumping group. 2, or other equivalent means. According to these principles of the incorporated applications, it is a question of carrying out the purification in several stages, the first stage being dedicated to a predilution of the flow of raw liquid (for example water).
  • raw liquid for example water
  • the predilution is carried out by feeding the semipermeable membrane not only on the concentrate side, but also on the permeate side, for example by means of the bypass 3 with a liquid of the same concentration or a similar concentration of compounds. to separate.
  • the concentration of compounds to be separated is then similar on both sides of the membrane.
  • the osmotic pressure is greatly reduced and the pressure to be applied to cause a flow of water through the membrane is greatly reduced.
  • the liquid thus obtained on the B-side permeate side is a mixture between a solute-laden part which comes from the feed and the solute-laden liquid which has passed through the membrane.
  • the resulting average concentration is highly diluted relative to the raw liquid feed (water) and can be easily processed at medium pressure in a conventional reverse osmosis system.
  • the liquid is thus separated into a concentrate A and a permeate B at the outlet of the separation device 4.
  • the concentrate A is evacuated by passing, for example, by a mechanical energy recuperator 7 (for example, but in a nonlimiting manner, those indicated at the beginning of the present application).
  • a mechanical energy recuperator 7 for example, but in a nonlimiting manner, those indicated at the beginning of the present application.
  • the permeate B is brought under pressure by a second pumping group 2 ', in a second separation device 5.
  • the concentrate A ' is recycled (reference 8) upstream of the first pumping group 2 while passing through a mechanical energy recuperator 7' (for example, but in a nonlimiting manner, those indicated at the beginning of the present application) .
  • the advantages of this system include the fact that the concentration of the concentrate A 'is less important than the base liquid to be treated, which generates a predilution, hence an energy saving.
  • the liquid to be treated (for example salt water) is in a container 1.
  • the liquid is brought under pressure into a first separation device 4 (according to the aforementioned applications and incorporated by reference) provided with a by-pass 3 by the pumping group 2.
  • the liquid in treatment is separated into a concentrate A and a permeate B.
  • the concentrate A is then discharged via a mechanical energy recovery device 7 (for example, but in a nonlimiting manner, those indicated at the beginning of the present application).
  • the permeate B is brought under pressure by a pumping unit 2 'into a second separation device 5. At this point, it is separated into a concentrate A' and a permeate B ', the permeate B' being a purified liquid 6.
  • the concentrate A ' is recycled 8 via the bypass 3 of the first separation device 4.
  • the loop feed of the first separation device 4 is only done by the concentrate A' and the valve 9 is closed. blocking the bypass 3.

Abstract

Système de purification par osmose inverse comprenant une alimentation en liquide (1) fournissant un liquide à traiter simultanément dans deux chambres d'un premier élément de séparation (4), lesdites chambres étant séparées par une membrane semi perméable, ledit élément de séparation (4) fournissant en sortie un premier liquide concentré (A) et un premier liquide dilué (B), ledit système comprenant au moins un deuxième élément de séparation (5) recevant ledit liquide dilué (B) et fournissant en sortie un deuxième liquide concentré (A') et un deuxième liquide dilué (B'), ledit deuxième liquide concentré (A') étant réutilisé dans le système de purification.

Description

SYSTEME D'ECONOMIE D'ENERGIE PAR RECYCLAGE DE
CONCENTRAT
Domaine de l'invention
La présente invention concerne le domaine de la purification d'un liquide par passage au travers de membranes.
En particulier, la présente invention concerne le domaine du dessalement de l'eau, notamment par exemple de l'eau de mer.
Etat de la technique
On connaît dans l'état de la technique de nombreux systèmes de purification de l'eau.
L'osmose inverse est l'un des procédés utilisés, en particulier pour le dessalement de l'eau de mer. Ce processus est abondamment décrit dans la littérature (par exemple dans le Mémento de l'eau Degrémont).
L'osmose inverse est un système de purification d'eau par passage sous pression au travers d'une membrane semi-perméable qui retient préférentiellement les composés dissous tout en laissant traverser l'eau sous l'effet de la pression appliquée.
Si l'on considère de l'eau comportant des solutés, particulièrement du sel et si l'on met deux solutions de concentrations différentes de chaque côté d'une membrane filtre, l'eau franchit celle-ci jusqu'à ce que les concentrations s'équilibrent : c'est le phénomène de l'osmose. En exerçant une pression hydrostatique en sens opposé, on contre la pression osmotique et on force l'eau à franchir la membrane dans le sens inverse, ce qui permet d'obtenir d'un côté de l'eau dont les solutés sont plus dilués (donc une eau plus pure), appelé perméat, et de l'autre côté une eau plus concentrée appelé concentrât.
Les inconvénients de l'osmose inverse sont : - l'énergie consommée par la pompe de mise en pression : la pression appliquée doit être supérieure à la pression osmotique. Par exemple, dans le cas de l'eau de mer contenant environ 36 g/1 de sel, la pression osmotique est d'environ 29 bars et la pression appliquée usuellement pour provoquer un flux d'osmose inverse suffisant est habituellement de l'ordre de 50 à 60 bars.
Il existe des dispositifs techniques qui permettent d'optimiser la consommation d'énergie. Il est notamment possible d'utiliser des systèmes mécaniques de récupération d'énergie, comme par exemple des turbines Pelton, qui permettent de récupérer l'énergie contenue dans le concentrât pour mettre en pression l'eau brute, ou des échangeurs d'énergie (voir le Mémento de l'eau Degrémont). Ces systèmes sont couramment mis en œuvre dans des installations de taille industrielle, mais sont difficiles à mettre en œuvre dans des installations de petite taille.
II est également possible d'optimiser la consommation d'énergie et les pertes en eau en assemblant plusieurs étages d'osmose inverse, combinés en série ou en parallèle.
A titre d'exemple, le brevet US 6,187,200 décrit un dispositif utilisant l'osmose inverse pour dessaler l'eau de mer dans deux étages. Dans le système illustré, l'eau à dessaler est injectée sous pression (par une pompe) dans un premier étage à osmose inverse duquel sort un premier flux dilué et un premier flux concentré. Ce premier flux concentré est injecté sous pression (par une pompe) dans un deuxième étage à osmose inverse duquel sort à son tour un deuxième flux dilué et un deuxième flux concentré. Le deuxième flux dilué et mélangé au premier flux dilué et le deuxième flux concentré est utilisé dans un système de récupération d'énergie.
Principe général
La présente demande concerne un développement de l'objet de la demande Suisse CH 00918/07 déposée le 8 juin 2007 et de l'objet de la demande PCT N°PCT/IB2008/052266 déposée le 9 juin 2008 au nom de Swiss Fresh Water SA et publiée sous le numéro WO 2008/149324 A1 , dont les contenus sont entièrement incorporés par référence dans la présente demande.
Un but de l'invention est d'améliorer les procédés et dispositifs connus pour la purification d'eau (par exemple d'eau salée) ou d'autres liquides par osmose inverse.
Plus particulièrement, l'un des buts de l'invention est de proposer un système et un procédé de purification de liquide qui optimise la consommation d'énergie.
Un autre but de l'invention est de proposer un système et un procédé qui soient simples à mettre en œuvre et peu coûteux.
Les différents modes d'exécution de l'invention sont décrits ci-dessous et en référence aux figures annexées dans lesquelles
La figure 1 illustre un premier mode d'exécution du système selon l'invention;
La figure 2 illustre un deuxième mode d'exécution du système selon l'invention;
Description détaillée Dans la figure 1 , un premier mode d'exécution du système selon l'invention est illustré. Dans ce système du liquide à traiter (par exemple, mais de façon non limitative, de l'eau salée) se trouve dans un récipient 1.
Ce liquide est amené sous pression dans le dispositif de séparation 4, selon les principes exposés dans les demandes mentionnées ci-dessus et incorporées par référence, qui est muni d'un by-pass 3 et d'une vanne 9 par un groupe de pompage 2, ou un autre moyen équivalent. Selon ces principes des demandes incorporées, il s'agit de réaliser la purification en plusieurs étages, le premier étage étant dédié à une prédilution du flux de liquide brut (par exemple de l'eau).
Dans ce premier étage, la prédilution est réalisée en alimentant la membrane semi-perméable non seulement du côté concentrât, mais également du côté perméat par exemple au moyen du by-pass 3 avec un liquide de même concentration ou d'une concentration proche en composés à séparer. La concentration en composés à séparer est alors similaire de part et d'autre de la membrane.
Par rapport à tous les systèmes traditionnels qui ne réalisent pas d'alimentation du côté perméat, la pression osmotique est ainsi grandement réduite et la pression à appliquer pour provoquer un flux d'eau au travers de la membrane est ainsi grandement réduite.
Le liquide ainsi obtenu du côté perméat côté B est un mélange entre une partie fortement chargée en soluté qui provient de l'alimentation et le liquide très peu chargé en soluté qui a traversé la membrane. La concentration moyenne résultante est fortement diluée par rapport à l'alimentation en liquide brut (eau) et peut être facilement traitée à moyenne pression dans un système d'osmose inverse traditionnel. Ainsi, le liquide est ainsi séparé en un concentrât A et un perméat B en sortie du dispositif de séparation 4.
Le concentrât A est évacué en passant, par exemple, par un récupérateur d'énergie mécanique 7 (par exemple, mais de façon non-limitative, ceux indiqués au début de la présente demande).
Le perméat B est amené quant à lui sous pression par un deuxième groupe de pompage 2', dans un deuxième dispositif de séparation 5.
Dès ce moment il est séparé en un concentrât A' et un perméat B', le perméat B' étant un liquide purifié 6.
Le concentrât A' est recyclé (référence 8) en amont du premier groupe de pompage 2 tout en passant par un récupérateur d'énergie mécanique 7' (par exemple, mais de façon non-limitative, ceux indiqués au début de la présente demande).
Les avantages de ce système sont notamment le fait que la concentration du concentrât A' est moins importante que le liquide de base à traiter, ce qui génère une prédilution d'où une économie d'énergie.
Un deuxième mode d'exécution est décrit en référence à la figure 2.
Le liquide à traiter (par exemple de l'eau salée) se trouve dans un récipient 1. Le liquide est amené sous pression dans un premier dispositif de séparation 4 (selon les demandes mentionnées ci-dessus et incorporées par référence) muni d'un by-pass 3 par le groupe de pompage 2.
Dès ce moment, le liquide en traitement est séparé en un concentrât A et un perméat B. Le concentrât A est ensuite évacué en passant par un récupérateur d'énergie mécanique 7 (par exemple, mais de façon non-limitative, ceux indiqués au début de la présente demande).
Le perméat B est amené sous pression par un groupe de pompage 2' dans un deuxième dispositif de séparation 5. A cet endroit, il est séparé en un concentrât A' et un perméat B', le perméat B' étant un liquide purifié 6.
Le concentrât A' est recyclé 8 via le by-pass 3 du premier dispositif de séparation 4. Dans ce cas l'alimentation en boucle du premier dispositif de séparation 4 ne se fait plus que par le concentrât A' et la vanne 9 est fermée bloquant le by-pass 3.
Les avantages de ce mode d'exécution sont:
- Simplification des problèmes d'alimentation dans le deuxième groupe de pompage;
- Circuit fermé du produit tournant "à l'intérieur" du by-pass objet des demandes de brevet mentionnées ci-dessus; - Augmentation de possibilité de rendement du deuxième groupe de séparation (5) grâce à la pauvreté du liquide en composant indésirable.
La présente invention n'est bien sûr pas limitée aux modes d'exécution décrits qui sont purement illustratifs et non limitatifs, et des variations sont possibles par des moyens équivalents. En particulier, si la description porte notamment sur le dessalement, l'invention peut s'appliquer à d'autres domaines techniques et d'autres types de traitement des liquides.

Claims

Revendications
1. Système de purification par osmose inverse comprenant une alimentation en liquide (1 ) fournissant un liquide à traiter simultanément dans deux chambres d'un premier élément de séparation (4), lesdites chambres étant séparées par une membrane semi perméable, ledit premier élément de séparation (4) fournissant en sortie un premier liquide concentré (A) et un premier liquide dilué (B), ledit système comprenant au moins un deuxième élément de séparation (5) recevant ledit liquide dilué (B) et fournissant en sortie un deuxième liquide concentré (A') et un deuxième liquide dilué (B'), ledit deuxième liquide concentré (A') étant réutilisé dans le système de purification.
2. Système selon la revendication 1 , comprenant un premier moyen de mise en pression (2) en amont du premier élément de séparation (4) pour mettre sous pression ledit liquide à traiter fourni au premier élément de séparation (4).
3. Système selon la revendication 1 ou 2, comprenant un deuxième moyen de mise en pression (2') en aval du premier élément de séparation (4) en amont du deuxième élément de séparation (5) pour mettre sous pression le premier liquide dilué (B) sortant du premier élément de séparation (4).
4. Système selon l'une des revendications précédentes, dans lequel le liquide concentré (A, A') passe par un récupérateur d'énergie (7, 7').
5. Système selon l'une des revendications précédentes, dans lequel le deuxième liquide concentré (A') est ramené en amont du premier moyen de pompage (2).
6. Système selon l'une des revendications 1 à 4, dans lequel le deuxième liquide concentré (A') est ramené dans le premier élément de séparation.
7. Procédé de traitement d'un liquide chargé en composés dissous comprenant les étapes suivantes:
-) on amène le liquide à traiter dans deux chambres d'un premier élément de séparation, lesdites chambres étant séparées par une membrane semi- perméable et ledit liquide étant sous pression dans l'une desdites chambres de façon à réaliser un effet d'osmose inverse;
-) on récupère en sortie du premier élément de séparation un premier liquide concentré et un premier liquide dilué;
-) on amène le liquide dilué dans un deuxième élément de séparation pour effectuer une deuxième opération d'osmose inverse;
-) on récupère en sortie du deuxième élément un deuxième liquide concentré et un deuxième liquide dilué;
-) on réutilise le deuxième liquide concentré dans le procédé de traitement.
8. Procédé selon la revendication 7, dans lequel on utilise des moyens de mise en pression pour l'alimentation des éléments de séparation.
9. Procédé selon la revendication 7 ou 8, dans lequel le premier et le deuxième liquide concentré est utilisé dans un système de récupération d'énergie.
10. Procédé selon l'une des revendications 7 à 9, dans lequel le deuxième liquide concentré est ramené en amont du premier élément de séparation.
11. Procédé selon l'une des revendications 7 à 9, dans lequel le deuxième liquide concentré est ramené dans le premier élément de séparation.
PCT/IB2009/054896 2008-11-04 2009-11-04 Système d'économie d'énergie par recyclage de concentrat WO2010052651A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08168272.6 2008-11-04
EP08168272 2008-11-04

Publications (1)

Publication Number Publication Date
WO2010052651A1 true WO2010052651A1 (fr) 2010-05-14

Family

ID=41697977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2009/054896 WO2010052651A1 (fr) 2008-11-04 2009-11-04 Système d'économie d'énergie par recyclage de concentrat

Country Status (1)

Country Link
WO (1) WO2010052651A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011144778A1 (fr) * 2010-05-20 2011-11-24 Ohl Medio Ambiente, Inima, S.A.U. Procédé de production d'énergie hydraulique et production d'eau potable par osmose directe
CN102399029A (zh) * 2010-09-15 2012-04-04 株式会社东芝 膜过滤系统
WO2012110548A1 (fr) 2011-02-16 2012-08-23 Ksb Aktiengesellschaft Procédé et installation pour préparer une solution au moyen d'un procédé membranaire à deux niveaux
CN103443031A (zh) * 2011-02-21 2013-12-11 株式会社日立制作所 海水淡化系统及海水淡化方法
WO2019097261A1 (fr) * 2017-11-20 2019-05-23 Surrey Aquatechnology Limited Séparation de solvant
CN110382088A (zh) * 2017-01-09 2019-10-25 威立雅水务技术支持公司 通过反渗透或纳米过滤处理水的系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08206460A (ja) * 1994-12-02 1996-08-13 Toray Ind Inc 逆浸透膜分離装置および高濃度溶液の分離方法
US6187200B1 (en) 1994-10-12 2001-02-13 Toray Industries, Inc. Apparatus and method for multistage reverse osmosis separation
WO2002009855A1 (fr) * 1999-03-19 2002-02-07 Pump Engineering, Inc. Procede et appareil ameliorant l'efficacite d'un systeme d'osmose inverse
US20030094406A1 (en) * 2001-11-05 2003-05-22 Smith Steven D. Apparatus and method for producing purified water having high microbiological purity
US20080105617A1 (en) * 2006-06-14 2008-05-08 Eli Oklejas Two pass reverse osmosis system
WO2008149324A1 (fr) 2007-06-08 2008-12-11 Swiss Fresh Water Sa Systeme de purification de liquide par membrane a moyenne pression

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187200B1 (en) 1994-10-12 2001-02-13 Toray Industries, Inc. Apparatus and method for multistage reverse osmosis separation
JPH08206460A (ja) * 1994-12-02 1996-08-13 Toray Ind Inc 逆浸透膜分離装置および高濃度溶液の分離方法
WO2002009855A1 (fr) * 1999-03-19 2002-02-07 Pump Engineering, Inc. Procede et appareil ameliorant l'efficacite d'un systeme d'osmose inverse
US20030094406A1 (en) * 2001-11-05 2003-05-22 Smith Steven D. Apparatus and method for producing purified water having high microbiological purity
US20080105617A1 (en) * 2006-06-14 2008-05-08 Eli Oklejas Two pass reverse osmosis system
WO2008149324A1 (fr) 2007-06-08 2008-12-11 Swiss Fresh Water Sa Systeme de purification de liquide par membrane a moyenne pression

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GOZALVEZ J M ET AL: "Modelling of a low-pressure reverse osmosis system with concentrate recirculation to obtain high recovery levels", DESALINATION, ELSEVIER, AMSTERDAM, NL, vol. 144, no. 1-3, 10 September 2002 (2002-09-10), pages 341 - 345, XP004386242, ISSN: 0011-9164 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2372244A1 (es) * 2010-05-20 2012-01-17 Ohl Medio Ambiente Inima S.A.U. Proceso de producción de energía hidráulica y producción de agua potable mediante osmosis directa.
WO2011144778A1 (fr) * 2010-05-20 2011-11-24 Ohl Medio Ambiente, Inima, S.A.U. Procédé de production d'énergie hydraulique et production d'eau potable par osmose directe
US9433900B2 (en) 2010-05-20 2016-09-06 Gs Inima Environment Sa Process for the production of hydraulic energy and production of potable water by direct osmosis
CN102399029B (zh) * 2010-09-15 2014-04-23 株式会社东芝 膜过滤系统
CN102399029A (zh) * 2010-09-15 2012-04-04 株式会社东芝 膜过滤系统
US9932250B2 (en) 2010-09-15 2018-04-03 Kabushiki Kaisha Toshiba Membrane filtration system
WO2012110548A1 (fr) 2011-02-16 2012-08-23 Ksb Aktiengesellschaft Procédé et installation pour préparer une solution au moyen d'un procédé membranaire à deux niveaux
DE102012202202A1 (de) 2011-02-16 2012-08-30 Ksb Aktiengesellschaft Verfahren und Anlage zur Aufbereitung einer Lösung
CN103443031A (zh) * 2011-02-21 2013-12-11 株式会社日立制作所 海水淡化系统及海水淡化方法
CN110382088A (zh) * 2017-01-09 2019-10-25 威立雅水务技术支持公司 通过反渗透或纳米过滤处理水的系统和方法
US11230479B2 (en) 2017-01-09 2022-01-25 Veolia Water Solutions & Technologies Support System and method for the treating of water by reverse osmosis or nanofiltration
CN110382088B (zh) * 2017-01-09 2022-04-19 威立雅水务技术支持公司 通过反渗透或纳米过滤处理水的系统和方法
US11673815B2 (en) 2017-01-09 2023-06-13 Veolia Water Solutions & Technologies Support System and method for the treatment of water by reverse osmosis or nanofiltration
WO2019097261A1 (fr) * 2017-11-20 2019-05-23 Surrey Aquatechnology Limited Séparation de solvant
CN111867705A (zh) * 2017-11-20 2020-10-30 萨里水溶剂科技有限公司 溶剂分离

Similar Documents

Publication Publication Date Title
US20220315469A1 (en) Cross current staged reverse osmosis
WO2008149324A1 (fr) Systeme de purification de liquide par membrane a moyenne pression
WO2010052651A1 (fr) Système d'économie d'énergie par recyclage de concentrat
JP5941629B2 (ja) 水浄化システム及び水浄化方法
EP1329425A1 (fr) Procédé et appareil de dessalement
FR2668469A1 (fr) Procede pour l'epuration de l'eau au moyen d'une combinaison d'unites de separation a membranes, et installation pour sa mise en óoeuvre.
WO2013164541A2 (fr) Production d'energie par osmose directe
US9687788B2 (en) Forward osmosis process
JP2003200160A (ja) 造水方法および造水装置
JP6183213B2 (ja) 造水方法および造水装置
EP1235635B1 (fr) Procede de filtration membranaire de liquides et dispositif de mise en oeuvre dudit procede
EP2318155B1 (fr) Procédé de désinfection d'un ouvrage de filtration pour pretraitement d'eau salée, et installation pour sa mise en oeuvre
FR2934258A1 (fr) Procede de traitement d'eau ultra rapide et installation correspondante.
JP2000051663A (ja) 逆浸透膜分離装置および逆浸透膜分離方法
CH701008A2 (fr) Système de traitement par osmose inverse de liquide a moyenne pression au moyen de fibres creuses.
JP3963304B2 (ja) 逆浸透分離方法
WO2020239707A1 (fr) Installation de filtration membranaire de liquides et procede de production d'eau potable avec celle-ci sans post-mineralisation
JP2003117552A (ja) 淡水化装置
JP3351127B2 (ja) 逆浸透膜分離装置および造水方法
JP2001347141A (ja) 逆浸透分離装置
JP2002085944A (ja) イオン選択分離装置、それが組み込まれた流体処理装置、および流体分離方法
JPH09276863A (ja) 逆浸透分離装置および逆浸透分離方法
JP2001347140A (ja) 逆浸透分離方法
JP2002058967A (ja) 逆浸透分離方法
GB2622106A (en) Saline water treatment pre-treatment or treatment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09774733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09774733

Country of ref document: EP

Kind code of ref document: A1