WO2010051887A1 - Verfahren zur herstellung von dialkylphosphinsäuren, -estern und -salzen mittels vinylverbindungen und ihre verwendung - Google Patents

Verfahren zur herstellung von dialkylphosphinsäuren, -estern und -salzen mittels vinylverbindungen und ihre verwendung Download PDF

Info

Publication number
WO2010051887A1
WO2010051887A1 PCT/EP2009/007127 EP2009007127W WO2010051887A1 WO 2010051887 A1 WO2010051887 A1 WO 2010051887A1 EP 2009007127 W EP2009007127 W EP 2009007127W WO 2010051887 A1 WO2010051887 A1 WO 2010051887A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
bis
dialkylphosphinic
salts
alkyl
Prior art date
Application number
PCT/EP2009/007127
Other languages
English (en)
French (fr)
Other versions
WO2010051887A8 (de
Inventor
Michael Hill
Werner Krause
Original Assignee
Clariant International Ltd
Sicken, Martin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant International Ltd, Sicken, Martin filed Critical Clariant International Ltd
Priority to JP2011533570A priority Critical patent/JP2012507478A/ja
Priority to EP09778830A priority patent/EP2352737A1/de
Priority to US13/125,361 priority patent/US20110237720A1/en
Priority to CN2009801401478A priority patent/CN102177168A/zh
Publication of WO2010051887A1 publication Critical patent/WO2010051887A1/de
Publication of WO2010051887A8 publication Critical patent/WO2010051887A8/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]
    • C07F9/301Acyclic saturated acids which can have further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]
    • C07F9/302Acyclic unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]
    • C07F9/306Arylalkanephosphinic acids, e.g. Ar-(CH2)n-P(=X)(R)(XH), (X = O,S, Se; n>=1)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]
    • C07F9/32Esters thereof
    • C07F9/3205Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/3211Esters of acyclic saturated acids which can have further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]
    • C07F9/32Esters thereof
    • C07F9/3205Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/3217Esters of acyclic unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]
    • C07F9/32Esters thereof
    • C07F9/3205Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/3241Esters of arylalkanephosphinic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]
    • C07F9/32Esters thereof
    • C07F9/3258Esters thereof the ester moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/3264Esters with hydroxyalkyl compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/48Phosphonous acids [RP(OH)2] including [RHP(=O)(OH)]; Thiophosphonous acids including [RP(SH)2], [RHP(=S)(SH)]; Derivatives thereof
    • C07F9/4808Phosphonous acids [RP(OH)2] including [RHP(=O)(OH)]; Thiophosphonous acids including [RP(SH)2], [RHP(=S)(SH)]; Derivatives thereof the acid moiety containing a substituent or structure which is considered as characteristic
    • C07F9/4816Acyclic saturated acids or derivatices which can have further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/48Phosphonous acids [RP(OH)2] including [RHP(=O)(OH)]; Thiophosphonous acids including [RP(SH)2], [RHP(=S)(SH)]; Derivatives thereof
    • C07F9/4866Phosphonous acids [RP(OH)2] including [RHP(=O)(OH)]; Thiophosphonous acids including [RP(SH)2], [RHP(=S)(SH)]; Derivatives thereof the ester moiety containing a substituent or structure which is considered as characteristic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Definitions

  • the invention relates to a process for the preparation of dialkylphosphinic acids, esters and salts by means of vinyl compounds and their use.
  • dialkylphosphinic acids the so-called mono-carboxy-functionalized dialkylphosphinic acids, as defined below, the esters have hitherto been accessible almost exclusively.
  • the latter can be prepared in several steps starting from phosphonous dihalides. These include the reaction of dihalophosphines with activated olefinic compounds such as acrylic acid, followed by the esterification of the initially formed acid chloride and anhydride derivatives with alcohols (K.K. Khairullin, R.R. Shagidullin, Zh. Obshch., Khim., 36, 289-296).
  • dialkylphosphinic acids are therefore always monocarboxy-functionalized dialkylphosphinic acids, although this is not expressly mentioned. This includes the corresponding esters and salts.
  • dialkylphosphinic esters are also obtained when adding phosphonous acid ester in the presence of peroxide catalysts to ⁇ , ß-unsaturated carboxylic acid ester (Houben-Weyl, Volume 1211, pp 258-259).
  • the phosphonous acid esters themselves are prepared from phosphonous dihalides by reaction with alcohols or hydrolysis. and subsequent esterification.
  • the aforementioned Phosphonigklastedihalogenide itself are prepared in a complex synthesis of phosphorus trichloride and alkyl chloride in the presence of aluminum chloride (Houben-Weyl, Volume 1211, p 306). The reaction is highly exothermic and technically difficult to control.
  • Mono-carboxy-functionalized dialkylphosphinic esters can also be obtained by reacting phosphonous bis (trimethylsilyl) esters - HP (OSiMe 3 ⁇ - with ⁇ .beta.-unsaturated carboxylic acid components, followed by alkylation with alkyl halides according to the Arbuzov reaction and alcoholysis (Kurdyumova, NR ; Rozhko, LF; Ragulin, VV; Tsvetkov, EN; Russian Journal of General Chemistry (Translation of Zhurnal Obshchei Khimii (1997), 67 (12), 1852-1856).
  • the phosphonous bis (trimethylsilyl) ester thereby becomes potassium - or ammonium hypophosphite obtained by reaction with hexamethyldisilazane.
  • This object is achieved by a process for the preparation of monocarboxy-functionalized dialkylphosphinic acids, esters and salts, which comprises: a) a source of phosphinic acid (I)
  • the monofunctionalized dialkylphosphinic acid derivative (VI) obtained after step b) is preferably monofunctionalized in a step c) with carbon monoxide and hydrogen with the exclusion of water or an alcohol M-OH and / or M'-OH in the presence of a catalyst C.
  • Dialkylphosphinic acid derivative (VII) and / or (VIT) is preferably monofunctionalized in a step c) with carbon monoxide and hydrogen with the exclusion of water or an alcohol M-OH and / or M'-OH in the presence of a catalyst C.
  • the monocarboxy-functionalized dialkylphosphinic acid obtained in step c), its salt or ester (III) is then preferably admixed in a step d) with metal compounds of Mg, Ca, Al, Sb, Sn, Ge, Ti, Fe, Zr, Zn, Ce , Bi, Sr, Mn, Li, Na, K and / or a protonated nitrogen base to the corresponding mono- carboxy-functionalized dialkylphosphinic salts (III) of these metals and / or a nitrogen compound.
  • the alkylphosphonous acid obtained according to step a), its salt or ester (II) and / or the monofunctionalized dialkylphosphinic acid obtained according to step b), its salt or ester (VI) and / or the monofunctionalized product obtained according to step c) are preferred Dialkylphosphinic acid, its salt or ester (VII) and / or (VIT) and / or monocarboxy-functionalized dialkylphosphinic acid, its salt or ester (III) and / or the respectively resulting reaction solution thereof with an alkylene oxide or an alcohol M-OH and / or M '-OH esterified, and the resulting Alkylphosphonigklasteder (II), monofunctionalized dialkylphosphinic (VI), monofunctionalized dialkylphosphinic (VII) and / or (VIT) and / or monocarboxy-functionalized Dialkylphosphin Acid Ester (III) the further reaction steps b), c) or d ).
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 are the same or different and are independently H, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert. Butyl and / or phenyl.
  • X and Y are identical or different and are each H, Ca, Mg, Al, Zn, Ti, Mg, Ce, Fe, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, Phenyl, ethylene glycol, propyl glycol, butyl glycol, pentyl glycol, hexyl glycol, allyl and / or glycerol.
  • the catalyst system A, B, C and D is preferably formed by reaction of a transition metal and / or a transition metal compound and at least one ligand.
  • Transition metal compounds to those from the first, seventh and eighth subgroup.
  • the transition metals and / or transition metal compounds are preferably rhodium, nickel, palladium, ruthenium, cobalt and / or gold.
  • the acetylenic compounds (V) are preferably acetylene, methylacetylene, 1-butyne, 1-hexyne, 2-hexyne, 1-octyne, 4-octyne, 1-butyne-4-ol, 2-butyne-1 ol, 3-butyn-1-ol, 5-hexyn-1-ol, 1-octyn-3-ol, 1-pentyne, phenylacetylene, trimethylsilyl-acetylene.
  • the alcohol of the general formula M-OH is linear or branched, saturated and unsaturated, monohydric organic alcohols having a carbon chain length of CiC-i ⁇ and in the alcohol of the general formula M'-OH to linear or branched, saturated and unsaturated, polyhydric organic alcohols having a carbon chain length of C 1 -C 18 .
  • the invention further relates to the use of monocarboxy-functionalized dialkylphosphinic acids, salts and esters, prepared according to one or more of claims 1 to 12 as an intermediate for further syntheses, as a binder, as a crosslinker or accelerator in the curing of epoxy resins, polyurethanes and unsaturated Polyester resins, as polymer stabilizers, as crop protection agents, as therapeutics or additives in therapeutics for humans and animals, as sequestering agents, as mineral oil additives, as corrosion inhibitors, in detergents and cleaners applications and in electronic applications.
  • the invention also relates to the use of monocarboxy-functionalized dialkylphosphinic acids, salts and esters (III), which have been prepared according to one or more of claims 1 to 12, as flame retardants, in particular flame retardants for clearcoats and intumescent coatings, flame retardants for wood and other cellulose-containing Products, as a reactive and / or non-reactive flame retardant for polymers, for the production of flame-retardant polymer molding compositions, for the production of flame-retardant polymer moldings and / or for the flame-retardant finishing of polyester and cellulose pure and mixed fabrics by impregnation.
  • flame retardants in particular flame retardants for clearcoats and intumescent coatings, flame retardants for wood and other cellulose-containing Products, as a reactive and / or non-reactive flame retardant for polymers, for the production of flame-retardant polymer molding compositions, for the production of flame-retardant polymer moldings and / or for the flame-ret
  • the invention also relates to a flame-retardant thermoplastic or thermosetting polymer molding composition
  • a flame-retardant thermoplastic or thermosetting polymer molding composition comprising 0.5 to 45% by weight of monocarboxy-functionalized dialkylphosphinic acids, salts or esters (III) prepared according to one or more of claims 1 to 12, 0, 5 to
  • thermoplastic or thermosetting polymer or mixtures thereof 0 to 55% by weight of additives and 0 to 55% by weight of filler or reinforcing materials, the sum of the components being 100% by weight.
  • the invention also relates to flame-retardant thermoplastic or thermosetting polymer moldings, films, filaments and fibers containing from 0.5 to 45% by weight of monocarboxy-functionalized dialkylphosphinic acids, salts or esters (III) which are selected from one or more of claims 1 to 12, 0.5 to 95% by weight of thermoplastic or thermosetting polymer or mixtures thereof, 0 to 55% by weight of additives and 0 to 55% by weight of filler or reinforcing materials, the sum of Components 100 wt .-% is.
  • monocarboxy-functionalized dialkylphosphinic acids, salts or esters (III) which are selected from one or more of claims 1 to 12, 0.5 to 95% by weight of thermoplastic or thermosetting polymer or mixtures thereof, 0 to 55% by weight of additives and 0 to 55% by weight of filler or reinforcing materials, the sum of Components 100 wt .-% is.
  • the monocarboxy-functionalized dialkylphosphinic acid is preferably 3- (ethylhydroxyphosphinyl) propionic acid, 3- (propylhydroxyphosphinyl) propionic acid, 3- (i-propylhydroxyphosphinyl) propionic acid, 3- (butylhydroxyphosphinyl) propionic acid, 3- (sec- Butylhydroxyphosphinyl) propionic acid, 3- (i-butylhydroxyphosphinyl) propionic acid, 3- (2-phenylethylhydroxyphosphinyl) propionic acid, 3- (ethyl-hydroxyphosphinyl) -2-methylpropionic acid, 3- (propylhydroxyphosphinyl) -2-methyl-propionic acid , 3- (i-Propylhydroxyphosphinyl) -2-methylpropionic acid, 3- (butylhydroxyphosphinyl) -2-methylpropionic acid, 3- (sec-butylhydroxyphosphinyl)
  • the monocarboxy-functionalized dialkylphosphinic ester is preferably a propionic acid, methyl, ethyl; i-propyl; butyl, phenyl; 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl,
  • the monocarboxy-functionalized dialkylphosphinic acid salt is preferably an aluminum (III), calcium (II), magnesium (II), cerium (III), Ti (IV) and / or zinc (II) salt of the abovementioned monocarboxy-functionalized dialkylphosphinic acids or the abovementioned esters of monocarboxy-functionalized dialkylphosphinic acids.
  • the target compounds are also esters and salts in which the esterification or salt formation takes place at the phosphinic acid group (at X in formula (III)) or at the propionic acid group (at Y in formula (III)).
  • the transition metals for the catalyst A are preferably elements of the seventh and eighth subgroups (according to modern nomenclature a metal of group 7, 8, 9 or 10), such as rhenium, ruthenium, cobalt, rhodium, iridium, nickel, palladium and platinum.
  • the metal salts used as the source of the transition metals and transition metal compounds are those of mineral acids containing the anions fluoride, chloride, bromide, iodide, fluorate, chlorate, bromate, iodate, fluorite, chlorite, bromite, iodite, hypofluorite, hypochlorite, hypobromite, hypoiodite, perfluorate, perchlorate, perbromate, periodate, Cyanide, cyanate, nitrate, nitride, nitrite, oxide, hydroxide, borate, sulfate, sulfite, sulfide, persulfate, thiosulfate, sulfamate, phosphate, phosphite, hypophosphite, phosphide, carbonate and sulfonate, such as methanesulfonate, chlorosulfonate, fluorosulfonate, fluorosulfonate
  • transition metals and transition metal compounds are salts of the transition metals with tetraphenylborate and halogenated tetraphenylborate anions, such as perfluorophenylborate.
  • Suitable salts also include double salts and complex salts consisting of one or more transition metal ions and independently one or more alkali metal, alkaline earth metal, ammonium, organic ammonium, Phosphonium and organic phosphonium ions and independently one or more of the above anions.
  • Suitable double salts provide z.
  • a source of the transition metals is the transition metal as an element and / or a transition metal compound in its zero-valent state.
  • the transition metal is used metallically or used as an alloy with other metals, in which case boron, zirconium, tantalum, tungsten, rhenium, cobalt, iridium, nickel, palladium, platinum and / or gold is preferred.
  • the transition metal content in the alloy used is preferably 45-99.95% by weight.
  • the transition metal is microdispersed (particle size 0.1 mm - 100 microns) used.
  • the transition metal on a metal oxide such as alumina, silica, titania, zirconia, zinc oxide, nickel oxide, vanadium oxide, chromium oxide, magnesium oxide, Celite ®, diatomaceous earth, on a metal carbonate such as barium carbonate, calcium carbonate, strontium carbonate, on a metal sulfate such as barium sulfate, it is preferred Calcium sulfate, strontium sulfate, on a metal phosphate such as aluminum phosphate, vanadium phosphate, on a metal carbide such as silicon carbide, on a metal aluminate such as calcium aluminate, on a metal silicate such as aluminum silicate, chalks, zeolites, bentonite, montmorillonite, hectorite, on functionalized silicates, functionalized silica gels such as Silia Bond ®, QuadraSil TM, on functionalized polysiloxanes such as Deloxan ®,
  • Suitable sources of the metal salts and / or transition metals are preferably also their complex compounds.
  • Complex compounds of the metal salts and / or transition metals are composed of the metal salts or transition metals and one or more complexing agents. Suitable complexing agents are, for. For example, olefins, diolefins, nitriles, dinitriles, carbon monoxide, phosphines, diphosphines, phosphites, diphosphites, dibenzylideneacetone, cyclopentadienyl, indenyl or styrene. Suitable complex compounds of the metal salts and / or transition metals may be supported on the abovementioned support materials.
  • the content of said supported transition metals 0.01 to 20 wt .-%, preferably 0.1 to 10 wt .-%, in particular 0.2 to 5 wt .-%, based on the total mass of the support material.
  • Suitable sources of transition metals and transition metal compounds are, for example, palladium, platinum, nickel, rhodium; Palladium platinum, nickel or rhodium on alumina, on silica, on barium carbonate, on barium sulfate, on calcium carbonate, on strontium carbonate, on carbon, on activated charcoal; Platinum-palladium-gold, aluminum-nickel, iron-nickel, lanthanoid-nickel, zirconium-nickel, platinum-iridium, platinum-rhodium; Raney ® nickel, nickel-zinc-iron oxide; Palladium (II), nickel (II), platinum (II), rhodium chloride, bromide, iodide, fluoride, hydride, oxide, peroxide, cyanide, sulfate, nitrate, phosphide, boride, chromium oxide, cobalt oxide, carbonate hydroxide, cyclohexanebutyrate, hydroxide
  • the ligands are preferably phosphines of the formula (VIII)
  • phosphines (VIII) are trimethyl, triethyl, tripropyl, triisopropyl, tributyl, triisobutyl, triisopentyl, trihexyl, tricyclohexyl, trioctyl, tridecyl, triphenyl, diphenylmethyl, phenyldimethyl, tri (o-tolyl), tri (p-tolyl), ethyldiphenyl, dicyclohexylphenyl, 2-pyridyldiphenyl, bis (6-methyl-2-pyridyl) phenyl, tri (p-chlorophenyl), tri ( p-methoxyphenyl), diphenyl (2-sulfonatophenyl) phosphine; Potassium, sodium and ammonium salts of diphenyl (3-sulfonatophenyl) phosphine, bis (4,6-dimethyl-3-s
  • the ligands are bidentate ligands of the general formula
  • R 8 2 IVT-ZM R 8 2 (IX)
  • M independently of one another represent N, P, As or Sb.
  • the two M are the same and more preferably M" is a phosphorus atom.
  • Each group R 8 independently represents the radicals described under formula (VIII). Preferably, all groups R 8 are identical.
  • Z preferably represents a divalent bridging group which contains at least 1 bridging atom, preferably containing 2 to 6 bridging atoms. Bridging atoms can be selected from C, N, O, Si, and S atoms. Preferably, Z is an organic bridging group containing at least one carbon atom. Preferably, Z is an organic bridging group containing from 1 to 6 bridging atoms of which at least two are carbon atoms which may be unsubstituted or substituted.
  • Preferred groups Z are -CH 2 -, -CH 2 -CH 2 -, -CH 2 -CH 2 -CH 2 -, -CH 2 -CH (CH 3) - CH 2 -, -CH 2 -C (CHa) 2 -CH 2 -, -CH 2 -C (C 2 Hs) -CH 2 -, -CH 2 -Si (CHs) 2 -CH 2 -, -CH 2 -O-CH 2 -, -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -, -CH 2 -CH (C 2 Hs) -CH 2 -, -CH 2 -CH (n-Pr) -CH and -CH 2 -CH (n-Bu) -CH 2 -, unsubstituted or substituted 1, 2-phenyl, 1, 2-cyclohexyl, 1, 1'- or 1, 2-ferrocenyl radicals, 2,2 '- (1, 1
  • Suitable bidentate phosphine ligands (IX) are, for example, 1, 2-bis (dimethyl), 1, 2-bis (diethyl), 1, 2-bis (dipropyl), 1, 2-bis (diisopropyl), 1, 2-bis (dibutyl)
  • the ligands of the formula (VIII) and (IX) can be bonded to a suitable polymer or inorganic substrate by the radicals R 8 and / or the bridging group.
  • the catalyst system has a transition metal to ligand molar ratio of 1: 0.01 to 1: 100, preferably from 1: 0.05 to 1:10, and more preferably from 1: 1 to 1: 4.
  • the reactions in process stages a), b) c) and d) are preferably carried out optionally in an atmosphere which contains further gaseous constituents such as, for example, nitrogen, oxygen, argon, carbon dioxide; the temperature is -20 to 340 0 C, in particular 20 to 180 0 C and the total pressure of 1 to 100 bar.
  • the isolation of the products and / or the transition metal and / or the transition metal compound and / or catalyst system and / or the ligand and / or the reactants according to process steps a), b), c) and d) is carried out optionally by distillation or rectification, by Crystallization or precipitation, by filtration or centrifugation, by adsorption or chromatography or other known methods. According to the invention, solvents, adjuvants and optionally other volatile components are replaced by, for. As distillation, filtration and / or extraction.
  • the reactions in the process stages a), b), c) and d) are carried out optionally in absorption columns, spray towers, bubble columns, stirred tanks, Reiselbettreaktor, Strömumgsrohren, loop reactors and / or kneaders.
  • Suitable mixing devices are z. As anchor, blade, MIG, propeller, impeller, turbine, cross-stirrer, dispersing, hollow (gassing) - stirrer, rotor-stator mixers, static mixers, Venturi nozzles and / or lift pumps.
  • the reaction solution mixtures preferably have a mixing intensity which corresponds to a rotation Reynolds number of from 1 to 1,000,000, preferably from 100 to 100,000.
  • an intensive mixing of the respective reactants, etc. takes place under an energy input of 0.080 to 10 kW / m 3 , preferably 0.30 to 1.65 kW / m 3 .
  • the particular catalyst A 1 B, C and D preferably acts homogeneously and / or heterogeneously during the reaction. Therefore, the heterogeneous catalyst acts during the reaction as a suspension or bound to a solid phase.
  • the particular catalyst A, B, C or D is preferably generated in situ before the reaction and / or at the beginning of the reaction and / or during the reaction.
  • the particular reaction is preferably carried out in a solvent as a one-phase system in homogeneous or heterogeneous mixture and / or in the gas phase.
  • a phase transfer catalyst can additionally be used.
  • the reactions according to the invention can be carried out in the liquid phase, in the gas phase or else in the supercritical phase.
  • the respective catalyst A, B, C and D is preferably used homogeneously or as a suspension in the case of liquids, while in the case of gas-phase or supercritical operation a fixed bed arrangement is advantageous.
  • Suitable solvents are water, alcohols such as e.g. Methanol, ethanol, i-propanol, n-propanol, n-butanol, i-butanol, t-butanol, n-amyl alcohol, i-amyl alcohol, t-amyl alcohol, n-hexanol, n-octanol, i-octanol, n- Tridecanol, benzyl alcohol, etc.
  • alcohols such as e.g. Methanol, ethanol, i-propanol, n-propanol, n-butanol, i-butanol, t-butanol, n-amyl alcohol, i-amyl alcohol, n-hexanol, n-octanol, i-octanol, n- Tridecanol, benzyl alcohol, etc.
  • glycols such as Ethylene glycol, 1, 2-propanediol, 1, 3-propanediol, 1, 3-butanediol, 1, 4-butanediol, diethylene glycol, etc .
  • aliphatic hydrocarbons such as pentane, hexane, heptane, octane, and petroleum ether, petroleum benzine, kerosene, petroleum, paraffin oil, etc .
  • aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, ethylbenzene,
  • Halogenated hydrocarbons such as methylene chloride, chloroform, 1, 2-dichloroethane, chlorobenzene, carbon tetrachloride, tetrabromoethylene, etc .
  • alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclohexane, etc .
  • Ethers such as anisole (methyl phenyl ether), t-butyl methyl ether, dibenzyl ether, diethyl ether, dioxane, diphenyl ether, methyl vinyl ether, tetrahydrofuran, triisopropyl ether, etc .
  • Glycol ethers such as diethylene glycol diethyl ether, diethylene glycol dimethyl ether (diglyme), diethylene glycol monobutyl ether, diethylene glycol monomethyl ether, 1,2-dimethoxyethane (DME monoglyme
  • the reaction is carried out under its own vapor pressure of the olefin and / or the solvent.
  • R 1 , R 2 , R 3 , R 4 of the olefin (IV) are the same or different and are independently H, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl and / or phenyl.
  • olefins such as allyl isothiocyanate, allyl methacrylate, 2-allylphenol, N-allylthiourea, 2- (allylthio) -2-thiazoline, allyltrimethylsilane, allyl acetate, allylacetoacetate, allyl alcohol, allylamine, allylbenzene, allyl cyanide, allyl (cyanoacetate), allylanisole, trans-2-pentenal, cis-2-pentenenitrile,
  • functionalized olefins such as allyl isothiocyanate, allyl methacrylate, 2-allylphenol, N-allylthiourea, 2- (allylthio) -2-thiazoline, allyltrimethylsilane, allyl acetate, allylacetoacetate, allyl alcohol, allylamine, allylbenzene, allyl cyanide, allyl (cyanoacetate), allylanisole,
  • the reaction preferably takes place at a partial pressure of the olefin of 0.01-100 bar, more preferably at a partial pressure of the olefin of 0.1-10 bar.
  • the reaction is carried out in a phosphinic-olefin molar ratio of 1: 10,000 to 1: 0.001, more preferably in the ratio of 1: 30 to 1: 0.01.
  • the reaction preferably takes place in a phosphinic acid catalyst molar ratio of 1: 1 to 1: 0.00000001, more preferably 1: 0.01 to 1: 0.000001.
  • the reaction preferably takes place in a phosphinic acid / solvent molar ratio of 1: 10,000 to 1: 0, more preferably 1:50 to 1: 1.
  • a process according to the invention for the preparation of compounds of the formula (II) is characterized in that a phosphinic acid source is reacted with olefins in the presence of a catalyst and the product (II) (alkylphosphonous acid or salts, esters) of catalyst, transition metal or transition metal compound , Ligand, complexing agent, salts and by-products.
  • the catalyst, the catalyst system, the transition metal and / or the transition metal compound is separated by adding an adjuvant 1 and removing the catalyst, the catalyst system, the transition metal and / or the transition metal compound by extraction and / or filtration.
  • the ligand and / or complexing agent is separated by extraction with auxiliaries 2 and / or distillation with auxiliaries 2.
  • Auxiliary 1 is preferably water and / or at least one member of the family of metal scavengers.
  • Preferred metal scavengers are metal oxides such as alumina, silica, titania, zirconia, zinc oxide, nickel oxide, vanadium oxide, chromium oxide, magnesium oxide, Celite ®, diatomaceous earth;
  • Metal carbonates such as barium carbonate, calcium carbonate, strontium carbonate; Metal sulfates such as barium sulfate, calcium sulfate, strontium sulfate; Metal phosphates such as aluminum phosphate, vanadium phosphate metal carbides such as silicon carbide; Metal aluminates such as calcium aluminate; Metal silicates such as aluminum silicate, chalks, zeolites, bentonite,
  • Ambersep® TM Dowex ®, ® Lewatit, ScavNet ®; functionalized polymers such as Chelex ®, QuadraPure TM, Smopex ®, PolyOrgs® ®; polymer-bound phosphines, phosphine oxides, phosphinates, phosphonates, phosphates, amines, ammonium salts, Amides, thioamides, ureas, thioureas, triazines, imidazoles, pyrazoles, pyridines, pyrimidines, pyrazines, thiols, thiol ethers, thiol esters, alcohols, alkoxides, ethers, esters, carboxylic acids, acetates, acetals, peptides, hetarenes, polyethylenimine / silica and / or dendrimers.
  • functionalized polymers such as Chelex
  • Auxiliaries 1 are preferably added in quantities corresponding to a 0.1-40% by weight loading of the metal on the auxiliary 1.
  • Aid 1 at temperatures of 20 is preferred - 90 0 C.
  • the residence time of adjuvant 1 is preferably 0.5 to 360 minutes.
  • Auxiliary 2 is preferably the abovementioned solvent according to the invention, as are preferably used in process step a).
  • the corresponding esters can be achieved, for example, by reaction with higher-boiling alcohols with removal of the water formed by azeotropic distillation or by reaction with epoxides (alkylene oxides).
  • step a) the alkylphosphonous acid (II) with a
  • M'-OH ethylene glycol 1, 2-propylene glycol, 1, 3-propylene glycol, 1, 4-butanediol, 2,2-dimethylpropane-1, 3-diol, neopentyl glycol, 1, 6-hexanediol, 1, 4-cyclohexanedimethanol, glycerol, trishydroxymethylethane, trishydroxymethylpropane, pentaerythritol, sorbitol, mannitol, ⁇ -naphthol, polyethylene glycols, polypropylene glycols and / or EO-PO block polymers.
  • M-OH and M'-OH are monohydric or polyhydric, unsaturated alcohols having a carbon chain length of CrC 18 , for example n-buten-2-ol-1, 1,4-butenediol and allyl alcohol.
  • M-OH and M'-OH are reaction products of monohydric alcohols with one or more molecules of alkylene oxides, preferably with ethylene oxide and / or 1, 2-propylene oxide.
  • reaction products of monohydric alcohols with one or more molecules of alkylene oxides preferably with ethylene oxide and / or 1, 2-propylene oxide.
  • M-OH and M'-OH are also preferably reaction products of polyhydric alcohols with one or more molecules of alkylene oxide, in particular diglycol and triglycol, and adducts of 1 to 6 molecules of ethylene oxide or propylene oxide with glycerol, trishydroxymethylpropane or pentaerythritol.
  • reaction products of water with one or more molecules of alkylene oxide Preference is given to polyethylene glycols and poly-1, 2-propylene glycols of various molecular sizes having an average molecular weight of 100-1000 g / mol, more preferably of 150-350 g / mol.
  • M-OH and M'-OH are reaction products of ethylene oxide with poly-1, 2-propylene glycols or fatty alcohol propylene glycols; also reaction products of 1, 2-propylene oxide with polyethylene glycols or fatty alcohol ethoxylates.
  • reaction products with a average molecular weight of 100-1000 g / mol, more preferably of 150-450 g / mol.
  • M-OH and M'-OH are reaction products of alkylene oxides with ammonia, primary or secondary amines,
  • Hydrogen sulfide, mercaptans, oxygen acids of phosphorus and C2-C6 dicarboxylic acids are triethanolamine, methyldi-ethanolamine, n-butyl-diethanolamine, n-dodecyl-diethanolamine, dimethylethanolamine, n-butyl-methyl-ethanolamine, di-n-butyl-ethanolamine, n-dodecylmethyl-ethanolamine .
  • Preferred alkylene oxides are ethylene oxide, 1, 2-propylene oxide, 1, 2-epoxybutane, 1, 2-epoxyethylbenzene, (2,3-epoxypropyl) benzene, 2,3-epoxy-1-propanol and 3,4-epoxy-1 butene.
  • Suitable solvents are the solvents mentioned in process step a) and also the alcohols M-OH, M'-OH and the alkylene oxides used. These offer advantages in terms of a higher space-time yield.
  • the reaction is preferably carried out under its own vapor pressure of the alcohol M-OH, M'-OH and alkylene oxide used and / or of the solvent.
  • the reaction preferably takes place at a partial pressure of the alcohol M-OH, M'-OH and alkylene oxide used of 0.01 to 100 bar, more preferably at a partial pressure of the alcohol of 0.1 to 10 bar.
  • the reaction is preferably carried out at a temperature of -20 to 340 ° C., more preferably at a temperature of 20 to 180 ° C.
  • the reaction takes place at a total pressure of 1 to 100 bar.
  • the reaction preferably takes place in a molar ratio of the alcohol or alkylene oxide component to the phosphinic acid source (I) or alkylphosphonous acid (II) or monofunctionalized dialkylphosphinic acid (VII) and / or (VIT) or monofunctionalized dialkylphosphinic acid (VI) or monocarboxy-functionalized dialkylphosphinic acid (III) of 10,000: 1 to 0.001: 1, particularly preferably in the ratio of 1000: 1 to 0.01: 1.
  • the reaction preferably takes place in a molar ratio of the phosphinic acid source (I) or alkylphosphonous acid (II) or monofunctionalized dialkylphosphinic acid (VII) and / or (VII ') or the monofunctionalized dialkylphosphinic acid (VI) or monocarboxy-functionalized dialkylphosphinic acid (III) to the solvent of 1: 10,000 to 1: 0, more preferably in a phosphinic acid solvent molar ratio of 1:50 to 1: 1.
  • Catalyst B as used for process step b) for the reaction of alkylphosphonous acid, its salts or esters (II) with an acetylenic compound (V) to give monofunctionalized dialkylphosphinic acid, its salts and esters (VI), may preferably be Catalyst A be.
  • R 5 and R 6 are preferably independently of one another and are H and / or C 1 -C 6 -alkyl, C 6 -C 8 -aryl and / or C 7 -C 2 -O- Alkylaryl (optionally substituted).
  • R 5 and R 6 are H, methyl, ethyl, propyl, i-propyl, n-butyl, i-butyl, t-butyl, n-pentyl, i-pentyl, n-hexyl, i-hexyl, phenyl, naphthyl , ToIyI, 2-phenylethyl, 1-phenylethyl, 3-phenyl-propyl and / or 2-phenylpropyl.
  • acetylenic compounds preference is given to acetylene, methylacetylene, 1-butyne, 1-hexyne, 2-hexyne, 1-octyne, 4-octyne, 1-butyne-4-ol, 2-butyne-1-ol, 3-butyne-1 -ol, 5-hexyn-1-ol, 1-octyn-3-ol, 1-pentyne, phenylacetylene and / or trimethylsilylacetylene used.
  • the reaction is preferably carried out in the presence of a phosphinic acid of the formula (X) carried out,
  • R 11 and R 12 independently of one another C2-C 2 -alkyl, C 2 -C2o-aryl, or Alkaryl, optionally substituted mean.
  • R 11 and R 12 are each independently methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl, phenyl, naphthyl, ToIyI or XyIyI (substituted if necessary).
  • the proportion of phosphinic acid (X), based on the alkylphosphonous acid (II) used, is preferably from 0.01 to 100 mol%, in particular from 0.1 to 10 mol%.
  • the reaction takes place at temperatures of 30 to 120 0 C and more preferably at 50 to 90 0 C.
  • the reaction time is preferably 0.1 to 20 hours.
  • the reaction is carried out under its own vapor pressure of the acetylenic compound (V) and / or the solvent.
  • Suitable solvents for process step b) are those which are used further in process step a).
  • the reaction preferably takes place at a partial pressure of the acetylenic compound of 0.01-100 bar, more preferably 0.1-10 bar.
  • the ratio of acetylenic compound (V) to alkylphosphonous acid (II) is preferably 10000: 1 to 0.001: 1, more preferably 30: 1 to 0.01: 1.
  • the reaction preferably takes place in an alkylphosphonous acid catalyst molar ratio of 1: 1 to 1: 0.00000001, more preferably in an alkylphosphonous acid catalyst molar ratio of 1: 0.25 to 1: 0.000001.
  • the reaction preferably takes place in an alkylphosphonous acid solvent molar ratio of 1: 10,000 to 1: 0, more preferably in an alkylphosphonous acid solvent molar ratio of 1:50 to 1: 1.
  • steps c) are achieved by hydrocarboxylation, hydroalkoxycarbonylation and hydroformylation of the monofunctionalized dialkylphosphinic acid (VI) by carbon monoxide in combination with water, an alcohol or hydrogen in the presence of a catalyst C.
  • Catalyst C as for process step c) for the reaction of the monofunctionalized dialkylphosphinic acid derivative (VI) with carbon monoxide or with carbon monoxide and hydrogen in the presence of water or an alcohol M-OH or M-OH 'to give the monofunctionalized dialkylphosphinic acid derivatives (VII) and (VII ') or the monocarboxy-functionalized dialkylphosphinic acid derivative (IM), may preferably be the catalyst A.
  • transition metals and transition metal compounds listed under Catalyst A, the following transition metals and transition metal compounds can also be used:
  • Hydroalkoxycarbonylation are palladium, nickel and rhodium.
  • Preferred transition metals for hydroforming are rhodium and cobalt.
  • the proportion of catalyst C based on the monofunctionalized dialkylphosphinic acid (VI) used is preferably 0.00001 to 20 mol%, more preferably 0.00001 to 5 mol%.
  • Suitable solvents for process step c) are those which are used further up in process step a).
  • Preferred alcohols M-OH and M'-OH for Hydroalkoxycarbonyl ist z For example, methanol, ethanol, i-propanol, n-propanol, n-butanol, i-butanol, t-butanol, n-amyl alcohol, i-amyl alcohol, t-amyl alcohol, n-hexanol, n-octanol, i- Octanol, n-tridecanol, benzyl alcohol, etc.
  • glycogen such as Ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,4-cyclohexanedimethanol, glycerol, trishydroxymethylethane, trishydroxymethylpropane, pentaerythritol, sorbitol, mannitol, ⁇ - Naphthol, polyethylene glycols, polypropylene glycols and EO-PO block polymers, n-buten-2-ol-1, 1, 4-butenediol and allyl alcohol.
  • glycogen such as Ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,4-cyclohexanedimethanol, glycerol, trishydroxymethylethane, trishydroxymethylprop
  • the reaction is carried out at temperatures of 30 to 200 0 C and more preferably from 50 to 150 0 C.
  • the reaction time is preferably 0.1 to 20 hours.
  • the process step c) is preferably carried out at an absolute pressure of 0.01 to 1000 bar, preferably 0.1 to 250 bar, in particular 0.8 to 75 bar.
  • the reaction is carried out under the vapor pressure of the solvent.
  • the reaction preferably takes place at a partial pressure of carbon monoxide and / or hydrogen of 0.02-700 bar.
  • the reaction takes place at a partial pressure of carbon monoxide and / or hydrogen of 0.2-200 bar.
  • the reaction takes place at a partial pressure of carbon monoxide and / or hydrogen of 1-50 bar.
  • the ratio of hydrogen and / or carbon monoxide to dialkylphosphinic acid (VI) is preferably from 10,000: 1 to 0.001: 1, more preferably from 30: 1 to 0.01: 1.
  • the reaction preferably takes place in a dialkylphosphinic acid catalyst molar ratio of 1: 1 to 1: 0.00000001, more preferably in a dialkylphosphinic acid catalyst molar ratio of 1: 0.2 to 1: 0.000001.
  • the reaction preferably takes place in a dialkylphosphinic acid solvent molar ratio of 1: 10,000 to 1: 0, more preferably in a dialkylphosphinic acid solvent molar ratio of 1:50 to 1: 1.
  • the hydroformylation, hydrocarboxylation and hydroalkoxycarbonylation according to the invention can be carried out in the liquid phase, in the gas phase or else in the supercritical phase.
  • the catalyst is preferably used homogeneously or as a suspension, while a fixed-bed arrangement is advantageous in the case of gas-phase or supercritical operation.
  • the ratio of carbon monoxide to hydrogen is preferably 1: 1 to 1:15, particularly preferably 1: 1 to: 1.2.
  • the ratio of carbon monoxide to water or the alcohol M-OH or M'-OH is preferably 1: 1 to 1: 5000, particularly preferably 1: 1 to: 10.
  • the process according to the invention is carried out in the liquid phase. Therefore, the pressure in the reactor is preferably adjusted so that the reactants are in liquid form under the reaction temperature used. Furthermore, it is preferred that the hydrogen cyanide is used in liquid form.
  • one or more reactors may be used, which are preferably connected in series using multiple reactors.
  • step c) to monocarboxy-functionalized dialkylphosphinic acid, their salts and esters (III) by selective oxidation of the monofunctionalized dialkylphosphinic, their salts or esters (VII) or (VIT) by an oxidizing agent, an oxidizing agent and water or achieved by oxygen and water in the presence of a catalyst D.
  • Preferred oxidants and / or oxygen generators are potassium permanganate, manganese dioxide, chromium trioxide, potassium dichromate, pyridine dichromate, pyridinium chlorochromate, Coliins reagent, Jones reagent, Corey-Gilman-Ganem reagent, (Dess-Martin) periodinan, o-iodo-benzoic acid , Rutheniumtetroxid, ruthenium dioxide, tetra-n-propyl perruthenate, ruthenium trichloride / sodium periodate, ruthenium dioxide / sodium periodate, chlorine, hypochlorite, peracids, such.
  • As hydrogen peroxide performic acid and peracetic acid, nitroxyl radicals, such as. B. 2,2,6,6-tetramethylpiperidine N-oxide (TEMPO).
  • TEMPO 2,2,6,6-tetramethylpiperidine N-oxide
  • oxidizing agents and / or oxygen generators are also peroxo compounds such as peroxo-mono-sulfuric acid, potassium monopersulfate (potassium peroxomonosulfate), caroate (TM), oxone (TM), peroxodisulfuric acid, potassium persulfate (potassium peroxodisulfate), sodium persulfate (sodium peroxodisulfate), ammonium persulfate ( ammonium).
  • peroxo-mono-sulfuric acid potassium monopersulfate (potassium peroxomonosulfate), caroate (TM), oxone (TM), peroxodisulfuric acid, potassium persulfate (potassium peroxodisulfate), sodium persulfate (sodium peroxodisulfate), ammonium persulfate ( ammonium).
  • Preferred oxidizing agents and / or oxygen generators are compounds which can form peroxides in the solvent system, such as sodium peroxide, hydrates, Sodium peroxide diperoxohydrate hydrate, lithium peroxide, hydrates, calcium peroxide, strontium peroxide, barium peroxide, magnesium peroxide, zinc peroxide, potassium peroxide, hydrates, sodium peroxoborate, hydrates, potassium peroxoborate peroxohydrate, magnesium peroxoborate, calcium peroxoborate, barium peroxoborate, strontium peroxoborate, potassium peroxoborate,
  • Peroxomonophosphoric acid peroxodiphosphoric acid, potassium peroxydi-phosphate, ammonium peroxodiphosphate, potassium ammonium peroxodiphosphate, sodium carbonate peroxohydrate, urea peroxohydrate, ammonium oxalate peroxide, barium peroxide peroxohydrate, barium peroxide peroxohydrate, calcium hydrogen peroxide, calcium peroxide peroxohydrate,
  • Preferred oxidizing agents and / or oxygen generators are hydrogen peroxide, performic acid, peracetic acid, benzoyl peroxide, di-t-butyl peroxide, dicumyl peroxide, 2,4-dichlorobenzoyl peroxide, decanoyl peroxide, lauryl peroxide, cumene hydroperoxide, pinene hydroperoxide, p-menthane hydroperoxide, t-butyl hydroperoxide , Acetylacetone peroxide, methyl ethyl ketone peroxide, succinic acid peroxide, dicetyl peroxydicarbonate, t-butyl peroxyacetate, t-butyl peroxymaleic acid, t-butyl peroxybenzoate, acetylcyclohexylsulfonyl peroxide.
  • the reaction is carried out in a dialkylphosphinic acid oxidant molar ratio of 1:10 to 1: 0.1, more preferably in a dialkylphosphinic acid oxidizer molar ratio of 1: 2 to 1: 0.25.
  • the catalyst D as used for process step c) for the reaction of the monofunctionalized dialkylphosphinic acid derivative (VII) or (VM 1 ) with oxygen and water to the end product, the monocarboxy-functionalized dialkylphosphinic acid derivative (III), may preferably Catalyst A be.
  • the transition metals for the catalyst C are preferably elements of the first subgroup, such as gold.
  • Transition metals and transition metal compounds the following transition metals and transition metal compounds can also be used:
  • Gold colloidal gold, ruthenium, ruthenium on activated carbon, on carbon, on alumina, platinum-palladium-gold, gold-nickel, gold-germanium, gold-platinum, gold-palladium, gold-beryllium, platinum Ruthenium, palladium-ruthenium alloy, gold (I) and / or gold (III), ruthenium (II) and / or ruthenium (III) and / or ruthenium (IV) chloride, bromide, iodide, oxide, cyanide, potassium cyanide, sodium cyanide sulfide, sulfate, hydride, nitrosyl chloride, nitrosyl nitrate, -bathophenanthroline disulfonate, sodium salt, thiosulfate, perchlorate,
  • cyclopentadienyl ethylcyclopentadienyl, pentamethylcyclopentadienyl, indenyl, 2-methylallyl, propionate, acetate, acetylacetonate, hexafluoroacetylacetonate, tetrafluoroborate, potassium thiocyanate, sodium thiocyanate, trifluoroacetate, bis (trifluoro-methanesulfonyl) imidate, hexafluoroantimonate, 2-pyridinecarboxylate, and their 1,4-bis (diphenylphosphine) -butane, 1,3-bis (diphenylphosphino) propane, 2- (2'-di-tert-butylphosphin) biphenyl , Acetonitrile, benzonitrile, dinorbornylphosphine, 1,4-bis (diphenylphosphino) butane, dimethylphenylpho
  • the proportion of catalyst D is preferably 0.00001 to 20 mol%, more preferably 0.0001 to 10 mol%, based on the monofunctionalized dialkylphosphinic acid (VII) and / or (VII ') used.
  • the reaction takes place in a phosphinic acid solvent molar ratio of 1: 10,000 to 1: 0, particularly preferably in a phosphinic acid solvent molar ratio of 1:50 to 1: 1.
  • the oxidation takes place at temperatures of 30 to 120 0 C and more preferably at 50 to 90 0 C.
  • the reaction time is preferably 0.1 to 20 hours.
  • the reaction preferably takes place at a partial pressure of the oxygen of 0.01-100 bar, more preferably 0.1-10 bar
  • the reaction takes place at a total pressure of 1 to 100 bar.
  • Suitable solvents for process step c) are those which are used further up in process step a).
  • the oxidation can be carried out in the liquid phase, in the gas phase or else in the supercritical phase.
  • the catalyst is preferably used homogeneously or as a suspension, while a fixed-bed arrangement is advantageous in the case of gas-phase or supercritical operation.
  • the pH of the reaction solution is maintained in the range of pH 6 to 12 by addition of alkali and / or alkaline earth compounds, more preferably in a range of pH 6 to 9.
  • Preferred alkali and / or alkaline earth metals are lithium, sodium, potassium, magnesium, calcium, barium.
  • Preferred compounds of the alkali and alkaline earth metals are their oxides, hydroxides, carbonates and carboxylates.
  • Preferred alkali and / or alkaline earth metal compounds are lithium, lithium hydroxide, lithium hydride, sodium, sodium hydroxide, sodium hydride, potassium hydroxide.
  • the oxygen is used as pure oxygen or, alternatively, an oxygen-containing mixture, such as air or oxygen-enriched air.
  • the oxygen is used as oxygen generators such as hydrogen peroxide.
  • the ratio of oxygen to phosphorus-containing compound (VII) or (VII ') is 1: 1 to 1500: 1.
  • the monocarboxy-functionalized dialkylphosphinic acid or its salt (III) can be subsequently converted into further metal salts.
  • the metal compounds used in process step d) are preferably compounds of the metals Mg, Ca, Al, Sb, Sn, Ge, Ti, Fe, Zr, Zn 1 Ce, Bi, Sr 1 Mn, Li, Na, K particularly preferably Mg, Ca, Al, Ti, Zn, Sn, Ce, Fe.
  • Suitable solvents for process step d) are those which are used further in process step a).
  • reaction is carried out in process step d) in an aqueous medium.
  • the reaction takes place in a molar ratio of monocarboxy-functionalized dialkylphosphinic acid / ester / salt (III) to metal of 8: 1 to 1: 3 (for tetravalent metal ions or metals having a stable tetravalent oxidation state) of from 6: 1 to 1 3 (for trivalent metal ions or metals with stable trivalent oxidation state), from 4 to 1 to 1 to 3 (for divalent metal ions or metals with stable divalent oxidation state) and from 3 to 1 to 1 to 4 (for monovalent metal ions or metals with stable monovalent oxidation state).
  • the monocarboxy-functionalized dialkylphosphinic acid ester / salt (III) obtained in process step c) is preferably converted into the corresponding dialkylphosphinic acid and, in process step d), this is reacted with metal compounds of Mg, Ca, Al, Zn, Ti, Sn, Zr, Ce or Fe to the monocarboxy-functionalized Dialkylphosphinkladzen (III) of these metals.
  • the metal compounds of Mg, Ca, Al, Zn, Ti, Sn, Zr, Ce or Fe for process stage d) are preferably metals, metal oxides, hydroxides, oxide hydroxides, borates, carbonates, hydroxocarbonates, hydroxocarbonate hydrates, mixed hydroxycarbonates, mixed hydroxocarbonate hydrates, phosphates, sulphates, sulphate hydrates, hydroxysulphate hydrates, mixed hydroxysulphate hydrates, oxysulphates, acetates, nitrates, fluorides, fluoride hydrates, chlorides, chloride hydrate, oxychlorides, bromides, iodides, iodide hydrates, carboxylic acid derivatives and / or alkoxides.
  • the metal compounds are preferably aluminum chloride, aluminum hydroxide, aluminum nitrate, aluminum sulfate, titanyl sulfate, zinc nitrate, zinc oxide, zinc hydroxide and / or zinc sulfate.
  • metallic aluminum fluoride, hydroxychloride, bromide, iodide, sulfide, selenide; phosphide, hypophosphite, antimonide, nitride; carbide, hexafluorosilicate; hydride, calcium hydride, borohydride; chlorate; Sodium aluminum sulfate, aluminum potassium sulfate, aluminum ammonium sulfate, nitrate, metaphosphate, phosphate, silicate, magnesium silicate, carbonate, hydrotalcite, sodium carbonate, borate; thiocyanate; oxide, oxyhydroxide, their corresponding hydrates and / or polyaluminum hydroxy compounds, which preferably have an aluminum content of 9 to 40% by weight.
  • aluminum salts of mono-, di-, oligo-, polycarboxylic acids such as.
  • elemental, metallic zinc and zinc salts such as zinc halides (zinc fluoride, zinc chlorides, zinc bromide, zinc iodide).
  • zinc borate carbonate, hydroxide carbonate, silicate, hexafluorosilicate, stannate, hydroxide stannate, magnesium aluminum
  • hydroxide carbonate nitrate, nitrite, phosphate, pyrophosphate; sulphate, phosphide, selenide, telluride and zinc salts of the oxo acids of the seventh main group (hypohalites, halides, halogenates, eg zinc iodate, perhalates, eg zinc perchlorate); Zinc salts of pseudohalides (zinc thiocyanate, cyanate, cyanide); Zinc oxides, peroxides, hydroxides or mixed zinc oxide hydroxides.
  • zinc salts of the oxo acids of the transition metals for example zinc chromate (VI) hydroxide, chromite, molybdate, permanganate, molybdate.
  • zinc salts of mono-, di-, oligo-, polycarboxylic acids such as. B. zinc formate, acetate, trifluoroacetate, propionate, butyrate, valerate, caprylate, oleate, stearate, oxalate, tartrate, citrate, benzoate, salicylate, lactate, acrylate, maleate, succinate, salts of amino acids (glycine), acidic hydroxy functions (zinc phenolate, etc.), zinc p-phenolsulfonate, acetylacetonate, stannate, dimethyldithiocarbamate, trifluoromethanesulfonate.
  • Titanium compounds include metallic titanium as well as titanium (III) and / or (IV) chloride, nitrate, sulfate, formate, acetate, bromide, fluoride, oxychloride, oxysulfate, oxide, n-propoxide, n-butoxide, isopropoxide, ethoxide, 2-ethylhexyl oxide.
  • metallic tin and tin salts tin (II) and / or (IV) chloride
  • Tin oxides and tin alkoxide such.
  • Tin (IV) tert-butoxide is also suitable.
  • cerium (III) fluoride is also suitable.
  • chloride is also suitable.
  • nitrate is also suitable.
  • zirconium compounds metallic zirconium and zirconium salts such as zirconium chloride, sulfate, zirconyl acetate, zirconyl chloride are preferred. Further preferred are zirconium oxides and zirconium (IV) tert-butoxide.
  • the reaction in process step d) preferably takes place at a solids content of the monocarboxy-functionalized dialkylphosphinic acid salts of from 0.1 to 70% by weight, preferably from 5 to 40% by weight.
  • the reaction preferably takes place in process stage d) at a temperature of 20 to 250 ° C., preferably at a temperature of 80 to 120 ° C.
  • the reaction in process stage d) preferably takes place at a pressure of between 0.01 and 1000 bar, preferably 0.1 to 100 bar.
  • the reaction takes place in process stage d) during a reaction time of 1 * 10 '7 to 1000 h.
  • the product mixture obtained after process step c) is reacted with the metal compounds without further purification.
  • Preferred solvents are the solvents mentioned in process step a).
  • reaction in process stage d), c) and / or b) is preferably in the solvent system given by stage a).
  • the reaction in process step d) is in a modified given solvent system.
  • acidic components, solubilizers, foam inhibitors, etc. are added.
  • the product mixture obtained after process stage a), b) and / or c) is worked up.
  • the product mixture obtained after process stage c) is worked up and then the mono-carboxy-functionalized dialkylphosphinic acids and / or their salts or esters (III) obtained in process stage c) are reacted with the metal compounds in process stage d).
  • the product mixture according to process step c) is worked up by isolating the mono-carboxy-functionalized dialkylphosphinic acids and / or their salts or esters (III) by removing the solvent system, for. B. by evaporation.
  • the monocarboxy-functionalized dialkylphosphinic acid salt (III) of the metals Mg, Ca, Al, Zn, Ti, Sn, Zr, Ce or Fe preferably has a residual moisture content of from 0.01 to 10% by weight, preferably from 0.1 to 1 Wt .-%, an average particle size of 0.1 to 2000 .mu.m, preferably from 10 to 500 .mu.m, a bulk density of 80 to 800 g / l, preferably from 200 to 700 g / l, a flowability of Pfrengle of 0.5 to 10, preferably from 1 to 5, on.
  • the shaped bodies, films, threads and fibers particularly preferably contain 5 to 30% by weight of the monocarboxy-functionalized dialkylphosphinic acid / ester / salts prepared according to one or more of claims 1 to 12, 5 to 90% by weight.
  • the additives are preferably antioxidants, antistatics, blowing agents, other flame retardants, heat stabilizers,
  • Impact modifiers process aids, lubricants, light stabilizers, antidrippers, compatibilizers, reinforcing agents, fillers, nucleating agents, nucleating agents, laser marking additives, Hydrolysis stabilizers, chain extenders, color pigments, plasticizers and / or plasticizers.
  • a flame retardant containing 0.1 to 90% by weight of the monocarboxy-functionalized dialkylphosphinic acid, esters and salts (III) and 0.1 to 50% by weight of further additives, particularly preferably diols.
  • Preferred additives are also aluminum trihydrate, antimony oxide, brominated aromatic or cycloaliphatic hydrocarbons, phenols, ethers, chlorinated paraffin, hexachloro-cyclopentadiene adducts, red phosphorus, melamine derivatives, melamine cyanurates, ammonium polyphosphates and magnesium hydroxide.
  • Preferred additives are also other flame retardants, in particular salts of dialkylphosphinic acids.
  • the invention relates to the use of the inventive monocarboxy-functionalized dialkylphosphinic acid, esters and salts (III) as flame retardants or as intermediates for the preparation of flame retardants for thermoplastic polymers such as polyester, polystyrene or polyamide and for thermosetting polymers such as unsaturated polyester resins, epoxy resins, Polyurethanes or acrylates.
  • thermoplastic polymers such as polyester, polystyrene or polyamide
  • thermosetting polymers such as unsaturated polyester resins, epoxy resins, Polyurethanes or acrylates.
  • Suitable polyesters are derived from dicarboxylic acids and their esters and diols and / or from hydroxycarboxylic acids or the corresponding lactones. Terephthalic acid and ethylene glycol, propane-1, 3-diol and butane-1, 3-diol are particularly preferably used.
  • Suitable polyesters include polyethylene terephthalate, polybutylene terephthalate (Celanex ® 2500, Celanex ® 2002, from Celanese;. Ultradur ®, BASF), poly-1, 4- dimethylolcyclohexane terephthalate, polyhydroxybenzoates, and also block polyether esters derived from polyethers having hydroxyl end groups; also with polycarbonates or MBS modified polyester.
  • Synthetic linear polyesters with permanent flame retardancy are composed of dicarboxylic acid components, diol components of the inventive monocarboxyl-functionalized dialkylphosphinic acids and esters or of the monocarboxyl-functionalized dialkylphosphinic acids and esters prepared by the process according to the invention as phosphorus-containing chain members.
  • the phosphorus-containing chain members make up 2-20% by weight of the dicarboxylic acid component of the polyester.
  • the resulting phosphorus content in the polyester is preferably 0.1-5% by weight, more preferably 0.5-3% by weight.
  • the preparation of the molding composition starting from the free dicarboxylic acid and diols is first esterified directly and then polycondensed.
  • dicarboxylic acid esters in particular dimethyl esters
  • it is first transesterified and then polycondensed using the customary catalysts.
  • conventional additives crosslinking agents, matting and stabilizing agents, nucleating agents, dyes and fillers, etc. may preferably be added during polyester production.
  • esterification and / or transesterification takes place in the
  • the polycondensation takes place in the polyester production at pressures between 0.1 to 1.5 mbar and temperatures of 150-450 0 C, particularly preferably at 200 - 300 0 C.
  • the flame-retardant polyester molding compositions prepared according to the invention are preferably used in polyester moldings.
  • Preferred polyester moldings are threads, fibers, films and moldings which contain as the dicarboxylic acid component mainly terephthalic acid and as the diol component mainly ethylene glycol.
  • the resulting phosphorus content in threads and fibers produced from flame-retardant polyester is preferably 0.1-18, preferably 0.5-15, and for films 0.2-15, preferably 0.9-12 wt%.
  • Suitable polystyrenes are polystyrene, poly (p-methylstyrene) and / or poly (alphamethylstyrene).
  • the suitable polystyrenes are copolymers of styrene or alpha-methylstyrene with dienes or acrylic derivatives, such as. Styrene-butadiene, styrene-acrylonitrile, styrene-alkyl methacrylate, styrene-butadiene-alkyl acrylate and methacrylate, styrene-maleic anhydride, styrene-acrylonitrile-methyl acrylate; Blends of high impact strength of styrene copolymers and another polymer, such as.
  • styrene such as. Styrene-butadiene-styrene, styrene-isoprene-styrene, styrene-ethylene / butylene-styrene or styrene-ethylene / propylene-styrene.
  • the suitable polystyrenes are also graft copolymers of styrene or alpha-methylstyrene, such as. Styrene on polybutadiene, styrene on polybutadiene-styrene or polybutadiene-acrylonitrile copolymers, styrene and acrylonitrile (or methacrylonitrile) on polybutadiene; Styrene, acrylonitrile and methyl methacrylate on polybutadiene; Styrene and maleic anhydride on polybutadiene; Styrene, acrylonitrile and maleic anhydride or maleimide on polybutadiene; Styrene and maleimide on polybutadiene, styrene and alkyl acrylates or alkyl methacrylates on polybutadiene, styrene and acrylonitrile on ethylene-propylene-diene terpolymers,
  • the polymers are preferably polyamides and copolyamides derived from diamines and dicarboxylic acids and / or from aminocarboxylic acids or the corresponding lactams, such as polyamide 2,12, polyamide 4, polyamide 4,6, polyamide 6, polyamide 6,6 , Polyamide 6,9, polyamide 6,10, polyamide 6,12, polyamide 6,66, polyamide 7,7, polyamide 8,8, polyamide 9,9, polyamide 10,9, polyamide 10,10, polyamide 11, polyamide 12, etc.
  • Such polyamides are z. B under the tradename Nylon ®, DuPont, Ultramid ®, BASF, Akulon ® K122, from DSM, Zytel ® 7301, from DuPont....; Durethan ® B 29, Messrs. Bayer and Grillamid® ®, Fa. Ems Chemie.
  • aromatic polyamides starting from m-xylene, diamine and adipic acid; Polyamides prepared from hexamethylenediamine and isophthalic and / or terephthalic acid and optionally an elastomer as a modifier, for. B. poly-2,4,4-trimethylhexamethylene terephthalamide or poly-m-phenylene isophthalamide, block copolymers of the aforementioned polyamides with polyolefins, olefin copolymers, ionomers or chemically bonded or grafted elastomers, or with polyethers, such as. B. with polyethylene glycol, polypropylene glycol or polytetramethylene glycol. Further modified with EPDM or ABS polyamides or copolyamides; and during processing condensed polyamides ("RIM polyamide systems").
  • the monocarboxy-functionalized dialkylphosphinic acid / ester / salts prepared according to one or more of claims 1 to 12 are preferably used in molding compositions which are further used for the production of polymer moldings.
  • the flame-retardant molding composition particularly preferably comprises 5 to 30% by weight of monocarboxy-functionalized dialkylphosphinic acids, salts or esters which have been prepared according to one or more of claims 1 to 12, 5 to 90% by weight. Polymer or mixtures thereof, 5 to 40 wt .-% of additives and 5 to 40 wt .-% filler, wherein the sum of the components is always 100 wt .-%.
  • the invention also relates to flame retardants which contain the monocarboxy-functionalized dialkylphosphinic acids, salts or esters prepared according to one or more of claims 1 to 12.
  • the invention relates to polymer molding compositions and polymer moldings, films, filaments and fibers containing the monocarboxy-functionalized dialkylphosphinic salts (III) according to the invention of the metals Mg, Ca, Al, Zn, Ti, Sn 1 Zr, Ce or Fe.
  • the flame retardant components are mixed with the polymer granules and any additives and on a twin-screw extruder (type Leistritz LSM ® 30/34) at temperatures of 230 to 260 0 C (PBT-GV) or from 260 to 280 0 C (PA 66 -GV) incorporated.
  • PBT-GV twin-screw extruder
  • PA 66 -GV twin-screw extruder
  • Injection molding machine (type Aarburg Allrounder) at melt temperatures of 240 to 270 0 C (PBT-GV) or from 260 to 290 0 C (PA 66-GV) processed into test specimens.
  • the specimens are tested and classified for flame retardance (flame retardance) using the UL 94 (Underwriter Laboratories) test.
  • V-O no afterburning for more than 10 seconds, sum of afterburning times for 10 flame treatments not greater than 50 seconds, no burning dripping, no complete burning off of the sample, no afterglowing of the samples longer than 30 seconds after end of flame
  • V-1 no afterburning for more than 30 seconds after firing end, sum of afterburning times for 10 flame treatments not greater than 250 seconds, no afterglowing of samples longer than 60 seconds after flaming end, other criteria as in VO V-2: ignition of cotton wool due to burning Dripping, other criteria as for V-1 Not classifiable (nkl): does not meet fire class V-2.
  • the LOI value was also measured.
  • LOI value (Limiting Oxygen Index) is determined according to ISO 4589. According to ISO 4589, the LOI corresponds to the lowest concentration by volume of oxygen which, in a mixture of oxygen and nitrogen, is just the combustion of the
  • the reaction mixture is freed from the solvent on a rotary evaporator.
  • the residue is mixed with 100 g of deionized water and stirred at room temperature under a nitrogen atmosphere, then filtered and the filtrate extracted with toluene, then freed from solvent on a rotary evaporator and the resulting ethylphosphonous (92 g, 98% of theory) collected.
  • reaction solution is passed through a charged with Deloxan ® THP II column and and the THF removed in vacuo.
  • the product is purified by distillation at reduced pressure. There are obtained 32.7 g (93% of theory) ethyl vinylphosphinic acid butyl ester as a colorless oil.
  • acetic acid At room temperature, 400 g of acetic acid are placed in a three-necked flask equipped with stirrer and intensive condenser and degassed while stirring and passing nitrogen through. Then, under nitrogen, 1.35 g (6 mmol) of palladium acetate and 3.47 g (6 mmol) of xanthophos are added and stirred, then 19 g (0.2 mol) of ethylphosphonous acid (prepared as in Example 1) are added and the reaction mixture is 80 0 C heated and acetylene with a flow rate of 5 l / h passed through the reaction solution. After a reaction time of 5 hours, the acetylene is driven out of the apparatus with nitrogen.
  • reaction solution is passed through a charged with Deloxan ® THP II column and the acetic acid removed in vacuo.
  • the product ethylvinylphosphinic acid
  • chromatography There are obtained 20.9 g (87% of theory) of ethylvinylphosphinic acid as a colorless oil.
  • Example 8 At room temperature, in a three-necked flask with stirrer and
  • Ethyl vinylphosphinate of butyl is purified by distillation at reduced pressure.
  • Example 10 360 g (3.0 mol) of ethylvinylphosphinic acid (prepared as in Example 6) are dissolved in 400 ml of toluene at 80 ° C. and mixed with 315 g (3.5 mol) of 1,4-butanediol and dried in a distillation apparatus with a water separator at approx 100 % C esterified for 4 h. After completion of the esterification, the toluene is removed in vacuo. 518 g (90% of theory) of ethylvinylphosphinic acid 4-hydroxybutyl ester are obtained as a colorless oil.
  • reaction solution is passed through a charged with Deloxan ® THP II column and the butanol removed in vacuo and the product purified by chromatography. There are obtained 13.4 g (83% of theory) of 3- (ethylhydroxyphosphinyl) propionic acid as a colorless oil.
  • Example 13 In a glass autoclave, 1.12 g (5 mmol) of palladium acetate, 3.95 g (10 mmol) of 1,2-bis [di (tert-butyl) phosphinomethyl] benzene, 17.6 g (0.1 mol) of ethyl vinylphosphinate ( prepared as in Example 8) and 100 ml of butanol at 100 0 C with carbon monoxide at 20 bar implemented. After a reaction time of 4 hours, the autoclave was depressurized. For purification, the reaction solution is passed through a charged with Deloxan ® THP II column and the butanol removed under vacuum and the product purified by chromatography. There are obtained 24.7 g (89% of theory) of 3- (ethylbutoxy-phosphinyl) - propionic acid butyl ester as a colorless oil.
  • Rhodiumbiscarbonylacetylacetonat 105 mg (1, 0 mmol) of triphenylphosphine, 25.2 g (0.1 mol) of ethyl (1-phenyl-vinyl) phosphinic acid butyl ester (prepared as in Example 7) and 100 ml of Texanol at 100 0 C with a synthesis gas mixture CO / H2 (1: 1) reacted at 10 bar. After a reaction time of 4 hours, the autoclave was decompressed, the solvent removed in vacuo and the product purified by chromatography. There are obtained 25.4 g (91% of theory) ethyl (1-phenyl-2-formylethyl) -phosphin Acid Bocrebutylester as a colorless oil.
  • the reaction solution is filtered from the catalyst, washed and the water distilled off in vacuo. This gives 19.5 g (93% of theory) of 3- (ethylhydroxyphosphinyl) propionic acid sodium salt as a colorless solid.
  • Example 14 are dissolved in 150 ml of water and brought to pH 9 with 2N NaOH solution. Then 0.25 g of activated carbon with 5% Pd and 1% Bi are added, the suspension is heated to 70 0 C and 30%
  • Example 15 are placed in a 1 l five-necked flask equipped with a thermometer, reflux condenser, intensive stirrer and dropping funnel. At 160 0 C 500 ml of water is metered in over 4 h and a butanol-water mixture is distilled off. The solid residue is recrystallized from acetone. There are obtained 450 g (93% of theory) of 3- (ethylhydroxyphosphinyl) -1-phenyl-propionic acid as a colorless solid.
  • Example 24 996 g (6 mol) of 3- (ethylhydroxyphosphinyl) propionic acid (prepared as in Example 18) are dissolved in 860 g of water and placed in a 5 l five-necked flask with thermometer, reflux condenser, intensive stirrer and dropping funnel and admixed with about 960 g (12 mol) neutralized 50% sodium hydroxide solution. At 85 0 C, a mixture of 2583 g of a 46% aqueous solution of Al 2 (SO 4 ) 3 -14 H 2 O is added. Subsequently, the resulting solid is filtered off, washed with hot water and dried at 130 0 C in vacuo. Yield: 1026 g (94% of theory) of 3- (ethylhydroxy-phosphinyl) -propionic acid aluminum (III) salt as a colorless salt.
  • Example 26 To 25.4 g of 2-hydroxyethyl 3- (ethyl-2-hydroxyethoxyphosphinyl) propionate (prepared as in Example 23) are added 290 g of terephthalic acid, 188 g of ethylene glycol, 0.34 g of zinc acetate and 200 h for 2 h 0 C heated. Then, 0.29 g of trisodium phosphate anhydrate and 0.14 g of antimony (III) oxide are added, heated to 280 0 C and then evacuated.
  • Example 28 To 14.0 g of 3- (ethylhydroxyphosphinyl) propionic acid (prepared as in Example 18) are added 367 g of dimethyl terephthalate, 170 g of 1,4-butanediol, 0.22 g of tetrabutyl titanate and 0.05 g of lithium acetate, and the mixture is first Heated with stirring to 130 to 180 0 C for 2 hours, then at a reduced pressure to 270 0 C. Das Polymer (427 g) contains 0.6% phosphorus, the LOI is 34, that of untreated polybutylene terephthalate 23.
  • EXAMPLE 29 A 250 ml five-necked flask with reflux condenser, stirrer, thermometer and nitrogen inlet is charged with 100 g of a bisphenol A bisglycidyl ether having an epoxide value of 0.55 mol / 100 g (Beckopox EP 140, from Solutia) and 21.6 g ( 0.13 mol) of 3- (ethylhydroxyphosphinyl) propionic acid (prepared as in Example 18) with stirring to a maximum of 150 0 C heated. After 30 minutes, a clear melt results. After another hour of stirring at 150 0 C, the melt is cooled and crushed. This gives 118.5 g of a white powder having a phosphorus content of 3.3 wt .-%.
  • Example 30 In a 2L flask with stirrer, water separator, thermometer,
  • Reflux condenser and nitrogen inlet are 29.4 g of phthalic anhydride, 19.6 g of maleic anhydride, 24.8 g of propylene glycol, 18.7 g of 2-hydroxyethyl 3- (ethyl-2-hydroxyethylphosphinyl) propionate (prepared as in Example 23) 20 g Xylo! and 50 mg of hydroquinone with stirring and passing nitrogen to 100 0 C heated. Upon onset of the exothermic reaction, the
  • a mixture of 50% by weight of polybutylene terephthalate, 20% by weight of 3- (ethylhydroxy-phosphinyl) -propionic acid, aluminum (III) salt (prepared as in Example 24) and 30% by weight of glass fibers are coated on a twin-screw extruder ( Leistritz LSM 30/34 type) at temperatures of 230 to 260 0 C to form a polymer molding compound.
  • the homogenized polymer strand was stripped off, cooled in a water bath and then granulated. After drying, the molding materials are processed on an injection molding machine (type Aarburg Allrounder) at 240 to 270 0 C to form polymer molding and a UL-94 classification of VO determined.
  • a mixture of 53% by weight of polyamide 6.6, 30% by weight of glass fibers, 17% by weight of 3-3- (ethyl-butoxyphosphinyl) -propionic acid titanium salt (prepared as in Example 25) are applied to a twin-screw extruder (type Leistritz LSM 30/34) into polymer molding compounds.
  • the homogenized polymer strand was stripped off, cooled in a water bath and then granulated.
  • the molding compositions are processed on an injection molding machine (type Aarburg Allrounder) at 260 to 290 0 C to form polymer moldings and obtained a UL-94 classification of VO.
  • injection molding machine type Aarburg Allrounder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Fireproofing Substances (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von mono-carboxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Vinylverbindungen, dadurch gekennzeichnet, dass man a) eine Phosphinsäurequelle (I) mit Olefinen (IV) in Gegenwart eines Katalysators A zu einer Alkylphosphonigsäure, deren Salz oder Ester (II) umsetzt, b) die so entstandene Alkylphosphonigsäure, deren Salz oder Ester (II) mit acetylenischen Verbindungen der Formel (V) in Gegenwart eines Katalysators B zu einem mono-funktionalisierten Dialkylphosphinsäurederivat (VI) umsetzt, und c) so entstandenes mono-funktionalisiertes Dialkylphosphinsäurederivat (VI) mit Kohlenmonoxid in Gegenwart eines Katalysators C zum mono-carboxyfunktionalisierten Dialkylphosphinsäurederivat (III) umsetzt, wobei R1, R2, R3, R4, R5, R6 gleich oder verschieden sind und unabhängig voneinander u.a. H, C1-C18-Alkyl, C6-C18-Aryl, C6-C18-Aralkyl, C6-C18-Alkylaryl und X und Y gleich oder verschieden sind und unabhängig voneinander für H, C1-C18-Alkyl, C6-C18-Aryl, C6-C18Aralkyl, C6-C18Alkylaryl, Mg, Ca, AI, Sb, Sn, Ge, Ti, Fe, Zr, Zn, Ce, Bi, Sr, Mn, Cu, Ni, Li, Na, K und/oder eine protonierte Stickstoffbase stehen und es sich bei den Katalysatoren A, B, C und D um Übergangsmetalle und/oder Übergangsmetallverbindungen und/oder Katalysatorsysteme handelt, die sich aus einem Übergangsmetall und/oder einer Übergangsmetallverbindung und mindestens einem Liganden zusammensetzen.

Description

Verfahren zur Herstellung von Dialkylphosphinsäuren, -estern und -salzen mittels Vinylverbindungen und ihre Verwendung
Die Erfindung betrifft ein Verfahren zur Herstellung von Dialkylphosphinsäuren, -estern und -salzen mittels Vinylverbindungen sowie deren Verwendung.
Von bestimmten Dialkylphosphinsäuren, den sog. mono-carboxyfunktionalisierten Dialkylphosphinsäuren, wie sie weiter unten definiert sind, sind bisher fast ausschließlich die Ester zugänglich. Letztere können über mehrere Schritte ausgehend von Phosphonigsäure-dihalogeniden hergestellt werden. Hierzu gehört die Umsetzung von Dihalogenphosphinen mit aktivierten olefinischen Verbindungen wie Acrylsäure, gefolgt von der Veresterung der zunächst gebildeten Säurechlorid- und Anhydrid-Derivate mit Alkoholen (V. K. Khairullin, R. R. Shagidullin, Zh. Obshch. Khim. 36, 289-296).
Dialkylphosphinsäuren im Sinne der vorliegenden Erfindung sind also immer mono-carboxyfunktionalisierten Dialkylphosphinsäuren, auch wenn dies nicht ausdrücklich erwähnt ist. Dies schließt die entsprechenden Ester und Salze mit ein.
Solche Dialkylphosphinsäureester werden auch erhalten, wenn man Phosphonigsäureester in Gegenwart peroxidischer Katalysatoren an α,ß-ungesättigte Carbonsäureester addiert (Houben-Weyl, Band 1211 , S. 258-259). Die Phosphonig-säureester selbst werden aus Phosphonigsäuredihalogeniden durch Umsetzung mit Alkoholen bzw. Hydrolyse . und anschließender Veresterung hergestellt. Die vorgenannten Phosphonigsäuredihalogenide selbst werden in einer aufwendigen Synthese aus Phosphortrichlorid und Alkylchlorid in Gegenwart von Aluminiumchlorid hergestellt (Houben-Weyl, Band 1211 , S. 306). Die Reaktion ist stark exotherm und technisch nur schwierig zu beherrschen. Es werden zudem verschiedene Nebenprodukte gebildet, die, wie zum Teil auch die vorgenannten Ausgangsprodukte, giftig undloder korrosiv, also höchst unerwünscht sind (insbesondere weil die Produkte nicht halogenfrei hergestellt werden können). Ein weiteres Verfahren zur Herstellung von mono-carboxyfunktionalisierten Dialkylphosphinsäureestern basiert auf der Umsetzung von gelbem Phosphor mit Methylchlorid, wobei Methylphosphonigsäure entsteht, die in dann verestert und daraufhin mit Acrylsäureester umgesetzt wird (DE-A-101 53 780).
Mono-carboxyfunktionalisierte Dialkylphosphinsäureester können auch durch Umsetzung von Phosphonigsäure- Bis(trimethylsilyl)ester - HP(OSiMe3^ - mit α.ß-ungesättigten Carbonsäure-Komponenten, anschließender Alkylierung mit Alkylhalogeniden nach der Arbuzov-Reaktion und Alkoholyse erhalten werden (Kurdyumova, N. R.; Rozhko, L. F.; Ragulin, V. V.; Tsvetkov, E. N.; Russian Journal of General Chemistry (Translation of Zhurnal Obshchei Khimii (1997), 67(12), 1852-1856). Der Phosphonigsäure-Bis(trimethylsilyl)ester wird dabei aus Kalium- oder Ammoniumhypophosphit durch Umsetzung mit Hexamethyldisilazan erhalten.
Bisher fehlt es jedoch an Verfahren zur Herstellung von mono- carboxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen, die wirtschaftlich und großtechnisch zugänglich sind und die insbesondere eine hohe Raum-/Zeitausbeute ermöglichen. Auch fehlt es an Verfahren, die ohne störende Halogenverbindungen als Edukte ausreichend effektiv sind und zudem an solchen, bei denen die Endprodukte leicht erhalten bzw. isoliert werden können oder auch unter gezielten Reaktionsbedingungen (wie etwa einer Umesterung) gezielt und gewünscht hergestellt werden können.
Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung von zur Herstellung von mono-carboxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen, dadurch gekennzeichnet, dass man a) eine Phosphinsäurequelle (I)
O
Il H-P-H ox (I) mit Olefinen (IV)
Figure imgf000005_0001
in Gegenwart eines Katalysators A zu einer Alkylphosphonigsäure, deren Salz oder Ester (II)
Figure imgf000005_0002
umsetzt, b) die so entstandene Alkylphosphonigsäure, deren Salz oder Ester (II) mit acetylenischen Verbindungen der Formel (V) κ κ (V) in Gegenwart eines Katalysators B zu einem mono-funktionalisierten Dialkylphosphinsäurederivat (VI) umsetzt und
Figure imgf000005_0003
c) so entstandenes mono-funktionalisiertes Dialkylphosphinsäurederivat (VI) mit Kohlenmonoxid in Gegenwart eines Katalysators C und Wasser oder einem Alkohol M-OH und/oder M'-OH zum mono-carboxyfunktionalisierten Dialkylphosphinsäurederivat (III)
Figure imgf000005_0004
umsetzt, wobei R1, R2, R3, R4, R5, R6 gleich oder verschieden sind und unabhängig voneinander H, CrCi8-Alkyl, C6-Ci8-Aryl, C6-C18-Aralkyl, C6-Ci8-Alkyl- Aryl, CN, CHO, OC(O)CH2CN, CH(OH)C2H5, CH2CH(OH)CH3, 9-Anthracen, 2-Pyrrolidon, (CH2)mOH, (CH2)mNH2, (CH2)mNCS, (CH2)mNC(S)NH2, (CH2)mSH, (CH2)mS-2-thiazolin, (CH2)mSiMe3, C(O)R7, (CH2)mC(O)R7, CH=CH-R7, CH=CH-C(O)R7 bedeuten und wobei R7 für Ci-C8-Alkyl oder C6-C18-Aryl steht und m eine ganze Zahl von 0 bis 10 bedeutet und X und Y gleich oder verschieden sind und unabhängig voneinander für H, Ci-Ci8-Alkyl, C6-C18-ArYl, C6-Ci 8-Aralkyl, C6-Cis-Alkyl-Aryl, (CH2)kOH, CH2-CHOH-CH2OH, (CH2)kO(CH2)kH, (CH2)k- CH(OH)-(CH2)kH, (CH2-CH2O)kH, (CH2-C[CH3]HO)kH, (CH2-C[CH3]HO)k(CH2- CH2O)kH, (CH2-CH2O)k(CH2-C[CH3]HO)H, (CH2-CH2O)k-alkyl, (CH2-C[CH3]HO)k- alkyl, (CH2-C[CH3]HO)k(CH2-CH2O)k-alkyl, (CH2-CH2O)k(CH2-C[CH3]HO)O-alkyl, (CH2)k-CH=CH(CH2)kH, (CH2)kNH2, (CH2)kN[(CH2)kH]2 stehen wobei k eine ganze Zahl von O bis 10 ist und/oder für Mg, Ca, AI, Sb, Sn, Ge, Ti, Fe, Zr, Zn, Ce, Bi, Sr, Mn, Cu, Ni, Li, Na, K, H und/oder eine protonierte Stickstoffbase steht und es sich bei den Katalysatoren A, B, C und D um Übergangsmetalle und/oder Übergangsmetallverbindungen und/oder Katalysatorsysteme handelt, die sich aus einem Übergangsmetall und/oder einer Übergangsmetallverbindung und mindestens einem Liganden zusammensetzen handelt.
Bevorzugt wird das nach Schritt b) erhaltene mono-funktionalisierte Dialkylphosphinsäurederivat (VI) in einem Schritt c) mit Kohlenmonoxid und Wasserstoff unter Ausschluss von Wasser oder einem Alkohol M-OH und/oder M'-OH in Gegenwart eines Katalysators C zum mono-funktionalisierten Dialkylphosphinsäurederivat (VII) und/oder (VIT)
Figure imgf000006_0001
umgesetzt und das mono-funktionalisierten Dialkylphosphinsäurederivat (VII) und/oder (VIT) mit einem Oxidationsmittel oder mit einem Oxidationsmittel und Wasser oder in Gegenwart eines Katalysators D mit Sauerstoff und Wasser zum mono-carboxyfunktionalisierten Dialkylphosphinsäurederivat (III) umgesetzt.
Bevorzugt wird die nach Schritt c) erhaltene mono-carboxyfunktionalisierte Dialkylphosphinsäure, deren Salz oder Ester (III) anschließend in einem Schritt d) mit Metallverbindungen von Mg, Ca, AI, Sb, Sn, Ge, Ti, Fe, Zr, Zn, Ce, Bi, Sr, Mn, Li, Na, K und/oder einer protonierte Stickstoffbase zu den entsprechenden mono- carboxyfunktionalisierten Dialkylphosphinsäuresalzen (III) dieser Metalle und/oder einer Stickstoffverbindung umgesetzt.
Bevorzugt wird die nach Schritt a) erhaltene Alkylphosphonigsäure, deren Salz oder Ester (II) und/oder die nach Schritt b) erhaltene mono-funktionalisierte Dialkylphosphinsäure, deren Salz oder Ester (VI) und/oder die nach Schritt c) erhaltene mono-funktionalisierte Dialkylphosphinsäure, deren Salz oder Ester (VII) und oder (VIT) und/oder mono-carboxyfunktionalisierte Dialkylphosphinsäure, deren Salz oder Ester (III) und/oder die jeweils resultierende Reaktionslösung davon mit einem Alkylenoxid oder einem Alkohol M-OH und/oder M'-OH verestert, und der jeweils entstandene Alkylphosphonigsäureester (II), monofunktionalisierte Dialkylphosphinsäurester (VI), monofunktionalisierte Dialkylphosphinsäurester (VII) und oder (VIT) und/oder mono-carboxyfunktionalisierte Dialkylphosphinsäureester (III) den weiteren Reaktionsschritten b), c) oder d) unterworfen.
Bevorzugt sind die Gruppen C6-Ci8-Aryl, C6-Ci8-Aralkyl und C6-Ci8-Alkyl-Aryl mit SO3X2, -C(O)CH3, OH, CH2OH, CH3SO3X2, PO3X2, NH2, NO2, OCH3, SH und/oder OC(O)CH3 substituiert.
Bevorzugt sind R1, R2, R3, R4, R5, R6 gleich oder verschieden und bedeuten unabhängig voneinander H, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, tert. Butyl und/oder Phenyl.
Bevorzugt sind X und Y gleich oder verschieden und bedeuten jeweils H, Ca, Mg, AI, Zn, Ti, Mg, Ce, Fe, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, tert.-Butyl, Phenyl, Ethylenglykol, Propylglykol, Butylglykol, Pentylglykol, Hexylglykol, AIIyI und/oder Glycerin.
Bevorzugt ist m = 1 bis 10 und k = 2 bis 10. Bevorzugt wird das Katalysatorsystem A, B, C und D durch Umsetzung von einem Übergangsmetall und/oder einer Übergangsmetallverbindung und mindestens einem Liganden gebildet.
Bevorzugt handelt es sich bei den Übergangsmetallen und/oder
Übergangsmetallverbindungen um solche aus der ersten, siebten und achten Nebengruppe.
Bevorzugt handelt es sich bei den Übergangsmetallen und/oder Übergangsmetallverbindungen um Rhodium, Nickel, Palladium Ruthenium, Cobalt und/oder Gold.
Bevorzugt handelt es sich bei den acetylenischen Verbindungen (V) um Acetylen, Methylacetylen, 1-Butin, 1 -Hexin, 2-Hexin, 1-Octin, 4-Octin, 1-Butin-4-ol, 2-Butin- 1-ol, 3-Butin-1-ol, 5-Hexin-1-ol, 1-Octin-3-ol, 1-Pentin, Phenylacetylen, Trimethylsilyl-acetylen.
Bevorzugt handelt es bei dem Alkohol der allgemeinen Formel M-OH um lineare oder verzweigte, gesättigte und ungesättigte, einwertige organische Alkohole mit einer Kohlenstoffkettenlänge von C-i-C-iβ und es bei dem Alkohol der allgemeinen Formel M'-OH um lineare oder verzweigte, gesättigte und ungesättigte, mehrwertige organische Alkohole mit einer Kohlenstoffkettenlänge von C1-C18.
Die Erfindung betrifft zudem die Verwendung von mono-carboxyfunktionalisierten Dialkylphosphinsäuren, -salzen und -estern, hergestellt nach einem oder mehreren der Ansprüche 1 bis 12 als Zwischenprodukt für weitere Synthesen, als Binder, als Vernetzer bzw. Beschleuniger beim Aushärten von Epoxyharzen, Polyurethanen und ungesättigten Polyesterharzen, als Polymerstabilisatoren, als Pflanzenschutzmittel, als Therapeutikum oder Additiv in Therapeutika für Menschen und Tiere, als Sequestrierungsmittel, als Mineralöl-Additiv, als Korrosionsschutzmittel, in Wasch- und Reinigungsmittelanwendungen und in Elektronikanwendungen. Die Erfindung betrifft ebenfalls die Verwendung von mono- carboxyfunktionalisierten Dialkylphosphinsäuren, -salzen und -estern (III), die nach einem oder mehreren der Ansprüche 1 bis 12 hergestellt wurden, als Flammschutzmittel, insbesondere Flammschutzmittel für Klarlacke und Intumeszenzbeschichtungen, Flammschutzmittel für Holz und andere cellulosehaltige Produkte, als reaktives und/oder nicht reaktives Flammschutzmittel für Polymere, zur Herstellung von flammgeschützten Polymerformmassen, zur Herstellung von flammgeschützten Polymerformkörpern und/oder zum flammhemmend Ausrüsten von Polyester und Cellulose-Rein- und Mischgeweben durch Imprägnierung.
Die Erfindung betrifft auch eine flammgeschützte thermoplastische oder duroplastische Polymerformmasse, enthaltend 0,5 bis 45 Gew.-% mono- carboxyfunktionalisierte Dialkylphosphinsäuren, -salze oder -ester (III), die nach einem oder mehreren der Ansprüche 1 bis 12 hergestellt wurden, 0,5 bis
95 Gew.-% thermoplastisches oder duroplastisches Polymer oder Mischungen derselben, 0 bis 55 Gew.-% Additive und 0 bis 55 Gew.-% Füllstoff bzw. Verstärkungsmaterialien, wobei die Summe der Komponenten 100 Gew.-% beträgt.
Schließlich betrifft die Erfindung zudem flammgeschützte thermoplastische oder duroplastische Polymer-Formkörper, -Filme,- Fäden und Fasern, enthaltend 0,5 bis 45 Gew.-% mono-carboxyfunktionalisierte Dialkylphosphinsäuren, -salze oder -ester (III), die nach einem oder mehreren der Ansprüche 1 bis 12 hergestellt wurden, 0,5 bis 95 Gew.-% thermoplastisches oder duroplastisches Polymer oder Mischungen derselben, 0 bis 55 Gew.-% Additive und 0 bis 55 Gew.-% Füllstoff bzw. Verstärkungsmaterialien, wobei die Summe der Komponenten 100 Gew.-% beträgt.
Alle vorgenannten Umsetzungen können auch stufenweise ausgeführt werden; ebenso können in den verschiedenen Verfahrensschritten auch die jeweiligen resultierenden Reaktionslösungen eingesetzt werden. Handelt es sich bei der mono-carboxyfunktionalisierter Dialkylphosphinsäure (III) nach Schritt d) um einen Ester, so kann bevorzugt eine saure oder basische Hydrolyse durchgeführt werden, um die freie mono-carboxyfunktionalisierte Dialkylphosphinsäure oder deren Salz zu erhalten.
Bevorzugt handelt es sich bei der mono-carboxyfunktionalisierten Dialkylphosphinsäure um 3-(Ethylhydroxyphosphinyl)-propionsäure, 3-(Propylhydroxyphosphinyl)-propionsäure, 3-(i-Propylhydroxyphosphinyl)- propionsäure, 3-(Butylhydroxyphosphinyl)-propionsäure, 3-(sec-Butylhydroxy- phosphinyl)-propionsäure, 3-(i-Butylhydroxyphosphinyl)-propionsäure, 3-(2- Phenylethylhydroxyphosphinyl)-propionsäure, 3-(Ethyl-hydroxyphosphinyl)-2- methylpropionsäure, 3-(Propylhydroxyphosphinyl)-2-methyl-propionsäure, 3-(i- Propylhydroxyphosphinyl)-2-methylpropionsäure, 3-(Butylhydroxyphosphinyl)-2- methylpropionsäure, 3-(sec-Butylhydroxyphosphinyl)-2-methylpropionsäure, 3-(i- Butylhydroxyphosphinyl)-2-methylpropionsäure, 3-(2-Phenylethylhydroxy- phosphinyl)-2-methylpropionsäure, 3-(Ethylhydroxyphosphinyl)-3- phenylpropionsäure, 3-(Propylhydroxyphosphinyl)-3-phenylpropionsäure, 3-(i- Propylhydroxyphosphinyl)-3-phenylpropionsäure, 3-(Butylhydroxyphosphinyl)-3- phenylpropionsäure, 3-(i-Butylhydroxyphosphinyl)-3-phenylpropionsäure, 3-(sec- Butylhydroxyphosphinyl)-3-phenyl-propionsäure, 3-(2-Phenylethylhydroxyphos- phinyl)-3-phenylpropionsäure.
Bevorzugt handelt es sich bei dem mono-carboxyfunktionalisierten Dialkylphosphinsäureester um einen Propionsäure-, methyl-, ethyl-; i-propyl-; butyl-, phenyl-; 2-hydroxyethyl-, 2-hydroxypropyl-, 3-hydroxypropyl-,
4-hydroxybutyl- und/oder 2,3-dihydroxypropylester der vorgenannten mono- carboxyfunktionalisierten Dialkylphosphinsäuren oder Mischungen davon.
Bevorzugt handelt es sich bei dem mono-carboxyfunktionalisierten Dialkylphosphinsäure-Salz um ein Aluminium(lll)-, Calcium(ll)-, Magnesium (II)-, Cer(lll)-, Ti(IV)- und/oder Zink(ll)salz der vorgenannten mono- carboxyfunktionalisierten Dialkylphosphinsäuren oder der vorgenannten Ester der mono-carboxyfunktionalisierten Dialkylphosphinsäuren. Dabei gelten als Zielverbindungen auch diejenigen Ester und Salze, bei denen die Veresterung bzw. die Salzbildung an der Phosphinsäuregruppe (bei X in Formel (III)) oder an der Propionsäuregruppe (bei Y in Formel (III)) erfolgt.
Bevorzugt handelt es sich bei den Übergangsmetallen für den Katalysator A um Elemente der siebten und achten Nebengruppe (nach moderner Nomenklatur ein Metall der Gruppe 7, 8, 9 oder 10), wie etwa Rhenium, Ruthenium, Cobalt, Rhodium, Iridium, Nickel, Palladium und Platin.
Bevorzugt werden als Quelle der Übergangsmetalle und Übergangsmetallverbindungen deren Metallsalze verwendet. Geeignete Salze sind solche von Mineralsäuren, die die Anionen Fluorid, Chlorid, Bromid, lodid, Fluorat, Chlorat, Bromat, lodat, Fluorit, Chlorit, Bromit, lodit, Hypofluorit, Hypochlorit, Hypobromit, Hypoiodit, Perfluorat, Perchlorat, Perbromat, Periodat, Cyanid, Cyanat, Nitrat, Nitrid, Nitrit, Oxid, Hydroxid, Borat, Sulfat, Sulfit, Sulfid, Persulfat, Thiosulfat, Sulfamat, Phosphat, Phosphit, Hypophosphit, Phosphid, Carbonat und Sulfonat, wie etwa Methansulfonat, Chlorosulfonat, Fluorosulfonat, Trifluoromethansulfonat, Benzolsulfonat, Naphthylsuifonat, Toluolsulfonat, t-Butylsulfonat, 2-Hydroxypropansulfonat und sulfonierte lonentauscherharze; und/oder organische Salze, wie etwa Acetylacetonate und Salze einer Carbonsäure mit bis zu 20 Kohlenstoffatomen, wie etwa Format, Acetat, Propionat, Butyrat, Oxalat, Stearat und Zitrat einschliesslich halogenierter Carbonsäuren mit bis zu 20 Kohlenstoffatomen, wie etwa Trifluoracetat, Trichloracetat, enthalten.
Eine weitere Quelle der Übergangsmetalle und Übergangsmetallverbindungen stellen Salze der Übergangsmetalle mit Tetraphenylborat- und halogenierten Tetraphenylboratanionen, wie etwa Perfluorophenylborat, dar.
Geeignete Salze beeinhalten ebenso Doppelsalze und Komplexsalze bestehend aus einem oder mehreren Übergangsmetallionen und unabhängig voneinander ein oder mehrere Alkalimetall-, Erdalkalimetall-, Ammonium-, organische Ammonium-, Phosphonium- und organische Phosphoniumionen und unabhängig voneinander ein oder mehrere oben genannter Anionen. Geeignete Doppelsalze stellen z. B. Ammoniumhexachloropalladat und Ammoniumtetrachloropalladat dar.
Bevorzugt ist eine Quelle der Übergangsmetalle das Übergangsmetall als Element und/oder eine Übergangsmetallverbindung in dessen null-wertigem Zustand.
Bevorzugt wird das Übergangsmetall metallisch eingesetzt oder als Legierung mit weiteren Metallen verwendet, wobei hier Bor, Zirconium, Tantal, Wolfram, Rhenium, Kobalt, Iridium, Nickel, Palladium, Platin und/oder Gold bevorzugt ist. Dabei ist der Übergangsmetallgehalt in der eingesetzten Legierung bevorzugt 45 - 99,95 Gew.-%.
Bevorzugt wird das Übergangsmetall mikrodispers (Teilchengröße 0,1 mm - 100 μm) eingesetzt.
Bevorzugt wird das Übergangsmetall auf einem Metalloxid wie etwa Aluminiumoxid, Siliciumdioxid, Titandioxid, Zirkoniumdioxid, Zinkoxid, Nickeloxid, Vanadiumoxid, Chromoxid, Magnesiumoxid, Celite®, Kieselgur, auf einem Metallcarbonat wie etwa Bariumcarbonat, Calciumcarbonat, Strontiumcarbonat, auf einem Metallsulfat wie etwa Bariumsulfat, Calciumsulfat, Strontiumsulfat, auf einem Metallphosphat wie etwa Aluminiumphosphat, Vanadiumphosphat, auf einem Metallcarbid wie etwa Siliconcarbid, auf einem Metallaluminat wie etwa Calciumaluminat, auf einem Metallsilikat wie etwa Aluminiumsilikat, Kreiden, Zeolithe, Bentonit, Montmorillonit, Hectorit, auf funktionalisierten Silikaten, funktionalisierten Silikagelen wie etwa SiliaBond®, QuadraSil™, auf funktionalisierten Polysiloxanen wie etwa Deloxan®, auf einem Metallnitrid, auf Kohle, Aktivkohle, Mullite, Bauxite, Antimonite, Scheelite, Perovskite, Hydrotalcite, Heteropolyanionen, auf funktionalisierter und unfunktionalisierter Cellulose, Chitosan, Keratin, Heteropolyanionen, auf lonentauschern wie etwa Amberlite™, Amberjet™, Ambersep™, Dowex®, Lewatit®, ScavNet®, auf funktionalisierten Polymeren wie etwa Chelex®, QuadraPure™, Smopex®, PolyOrgs®, auf polymergebundenen Phosphenen, Phosphanoxiden, Phosphinaten, Phosphonaten, Phosphaten, Aminen, Ammoniumsalzen, Amiden, Thioamiden, Harnstoffen, Thiohamstoffen, Triazinen, Imidazolen, Pyrazolen, Pyridinen, Pyrimidinen, Pyrazinen, Thiolen, Thiolether, Thiolester, Alkoholen, Alkoxiden, Ether, Ester, Carbonsäuren, Acetaten, Acetalen, Peptiden, Hetarenen, Polyethylenimin/Siliciumdioxid und/oder Dendrimeren geträgert verwendet.
Geeignete Quellen der Metallsalze und/oder Übergangsmetalle stellen bevorzugt ebenfalls deren Komplexverbindungen dar. Komplexverbindungen der Metallsalze und/oder Übergangsmetalle setzen sich aus den Metallsalzen bzw. Übergangsmetalle und einem oder mehreren Komplexbildnern zusammen. Geeignete Komplexbildner sind z. B. Olefine, Diolefine, Nitrile, Dinitrile, Kohlenmonoxid, Phosphine, Diphosphine, Phosphite, Diphosphite, Dibenzylidenaceton, Cyclopentadienyl, Indenyl oder Styrol. Geeignete Komplexverbindungen der Metallsalze und/oder Übergangsmetalle können auf den oben genannten Trägermaterialien geträgert sein.
Bevorzugt ist der Gehalt an den genannten geträgerten Übergangsmetallen 0,01 bis 20 Gew.-%, vorzugsweise 0,1 bis 10 Gew.-%, insbesondere 0,2 bis 5 Gew.-%, bezogen auf die Gesamtmasse des Trägermaterials.
Geeignete Quellen von Übergangsmetallen und Übergangsmetallverbindungen sind beispielsweise Palladium, Platin, Nickel, Rhodium; Palladium Platin, Nickel oder Rhodium.auf Alumina, auf Silika, auf Bariumcarbonat, auf Bariumsulfat, auf Calciumcarbonat, auf Strontiumcarbonat, auf Kohle, auf Aktivkohle; Platin- Palladium-Gold-, Aluminum-Nickel-, Eisen-Nickel-, Lanthanoid-Nickel, Zirconium- Nickel-, Platin-Iridium-, Platin-Rhodium-Legierung; Raney®-Nickel, Nickel-Zink- Eisen-Oxid; Palladium(ll)-, Nickel(ll)- ,Platin(ll)-, Rhodiumchlorid, -bromid, -iodid, -fluorid, -hydrid, -oxid, -peroxid, -cyanid, -sulfat, -nitrat, -phosphid, -borid, -chromoxid, -cobaltoxid, -carbonathydroxid, -cyclohexanbutyrat, -hydroxid, -molybdat, -octanoat, -Oxalat, -Perchlorat, -phthalocyanin, -5,9,14,18,23,27,32,36- octabutoxy-2,3-naphthalocyanin, -sulfamat, -Perchlorat, -thiocyanat, -bis(2,2,6,6- tetramethyl-3,5-heptanedionat), -propionat, -acetat, -stearat, -2-ethylhexanoat, -acetylacetonat, -hexafluoroacetylacetonat, -tetrafluoroborat, -thiosulfat, -trifluoroacetat, -phthalocyanintetrasulfonsäure Tetrariatriumsalz, -methyl, -cyclopentadienyl, -methylcyclopentadienyl, -ethylcyclopentadienyl, -pentamethylcyclopentadienyl, -2,3,7,8,12,13,17,18-00186^1-21 H,23H-porphin, -5,10,15,20-tetraphenyl-21H,23H-porphin, -bis(5-[[4-(dimethylamino)- phenyl]imino]-8(5H)-quinolinon), -2,11 ,20,29-tetra-tert-butyl-2,3-naphthalocyanin, -2,9,16,23-tetraphenoxy-29H,31H-phthalocyanin, -5,10,15,20-tetrakis(pentafluoro- phenyl)-21 H,23H-porphin und deren 1 ,4-Bis(diphenylphosphin)butan-, 1 ,3-Bis(diphenyl-phosphino)propan-, 2-(2'-Di-tert-butylphosphin)biphenyl-, Acetonitril-, Benzonitril-, Ethylendiamin-, Chloroform-, 1 ,2-Bis(phenylsulfinyl)ethan, 1 ,3-Bis(2J6-diisopropyl-phenyl)imidazoliden)(3-chloropyridyl)-, 21-(Dimethylamino)- 2-biphenylyl-, Dinorbornylphosphin-, 2-(Dimethylamino-methyl)ferrocen-, AIIyI-, Bis(Dipheny!phosphino)butan-, (N-succinimidyl)bis-(triphenylphosphin)-, Dimethylphenylphosphin-, Methyldiphenylphosphin-, 1 ,10-Phenanthrolin-, 1 ,5-Cyclooctadien-, N,N,N',N'-Tetramethylethylen-diamin-, Triphenylphosphin-, Tri-o-tolylphosphin-, Tricyclohexylphosphin-, Tributylphosphin-, Triethylphosphin-, 2,2'-Bis(diphenylphosphino)-1 , 1 '-binaphthyl-, 1 ,3-Bis(2,6-diisopropyl- phenyl)imidazol-2-yliden-, 1 ,3-Bis(mesityl)imidazol-2-yliden-, 1 ,1'-Bis(di- phenylphosphino)ferrocen-, 1 ,2-Bis(diphenylphosphino)ethan-, N-Methylimidazol-, 2,2'-Bipyridin-, (Bicyclo[2.2.1]-hepta-2,5-dien)-, Bis(di-tert-butyl(4-dimethylamino- phenyl)phosphin)-, Bis(tert.-butylisocyanid)-, 2-Methoxyethylether-,
Ethylenglycoldimethylether-, 1 ,2-Dimethoxyethan-, Bis(1 ,3-diamino-2-propanol)-, Bis(N, N-diethylethylendiamin)-, 1 ,2-Diaminocyclohexan-, Pyridin-, 2,2':6',2"- terpyridin-, Diethylsulfid-, Ethylen-.Amin-Komplexe; Kalium-, Natrium-, Ammoniumhexachloropalladat(IV), Kalium-, Natrium-, Ammonium- tetrachloropalladat(ll), Bromo(tri-tert-butylphosphin)-palladium(l) Dimer, (2-Methyl- allyl)palladium(ll)chlorid Dimer, Bis(dibenzylidenaceton)-palladium(0), Tris(di- benzylidenaceton)dipalladium(O), Tetrakis(triphenylphosphin)-palladium(0), Tetrakis-(tricyclohexylphosphin)palladium (0), Bis[1 ,2-bis(diphenylphos- phin)ethan]-palladium(0), Bis(3,5,3',5'-dimethoxydibenzylidenaceton)palladium(0), Bis(tri-tert-butylphosphin)palladium(0), rneso-Tetraphenyltetrabenzoporphin Palladium, Tetrakis(methyldiphenylphosphin)palladium(0), Tris(3,3\3"- phophinidyn-tris(benzolsulfonato)palladium(0) Nonanatriurnsalz, 1 ,3-Bis(2,4,6- trimethylphenyl)-imidazol-2-yliden(1 ,4-naphthoquinon)palladium(0), 1 ,3-Bis(2,6- diisopropylphenyl)-imidazol-2-yliden(1 ,4-naphthoquinon)palladium(0), und deren Chloroform-Komplex;
Allylnickel(ll)chlorid Dimer, Ammoniumnickel(ll)sulfat, Bis(1 ,5-cyclooctadien)nickel(0), Bis(triphenylphosphin)dicarbonylnickel(0), Tetrakis(triphenylphosphin)nickel(0), Tetrakis(triphenylphosphit)nickel(0),
Kaliumhexafluoronickelat(IV), Kaliumtetracyanonickelat(ll), Kaliumnickel(IV)para- periodat, Dilithiumtetrabromonickelat(ll), Kaliumtetracyanonickelat(ll); Platin(IV)chlorid, -oxid, -sulfid, Kalium-, Natrium-, Ammoniumhexachloro- platinat(IV), Kalium-, Ammoniumtetrachloroplatinat(ll), Kaliumtetracyanoplatinat(ll), Trimethyl-(methylcyclopentadienyl)platin(IV), cis-Diammintetrachloroplatin(IV), Kaliumtrichloro-(ethylen)platinat(ll), Natriumhexahydroxyplatinat(IV), Tetraamin- platin(ll)tetrachloro-platinat(ll), Tetrabutylammoniumhexachloroplatinat(IV), Ethylenbis(triphenylphosphin)-platin(0), Platin(0)-1 ,3-divinyl-1 ,1 ,3,3-tetramethyl- disiloxan, Platin(0)-2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxan, Tetrakis- (triphenylphosphin)platin(O), Platinoctaethyl-porphyrin, Chloroplatinsäure, Carboplatin;
Chlorobis(ethylen)rhodium Dimer, Hexarhodiumhexadecacarbonyl, Chloro(1 ,5- cyclooctadien)rhodium Dimer, Chloro(norbomadien)-rhodium Dimer, Chloro(1 ,5- hexadien)rhodium Dimer.
Bevorzugt handelt es sich bei den Liganden um Phosphine der Formel (VIII)
PR83 (VIII) in der die Reste R8 unabhängig voneinander für Wasserstoff, geradkettiges, verzweigtes oder cyclisches CrC2o-Alkyl, CrC2o-Alkylaryl, C2-C2o-Alkenyl, C2-C20- Alkinyl, Ci -C2O-Ca rboxyat, CrC2o-Alkoxy, C1-C2o-Alkenyloxy, CrC2o-Alkinyloxy, C2-C2o-Alkoxy-carbonyl, Ci-C2o-Alkylthio, Ci-C2o-Alkylsulfonyl, CrC^-Alkylsulfinyl, SiIyI und/oder deren Derivative und/oder durch wenigstens ein R9 substituiertes Phenyl- oder durch wenigstens ein R9 substituiertes Naphtyl stehen. R9 steht unabhängig voneinander für Wasserstoff, Fluor, Chlor, Brom, lod, NH2, Nitro, Hydroxy, Cyano, Formyl, geradkettiges, verzweigtes oder cyclisches CrC2o-Alkyl, C1-C20-AIkOXy, HN(CrC2o-Alkyl), N(Ci-C20-AIkYl)21 -CO2-(Ci-C20-AIkYl), -CON(C1- C2o-Alkyl)2l -OCO(Ci-C2o-Alkyl), NHCO(CrC2o-Alkyl), C1-C20-ACyI, -SO3M, -SO2N(R10)M, -CO2M, -PO3M2, -AsO3M2, -SiO2M, -C(CF3)2OM (M = H1 Li, Na oder K), wobei R10 Wasserstoff, Fluor, Chlor, Brom, lod, gerad kettiges, verzweigtes oder cyclisches Ci-C2o-Alkyl, C2-C2o-Alkenyl, C2-C2O-AI kinyl, Ci-C2o-Carboxyat, C1-C2O-AIkOXy1 Ci-C20-Alkenyloxy, CrC2o-Alkinyloxy, C2-C20-Alkoxycarbonyl, CrC2o-Alkylthio, CrC2o-Alkylsulfonyl, Ci-C20-Alkylsulfinyl, SiIyI und/oder deren Derivative, Aryl, Ci-C20-ArylaIkyl, CrC2o-Alkylaryl, Phenyl und/oder Biphenyl bedeutet. Vorzugsweise sind alle Gruppen R8 identisch.
Geeignete Phosphine (VIII) sind beispielsweise Trimethyl-, Triethyl-, Tripropyl-, Triisopropyl-, Tributyl-, Triisobutyl-, Triisopentyl-, Trihexyl-, Tricyclohexyl-, Trioctyl-, Tridecyl-, Triphenyl-, Diphenylmethyl-, Phenyldimethyl-, Tri(o-tolyl)-, Tri(p-tolyl)-, Ethyldiphenyl-, Dicyclohexylphenyl-, 2-Pyridyldiphenyl-, Bis(6-methyl-2pyridyl)- phenyl-, Tri-(p-chlorophenyl)-, Tri-(p-methoxyphenyl)-, Diphenyl(2- sulfonatophenyl)phosphin; Kalium-, Natrium- und Ammoniumsalze von Diphenyl(3-sulfonatophenyl)phosphin, Bis(4,6-dimethyl-3-sulfonatophenyl)(2,4- dimethylphenyl)phosphin, Bis(3-sulfonato-phenyl)phenylphosphinen, Tris(4,6- dimethyl-3-sulfonatophenyl)phosphinen, Tris(2-sulfonatophenyl)phosphinen, Tris(3-sulfonatophenyl)phosphinen; 2-Bis(diphenylphos-phinoethyl)trimethyl- ammoniumiodid, 2'-Dicyclohexylphosphino-2I6-dimethoxy-3-sulfonato-1 ,1'- biphenyl Natriumsalz, Trimethylphosphit und/oder Triphenylphosphit.
Besonders bevorzugt handelt es sich bei den Liganden um bidentate Liganden der allgemeinen Formel
R8 2 IvT-Z-M" R8 2 (IX). In dieser Formel repräsentieren M" unabhängig voneinander N, P, As oder Sb. Bevorzugt sind die beiden M" gleich und besonders bevorzugt steht M" für ein Phosphoratom.
Jede Gruppe R8 repräsentiert unabhängig voneinander die unter Formel (VIII) beschrieben Reste. Vorzugsweise sind alle Gruppen R8 identisch.
Z stellt bevorzugt eine bivalente Überbrückungsgruppe dar, die wenigstens 1 Brückenatom enthält, wobei bevorzugt 2 bis 6 Brückenatome enthalten sind. Brückenatome können ausgewählt werden aus C-, N-, O-, Si- und S-Atomen. Bevorzugt ist Z eine organische Überbrückungsgruppe, die wenigstens ein Kohlenstoffatom enthält. Bevorzugt ist Z eine organische Überbrückungsgruppe, die 1 bis 6 Brückenatome enthält, wovon wenigstens zwei Kohlenstoffatome sind, die unsubstituiert oder substituiert sein können.
Bevorzugte Gruppen Z sind -CH2-, -CH2-CH2-, -CH2-CH2-CH2-, -CH2-CH(CH3)- CH2-, -CH2-C(CHa)2-CH2-, -CH2-C(C2Hs)-CH2-, -CH2-Si(CHs)2-CH2-, -CH2-O-CH2-, -CH2-CH2-CH2-CH2-, -CH2-CH(C2Hs)-CH2-, -CH2-CH(n-Pr)-CH und -CH2-CH(n-Bu)-CH2-, unsubstituierte oder substituierte 1 ,2-Phenyl-, 1 ,2-Cyclohexyl-, 1 ,1'- oder 1 ,2-Ferrocenyl-Reste, 2,2'-(1 ,1 '-Biphenyl)-, 4,5-Xanthen- und/oder Oxydi-2,1-phenylen-Reste.
Geeignete bidentate Phosphinliganden (IX) sind beispielsweise 1 ,2-Bis(dimethyl-), 1 ,2-Bis(diethyl-), 1 ,2-Bis(dipropyl-), 1 ,2-Bis(diisopropyl-), 1 ,2-Bis(dibutyl-),
1 ,2-Bis(di-tert.-butyl-), 1 ,2-Bis(dicyclohexyl-) und 1 ,2-Bis(diphenylphosphino)ethan; 1 ,3-Bis(di-cyclohexyl-), 1 ,3-Bis(diisopropyl-), 1 ,3-Bis(di-tert.-butyl-) und 1 ,3-Bis(diphenylphos-phino)propan; 1 ,4-Bis-(diisopropyl-) und 1 ,4-Bis(diphenylphosphino)butan; 1 ,5-Bis(di-cyclohexylphosphino)pentan; 1 ,2-Bis(di-tert.-butyl-), 1 ,2-Bis(di-phenyl-), 1 ,2-Bis(di-cyclohexyl-), 1 ,2-Bis(dicyclo- pentyl-), 1 ,3-Bis(di-tert.-butyl-), 1,3-Bis(diphenyl-), 1 ,3-Bis(di-cyclohexyl-) und 1 ,3-Bis(dicyclopentylphosphino)benzol; 9,9-Dimethyl-4,5- bis(diphenylphosphino)xanthen, 9,9-Dimethyl-4,5-bis(diphenylphosphino)-2,7-di- tert.-butylxanthen, 9,9-Dimethyl-4,5-bis(di-tert.-butylphosphino)xanthen, 1 ,1'-Bis(diphenyl-phosphino)-ferrocen, 2,2'-Bis(diphenylphosphino)-1 ,1l-binaphthyl, 2,2I-Bis(di-p-tolyl-phosphino)-1 ,1I-binaphthyl, (Oxydi-2,1-phenylen)bis(diphenyl- phosphin), 2,5-(Di-iso-propylphospholano)benzol, 2,3-O-lsopropropyliden-2,3- dihydroxy-1 ,4-bis(diphenyl-phosphino)butan, 2,2'-Bis(di-tert.-butylphosphino)-1 ,1 '- biphenyl, 2,2'-Bis(dicyclohexyl-phosphino)-1 ,1'-biphenyl, 2,2'-Bis(diphenylphosphino)-1 ,1 '-biphenyl, 2-(Di-tert.-butylphosphino)-2'-(N,N- dimethylamino)biphenyl, 2-(Dicyclohexylphosphino)-2'-(N,N- dimethylamino)biphenyl, 2-(Diphenylphosphino)-2'-(N,N-dimethylamino)biphenyl, 2-(Diphenylphosphino)ethyl-amin, 2-[2-(Diphenylphosphino)ethyl]pyridin; Kalium-, Natrium- und Ammoniumsalze von 1 ,2-Bis(di-4-sulfonatophenylphosphino)-benzol, (2,2'-Bis [[bis^-sulfonato-phenyOphosphinolmethylH^^J'-tetrasulfonato-i ,1 '- binapthyl, (2,2'-Bis[[bis(3-sulfonatophenyl)phosphino]methyl]-5,5f-tetrasulfonato- 1 ,1'-biphenyl, (2,2'-Bis [[bis(3-sulfonatophenyl)phosphino]methyl]-1 ,1 '-binapthyl, (2,2'-Bis[[bis(3-sulfonatophenyl)-phosphino]-methyl]-1 ,1'-biphenyl, 9,9-Dimethyl- 4,5-bis(diphenylphosphino)-2,7-sulfonatoxanthen, 9,9-Dimethyl-4,5-bis(di-tert.- butyl-phosphino)-2,7-sulfonatoxanthen, 1 ,2-Bis(di-4-sulfonatophenylphosphino)- benzol, Meso-tetrakis(4-sulfonatophenyl)porphin, Meso-tetrakis(2,6-dichloro-3- sulfonato-phenyl)porphin, Meso-tetrakis(3-sulfonatomesityl)porphin, Tetrakis(4- carboxyphenyl)-porphin und 5,11 ,17,23-Sulfonato-25,26,27,28- tetrahydroxycalix[4]aren.
Zudem können die Liganden der Formel (VIII) und (IX) durch die Reste R8 und/oder die Überbrückungsgruppe an ein geeignetes Polymer oder anorganisches Substrat gebunden sein.
Das Katalysatorsystem hat ein Übergangsmetall-Ligand-Molverhältnis von 1 :0.01 bis 1 :100, bevorzugt von 1:0.05 bis 1:10 und insbesondere von 1:1 bis 1:4.
Bevorzugt erfolgen die Umsetzungen in den Verfahrensstufen a), b) c) und d) wahlweise in einer Atmosphäre, die weitere gasförmige Bestandteile wie zum Beispiel Stickstoff, Sauerstoff, Argon, Kohlendioxid enthält; die Temperatur beträgt -20 bis 340 0C, insbesondere 20 bis 180 0C und der Gesamtdruck von 1 bis 100 bar.
Die Isolierung der Produkte und/oder des Übergangsmetalls und/oder der Übergangsmetallverbindung und/oder Katalysatorsystems und/oder des Liganden und/oder der Edukte nach den Verfahrensstufen a), b), c) und d) erfolgt wahlweise durch Destillation oder Rektifikation, durch Kristallisation oder Fällen, durch Filtration oder Zentrifugieren, durch Adsorption oder Chromatographie oder anderen bekannten Methoden. Erfindungsgemäß werden Lösungsmittel, Hilfsmittel und ggf. andere flüchtige Bestandteile durch z. B. Destillation, Filtration und/oder Extraktion abgetrennt.
Bevorzugt erfolgt die Umsetzungen in den Verfahrensstufen a), b), c) und d) wahlweise in Absorptionskolonnen, Sprühtürmen, Blasensäulen, Rührkesseln, Reiselbettreaktor, Strömumgsrohren, Schlaufenreaktoren und/oder Knetern.
Geeignete Mischorgane sind z. B. Anker-, Blatt-, MIG-, Propeller-, Impeller-, Turbinen-, Kreuz-Rührer, Dispergierscheiben, Hohl-(Begasungs-)-Rührer, Rotor- Stator-Mischer, statische Mischer, Venturi-Düsen und/oder Mammutpumpen.
Bevorzugt erfahren die ReaktionslösungenAmischungen dabei eine Mischintensität, die einer Rotations-Reynolds-Zahl von 1 bis 1.000.000, bevorzugt von 100 bis 100.000 entspricht.
Bevorzugt erfolgt eine intensive Durchmischung der jeweiligen Reaktionspartner etc. unter einem Energieeintrag von 0,080 bis 10 kW/m3, bevorzugt 0,30 - 1 ,65 kW/m3.
Bevorzugt wirkt der jeweilige Katalysator A1 B, C und D während der Umsetzung homogen und/oder heterogen. Daher wirkt der jeweils heterogen wirkende Katalysator während der Umsetzung als Suspension oder an eine feste Phase gebunden.
Bevorzugt wird der jeweilige Katalysator A, B, C oder D vor der Umsetzung und/oder zu Beginn der Umsetzung und/oder während der Umsetzung in situ generiert.
Bevorzugt erfolgt die jeweilige Umsetzung in einem Lösungsmittel als Ein-Phasen- System in homogener oder heterogener Mischung und/oder in der Gasphase.
Wird ein Mehr-Phasen-System verwendet kann zusätzlich ein Phasentransferkatalysor eingesetzt werden. Die erfindungsgemäßen Reaktionen können in flüssiger Phase, in der Gasphase oder auch in überkritischer Phase durchgeführt werden. Dabei wird der jeweilige Katalysator A, B, C und D bei Flüssigkeiten vorzugsweise homogen oder als Suspension eingesetzt, während bei Gasphasen- oder überkritischer Fahrweise eine Festbettanordnung von Vorteil ist.
Geeignete Lösungsmittel sind Wasser, Alkohole wie z.B. Methanol, Ethanol, i-Propanol, n-Propanol, n-Butanol, i-Butanol, t-Butanol, n-Amylalkohol, i-Amylalkohol, t-Amylalkohol, n-Hexanol, n-Octanol, i-Octanol, n-Tridecanol, Benzylalkohol etc. Bevorzugt sind weiterhin Glycole wie z.B. Ethylenglycol, 1 ,2-Propandiol, 1 ,3-Propandiol, 1 ,3-Butandiol, 1 ,4-Butandiol, Diethylenglycol etc.; aliphatische Kohlen-wasserstoffe wie Pentan, Hexan, Heptan, Octan, und Petrolether, Petroleumbenzin, Kerosin, Petroleum, Paraffinöl etc.; aromatische Kohlenwasserstoffe wie Benzol, Toluol, XyIoI, Mesitylen, Ethylbenzol,
Diethylbenzol etc.; Halogenkohlenwasserstoffe wie Methylenchlorid, Chloroform, 1 ,2-Dichloroethan, Chlorobenzol, Tetrachlorkohlenstoff, Tetrabromoethylen etc.; alicyclische Kohlenwasserstoffe wie Cyclopentan, Cyclohexan und Methylcyclohexan etc.; Ether wie Anisol (Methylphenylether), t-Butylmethylether, Dibenzylether, Diethylether, Dioxan, Diphenylether, Methylvinylether, Tetrahydrofuran, Triisopropylether etc; Glycolether wie Diethylenglycoldiethylether, Diethylenglycoldimethylether (Diglyme), Diethylenglycolmonobutylether, Diethylenglycolmonomethylether, 1 ,2-Dimethoxyethan (DME Monoglyme), Ethylen-glycolmonobutylether, Triethylenglycoldimethylether (Triglyme), Triethylenglycolmonomethylether etc.; Ketone wie Aceton, Diisobutylketon, Methyl-n-propylketon; Methylethylketon, Methyl-i-butyl-keton etc; Ester wie Methylformat, Methylacetat, Ethylacetat, n-Propylacetat und n-Butylacetat etc.; Carbonsäuren wie Ameisensäure, Essigsäure, Propionsäure, Buttersäure etc.; einzeln oder in Kombination miteinander. Geeignete Lösungsmittel sind auch die eingesetzten Olefine und Phosphinsäurequellen. Diese bieten Vorteile in Form einer höheren Raum-Zeit- Ausbeute.
Bevorzugt wird die Umsetzung unter dem eigenen Dampfdruck des Olefins und/oder des Lösungsmittels durchgeführt.
Bevorzugt sind R1, R2, R3, R4 des Olefins (IV) gleich oder verschieden und bedeuten, unabhängig voneinander, H, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, tert.-Butyl und/oder Phenyl.
Bevorzugt werden auch funktionalisierte Olefine wie Allylisothiocyanat, Allylmethacrylat, 2-Allylphenol, N-Allylthiohamstoff, 2-(Allylthio)-2-thiazolin, Allyltrimethylsillan, Allylacetat, Allylacetoacetat, Allylalkohol, Allylamin, Allylbenzol, Allylcyanid, Allyl-(cyanacetat), Allylanisol, trans-2-Pentenal, cis-2-Pentennitril,
1-Penten-3-ol, 4-Penten-1-ol, 4-Penten-2-ol, trans-2-Hexenal, trans-2-Hexen-1-ol, cis-3-Hexen-1-ol, 5-Hexen-1-ol, Styrol, -Methylstyrol, 4-Methylstyrol, Vinylacetat, 9-Vinylanthracen, 2-Vinylpyridin, 4-Vinylpyridin und 1-Vinyl-2-pyrrolidon eingesetzt.
Bevorzugt erfolgt die Umsetzung bei einem Partialdruck des Olefins von 0,01 - 100 bar, besonders bevorzugt bei einem Partialdruck des Olefins von 0,1 - 10 bar.
Bevorzugt erfolgt die Umsetzung in einem Phosphinsäure-Olefin-Molverhältnis von 1 :10.000 bis 1 :0,001 , besonders bevorzugt im Verhältnis von 1 :30 bis 1 :0,01.
Bevorzugt erfolgt die Umsetzung in einem Phosphinsäure-Katalysator- Molverhältnis von 1 :1 bis 1 :0,00000001 , besonders bevorzugt bei 1 :0,01 bis 1 :0,000001.
Bevorzugt erfolgt die Umsetzung in einem Phosphinsäure-Lösungsmittel- Molverhältnis von 1 :10.000 bis 1 :0, besonders bevorzugt bei 1 :50 bis 1 :1. Ein erfindungsgemäßes Verfahren zur Herstellung von Verbindungen der Formel (II) ist dadurch gekennzeichnet, dass man eine Phosphinsäurequelle mit Olefinen in Gegenwart eines Katalysators umsetzt und das Produkt (II) (Alkylphosphonigsäure bzw. -salze, -ester) von Katalysator, Übergangsmetall bzw. Übergangsmetallverbindung, Ligand, Komplexbildner, Salzen und Nebenprodukten befreit wird.
Erfindungsgemäß wird der Katalysator, das Katalysatorsystem, das Übergangsmetall und/oder die Übergangsmetallverbindung abgetrennt durch Zugabe eines Hilfsmittels 1 und Entfernen des Katalysators, des Katalysatorsystems, des Übergangsmetalls und/oder der Übergangsmetallverbindung durch Extraktion und/oder Filtration.
Erfindungsgemäß wird der Ligand und/oder Komplexbildner durch Extraktion mit Hilfsmittel 2 und/oder Destillation mit Hilfsmittel 2 abgetrennt.
Hilfsmittel 1 ist bevorzugt Wasser und/oder mindestens ein Vertreter der Familie der Metallfänger (Metal Scavenger). Bevorzugte Metallfänger sind Metalloxide wie etwa Aluminiumoxid, Siliciumdioxid, Titandioxid, Zirkoniumdioxid, Zinkoxid, Nickeloxid, Vanadiumoxid, Chromoxid, Magnesiumoxid, Celite®, Kieselgur;
Metallcarbonate wie etwa Bariumcarbonat, Calciumcarbonat, Strontiumcarbonat; Metallsulfate wie etwa Bariumsulfat, Calciumsulfat, Strontiumsulfat; Metallphosphate wie etwa Aluminiumphosphat, VanadiumphosphatM Metallcarbide wie etwa Siliconcarbid; Metallaluminate wie etwa Calciumaluminat; Metallsilikate wie etwa Aluminiumsilikat, Kreiden, Zeolithe, Bentonit,
Montmorillonit, Hectorit; funktionalisierte Silikate, funktionalisierte Silikagele wie etwa SiliaBond®, QuadraSil™; funktionalisierte Polysiloxane wie etwa Deloxan®; Metallnitride, Kohle, Aktivkohle, Mullite, Bauxite, Antimonite, Scheelite, Perovskite, Hydrotalcite, funktionalisierte und unfunktionalisierte Cellulose, Chitosan, Keratin, Heteropolyanionen, lonentauscher wie etwa Amberlite™, Amberjet™,
Ambersep™, Dowex®, Lewatit®, ScavNet®; funktionalisierte Polymere wie etwa Chelex®, QuadraPure™, Smopex®, PolyOrgs®; polymergebundene Phosphane, Phosphanoxide, Phosphinate, Phosphonate, Phosphate, Amine, Ammoniumsalze, Amide, Thioamide, Harnstoffe, Thioharnstoffe, Triazine, Imidazole, Pyrazole, Pyridine, Pyrimidine, Pyrazine, Thiole, Thiolether, Thiolester, Alkohole, Alkoxide, Ether, Ester, Carbonsäuren, Acetate, Acetale, Peptide, Hetarene, Polyethylenimin/Siliciumdioxid und/oder Dendrimere.
Bevorzugt wird Hilfsmittel 1 in Mengen zugesetzt, die einer 0,1 - 40 gew.-%igen Beladung des Metalls auf dem Hilfsmittel 1 entsprechen.
Bevorzugt wird Hilfsmittel 1 bei Temperaturen von 20 - 90 0C eingesetzt.
Bevorzugt beträgt die Verweilzeit von Hilfsmittel 1 0,5 - 360 Minuten.
Hilfsmittel 2 ist bevorzugt das vorgenannte, erfindungsgemäße Lösungsmittel, wie sie bevorzugt in der Verfahrensstufe a) eingesetzt werden.
Die Veresterung der mono-carboxyfunktionalisierten Dialkylphosphinsäure (III) bzw. der mono-funktionalisierten Dialkylphosphinsäure (VII) und/oder (VIT) bzw. der mono-funktionalisierten Dialkylphosphinsäure (VI) bzw. der Alkylphosphonigsäuredrivate (II) sowie der Phosphinsäurequelle (I) zu den entsprechenden Estern kann beispielsweise durch Umsetzung mit höhersiedenden Alkoholen unter Entfernung des gebildeten Wassers durch Azeotropdestillation oder durch Umsetzung mit Epoxiden (Alkylenoxiden) erreicht werden.
Bevorzugt wird hierbei nach Schritt a) die Alkylphosphonigsäure (II) mit einem
Alkohol der allgemeinen Formel M-OH und/oder M'-OH oder durch Umsetzung mit Alkylenoxiden, wie nachfolgend angeführt, direkt verestert.
Bevorzugt sind M-OH primäre, sekundäre oder tertiäre Alkohole mit einer Kohlenstoffkettenlänge von CrCi8- Besonders bevorzugt sind Methanol, Ethanol, Propanol, Isopropanol, n-Butanol, 2-Butanol, tert.-Butanol, Amylalkohol und/oder Hexanol. Bevorzugt sind M'-OH Ethylenglykol, 1 ,2-Propylen-glykol, 1 ,3-Propylenglykol, 1 ,4-Butandiol, 2,2-Dimethylpropan-1 ,3-diol, Neopentylglykol, 1 ,6-Hexandiol, 1 ,4-Cyclohexandimethanol, Glycerin, Trishydroxymethylethan, Trishydroxy- methylpropan, Pentaerythrit, Sorbit, Mannit, α-Naphthol, Polyethylenglykole, Polypropylenglykole und/oder EO-PO-Blockpolymere.
Geeignet sind als M-OH und M'-OH auch ein- oder mehrwertige, ungesättigte Alkohole mit einer Kohlenstoffkettenlänge von CrC18, etwa n-Buten-2-ol-1 , 1 ,4-Butendiol und Allylalkohol.
Geeignet sind als M-OH und M'-OH auch Umsetzungsprodukte von einwertigen Alkoholen mit einem oder mehreren Molekülen von Alkylenoxiden, bevorzugt mit Ethylenoxid und/oder 1 ,2-Propylenoxid. Bevorzugt sind 2-Methoxyethanol, 2-Ethoxyethanol, 2-n-Butoxy-ethanol, 2-(2'-Ethyl-hexyloxy)-ethanol, 2-n-Dodecoxy-ethanol, Methyldiglykol, Ethyldiglykol, Isopropyldiglykol, Fettalkoholpolyglykolether und Arylpolyglykolether.
Bevorzugt sind M-OH und M'-OH auch Umsetzungsprodukte von mehrwertigen Alkoholen mit einem oder mehreren Molekülen Alkylenoxid, insbesondere Diglykol und Triglykol sowie Addukte von 1 bis 6 Molekülen Ethylenoxid oder Propylenoxid an Glycerin, Trishydroxymethylpropan oder Pentaerythrit.
Als M-OH und M'-OH können auch Umsetzungsprodukte von Wasser mit einem oder mehreren Molekülen Alkylenoxid eingesetzt werden. Bevorzugt sind Polyethylenglykole und Poly-1 ,2-propylenglykole verschiedener Molekulargrößen mit einem mittleren Molgewicht von 100-1000 g/mol, besonders bevorzugt von 150-350 g/mol.
Bevorzugt sind als M-OH und M'-OH auch Umsetzungsprodukte von Ethylenoxid mit Poly-1 ,2-propylenglykolen oder Fettalkoholpropylenglykole; ebenso Umsetzungs-produkte von 1 ,2-Propylenoxid mit Polyethylenglykolen oder Fettalkoholethoxylaten. Bevorzugt sind solche Umsetzungsprodukte mit einem mittleren Molgewicht von 100-1000 g/mol, besonders bevorzugt von 150-450 g/mol.
Einsetzbar sind als M-OH und M'-OH auch Umsetzungsprodukte von Alkylenoxiden mit Ammoniak, primären oder sekundären Aminen,
Schwefelwasserstoff, Merkaptanen, Sauerstoffsäuren des Phosphors und C2-C6- Dicarbonsäuren. Geeignete Umsetzungs-produkte von Ethylenoxid mit Stickstoffverbindungen sind Triethanolamin, Methyldi-ethanolamin, n-Butyl- diethanolamin, n-Dodecyl-diethanolamin, Dimethylethanolamin, n-Butyl-methyl- ethanolamin, Di-n-butyl-ethanolamin, n-Dodecylmethyl-ethanolamin,
Tetrahydroxyethyl-ethylendiamin oder Pentahydroxyethyl-diethylentriamin.
Bevorzugte Alkylenoxide sind Ethylenoxid, 1 ,2-Propylenoxid, 1 ,2-Epoxybutan, 1 ,2-Epoxyethylbenzol, (2,3-Epoxypropyl)benzol, 2,3-Epoxy-1-propanol und 3,4-Epoxy-1-buten.
Geeignete Lösungsmittel sind die in Verfahrensschritt a) genannten Lösungsmittel und auch die eingesetzten Alkohole M-OH, M'-OH und die Alkylenoxide. Diese bieten Vorteile in Form einer höheren Raum-Zeit-Ausbeute.
Bevorzugt wird die Umsetzung unter dem eigenen Dampfdruck des eingesetzten Alkohols M-OH, M'-OH und Alkylenoxids und/oder des Lösungsmittels durchgeführt.
Bevorzugt erfolgt die Umsetzung bei einem Partialdruck des eingesetzten Alkohols M-OH, M'-OH und Alkylenoxids von 0,01 - 100 bar, besonders bevorzugt bei einem Partialdruck des Alkohols von 0,1 - 10 bar.
Bevorzugt wird die Umsetzung bei einer Temperatur von -20 bis 340 0C durchgeführt, besonders bevorzugt bei einer Temperatur von 20 bis 180 0C.
Bevorzugt erfolgt die Umsetzung bei einem Gesamtdruck von 1 bis 100 bar. Bevorzugt erfolgt die Umsetzung in einem Molverhältnis der Alkohol- bzw. Alkylenoxidkomponente zu der Phosphinsäurequelle (I) bzw. Alkylphosphonigsäure (II) bzw. mono-funktionalisierten Dialkylphosphinsäure (VII) und/oder (VIT) bzw. mono-funktionalisierten Dialkylphosphinsäure (VI) bzw. mono- carboxyfunktionalisierte Dialkylphosphinsäure (III) von 10.000:1 bis 0,001 :1, besonders bevorzugt im Verhältnis von 1000:1 bis 0,01 :1.
Bevorzugt erfolgt die Umsetzung in einem Molverhältnis der Phosphinsäurequelle (I) bzw. Alkylphosphonigsäure (II) bzw. mono-funktionalisierten Dialkylphosphinsäure (VII) und/oder (VII') bzw. der mono-funktionalisierten Dialkylphosphinsäure (VI) bzw. mono-carboxyfunktionalisierte Dialkylphosphinsäure (III) zum Lösungsmittel von 1:10.000 bis 1 :0, besonders bevorzugt in einem Phosphinsäure-Lösungsmittel-Molverhältnis von 1 :50 bis 1 :1.
Der Katalysator B, wie er für den Verfahrensschritt b) für die Umsetzung der Alkylphosphonigsäure, deren Salze oder Ester (II) mit einer acetylenischen Verbindung (V) zur mono-funktionalisierten Dialkylphosphinsäure, deren Salze und Ester (VI) eingesetzt wird, kann bevorzugt der Katalysator A sein.
Bevorzugt sind bei den acetylenischen Verbindungen der Formel (V) R5 und R6 unabhängig voneinander und bedeuten H und/oder Ci-C6-Alkyl-, C6-Ci8-Aryl- und/oder C7-C2o-Alkylaryl (ggf. substituiert).
Bevorzugt bedeuten R5 und R6 H, Methyl, Ethyl, Propyl, i-Propyl, n-Butyl, i-Butyl, t-Butyl, n-Pentyl, i-Pentyl, n-Hexyl, i-Hexyl, Phenyl, Naphthyl, ToIyI, 2-Phenylethyl, 1-Phenylethyl, 3-Phenyl-propyl und/oder 2-Phenylpropyl.
Bevorzugt werden als acetylenische Verbindungen Acetylen, Methylacetylen, 1-Butin, 1 -Hexin, 2-Hexin, 1-Octin, 4-Octin, 1-Butin-4-ol, 2-Butin-i-ol, 3-Butin-1-ol, 5-Hexin-1-ol, 1-Octin-3-ol, 1-Pentin, Phenylacetylen und/oder Trimethylsilylacetylen eingesetzt.
Bevorzugt wird die Reaktion in Gegenwart einer Phosphinsäure der Formel (X) durchgeführt,
Figure imgf000027_0001
wobei R11 und R12 unabhängig voneinander C2-C2o-Alkyl, C2-C2o-Aryl oder
Figure imgf000027_0002
Alkaryl, ggf. substituiert, bedeuten.
Bevorzugt bedeuten R11 und R12 unabhängig voneinander Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, s-Butyl, t-Butyl, n-Pentyl, n-Hexyl, Phenyl, Naphthyl, ToIyI oder XyIyI (ggf. substituiert).
Bevorzugt beträgt der Anteil an Phosphinsäure (X) bezogen auf die eingesetzte Alkylphosphonigsäure (II) 0,01 bis 100 mol-%, insbesondere 0,1 bis 10 mol-%.
Bevorzugt erfolgt die Reaktion bei Temperaturen von 30 bis 120 0C und besonders bevorzugt bei 50 bis 90 0C.
Bevorzugt beträgt die Reaktionszeit 0,1 bis 20 Stunden.
Bevorzugt wird die Umsetzung unter dem eigenen Dampfdruck der acetylenischen Verbindung (V) und/oder des Lösungsmittels durchgeführt.
Geeignete Lösungsmittel für Verfahrensstufe b) sind die, wie sie weiter vorne in Verfahrensstufe a) eingesetzt werden.
Bevorzugt erfolgt die Umsetzung bei einem Partialdruck der acetylenischen Verbindung von 0,01 - 100 bar, besonders bevorzugt bei 0,1 - 10 bar.
Bevorzugt beträgt das Verhältnis von acetylenischer Verbindung (V) zur Alkylphosphonigsäure (II) 10000:1 bis 0,001:1, besonders bevorzugt 30:1 bis 0,01 :1. Bevorzugt erfolgt die Umsetzung in einem Alkylphosphonigsäure-Katalysator- Molverhältnis von 1:1 bis 1 :0,00000001 , besonders bevorzugt in einem Alkylphosphonigsäure-Katalysator-Molverhältnis von 1 :0,25 bis 1 :0,000001.
Bevorzugt erfolgt die Umsetzung in einem Alkylphosphonigsäure-Lösungsmittel- Molverhältnis von 1 :10.000 bis 1 :0, besonders bevorzugt in einem Alkylphosphonigsäure-Lösungsmittel-Molverhältnis von 1 :50 bis 1 :1.
Die in den Schritten c) beschriebenen Umsetzungen werden durch Hydrocarboxylierung, Hydroalkoxycarbonylierung und Hydroformulierung der mono-funktionalisierten Dialkylphosphinsäure (VI) durch Kohlenmonoxid in Kombination mit Wasser, einem Alkohol bzw. Wasserstoff in Gegenwart eines Katalysators C erreicht.
Der Katalysator C, wie er für den Verfahrensschritt c) für die Umsetzung des mono-funktionalisierten Dialkylphosphinsäurederivats (VI) mit Kohlenmonoxid oder mit Kohlenmonoxid und Wasserstoff in Gegenwart von Wasser oder einem Alkohol M-OH oder M-OH' zu den mono-funktionalisierten Dialkylphosphinsäurederivaten (VII) und (VII') oder dem monocarboxyfunktionalisierten Dialkylphosphinsäurederivat (IM) eingesetzt wird, kann bevorzugt der Katalysator A sein.
Zusätzlich zu den unter Katalysator A aufgelisteten Quellen von Übergangsmetallen und Übergangsmetallverbindungen können auch die folgenden Übergangsmetalle und Übergangsmetallverbindungen eingesetzt werden:
Cobalt, Cobalt(l)- und/oder Cobalt(ll)- und/oder Cobalt(lll)- und/oder Cobalt(IV)chlorid, -bromid, -iodid, -fluorid, -oxid, -hydroxid, -cyanid, -sulfid, -tellurid, -borid, -sulfat, -nitrat, -propionat, -acetat, -benzoat, -acetylacetonat, -benzoylacetonat, -hexafluoroacetyl-acetonat, -2-ethylhexanoat, -carbonat, -methoxid, -tartrat, -cyclohexanbutyrat, -D-gluconat, -format, -molybdat, -phthalocyanin, -2,3-naphthalocyanin, -Oxalat, -Perchlorat, -phosphat, -selenid, -pyrophosphat, -cyclopentadienyl, -methylcyclopentadi-enyl, -ethylcyclopentadienyl, -pentamethylcyclopentadienyl, -phosphid, -naphthenat, -2-methoxyethoxid, -tris(2,2,6,6-tetramethyl-3,5-heptandionat, -2,2,6,6-tetramethyl- 3,5-heptandionat, -hexafluoro-2,4-pentadienonat, -isopropoxid, -stearat, -sulfamat, -citrat, -cyclohexanbutyrat, N.N'-diisopropylacetamidinat, -thiophen-2-carboxylat, -thiocyanat, -thiophenolat, - trifluoromethansulfonat, -hexafluorophosphat, -tθtrafluoroborat, -triflat, -1-butanthiolat, -thiosulfat, -trifluoroacetat, -perchlorat, ^.S.Z.δ.^.iS.iy.iδ-Octaethyl^i H^SH-porphin. -δ.iO.iδ^O-Tetraphenyl- 21 H,23H-porphin, -5,10,15,20-Tetrakis-(pentafluorophenyl)-21 H,23H-porphin und deren 1 ,4-Bis(diphenylphosphin)butan-, 1 ,3-Bis(diphenylphosphino)propan-, 2-(2'- Di-tert-butylphosphin)biphenyl, Dinorbornyl-phosphin-, Bis(Diphenylphos- phino)butan-, (N-succinimidyl)bis(triphenylphosphin)-, Dimethylphenylphosphin-, Methyldiphenylphosphin-, 1 ,5-Cyclooctadien-, N,N,N',N'- Tetramethylethylendiamin-, Triphenylphosphin-, Tri-o-tolylphosphin-, Tricyclohexyl-phosphin-, Triethylphosphin-, 2,2'-Bis(diphenylphosphino)-1 ,1 '- Binaphthyl-, 1 ,3-Bis(2,6-diisopropylphenyl)imidazol-2-yliden-,
1.S-BisfmesityOimidazol^-yliden-, 1 ,1'-Bis(diphenylphosphino)ferrocen-, 1 ,2-Bis(diphenylphosphino)ethan-, 2,2'-Bipyridin-, Trimethylphosphit-, Ethylendiamin-, Carbonyl-, Amin-Komplex, Cobalt-Aluminum Oxid, Samarium- Cobalt, Bismuth-Cobalt-Zink Oxid, Nickel-Cobalt Oxid, Raney®-Cobalt, Aluminum- Nickel-Cobalt, Cobalt-Titan Oxid, Cobalt-Eisen Oxid, Lithium-Cobalt(lll)oxid, Aluminium-Cobalt Isopropoxid, Kaliumhexacyanocobaltat(ll)ferrat(ll), Kaliumhexacyanocobaltat(ll), Cobaltcarbonyl, Octacarbonyldicobalt, Dodecacarbonyltetracobalt.
Bevorzugte Übergangsmetalle für die Hydrocarboxylierung,
Hydroalkoxycarbonylierung sind Palladium, Nickel und Rhodium.
Bevorzugte Übergangsmetalle zur Hydroformulierung sind Rhodium und Cobalt.
Zusätzlich zu den unter Katalysator A aufgelisteten Liganden können auch die folgenden Verbindungen eingesetzt werden:
Diphenyl-p-, -m- oder -o-tolylphosphit, Di-p-, -m- oder -o-tolylphenylphosphit, m-Tolyl-o-tolyl-p-tolylphosphit, o-Tolyl-p- oder -m-tolylphenylphosphit, Di-p-tolyl-m- oder -o-tolyl-phosphit, Di-m-tolyl-p- oder -o-tolylphosphit, Tri-m-, -p- oder -o-tolylphosphit, Di-o-tolyl-m- oder -p-tolylphosphit; Tris(2-ethylhexyl)-, Tribenzyl-, Trilauryl-, Tri-n-butyl-, Triethyl-, Tri-neo-pentyl-, Tri-i-propyl-, Tris(2,4-di-t- butylphenyl)-, tris(2,4-di-tert-butylphenyl)-, Diethyltrimethyl-silyl-, Diisodecylphenyl- , Dimethyltrimethylsilyl-, Triisodecyl-, Tris(tert-butyldimethylsilyl)-, Tris(2- chloroethyl-, Tris(1 ,1 ,1 ,3,3,3-hexafIuoro-2-propyl)-, Tris(nonyl-phenyl)-, Tris(2,2,2- trifluoroethyl)-, Tris(trimethylsilyl)-, 2,2-Dimethyltrimethylen-phenyl-, Trioctadecyl-, Triimethylolpropan-, Benzyldiethyl-, (R)-Binaphthylisobutyl-, (R)-Bina- phthylcyclopentyl-, (R)-Binaphthylisopropyl-, Tris(2-tolyl)-, Tris(nonylphenyl)- und Methyldiphenylphosphit^HaRH+J-IO.H .^.IS-Tetrahydro-diindenoiy.i-de:!',?1- fg][1 ,3,2]dioxaaphosphocin-5-phenoxy, 4-Ethyl-2,6,7-trioxa-1- phosphabicyc!o[2.2.2]-octan, (11bR,11^R)A4X9,9-Dimethyl-9H-xanthene-4,5- diyl)bis-dinaphtho[2,1-d:1', 2'-f][1,3)2]dioxaphosphepin, (11bR, 11'bR)-4,4'-(Oxydi- 2,1-phenylene)bis-dinaphtho[2,1-d:1 1', 2'-f][1 ,3,2]dioxaphosphepinI (11 bS,11'bS)- 4,4'-(9,9-Dimethyl-9H-xanthene-4,5-diyl)bis-dinaρhtho[2I1-d:1',2l-f][1 ,3I2]dioxa- phosphepin, (11 bS, 11TDS)-4,4'^Oxydi-2,1-phenylene)bis-dinaphtho[2,1-d: 1', 2'-f][1 l3,2]dioxaphosphepin, 1 ,1'Bis[(1 IbR)- und 1 ,1'Bis[(11bS)-dinaphtho[2,1- d:1', 2'-f][1 ,3,2]dioxaphos-phepin-4-yl]ferrocen; Dimethylphenyl-, Diethylmethylp- und Diethylphenyl- und Diisopropylphenylphosphonit; Dimethylphenyl-, Diisopropylphenyl-, Ethyldiphenyl- und Methyldiphenylphosphinit.
Zusätzlich zu den unter Katalysator A aufgelisteten bidentaten Liganden können auch die folgenden Verbindungen eingesetzt werden:
1 ,2-Bis(diadamantylphosphinomethyl)benzol, 1 ,2-Bis(di-3,5-dimethyladamantyl- phosphinomethyl)benzol, 1 ,2-Bis(di-5-tert-butyladamantaylphosphino- methyl)benzol, 1 ,2-Bis(1-adamantyl tert-butyl-phosphinomethyl)benzol, 1-(Di- tertbutylphosphino-methyl)-2-(phosphaadamantylphosphinomethyl) benzol, 1-(Diadamantylphosphino-methyl)-2-(phosphaadamantylphosphinomethyl)benzol, 1 -(tert-Butyladamantyl)-2-(diadamantyl)-(phosphinomethyl)benzol, 1 ,2-Bis(di-tert- butylphosphinomethyl)-ferrocen, 1 ,2-Bis(ditertbutylphosphinomethyl)ferrocen, 1 ,2-Bis(dicyclohexylphos-phinomethyl)-ferrocen, 1 ,2-Bis(di-isobutylphosphino- methyl)ferrocen, 1 ,2-Bis(dicyclopentyl-phosphino-methyl)ferrocen, 1 ,2-Bis- (diethylphosphinomethyl)-ferrocen, 1 ,2-Bis(diisopropylphos-phinomethyl)ferrocen, 1 ,2-Bis(dimethylphos-phinomethyl)ferrocen, 9,9-Dimethyl-4,5- bis(diphenoxyphosphin)xanthen, 9,9-Dimethyl-4,5-bis(di-p- methylphenoxyphosphin)-xanthen, 9,9-Dimethyl-4,5-bis(di-o- methylphenoxyphosphin)xanthen, 9,9-Dimethyl-4,5-bis(di-1 ,3,5-trimethylphenoxy- phosphin)xanthent θ.θ-DimethyM.S-bis^iphenoxyphos-phin^J-di-tert.-butyl- xanthen, 9,9-Dimethyl-4,5-bis(di-o-methylphenoxyphosphin)-2,7-di-tert.-butyl- xanthen, 9,9-Dimethyl-4,5-bis(di-p-methylphenoxyphosphin)-2,7-di-tert.-butyl- xanthen, , 9,9-Dimethyl-4,5-bis(di-1 ,3,5-trimethylphenoxyphosphin)-2,7-di-tert.- butyl-xanthen, 1 ,1'-Bis(diphenoxyphosphin)ferrocen, 1 ,1'-Bis(di-o-methylphenoxy- )ferrocen, 1 ,1'-Bis(di-p-methylphenoxyphosphin)ferrocen, 1 ,1'-Bis(di-1 ,3,5- trimethyl-phenoxyphosphin)ferrocen, 2,2'-Bis(diphenoxyphosphin)-1 ,1'-binaphthyl, 2,2'-Bis(di-o-methylphenoxyphosphin)-1 ,1 '-binaphthyl, 2,2'-Bis(di-p- methylphenoxy-phosphin)-1 ,1 '-binaphthyl, 2,2'-Bis(di-1 ,3,5- trimethylphenoxyphosphin)-1 ,1 '-binaphthyl, (Oxydi-2,1- phenylen)bis(diphenoxyphosphin), (Oxydi-2,1-phenylen)bis(di-o- methylphenoxyphos-phin), (Oxydi-2,1-phenylen)bis(di-p-methylphenoxyphosphin), (Oxydi-2,1-phenylen)bis-(di-1 ,3,5-trimethylphenoxyphosphin), 2,2'-Bis(diphenoxy- phosphin)-1 ,1'-biphenyl, 2,2'-Bis(di-o-methylphenoxyphosphin)-1 ,1'-biphenyl, 2,2'-Bis(di-p-methylphenoxy-phosphin)-1 ,1'-biphenyl, 2,2'-Bis(di-1 ,3,5- trimethylphenoxyphosphinj-i .r-biphenyl, 1 ,2-Bis(di-(1 ,3,5,7-tetramethyl-6,9,10- trioxa-2-phosphaadamantylmethyl)ferrocen, 1-(tert-Butoxycarbony1)-(2S,4S)-2- [(diphenylphosphino)methyl]-4-(dibenzophospholyl)-pyrrolidin, 1-(tert-Butoxy- carbonyl)-(2S,4S)-2-[(dibenzophospholyl)methyl]-4-(diphenyl-phosphino)pyrrolidin, 1-(tert-Butoxycarbonyl)-(2S,4S)-4-(dibenzophos-pholyl)-2- [(dibenzophospholyl)methyl]-pyrrolidin, BINAPHOS, Kelliphit, Chiraphit, Bis-3,4- diazophospholan, Bis(phospholan)liganden, wie Bis(2,5-transdialkylphospholan), Bis(2,4-trans-dialkylphosphetan), 1 ,2-Bis(phenoxyphosphin)ethan, 1 ,2-Bis(3- methyl-phenoxy-phosphin)ethan, 1 ,2-Bis(2-methylphenoxyphosphin)ethan, 1 ,2-Bis(1-methyl-phenoxyphosphin)ethan, 1 ,2-Bis(1 ,3,5- trimethylphenoxyphosphin)ethan, 1 ,3-Bis(phen-oxyphosphin)propan, 1 ,3-Bis(3- methylphenoxyphosphin)propan, 1 ,3-Bis(2-methyl-phenoxyphosphin)propan, 1 ,3-Bis(1-methylphenoxyphosphin)propan, 1 ,3-Bis(1 ,3,5- trimethylphenoxyphosphin)propan,1 ,4-Bis(phenoxyphosphin)butan, 1 ,4-Bis(3- methyl-phenoxyphosphin)butan, 1 ,4-Bis(2-methylphenoxyphosphin)butan, 1 ,4-Bis(1-methyl-phenoxyphosphin)butan, 1 ,4-Bis(1 ,3,5- trimethylphθnoxyphosphin)butan.
Bevorzugt beträgt der Anteil an Katalysator C bezogen auf die eingesetzte mono- funktionalisierte Dialkylphosphinsäure (VI) 0,00001 bis 20 mol-%, besonders bevorzugt 0,00001 bis 5 mol-%.
Geeignete Lösungsmittel für Verfahrensstufe c) sind die, wie sie weiter vorne in Verfahrensstufe a) eingesetzt werden.
Bevorzugte Alkohole M-OH und M'-OH zur Hydroalkoxycarbonylierung sind z. B. Methanol, Ethanol, i-Propanol, n-Propanol, n-Butanol, i-Butanol, t-Butanol, n-Amyl- alkohol, i-Amylalkohol, t-Amylalkohol, n-Hexanol, n-Octanol, i-Octanol, n-Tridecanol, Benzylalkohol etc. Bevorzugt sind weiterhin Glycoie wie z.B. Ethylenglycol, 1 ,2-Propan-diol, 1 ,3-Propandiol, 1 ,3-Butandiol, 1 ,4-Butandiol, 1 ,4-Cyclohexan-dimethanol, Glycerin, Trishydroxymethylethan, Trishydroxymethylpropan, Pentaerythrit, Sorbit, Mannit, α-Naphthol, Polyethylenglykole, Polypropylenglykole und EO-PO-Blockpolymere, n-Buten-2-ol- 1 , 1 ,4-Butendiol und Allylalkohol.
Bevorzugt erfolgt die Reaktion bei Temperaturen von 30 bis 200 0C und besonders bevorzugt von 50 bis 150 0C.
Bevorzugt beträgt die Reaktionszeit 0,1 bis 20 Stunden.
Der Verfahrensschritt c) wird vorzugsweise bei einem absoluten Druck von 0,01 bis 1000 bar, bevorzugt 0,1 bis 250 bar, insbesondere 0,8 bis 75 bar durchgeführt.
Bevorzugt wird die Umsetzung unter dem Dampfdruck des Lösungsmittels durchgeführt. Bevorzugt erfolgt die Umsetzung bei einem Partialdruck von Kohlenmonoxid und/oder Wasserstoff von 0,02 - 700 bar.
Besonders bevorzugt erfolgt die Umsetzung bei einem Partialdruck von Kohlenmonoxid und/oder Wasserstoff von 0,2 - 200 bar.
Besonders bevorzugt erfolgt die Umsetzung bei einem Partialdruck von Kohlenmonoxid und/oder Wasserstoff von 1 - 50 bar.
Bevorzugt beträgt das Verhältnis von Wasserstoff und/oder Kohlenmonoxid zur Dialkylphosphinsäure (VI) 10.000:1 bis 0,001 :1 , besonders bevorzugt 30:1 bis 0,01:1.
Bevorzugt erfolgt die Umsetzung in einem Dialkylphosphinsäure-Katalysator- Molverhältnis von 1:1 bis 1 :0,00000001 , besonders bevorzugt in einem Dialkylphosphinsäure-Katalysator-Molverhältnis von 1 :0,2 bis 1 :0,000001.
Bevorzugt erfolgt die Umsetzung in einem Dialkylphosphinsäure-Lösungsmittel- Molverhältnis von 1 :10.000 bis 1:0, besonders bevorzugt in einem Dialkylphosphinsäure-Lösungsmittel-Molverhältnis von 1 :50 bis 1 :1.
Die erfindungsgemäße Hydroformulierung, Hydrocarboxylierung und Hydroalkoxycarbonylierung kann in flüssiger Phase, in der Gasphase oder auch in überkritischer Phase durchgeführt werden. Dabei wird der Katalysator bei Flüssigkeiten vorzugsweise homogen oder als Suspension eingesetzt, während als bei Gasphasen- oder überkritischer Fahrweise eine Festbettanordnung von Vorteil ist.
Bevorzugt ist das Verhältnis von Kohlenmonoxid zu Wasserstoff 1 :1 bis 1 :15, besonders bevorzugt 1 :1 bis:1.2.
Bevorzugt ist das Verhältnis von Kohlenmonoxid zu Wasser oder dem Alkohol M-OH oder M'-OH 1 :1 bis 1 :5000, besonders bevorzugt 1 :1 bis: 10. In einer weiteren Ausführungsform der vorliegenden Erfindung wird das erfindungsgemäße Verfahren in flüssiger Phase durchgeführt. Daher wird der Druck im Reaktor vorzugsweise so eingestellt, dass unter der verwendeten Reaktionstemperatur die Reaktanden in flüssiger Form vorliegen. Ferner ist es bevorzugt, dass der Cyanwasserstoff dabei in flüssiger Form eingesetzt wird. Für Hydroformylierungen, Hydrocarboxylierungen und Hydroalkoxycarbonylierungen können ein oder mehrere Reaktoren verwendet werden, die bei Verwendung von mehreren Reaktoren vorzugsweise in Reihe geschaltet werden.
Die im Schritt c) beschriebene Umsetzung zur mono-carboxyfunktionalisierten Dialkylphosphinsäure, deren Salze und Ester (III) wird durch selektive Oxidation der mono-funktionalisierten Dialkylphosphinsäure, deren Salze oder Ester (VII) oder (VIT) durch ein Oxidationsmittel, ein Oxidationsmittel und Wasser oder durch Sauerstoff und Wasser in Gegenwart eines Katalysators D erreicht.
Bevorzugte Oxidationsmittel und/oder Sauerstoff-Bildner sind Kaliumpermanganat, Braunstein, Chromtrioxid, Kaliumdichromat, Pyridindichromat, Pyridinchlorchromat, Coliins-Reagenz, Jones-Reagenz, Corey-Gilman-Ganem- Reagenz, (Dess-Martin-)Periodinan, o-lodoxy-benzoesäure, Rutheniumtetroxid, Rutheniumdioxid, Tetra-n-propyl-perruthenat, Rutheniumtrichlorid/Natriumperiodat, Rutheniumdioxid/Natrium-periodat, Chlor, Hypochlorit, Persäuren, wie z. B. Wasserstoffperoxid, Perameisensäure und Per-essigsäure, Nitroxylradikale, wie z. B. 2,2,6,6-Tetramethylpiperidin-N-oxid (TEMPO).
Zusätzlich bevorzugte Oxidationsmittel und/oder Sauerstoff-Bildnern sind auch Peroxo-Verbindungen wie Peroxo-monoschwefelsäure, Kaliummonopersulfat (Kaliumperoxo-monosulfat), Caroat(TM), Oxone(TM), Peroxodischwefelsäure, Kaliumpersulfat (Kaliumperoxodisulfat), Natriumpersulfat (Natriumperoxodisulfat), Ammoniumpersulfat (Ammoniumperoxodisulfat).
Bevorzugte Oxidationsmittel und/oder Sauerstoff-Bildner sind Verbindungen, die im Lösemittelsystem Peroxide bilden können wie Natriumperoxid, -hydrate, Natriumperoxiddiperoxo-hydrat.-hydrate, Lithiumperoxid, -hydrate, Calciumperoxid, Strontiumperoxid, Bariumperoxid, Magnesiumperoxid, Zinkperoxid, Kaliumhyperoxid, -hydrate, Natriumperoxoborat, -hydrate, Kaliumperoxoboratperoxohydrat, Magnesium-peroxoborat, Calciumperoxoborat, Bariumperoxoborat, Strontiumperoxoborat, Kalium-peroxoborat,
Peroxomonophosphorsäure, Peroxodiphosphorsäure, Kaliumperoxodi-phosphat, Ammoniumperoxodiphosphat, Kaliumammoniumperoxodiphosphate, Natriumcarbonatperoxohydrat, Harnstoffperoxohydrat, Ammoniumoxalatperoxid, Bariumperoxidperoxohydrat, Bariumperoxidperoxohydrat, Calciumhydrogenperoxide, Calciumperoxidperoxohydrat,
Ammoniumtriphosphatdiperoxophosphathydrat, Kaliumfluoridperoxohydrat, Kaliumfluoridtriperoxohydrat, Kaliumfluoriddiperoxohydrat, Natriumpyrophosphatdiperoxohydrat, Natrium-pyrophosphatdiperoxohydratocta- hydrat, Kaliumacetatperoxohydrat, Natriumphosphatperoxohydrat, Natriumsilicatperoxohydrat.
Bevorzugte Oxidationsmittel und/oder Sauerstoff-Bildner sind Wasserstoffperoxid, Perameisensäure, Peressig-säure, Benzoylperoxid, Di-t-butylperoxid, Dicumylperoxid, 2,4-Di-chlorobenzoylperoxid, Decanoylperoxid, Laurylperoxid, Cumolhydroperoxid, Pinenhydroperoxid, p-Menthanhydroperoxid, t-Butylhydroperoxid, Acetylacetonperoxid, Methylethylketonperoxid, Bernsteinsäureperoxid, Dicetylperoxydicarbonat, t-Butylper-oxyacetat, t-Butylperoxymaleinsäure, t-Butylperoxybenzoat, Acetylcyclohexylsulfonyl-peroxid.
Bevorzugt erfolgt die Umsetzung in einem Dialkylphosphinsäure-Oxidationsmittel- Molverhältnis von 1 :10 bis 1 :0,1 , besonders bevorzugt in einem Dialkylphosphinsäure-Oxidationsmittel-Molverhältnis von 1 :2 bis 1 :0,25.
Der Katalysator D, wie er für den Verfahrensschritt c) für die Umsetzung des mono-funktionalisiertes Dialkylphosphinsäurederivat (VII) oder (VM1) mit Sauerstoff und Wasser zum Endprodukt, dem mono-carboxyfunktionalisierten Dialkylphosphinsäure-derivat (III) eingesetzt wird, kann bevorzugt der Katalysator A sein. Zusätzlich handelt es sich bevorzugt bei den Übergangsmetallen für den Katalysator C um Elemente der ersten Nebengruppe, wie etwa Gold.
Zusätzlich zu den unter Katalysator A aufgelisteten Quellen von
Übergangsmetallen und Übergangsmetallverbindungen können auch die folgenden Übergangsmetalle und Übergangsmetallverbindungen eingesetzt werden:
Gold, colloidales Gold, Ruthenium, Ruthenium auf Aktivkohle, auf Kohle, auf Alumina, Platin-Palladium-Gold-, Gold-Nickel-, Gold-Germanium-, Gold-Platin-, Gold-Palladium-, Gold-Beryllium-, Platin-Ruthenium-, Palladium-Ruthenium- Legierung, GoId(I)- und/oder GoId(III)-, Ruthenium(ll)- und/oder Ruthenium(lll)- und/oder Ruthenium(IV)chlorid, -bromid, -iodid, -oxid, -cyanid, -kaliumcyanid, -natriumcyanid -sulfid, -sulfat, -hydrid, -nitrosylchlorid, -nitrosylnitrat, -bathophenanthrolindisulfonat Natriumsalz, -thiosulfat, -Perchlorat,
-cyclopentadienyl, -ethylcyclopentadienyl, -pentamethylcyclopentadienyl, -indenyl, -2-methylallyl, -propionat, -acetat, -acetylacetonat, -hexafluoroacetylacetonat, -tetrafluoroborat, -kaliumthiocyanat, -natriumthiocyanat, -trifluoroacetat, -bis(trifluoro-methansulfonyl)imidat, -hexafluoroantimonat, -2-pyridincarboxylat, und deren 1 ,4-Bis-(diphenylphosphin)-butan-, 1 ,3-Bis(diphenylphosphino)propan-, 2-(2'-Di-tert-butylphos-phin)biphenyl-, Acetonitril-, Benzonitril-, Dinorbornylphosphin-, 1 ,4-Bis(diphenylphos-phino)butan-, Dimethylphenylphosphin-, Methyldiphenylphosphin-, Triphenylphosphin-, Tri-o- tolylphosphin-, Tricyclohexylphosphin-, Tributylphosphin-, Tri-tert-butylphosphin-, Trimethylphosphin-, Triethylphosphin-, 2,2'-Bis(diphenylphos-phino)-1 , 1 '- Binaphthyl-, 1 ,3-Bis(mesityl)imidazol-2-yliden-, 1 ,1'-Bis(diphenyl- phosphino)ferrocen-, (1 ,1'-Biphenyl-2-yl)di-tert-butylphosphin-, 1 ,3-Bis(2,6-diiso- propyl-pheny!)imidazol-2-yliden-, 2-Dicyclo-hexyl(2',4',6'-trisopropylbiphenyl)- phosphin-, Dimethylsulfid-, Tris(2,4-di-tert-butyl-phenyl)phosphit-, Tris(para- trifluoromethylphenyl)phosphin-, Bis(diphenyl-phosphino)-methan-,
1 ,2-Bis(diphenylphosphino)ethan-, N-Methylimidazol-, 1 ,10-Phenanthrolin-, 4,7-Diphenyl-1 ,10-phenanthrolin-, 1 ,5-Cyclooctadien-, 1 ,3,5-Cyclooctatrien-, Napthalen-, p-Cymen-, 3-Methyl-2-butenyliden-, Benzyliden-, Pyridin-, 2,3,7,8,12,13,17,18-Octaethyl-21 H,23H-porphin-, 5,10,15,20-Tetraphenyl- 21 H,23H-porphin-, N.N.N'.N'-Tetramethylethylendiamin-, Tri-o-tolylphosphin-, 2,2'-Bis(diphenyl-phosphino)-1 ,1'-binaphthyl-, 1 ,1'-Bis(diphenylphos- phino)ferrocen-, 2,2'-Bipyridin-, (Bicyclo[2.2.1]hepta-2,5-dien)-, Bis(di-tert-butyl(4- dimethylaminophenyl)phosphin)-, 2-(Di-tert-butylphosphino)ethylamin-, (2-(Diphenyl-phosphino)ethylamin-, 1 )3-Bis(2,4,6-trimethylphenyl)-2- imidazolidinyliden-, 1 ,2-Di-aminocyclohexan-, Pyridin-, Carbonyl-, Ethylendiamin-, Amin-Komplex; Kaliumdicyanoaurat(l), Natriumtetrachloroaurat(lll), Kaliumgold(lll)chlorid, Natriumaurothiomalat, Tris(triphenylphosphingold)oxonium tetrafluoroborat, Wasserstofftetrabromoaurat(lll); Ammoniumhexachloro- ruthenat(IV), Kaliumaquapentachlororuthenat(lll), (1 ,5-Cyclooctadien)-(1 ,3,5- cyclooctatrien)-ruthenium, Trirutheniumdodecacarbonyl, Grubbs Katalysator.
Bevorzugt beträgt der Anteil an Katalysator D bezogen auf die eingesetzte mono- funktionalisierte Dialkylphosphinsäure (VII) und/oder (VII') 0,00001 bis 20 mol-%, besonders bevorzugt 0,0001 bis 10 mol-%.
Bevorzugt erfolgt die Umsetzung in einem Phosphinsäure-Lösungsmittel- Molverhältnis von 1 :10.000 bis 1 :0, besonders bevorzugt in einem Phosphinsäure- Lösungsmittel-Molverhältnis von 1 :50 bis 1 :1.
Bevorzugt erfolgt die Oxidation bei Temperaturen von 30 bis 120 0C und besonders bevorzugt bei 50 bis 90 0C.
Bevorzugt beträgt die Reaktionszeit 0,1 bis 20 Stunden.
Bevorzugt erfolgt die Umsetzung bei einem Partialdruck des Sauerstoffs von 0,01 - 100 bar, besonders bevorzugt bei 0,1 - 10 bar
Bevorzugt erfolgt die Umsetzung bei einem Gesamtdruck von 1 bis 100 bar.
Geeignete Lösungsmittel für Verfahrensstufe c) sind die, wie sie weiter vorne in Verfahrensstufe a) eingesetzt werden. Die Oxidation kann in flüssiger Phase, in der Gasphase oder auch in überkritischer Phase durchgeführt werden. Dabei wird der Katalysator bei Flüssigkeiten vorzugsweise homogen oder als Suspension eingesetzt, während als bei Gasphasen- oder überkritischer Fahrweise eine Festbettanordnung von Vorteil ist.
Bevorzugt wird der pH der Reaktionslösung durch Zugabe von Alkali- und/oder Erdalkaliverbindungen in einem Bereich von pH 6 bis 12 gehalten, besonders bevorzugt in einem Bereich von pH 6 bis 9.
Bevorzugte Alkali- und/oder Erdalkalimetalle sind Lithium, Natrium, Kalium, Magnesium, Calcium, Barium.
Besonders bevorzugt sind Natrium, Kalium, Calcium, Barium.
Bevorzugte Verbindungen der Alkali- und Erdalkalimetalle sind deren Oxide, Hydroxide, Carbonate und Carboxylate.
Bevorzugte Alkali- und/oder Erdalkalimetallverbindungen sind Lithium, Lithiumhydroxid, Lithiumhydrid, Natrium, Natriumhydroxid, Natriumhydrid, Kaliumhydroxid.
Bevorzugt wird der Sauerstoff als reiner Sauerstoff oder alternativ eine Sauerstoff enthaltende Mischung, wie zum Beispiel Luft oder mit Sauerstoff angereicherte Luft verwendet.
Bevorzugt wird der Sauerstoff in From von Sauerstoff-Bildnern wie zum Beispiel Wasserstoffperoxid verwendet.
Bevorzugt ist das Verhältnis von Sauerstoff zu phosphorhaltiger Verbindung (VII) oder (VII') 1 :1 bis 1500:1. Die mono-carboxyfunktionalisierten Dialkylphosphinsäure oder deren Salz (III) kann im Folgenden zu weiteren Metallsalzen umgesetzt werden.
Bevorzugt handelt es sich bei den eingesetzten Metallverbindungen der Verfahrensstufe d) um Verbindungen der Metalle Mg, Ca, AI, Sb, Sn, Ge, Ti, Fe, Zr, Zn1 Ce, Bi, Sr1 Mn, Li, Na, K, besonders bevorzugt Mg, Ca, AI, Ti, Zn, Sn, Ce, Fe.
Geeignete Lösungsmittel für Verfahrensstufe d) sind die, wie sie weiter vorne in Verfahrensstufe a) eingesetzt werden.
Bevorzugt erfolgt die Umsetzung der in Verfahrensstufe d) in wässrigem Medium.
Bevorzugt setzt man in Verfahrensstufe d) die nach Verfahrensstufe c) erhaltenen erhaltene mono-carboxyfunktionalisierten Dialkylphosphinsäuren, deren Ester und/oder Alkalisalze (III) mit Metallverbindungen von Mg1 Ca, AI, Zn, Ti, Sn, Zr, Ce oder Fe zu den mono-carboxyfunktionalisierten Dialkylphosphinsäuresalzen (III) dieser Metalle um.
Die Umsetzung erfolgt dabei in einem Molverhältnis von mono- carboxyfunktionalisierter Dialkylphosphinsäure/-ester/-salz (III) zu Metall von 8 zu 1 bis 1 zu 3 (für vierwertige Metallionen oder Metalle mit stabiler vierwertiger Oxidationsstufe), von 6 zu 1 bis 1 zu 3 (für dreiwertige Metallionen oder Metalle mit stabiler dreiwertiger Oxidationsstufe), von 4 zu 1 bis 1 zu 3 (für zweiwertige Metallionen oder Metalle mit stabiler zweiwertiger Oxidationsstufe) und von 3 zu 1 bis 1 zu 4 (für einwertige Metallionen oder Metalle mit stabiler einwertiger Oxidationsstufe).
Bevorzugt führt man in Verfahrenstufe c) erhaltenes mono- carboxyfunktionalisiert.es Dialkylphosphinsäureester/-salz (III) in die entsprechende Dialkylphosphinsäure über und setzt in Verfahrensstufe d) diese mit Metallverbindungen von Mg, Ca, AI, Zn, Ti, Sn, Zr, Ce oder Fe zu den mono- carboxyfunktionalisierten Dialkylphosphinsäuresalzen (III) dieser Metalle um. Bevorzugt wandelt man in Verfahrenstufe c) erhaltene mono- carboxyfunktionalisierte Dialkylphosphinsäure/-ester (III) in ein Dialkylphosphinsäure-Alkalisalz um und setzt in Verfahrensstufe d) dieses mit Metallverbindungen von Mg, Ca, AI, Zn, Ti, Sn, Zr, Ce oder Fe zu den mono- carboxyfunktionalisierten Dialkylphosphinsäuresalzen (III) dieser Metalle um.
Bevorzugt handelt es sich bei den Metallverbindungen von Mg, Ca, AI, Zn, Ti, Sn, Zr, Ce oder Fe für Verfahrenstufe d) um Metalle, Metalloxide, -hydroxide, -oxidhydroxide, -borate, -carbonate, -hydroxocarbonate, -hydroxocarbonathydrate, gemischte -hydroxocarbonate, - gemischte hydroxocarbonathydrate, -phosphate, -sulfate, -sulfat hydrate, -hydroxosulfathydrate, gemischte -hydroxosulfathydrate, -oxysulfate, -acetate, -nitrate, fluoride, -fluoridhydrate, -Chloride, chlorid hydrate, -oxychloride, -bromide, -iodide, -iodid hydrate, -carbonsäurederivate und/oder -alkoxide.
Bevorzugt handelt es sich bei den Metallverbindungen um Aluminiumchlorid, Aluminiumhydroxid, Aluminiumnitrat, Aluminiumsulfat, Titanylsulfat, Zinknitrat, Zinkoxid, Zinkhydroxid und/oder Zinksulfat.
Geeignet sind auch metallisches Aluminium, -fluorid, -hydroxychlorid, -bromid, -iodid, -sulfid, -selenid; -phosphid, -hypophosphit.-antimonid, -nitrid; -carbid, -hexafluorosilicat; -hydrid, -calciumhydrid, -borhydrid; -chlorat; Natrium- Aluminiumsulfat, Aluminium-Kaliumsulfat, Aluminiumammoniumsulfat, -nitrat, -metaphosphat, -phosphat, -silicat, -magnesiumsilicat, -carbonat, -hydrotalcit, -natriumcarbonat, -borat; -thiocyanat; -oxid, -oxidhydroxid, ihre entsprechenden Hydrate und/oder Polyaluminiumhydroxy-verbindungen, die vorzugsweise einen Aluminiumgehalt von 9 bis 40 Gew.-% besitzen.
Geeignet sind auch Aluminiumsalze von Mono-, Di-, Oligo-, Polycarbonsäuren wie z. B. Aluminiumdiacetat, -acetotartrat, -formiat, -lactat, -Oxalat, -tartrat, -oleat, -palmitat, -sterarat, -trifluoromethansulfonat, -benzoat.-salicylat, -8-oxychinolat. Geeignet sind ebenfalls elementares, metallisches Zink sowie Zinksalze wie z. B. Zinkhalogenide (Zinkfluorid, Zinkchloride, Zinkbromid, Zinkiodid).
Geeignet ist auch Zinkborat, -carbonat.-hydroxidcarbonat, -silicat, -hexafluorosilicat, -stannat, -hydroxidstannat, -Magnesium-Aluminium-
Hydroxidcarbonat; -nitrat, -nitrit, -phosphat, -pyrophosphat; -sulfat, -phosphid, -selenid, -tellurid und Zinksalze der Oxosäuren der siebten Hauptgruppe (Hypohalogenite, Halogenite, Halogenate, z. B. Zinkiodat, Perhalogenate, z. B. Zinkperchlorat); Zinksalze der Pseudohalogenide (Zinkthiocyanat, -cyanat, -cyanid); Zinkoxide, -peroxide, -hydroxide oder gemischte Zinkoxidhydroxide.
Bevorzugt sind Zinksalze der Oxosäuren der Übergangsmetalle (bspw. Zinkchromat(VI)hydroxyd, -chromit, -molybdat, -permanganat, -molybdat).
Geeignet sind auch Zinksalze von Mono-, Di-, Oligo-, Polycarbonsäuren, wie z. B. Zinkformiat, -acetat, -trifluoracetat, -propionat, -butyrat, -valerat, -caprylat, -oleat, -stearat, -Oxalat, -tartrat, -citrat, -benzoat, -salicylat, -lactat, -acrylat, -maleat, -succinat, Salze von Aminosäuren (Glyzin), von sauren Hydroxyfunktionen (Zinkphenolat etc.), Zink-p-phenolsulfonat, -acetylacetonat, -stannat, -dimethyldithiocarbamat, -trifluormethansulfonat.
Bei den Titan-Verbindungen ist metallisches Titan ebenso wie Titan(lll) und/oder (IV) -Chlorid, -nitrat, -sulfat, -formiat, -acetat, -bromid, -fluorid, -oxychlorid, -oxysulfat, -oxid, -n-propoxid, -n-butoxid, -isopropoxid, -ethoxid, -2-ethylhexyloxid.
Geeignet ist auch metallisches Zinn sowie Zinnsalze (Zinn(ll) und /oder (IV) -Chlorid); Zinnoxide und Zinn-Alkoxid wie z. B. Zinn-(IV)-tert-butoxid.
Geeignet sind auch Cer(lll)fluorid, -Chlorid, -nitrat.
Bei den Zirkonium-Verbindungen ist metallisches Zirkonium sowie Zirkoniumsalze wie Zirkoniumchlorid, -sulfat, Zirconylacetat, Zirconylchlorid bevorzugt. Weiterhin bevorzugt sind Zirkonoxide sowie Zirkon-(IV)-tert-butoxid. Bevorzugt erfolgt die Umsetzung in Verfahrensstufe d) bei einem Feststoffgehalt der mono-carboxyfunktionalisierten Dialkylphosphinsäuresalze von 0,1 bis 70 Gew.-%, bevorzugt 5 bis 40 Gew.-%.
Bevorzugt erfolgt die Umsetzung in Verfahrensstufe d) bei einer Temperatur von 20 bis 250 0C, bevorzugt bei einer Temperatur von 80 bis 120 0C.
Bevorzugt erfolgt die Umsetzung in Verfahrensstufe d) bei einem Druck zwischen 0,01 und 1000 bar, bevorzugt 0,1 bis 100 bar.
Bevorzugt erfolgt die Umsetzung in Verfahrensstufe d) während einer Reaktionszeit von 1*10'7 bis 1000 h.
Bevorzugt wird das nach der Verfahrensstufe d) durch Filtrieren und/oder Zentrifugieren aus dem Reaktionsgemisch abgetrennte mono- carboxyfunktionalisierten Dialkylphos-phinsäuresalz (III) der Metalle Mg, Ca, AI, Zn, Ti, Sn, Zr, Ce oder Fe getrocknet.
Bevorzugt wird das nach Verfahrensstufe c) erhaltene Produktgemisch ohne weitere Reinigung mit den Metallverbindungen umgesetzt.
Bevorzugte Lösungsmittel sind die in Verfahrensschritt a) genannten Lösungsmittel.
Bevorzugt ist die Umsetzung in Verfahrensstufe d), c) und/oder b) im durch Stufe a) gegebenen Lösungsmittelsystem.
Bevorzugt ist die Umsetzung in Verfahrensstufe d) in einem modifizierten gegebenen Lösungsmittelsystem. Hierfür werden acide Komponenten, Lösevermittler, Schauminhibitoren etc. zugegeben. In einer weiteren Ausführungsform des Verfahrens wird das nach Verfahrensstufe a), b) und/oder c) erhaltene Produktgemisch aufgearbeitet.
In einer weiteren Ausführungsform des Verfahrens wird das nach Verfahrensstufe c) erhaltene Produktgemisch aufgearbeitet und danach die nach Verfahrensstufe c) erhaltenen mono-carboxyfunktionalisierten Dialkylphosphinsäuren und/oder deren Salze oder Ester (III) in Verfahrensstufe d) mit den Metallverbindungen umgesetzt.
Bevorzugt wird das Produktgemisch nach Verfahrensstufe c) aufgearbeitet, indem die mono-carboxyfunktionalisierten Dialkylphosphinsäuren und/oder deren Salze oder Ester (III) durch Entfernen des Lösungsmittelsystems isoliert werden, z. B. durch Eindampfen.
Bevorzugt weist das mono-carboxyfunktionalisierte Dialkylphosphinsäuresalz (III) der Metalle Mg, Ca, AI, Zn, Ti, Sn, Zr, Ce oder Fe wahlweise eine Restfeuchte von 0,01 bis 10 Gew.-%, bevorzugt von 0,1 bis 1 Gew.-%, eine mittlere Teilchengröße von 0,1 bis 2000 μm, bevorzugt von 10 bis 500 μm, eine Schüttdichte von 80 bis 800 g/l, bevorzugt von 200 bis 700 g/l, eine Rieselfähigkeit nach Pfrengle von 0,5 bis 10, bevorzugt von 1 bis 5, auf.
Besonders bevorzugt enthalten die Formkörper, -Filme, -Fäden und -Fasern 5 bis 30 Gew.-% der mono-carboxyfunktionalisierte Dialkylphosphinsäure/-ester/-salze, hergestellt nach einem oder mehreren der Ansprüche 1 bis 12, 5 bis 90 Gew.-% Polymer oder Mischungen derselben, 5 bis 40 Gew.-% Additive und 5 bis 40 Gew.-% Füllstoff, wobei die Summe der Komponenten immer 100 Gew.-% beträgt.
Bevorzugt handelt es sich bei den Additiven um Antioxidantien, Antistatica, Treibmittel, weitere Flammschutzmittel, Hitzestabilisatoren,
Schlagzähmodifikatoren, Prozesshilfsmittel, Gleitmittel, Lichtschutzmittel, Antidrippingmittel, Compatibilizer, Verstärkungsstoffe, Füllstoffe, Keimbildungsmittel, Nukleierungsmittel, Additive zur Lasermarkierung, Hydrolysestabilisatoren, Kettenverlängerer, Farbpigmente, Weichmacher und/oder Plastifizierungsmittel.
Bevorzugt ist ein Flammschutzmittel, enthaltend 0,1 bis 90 Gew.-% der mono- carboxyfunktionalisierten Dialkylphosphinsäure, -ester und -salze (III) und 0,1 bis 50 Gew.-% weitere Additive, besonders bevorzugt Diole.
Bevorzugte Additive sind auch Aluminiumtrihydrat, Antimonoxid, bromierte aromatische oder cycloaliphatische Kohlenwasserstoffe, Phenole, Ether, Chlorparaffin, Hexachloro-cyclopentadien-Addukte, Roter Phosphor, Melaminderivate, Melamincyanurate, Ammoniumpolyphosphate und Magnesiumhydroxid. Bevorzugte Additive sind auch weitere Flammschutzmittel, insbesondere Salze von Dialkylphosphinsäuren.
Insbesondere betrifft die Erfindung die Verwendung der erfindungsgemäßen mono-carboxyfunktionalisierten Dialkylphosphinsäure, -ester und -salze (III) als Flammschutzmittel bzw. als Zwischenstufe zur Herstellung von Flammschutzmitteln für thermoplastische Polymere wie Polyester, Polystyrol oder Polyamid und für duroplastische Polymere wie ungesättigte Polyesterharze, Epoxidharze, Polyurethane oder Acrylate.
Geeignete Polyester leiten sich von Dicarbonsäuren und deren Ester und Diolen und/oder von Hydroxycarbonsäuren oder den entsprechenden Lactonen ab. Besonders bevorzugt wird Terephthalsäure und Ethylenglykol, Propan-1 ,3-diol und Butan-1 ,3-diol eingesetzt.
Geeignete Polyester sind u.a. Polyethylenterephthalat, Polybutylenterephthalat (Celanex® 2500, Celanex® 2002, Fa Celanese; Ultradur®, Fa. BASF), Poly-1 ,4- dimethylolcyclohexanterephthalat, Polyhydroxybenzoate, sowie Block- Polyetherester, die sich von Polyethem mit Hydroxylendgruppen ableiten; ferner mit Polycarbonaten oder MBS modifizierte Polyester. Synthetische lineare Polyester mit permanentem Flammschutz setzen sich aus Dicarbonsäure-Komponenten, Diol-Komponenten der erfindungsgemäßen mono- carboxylfunktionalisierten Dialkylphosphinsäuren und -ester oder aus der nach dem erfindungsgemäßen Verfahren hergestellten mono-carboxylfunktionalisierten Dialkylphosphinsäuren und -ester als Phosphor-enthaltende Kettenglieder zusammen. Die Phosphor enthaltenden Kettenglieder machen 2-20 Gew.-% der Dicarbonsäure-Komponente des Polyesters aus. Bevorzugt beträgt der resultierende Phosphorgehalt im Polyester 0,1-5 Gew.-%, besonders bevorzugt 0,5-3 Gew.-%.
Die folgenden Schritte können mit oder unter Zugabe der erfindungsgemäß hergestellten Verbindungen ausgeführt werden.
Bevorzugt wird zur Herstellung der Formmasse ausgehend von den freien Dicarbonsäure und Diolen zunächst direkt verestert und dann polykondensiert.
Bevorzugt wird ausgehend von Dicarbonsäureestern, insbesondere Dimethylestern, zunächst umgeestert und dann unter Verwendung der hierfür üblichen Katalysatoren polykondensiert.
Bevorzugt können bei der Polyesterherstellung neben den gängigen Katalysatoren auch übliche Additive (Vernetzungsmittel, Mattierungs- und Stabilisierungsmittel, Nukleierungsmittel, Färb- und Füllstoffe etc.) zugesetzt werden.
Bevorzugt findet die Veresterung und/oder Umesterung bei der
Polyesterherstellung bei Temperaturen von 100 - 300 0C statt, besonders bevorzugt bei 150 - 250 0C.
Bevorzugt findet die Polykondensation bei der Polyesterherstellung bei Drücken zwischen 0,1 bis 1,5 mbar und Temperaturen von 150 - 450 0C statt, besonders bevorzugt bei 200 - 300 0C. Die erfindungsgemäß hergestellten flammgeschützten Polyester-Formmassen werden bevorzugt in Polyester-Formkörpern eingesetzt.
Bevorzugte Polyester-Formkörper sind Fäden, Fasern, Folien und Formkörper, die als Dicarbonsäure-Komponente hauptsächlich Terephthalsäure und als Diolkomponente hauptsächlich Ethylenglykol enthalten.
Bevorzugt beträgt der resultierende Phosphorgehalt in aus flammgeschützten Polyester hergestellten Fäden und Fasern 0,1 - 18, bevorzugt 0,5 - 15 und bei Folien 0,2 - 15, bevorzugt 0,9 - 12 Gew.-%.
Geeignete Polystyrole sind Polystyrol, Poly-(p-methylstyrol) und/oder Poly-(alpha- methylstyrol).
Bevorzugt handelt es sich bei den geeigneten Polystyrolen um Copolymere von Styrol oder alpha-Methylstyrol mit Dienen oder Acrylderivaten, wie z. B. Styrol- Butadien, Styrol-Acrylnitril, Styrol-Alkylmethacrylat, Styrol-Butadien-Alkylacrylat und -methacrylat, Styrol-Maleinsäureanhydrid, Styrol-Acrylnitril-Methylacrylat; Mischungen von hoher Schlagzähigkeit aus Styrol-Copolymeren und einem anderen Polymer, wie z. B. einem Polyacrylat, einem Dien-Polymeren oder einem Ethylen-Propylen-Dien-Terpolymeren; sowie Block-Copolymere des Styrols, wie z. B. Styrol-Butadien-Styrol, Styrol-Isopren-Styrol, Styrol-Ethylen/Butylen-Styrol oder Styrol-Ethylen/Propylen-Styrol.
Bevorzugt handelt es sich bei den geeeigneten Polystyrolen auch um Pfropfcopolymere von Styrol oder alpha-Methylstyrol, wie z. B. Styrol auf Polybutadien, Styrol auf Polybutadien-Styrol- oder Polybutadien-Acrylnitril- Copolymere, Styrol und Acrylnitril (bzw. Methacrylnitril) auf Polybutadien; Styrol, Acrylnitril und Methylmethacrylat auf Polybutadien; Styrol und Maleinsäureanhydrid auf Polybutadien; Styrol, Acrylnitril und Maleinsäureanhydrid oder Maleinsäureimid auf Polybutadien; Styrol und Maleinsäureimid auf Polybutadien, Styrol und Alkylacrylate bzw. Alkylmethacrylate auf Polybutadien, Styrol und Acrylnitril auf Ethylen-Propylen-Dien-Terpolymeren, Styrol und Acrylnitril auf Polyalkylacrylaten oder Polyalkylmethacrylaten, Styrol und Acrylnitril auf Acrylat-Butadien-Copolymeren, sowie deren Mischungen, wie sie z. B. als so genannte ABS-, MBS-, ASA- oder AES-Polymere bekannt sind.
Bevorzugt handelt es sich bei den Polymeren um Polyamide und Copolyamide, die sich von Diaminen und Dicarbonsäuren und/oder von Aminocarbonsäuren oder den entsprechenden Lactamen ableiten, wie Polyamid 2,12, Polyamid 4, Polyamid 4,6, Polyamid 6, Polyamid 6,6, Polyamid 6,9, Polyamid 6,10, Polyamid 6,12, Polyamid 6,66, Polyamid 7,7, Polyamid 8,8, Polyamid 9,9, Polyamid 10,9, Polyamid 10,10, Polyamid 11 , Polyamid 12, usw. Solche Polyamide sind z. B unter den Handelsnamen Nylon®, Fa. DuPont, Ultramid®, Fa. BASF, Akulon® K122, Fa. DSM, Zytel® 7301 , Fa. DuPont; Durethan® B 29, Fa. Bayer und Grillamid®, Fa. Ems Chemie bekannt.
Geeignet sind auch aromatische Polyamide ausgehend von m-Xylol, Diamin und Adipinsäure; Polyamide, hergestellt aus Hexamethylendiamin und Iso- und/oder Terephthalsäure und gegebenenfalls einem Elastomer als Modifikator, z. B. PoIy- 2,4,4-trimethylhexamethylenterephthalamid oder Poly-m-phenylenisophthalamid, Blockcopolymere der vorstehend genannten Polyamide mit Polyolefinen, Olefin- Copolymeren, lonomeren oder chemisch gebundenen oder gepfropften Elastomeren, oder mit Polyethern, wie z. B. mit Polyethylenglykol, Polypropylenglykol oder Polytetramethylenglykol. Ferner mit EPDM oder ABS modifizierte Polyamide oder Copolyamide; sowie während der Verarbeitung kondensierte Polyamide ("RIM-Polyamidsysteme").
Die mono-carboxyfunktionalisierte Dialkylphosphinsäure/-ester/-salze, hergestellt nach einem oder mehreren der Ansprüche 1 bis 12 werden bevorzugt in Formmassen angewendet, die weiter zur Erzeugung von Polymer-Formkörpern eingesetzt werden.
Besonders bevorzugt enthält die flammgeschützte Formmasse 5 bis 30 Gew.-% mono-carboxyfunktionalisierte Dialkylphosphinsäuren, -salze oder -ester, die nach einem oder mehreren der Ansprüche 1 bis 12 hergestellt wurden, 5 bis 90 Gew.-% Polymer oder Mischungen derselben, 5 bis 40 Gew.-% Additive und 5 bis 40 Gew.-% Füllstoff, wobei die Summe der Komponenten immer 100 Gew.-% beträgt.
Die Erfindung betrifft auch Flammschutzmittel, die die mono- carboxyfunktionalisierte Dialkylphosphinsäuren, -salze oder -ester, die nach einem oder mehreren der Ansprüche 1 bis 12 hergestellt wurden enthalten.
Außerdem betrifft die Erfindung Polymer-Formmassen sowie Polymer-Formkörper, -Filme, -Fäden und -Fasern, enthaltend die erfindungsgemäß hergestellten mono- carboxyfunktionalisierten Dialkylphosphinsäuresalze (III) der Metalle Mg, Ca, AI, Zn, Ti, Sn1 Zr, Ce oder Fe.
Die Erfindung wird durch die nachstenden Beispiele erläutert.
Herstellung, Verarbeitung und Prüfung von flammgeschützten Polymerformmassen und flammgeschützten Polymerformkörpern
Die Flammschutzkomponenten werden mit dem Polymergranulat und evtl. Additiven vermischt und auf einem Doppelschnecken-Extruder (Typ Leistritz LSM® 30/34) bei Temperaturen von 230 bis 260 0C (PBT-GV) bzw. von 260 bis 280 0C (PA 66-GV) eingearbeitet. Der homogenisierte Polymerstrang wurde abgezogen, im Wasserbad gekühlt und anschließend granuliert.
Nach ausreichender Trocknung wurden die Formmassen auf einer
Spritzgießmaschine (Typ Aarburg Allrounder) bei Massetemperaturen von 240 bis 270 0C (PBT-GV) bzw. von 260 bis 290 0C (PA 66-GV) zu Prüfkörpern verarbeitet. Die Prüfkörper werden anhand des UL 94-Tests (Underwriter Laboratories) auf Flammwidrigkeit (Flammschutz) geprüft und klassifiziert.
An Prüfkörpern aus jeder Mischung wurden die Brandklasse UL 94 (Underwriter Laboratories) an Probekörpern der Dicke 1 ,5 mm bestimmt. Nach UL 94 ergeben sich folgende Brandklassen:
V-O: kein Nachbrennen länger als 10 sec, Summe der Nachbrennzeiten bei 10 Beflammungen nicht größer als 50 sec, kein brennendes Abtropfen, kein vollständiges Abbrennen der Probe, kein Nachglühen der Proben länger als 30 sec nach Beflammungsende
V-1 : kein Nachbrennen länger als 30 sec nach Beflammungsende, Summe der Nachbrennzeiten bei 10 Beflammungen nicht größer als 250 sec, kein Nachglühen der Proben länger als 60 sec nach Beflammungsende, übrige Kriterien wie bei V-O V-2: Zündung der Watte durch brennendes Abtropfen, übrige Kriterien wie bei V-1 Nicht klassifizierbar (nkl): erfüllt nicht die Brandklasse V-2.
Bei einigen untersuchten Proben wurde außerdem der LOI-Wert gemessen. Der
LOI-Wert (Limiting Oxygen Index) wird nach ISO 4589 bestimmt. Nach ISO 4589 entspricht der LOI der geringsten Sauerstoffkonzentration in Volumenprozent, die in einer Mischung von Sauerstoff und Stickstoff gerade noch die Verbrennung des
Kunststoffs unterhält. Je höher der LOI-Wert, desto schwerer entflammbar ist das geprüfte Material.
LOI 23 brennbar
LOI 24-28 bedingt brennbar LOI 29-35 flammwidrig
LOI >36 besonders flammwidrig
Eingesetzte Chemikalien und Abkürzungen VE-Wasser voll-entsalztes Wasser AIBN Azo-bis-(isobutyronitril), (Fa. WAKO Chemicals GmbH)
WakoV65 2>2l-Azobis(2,4-dimethyl-valeronitril),
(Fa. WAKO Chemicals GmbH) Deloxan® THP Il Metallfänger (Fa. Evonik Industries AG)
Beispiel 1
Bei Raumtemperatur werden in einem Dreihalskolben mit Rührer und Intensivkühler 188 g Wasser vorgelegt und unter Rühren und Durchleiten von Stickstoff entgast. Dann werden unter Stickstoff 0,2 mg Palladium(ll)sulfat und 2,3 mg Tris(3-sulfo-phenyl)-phosphin Trinatriumsalz hinzugegeben und gerührt, dann 66 g Phosphin-säure in 66 g Wasser zugegeben. Die Reaktionslösung wird in einen 2 I-Büchi-Reaktor überführt und unter Rühren und unter Druck mit Ethylen beschickt und das Reaktionsgemisch auf 80 0C geheizt. Nach einer Ethylenaufnahme von 28 g wird abgekühlt und freies Ethylen abgelassen.
Das Reaktionsgemisch wird am Rotationsverdampfer vom Lösungsmittel befreit. Der Rückstand wird mit 100 g VE-Wasser versetzt und bei Raumtemperatur unter Stickstoffatmosphäre gerührt, dann filtriert und das Filtrat mit Toluol extrahiert, danach wird am Rotationsverdampfer vom Lösungsmittel befreit und die erhaltene Ethylphosphonigsäure (92 g, 98 % der Theorie) aufgefangen.
Beispiel 2
Wie in Beispiel 1 werden 99 g Phosphinsäure, 396 g Butanol, 42 g Ethylen, 6,9 mg
Tris(dibenzylidenaceton)dipalladium, 9,5 mg 4,5-Bis(diphenylphosphino)-9,9- dimethylxanthen umgesetzt, dann zur Reinigung über eine mit Deloxan® THP Il beschickte Säule gegeben und danach nochmal n-Butanol zugegeben. Bei einer Reaktionstemperatur von 80 - 110 0C wird das gebildete Wasser durch Azeotropdestillation entfernt. Das Produkt wird durch Destillation bei vermindertem Druck gereinigt. Ausbeute: 189 g (84 % der Theorie) Ethylphosphonigsäurebutylester.
Beispiel 3
Wie in Beispiel 1 werden 198 g Phosphinsäure, 198 g Wasser, 84 g Ethylen,
6,1 mg Palladium(ll)sulfat, 25,8 mg 9,9-Dimethyl-4,5-bis(diphenylphosphino)-2,7- sulfonato-xanthen Dinatriumsalz umgesetzt, dann zur Reinigung über eine mit
Deloxan® THP Il beschickte Säule gegeben und danach n-Butanol zugegeben. Bei einer Reaktionstemperatur von 80 - 110 0C wird das gebildete Wasser durch Azeotropdestillation entfernt. Das Produkt wird durch Destillation bei vermindertem Druck gereinigt. Man erhält so 374 g (83 % der Theorie) Ethylphosphonigsäurebutylester. Beispiel 4
In einem 500 ml-Fünfhalskolben mit Gaseinleitungsrohr, Thermometer, Intensivrührer und Rückflusskühler mit Gasverbrennung werden 94 g (1 mol) Ethylphosphonigsäure (hergestellt wie in Beispiel 1 ) vorgelegt. Bei Raumtemperatur wird Ethylenoxid einge-leitet. Unter Kühlung wird eine Reaktionstemperatur von 70 0C eingestellt und noch eine Stunde bei 80 0C nachreagiert. Die Ethylenoxidaufnahme beträgt 65,7 g. Die Säurezahl des Produktes ist kleiner 1 mg KOH/g. Es werden 129 g (94 % der Theorie) (Ethylphos-phonigsäure-2-hydroxyethylester) als farbloses, wasserklares Produkt erhalten.
Beispiel 5
Bei Raumtemperatur werden in einem Dreihalskolben mit Rührer und
Intensivkühler 400 g THF vorgelegt und unter Rühren und Durchleiten von Stickstoff entgast. Dann werden unter Stickstoff 1 ,35 g (6 mmol) Palladiumacetat und 4,72 g (18 mmol) Triphenylphosphin hinzugegeben und gerührt, dann 30 g (0.2 mol) Ethylphosphonig-säurebutylester (hergestellt wie in Beispiel 2) und 1 ,96 g (9 mmol) Diphenylphosphin-säure zugegeben und das Reaktionsgemisch auf 80 0C geheizt und Acetylen mit einem Volumenstrom von 5 l/h durch die Reaktionslösung geleitet. Nach einer Reaktionszeit von 5 Stunden wird das Acetylen mit Stickstoff aus der Apparatur getrieben. Zur Reinigung wird die Reaktionslösung über eine mit Deloxan® THP Il beschickte Säule gegeben und und das THF im Vakuum entfernt. Das Produkt wird durch Destillation bei vermindertem Druck gereinigt. Es werden 32,7 g (93 % der Theorie) Ethylvinylphosphin-säurebutylester als farbloses Öl erhalten.
Beispiel 6
Bei Raumtemperatur werden in einem Dreihalskolben mit Rührer und Intensivkühler 400 g Essigsäure vorgelegt und unter Rühren und Durchleiten von Stickstoff entgast. Dann werden unter Stickstoff 1 ,35 g (6 mmol) Palladiumacetat und 3,47 g (6 mmol) Xantphos hinzugegeben und gerührt, dann 19 g (0,2 mol) Ethylphosphonigsäure (hergestellt wie in Beispiel 1 ) zugegeben und das Reaktionsgemisch auf 80 0C geheizt und Acetylen mit einem Volumenstrom von 5 l/h durch die Reaktionslösung geleitet. Nach einer Reaktionszeit von 5 Stunden wird das Acetylen mit Stickstoff aus der Apparatur getrieben. Zur Reinigung wird die Reaktionslösung über eine mit Deloxan® THP Il beschickte Säule gegeben und die Essigsäure im Vakuum entfernt. Das Produkt (Ethylvinylphosphinsäure) wird chromatographisch gereinigt. Es werden 20,9 g (87 % der Theorie) Ethylvinylphosphinsäure als farbloses Öl erhalten.
Beispiel 7
Bei Raumtemperatur werden in einem Dreihalskolben mit Rührer und Intensivkühler 400 g Toluol vorgelegt und unter Rühren und Durchleiten von Stickstoff entgast. Unter Stickstoff werden 5,55 g (6 mmol) RhCI(PPh3)3 hinzugegeben und gerührt, dann 30 g (0,2 mol) Ethylphosphonigsäurebutylester (hergestellt wie in Beispiel 3) und 20,4 g (0,2 mol) Phenyl-acetylen zugegeben und das Reaktionsgemisch auf 80 0C geheizt. Nach einer Reaktionszeit von 5 Stunden wird die Reaktionslösung über eine mit Deloxan® THP Il beschickte Säule gegeben und das Toluol im Vakuum entfernt. Es werden 37,6 g (96 % der Theorie) Ethyl-(1-phenyl-vinyl)phosphinsäurebutylester als farbloses Öl erhalten.
Beispiel 8 Bei Raumtemperatur werden in einem Dreihalskolben mit Rührer und
Intensivkühler 400 g THF vorgelegt und unter Rühren und Durchleiten von Stickstoff entgast. Dann werden unter Stickstoff 2,75 g (10 mmol) Bis(cyclooctadien)nickel(0) und 8 g (40 mmol) Methyldiphenylphoshin hinzugegeben und gerührt, dann 30 g (0,2 mol) Ethylphos-phonigsäurebutylester (hergestellt wie in Beispiel 2) zugegeben und dabei Raumtempe-ratur Acetylen mit einem Volumenstrom von 5 l/h durch die Reaktionslösung geleitet. Nach einer Reaktionszeit von 5 Stunden wird das Acetylen mit Stickstoff aus der Apparatur getrieben. Zur Reinigung wird die Reaktionslösung über eine mit Deloxan® THP Il beschickte Säule gegeben und das Butanol im Vakuum entfernt. Es werden 33,4 g (95 % der Theorie) Ethylvinylphosphinsäurebutylester als farbloses Öl erhalten. Beispiel 9
360 g (3 mol) der erhaltenen Ethylvinylphosphinsäure (hergestellt wie in Beispiel 6) werden bei 85 0C in 400 ml Toluol gelöst und mit 888 g (12 mol) Butanol versetzt. Bei einer Reaktionstemperatur von ca. 100 0C wird das gebildete Wasser durch Azeotropdestillation entfernt. Das Produkt
Ethylvinylphosphinsäurebutylester wird durch Destillation bei vermindertem Druck gereinigt.
Beispiel 10 360 g (3.0 mol) Ethylvinylphosphinsäure (hergestellt wie in Beispiel 6) werden bei 80 0C in 400 ml Toluol gelöst und mit 315 g (3,5 mol) 1 ,4-Butandiol versetzt und in einer Destillationsapparatur mit Wasserabscheider bei ca. 100 0C während 4 h verestert. Nach beendeter Veresterung wird das Toluol im Vakuum abgetrennt. Es werden 518 g (90 % der Theorie) Ethylvinylphosphinsäure-4-hydroxybutylester als farbloses Öl erhalten.
Beispiel 11
360 g (3,0 mol) Ethylvinylphosphinsäure (hergestellt wie in Beispiel 6) werden bei 85 0C in 400 ml Toluol gelöst und mit 248 g (4 mol) Ethylenglykol versetzt und in einer Destillationsapparatur mit Wasserabscheider bei ca. 100 0C während 4 h verestert. Nach beendeter Veresterung wird das Toluol und überschüssiges Ethylglykol im Vakuum abgetrennt. Es werden 462 g (94% der Theorie) Ethylvinylphosphinsäure-2-hydroxyethylester als farbloses Öl erhalten.
Beispiel 12
In einem Glasautoklav wurden 2,75 g (10 mmol) Bis(cyclooctadien)nickel(0) und 8 g (40 mmol) Methyldiphenylphoshin, 12,0 g (0,1 mol) Ethylvinylphosphinsäure (hergestellt wie in Beispiel 6), 9,0 g (0,15 mol) Essigsäure, 4,5 g (0,25 mol) Wasser und 100 ml Dichlormethan bei 100 0C mit Kohlemnonoxid bei 20 bar umgesetzt. Nach einer Reaktionszeit von 5 Stunden wurde der Autoklav entspannt. Zur Reinigung wird die Reaktionslösung über eine mit Deloxan® THP Il beschickte Säule gegeben und das Butanol im Vakuum entfernt und das Produkt chromatographisch gereinigt. Es werden 13,4 g (83 % der Theorie) 3-(Ethylhydroxyphosphinyl)-propionsäure als farbloses Öl erhalten.
Beispiel 13 In einem Glasautoklav wurden 1 ,12 g (5 mmol) Palladiumacetat, 3,95 g (10 mmol) 1 ,2-bis[di(tertbutyl)phosphinomethyl]benzol, 17,6 g (0,1 mol) Ethylvinylphosphinsäurebutylester (hergestellt wie in Beispiel 8) und 100 ml Butanol bei 100 0C mit Kohlenmonoxid bei 20 bar umgesetzt. Nach einer Reaktionszeit von 4 Stunden wurde der Autoklav entspannt. Zur Reinigung wird die Reaktionslösung über eine mit Deloxan® THP Il beschickte Säule gegeben und das Butanol im Vakuum entfernt und das Produkt chromatographisch gereinigt. Es werden 24,7 g (89 % der Theorie) 3-(Ethylbutoxy-phosphinyl)- propionsäurebutylester als farbloses Öl erhalten.
Beispiel 14
In einem Glasautoklav wurden 26 mg (0,1 mmol)
Rhodiumbiscarbonylacetylacetonat, 105 mg (1 ,0 mmol) Triphenylphosphin, 25,2 g (0,1 mol) Ethyl-(1-phenyl-vinyl)phosphin-säurebutylester (hergestellt wie in Beispiel 7) und 100 ml Texanol bei 100 0C mit einem Synthesegasgemisch CO/H2 (1 :1) bei 10 bar umgesetzt. Nach einer Reaktionszeit von 4 Stunden wurde der Autuoklav entspannt, das Lösungsmittel im Vakuum entfernt und das Produkt chromatographisch gereinigt. Es werden 25,4 g (91 % der Theorie) Ethyl-(1- phenyl-2-formylethyl)-phosphinsäurebutylester als farbloses Öl erhalten.
Beispiel 15
28,2 g (0,1 mol) Ethyl-(1-phenyl-2-formylethyl)-phosphinsäurebutylester (hergestellt wie in Beispiel 14) in 500 ml Aceton wurden mit 0,11 mol Jones- Reagenz (12,7 g Chrom-trioxid in 36,7 ml Wasser und 11 ,0 ml konz. Schwefelsäure) bei 0 0C tropfenweise versetzt. Die Reaktionsmischung wurde noch 3 1/2 Stunden bei Eiskύhlung und 1 Stunde bei Raumtemperatur gerührt. Nach Zugabe von 12 ml Isopropanol wird auf Eis/Wasser gegeben. Anschließend werden leichtflüchtige Bestandteile im Vakuum abdestilliert. Der Rückstand wurde in Tetrahydrofuran aufgenommen und extrahiert. Unlöslichen Salze wurden abfiltriert. Das Lösungsmittel des Filtrats wurde im Vakuum abgetrennt und der Rückstand aus Aceton umkristallisiert. Es wurden 23,2 g (78 % der Theorie) 3-(Ethyl-butoxyphosphinyl)-1-phenyl-propionsäure als farbloser Feststoff erhalten
Beispiel 16
20,6 g (0,1 mol) Ethyl-(2-formylethyl)-phosphinsäurebutylester (hergestellt analog Beispiel 14) werden in 150 ml Wasser gelöst und mit 2N NaOH-Lösung auf pH 9 gebracht. Anschließend werden 0,45 g Aktivkohle mit 5 % Pt und 1 % Bi hinzugefügt, die Suspension auf 70 °C erwärmt und Luft (10 l/h) durch die Suspension geleitet.
Hierbei wird pH der Suspension durch Zugabe von 2N NaOH-Lösung auf pH = 9 gehalten. Nach Beendigung der Reaktion wird die Reaktionslösung von dem Katalysator filtriert, gewaschen und das Wasser im Vakuum abdestilliert. Es werden 19,5 g (93 % der Theorie) 3-(Ethylhydroxyphosphinyl)-propionsäure Natriumsalz als farbloser Feststoff erhalten.
Beispiel 17
20,6 g (0,1 mol) Ethyl-(2-formylethyl)-phosphinsäurebutylester (hergestellt analog
Beispiel 14) werden in 150 ml Wasser gelöst und mit 2N NaOH-Lösung auf pH 9 gebracht. Anschließend werden 0,25 g Aktivkohle mit 5 % Pd und 1 % Bi hinzugefügt, die Suspension auf 70 0C erwärmt und 30 %ige
Wasserstoffperoxidlösung mit einer Flussrate von 1 Moläquivalent pro Stunde in die Suspension geleitet.
Hierbei wird pH der Suspension durch Zugabe von 2N NaOH-Lösung auf pH = 9 gehalten. Nach Beendigung der Reaktion wird die Reaktionslösung von dem
Katalysator filtriert, gewaschen und das Wasser im Vakuum abdestilliert. Es werden 19,3 g (92 % der Theorie) 3-(Ethylhydroxyphosphinyl)-propionsäure
Natriumsalz als farbloser Feststoff erhalten.
Beispiel 18
Eine wässrige Lösung von 420 g (2 mol) 3-(Ethylhydroxyphosphinyl)-propionsäure Natriumsalz (hergestellt wie in Beispiel 16) wird mit ca. 196 g konzentrierter Schwefelsäure sauer gestellt und das Wasser im Vakuum abdestilliert. Der Rückstand wurde in Tetrahydrofuran aufgenommen und extrahiert. Die unlöslichen Salze wurden abfiltriert. Das Lösungsmittel des Filtrats wurde im Vakuum abgetrennt und der Rückstand aus Aceton umkristallisiert. Es wurden 325 g (98 % der Theorie) 3-(Ethylhydroxyphosphinyl)-propionsäure als farbloser Feststoff erhalten
Beispiel 19
596 g (2 mol) 3-(Ethyl-butoxyphosphinyl)-1-phenyl-propionsäure (hergestellt wie in
Beispiel 15) werden in einem 1 I Fünfhalskolben mit Thermometer, Rückflusskühler, Intensivrührer und Tropftrichter vorgelegt. Bei 160 0C wird während 4 h 500 ml Wasser eindosiert und eine Butanol-Wasser Mischung abdestilliert. Der feste Rückstand wird aus Aceton umkristallisiert. Es werden 450 g (93 % der Theorie) 3-(Ethylhydroxyphos-phinyl)-1-phenyl-propionsäure als farbloser Feststoff erhalten.
Beispiel 20:
498 g (3 mol) 3-(Ethylhydroxyphosphinyl)-propionsäure (hergestellt wie in Beispiel 18) werden bei 85 0C in 400 ml Toluol gelöst und mit 888 g (12 mol) Butanol versetzt. Bei einer Reaktionstemperatur von ca. 100 0C wird das gebildete Wasser durch Azeotropdestillation entfernt. Das Produkt 3-(Ethylbutoxyphosphinyl)- propionsäurebutylester wird durch Destillation bei vermindertem Druck gereinigt.
Beispiel 21
498 g (3,0 mol) 3-(Ethylhydroxyphosphinyl)-propionsäure (hergestellt wie in Beispiel 18) werden bei 80 0C in 400 ml Toluol gelöst und mit 594 g (6,6 mol) 1 ,4-Butandiol versetzt und in einer Destillationsapparatur mit Wasserabscheider bei ca. 100 0C während 4 h verestert. Nach beendeter Veresterung wird das Toluol im Vakuum abgetrennt. Es werden 856 g (92 % der Theorie) 3-(Ethylhydroxyphosphinyl)-propionsäure-(4-hydroxybutyl)-ester als farbloses Öl erhalten. Beispiel 22
Zu 276 g (2 mol) 3-(Ethylbutoxyphosphinyl)-propionsäurebutylester (hergestellt wie in Beispiel 20) werden 155 g (2,5 mol) Ethylenglycol und 0,4 g Kaliumtitanyloxalat hinzugegeben und 2 h bei 200 0C gerührt. Durch langsames Evakuieren werden leicht flüchtige Anteile abdestilliert. Es werden 244 g (98 % der Theorie) 3-(Ethyl-2-hydroxy-ethoxyphosphinyl)-propionsäure-2-hydroxyethylester erhalten.
Beispiel 23 498 g (3,0 mol) der erhaltenen 3-(Ethylhydroxyphosphinyl)-propionsäure
(hergestellt wie in Beispiel 18) werden bei 85 °C in 400 ml Toluol gelöst und mit 409 g (6,6 mol) Ethylenglykol versetzt und in einer Destillationsapparatur mit Wasserabscheider bei ca. 100 0C während 4 h verestert. Nach beendeter Veresterung wird das Toluol und überschüssiges Ethylglykol im Vakuum abgetrennt. Es werden 693 g (91 % der Theorie) 3-(Ethyl-2-
Hydroxyethylphosphinyl)-propionsäure-2-hydroxyethylester als farbloses Öl erhalten
Beispiel 24 996 g (6 mol) 3-(Ethylhydroxyphosphinyl)-propionsäure (hergestellt wie in Beispiel 18) werden in 860 g Wasser gelöst und in einem 5I Fünfhalskolben mit Thermometer, Rückflusskühler, Intensivrührer und Tropftrichter vorgelegt und mit ca. 960 g (12 mol) 50 %ige Natriumhydroxid-Lösung neutralisiert. Bei 85 0C wird eine Mischung von 2583 g einer 46 %igen wässrigen Lösung von Al2(SO4)3-14 H2O zugefügt. Anschließend wird der erhaltene Feststoff abfiltriert, mit heißem Wasser gewaschen und bei 130 0C im Vakuum getrocknet. Ausbeute: 1026 g (94 % der Theorie) 3-(Ethylhydroxy-phosphinyl)-propionsäure Aluminium(lll)salz als farbloses Salz.
Beispiel 25
222 g (1 mol) 3-(Ethylbutoxyphosphinyl)-propionsäure (hergestellt analog Beispiel 15) und 85 g Titantetrabutylat werden in 500 ml Toluol 40 Stunden unter Rückfluss erhitzt. Dabei entstehendes Butanol wird mit Anteilen an Toluol von Zeit zu Zeit abdestilliert. Die entstandene Lösung wird anschließend vom Lösungsmittel befreit. Man erhält 227 g 3-(Ethyl-butoxyphosphinyl)-propionsäure Titansalz.
Beispiel 26 Es werden zu 25,4 g 3-(Ethyl-2-hydroxyethoxyphosphinyl)-propionsäure-2- hydroxyethylester (hergestellt wie in Beispiel 23) 290 g Terephthalsäure, 188 g Ethylenglycol, 0,34 g Zinkacetat gegeben und 2 h auf 200 0C erhitzt. Dann werden 0,29 g Trinatriumphosphatanhydrat und 0,14 g Antimon(lll)oxid hinzugegeben, auf 280 0C erhitzt und danach evakuiert. Aus der erhaltenen Schmelze (357 g, Phosphorgehalt 0,9 %) werden Probekörper der Dicke 1 ,6 mm für die Messung des Sauerstoffindexes (LOI) nach ISO 4589- 2 als auch für den Brandtest UL 94 (Underwriter Laboratories) gespritzt. Die so hergestellten Probekörper ergaben einen LOI von 42 % O2 und erfüllten nach UL 94 die Brandklasse V-O. Entsprechende Probekörper ohne 3-(Ethyl-2- hydroxyethoxy-phosphinyl)-propionsäure-2-hydroxyethylester ergaben einen LOI von nur 31 % O2 und erfüllten nach UL 94 nur die Brandklasse V-2. Der 3-(Ethyl-2- hydroxyethoxyphosphinyl)-propionsäure-2-hydroxyethylester enthaltende Polyester-Formkörper zeigt damit eindeutig flammschützende Eigenschaften.
Beispiel 27
Zu 14,0 g 3-(Ethylhydroxyphosphinyl)-propionsäure (hergestellt wie in Beispiel 18) werden 12,9 g 1 ,3-Propylenglycol zugegeben und bei 160 0C das bei der Veresterung gebildete Wasser abgezogen. Dann werden 378 g Dimethylterephthalat, 152 g 1 ,3-Propandiol, 0,22 g Tetrabutylitanat und 0,05 g Lithiumacetat zugegeben und die Mischung zunächst 2 h unter Rühren auf 130 bis 180 0C erhitzt, danach bei Unterdruck auf 270 0C. Das Polymer (438 g) enthält 0,6 % Phosphor, der LOI beträgt 34.
Beispiel 28 Zu 14,0 g 3-(Ethylhydroxyphosphinyl)-propionsäure (hergestellt wie in Beispiel 18) werden 367 g Dimethylterephthalat, 170 g 1 ,4-Butandiol, 0,22 g Tetrabutylitanat und 0,05 g Lithiumacetat zugegeben und die Mischung zunächst 2 h lang unter Rühren auf 130 bis 180 0C erhitzt, danach bei Unterdruck auf 270 0C. Das Polymer (427 g) enthält 0,6 % Phosphor, der LOI beträgt 34, der von unbehandeltem Polybutylenterephthalat 23.
Beispiel 29 In einem 250 ml Fünfhalskolben mit Rückflusskühler, Rührer, Thermometer und Stickstoffeinleitung werden 100 g eines Bisphenol-A-bisglycidethers mit einem Epoxidwert von 0,55 mol/100 g (Beckopox EP 140, Fa. Solutia) und 21 ,6 g (0,13 mol) 3-(Ethylhydroxyphosphinyl)-propionsäure (hergestellt wie in Beispiel 18) unter Rühren auf maximal 150 0C erhitzt. Nach 30 min ergibt sich eine klare Schmelze. Nach einer weiteren Stunde Rühren bei 150 0C wird die Schmelze abgekühlt und gemörsert. Man erhält 118,5 g eines weißen Pulvers mit einem Phosphorgehalt von 3,3 Gew.-%.
Beispiel 30 In einem 2L-Kolben mit Rührer, Wasserabscheider, Thermometer,
Rückflusskühler und Stickstoffeinleitung werden 29,4 g Phthalsäureanhydrid, 19,6 g Maleinsäureanhydrid, 24,8 g Propylenglycol, 18,7 g 3-(Ethyl-2- hydroxyethylphosphinyl)-propionsäure-2-hydroxyethylester (hergestellt wie in Beispiel 23) 20 g Xylo! und 50 mg Hydrochinon unter Rühren und Durchleiten von Stickstoff auf 100 0C erhitzt. Bei Einsetzen der exothermen Reaktionwird die
Heizung entfernt. Nach Abklingen der Reaktion wird weiter bei ca. 190 0C gerührt. Nachdem 14 g Wasser abgeschieden sind, wird das XyIoI abdestilliert und die Polymerschmelze abgekühlt. Man erhält 91 ,5 g eines weißen Pulvers mit einem Phosphorgehalt von 2,3 Gew.-%.
Beispiel 31
Eine Mischung von 50 Gew.-% Polybutylenterephthalat, 20 Gew.-% 3-(Ethylhydroxy-phosphinyl)-propionsäure Aluminium(lll)salz (hergestellt wie in Beispiel 24) und 30 Gew.-% Glasfasern werden auf einem Doppelschnecken- Extruder (Typ Leistritz LSM 30/34) bei Temperaturen von 230 bis 260 0C zu einer Polymerformmasse compoundiert. Der homogenisierte Polymerstrang wurde abgezogen, im Wasserbad gekühlt und anschließend granuliert. Nach Trocknung werden die Formmassen auf einer Spritzgießmaschine (Typ Aarburg Allrounder) bei 240 bis 270 0C zu Polymerformkörper verarbeitet und eine UL-94 Klassifizierung von V-O bestimmt.
Beispiel 32
Eine Mischung von 53 Gew.-% Polyamid 6.6, 30 Gew.-% Glasfasern, 17 Gew.-% 3-3-(Ethyl-butoxyphosphinyl)-propionsäure Titansalz (hergestellt wie in Beispiel 25) werden auf einem Doppelschnecken-Extruder (Typ Leistritz LSM 30/34) zu Polymerformmassen compoundiert. Der homogenisierte Polymerstrang wurde abgezogen, im Wasserbad gekühlt und anschließend granuliert.
Nach Trocknung werden die Formmassen auf einer Spritzgießmaschine (Typ Aarburg Allrounder) bei 260 bis 290 0C zu Polymerformkörpern verarbeitet und eine UL-94 Klassifizierung von V-O erhalten.

Claims

Patentansprüche
1. Verfahren zur Herstellung von mono-carboxyfunktionalisierten Dialkylphosphin-säuren, -estern und -salzen, dadurch gekennzeichnet, dass man a) eine Phosphinsäurequelle (I)
O
Il H-P-H
OX
(I) mit Olefinen IV
Figure imgf000061_0001
in Gegenwart eines Katalysators A zu einer Alkylphosphonigsäure, deren Salz oder Ester (II)
Figure imgf000061_0002
umsetzt, b) die so entstandene Alkylphosphonigsäure, deren Salz oder Ester (II) mit acetylenischen Verbindungen der Formel (V) κ κ (V) in Gegenwart eines Katalysators B zu einem mono-funktionalisierten Dialkylphosphinsäurederivat (VI) umsetzt und
Figure imgf000061_0003
c) so entstandenes mono-funktionalisiertes Dialkylphosphinsäurederivat (VI) mit Kohlenmonoxid in Gegenwart eines Katalysators C und Wasser oder einem
Alkohol M-OH und/oder M'-OH zum mono-carboxyfunktionalisierten Dialkylphosphinsäure-derivat (lll)
Figure imgf000062_0001
umsetzt, wobei R-i, R2, R3, R4, R5, Rβ gleich oder verschieden sind und unabhängig voneinander H, CrCi8-Alkyl, C6-Ci8-Aryl, C6-C18-Aralkyl, C6-C18-Alkyl-Aryl, CN, CHO, OC(O)CH2CN, CH(OH)C2H5, CH2CH(OH)CH3, 9-Anthracen, 2-Pyrrolidon, (CH2)mOH, (CH2)mNH2l (CH2)mNCS, (CH2)mNC(S)NH2, (CH2)mSH, (CH2)mS-2- thiazolin, (CH2JmSiMe3, C(O)R7, (CH2)mC(O)R7, CH=CH-R7, CH=CH-C(O)R7 bedeuten und wobei R7 für Ci-C8-Alkyl oder C6-C-i8-Aryl steht und m eine ganze Zahl von O bis 10 bedeutet und X und Y gleich oder verschieden sind und unabhängig voneinander für H, Ci-C18-Alkyl, C6-Ci8-Aryl, C6-Ci8-Aralkyl, C6-Ci8- Alkyl-Aryl, (CH2)kOH, CH2-CHOH-CH2OH, (CH2)kO(CH2)kH, (CH2)k-CH(OH)- (CH2)kH, (CH2-CH2O)kH, (CH2-C[CH3]HO)kH, (CH2-C[CH3]HO)k(CH2-CH2O)kH, (CH2-CH2O)K(CH2-C[CH3]HO)H, (CH2-CH2O)k-alkyl, (CH2-C[CH3]HO)k-alkyl, (CH2- C[CH3]HO)k(CH2-CH2O)k-alkyl, (CH2-CH2O)k(CH2-C[CH3]HO)O-alkyl, (CH2)k- CH=CH(CH2)kH, (CH2)kNH2, (CH2)kN[(CH2)kH]2 stehen wobei k eine ganze Zahl von O bis 10 ist und/oder für Mg, Ca, AI, Sb, Sn, Ge, Ti, Fe, Zr, Zn, Ce, Bi1 Sr, Mn, Cu, Ni, Li, Na, K, H und/oder eine protonierte Stickstoffbase steht und es sich bei den Katalysatoren A, B, C und D um Übergangsmetalle und/oder Übergangsmetallver-bindungen und/oder Katalysatorsysteme handelt, die sich aus einem Übergangsmetall und/oder einer Übergangsmetallverbindung und mindestens einem Liganden zusammensetzen handelt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man das nach Schritt b) erhaltene mono-funktionalisiertes Dialkylphosphinsäurederivat (VI) in einem Schritt c) mit Kohlenmonoxid und Wasserstoff unter Ausschluß von Wasser oder einem Alkohol M-OH und/oder M'-OH in Gegenwart eines Katalysators C zum mono-funktionalisierten Dialkylphosphinsäurederivat (VII) und/oder (VIT)
Figure imgf000062_0002
(V||) (V||.j umgesetzt und das mono-funktionalisierten Dialkylphosphinsäurederivat (VII) und/oder (VIT) mit einem Oxidationsmittel oder mit einem Oxidationsmittel und Wasser oder in Gegenwart eines Katalysators D mit Sauerstoff und Wasser zum mono-carboxyfunktionalisierten Dialkylphosphinsäurederivat (III) umgesetzt.
3. Verfahren nach Anspruch 1 bis 2, dadurch gekennzeichnet, dass man die nach Schritt c) erhaltene mono-carboxyfunktionalisierten Dialkylphosphinsäure, deren Salz oder Ester (III) anschließend in einem Schritt d) mit Metallverbindungen von Mg, Ca, AI, Sb, Sn, Ge, Ti, Fe, Zr, Zn, Ce, Bi, Sr, Mn, Li, Na, K und/oder einer protonierte Stickstoffbase zu den entsprechenden mono- carboxyfunktionalisierten Dialkylphosphin-säuresalzen (III) dieser Metalle und/oder einer Stickstoffverbindung umsetzt.
4. Verfahren nach Anspruch 1 bis 2, dadurch gekennzeichnet, dass man die nach Schritt a) erhaltene Alkylphosphonigsäure, deren Salz oder Ester (II) und/oder die nach Schritt b) erhaltene mono-funktionalisierte Dialkylphosphinsäure, deren Salz oder Ester (VI) und/oder die nach Schritt c) erhaltene mono-funktionalisierte Dialkylphosphinsäure, deren Salz oder Ester (VII) und/oder (VIT) und/oder mono-carboxyfunktionalisierte Dialkylphosphinsäure, deren Salz oder Ester (IM) und/oder die jeweils resultierende Reaktionslösung davon mit einem Alkylenoxid oder einem Alkohol M-OH und/oder M'-OH verestert, und den jeweils entstandenen Alkylphosphonigsäureester (II), monofunktionalisierten Dialkylphosphinsäurester (VI) , monofunktionalisierten Dialkylphosphinsäurester (VII) und/oder (VIT) und/oder mono- carboxyfunktionalisierten Dialkylphosphinsäureester (III) den weiteren Reaktionsschritten b), c) oder d) unterwirft.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Gruppen Cβ-Ciβ-Aryl,
Figure imgf000063_0001
und Cβ-Ciβ-Alkyl- Aryl mit SO3X2, -C(O)CH3, OH, CH2OH, CH3SO3X2, PO3X2, NH2, NO2, OCH3, SH und/oder OC(O)CH3 substituiert sind.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Ri, R2, R3, R4, R5, RΘ gleich oder verschieden sind und, unabhängig voneinander H, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, tert. Butyl und/oder Phenyl bedeuten.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass X und Y gleich oder verschieden sind und jeweils H, Ca, Mg, Al1 Zn, Ti, Fe, Ce, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, tert. Butyl, Phenyl, Ethylenglykol, Propylglykol, Butylglykol, Pentylglykol, Hexylglykol, AIIyI und/oder Glycerin bedeuten.
8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es sich bei den Übergangsmetallen und/oder Übergangsmetallverbindungen um solche aus der ersten, siebten und achten Nebengruppe handelt.
9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass es sich bei den Übergangsmetallen und/oder Übergangsmetallverbindungen um Rhodium, Nickel, Palladium, Platin, Ruthenium, Cobalt und/oder Gold handelt.
10. Verfahren nach Anspruch 1 bis 9, dadurch gekennzeichnet, dass es sich bei den Oxidationsmitteln um Kaliumpermanganat, Braunstein, Chromtrioxid, Kaliumdichromat, Pyridindichromat, Pyridinchlorchromat, Collins-Reagenz, Jones- Reagenz, Corey-Gilman-Ganem-Reagenz, (Dess-Martin-)Periodinan, o-lodoxy- benzoesäure, Rutheniumtetroxid, Rutheniumdioxid, Tetra-n-propyl-perruthenat, Rutheniumtri-chlorid/Natriumperiodat, Rutheniumdioxid/Natriumperiodat, Chlor, Hypochlorit und Peroxoverbindungen handelt.
11. Verfahren nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass es sich bei den acetylenischen Verbindungen (V) um Acetylen, Methylacetylen, 1-Butin, 1 -Hexin, 2-Hexin, 1-Octin, 4-Octin, 1-Butin-4-ol, 2-Butin-1-ol, 3-Butin-1-ol, 5-Hexin-1-ol, 1-Octin-3-ol, 1-Pentin, Phenylacetylen, Trimethylsilyl-acetylen handelt.
12. Verfahren nach einem oder mehreren der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass es bei dem Alkohol der allgemeinen Formel M-OH um lineare oder verzweigte, gesättigte und ungesättigte, einwertige organische Alkohole mit einer Kohlenstoffkettenlänge von C1-Ci8 und es bei dem Alkohol der allgemeinen Formel M'-OH um lineare oder verzweigte, gesättigte und ungesättigte, mehrwertige organische Alkohole mi einer Kohlenstoffkettenlänge von CrC18 handelt.
13. Verwendung von mono-carboxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen hergestellt nach einem oder mehreren der Ansprüche 1 bis 12 als Zwischenprodukt für weitere Synthesen, als Binder, als Vernetzer bzw. Beschleuniger beim Aushärten von Epoxyharzen, Polyurethanen und ungesättigten Polyesterharzen, als Polymerstabilisatoren, als Pflanzenschutzmittel, als Therapeutikum oder Additiv in Therapeutika für Menschen und Tiere, als Sequestrierungsmittel, als Mineralöl-Additiv, als Korrosionsschutzmittel, in Wasch- und Reinigungsmittelanwendungen und in Elektronikanwendungen.
14. Verwendung von mono-carboxyfunktionalisierten Dialkylphosphinsäuren, -salzen und -estern, die nach einem oder mehreren der Ansprüche 1 bis 12 hergestellt wurden, als Flammschutzmittel, insbesondere Flammschutzmittel für Klarlacke und Intumeszenzbeschichtungen, Flammschutzmittel für Holz und andere cellulosehaltige Produkte, als reaktives und/oder nicht reaktives Flammschutzmittel für Polymere, zur Herstellung von flammgeschützten Polymerformmassen, zur Herstellung von flammgeschützten Polymerformkörpern und/oder zum flammhemmend Ausrüsten von Polyester und Cellulose-Rein- und Mischgeweben durch Imprägnierung.
15. Flammgeschützte thermoplastische oder duroplastische Polymerformmasse, enthaltend 0,5 bis 45 Gew.-% mono-carboxyfunktionalisierte Dialkylphosphinsäuren, -salze oder -ester, die nach einem oder mehreren der Ansprüche 1 bis 12 hergestellt wurden, 0,5 bis 95 Gew.-% thermoplastisches oder duroplastisches Polymer oder Mischungen derselben, 0 bis 55 Gew.-% Additive und 0 bis 55 Gew.-% Füllstoff bzw. Verstärkungsmaterialien, wobei die Summe der Komponenten 100 Gew.-% beträgt.
16. Flammgeschützte thermoplastische oder duroplastische Polymer- Formkörper, -Filme,- Fäden und Fasern, enthaltend 0,5 bis 45 Gew.-% mono- carboxyfunktionalisierte Dialkylphosphinsäuren, -salze oder -ester, die nach einem oder mehreren der Ansprüche 1 bis 12 hergestellt wurden, 0,5 bis 95 Gew.-% thermoplastisches oder duroplastisches Polymer oder Mischungen derselben, 0 bis 55 Gew.-% Additive und 0 bis 55 Gew.-% Füllstoff bzw. Verstärkungsmaterialien, wobei die Summe der Komponenten 100 Gew.-% beträgt.
PCT/EP2009/007127 2008-11-06 2009-10-06 Verfahren zur herstellung von dialkylphosphinsäuren, -estern und -salzen mittels vinylverbindungen und ihre verwendung WO2010051887A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011533570A JP2012507478A (ja) 2008-11-06 2009-10-06 ビニル化合物を用いたジアルキルホスフィン酸、−エステル及び−塩の製造方法及びそれらの使用
EP09778830A EP2352737A1 (de) 2008-11-06 2009-10-06 Verfahren zur herstellung von dialkylphosphinsäuren, -estern und -salzen mittels vinylverbindungen und ihre verwendung
US13/125,361 US20110237720A1 (en) 2008-11-06 2009-10-06 Method for Producing Dialkylphosphinic Acids and Esters and Salts Thereof by Means of Vinyl Compounds and Use Thereof
CN2009801401478A CN102177168A (zh) 2008-11-06 2009-10-06 利用乙烯基化合物制备二烷基次膦酸、二烷基次膦酸酯和二烷基次膦酸盐的方法,以及它们的用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008056227.0 2008-11-06
DE102008056227A DE102008056227A1 (de) 2008-11-06 2008-11-06 Verfahren zur Herstellung von Dialkylphosphinsäuren, -estern und -salzen mittels Vinylverbindungen und ihre Verwendung

Publications (2)

Publication Number Publication Date
WO2010051887A1 true WO2010051887A1 (de) 2010-05-14
WO2010051887A8 WO2010051887A8 (de) 2010-07-01

Family

ID=41343398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/007127 WO2010051887A1 (de) 2008-11-06 2009-10-06 Verfahren zur herstellung von dialkylphosphinsäuren, -estern und -salzen mittels vinylverbindungen und ihre verwendung

Country Status (6)

Country Link
US (1) US20110237720A1 (de)
EP (1) EP2352737A1 (de)
JP (1) JP2012507478A (de)
CN (1) CN102177168A (de)
DE (1) DE102008056227A1 (de)
WO (1) WO2010051887A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008055916A1 (de) * 2008-11-05 2010-05-06 Clariant International Limited Verfahren zur Herstellung von mono-hydroxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Allylalkoholen und ihre Verwendung
JP5619756B2 (ja) * 2008-11-05 2014-11-05 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド アルキルアルコール/アクロレインを使用したジアルキルホスフィン酸、−エステル及び−塩の製造方法及びそれらの使用
DE102008055914A1 (de) * 2008-11-05 2010-05-06 Clariant International Limited Verfahren zur Herstellung von mono-hydroxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Acroleinen und ihre Verwendung
DE102008056339A1 (de) * 2008-11-07 2010-05-12 Clariant International Limited Verfahren zur Herstellung von mono-aminofunktionalisierten Dialkylphosphinsäuren, -estern und -salzen und ihre Verwendung
DE102008056342A1 (de) * 2008-11-07 2010-05-12 Clariant International Limited Verfahren zur Herstellung von Dialkylphosphinsäuren, -estern und -salzen mittels Acrylnitrilen und ihre Verwendung
EP2352740B1 (de) * 2008-11-07 2014-09-24 Clariant Finance (BVI) Limited Verfahren zur herstellung von dialkylphosphinsäuren, -estern und -salzen mittels acrylsäurederivaten und ihre verwendung
DE102008056341A1 (de) * 2008-11-07 2010-05-12 Clariant International Limited Verfahren zur Herstellung von monoaminofunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Acrylnitrilen und ihre Verwendung
US8772519B2 (en) * 2008-11-11 2014-07-08 Clariant Finance (Bvi) Limited Process for preparing mono-allyl-functionalized dialkylphosphinic acids, salts and esters thereof with allylic compounds, and the use thereof
DE102008060035A1 (de) * 2008-12-02 2010-06-10 Clariant International Limited Verfahren zur Herstellung von mono-hydroxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Vinylester einer Carbonsäure und ihre Verwendung
DE102008060036A1 (de) * 2008-12-02 2010-06-10 Clariant International Limited Verfahren zur Herstellung von mono-carboxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Vinylester einer Carbonsäure und ihre Verwendung
DE102008060535A1 (de) 2008-12-04 2010-06-10 Clariant International Limited Verfahren zur Herstellung von mono-carboxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Vinylether und ihre Verwendung
DE102008063668A1 (de) 2008-12-18 2010-07-01 Clariant International Limited Verfahren zur Herstellung von Alkylphosponsäuren, -estern und -salzen mittels Oxidation von Alkylphosphonigsäuren und ihre Verwendung
US9181487B2 (en) 2008-12-18 2015-11-10 Clariant Finance (Bvi) Limited Process for preparing ethylenedialkylphosphinic acids, esters and salts by means of acetylene and use thereof
DE102008063642A1 (de) 2008-12-18 2010-06-24 Clariant International Limited Verfahren zur Herstellung von monocarboxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Alkylenoxiden und ihre Verwendung
DE102008063627A1 (de) 2008-12-18 2010-06-24 Clariant International Limited Verfahren zur Herstellung von monohydroxyfunktionalisierten Dialkylphosphinsäuren,-estern und -salzen mittels Ethylenoxid und ihre Verwendung
DE102008064012A1 (de) 2008-12-19 2010-06-24 Clariant International Limited Halogenfreie Addukte von Alkylphosphonigsäurederivaten und diesterbildenden Olefinen, halogenfreie Verfahren zu deren Herstellung und ihre Verwendung
DE102008064003A1 (de) 2008-12-19 2010-06-24 Clariant International Limited Verfahren zur Herstellung von mono-funktionalisierten Dialkylphosphinsäuren, -estern und -salzen und ihre Verwendung
JP5610464B2 (ja) * 2010-02-12 2014-10-22 独立行政法人産業技術総合研究所 含パラジウム化合物、その製造方法及びこれを用いる有機化合物の製造法
EP2821426A1 (de) * 2013-07-03 2015-01-07 Universita' Degli Studi Di Milano Polymere mit komplexer makromolekularer Architektur mit flammhemmenden Eigenschaften
EP3560936A1 (de) * 2018-04-24 2019-10-30 Henkel AG & Co. KGaA Verfahren zur synthese von alkenyl-phosphorverbindungen
EP3926024A1 (de) * 2020-06-17 2021-12-22 Clariant International Ltd Phosphorhaltige flammschutzmittelmischungen, ein verfahren zu ihrer herstellung und ihre verwendung sowie epoxidharzformulierungen, die diese flammschutzmittelmischungen enthalten
CN113181966B (zh) * 2021-04-25 2022-08-30 中国科学院兰州化学物理研究所 一种用于烯烃氢甲酰化反应的碳负载氮配位钴铁双金属催化剂的制备及应用
CN114478627B (zh) * 2022-02-23 2023-06-20 湖北大学 一种烯丙基化单膦配体及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384022B1 (en) * 1996-06-17 2002-05-07 Guilford Pharmaceuticals Inc. Prodrugs of NAALAdase inhibitors
EP1369422A1 (de) * 2001-02-14 2003-12-10 Japan Science and Technology Corporation Verfahren zur herstellung von alkenylphosphinoxiden oder alkenylphosphinsäureestern
EP1832596A1 (de) * 2006-03-07 2007-09-12 Clariant International Ltd. Mischungen aus Mono-Carboxylfunktionalisierten Dialkylphosphinsäureestern und weiteren Komponenten
EP1832594A1 (de) * 2006-03-07 2007-09-12 Clariant International Ltd. Mischungen aus Mono-Carboxylfunktionalisierten Dialkylphosphinsäuren, ein Verfahren zu ihrer Herstellung und ihre Verwendung
EP1832595A1 (de) * 2006-03-07 2007-09-12 Clariant International Ltd. Mischungen aus Mono-Carboxylfunktionalisierten Dialkylphosphinsäure- Salzen und weiteren Komponenten, ein Verfahren zu ihrer Herstellung und ihre Verwendung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2949878A1 (de) * 1979-12-12 1981-06-19 Chemische Werke Hüls AG, 4370 Marl Verfahren zur hydrierenden aufarbeitung der bei der hydrocarboxylierung eingesetzten kobalthaltigen katalysatoren
JP2704989B2 (ja) * 1989-02-10 1998-01-26 工業技術院長 ホスフイニルアルデヒド誘導体の製造法
DE3939142A1 (de) * 1989-11-27 1991-05-29 Hoechst Ag Verfahren zur oxidation von 2-hydroxy-aethylphosphonsaeuredialkylestern
DE19715667A1 (de) * 1997-04-15 1998-10-22 Basf Ag Verfahren zur Herstellung von Vinylphosphonsäure-Verbindungen
JP3877151B2 (ja) * 2001-03-08 2007-02-07 独立行政法人科学技術振興機構 アルケニルホスフィン酸エステル類の製造方法
DE10153780C1 (de) 2001-11-02 2002-11-28 Clariant Gmbh Verfahren zur Herstellung von Carboxyethylmethylphosphinsäureglykolester und ihre Verwendung
JP2004075650A (ja) * 2002-08-22 2004-03-11 National Institute Of Advanced Industrial & Technology アルケニルリン化合物及びその製造方法
JP5619756B2 (ja) * 2008-11-05 2014-11-05 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド アルキルアルコール/アクロレインを使用したジアルキルホスフィン酸、−エステル及び−塩の製造方法及びそれらの使用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384022B1 (en) * 1996-06-17 2002-05-07 Guilford Pharmaceuticals Inc. Prodrugs of NAALAdase inhibitors
EP1369422A1 (de) * 2001-02-14 2003-12-10 Japan Science and Technology Corporation Verfahren zur herstellung von alkenylphosphinoxiden oder alkenylphosphinsäureestern
EP1832596A1 (de) * 2006-03-07 2007-09-12 Clariant International Ltd. Mischungen aus Mono-Carboxylfunktionalisierten Dialkylphosphinsäureestern und weiteren Komponenten
EP1832594A1 (de) * 2006-03-07 2007-09-12 Clariant International Ltd. Mischungen aus Mono-Carboxylfunktionalisierten Dialkylphosphinsäuren, ein Verfahren zu ihrer Herstellung und ihre Verwendung
EP1832595A1 (de) * 2006-03-07 2007-09-12 Clariant International Ltd. Mischungen aus Mono-Carboxylfunktionalisierten Dialkylphosphinsäure- Salzen und weiteren Komponenten, ein Verfahren zu ihrer Herstellung und ihre Verwendung

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BRAVO-ALTAMIRANO ET AL: "A novel approach to phosphonic acids from hypophosphorous acid", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 48, no. 33, 19 July 2007 (2007-07-19), pages 5755 - 5759, XP022163552, ISSN: 0040-4039 *
MONTCHAMP J L: "Recent advances in phosphorus-carbon bond formation: synthesis of H-phosphinic acid derivatives from hypophosphorous compounds", JOURNAL OF ORGANOMETALLIC CHEMISTRY, ELSEVIER-SEQUOIA S.A. LAUSANNE, CH, vol. 690, no. 10, 16 May 2005 (2005-05-16), pages 2388 - 2406, XP004877374, ISSN: 0022-328X *
PATRICE RIBIÈRE ET AL: "NiCl2-Catalyzed Hydrophosphinylation", JOURNAL OF ORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, EASTON.; US, vol. 70, no. 10, 1 January 2005 (2005-01-01), pages 4064 - 4072, XP002530191, ISSN: 0022-3263 *
See also references of EP2352737A1 *
SYLVINE DEPRÈLE ET AL: "Environmentally Benign Synthesis of H-Phosphinic Acids Using a Water-Tolerant, Recyclable Polymer-Supported Catalyst", ORGANIC LETTERS, AMERICAN CHEMICAL SOCIETY, US, vol. 6, no. 21, 1 January 2004 (2004-01-01), pages 3805 - 3808, XP002500861, ISSN: 1523-7060, [retrieved on 20040918] *
SYLVINE DEPRÈLE ET AL: "Palladium-Catalyzed Hydrophosphinylation of Alkenes and Alkynes", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC. US, vol. 124, no. 32, 1 January 2002 (2002-01-01), pages 9387, XP002500862, ISSN: 0002-7863 *

Also Published As

Publication number Publication date
WO2010051887A8 (de) 2010-07-01
DE102008056227A1 (de) 2010-05-12
JP2012507478A (ja) 2012-03-29
EP2352737A1 (de) 2011-08-10
CN102177168A (zh) 2011-09-07
US20110237720A1 (en) 2011-09-29

Similar Documents

Publication Publication Date Title
EP2367833B1 (de) Verfahren zur herstellung von mono-carboxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels acrylnitrilen und ihre verwendung
EP2346885B1 (de) Verfahren zur herstellung von monocarboxyfunktionaslisierten dialkylphosphinsäuren, -estern und -salzen mittels allylalkoholen/acroleinen und ihre verwendung
EP2379574B1 (de) Verfahren zur herstellung von mono-hydroxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels ethylenoxid und ihre verwendung
EP2352740B1 (de) Verfahren zur herstellung von dialkylphosphinsäuren, -estern und -salzen mittels acrylsäurederivaten und ihre verwendung
EP2379569B1 (de) Verfahren zur herstellung von mono-carboxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels alkylenoxiden und ihre verwendung
EP2352735B1 (de) Verfahren zur herstellung von mono-hydroxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels allylalkoholen und ihre verwendung
EP2367835B1 (de) Verfahren zur herstellung von mono-allylfunktionalisierten dialkylphosphinsäuren, deren salze und ester mit allylischen verbindungen und ihre verwendung
WO2010051887A1 (de) Verfahren zur herstellung von dialkylphosphinsäuren, -estern und -salzen mittels vinylverbindungen und ihre verwendung
WO2010051889A1 (de) Verfahren zur herstellung von mono-hydroxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen und ihre verwendung
DE102008056234A1 (de) Verfahren zur Herstellung von momo-carboxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Vinylen/Nitrilen und ihre Verwendung
EP2373668A1 (de) Verfahren zur herstellung von mono-hydroxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels vinylester einer carbonsäure und ihre verwendung
EP2367834A1 (de) Verfahren zur herstellung von mono-hydroxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels acroleinen und ihre verwendung
DE102008063640A1 (de) Verfahren zur Herstellung von gemischtsubstituierten Dialkylphosphinsäuren, -estern und -salzen und ihre Verwendung
WO2010063344A1 (de) Verfahren zur herstellung von mono-carboxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels vinylether und ihre verwendung
EP2352736A1 (de) Verfahren zur herstellung von mono-aminofunktionalisierten dialkylphosphinsäuren, deren salze und ester und ihre verwendung
EP2352739A2 (de) Verfahren zur herstellung von mono-vinylfunktionalisierten dialkylphosphinsäuren, deren salze und estern und ihre verwendung
WO2010063342A1 (de) Verfahren zur herstellung von mono-carboxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels vinylester einer carbonsäure und ihre verwendung
EP3197905A1 (de) Verfahren zur herstellung von ethylendialkylphosphinsäuren, -estern und -salzen sowie deren verwendung als flammschutzmittel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980140147.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09778830

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009778830

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13125361

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011533570

Country of ref document: JP