WO2010050553A1 - 燃料電池およびこれに用いる電極ならびに電子機器 - Google Patents

燃料電池およびこれに用いる電極ならびに電子機器 Download PDF

Info

Publication number
WO2010050553A1
WO2010050553A1 PCT/JP2009/068583 JP2009068583W WO2010050553A1 WO 2010050553 A1 WO2010050553 A1 WO 2010050553A1 JP 2009068583 W JP2009068583 W JP 2009068583W WO 2010050553 A1 WO2010050553 A1 WO 2010050553A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
current collector
fuel cell
electrolyte
electrode
Prior art date
Application number
PCT/JP2009/068583
Other languages
English (en)
French (fr)
Inventor
健吾 槇田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN2009801421861A priority Critical patent/CN102197525A/zh
Priority to US13/126,123 priority patent/US20130065151A1/en
Publication of WO2010050553A1 publication Critical patent/WO2010050553A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2459Comprising electrode layers with interposed electrolyte compartment with possible electrolyte supply or circulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell such as a direct methanol fuel cell (DMFC) in which methanol is supplied to a fuel electrode to react, an electrode used for the fuel cell, and an electronic device including the fuel cell.
  • DMFC direct methanol fuel cell
  • the fuel cell may be an alkaline electrolyte fuel cell (AFC; Alkaline Fuel Cell), a phosphoric acid fuel cell (PAFC; Phosphoric Fuel Cell), a molten carbonate fuel cell (MCFC; Molten Carbon Fuel Cell), a solid oxide Type fuel cell (SOFC; Solid Electrolyte Fuel Cell) and polymer electrolyte fuel cell (PEFC; Polymer Electroly Fuel Cell).
  • AFC alkaline electrolyte fuel cell
  • PAFC phosphoric acid fuel cell
  • MCFC molten carbonate fuel cell
  • SOFC Solid Electrolyte Fuel Cell
  • PEFC Polymer electrolyte fuel cell
  • the fuel for the fuel cell various combustible substances such as hydrogen and methanol can be used.
  • gaseous fuel such as hydrogen is not suitable for miniaturization because a storage cylinder or the like is required.
  • liquid fuel such as methanol is advantageous in that it is easy to store.
  • the DMFC does not require a reformer for taking out hydrogen from the fuel, and has an advantage that the configuration is simplified and the miniaturization is easy.
  • the energy density of methanol which is a fuel of DMFC, is theoretically 4.8 kW / L, which is more than 10 times the energy density of a general lithium ion secondary battery. That is, a fuel cell using methanol as a fuel has many possibilities of surpassing the energy density of a lithium ion secondary battery. From the above, DMFC is most likely to be used as an energy source for mobile devices and electric vehicles among various fuel cells.
  • the DMFC has a problem that, although the theoretical voltage is 1.23V, the output voltage when actually generating power is reduced to about 0.6V or less.
  • the cause of the decrease in the output voltage is a voltage drop caused by the internal resistance of the DMFC.
  • the resistance caused by the reaction that occurs at both electrodes the resistance that accompanies the movement of the substance, and the proton that occurs when the proton moves through the electrolyte membrane
  • There are internal resistances such as resistance and contact resistance.
  • the energy that can actually be extracted as electrical energy from the oxidation of methanol is represented by the product of the output voltage during power generation and the amount of electricity flowing through the circuit. The energy that can be produced is reduced accordingly.
  • the method of obtaining a useful voltage by adopting a fuel cell stack structure inevitably has various problems because the number of fuel cells increases. For example, thickness problems, weight problems, electrical resistance problems, cost problems and material selection problems.
  • bipolar plate as a collector and coupling means of the fuel cell stack.
  • the most used bipolar plate functions include the following. That is, (a) the function of uniformly supplying the fuel fluid and the oxidizing fluid into the cell surface, (b) the water generated on the air electrode side is efficiently discharged out of the fuel cell together with the air after reaction from the inside of the fuel cell. Function, (c) function as an electrical connector (current collector) between single cells maintaining low electrical resistance and good conductivity as an electrode over a long period of time, (d) anode chamber of one cell in adjacent cells And (e) a function as a partition between the cooling water flow path and the adjacent cell.
  • the bipolar plate couples the entire surface of the fuel electrode with the air electrode of the adjacent fuel cell, and can integrate the fuel electrode and the oxygen electrode of the adjacent fuel cell. is there. As can be seen from this, it can be seen that the current passes through the fuel cell efficiently and not on the surface of each electrode.
  • the thickness of the fuel cell and the fuel cell stack depends on the thickness of the bipolar plate. Usually, since it is necessary to form a flow path for the fuel electrode and a flow path for the oxygen electrode in the bipolar plate, it is very difficult to significantly reduce the thickness of the stack. Moreover, the limit of thickness will be set with the material to be used.
  • a monopolar plate as a method for solving such problems of the bipolar plate.
  • the simplest method of joining fuel cell stacks using monopolar plates That is, the end of the oxygen electrode is simply coupled to the adjacent fuel electrode by an electric wire or welding. Therefore, a liquid electrolyte can be used, the internal resistance in the fuel can be reduced, and the thickness of the fuel cell can be suppressed by supplying the electrolyte and the fuel using the same flow path.
  • the current does not flow perpendicular to the fuel cell, but flows across the electrode surface to the terminal current assembly. This eliminates the trade-off relationship between the electrical contact portion and the fuel and air (oxygen) fluid.
  • the plate material is flexible, and a very thin plate can be used, so that the thickness of the fuel cell stack can be greatly reduced.
  • the electrode and plate must be very good conductors. Therefore, if the operating current is low, no problem occurs. However, in the fuel cell and the fuel cell stack having a very high operating current, the electric resistance of the monopolar plate becomes a problem.
  • the present invention has been made in view of such problems, and a first object thereof is a fuel cell capable of realizing a reduction in thickness of the entire fuel cell while reducing electric resistance, and an electronic device using the same. Is to provide.
  • a second object of the present invention is to provide an electrode that can be suitably used as a fuel electrode and an oxygen electrode of the fuel cell.
  • a fuel cell includes a fuel electrode including a first current collector, an oxygen electrode including a second current collector, and a fuel electrode and an oxygen electrode, and at least an electrolyte. And a plurality of current collecting terminals provided on at least one of the first current collector and the second current collector and projecting to the outside.
  • An electrode according to an embodiment of the present invention is used as an electrode of the above fuel electrode or an oxygen electrode, and has a current collector with a plurality of current collecting terminals.
  • An electronic device includes the fuel cell described above.
  • the current collector terminal of the current collector protrudes outside the battery, so that unit cells in the battery can be easily coupled to each other as a current collector. It becomes easy to adopt a monopolar plate structure. Thereby, what can distribute
  • each current collector is provided with a plurality of current collecting terminals, a monopolar plate structure is adopted as compared with the case where only one current collecting terminal is provided on the current collector as in the past. The distance of the current that flows is shortened.
  • the current collector terminal of the current collector protrudes outside the battery, it is easy to adopt a monopolar plate structure as the current collector. Become. Furthermore, what can distribute
  • FIG. 2 is a plan view illustrating a structure of a current collector, a method of stacking current collectors, and a current flow path illustrated in FIG. 1. It is a top view showing the structure of the conventional electrical power collector, its stacking method, and the path
  • FIG. 1 shows a cross-sectional structure (YZ cross-sectional structure) of a fuel cell 110 according to an embodiment of the present invention.
  • FIG. 1 corresponds to a cross-sectional configuration along the line II-II in FIG.
  • the fuel cell 110 is a so-called direct methanol flow based fuel cell (DMFFC), and has a configuration in which the fuel electrode 10 and the oxygen electrode 20 are arranged to face each other. Between the fuel electrode 10 and the oxygen electrode 20, a fuel / electrolyte flow path 30 is provided for circulating the fuel / electrolyte mixed solution.
  • DMFFC direct methanol flow based fuel cell
  • the fuel electrode 10 is obtained by laminating a diffusion layer 12 and a catalyst layer 13 in this order on a current collector 11 (first current collector).
  • the oxygen electrode 20 has a configuration in which a diffusion layer 22 and a catalyst layer 23 are laminated in this order on a current collector 21 (second current collector).
  • the catalyst layer 13 and the catalyst layer 23 face the fuel / electrolyte flow path 30.
  • the current collector 11 is made of, for example, an electrically conductive porous material or a plate-like member, specifically, a titanium (Ti) mesh or a titanium plate.
  • the current collector 21 is made of, for example, a titanium mesh or a titanium plate.
  • the material of the current collector is not limited to titanium, and other metals may be used. Moreover, the collector which surface-treated was sufficient.
  • FIG. 2 shows the shapes of the current collector 11 and current collector 21 constituting the fuel cell 110 and the stacking method thereof.
  • the current collector 11 and the current collector 21 are rectangular as shown in FIG. 2 and each have two current collector terminals.
  • the current collector terminals 11A and 11B of the current collector 11 and the current collector terminals 21A and 21B of the current collector 21 are provided along the X axis so as to protrude along the Y axis direction outside the fuel cell.
  • the current collecting terminals are arranged diagonally. Further, when the current collectors 11 and 21 are stacked in the Z-axis direction, the current collecting terminals 11A and the current collecting terminals 21A, the current collecting terminals 11B and the current collecting terminals 21B are arranged so as not to overlap each other.
  • the current collecting terminal provided on the fuel electrode of one unit cell is an oxygen electrode of another adjacent unit cell.
  • the current collecting terminals provided in are stacked so as to overlap with the current collecting terminals provided in.
  • the diffusion layers 12 and 22 are made of, for example, carbon cloth, carbon paper, or carbon sheet.
  • the diffusion layers 12 and 22 are preferably subjected to water repellency treatment with polytetrafluoroethylene (PTFE) or the like.
  • PTFE polytetrafluoroethylene
  • the diffusion layers 12 and 22 are not necessarily provided, and the catalyst layer may be formed directly on the current collector.
  • the catalyst layers 13 and 23 have a property of oxidizing as a catalyst, for example, simple metals or alloys of metals such as palladium (Pd), platinum (Pt), iridium (Ir), rhodium (Rh) and ruthenium (Ru), organic It is composed of complexes and enzymes.
  • the catalyst layers 13 and 23 may contain a proton conductor and a binder in addition to the catalyst.
  • the proton conductor include the above-described polyperfluoroalkyl sulfonic acid resin (“Nafion (registered trademark)” manufactured by DuPont) or other resins having proton conductivity.
  • the binder is added to maintain the strength and flexibility of the catalyst layers 13 and 23, and examples thereof include resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF).
  • Exterior members 14 and 24 are provided outside the fuel electrode 10 and the oxygen electrode 20, respectively.
  • the exterior members 14 and 24 have a thickness of 1 mm, for example, and are made of a generally available material such as a metal plate such as a titanium (Ti) plate or a resin plate, but the material is not particularly limited. In addition, if the thickness of the exterior members 14 and 24 is thin, the thinner one is desirable.
  • the fuel / electrolyte channel 30 is formed, for example, by forming a fine channel by processing a resin sheet, and is bonded to both sides of the fuel electrode 10 facing the oxygen electrode 20.
  • a fluid F1 containing fuel and electrolyte from the fuel / electrolyte inlet 14A and the fuel / electrolyte outlet 14B provided in the exterior member 14 through the through hole 50A and the through hole 50B, for example, A methanol / sulfuric acid mixture is supplied.
  • the number and shape of the flow paths are not limited, and may be, for example, a snake shape or a parallel type. Further, the width, height and length of the flow path are not particularly limited, but a smaller one is desirable.
  • the fuel and the electrolyte may be circulated in a mixed state, or the fuel and the electrolyte may be circulated in a separated state.
  • An air channel 40 for supplying air or oxygen is provided on the opposite side (outside) of the oxygen electrode 20 from the fuel / electrolyte channel 30.
  • the air flow path 40 is supplied with air by natural ventilation or a forced supply method such as a fan, a pump, and a blower from an air inlet 24A and an air outlet 24B provided in the exterior member 24 through a through hole 50C and a through hole 50D. Is to be supplied.
  • the structure of the air flow path 40 is not limited as in the fuel / electrolyte flow path 30.
  • the fuel cell 110 can be manufactured, for example, as follows.
  • a catalyst for example, an alloy containing platinum (Pt) and ruthenium (Ru) in a predetermined ratio, and a dispersion solution of a polyperfluoroalkylsulfonic acid resin (“Nafion (registered trademark)” manufactured by DuPont).
  • the catalyst layer 13 of the fuel electrode 10 is formed by mixing at a predetermined ratio.
  • This catalyst layer 13 is thermocompression bonded to the diffusion layer 12 made of the above-described material.
  • the diffusion layer 12 and the catalyst layer 13 are thermocompression bonded to one surface of the current collector 11 made of the above-described material using a hot-melt adhesive or an adhesive resin sheet, thereby forming the fuel electrode 10.
  • the catalyst layer 13 may be directly formed on the current collector 11 without forming the diffusion layer 12 as described above.
  • a catalyst in which platinum (Pt) is supported on carbon as a catalyst and a dispersion of a polyperfluoroalkyl sulfonic acid resin (“Nafion (registered trademark)” manufactured by DuPont) at a predetermined ratio are mixed, and oxygen
  • the catalyst layer 23 of the electrode 20 is formed.
  • This catalyst layer 23 is thermocompression bonded to the diffusion layer 22 made of the above-described material.
  • the current collector 21 made of the above-described material is set so as to have the arrangement of the current collecting terminals shown in FIG. 2, and thermocompression bonding is performed using a hot-melt adhesive or an adhesive resin sheet.
  • the oxygen electrode 20 is formed.
  • an adhesive resin sheet is prepared, and a flow path is formed in the resin sheet to form the fuel / electrolyte flow path 30, and thermocompression bonding is performed on the surface of the fuel electrode 10 facing the oxygen electrode 20.
  • exterior members 14 and 24 made of the above-described materials are produced.
  • the exterior member 14 is provided with a fuel / electrolyte inlet 14A and a fuel / electrolyte outlet 14B made of, for example, a resin joint
  • the exterior member 24 is provided with an air inlet 24A and an air outlet 24B made of, for example, a resin joint.
  • the oxygen electrode 20 is bonded to the thermocompression-bonded fuel / electrolyte flow path 30 and stored in the exterior members 14 and 24. Thereby, the fuel cell 110 shown in FIGS. 1 and 2 is completed.
  • this fuel cell 110 when fuel and electrolyte are supplied to the fuel electrode 10 through the fuel / electrolyte flow path 30, protons and electrons are generated by the reaction. Protons move to the oxygen electrode 20 through the fuel / electrolyte channel 30 and react with electrons and oxygen to produce water. Reactions occurring in the fuel electrode 10, the oxygen electrode 20, and the fuel cell 110 as a whole are expressed by equations 1 to 3. Thereby, a part of the chemical energy of methanol, which is the fuel, is converted into electric energy and taken out as electric power. Carbon dioxide generated at the fuel electrode 10 and water generated at the oxygen electrode 20 flow out to the fuel / electrolyte flow path 30 and are removed.
  • Fuel electrode 10 CH 3 OH + H 2 O ⁇ CO 2 + 6e ⁇ + 6H + (1)
  • Oxygen electrode 20 (3/2) O 2 + 6e ⁇ + 6H + ⁇ 3H 2 O (2)
  • the current collector terminals 11A and 11B and the current collector terminals 21A and 21B of the current collector 11 and current collector 21 protrude outside the fuel cell, so that the fuel electrode and the oxygen electrode are coupled between the unit cells.
  • a simple method such as electric wire or welding can be used. Therefore, it becomes easy to adopt a monopolar plate structure as a current collector.
  • electrolyte electrolyte solution
  • each current collector is provided with a plurality of current collector terminals, a monopolar plate structure is adopted as compared with the case where only one current collector terminal is provided in the current collector as in the past. The distance of the current that flows is shortened.
  • FIG. 3 shows, as a comparative example, the shapes of the current collector 311 and the current collector 321 used in a conventional fuel cell and the stacking method thereof.
  • Each of the current collectors 311 and 321 is provided with one current collecting terminal 311A and one current collecting terminal 321A.
  • the current (P310, P320) generated at the place shown in FIG. 3 crosses the surface or plate of the electrode (P321, P311), and the current assembly (P321, P311) It must flow to the current collector terminal. Therefore, high resistance is applied inside the fuel cell.
  • the two current collector terminals 11A, 11B and 21A, 21B are arranged diagonally as shown in FIG.
  • the distance of the current (P10, P20) flowing on the electrode surface is divided into two (P11, P12 and P21, P22). As a result, the electrical resistance of the electrode itself is significantly reduced.
  • the current collector terminal of the current collector protrudes outside the battery, it becomes easy to adopt a monopolar plate structure as the current collector, and an electrolyte that can be circulated, That is, an electrolytic solution can be used. Therefore, the thickness of the entire fuel cell can be reduced.
  • a monopolar plate structure since a plurality of current collecting terminals are provided for each current collector, when a monopolar plate structure is employed, the distance through which current flows can be shortened compared to the conventional case. Therefore, it is possible to reduce the thickness of the entire fuel cell while reducing the electrical resistance.
  • an electrolyte membrane is not required, power generation can be performed without being affected by temperature and humidity, and ion conduction is higher than that of a normal fuel cell using an electrolyte membrane. Degree (proton conductivity) can be increased. In addition, there is no risk of deterioration of the electrolyte membrane or a decrease in proton conductivity due to drying of the electrolyte membrane, and problems such as flooding and moisture management in the oxygen electrode are solved.
  • each fuel cell can be sealed, it is easy to handle when manufacturing the fuel cell stack.
  • high output can be realized with a simple and flexible configuration that can be incorporated into mobile devices and large-scale devices. Therefore, it can be suitably used for a multifunctional and high-performance electronic device that is thin and consumes a large amount of power.
  • FIG. 4 shows a schematic configuration of an electronic apparatus having a fuel cell system including the fuel cell 110 of the present invention.
  • the electronic device is, for example, a mobile device such as a mobile phone or a PDA (Personal Digital Assistant), or a notebook PC (Personal Computer).
  • the fuel cell system 1 and the fuel cell system 1 And an external circuit (load) 2 driven by the electric energy generated.
  • the fuel cell system 1 includes, for example, a fuel cell 110, a measuring unit 120 that measures the operating state of the fuel cell 110, and a control unit 130 that determines the operating conditions of the fuel cell 110 based on the measurement result of the measuring unit 120. It has.
  • the fuel cell system 1 also includes a fuel / electrolyte supply unit 140 that supplies the fuel cell 110 with a fluid F1 containing fuel and electrolyte, and a fuel that supplies only the fuel F2 such as methanol to the fuel / electrolyte storage unit 141. And a supply unit 150.
  • the fuel / electrolyte flow path 30 in the fuel cell 110 is connected to the fuel / electrolyte supply unit 140 via a fuel / electrolyte inlet 14A and a fuel / electrolyte outlet 14B provided in the exterior member 14, so that the fuel / electrolyte is supplied.
  • the fluid F1 is supplied from the supply unit 140.
  • the measuring unit 120 measures the operating voltage and operating current of the fuel cell 110.
  • the measuring unit 120 measures the operating voltage of the fuel cell 110, the current measuring circuit 122 that measures the operating current, and the And a communication line 123 for sending the measured result to the control unit 130.
  • the control unit 130 controls the fuel / electrolyte supply parameter and the fuel supply parameter as operating conditions of the fuel cell 110 based on the measurement result of the measurement unit 120.
  • the calculation unit 131 the storage (memory) unit 132, a communication unit 133 and a communication line 134.
  • the fuel / electrolyte supply parameter includes, for example, the supply flow rate of the fluid F1 containing the fuel / electrolyte.
  • the fuel supply parameter includes, for example, a supply flow rate and a supply amount of the fuel F2, and may include a supply concentration as necessary.
  • the control unit 130 can be configured by a microcomputer, for example.
  • the calculation unit 131 calculates the output of the fuel cell 110 from the measurement result obtained by the measurement unit 120, and sets the fuel / electrolyte supply parameter and the fuel supply parameter. Specifically, the calculation unit 131 averages the anode potential, the cathode potential, the output voltage, and the output current sampled at regular intervals from various measurement results input to the storage unit 132, and calculates the average anode potential, average cathode potential, The average output voltage and the average output current are calculated and input to the storage unit 132, and various average values stored in the storage unit 132 are compared with each other to determine the fuel / electrolyte supply parameter and the fuel supply parameter. ing.
  • the storage unit 132 stores various measurement values sent from the measurement unit 120, various average values calculated by the calculation unit 131, and the like.
  • the communication unit 133 receives a measurement result from the measurement unit 120 via the communication line 123 and inputs the measurement result to the storage unit 132, and the fuel / electrolyte supply unit 140 and the fuel supply unit 150 via the communication line 134. And a function of outputting signals for setting the supply parameter and the fuel supply parameter.
  • the fuel / electrolyte supply unit 140 includes a fuel / electrolyte storage unit 141, a fuel / electrolyte supply adjustment unit 142, and a fuel / electrolyte supply line 143.
  • the fuel / electrolyte storage unit 141 stores the fluid F1 and is configured by, for example, a tank or a cartridge.
  • the fuel / electrolyte supply adjustment unit 142 adjusts the supply flow rate of the fluid F1.
  • the fuel / electrolyte supply adjusting unit 142 is not particularly limited as long as it can be driven by a signal from the control unit 130.
  • the fuel / electrolyte supply adjusting unit 142 may be a valve driven by a motor or a piezoelectric element, or an electromagnetic pump. It is preferable to be configured.
  • the fuel supply unit 150 includes a fuel storage unit 151, a fuel supply adjustment unit 152, and a fuel supply line 153.
  • the fuel storage unit 151 stores only the fuel F2 such as methanol, and is configured by, for example, a tank or a cartridge.
  • the fuel supply adjustment unit 152 adjusts the supply flow rate and supply amount of the fuel F2.
  • the fuel supply adjustment unit 152 is not particularly limited as long as it can be driven by a signal from the control unit 130.
  • the fuel supply adjustment unit 152 includes a valve driven by a motor or a piezoelectric element, or an electromagnetic pump. It is preferable.
  • the fuel supply unit 150 may include a concentration adjusting unit (not shown) that adjusts the supply concentration of the fuel F2.
  • the concentration adjusting unit can be omitted when pure (99.9%) methanol is used as the fuel F2, and the size can be further reduced.
  • the fuel cell system 1 can be manufactured as follows.
  • the fuel cell 110 is incorporated in a system having the measurement unit 120, the control unit 130, the fuel / electrolyte supply unit 140, and the fuel supply unit 150 having the above-described configuration, and the fuel inlet 14A, the fuel outlet 14B, and the fuel supply unit 150 are included.
  • a fuel supply line 153 made of, for example, a silicone tube
  • the fuel / electrolyte inlet 14A, the fuel / electrolyte outlet 14B, and the fuel / electrolyte supply unit 140 are connected by a fuel / electrolyte supply line 143 made of, for example, a silicone tube.
  • Example 10 Dispersion solution of an alloy containing platinum (Pt) and ruthenium (Ru) as a catalyst in a predetermined ratio and a polyperfluoroalkylsulfonic acid resin (“Nafion (registered trademark)” manufactured by DuPont) by the above-described production method And a catalyst layer 13 of the fuel electrode 10 was formed.
  • This catalyst layer 13 was thermocompression bonded for 10 minutes to a diffusion layer 12 (manufactured by E-TEK; HT-2500) made of the above-described material under conditions of a temperature of 150 ° C. and a pressure of 249 kPa.
  • the current collector 11 made of the above-described material was thermocompression bonded using a hot-melt adhesive or an adhesive resin sheet to form the fuel electrode 10.
  • the current collector 11 used here has a shape as shown in FIG. 2, includes two current collecting terminals, and is arranged diagonally.
  • a catalyst in which platinum (Pt) is supported on carbon as a catalyst and a dispersion of a polyperfluoroalkyl sulfonic acid resin (“Nafion (registered trademark)” manufactured by DuPont) at a predetermined ratio are mixed, and oxygen A catalyst layer 23 of the electrode 20 was formed.
  • This catalyst layer 23 was thermocompression bonded to the diffusion layer 22 (manufactured by E-TEK; HT-2500) made of the above-described material in the same manner as the catalyst layer 13 of the fuel electrode 10.
  • the current collector 21 made of the above-described material was thermocompression bonded in the same manner as the current collector 11 of the fuel electrode 10 to form the oxygen electrode 20.
  • the current collector 21 used here has a shape as shown in FIG. 2 like the current collector 11, and includes two current collector terminals, which are arranged diagonally.
  • the exterior member 14 is provided with a fuel / electrolyte inlet 14A and a fuel / electrolyte outlet 14B made of, for example, a resin joint.
  • a fuel / electrolyte inlet 14A and a fuel / electrolyte outlet 14B made of, for example, a resin joint.
  • an air inlet 24A and an air outlet 24B made of a resin joint are provided.
  • the fuel electrode 10 and the oxygen electrode 20 were accommodated in the exterior members 14 and 24 with the fuel / electrolyte flow path 30 disposed therebetween.
  • the fuel cell 110 was incorporated into a system having the measurement unit 120, the control unit 130, the electrolyte supply unit 140, and the fuel supply unit 150 having the above-described configuration to configure the fuel cell system 1 shown in FIG.
  • the fuel / electrolyte supply adjusting unit 142 and the fuel supply adjusting unit 152 are configured by diaphragm type metering pumps (manufactured by KNF Co., Ltd.), and the fuel / electrolyte supply line 143 made of a silicone tube is connected to the fuel / electrolyte from each pump.
  • the fuel supply line 153 was directly connected to the fuel / electrolyte reservoir, and an arbitrary amount of methanol was supplied so that the methanol concentration in the fuel / electrolyte reservoir was always 1M.
  • a mixed solution of 1M methanol and 1M sulfuric acid was used as the electrolyte of the fluid F2, and the fuel cell 110 was supplied at a flow rate of 1.0 ml / min.
  • FIG. 5 shows the results of resistance measurement using titanium mesh having a thickness of 200 ⁇ m and a width of 4.0 cm at locations of 4 cm, 8 cm, and 20 cm, respectively.
  • the resistance and the length (distance) are in a proportional relationship, and it is clear that the resistance inevitably increases as the distance through which electricity flows increases.
  • FIG. 6 shows (A) voltage-current curve and (B) power-current curve of a fuel cell in which one current collector has two or one current collecting terminals. From FIG. 6, the peak output was improved by 33% by providing two current collecting terminals on one current collector. Since this is an improvement in the output in the high current region, the current flowing path is divided into two by using two current collecting terminals, and the current flowing distance is halved. It is thought that it was reduced.
  • the resistance inside the fuel cell can be greatly reduced by providing a plurality of current collecting terminals on the current collector.
  • the present invention has been described with the embodiment, application examples, and examples.
  • the present invention is not limited to the above-described embodiment and the like, and various modifications can be made.
  • the catalyst layer 13 is provided only on one side of the current collector 11 in the above-described embodiment, it may be provided on both sides.
  • the configurations of the fuel electrode 10, the oxygen electrode 20, the fuel / electrolyte flow channel 30, and the air flow channel 40 have been specifically described, but may be configured by other structures or other materials.
  • the fuel / electrolyte channel 30 may be formed of a porous sheet or the like in addition to the resin sheet processed as described in the above embodiment to form the channel.
  • an electrolyte membrane may be disposed in place of the fuel / electrolyte channel 30.
  • the current collector 11 and the current collector 21 may use a carbon material.
  • the fluid F1 containing the fuel and the electrolyte described in the above embodiments and the like is not limited to those having proton (H + ) conductivity, for example, sulfuric acid, phosphoric acid or ionic liquids. It may be a system electrolyte.
  • the fuel F2 described in the second embodiment may be methanol, other alcohols such as ethanol and dimethyl ether, or sugar fuel.
  • each component described in the above embodiments and the like, or the operating conditions of the fuel cell 110 are not limited, and may be other materials and thicknesses, or may be other operating conditions. Good.
  • the direct methanol fuel cell has been described as an example of the fuel cell.
  • the present invention is not limited to this, and a fuel cell using a substance other than liquid fuel such as hydrogen as a fuel, for example, PEFC (Polymer Electrolyte Fuel) (Cell: solid polymer fuel cell), alkaline fuel cell, or enzyme battery using sugar fuel such as glucose.
  • PEFC Polymer Electrolyte Fuel
  • Cell solid polymer fuel cell
  • enzyme battery using sugar fuel such as glucose.
  • the current collectors 11 and 21 of the fuel electrode 10 and the oxygen electrode 20 are each provided with a plurality of terminals. .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 電気抵抗を低減しつつ、燃料電池全体の薄型化を実現可能な燃料電池およびこれを用いた電子機器を提供する。燃料電極と酸素電極との間に電解質を流通させる流路を備える。燃料電極側の集電体11は、対角位置に一対の集電端子11A,11Bを有する。同様に、酸素電極側の集電体21も対角位置に一対の集電端子21A,21Bを有している。これら集電端子11A,11B、21A,21Bは燃料電池外部に突出している。これにより、電池内での単位セルの結合が容易となり、集電体としてモノポーラ・プレート構造を採用し易くなると共に、流れる電流の距離が短くなる。

Description

燃料電池およびこれに用いる電極ならびに電子機器
 本発明は、メタノールを燃料電極に供給して反応させる直接型メタノール燃料電池(DMFC;Direct MethanolFuel Cell)などの燃料電池、および燃料電池に用いる電極、ならびに燃料電池を備えた電子機器に関する。
 近年、モバイル機器は高性能化に伴って消費電力が増加する傾向にあり、リチウムイオン二次電池に代わる電池として、燃料電池が有力視されている。燃料電池は、その電解質によって、アルカリ電解質型燃料電池(AFC;Alkaline FuelCell)、リン酸型燃料電池(PAFC;Phosphoric AcidFuel Cell)、溶融炭酸塩型燃料電池(MCFC;Molten CarbonateFuel Cell)、固体酸化物型燃料電池(SOFC;Solid ElectrolyteFuel Cell)および固体高分子型燃料電池(PEFC;Polymer ElectrolyteFuel Cell)などに分類される。
 燃料電池の燃料としては、水素やメタノールなど、種々の可燃性物質を用いることができる。しかし、水素などの気体燃料は、貯蔵用のボンベなどが必要になるため、小型化には適していない。一方、メタノールなどの液体燃料は貯蔵しやすい点で有利である。とりわけ、DMFCには、燃料から水素を取り出すための改質器を必要とせず、構成が簡素になり、小型化が容易であるという利点がある。
 DMFCの燃料であるメタノールのエネルギー密度は、理論的に4.8kW/Lであり、一般的なリチウムイオン二次電池のエネルギー密度の10倍以上である。すなわち、燃料としてメタノールを用いる燃料電池は、リチウムイオン二次電池のエネルギー密度を凌ぐ可能性を多いに持っている。以上のことから、DMFCは、種々の燃料電池の中で、最もモバイル機器や電気自動車などのエネルギー源として使用される可能性が高い。
 しかしながら、DMFCには、理論電圧は1.23Vであるにもかかわらず、実際に発電しているときの出力電圧は約0.6V以下に低下してしまうという問題がある。出力電圧が低下する原因は、DMFCの内部抵抗によって生じる電圧降下であって、DMFCには、両電極で生じる反応に伴う抵抗、物質の移動に伴う抵抗、プロトンが電解質膜を移動する際に生じる抵抗、更に接触抵抗などの内部抵抗が存在している。メタノールの酸化から電気エネルギーとして実際に取り出すことのできるエネルギーは、発電時の出力電圧と、回路を流れる電気量との積で表されるから、発電時の出力電圧が低下すると、実際に取り出すことのできるエネルギーはその分小さくなってしまう。
 一方、このようなDMFCでは、電解質膜に代えて、液状の電解質(電解液)を用いることで内部抵抗を低減するDMFCの開発がなされている。しかし、液体電解質および固体電解質を使用する燃料電池に共通する問題は、一つの燃料電池セルの電圧が極めて低く、実用的な電流を取り出す場合は明らかに足りないことである。従って、有用な電圧にするため、多くの燃料電池セルを直列に接続し(直列したのち並列でもよい)燃料電池スタック構成とすると共に、効率よく電気エネルギーとして変換するための、集電体を設けた燃料電池が提案されている(例えば、特許文献1)。
特開2007-280678号公報
 しかしながら、燃料電池スタック構造とすることにより、有用な電圧にするという手法では、燃料電池の枚数が多くなることから、必然的に様々な問題が存在する。例えば、厚みの問題、重さの問題、電気抵抗の問題、コストの問題および材料選定の問題などである。
 現在、燃料電池スタックの集電体ならびに結合手段としては、バイポーラ・プレートがある。最も用いられているバイポーラ・プレートの機能としては、次のようなものが挙げられる。すなわち、(a)燃料流体、酸化性流体を電池面内に均一に供給する機能、(b)空気電極側で生成した水を反応後の空気と共に燃料電池内部から効率的に系外に排出させる機能、(c)長時間に渡る電極として低電気抵抗、良電導性を維持する単セル間の電気的コネクタ(集電体)としての機能、(d)隣り合うセルにおいて一方のセルのアノード室と隣接するセルのカソード室との隔壁としての機能、および(e)冷却水流路と隣接するセルとの隔壁としての機能などである。
 上記のようにバイポーラ・プレートは、燃料電極の表面全体を隣接する燃料電池セルの空気電極と結合するものであり、燃料電極と隣接する燃料電池セルの酸素電極とを一体化することが可能である。このことから分かるように、電流はそれぞれの電極表面ではなく、燃料電池セルに直交して、効率よく通過する構造であることが伺える。
 しかし、バイポーラ・プレート構造にも様々な問題が存在する。例えば、電流は燃料電池セル間を直交して通過することから、電気的接触部を可能な限り大きく取る必要がある。この場合、燃料および空気(酸素)の流れを妨げるという問題が生じる。そこで、燃料および空気(酸素)の流れを妨げないように電気的接触部を小さくした場合、電気抵抗を下げるために接触部の数を増やすことが必要となる。しかし、これでは製造工程が複雑化し、製造コストが上昇すると共に、バイポーラ・プレートの強度にも問題が生じる。
 また、燃料電池および燃料電池スタックの厚みは、バイポーラ・プレートの厚みに依存する。通常、バイポーラ・プレートには、燃料電極用の流路と酸素電極用の流路とを形成する必要があるため、スタックの厚みを大幅に低減することは非常に難しい。また、使用する材料によって厚みの限界が設定されてしまう。
 さらに、複数の燃料電池セルは圧力をかけてスタックする方法が用いられるが、燃料電池セル全体に均一な圧力をかけることは難しく、燃料極用および酸素電極用の流路に歪みが生じる。そのため、電解質には固体電解質(電解質膜)が用いられる。
 よって、バイポーラ・プレートを用いて、電気抵抗を低減しつつ、燃料電池スタックの厚みを小さくすることは、上述したようなトレードオフの関係から非常に困難である。
 このようなバイポーラ・プレートが抱える問題を解決する方法として、モノポーラ・プレートを使用することが考えられる。モノポーラ・プレートを使用した燃料電池スタックの結合方法は、最もシンプルなものである。すなわち、酸素電極の端部を隣の燃料電極に電線、あるいは、溶着などで単純に結合するというものである。そのため、液体電解質を用いることができ、燃料内の内部抵抗を低減すると共に、電解質と燃料とを同一流路を用いて供給することで燃料電池の厚みを抑えることができる。
 また、バイポーラ・プレートとは異なり、電流は燃料電池セルに直交して流れず、電極の表面を横断して終端の電流集合体まで流れる。そのため、電気的接触部分と燃料および空気(酸素)流体とのトレードオフの関係から解消される。
 更に、必ずしも燃料、および空気(酸素)などの流体用の供給流路をプレート上に形成する必要はない。従って、プレート材料の選定に柔軟性があり、非常に薄いプレートを用いることができるため、燃料電池スタックの厚みを大幅に低減することが可能になる。
 しかしながら、上述したように、電流は電極の表面あるいはプレートを横断して終端の電流集合体まで流れなければいけないことから、電極およびプレートは、非常に良好な導電体でなければならない。従って、動作電流が低いものであれば、問題は起こらないが、動作電流が非常に高い燃料電池、および燃料電池スタックにおいては、モノポーラ・プレートの電気抵抗が問題になる。
 本発明はかかる問題点に鑑みてなされたもので、その第1の目的は、電気抵抗を低減しつつ、燃料電池全体の薄型化を実現することが可能な燃料電池およびこれを用いた電子機器を提供することにある。
 本発明の第2の目的は、上記燃料電池の燃料電極および酸素電極として好適に用いることのできる電極を提供することにある。
 本発明の一実施の形態による燃料電池は、第1の集電体を含む燃料電極と、第2の集電体を含む酸素電極と、燃料電極と酸素電極との間に設けられ、少なくとも電解質を流通させる電解質流路と、第1の集電体および第2の集電体の少なくとも一方に設けられると共に外部に突出する複数の集電端子とを備えている。
 本発明の一実施の形態による電極は、上記の燃料電極の電極、または酸素電極の電極として用いられるもので、集電体に複数の集電端子を有するものである。
 本発明の一実施の形態による電子機器は、上記の燃料電池を備えたものである。
 本発明の一実施の形態による燃料電池、電極および電子機器では、集電体の集電端子が電池外部に突出しているため、電池内での単位セル同士の結合が容易となり、集電体としてモノポーラ・プレート構造を採用し易くなる。これにより、電解質として流通可能なものを用いることができ、例えば、電解質と燃料とを同一流路にて供給することが可能となる。また、各集電体には複数の集電端子が設けられているため、従来のように集電体に1つ集電端子のみが設けられている場合と比べ、モノポーラ・プレート構造を採用した際に流れる電流の距離が短くなる。
 本発明の一実施の形態による燃料電池、電極および電子機器によれば、集電体の集電端子が電池外部に突出しているようにしたので、集電体としてモノポーラ・プレート構造を採用し易くなる。更に、電解質として流通可能なものを用いることができ、燃料電池全体の厚みを小さくすることができる。また、各集電体に複数の集電端子を設けるようにしたので、モノポーラ・プレート構造を採用した場合に、従来と比べて電流の流れる距離を短くすることができる。よって、電気抵抗を低減しつつ、燃料電池全体の薄型化を実現することが可能となる。
本発明の一実施の形態に係る燃料電池の構成を表す断面図である。 図1に示した集電体の構造、集電体のスタック方法および電流の流れる経路を表す平面図である。 従来の集電体の構造とそのスタック方法および電流の流れる経路を表す平面図である。 燃料電池システムの概略構成を表す図である。 金属網の抵抗と長さとの関係の一例を示す特性図である。 集電体の端子の数による違いを説明するための特性図である 集電体の変形例を表す平面図である。
 以下、本発明の実施の形態について図面を参照して詳細に説明する。
[燃料電池の構成例]
 図1は、本発明の一実施の形態に係る燃料電池110の断面構造(YZ断面構造)を表すものである。この図1は、図2のII-II線に沿った断面構成に対応している。燃料電池110は、いわゆる直接型メタノールフロー型燃料電池(DMFFC;Direct Methanol FlowBasedFuel Cell)であり、燃料電極10と酸素電極20とが対向配置された構成を有している。燃料電極10と酸素電極20との間には、燃料・電解質混合液を流通させるための燃料・電解質流路30が設けられている。
 燃料電極10は、集電体11(第1集電体)上に拡散層12および触媒層13をこの順に積層したものである。一方、酸素電極20は集電体21(第2集電体)上に拡散層22および触媒層23をこの順に積層した構成を有している。触媒層13および触媒層23が燃料・電解質流路30に面している。
 集電体11は、例えば、電気伝導性を有するポーラス材料や板状部材、具体的にはチタン(Ti)メッシュやチタン板等により構成されている。集電体21も同様に、例えば、チタンメッシュやチタン板などにより構成されている。集電体の材料は、チタンに限られておらず、他の金属を用いても良い。また、表面処理が行われた集電体でも良い。
 図2は燃料電池110を構成する集電体11および集電体21の形状およびそのスタック方法を表すものである。
 集電体11および集電体21は、図2に示したように矩形状であると共に、それぞれ2つの集電端子を有している。集電体11の集電端子11A,11Bおよび集電体21の集電端子21A,21Bは、燃料電池外部にY軸方向に沿って突出するように、X軸に沿って設けられると共に、各集電端子は対角に配置されている。また、Z軸方向に集電体11、21をスタックした場合、集電端子11Aおよび集電端子21Aならびに集電端子11Bおよび集電端子21Bは互いに重ならないように配置されている。なお、複数の単位セルをスタックする場合は、単位セル同士の結合を容易にするため、例えば、一の単位セルの燃料電極に設けられた集電端子は、隣接する他の単位セルの酸素電極に設けられた集電端子と重なるようにスタックされる。
 拡散層12,22は、例えば、カーボンクロス,カーボンペーパーまたはカーボンシートにより構成されている。拡散層12,22は、ポリテトラフルオロエチレン(PTFE)などにより撥水化処理が行われていることが望ましい。但し、拡散層12,22は必ずしも設ける必要はなく、触媒層を直接集電体上に形成するようにしてもよい。
 触媒層13,23は、触媒として酸化する性質を持つ、例えば、パラジウム(Pd),白金(Pt),イリジウム(Ir),ロジウム(Rh)およびルテニウム(Ru)などの金属の単体または合金、有機錯体、酵素などにより構成されている。
 触媒層13,23には、上記触媒に加えて、プロトン伝導体およびバインダーが含まれていてもよい。プロトン伝導体としては、上述したポリパーフルオロアルキルスルホン酸系樹脂(デュポン社製「Nafion(登録商標)」)または、その他のプロトン伝導性を有する樹脂が挙げられる。バインダーは、触媒層13,23の強度や柔軟性を保つために添加されるものであり、例えばポリテトラフルオロエチレン(PTFE)やポリフッ化ビニリデン(PVDF)などの樹脂が挙げられる。
 燃料電極10および酸素電極20の外側には、外装部材14,24がそれぞれ設けられている。外装部材14,24は、例えば、厚みが1mmであり、チタン(Ti)板などの金属板、樹脂板などの一般的に購入可能な材料により構成されているが、材料は特に限定されない。なお、外装部材14,24の厚みは薄ければ薄いほうが望ましい。
 燃料・電解質流路30は、例えば、樹脂シートを加工することにより微細な流路を形成したものであり、酸素電極20と対面する燃料電極10の両側に接着されている。この燃料・電解質流路30には、外装部材14に設けられた燃料・電解質入口14Aおよび燃料・電解質出口14Bから貫通孔50Aおよび貫通孔50Bを介して燃料および電解質を含む流動体F1、例えば、メタノール硫酸混合液が供給されるようになっている。なお、流路の本数や形状は限定されるものではなく、例えば蛇形、並列型としてもよい。更に、流路の幅、高さおよび長さについても特には限定されないが、小さい方が望ましい。燃料・電解質流路30内では、燃料および電解質を混合させた状態で流通させるようにしてもよく、あるいは燃料と電解液を層分離した状態で流通させてもよい。
 酸素電極20の燃料・電解質流路30とは反対側(外側)には、空気もしくは酸素を供給するための空気流路40が設けられている。空気流路40には、外装部材24に設けられた空気入口24Aおよび空気出口24Bから貫通孔50Cおよび貫通孔50Dを介して、自然換気あるいはファン、ポンプおよびブロワなどの強制的供給法により、空気が供給されるようになっている。空気流路40の構造もまた、燃料・電解質流路30と同様に限定されない。
 上記燃料電池110は、例えば、次のようにして製造することができる。
[燃料電池の製造方法例]
 まず、触媒として、例えば白金(Pt)とルテニウム(Ru)とを所定の比で含む合金と、ポリパーフルオロアルキルスルホン酸系樹脂(デュポン社製「Nafion(登録商標)」)の分散溶液とを所定の比で混合し、燃料電極10の触媒層13を形成する。この触媒層13を、上述した材料よりなる拡散層12に熱圧着する。続いて、上述した材料よりなる集電体11の一面に拡散層12および触媒層13をホットメルト系の接着剤または接着性のある樹脂シートを用いて熱圧着し、燃料電極10を形成する。なお、上述したように拡散層12を形成せずに、集電体11に触媒層13を直接形成するようにしてもよい。
 また、触媒として白金(Pt)をカーボンに担持させたものと、ポリパーフルオロアルキルスルホン酸系樹脂(デュポン社製「Nafion(登録商標)」)の分散溶液とを所定の比で混合し、酸素電極20の触媒層23を形成する。この触媒層23を、上述した材料よりなる拡散層22に熱圧着する。続いて、上述した材料よりなる集電体21を、図2に示した集電端子の配置となるようにセットし、ホットメルト系の接着剤または接着性のある樹脂シートを用いて熱圧着して酸素電極20を形成する。
 続いて、接着性のある樹脂シートを用意し、この樹脂シートに流路を形成して燃料・電解質流路30を形成し、燃料電極10の酸素電極20に対向する面に熱圧着する。
 次いで、上述した材料よりなる外装部材14,24を作製する。外装部材14には、例えば樹脂製の継手よりなる燃料・電解質入口14Aおよび燃料・電解質出口14Bを設け、外装部材24には、例えば樹脂製の継手よりなる空気入口24Aおよび空気出口24Bを設ける。
 その後、熱圧着した燃料・電解質流路30に、酸素電極20を接着し、外装部材14,24に収納する。これにより図1および図2に示した燃料電池110が完成する。
 次に、上記燃料電池110の作用・効果について説明する。
 この燃料電池110では、燃料・電解質流路30により燃料および電解質が燃料電極10に供給されると、反応によりプロトンと電子とを生成する。プロトンは燃料・電解質流路30を通って酸素電極20へ移動し、電子および酸素と反応して水を生成する。燃料電極10、酸素電極20および燃料電池110全体で起こる反応は、式1~3で表される。これにより、燃料であるメタノールの化学エネルギーの一部が電気エネルギーに変換されて、電力として取り出される。なお、燃料電極10で発生する二酸化炭素および酸素電極20で発生する水は、燃料・電解質流路30に流出して取り除かれる。
 燃料電極10:CHOH+HO→CO+6e-+6H+   …(1)
 酸素電極20:(3/2)O+6e- +6H+→3HO   …(2)
 燃料電池110全体:CHOH+(3/2)O→CO+2HO…(3)
 本実施の形態では、集電体11および集電体21の集電端子11A,11Bおよび集電端子21A,21Bを燃料電池外部に突出しているため、単位セル間の燃料電極と酸素電極の結合が電線、あるいは溶着など単純な方法を用いることができる。そのため、集電体としてモノポーラ・プレート構造を採用し易くなる。これにより、電解質として流通可能なもの(電解液)を用いることができ、例えば、電解質と燃料とを同一流路にて供給することが可能となる。また、各集電体には複数の集電端子が設けられているため、従来のように集電体内に1つの集電端子のみが設けられている場合と比べ、モノポーラ・プレート構造を採用した際に流れる電流の距離が短くなる。
 図3は従来の燃料電池に用いられている集電体311および集電体321の形状およびその積層方法を比較例として表すものである。集電体311,321には、集電端子311Aおよび集電端子321Aがそれぞれ一つずつ設けられている。この集電体を用いた燃料電池では、例えば、図3に示した場所で発生した電流(P310,P320)は、電極の表面あるいはプレートを横断して(P321,P311)終端の電流集合体(集電端子)まで流れなければいけない。そのため、燃料電池内部で高い抵抗がかかってしまう。
 これに対し、本実施の形態の集電体11および集電体21では、それぞれ2つの集電端子11A,11Bおよび21A,21Bを対角に配置することにより、図2に示したように発生した電流(P10,P20)の電極面上を流れる距離は、2分割される(P11,P12およびP21,P22)。これにより電極自体の電気抵抗が著しく低くなる。
 以上のように、本実施の形態では、集電体の集電端子が電池外部に突出しているようにしたので、集電体としてモノポーラ・プレート構造を採用し易くなると共に、流通可能な電解質、すなわち、電解液を用いることができる。従って、燃料電池全体の厚みを小さくすることが可能となる。また、各集電体に複数の集電端子を設けるようにしたので、モノポーラ・プレート構造を採用した場合に、従来と比べて電流の流れる距離を短くすることができる。よって、電気抵抗を低減しつつ、燃料電池全体の薄型化を実現することが可能となる。
 また、燃料・電解質を流動体として供給することにより、電解質膜が不要となり、温度や湿度に影響されることなく発電を行うことができると共に、電解質膜を用いる通常の燃料電池に比べてイオン伝導度(プロトン伝導度)を高めることができる。また、電解質膜の劣化や、電解質膜の乾燥によるプロトン伝導性の低下のおそれがなくなり、酸素電極におけるフラッディングや水分管理などの問題も解消する。
 加えて、燃料電池セル1つ1つが封止可能であるため、燃料電池スタックの作製時に扱いが容易となる。
 更に、モバイル機器から大型装置にまで組み込めるような柔軟性の高い簡易な構成で、高出力を実現できる。よって特に、薄型で消費電力の大きな多機能・高性能の電子機器に好適に用いることができる。
 次に、上記燃料電池110の適用例について説明する。
<適用例>
[燃料電池システムの構成例]
 図4は本発明の燃料電池110を備えた燃料電池システムを有する電子機器の概略構成を表すものである。この電子機器は、例えば、携帯電話やPDA(Personal Digital Assistant;個人用携帯情報機器)などのモバイル機器、またはノート型PC(Personal Computer)であり、燃料電池システム1と、この燃料電池システム1で発電される電気エネルギーにより駆動される外部回路(負荷)2とを備えている。
 燃料電池システム1は、例えば、燃料電池110と、この燃料電池110の運転状態を測定する測定部120と、測定部120による測定結果に基づいて燃料電池110の運転条件を決定する制御部130とを備えている。この燃料電池システム1は、また、燃料電池110に燃料および電解質を含む流動体F1を供給する燃料・電解質供給部140と、例えばメタノールなどの燃料F2のみを燃料・電解質貯蔵部141に供給する燃料供給部150とを備えている。なお、燃料電池110における燃料・電解質流路30は、外装部材14に設けられた燃料・電解質入口14Aおよび燃料・電解質出口14Bを介して燃料・電解質供給部140に連結されており、燃料・電解質供給部140から流動体F1が供給されるようになっている。
 測定部120は、燃料電池110の動作電圧および動作電流を測定するものであり、例えば、燃料電池110の動作電圧を測定する電圧測定回路121と、動作電流を測定する電流測定回路122と、得られた測定結果を制御部130に送るための通信ライン123とを有している。
 制御部130は、測定部120の測定結果に基づいて、燃料電池110の運転条件として燃料・電解質供給パラメータおよび燃料供給パラメータの制御を行うものであり、例えば、演算部131、記憶(メモリ)部132、通信部133および通信ライン134を有している。ここで、燃料・電解質供給パラメータには、例えば、燃料・電解質を含む流動体F1の供給流速が含まれる。燃料供給パラメータは、例えば、燃料F2の供給流速および供給量を含み、必要に応じて供給濃度を含んでいてもよい。制御部130は、例えばマイクロコンピュータにより構成することができる。
 演算部131は、測定部120で得られた測定結果から燃料電池110の出力を算出し、燃料・電解質供給パラメータおよび燃料供給パラメータを設定するものである。具体的には、演算部131は、記憶部132に入力された各種測定結果から一定間隔でサンプリングしたアノード電位、カソード電位、出力電圧および出力電流を平均して、平均アノード電位、平均カソード電位、平均出力電圧および平均出力電流を算出し、記憶部132に入力すると共に、記憶部132に保存されている各種平均値を相互比較し、燃料・電解質供給パラメータおよび燃料供給パラメータを判定するようになっている。
 記憶部132は、測定部120から送られてきた各種測定値や、演算部131により算出された各種平均値などを記憶するものである。
 通信部133は、通信ライン123を介して測定部120から測定結果を受け取り、記憶部132に入力する機能と、通信ライン134を介して燃料・電解質供給部140および燃料供給部150に燃料・電解質供給パラメータおよび燃料供給パラメータを設定する信号をそれぞれ出力する機能とを有している。
 燃料・電解質供給部140は、燃料・電解質貯蔵部141と、燃料・電解質供給調整部142と、燃料・電解質供給ライン143とを備えている。燃料・電解質貯蔵部141は、流動体F1を貯蔵するものであり、例えばタンクまたはカートリッジにより構成されている。燃料・電解質供給調整部142は流動体F1の供給流速を調整するものである。燃料・電解質供給調整部142は、制御部130からの信号で駆動されうるものであればよく、特に限定されるものではないが、例えば、モータや圧電素子で駆動されるバルブ、または電磁ポンプにより構成されていることが好ましい。
 燃料供給部150は、燃料貯蔵部151と、燃料供給調整部152と、燃料供給ライン153とを有する。燃料貯蔵部151は、メタノールなどの燃料F2のみを貯蔵するものであり、例えばタンクまたはカートリッジにより構成されている。燃料供給調整部152は、燃料F2の供給流速および供給量を調整するものである。燃料供給調整部152は、制御部130からの信号で駆動されうるものであればよく、特に限定されるものではないが、例えば、モータや圧電素子で駆動されるバルブ、または電磁ポンプにより構成されていることが好ましい。なお、燃料供給部150は、燃料F2の供給濃度を調整する濃度調整部(図示せず)を備えていてもよい。濃度調整部は、燃料F2として純(99.9%)メタノールを用いる場合には省略することができ、より小型化することができる。
 また、上記燃料電池システム1は、次のようにして製造することができる。
[燃料電池システムの製造方法例]
 例えば、上記燃料電池110を、上述した構成を有する測定部120,制御部130,燃料・電解質供給部140および燃料供給部150を有するシステムに組み込み、燃料入口14Aおよび燃料出口14Bと燃料供給部150とを例えばシリコーンチューブよりなる燃料供給ライン153で接続すると共に、燃料・電解質入口14Aおよび燃料・電解質出口14Bと燃料・電解質供給部140とを例えばシリコーンチューブよりなる燃料・電解質供給ライン143で接続する。これにより図4に示した燃料電池システム1が完成する。
 このような燃料電池システム1では、燃料・電解質供給部140から燃料電池110に燃料および電解質を含む流動体F1が供給されると、燃料電池110から電力が取り出され、外部回路2が駆動する。燃料電池110の運転中には、測定部120により燃料電池110の動作電圧および動作電流が測定され、その測定結果に基づいて、制御部130により、燃料電池110の運転条件として上述した燃料・電解質供給パラメータおよび燃料供給パラメータの制御が行われる。測定部120による測定および制御部130によるパラメータ制御は頻繁に繰り返され、燃料電池110の特性変動に追従して流動体F1および燃料F2の供給状態が最適化される。
 次に、上記燃料電池110およびこれを備えた燃料電池システム1の効果を示す実施例について説明する。
[実施例]
 上述した製造方法により、触媒として白金(Pt)とルテニウム(Ru)とを所定の比で含む合金と、ポリパーフルオロアルキルスルホン酸系樹脂(デュポン社製「Nafion(登録商標)」)の分散溶液とを所定の比で混合し、燃料電極10の触媒層13を形成した。この触媒層13を、上述した材料よりなる拡散層12(E-TEK社製;HT-2500)に対して、温度150℃、圧力249kPaの条件下で10分間熱圧着した。更に、上述した材料よりなる集電体11を、ホットメルト系の接着剤または接着性のある樹脂シートを用いて熱圧着し、燃料電極10を形成した。ここで使用する集電体11は、図2に示すような形状をしており、集電端子を2つ備え、それぞれ対角配置されている。
 また、触媒として白金(Pt)をカーボンに担持させたものと、ポリパーフルオロアルキルスルホン酸系樹脂(デュポン社製「Nafion(登録商標)」)の分散溶液とを所定の比で混合し、酸素電極20の触媒層23を形成した。この触媒層23を、上述した材料よりなる拡散層22(E-TEK社製;HT-2500)に対して、燃料電極10の触媒層13と同様にして熱圧着した。更に、上述した材料よりなる集電体21を、燃料電極10の集電体11と同様にして熱圧着し、酸素電極20を形成した。ここで使用する集電体21も集電体11と同様、図2に示すような形状をしており、集電端子を2つ備え、それぞれ対角配置されている。
 次いで、接着性のある樹脂シートを用意し、この樹脂シートに流路を形成して燃料・電解質流路を燃料電極10と酸素電極20の間に熱圧着した。続いて、上述した材料よりなる外装部材14,24を作製し、外装部材14には、例えば樹脂製の継手よりなる燃料・電解質入口14Aおよび燃料・電解質出口14Bを設け、外装部材24には、例えば樹脂製の継手よりなる空気入口24Aおよび空気出口24Bを設けた。その後、燃料電極10と酸素電極20とを、燃料・電解液流路30を両者の間に配置し、外装部材14,24に収納した。
 この燃料電池110を、上述した構成を有する測定部120,制御部130,電解質供給部140および燃料供給部150を有するシステムに組み込み、図4に示した燃料電池システム1を構成した。その際、燃料・電解質供給調整部142および燃料供給調整部152をダイアフラム式定量ポンプ(株式会社KNF社製)により構成し、それぞれのポンプからシリコーンチューブよりなる燃料・電解質供給ライン143を燃料・電解質入口14Aに直接接続し、燃料供給ライン153は、燃料・電解質貯蔵部に直接接続され、燃料・電解質貯蔵部内のメタノール濃度が常に1Mになるように、任意のメタノール量が供給された。流体F2の電解質には、1Mメタノールと1 M硫酸の混合液を用い、燃料電池110には1.0ml/minの流速で供給した。
[評価]
 得られた燃料電池システム1について、燃料電極および酸素電極にそれぞれ2つの集電端子を有する集電体を用いてその効果を調べた。比較例として、燃料電極および酸素電極にそれぞれ1つの集電端子を備えた集電体(図3)を用いた燃料電池を用いて同様の実験を行った。
 まず、図5は、厚みは200μm、幅は4.0cmのチタンメッシュを用い、それぞれ4cm、8cm、20cmの場所で抵抗測定を行った結果である。図5のグラフから分かるように、抵抗と長さ(距離)は比例する関係にあり、電気の流れる距離が長くなればなるほど、必然的に抵抗は増加する傾向にあることが明らかである。
 図6は1枚の集電体に集電端子を2端子あるいは1端子備えた燃料電池の(A)電圧-電流カーブ、(B)電力-電流カーブを表したものである。図6から、1枚の集電体に集電端子を2端子設けることで33%のピーク出力の向上が見られた。これは、高電流領域での出力向上であるため、集電端子を2箇所にすることで、電流が流れる経路を2分割にし、電流が流れる距離を半分にしたことから、電気抵抗が大幅に低減されたためと考えられる。
 以上の結果から、集電体に集電端子を複数設けることにより、燃料電池内部の抵抗を大幅に低減することが可能であるといえる。
 以上、実施の形態、適用例および実施例を挙げて本発明を説明したが、本発明は、上記実施の形態等に限定されるものではなく、種々変形することができる。例えば、上記実施の形態等では、触媒層13を集電体11の片側のみに設けたが、両側に設けてもよい。
 また、上記実施の形態等では、2端子集電体、および対角配置を基に具体的に説明をしたが、この構成に限定されるものではなく、例えば、図7に示したように、十字型(集電端子が4つ)に形成することも可能である。この場合、発生した電流(P210,P221)が流れる経路は4分割(P211,P212,P213およびP214、ならびにP221,P222,P223およびP224)され、電流が流れる距離が4等分され、電池内部の抵抗を低減することができる。更に、各集電端子は、必ずしも対角配置でなくてもよい。
 また、燃料電極10,酸素電極20,燃料・電解質流路30および空気流路40の構成についてそれぞれ具体的に説明したが、他の構造あるいは他の材料により構成するようにしてもよい。例えば、燃料・電解質流路30は、上記実施の形態で説明したような樹脂シートを加工して流路を形成したもののほか、多孔質などのシートにより構成してもよい。また、燃料・電解質流路30の換わりに電解質膜を配置してもよい。更に、集電体11および集電体21は、カーボン素材を用いてもよい。
 また、上記実施の形態等において説明した燃料および電解液を含む流動体F1は、プロトン(H+)伝導性を有するもの、例えば、硫酸のほか、リン酸またはイオン性液体のみ限定されず、アルカリ系電解液でもよい。さらに、上記第2の実施の形態で説明した燃料F2は、メタノールのほか、エタノールやジメチルエーテルなどの他のアルコール、もしくは砂糖燃料でもよい。
 また、上記実施の形態等では、酸素電極20へ空気を供給する場合について説明したが、空気に代えて酸素または酸素を含むガスを供給するようにしてもよい。
 更に、上記実施の形態等において説明した各構成要素の材料および厚み、または燃料電池110の運転条件などは限定されるものではなく、他の材料および厚みとしてもよく、または他の運転条件としてもよい。
 また、上記実施の形態等では、燃料電池として直接型メタノール燃料電池を例に挙げて説明したが、これに限らず、水素など液体燃料以外の物質を燃料として用いる燃料電池、例えばPEFC(Polymer ElectrolyteFuel Cell:固体高分子型燃料電池)、アルカリ型燃料電池、あるいはグルコースなどの砂糖燃料を利用した酵素電池などにも適用可能である。更に、上記実施の形態においては、燃料電極10および酸素電極20の各集電体11、21にそれぞれ複数の端子を設ける構成としたが、いずれか一方にのみ複数の端子を設ける構成としてもよい。

Claims (10)

  1.  第1の集電体を含む燃料電極と、
     第2の集電体を含む酸素電極と、
     前記燃料電極と酸素電極との間に設けられ、少なくとも電解質を流通させる電解質流路と、
     前記第1の集電体および第2の集電体の少なくとも一方に設けられると共に外部に突出する複数の集電端子と
     を備えた燃料電池。
  2.  前記第1集電体および第2集電体はそれぞれ矩形状を有する
     請求項1に記載の燃料電池。
  3.  前記矩形状の集電体の対角位置に一対の集電端子を備える
     請求項2に記載の燃料電池。
  4.  前記矩形状の集電体の四端に二対の集電端子が対角配置され、
     一方の一対の集電端子は前記集電体の一の端辺方向に沿って外部に突出すると共に、他方の一対の集電端子は他の端辺方向に沿って外部に突出している
     請求項2に記載の燃料電池。
  5.  前記集電体は、金属材料からなる板状または網状のものである
     請求項1に記載の燃料電池。
  6.  前記集電体は、カーボン材料からなる板状または網状のものである
     請求項1に記載の燃料電池。
  7.  前記燃料電極と、前記酸素電極と、前記電解質流路とを含んで単位セルが構成され、
     前記単位セルにおいて、前記第1の集電体における各集電端子と、前記第2の集電体における各集電端子とが、互いに重ならないように対向配置されている
     請求項1に記載の燃料電池。
  8.  前記単位セルが複数設けられると共に、厚み方向に沿ってスタックされ、
     前記第1の集電体における集電端子と、前記第2の集電体における集電端子とが、互いに対向配置するように突出している
     請求項7に記載の燃料電池。
  9.  複数の集電端子を有する集電体を備え、
     燃料電極と酸素電極との間に設けられ、少なくとも電解質を流通させる電解質流路を有する燃料電池の前記燃料電極または前記酸素電極として用いられる
     電極。
  10.  燃料電池を備え、前記燃料電池が、
     第1の集電体を含む燃料電極と、第2の集電体を含む酸素電極と、前記燃料電極と酸素電極との間に設けられ、少なくとも電解質を流通させる電解質流路と、前記第1の集電体および第2の集電体の少なくとも一方に設けられると共に外部に突出する複数の集電端子とを有する
     電子機器。
PCT/JP2009/068583 2008-10-31 2009-10-29 燃料電池およびこれに用いる電極ならびに電子機器 WO2010050553A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801421861A CN102197525A (zh) 2008-10-31 2009-10-29 燃料电池和用于燃料电池的电极以及电子设备
US13/126,123 US20130065151A1 (en) 2008-10-31 2009-10-29 Fuel cell and electrode for fuel cell, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008281347A JP2010108840A (ja) 2008-10-31 2008-10-31 燃料電池およびこれに用いる電極ならびに電子機器
JP2008-281347 2008-10-31

Publications (1)

Publication Number Publication Date
WO2010050553A1 true WO2010050553A1 (ja) 2010-05-06

Family

ID=42128912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068583 WO2010050553A1 (ja) 2008-10-31 2009-10-29 燃料電池およびこれに用いる電極ならびに電子機器

Country Status (4)

Country Link
US (1) US20130065151A1 (ja)
JP (1) JP2010108840A (ja)
CN (1) CN102197525A (ja)
WO (1) WO2010050553A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02845Y2 (ja) * 1983-06-01 1990-01-10
JPH04306570A (ja) * 1991-04-01 1992-10-29 Hitachi Ltd 燃料電池
JP2004055270A (ja) * 2001-06-20 2004-02-19 Tai-Her Yang 低いインナー抵抗を有する蓄電、放電装置のバス構造
JP2006294274A (ja) * 2005-04-06 2006-10-26 Nippon Soken Inc 燃料電池及び燃料電池モジュール
WO2008035667A1 (fr) * 2006-09-19 2008-03-27 Sony Corporation Pile à combustible, système de pile à combustible et dispositif électronique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02845Y2 (ja) * 1983-06-01 1990-01-10
JPH04306570A (ja) * 1991-04-01 1992-10-29 Hitachi Ltd 燃料電池
JP2004055270A (ja) * 2001-06-20 2004-02-19 Tai-Her Yang 低いインナー抵抗を有する蓄電、放電装置のバス構造
JP2006294274A (ja) * 2005-04-06 2006-10-26 Nippon Soken Inc 燃料電池及び燃料電池モジュール
WO2008035667A1 (fr) * 2006-09-19 2008-03-27 Sony Corporation Pile à combustible, système de pile à combustible et dispositif électronique

Also Published As

Publication number Publication date
CN102197525A (zh) 2011-09-21
JP2010108840A (ja) 2010-05-13
US20130065151A1 (en) 2013-03-14

Similar Documents

Publication Publication Date Title
KR100450820B1 (ko) 공기 호흡형 직접 메탄올 연료전지 셀팩
US6497975B2 (en) Direct methanol fuel cell including integrated flow field and method of fabrication
JP3929902B2 (ja) 通気型直接メタノール燃料電池セルパック
US7951506B2 (en) Bipolar plate and direct liquid feed fuel cell stack
JP5158403B2 (ja) 燃料電池および燃料電池システム、並びに電子機器
JP2006040598A (ja) 燃料電池の活性化方法
JP5141167B2 (ja) 電解液及び電気化学デバイス
JP5135747B2 (ja) 燃料電池および燃料電池システム
EP2273589B1 (en) Membrane electrode assembly and fuel cell
JP2006093119A (ja) 燃料電池、及びその燃料電池を搭載した情報端末
JP5182473B2 (ja) 燃料電池スタックシステムおよび電子機器
US20060046126A1 (en) Fuel cell and information terminal carrying the same
JP4945887B2 (ja) セルモジュール及び固体高分子電解質型燃料電池
US20100248068A1 (en) Fuel cell stack, fuel cell, and method of manufacturing fuel cell stack
WO2009119434A1 (ja) 燃料電池ユニット、燃料電池スタックおよび電子機器
JP5182475B2 (ja) 燃料電池および電子機器
WO2010050553A1 (ja) 燃料電池およびこれに用いる電極ならびに電子機器
JP5182476B2 (ja) 燃料電池および電子機器
JP2005142027A (ja) 高分子電解質型燃料電池
JP2010055954A (ja) 電極およびこれを用いた燃料電池、並びに電子機器
JP3946228B2 (ja) 燃料電池
KR20050095156A (ko) 연료 전지 시스템, 이에 사용되는 스택 및 바이폴라플레이트
WO2010053084A1 (ja) 燃料電池およびこれに用いる酸素電極ならびに電子機器
JP4934965B2 (ja) セルモジュール集合体及び燃料電池
JP2010140708A (ja) 燃料電池および電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980142186.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823663

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13126123

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823663

Country of ref document: EP

Kind code of ref document: A1