WO2010050485A1 - リフォールディング剤および蛋白質のリフォールディング方法 - Google Patents

リフォールディング剤および蛋白質のリフォールディング方法 Download PDF

Info

Publication number
WO2010050485A1
WO2010050485A1 PCT/JP2009/068438 JP2009068438W WO2010050485A1 WO 2010050485 A1 WO2010050485 A1 WO 2010050485A1 JP 2009068438 W JP2009068438 W JP 2009068438W WO 2010050485 A1 WO2010050485 A1 WO 2010050485A1
Authority
WO
WIPO (PCT)
Prior art keywords
refolding
glutathione
group
protein
ester
Prior art date
Application number
PCT/JP2009/068438
Other languages
English (en)
French (fr)
Inventor
宏 山口
廉 伊藤
祐介 葛西
英俊 山田
Original Assignee
学校法人関西学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人関西学院 filed Critical 学校法人関西学院
Priority to JP2010535805A priority Critical patent/JP5637857B2/ja
Publication of WO2010050485A1 publication Critical patent/WO2010050485A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/02Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
    • C07K5/0215Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link containing natural amino acids, forming a peptide bond via their side chain functional group, e.g. epsilon-Lys, gamma-Glu
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/0606Dipeptides with the first amino acid being neutral and aliphatic the side chain containing heteroatoms not provided for by C07K5/06086 - C07K5/06139, e.g. Ser, Met, Cys, Thr

Definitions

  • the present invention relates to a protein refolding agent which is preferably used for refolding a protein that has become inactive due to misfolding, after unfolding, to an original three-dimensional structure having activity.
  • the present invention also relates to a protein refolding method and a protein regeneration method using the refolding agent.
  • a target protein is artificially expressed in a prokaryote such as Escherichia coli that has undergone genetic manipulation, a eukaryote such as yeast, or a cell-free extraction system
  • the target protein is misfolded and inactivated, that is, Often obtained as inclusion bodies (inert aggregates). For this reason, by dissolving this in a solution containing a denaturing agent such as urea, the protein is once unfolded, and then the solution is diluted to reduce the concentration of the denaturing agent.
  • a denaturing agent such as urea
  • Non-Patent Documents 1 to 6 and Patent Documents 1 and 2 arginine, L-arginine amide and derivatives thereof, and amino acid esters such as arginine ethyl ester and nitroarginine ester are effective as aggregation inhibitors during protein refolding. It is described that.
  • Non-Patent Document 7 describes that small molecule additives such as acetone, acetamide, and urea derivatives are effective in suppressing protein aggregation and improving the refolding yield. Describes that oxidized / reduced glutathione and a thiol compound having a pKa value near neutral are effective as an aggregation inhibitor during refolding of a protein having a disulfide bond.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a “refolding agent” useful as an auxiliary agent for promoting the refolding of an unfolded protein.
  • the present invention uses a derivative of glutathione that is widely present in the living body, so that it is highly possible to be applied to a wide range of proteins, and a high refolding yield is obtained, and a refolding method for an unfolded protein, And it aims at providing the reproduction
  • the inventors of the present invention have been diligently studying day and night in order to achieve the above object, and process unfolded proteins in the presence of ester derivatives and / or amide derivatives of reduced glutathione and / or oxidized glutathione.
  • the present inventors have found that the protein can be refolded at a significantly high rate and regenerated as a normal protein having activity, that is, a protein having an original three-dimensional structure in a high yield. That is, the present inventors have found that ester derivatives and / or amide derivatives of reduced or / and oxidized glutathione are useful as a refolding agent for unfolded proteins. It was confirmed that the refolding yield can be improved efficiently.
  • the present invention has been completed based on such findings, and includes the following embodiments.
  • Refolding agent At least one selected from the group consisting of ester derivatives and amide derivatives of reduced glutathione, ester derivatives and amide derivatives of oxidized glutathione, and acid addition salts and solvates thereof
  • An unfolded protein refolding agent comprising
  • R 1 and R 2 each independently represents a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, or an amino group optionally substituted with an alkyl group having 1 to 4 carbon atoms. However, R 1 and R 2 are not hydroxyl groups at the same time.
  • Reduced glutathione derivatives represented by The following formula
  • R 3 , R 4 , R 5 and R 6 are each independently an amino group optionally substituted by a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. Indicates. However, R 3 , R 4 , R 5 and R 6 are not simultaneously hydroxyl groups.
  • An unfolded protein refolding agent comprising, as an active ingredient, at least one selected from the group consisting of oxidized glutathione derivatives represented by the formula: and salts and solvates thereof.
  • (I-3) at least one selected from the group consisting of reduced glutathione derivatives, salts and solvates thereof, and at least one selected from the group consisting of oxidized glutathione derivatives, salts and solvates thereof
  • (I-4) At least one selected from the group consisting of reduced glutathione derivatives, salts and solvates thereof, and at least one selected from the group consisting of oxidized glutathione derivatives, salts and solvates thereof In a separately packaged form, (I-1) or (I-2).
  • the reduced or oxidized glutathione ester derivative is reduced or oxidized glutathione ethyl ester or glutathione methyl ester, and the reduced or oxidized glutathione amide derivative is reduced or oxidized.
  • the refolding agent according to any one of (I-1) to (I-4), which is glutathione amide.
  • the reduced glutathione ester derivative is diethyl ester or dimethyl ester of reduced glutathione, the oxidized glutathione ester derivative is tetraethyl ester or tetramethyl ester of oxidized glutathione, and the amide derivative of reduced glutathione is reduced.
  • R 7 represents an alkoxy group having 1 to 4 carbon atoms
  • R 8 represents an amino group which may be substituted with an alkyl group having 1 to 4 carbon atoms.
  • R 9 and R 11 are each independently an alkoxy group having 1 to 4 carbon atoms, and R 10 and R 12 are each independently an amino group optionally substituted with an alkyl group having 1 to 4 carbon atoms. Indicates a group.
  • the refolding agent of the present invention inactivation due to re-aggregation of unfolded protein can be suppressed and normal refolding can be performed at a high rate, so that a normal protein having activity (having the original three-dimensional structure) Protein) can be obtained in high yield.
  • a normal protein having activity having the original three-dimensional structure
  • a high refolding yield can be obtained by adding a small amount, and refolding is possible without aggregation even when the protein concentration is high.
  • Refolding agent The refolding agent of the present invention is used to assist in the refolding of an unfolded protein and to improve the refolding yield.
  • An ester derivative and an amide derivative of reduced glutathione, an oxidized form It is characterized in that at least one selected from the group consisting of ester derivatives and amide derivatives of glutathione, and salts and solvates thereof is an active ingredient.
  • the refolding agent of the present invention is preferably an ester derivative or amide derivative of reduced glutathione represented by the following formula:
  • R 1 and R 2 each independently represents a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, or an amino group optionally substituted with an alkyl group having 1 to 4 carbon atoms. However, R 1 and R 2 are not hydroxyl groups at the same time.
  • Ester derivatives and amide derivatives of oxidized glutathione represented by the following formula:
  • R 3 , R 4 , R 5 and R 6 are each independently a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, or a hydrogen atom substituted with an alkyl group having 1 to 4 carbon atoms. Good amino group. However, R 3 , R 4 , R 5 and R 6 are not simultaneously hydroxyl groups. ], And at least one selected from the group consisting of salts and solvates thereof as an active ingredient.
  • alkoxy group having 1 to 4 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, and a tert-butoxy group.
  • a methoxy group and an ethoxy group are preferable.
  • Examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a tert-tyl group.
  • a methyl group is preferred.
  • the ester derivative of reduced glutathione or oxidized glutathione may be any one in which at least one carboxyl group of glutathione is esterified.
  • examples of the derivatives in which one carboxyl group of glutathione is esterified include the mono-lower alkyl esters of glutathione listed below.
  • R 1 and R 2 are methoxy groups, the other is a hydroxyl group or an amino group:
  • any one of R 3 to R 6 is a methoxy group, and the remaining is a hydroxyl group or Amino group.
  • Monoethyl ester in formula (1), one of R 1 and R 2 is an ethoxy group, the other is a hydroxyl group or an amino group: in formula (2), any one of R 3 to R 6 is an ethoxy group, and the remaining is a hydroxyl group Or an amino group.
  • R 1 and R 2 are propoxy groups, the other is a hydroxyl group or an amino group:
  • R 3 to R 6 is a propoxy group, and the rest is a hydroxyl group Or an amino group.
  • Monoisopropyl ester in formula (1), one of R 1 and R 2 is an isopropoxy group, the other is a hydroxyl group or an amino group: in formula (2), any one of R 3 to R 6 is an isopropoxy group, the rest Is a hydroxyl group or an amino group.
  • R 1 and R 2 are a butoxy group, the other is a hydroxyl group or an amino group:
  • formula (2) any one of R 3 to R 6 is a butoxy group, and the rest is a hydroxyl group Or an amino group.
  • R 1 and R 2 are an isobutoxy group, the other is a hydroxyl group or an amino group: in formula (2), any one of R 3 to R 6 is an isobutoxy group, and the rest is a hydroxyl group Or an amino group.
  • R 1 and R 2 are a tert-butoxy group, the other is a hydroxyl group or an amino group:
  • any one of R 3 to R 6 is tert- A butoxy group, the rest being a hydroxyl group or an amino group.
  • examples of the derivative in which two carboxyl groups of glutathione are esterified include the di-lower alkyl esters of glutathione listed below.
  • R 1 and R 2 are methoxy groups:
  • any two of R 3 to R 6 are methoxy groups, and the rest are hydroxyl groups or amino groups.
  • Methyl ethyl ester In formula (1), one of R 1 and R 2 is a methoxy group, and the other group is an ethoxy group: In formula (2), any two of R 3 to R 6 are a methoxy group and an ethoxy group, The rest is a hydroxyl group or an amino group.
  • R 1 and R 2 are propoxy groups: in formula (2), any two of R 3 to R 6 are propoxy groups, and the rest are hydroxyl groups or amino groups.
  • Methylpropyl ester In formula (1), one of R 1 and R 2 is a methoxy group, and the other group is a propoxy group: in formula (2), any two of R 3 to R 6 are a methoxy group and a propoxy group, The rest is a hydroxyl group or an amino group.
  • Ethylpropyl ester In formula (1), one of R 1 and R 2 is an ethoxy group, and the other group is a propoxy group: in formula (2), any two of R 3 to R 6 are an ethoxy group and a propoxy group, The rest is a hydroxyl group or an amino group.
  • R 1 and R 2 are isopropoxy groups: in formula (2), any two of R 3 to R 6 are isopropoxy groups, and the rest are hydroxyl groups or amino groups.
  • R 1 and R 2 are isobutyl groups: in formula (2), any two of R 3 to R 6 are isobutyl groups, and the rest are hydroxyl groups or amino groups.
  • examples of the derivative in which three carboxyl groups of glutathione are esterified include the lower alkyl esters of oxidized glutathione listed below.
  • Trimethyl ester In the formula (2), three of R 3 to R 6 are methoxy groups, and the rest are hydroxyl groups or amino groups.
  • Triethyl ester In the formula (2), three of R 3 to R 6 are ethoxy groups, and the rest are hydroxyl groups or amino groups.
  • any one of R 3 to R 6 is a methoxy group, two are ethoxy groups, and the rest are hydroxyl groups or amino groups.
  • any two of R 3 to R 6 are a methoxy group, one is an ethoxy group, and the rest are a hydroxyl group or an amino group.
  • Tripropyl ester In the formula (2), three of R 3 to R 6 are a propoxy group, and the rest are a hydroxyl group or an amino group.
  • any one of R 3 to R 6 is a methoxy group, two are propoxy groups, and the rest are hydroxyl groups or amino groups.
  • any two of R 3 to R 6 are a methoxy group, one is a propoxy group, and the rest are a hydroxyl group or an amino group.
  • any one of R 3 to R 6 is an ethoxy group, two are a propoxy group, and the rest are a hydroxyl group or an amino group.
  • any two of R 3 to R 6 are an ethoxy group, one is a propoxy group, and the rest are a hydroxyl group or an amino group.
  • Tributyl ester In the formula (2), three of R 3 to R 6 are a butoxy group, and the rest are a hydroxyl group or an amino group.
  • Triisopropyl ester In the formula (2), three of R 3 to R 6 are isopropoxy groups, and the rest are hydroxyl groups or amino groups.
  • Triisobutyl ester In the formula (2), three of R 3 to R 6 are isobutyl groups, and the rest are hydroxyl groups or amino groups.
  • examples of the derivative in which four carboxyl groups of glutathione are esterified include the lower alkyl esters of oxidized glutathione listed below.
  • Tetraethyl ester In formula (2), all of R 3 to R 6 are ethoxy groups.
  • Tetrapropyl ester In the formula (2), all of R 3 to R 6 are propoxy groups.
  • Dimethyldipropyl ester In the formula (2), any two of R 3 to R 6 are methoxy groups, and the other two are propoxy groups.
  • Tetrabutyl ester In the formula (2), all of R 3 to R 6 are butoxy groups.
  • preferable ester derivatives of glutathione include reduced glutathione derivatives such as glutathione dimethyl ester, glutathione diethyl ester and glutathione methyl ethyl ester; and oxidized glutathione such as glutathione tetramethyl ester, glutathione tetraethyl ester and glutathione dimethyl diethyl ester. Derivatives can be mentioned.
  • the amide derivative of glutathione may be any one in which at least one carboxyl group of glutathione is amidated.
  • Examples of the derivative in which one carboxyl group of glutathione is amidated include the monoamide, diamide, triamide and tetraamide of glutathione listed below.
  • R 1 and R 2 are an amino group, the other is a hydroxyl group: in formula (2), any one of R 3 to R 6 is an amino group, and the rest is a hydroxyl group.
  • Monoamide monoester in formula (1), one of R 1 and R 2 is an amino group, and the other is an alkoxy group having 1 to 4 carbon atoms: in formula (2), any one of R 3 to R 6 is an amino group And the other group is an alkoxy group having 1 to 4 carbon atoms.
  • R 1 and R 2 are amino groups:
  • formula (2) any two of R 3 to R 6 are amino groups, and the rest are hydroxyl groups.
  • Diamide diester In the formula (2), any two of R 3 to R 6 are amino groups, and the rest are alkoxy groups having 1 to 4 carbon atoms.
  • Triamide In the formula (2), three amino groups of R 3 to R 6 , the remainder being a hydroxyl group or an alkoxy group having 1 to 4 carbon atoms.
  • Tetraamide In formula (2), all of R 3 to R 6 are amino groups.
  • amide derivatives include amide derivatives of reduced glutathione represented by the following formula:
  • R 7 represents an alkoxy group having 1 to 4 carbon atoms
  • R 8 represents an amino group which may be substituted with an alkyl group having 1 to 4 carbon atoms.
  • an amide derivative of oxidized glutathione represented by the following formula:
  • R 9 and R 11 are each independently substituted with an alkoxy group having 1 to 4 carbon atoms
  • R 10 and R 12 are each independently substituted with an alkyl group having 1 to 4 carbon atoms. Good amino group.
  • amide derivatives of reduced glutathione can be synthesized by conventional methods. For example, after protecting the thiol group of reduced glutathione, esterifying the carboxylic acid at both ends, then protecting the amino group of reduced glutathione, and then converting only one highly reactive end to an amide, and finally Obtained by deprotection.
  • both the ester derivative and amide derivative of these glutatins may have a salt form or a solvate form.
  • a salt with an alkali metal such as sodium or potassium; a salt with an alkaline earth metal such as magnesium or calcium; an ammonium salt; or a salt with an inorganic acid such as hydrochloric acid, phosphoric acid, nitric acid, sulfuric acid or sulfurous acid Salts with organic acids such as formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, malic acid, mandelic acid, methanesulfonic acid, p-toluenesulfonic acid Can be mentioned.
  • solvates include solvates with alcohols (for example, methanol, ethanol, propanol, isopropanol), acetone, tetrahydrofuran, dioxane, and the like.
  • alcohols for example, methanol, ethanol, propanol, isopropanol
  • acetone for example, tetrahydrofuran, dioxane, and the like.
  • the refolding agent of the present invention may be any one as long as it contains at least one of the above-mentioned reduced and oxidized glutathione ester derivatives, amide derivatives, salts thereof, or solvates thereof.
  • the above can also be included.
  • the combination is not particularly limited, but at least one selected from the group consisting of reduced glutathione derivatives (ester derivatives, amide derivatives), salts and solvates thereof, and oxidized glutathione derivatives (ester derivatives, amide derivatives). It is preferable that at least one selected from the group consisting of salts and solvates thereof is included in combination.
  • the preferred refolding agent of the present invention includes at least one selected from the group consisting of reduced glutathione derivatives (ester derivatives, amide derivatives), salts and solvates thereof, and oxidized glutathione derivatives (ester derivatives, Amide derivatives), at least one selected from the group consisting of salts and solvates thereof, as long as they are used in a combined state. Absent.
  • preferred refolding agents of the present invention include (1) at least one selected from the group consisting of reduced glutathione derivatives (ester derivatives, amide derivatives), salts and solvates thereof, and an oxidized form.
  • reduced glutathione At least one selected from the group consisting of derivatives (ester derivatives, amide derivatives), salts and solvates thereof, and selected from the group consisting of oxidized glutathione derivatives (ester derivatives, amide derivatives), salts and solvates thereof Or at least one of them sold separately as a kit or set, etc. It includes those passed.
  • the ratio of the refolding agent to be used is not limited, but a reduced glutathione derivative and an oxidized glutathione compounded in a solution containing the target protein (for example, a refolding buffer).
  • concentration (total concentration) of the derivative is usually 0.01 to 100 mmol / L, preferably 0.05 to 10 mmol / L, more preferably 0.1 to 5 mmol / L.
  • the concentration of the unfolding protein contained in the solution containing the target protein is usually 0.001 to 50 mg / mL, preferably 0.01 to 10 mg / mL, more preferably 0.05. Up to 3 mg / mL can be mentioned.
  • proteins to be refolded include peptides, polypeptides, proteins, and composites thereof regardless of the origin or production method of natural or artificial (chemical synthesis method, fermentation method, gene recombination method), etc.
  • Body for example, complex of (poly) peptide or protein and compound, complex of (poly) peptide or protein and saccharide, complex of (poly) peptide or protein and metal, or (poly) peptide or protein
  • Complex with a coenzyme Complex with a coenzyme.
  • the type of protein is not limited, and examples include intracellular proteins, extracellular proteins, membrane proteins, and nuclear proteins. As shown in Experimental Example 3, it is not always necessary to have a protein having a disulfide bond, but examples of a suitable protein include a protein having at least one disulfide bond.
  • the unfolded protein may be a protein unfolded by any method, but from the viewpoint of the refolding effect, a protein unfolded by guanidine hydrochloride, urea or a combination thereof is preferable. More preferred is guanidine hydrochloride, urea, or a protein unfolded in an aqueous solution having a total concentration of usually 0.5 mol / L or more.
  • a reducing agent such as 2-mercaptoethanol, dithiothreitol, cystine or thiophenol is added in addition to the unfolding agent such as guanidine hydrochloride or urea. It may be an unfolded protein.
  • the unfolded protein targeted in the present invention is not particularly limited in its molecular weight, but can usually be a protein of about 1,000 to 10,000,000. From the viewpoint of the refolding effect, a protein having a molecular weight of 10,000 to 250,000 is preferred. In general, there is a correlation between the molecular weight and the difficulty of refolding, and it is said that refolding becomes extremely difficult when the protein has a large molecular weight (molecular weight of about 10,000 or more). According to the refolding method using the refolding agent of the present invention, since a high refolding effect can be obtained, it is also effective for a high molecular weight protein having a molecular weight of 10,000 or more.
  • the refolding method using the refolding agent of the present invention can be particularly suitably used for a protein having a molecular weight of 1,000 or more.
  • the molecular weight of the protein can be measured by general gel electrophoresis.
  • the refolding method of the present invention is a method of refolding an unfolded protein to produce a normal protein having activity, and the unfolded protein is obtained by the presence of the above-described refolding agent of the present invention. It has the process of processing, It is characterized by the above-mentioned.
  • the ratio of the refolding agent to be used is not limited, but as described above, a reduced glutathione derivative and an oxidized glutathione compounded in a solution containing the target protein (for example, a refolding buffer).
  • the concentration (total concentration) of the derivative is usually 0.01 to 100 mmol / L, preferably 0.05 to 10 mmol / L, more preferably 0.1 to 5 mmol / L.
  • the concentration of the unfolding protein contained in the solution containing the target protein (for example, refolding buffer) is usually 0.001 to 50 mg / mL, preferably 0.01 to 10 mg / mL, more preferably 0.05. Up to 3 mg / mL can be mentioned.
  • the refolding buffer used for refolding is not particularly limited as long as it does not have a concentration and composition that can cause the target protein to lose its function.
  • amine buffers such as Tris buffer, MES buffer, and tricine buffer, phosphate buffer, and various Good's buffers can be used.
  • the buffer can be adjusted to pH 2-12, but is preferably in the range of pH 4-10, more preferably in the range of pH 6-9.
  • reduced glutathione and / or oxidized glutathione can be added, and various additives can be added.
  • additives include salts such as sodium chloride and calcium chloride; buffers such as citrate, phosphate and acetate; bases such as sodium hydroxide; acids such as hydrochloric acid and acetic acid; methanol, ethanol, Examples thereof include organic solvents such as propanol.
  • a surfactant, a pH adjuster, or a protein stabilizer can be added to the buffer.
  • any of a nonionic surfactant, a cationic surfactant, an anionic surfactant and an amphoteric surfactant can be used.
  • Nonionic surfactants include, for example, higher alcohol alkylene oxide (hereinafter abbreviated as “AO”) adducts [higher alcohols having 8 to 24 carbon atoms (decyl alcohol, dodecyl alcohol, coconut alkyl alcohol, octadecyl alcohol and Oleyl alcohol, etc.) ethylene oxide (hereinafter abbreviated as “EO”, 1-20 mol adduct, etc.), alkylphenol AO adduct having 6 to 24 alkyl, polypropylene glycol EO adduct and polyethylene glycol PO Examples include adducts, pluronic surfactants, fatty acid AO adducts, polyhydric alcohol type nonionic surfactants, and the like. Preferably, it is a nonionic active agent in that there is little interaction with protein.
  • AO alcohol alkylene oxide
  • EO ethylene oxide
  • Examples of the cationic surfactant include a quaternary ammonium salt type cationic surfactant and an amine salt type cationic cationic surfactant.
  • Examples of the anionic surfactant include ether carboxylic acid or a salt thereof, sulfate ester or ether sulfate ester and salt thereof, sulfonate, sulfosuccinate, fatty acid salt having a hydrocarbon group having 8 to 24 carbon atoms. , Acylated amino acid salts, and naturally occurring carboxylic acids and salts thereof (eg, chenodeoxycholic acid, cholic acid, deoxycholic acid, etc.).
  • Examples of amphoteric surfactants include betaine-type amphoteric surfactants and amino acid-type amphoteric surfactants.
  • a surfactant When a surfactant is used, its content in a solution containing the target protein (eg, refolding buffer) is usually 20% by weight or less, preferably 0.001 to 10% by weight, more preferably 0.01 to 10%. 5% by weight can be mentioned.
  • pH adjusters include Tris (N-tris (hydroxymethyl) methylaminoethanesulfonic acid), HEPES (N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid), and phosphate buffer (eg, And monosodium hydrogen phosphate + aqueous hydrochloric acid solution, or monosodium dihydrogen phosphate + sodium hydroxide aqueous solution).
  • the refolding operation is performed at pH 4-9, preferably pH 6-8.
  • the addition amount is adjusted to adjust to this pH range.
  • the content in the solution containing the target protein (refolding buffer) is usually 20% by weight or less, preferably 0.001 to 10% by weight, more preferably 0.01 to 10% by weight. .
  • protein stabilizers include reducing agents, polyols, metal ions, chelating reagents, and the like.
  • the reducing agent include 2-mercaptoethanol, dithiothreitol, ascorbic acid, reduced glutathione, and cysteine; polyols include glycerin, glucose, sucrose, ethylene glycol, sorbitol, and mannitol; Bivalent metal ions such as magnesium ion, manganese ion, and calcium ion can be mentioned.
  • the chelating reagent include ethylenediaminetetraacetic acid (EDTA) and glycol etherdiamine-N, N, N ′, N′-4 acetic acid (EGTA).
  • its content in the solution containing the target protein is usually 10% by weight or less, preferably 0.001 to 10% by weight, more preferably 0.01 to 1%. % By weight.
  • the solution containing the target protein may further contain an unfolding agent, that is, a denaturing agent (for example, guanidine hydrochloride or urea).
  • an unfolding agent that is, a denaturing agent (for example, guanidine hydrochloride or urea).
  • the content of the unfolding agent may be 0.01 to 200 mM, preferably 0.05 to 10 mM, more preferably 0.1 to 5 mM.
  • the step of treating the unfolded protein in the presence of the refolding agent in the present invention the step of bringing the protein and the refolding agent into contact conditions, specifically, mixing both in a refolding buffer. Mixing with stirring.
  • standing for a certain period of time is included as necessary in order to proceed the refolding more sufficiently.
  • the standing time can be 1 to 50 hours, for example.
  • the temperature condition can be appropriately selected in the range of 0 to 100 ° C. according to the heat resistance of the target protein. Usually, it is in the range of 4 to 30 ° C.
  • the protein regeneration method of the present invention is a method including a step of refolding an unfolded protein using the above-described refolding method, and can be rephrased as a method for preparing a normal protein.
  • the protein regeneration method of the present invention is not particularly limited as long as it has a step of treating the unfolded protein in the presence of the above-described refolding agent of the present invention.
  • a method including the following steps (a) to (b) or (a) to (c) may be used.
  • the protein regeneration method of the present invention comprises the following (2) to It may be a method including the steps (4), (1) to (4) or (1) to (5).
  • Culture process of protein-producing bacteria A protein-producing bacterium such as Escherichia coli is cultured to produce a recombinant.
  • Bacteria lysis step The protein inclusion body is taken out from the protein-producing bacterium using a lysis agent or the like.
  • Unfolding step 0.5 mol / L or more of an unfolding agent (denaturing agent) and, if necessary, 20 mmol / L or less in the protein inclusion body suspension (for example, 10 mg protein / mL) Add a reducing agent and stir lightly and leave at room temperature for several hours. By this process, intramolecular or intermolecular disulfide bonds of proteins present in inclusion bodies are chemically reduced and cleaved.
  • Refolding step The refolding agent of the present invention is added to the protein suspension unfolded in the above step to dilute and lower the unfolding agent concentration, or the unfolded protein suspension Is dialyzed to dilute and lower the unfolding agent concentration, and the refolding agent of the present invention is added thereto for refolding.
  • Isolation step The target normal protein (refolded protein) is isolated from the protein suspension obtained above using column chromatography or the like.
  • Bacterial cells include Streptococci, Staphylococci, Escherichia, Streptomyces and Bacillus cells, fungal cells such as yeast cells and Aspergillus Aspergillus cells, insect cells such as Drosophila S2, Spodoptera Sf9 cells, animal cells such as CHO, COS, Hela, C127, 3T3, BHK, 293, and Bows melanoma cells And plant cells.
  • an expression vector containing cDNA encoding a target protein comprises: (i) isolating a messenger RNA (mRNA) from the target protein-producing cell; cDNA is then synthesized into double stranded DNA and the complementary DNA is incorporated into a phage or plasmid. (Ii) The host is transformed with the obtained recombinant phage or plasmid, and after culture, contains the DNA of interest by hybridization with a DNA probe encoding a part of the protein of interest or by immunoassay using an antibody Isolate phage or plasmid.
  • mRNA messenger RNA
  • (Iii) It can be produced by cutting out the desired cloned DNA from the recombinant DNA and ligating the cloned DNA or a part thereof downstream of the promoter in the expression vector. Thereafter, the host is transformed with the expression vector and cultured by an appropriate method. Cultivation is usually carried out at 15 to 43 ° C. for 3 to 24 hours, and if necessary, aeration and stirring can be added.
  • any of physical disruption by ultrasound, treatment with a lytic enzyme such as lysozyme, treatment with a lysis agent such as a surfactant, etc. can be used. From the viewpoint of productivity, treatment with a lysing agent is preferred.
  • a lysing agent such as a quaternary ammonium type cationic surfactant whose counter ion is a carboxylic acid ion such as formic acid or acetic acid can be mentioned.
  • Examples of the unfolding agent used in the unfolding step (3) above include denaturing agents such as guanidine hydrochloride and urea. Such modifiers can be used alone or in combination.
  • denaturing agents such as guanidine hydrochloride and urea.
  • Such modifiers can be used alone or in combination.
  • 2-mercaptoethanol, dithiothreitol, cystine or thiophenol may be added as a reducing agent.
  • examples of the filler used for column chromatography include silica, dextran, agarose, cellulose, acrylamide, vinyl polymer, and the like.
  • Commercially available products include the Sephadex series, Sephacryl series, Sepharose series (above Pharmacia), Bio-Gel series (Bio-Rad), and the like.
  • Tr (triphenylmethyl) protected reduced glutathione of reduced glutathione (1) (Wako Pure Chemical Industries, Ltd.) (5.0 g, 16.3 mmol) and TrOH (triphenylmethanol) (4.2 g, 16.3 mmol) BF 3 ⁇ OEt 2 (boron trifluoride-ethyl ether complex) (2.20 mL, 18.0 mmol) was added with stirring in 16.5 mL of acetic acid and stirring at 60 ° C. The solution was heated to 80 ° C. and stirred for 30 minutes, and further stirred at room temperature for 45 minutes.
  • Denatured lysozyme is adsorbed on reverse phase resin (Cosmosil 140C 18 -OPN, Nacalai Tesque), then 10% acetonitrile (Kanto Chemical) /0.05% trifluoroacetic acid (Wako Pure Chemical Industries, Ltd.) ), And the denatured lysozyme was eluted with 80% acetonitrile / 0.05% trifluoroacetic acid. The concentration of denatured lysozyme was measured using an absorptiometer (wavelength 280 nm), 1 mg each was taken into a 1.5 mL tube, and dried under reduced pressure.
  • a refolding reaction solution having the following composition was added to 20 ° C and 50 ° C. The sample was allowed to stand for 16 hours under each of the above conditions, and a refolding reaction was performed.
  • ⁇ Refolding reaction solution (1) 50 mM Tris / HCl (pH 8.0) (air oxidation: control) (2) 2 mM GSH, 1 mM GSSG, 50 mM Tris / HCl (pH 8.0) (3) 5 mM GSH, 5 mM GSSG, 50 mM Tris / HCl (pH 8.0) (4) 2 mM GSHEE, 1 mM GSSGEE, 50 mM Tris / HCl (pH 8.0) (5) 5 mM GSHEE, 5 mM GSSGEE, 50 mM Tris / HCl (pH 8.0) (6) 2 mM GSHAd, 1 mM GSSGEE, 50 mM Tris / HCl (pH 8.0) (7) 5 mM GSHAd, 5 mM GSSGEE, 50 mM Tris / HCl (pH 8.0).
  • reaction solution was centrifuged under the conditions of 15,000 ⁇ g and 20 ° C., and the collected soluble fraction (centrifugated supernatant) was measured for lysozyme residual concentration and lysozyme residual activity.
  • the residual concentration of lysozyme was calculated using the molar absorbance coefficient of lysozyme (2.63 mL mg ⁇ 1 cm ⁇ 1 ) and the absorbance obtained from the absorbance measurement.
  • the residual concentration of lysozyme was calculated as a relative value (%) when the lysozyme concentration before denaturation was 100% by weight.
  • the activity of lysozyme was first determined by adding lysozyme solution (soluble fraction collected above) to 1 mL (Wako Pure Chemical Industries, Ltd.) suspension of Micrococcusluteus at a rate of 0.5 mg / mL. (Centrifuge supernatant)) After 10 ⁇ L was added and suspended, scattered light having a wavelength of 600 nm was measured at 20 ° C. for 2 minutes (turbidity measurement). The activity value was calculated from the slope of the turbidity decay linear function thus obtained (reference: Biochemistry (1970). 9, 5015-5023.). The residual activity of lysozyme was calculated as a relative value (%) with respect to 100% by weight of the activity calculated from turbidity in the same way for lysozyme before denaturation.
  • FIG. 1 shows the results of measuring the residual concentration (%) of lysozyme for various refolding agents
  • FIG. 2 shows the results of measuring the residual activity (%) of lysozyme.
  • the solubility of the intermediate during the transition from the denatured state to the natural state (active state) is important. Therefore, it is considered that when the solubility of the intermediate is improved, non-specific aggregation between proteins is suppressed, and many proteins in the natural state can be obtained.
  • lysozyme was recovered at a rate of nearly 100% when reacted at 50 ° C. using 5 M GSHEE and 5 mM GSSGEE as refolding agents. From these results, it is possible to improve the refolding efficiency by using a reduced / oxidized glutathione ester derivative or amide derivative, and to obtain a refolding efficiency of 100% or close to it by appropriately adjusting the refolding conditions. There is a possibility that.
  • a reagent that regulates the redox potential and is most frequently used by protein science researchers includes reduced / oxidized glutathione.
  • reduced / oxidized glutathione is abundant in the endoplasmic reticulum in vivo and is considered to be involved in protein folding in vivo.
  • Experimental example 2 As described above, a method for performing a refolding reaction by adding arginine as an additive as the most efficient refolding method has been reported. Therefore, in this experimental example, as in Experimental Example 1, lysozyme (Seikagaku Corporation) was used as the protein, and reduced / oxidized glutathione (GSH / GSSG), reduced / oxidized glutathione (GSH). / GSGS) added with arginine, reduced / oxidized glutathione ethyl ester (GSHEE / GSSGEE), and reduced glutathione amide (GSHAd) / oxidized glutathione ethyl ester (GSSGEE) as a refolding agent did.
  • Various glutathione, glutathione ethyl ester, and glutathione amide were all the same compounds as used in Experimental Example 1.
  • ⁇ Refolding reaction solution (1) 50 mM Tris / HCl (pH 8.0) (air oxidation: control) (2) 2 mM GSH, 1 mM GSSG, 50 mM Tris / HCl (pH 8.0) (3) 5 mM GSH, 5 mM GSSG, 50 mM Tris / HCl (pH 8.0) (4) 5 mM GSH, 5 mM GSSG, 100 mM Arg, 50 mM Tris / HCl (pH 8.0) (5) 5 mM GSH, 5 mM GSSG, 500 mM Arg, 50 mM Tris / HCl (pH 8.0) (6) 2 mM GSHEE, 1 mM GSSGEE, 50 mM Tris / HCl (pH 8.0) (7) 5 mM GSHEE, 5 mM GSSGEE, 50 mM Tris / HCl (pH 8.0)
  • reaction solution was centrifuged under the conditions of 15,000 ⁇ g and 20 ° C., and the collected soluble fraction (centrifugated supernatant) was analyzed for residual lysozyme concentration and residual lysozyme activity in the same manner as in Experimental Example 1. Measurements were made.
  • FIG. 3 shows the results of measuring the refolding activity (%) of lysozyme [residual concentration of lysozyme (%), residual activity of lysozyme (%)] for various refolding agents.
  • This figure shows that the refolding effect of reduced / oxidized glutathione is enhanced by using arginine in combination with reduced / oxidized glutathione.
  • the arginine used in this case has a high concentration of 500 mM, which affects not only the cost associated with the reagent but also the purification process of the active protein after refolding.
  • the refolding agent of the present invention reduced / oxidized glutathione ethyl ester (GSHEE / GSSGEE), reduced glutathione amide (GSHAd) / oxidized glutathione ethyl ester (GSSGEE)
  • the refolding agent is 5 mM or less.
  • a refolding effect equivalent to that obtained when the above high concentration arginine is added at a low concentration can be obtained.
  • the amount of refolding agent required to refold 1 mg of lysozyme (950 ⁇ L of refolding solution in a 50 mL denaturant solution) is determined as an absolute amount, and 5 mM GSHEE and GSSGEE are 1.8 mg and 3.6 mg, respectively.
  • 500 mM arginine can be as much as 105.3 mg.
  • the conventional method requires a large amount of an additive to improve the refolding efficiency, whereas according to the present invention, a low-concentration refolding agent can be used without using such an additive. The refolding efficiency can be improved.
  • ⁇ Refolding reaction solution > (1) 5 mM GSH, 5 mM GSSG, 50 mM Tris / HCl (pH 8.0) (2) 5 mM GSHEE, 5 mM GSSGEE, 50 mM Tris / HCl (pH 8.0).
  • reaction solution was centrifuged under the conditions of 15,000 ⁇ g and 20 ° C., and the collected soluble fraction (centrifugation supernatant) was measured for lysozyme residual concentration and lysozyme residual activity according to the method described in Experimental Example 1.
  • FIG. 4 shows the initial protein concentration (mg / mL) on the horizontal axis and the turbidity (OD 600 nm ) during the refolding reaction on the vertical axis. From this, during the refolding reaction according to the initial protein concentration. The ratio of the aggregate of the produced protein can be confirmed. When reduced / oxidized glutathione (GSH / GSSG) is used, the protein aggregates in the refolding solution increase as the initial protein concentration increases.
  • GSH / GSSG reduced / oxidized glutathione
  • the protein refolding reaction depends on the initial protein concentration. This is because if the initial protein concentration is high, the collision frequency between proteins during refolding increases, and aggregates are likely to occur. For this reason, it is considered necessary to lower the initial protein concentration as a strategy to increase the refolding efficiency. In fact, refolding efficiency increases significantly in solutions with dilute protein concentrations. However, it is impractical to adopt such a strategy because the amount of protein obtained from such dilute solutions is small. Therefore, development of a reagent and a refolding method for refolding a large amount of a target protein in a high concentration protein solution is desired.
  • FIG. 5 shows the residual concentration of lysozyme in the soluble fraction. From this result, it is understood that when reduced / oxidized glutathione (GSH / GSSG) is used as a refolding agent, the residual concentration of lysozyme decreases in a concentration-dependent manner. In contrast, when reduced / oxidized glutathione ethyl ester (GSHEE / GSSGEE), which is the refolding agent of the invention, is used, it can be seen that a large amount of lysozyme remains in the soluble fraction. From this, the refolding efficiency when glutathione ethyl ester is used is calculated to be about 2 to 12 times that when glutathione is used.
  • the lysozyme residual concentration is high even at a protein concentration (3 mg / mL or more), which is considered impossible with a conventional refolding agent. It is thought that it becomes a more effective refolding reagent as compared with those.
  • FIG. 6 shows the residual activity of lysozyme in the soluble fraction.
  • the reduced / oxidized glutathione ethyl ester (GSHEE / GSSGEE) of the present invention is used as the refolding agent
  • the lysozyme concentration is in any concentration condition (0.1 to 3 mg / mL in the figure).
  • the refolding efficiency was higher than when reduced / oxidized glutathione (GSH / GSSG) was used.
  • the refolding agent of the present invention is an effective refolding agent.
  • oxidized glutathione ethyl ester (CAS RN: 113679-45-1) and reduced glutathione ethyl ester (GSHEE) (CAS RN: 97451-40-6), oxidized glutathione tetramethyl ester ( "Oxidized glutathione methyl ester” or “GSSGME” (CAS RN: 96586-74-2) and reduced glutathione dimethyl ester (also referred to as "reduced glutathione methyl ester” or "GSHME”) (CAS RN: 97451 -41-7)] was confirmed.
  • ribonuclease A and amyloid precursor protein are proteins having a disulfide bond, and carbonic anhydrase is a protein having no disulfide bond.
  • Denatured ribonuclease A is adsorbed on reverse phase resin (Cosmosil 140C 18 -OPN, Nacalai Tesque), then 10% acetonitrile (Kanto Chemical Co.) / 0.05% trifluoroacetic acid (Wako Pure Chemical Industries, Ltd.) )), The denatured ribonuclease A was eluted with 80% acetonitrile / 0.05% trifluoroacetic acid. The concentration of denatured ribonuclease A was measured using an absorptiometer (wavelength 280 nm), 1 mg each was taken into a 1.5 mL tube, and dried under reduced pressure.
  • ⁇ Refolding reaction solution > (1) 5 mM GSH, 5 mM GSSG, 50 mM Tris / HCl (pH 8.0) (2) 5 mM GSHEE, 5 mM GSSGEE, 50 mM Tris / HCl (pH 8.0).
  • reaction solution was centrifuged at 15,000 ⁇ g and 20 ° C., and the residual concentration of ribonuclease A was measured in the same manner as in Experimental Example 1 for the collected soluble fraction (centrifugal supernatant). did.
  • ⁇ Refolding reaction solution > (1) 5 mM GSH, 5 mM GSSG, 50 mM Tris / HCl (pH 8.0) (2) 5 mM GSHEE, 5 mM GSSGEE, 50 mM Tris / HCl (pH 8.0).
  • reaction solution was centrifuged at 15,000 ⁇ g and 20 ° C., and the collected soluble fraction (centrifugated supernatant) was subjected to the same concentration of carbonic anhydrase in the same manner as in Experimental Example 1. Was measured.
  • Amyloid Precursor Protein A large amount of amyloid precursor protein was expressed from an E. coli expression system, and amyloid precursor protein was prepared by Ni chromatography and anion exchange. This was denatured with 5 M urea and 5 mM mercaptoethanol, and the resulting denatured amyloid precursor protein (40 ⁇ L) was used as a refolding agent as reduced / oxidized glutathione, reduced / oxidized glutathione ethyl ester, reduced / 460 ⁇ L of a refolding reaction solution having the following composition containing oxidized glutathione methyl ester was added, and the refolding reaction was performed at 20 ° C. for 16 hours.
  • ⁇ Refolding reaction solution > (1) 5 mM GSH, 5 mM GSSG, 50 mM Tris / HCl (pH 8.0) (2) 5 mM GSHEE, 5 mM GSSGEE, 50 mM Tris / HCl (pH 8.0) (3) 5 mM GSHME, 5 mM GSSGME, 50 mM Tris / HCl (pH 8.0).
  • reaction solution was centrifuged under the conditions of 15,000 ⁇ g and 20 ° C., and the collected soluble fraction (centrifugation supernatant) was subjected to a residual concentration of amyloid precursor protein in the same manner as in Experimental Example 1. Was measured.
  • the refolding efficiency is determined by the residual protein concentration determined after the refolding reaction in the presence of reduced / oxidized glutathione, and the reduced / oxidized glutathione ethyl ester or reduced / oxidized glutathione methyl which is the refolding agent of the present invention. It calculated as a relative value with respect to the protein residual concentration tested after refolding reaction in presence of each ester.
  • ribonuclease A was used as another protein having a disulfide bond
  • carbonic anhydrase was used as a protein without a disulfide bond
  • amyloid precursor protein was used as a membrane protein that was difficult to refold.
  • the folding efficiency was examined.
  • the refolding agent of the present invention comprising an ester derivative of reduced / oxidized glutathione such as reduced / oxidized glutathione ethyl ester or reduced / oxidized glutathione methyl ester is used for any protein. It was confirmed that the refolding efficiency was improved by using it compared to the case of using reduced / oxidized glutathione.
  • the membrane protein has a higher molecular weight than other proteins, and there are more hydrophobic amino acids than other proteins.
  • the refolding agent of the present invention is considered to be effective for a protein rich in hydrophobicity.
  • the refolding agent of the present invention is effective even for proteins having no disulfide bond such as carbonic anhydrase, it is considered effective for refolding a wide range of proteins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

 本発明は、アンフォールディングした蛋白質を、活性を有する本来の立体構造に再構築(リフォールディング)するうえで好適に用いられるリフォールディング剤を提供する。また当該リフォールディング剤を用いた蛋白質の再生方法(リフォールディング方法)を提供する。かかる本発明は、アンフォールディングされた蛋白質のリフォールディング剤として、酸化型グルタチオンのエステル誘導体およびアミド誘導体、還元型グルタチオンのエステル誘導体およびアミド誘導体、ならびにそれらの酸付加塩および溶媒和物からなる群から選択される少なくとも一種を有効成分とするものを用いることを特徴とする。

Description

リフォールディング剤および蛋白質のリフォールディング方法
 本発明は、ミスフォールディングして不活性になった蛋白質を、アンフォールディングした後、活性を有する本来の立体構造に再構築(リフォールディング)するうえで好適に用いられる、蛋白質のリフォールディング剤に関する。また本発明は、当該リフォールディング剤を用いた蛋白質のリフォールディング方法および蛋白質の再生方法に関する。
 遺伝子操作を行なった大腸菌などの原核生物や酵母などの真核生物や無細胞抽出系などで人為的に目的蛋白質を発現させる方法において、目的蛋白質はミスフォールディングして不活性になった状態、すなわち封入体(不活性凝集物)として得られることが多い。このため、これを尿素等の変性剤を含む溶液に溶解させることにより、一旦蛋白質をアンフォールディングさせた後、当該溶液を希釈して変性剤の濃度を低下させること等により、蛋白質を本来の立体構造にリフォールディングさせ、再生するという手法が、研究室レベルから工業的生産に至るまでとられている。
 しかし、かかるリフォールディングの過程で、蛋白質が再び凝集するなど、リフォールディングとミスフォールディングとが並行して生じる場合があり、リフォールディング収率(正常蛋白質回収率)が低下しやすいという問題があった。この問題を解消するため、従来からリフォールディング時の凝集を抑制し、リフォールディング収率を上げるための添加剤が種々報告されている。例えば、非特許文献1~6および特許文献1および2には、アルギニン、L-アルギニンアミドおよびその誘導体、アルギニンエチルエステルやニトロアルギニンエステルなどのアミノ酸エステルが蛋白質のリフォールディング時の凝集抑制剤として有効であることが記載されている。また非特許文献7には、アセトン、アセトアミド、尿素誘導体等の小分子添加剤が蛋白質の凝集抑制およびリフォールディング収率の向上に有効であることが記載されており、さらに非特許文献5および8には、酸化型/還元型グルタチオンおよびpKa値が中性付近のチオール化合物がジスルフィド結合を有する蛋白質のリフォールディング時の凝集抑制剤として有効であることが記載されている。
 これらは特定の蛋白質に適用可能であるが、色々な性状の蛋白質に対して適用可能という汎用性を有するものではない。また、個々の蛋白質毎に特定のリフォールディング条件を確立する必要があるため煩雑であり、リフォールディング収率もそれほど高いものではなかった。
 そこで広範囲の蛋白質についてリフォールディングが可能で、しかもリフォールディング収率の高い凝集抑制剤またはリフォールディング剤の開発が求められている。
特開2005-132771号公報 特開2007-332093号公報
K. Shiraki et al., Journal of Biotechnology, 130 (2007) 153-160 白木ら、生物工学、84(10), 395 (2006) 白木、化学と生物、Vol.43 No.1, Page 43-46 (2005) 白木ら、日本化学会バイオテクノロジー部会シンポジウム講演要旨集、Vol.5, Page 16 (2002) 白木、生物物理、44(2), Page 87-90 (2004) Shiraki K. et al., Biotechnol. Prog., 2005, 21, 640-643 Yasuda M. et al., Biotechnol. Prog., 1998, 14, 601-606 Jonathan D. G. et al., J.Am. Chem. Soc., 124, 3885-3892 (2002)
 本発明は、かかる事情に鑑みてなされたものであり、アンフォールディングした蛋白質をリフォールディングさせるうえで、それを促進させる補助剤として有用な「リフォールディング剤」を提供することを目的とする。また本発明は、生体内に広汎に存在するグルタチオンの誘導体を使用するので、広範囲の蛋白質に適用できる可能性が高く、また高いリフォールディング収率が得られる、アンフォールディングした蛋白質に対するリフォールディング方法、および当該蛋白質の再生方法を提供することを目的とする。
 本発明者らは、上記目的を達成するために日夜鋭意検討していたところ、還元型グルタチオンまたは/および酸化型グルタチオンの、エステル誘導体または/およびアミド誘導体の存在下でアンフォールディングした蛋白質を処理することにより、当該蛋白質が有意に高い割合でリフォールディングし、活性を有する正常な蛋白質、すなわち本来の立体構造を有する蛋白質として高収率に再生することができることを見出した。すなわち、本発明者らは、還元型または/および酸化型グルタチオンの、エステル誘導体または/およびアミド誘導体が、アンフォールディングした蛋白質のリフォールディング剤として有用であり、かかるリフォールディング剤によれば、蛋白質のリフォールディング収率を効率よく向上させることができることを確認した。
 本発明は、かかる知見に基づいて完成したものであり、下記の実施態様を包含するものである。
 (I)リフォールディング剤
 (I-1)還元型グルタチオンのエステル誘導体およびアミド誘導体、酸化型グルタチオンのエステル誘導体およびアミド誘導体、ならびにそれらの酸付加塩および溶媒和物からなる群から選択される少なくとも一種を有効成分とする、アンフォールディングされた蛋白質のリフォールディング剤。
 (I-2)下式
Figure JPOXMLDOC01-appb-C000005
〔式中、RおよびRはそれぞれ独立して、水酸基、炭素数1~4のアルコキシ基、または炭素数1~4のアルキル基で置換されていてもよいアミノ基を示す。ただし、R1とR2とは同時に水酸基ではない。〕
で表される還元型グルタチオン誘導体、
下式
Figure JPOXMLDOC01-appb-C000006
〔式中、R、R、RおよびR6 はそれぞれ独立して、水酸基、炭素数1~4のアルコキシ基、または炭素数1~4のアルキル基で置換されていてもよいアミノ基を示す。ただし、R、R、RおよびRは同時に水酸基ではない。〕
で表される酸化型グルタチオン誘導体、ならびに
それらの塩および溶媒和物からなる群から選択される少なくとも一種を有効成分とする、アンフォールディングされた蛋白質のリフォールディング剤。
 (I-3)還元型グルタチオン誘導体、その塩および溶媒和物からなる群から選択される少なくとも1種と、酸化型グルタチオン誘導体、その塩および溶媒和物からなる群から選択される少なくとも1種とを含有する、(I-1)または(I-2)に記載するリフォールディング剤。
 (I-4)還元型グルタチオン誘導体、その塩および溶媒和物からなる群から選択される少なくとも1種と、酸化型グルタチオン誘導体、その塩および溶媒和物からなる群から選択される少なくとも1種とを、それぞれ別個に包装された形態で有する、(I-1)または(I-2)に記載するリフォールディング剤。
 (I-5)上記還元型または酸化型グルタチオンのエステル誘導体が、還元型または酸化型のグルタチオンエチルエステルまたはグルタチオンメチルエステルであり、還元型または酸化型グルタチオンのアミド誘導体が、還元型または酸化型のグルタチオンアミドである、(I-1)乃至(I-4)のいずれかに記載するリフォールディング剤。
 (I-6)上記還元型グルタチオンのエステル誘導体が還元型グルタチオンのジエチルエステル若しくはジメチルエステル、酸化型グルタチオンのエステル誘導体が酸化型グルタチオンのテトラエチルエステル若しくはテトラメチルエステル、還元型グルタチオンのアミド誘導体が還元型グルタチオンのモノアミド若しくはモノアミドモノエステル、酸化型グルタチオンのアミド誘導体が酸化型グルタチオンのジアミド若しくはジアミドジエステルである、(I-5)に記載するリフォールディング剤。
 (II)アンフォールディングされた蛋白質のリフォールディング方法
(II-1)アンフォールディングされた蛋白質を、(I-1)乃至(I-6)のいずれかに記載するリフォールディング剤の存在下で処理する工程を有する、上記蛋白質のリフォールディング方法。
 (III)アンフォールディングされた蛋白質の再生方法
(III-1)上記(II-1)に記載するリフォールディング方法を用いて、アンフォールディングされた蛋白質をリフォールディングする工程を含む、蛋白質の再生方法。
 (IV)新規グルタチオン誘導体
(IV-1)下式
Figure JPOXMLDOC01-appb-C000007
〔式中、Rは炭素数1~4のアルコキシ基を、Rは、炭素数1~4のアルキル基で置換されていてもよいアミノ基を示す。〕で表されるか、または
下式
Figure JPOXMLDOC01-appb-C000008
〔式中、RおよびR11はそれぞれ独立して炭素数1~4のアルコキシ基を、R10およびR12はそれぞれ独立して炭素数1~4のアルキル基で置換されていてもよいアミノ基を示す。〕
で表されるグルタチオン誘導体。
 (IV-2)上記グルタチオン誘導体が、式(3)中、Rがメトキシル基、Rがアミノ基である還元型グルタチオンのメチルエステルモノアミドである、(IV-1)記載のグルタチオン誘導体。
 本発明のリフォールディング剤によれば、アンフォールディングした蛋白質の再凝集による不活性化を抑制し、高い割合で正常にリフォールディングさせることができるため、活性を有する正常蛋白質(本来の立体構造を有する蛋白質)を高収率で得ることができる。本発明によれば、これまで還元型グルタチオンまたは/及び酸化型グルタチオンの使用では十分な収率が望めなかった蛋白質についても、より高いリフォールディング収率を得ることが可能である。また、本発明のリフォールディング剤によれば、少量の添加により、高いリフォールディング収率が得られ、蛋白質が高濃度の場合であっても凝集することなくリフォールディングが可能である。
    
I.リフォールディング剤
 本発明のリフォールディング剤は、アンフォールディングされた蛋白質のリフォールディングを補助し、リフォールディング収率を向上させるために用いられるものであり、還元型グルタチオンのエステル誘導体およびアミド誘導体、酸化型グルタチオンのエステル誘導体およびアミド誘導体、ならびにそれらの塩および溶媒和物からなる群から選択される少なくとも一種を有効成分とすることを特徴とする。
 また、本発明のリフォールディング剤は、好ましくは、下式で示される還元型グルタチオンのエステル誘導体およびアミド誘導体:
Figure JPOXMLDOC01-appb-C000009
〔式中、RおよびRはそれぞれ独立して、水酸基、炭素数1~4のアルコキシ基、または炭素数1~4のアルキル基で置換されていてもよいアミノ基を示す。ただし、R1とR2とは同時に水酸基ではない。〕、
下式で示される酸化型グルタチオンのエステル誘導体およびアミド誘導体:
Figure JPOXMLDOC01-appb-C000010
〔式中、R、R、RおよびR6 はそれぞれ独立して、水酸基、炭素数1~4のアルコキシ基、または水素原子が炭素数1~4のアルキル基で置換されていてもよいアミノ基を示す。ただし、R、R、RおよびRは同時に水酸基ではない。〕、
ならびにそれらの塩および溶媒和物からなる群から選択される少なくとも一種を有効成分とすることを特徴とする。
 ここで炭素数1~4のアルコキシ基としては、具体的にはメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、およびtert-ブトキシ基を挙げることができる。好ましくはメトキシ基およびエトキシ基である。また炭素数1~4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、およびtert-チル基を挙げることができる。好ましくはメチル基である。
 還元型グルタチオンまたは酸化型グルタチオン(以下、これらを総称する場合は、単に「グルタチオン」と記載する)のエステル誘導体は、グルタチオンの少なくとも1つのカルボキシル基がエステル化されたものであればよい。
 例えばグルタチオンの1つのカルボキシル基がエステル化された誘導体としては、下記に掲げるグルタチオンのモノ低級アルキルエステルを挙げることができる。
 モノメチルエステル:式(1)中、RとRの一方がメトキシ基、他方が水酸基またはアミノ基:式(2)中、R~Rのいずれか一つがメトキシ基、残りが水酸基またはアミノ基。
 モノエチルエステル:式(1)中、RとRの一方がエトキシ基、他方が水酸基またはアミノ基:式(2)中、R~Rのいずれか一つがエトキシ基、残りが水酸基またはアミノ基。
 モノプロピルエステル:式(1)中、RとRの一方がプロポキシ基、他方が水酸基またはアミノ基:式(2)中、R~Rのいずれか一つがプロポキシ基、残りが水酸基またはアミノ基。
 モノイソプロピルエステル:式(1)中、RとRの一方がイソプロポキシ基、他方が水酸基またはアミノ基:式(2)中、R~Rのいずれか一つがイソプロポキシ基、残りが水酸基またはアミノ基。
 モノブチルエステル:式(1)中、RとRの一方がブトキシ基、他方が水酸基またはアミノ基:式(2)中、R~Rのいずれか一つがブトキシ基、残りが水酸基またはアミノ基。
 モノイソブチルエステル:式(1)中、RとRの一方がイソブトキシ基、他方が水酸基またはアミノ基:式(2)中、R~Rのいずれか一つがイソブトキシ基、残りが水酸基またはアミノ基。
 モノtert-ブチルエステル:式(1)中、RとRの一方がtert-ブトキシ基、他方が水酸基またはアミノ基:式(2)中、R~Rのいずれか一つがtert-ブトキシ基、残りが水酸基またはアミノ基。
 また、例えば、グルタチオンの2つのカルボキシル基がエステル化された誘導体としては、下記に掲げるグルタチオンのジ低級アルキルエステルを挙げることができる。
 ジメチルエステル:式(1)中、RとRの両方がメトキシ基:式(2)中、R~Rのいずれか二つがメトキシ基、残りが水酸基またはアミノ基。
 ジエチルエステル:式(1)中、RとRの両方がエトキシ基:式(2)中、R~Rのいずれか二つがエトキシ基、残りが水酸基またはアミノ基。
 メチルエチルエステル:式(1)中、RとRの一方がメトキシ基、他基がエトキシ基:式(2)中、R~Rのいずれか二つがそれぞれメトキシ基とエトキシ基、残りが水酸基またはアミノ基。
 ジプロピルエステル:式(1)中、RとRの両方がプロポキシ基:式(2)中、R~Rのいずれか二つがプロポキシ基、残りが水酸基またはアミノ基。
 メチルプロピルエステル:式(1)中、RとRの一方がメトキシ基、他基がプロポキシ基:式(2)中、R~Rのいずれか二つがそれぞれメトキシ基とプロポキシ基、残りが水酸基またはアミノ基。
 エチルプロピルエステル:式(1)中、RとRの一方がエトキシ基、他基がプロポキシ基:式(2)中、R~Rのいずれか二つがそれぞれエトキシ基とプロポキシ基、残りが水酸基またはアミノ基。
 ジブチルエステル:式(1)中、RとRの両方がブトキシ基:式(2)中、R~Rのいずれか二つがブトキシ基、残りが水酸基またはアミノ基。
 ジイソプロピルエステル:式(1)中、RとRの両方がイソプロポキシ基:式(2)中、R~Rのいずれか二つがイソプロポキシ基、残りが水酸基またはアミノ基。
 ジイソブチルエステル:式(1)中、RとRの両方がイソブチル基:式(2)中、R~Rのいずれか二つがイソブチル基、残りが水酸基またはアミノ基。
 また、例えば、グルタチオンの3つのカルボキシル基がエステル化された誘導体としては、下記に掲げる酸化型グルタチオンの低級アルキルエステルを挙げることができる。
 トリメチルエステル:式(2)中、R~Rの3つがメトキシ基、残りが水酸基またはアミノ基。
 トリエチルエステル:式(2)中、R~Rの3つがエトキシ基、残りが水酸基またはアミノ基。
 モノメチルジエチルエステル:式(2)中、R~Rのいずれか1つがメトキシ基、2つがエトキシ基、残りが水酸基またはアミノ基。
 ジメチルモノエチルエステル:式(2)中、R~Rのいずれか2つがメトキシ基、1つがエトキシ基、残りが水酸基またはアミノ基。
 トリプロピルエステル:式(2)中、R~Rの3つがプロポキシ基、残りが水酸基またはアミノ基。
 モノメチルジプロピルエステル:式(2)中、R~Rのいずれか1つがメトキシ基、2つがプロポキシ基、残りが水酸基またはアミノ基。
 ジメチルモノプロピルエステル:式(2)中、R~Rのいずれか2つがメトキシ基、1つがプロポキシ基、残りが水酸基またはアミノ基。
 モノエチルジプロピルエステル:式(2)中、R~Rのいずれか1つがエトキシ基、2つがプロポキシ基、残りが水酸基またはアミノ基。
 ジエチルモノプロピルエステル:式(2)中、R~Rのいずれか2つがエトキシ基、1つがプロポキシ基、残りが水酸基またはアミノ基。
 トリブチルエステル:式(2)中、R~Rの3つがブトキシ基、残りが水酸基またはアミノ基。
 トリイソプロピルエステル:式(2)中、R~Rの3つがイソプロポキシ基、残りが水酸基またはアミノ基。
 トリイソブチルエステル:式(2)中、R~Rの3つがイソブチル基、残りが水酸基またはアミノ基。
 また、例えば、グルタチオンの4つのカルボキシル基がエステル化された誘導体としては、下記に掲げる酸化型グルタチオンの低級アルキルエステルを挙げることができる。
 テトラメチルエステル:式(2)中、R~Rのすべてがメトキシ基。
 テトラエチルエステル:式(2)中、R~Rのすべてがエトキシ基。
 ジメチルジエチルエステル:式(2)中、R~Rのいずれか二つがメトキシ基、他の二つがエトキシ基。
 テトラプロピルエステル:式(2)中、R~Rのすべてがプロポキシ基。
 ジメチルジプロピルエステル:式(2)中、R~Rのいずれか二つがメトキシ基、他の二つがプロポキシ基。
 ジエチルジプロピルエステル:式(2)中、R~Rのいずれか二つがエトキシ基、他の二つがプロポキシ基。
 テトラブチルエステル:式(2)中、R~Rのすべてがブトキシ基。
 テトライソプロピルエステル:式(2)中、R~Rのすべてがイソプロポキシ基。
 テトライソブチルエステル:式(2)中、R~Rのすべてがイソブチル基。
 本発明において、好ましいグルタチオンのエステル誘導体としては、グルタチオンジメチルエステル、グルタチオンジエチルエステル、グルタチオンメチルエチルエステル等の還元型グルタチオン誘導体;並びにグルタチオンテトラメチルエステル、グルタチオンテトラエチルエステル、グルタチオンジメチルジエチルエステル等の酸化型グルタチオン誘導体を挙げることができる。
 グルタチオンのアミド誘導体としては、グルタチオンの少なくとも1つのカルボキシル基がアミド化されたものであればよい。
 グルタチオンの1つのカルボキシル基がアミド化された誘導体としては、下記に掲げるグルタチオンのモノアミド、ジアミド、トリアミドおよびテトラアミドを挙げることができる。
 モノアミド:式(1)中、RとRの一方がアミノ基、他方が水酸基:式(2)中、R~Rのいずれか一つがアミノ基、残りが水酸基。
 モノアミドモノエステル:式(1)中、RとRの一方がアミノ基、他方が炭素数1~4のアルコキシ基:式(2)中、R~Rのいずれか一つがアミノ基、他の1つ基が炭素数1~4のアルコキシ基。
 ジアミド:式(1)中、RとRの両方がアミノ基:式(2)中、R~Rのいずれか二つがアミノ基、残りが水酸基。
 ジアミドジエステル:式(2)中、R~Rのいずれか二つがアミノ基、残りが炭素数1~4のアルコキシ基。
 トリアミド:式(2)中、R~Rの3つアミノ基、残りが水酸基または炭素数1~4のアルコキシ基。
 テトラアミド:式(2)中、R~Rの全てがアミノ基。
 好ましいアミド誘導体としては、下式で示される還元型グルタチオンのアミド誘導体を挙げることができる:
Figure JPOXMLDOC01-appb-C000011
〔式中、Rは炭素数1~4のアルコキシ基を、Rは、炭素数1~4のアルキル基で置換されていてもよいアミノ基を示す。〕、並びに
下式で示される酸化型グルタチオンのアミド誘導体:
Figure JPOXMLDOC01-appb-C000012
〔式中、RおよびR11はそれぞれ独立して、炭素数1~4のアルコキシ基を、R10およびR12はそれぞれ独立して、炭素数1~4のアルキル基で置換されていてもよいアミノ基を示す。〕。
 より好ましくは、式(3)において、Rがメトキシ基、Rがアミノ基である、還元型グルタチオンのモノアミドモノメチルエステル誘導体である。かかる還元型グルタチオンのアミド誘導体は、常法により合成できる。例えば、還元型グルタチオンのチオール基を保護した後、両末端のカルボン酸をエステル化し、次いで、還元型グルタチオンのアミノ基を保護した後、反応性の高い一端のみをアミドに変換し、最終的に脱保護することによって得られる。
 なお、これらのグルタチンのエステル誘導体およびアミド誘導体は、いずれも塩の形態や溶媒和物の形態を有していてもよい。ここで塩としては、ナトリウムやカリウムなどのアルカリ金属との塩;マグネシウムやカルシウムなどのアルカリ土類金属との塩;アンモニウム塩;または塩酸、燐酸、硝酸、硫酸、亜硫酸などの無機酸との塩;ギ酸、酢酸、プロピオン酸、酪酸、シュウ酸、マロン酸、コハク酸、マレイン酸、フマル酸、酒石酸、リンゴ酸、マンデル酸、メタンスルホン酸、p-トルエンスルホン酸等の有機酸との塩を挙げることができる。また溶媒和物としては、水和物のほか、アルコール(例えば、メタノール、エタノール、プロパノール、イソプロパノール)、アセトン、テトラヒドロフラン、ジオキサンなどの溶媒との溶媒和物を挙げることができる。
 本発明のリフォールディング剤は、前述する還元型および酸化型のグルタチオンのエステル誘導体、アミド誘導体、その塩またはその溶媒和物を少なくとも一種含有するものであればよいが、任意に選択される2種以上を含むこともできる。この場合、組み合わせは特に制限されないが、還元型グルタチオン誘導体(エステル誘導体、アミド誘導体)、その塩および溶媒和物からなる群から選択される少なくとも一種と、酸化型グルタチオン誘導体(エステル誘導体、アミド誘導体)、その塩および溶媒和物からなる群から選択される少なくとも一種とを、組み合わせて含むことが好ましい。なお、かかる本発明の好適なリフォールディング剤は、還元型グルタチオン誘導体(エステル誘導体、アミド誘導体)、その塩および溶媒和物からなる群から選択される少なくとも一種と、酸化型グルタチオン誘導体(エステル誘導体、アミド誘導体)、その塩および溶媒和物からなる群から選択される少なくとも一種とが、組み合わされた状態で使用されるものであればよく、この限りにおいて、販売形態および流通形態を特に問うものではない。
 具体的には、本発明の好適なリフォールディング剤には、(1)還元型グルタチオン誘導体(エステル誘導体、アミド誘導体)、その塩および溶媒和物からなる群から選択される少なくとも一種と、酸化型グルタチオン誘導体(エステル誘導体、アミド誘導体)、その塩および溶媒和物からなる群から選択される少なくとも一種とが、混合された状態で販売または流通されるもの(混合形態)、(2)還元型グルタチオン誘導体(エステル誘導体、アミド誘導体)、その塩および溶媒和物からなる群から選択される少なくとも一種と、酸化型グルタチオン誘導体(エステル誘導体、アミド誘導体)、その塩および溶媒和物からなる群から選択される少なくとも一種とが、キットまたはセットなどとして、それぞれ別個に包装された状態で販売または流通されるものが含まれる。
 アンフォールディングされた蛋白質をリフォールディングするにあたり、使用されるリフォールディング剤の割合としては、制限されないが、対象蛋白質を含む溶液(例えばリフォールディング緩衝液)に配合される還元型グルタチオン誘導体および酸化型グルタチオン誘導体の濃度(総濃度)として、通常0.01~100ミリモル/L、好ましくは0.05~10ミリモル/L、より好ましくは0.1~5ミリモル/Lを挙げることができる。
 還元型グルタチオン誘導体と酸化型グルタチオン誘導体との配合比は、ジスルフィド結合を有さない蛋白質においては、制限はなく、ジスルフィド結合を有する蛋白質においては、好ましくは還元型:酸化型 = 1:1~20:1、より好ましくは還元型:酸化型 = 2:1~10:1である。
 ここで、上記対象蛋白質を含む溶液(例えば、リフォールディング緩衝液)中に含まれるアンフォールディング蛋白質の濃度としては、通常0.001~50 mg/mL、好ましくは0.01~10 mg/mL、より好ましくは0.05~3 mg/mLを挙げることができる。
 本発明において、リフォールディングする対象の蛋白質には、天然または人造(化学合成法、発酵法、遺伝子組み換え法)などの由来や製造方法の別にかかわらず、ペプチド、ポリペプチド、蛋白質、およびこれらの複合体(例えば、(ポリ)ペプチドまたは蛋白質と化合物との複合体、(ポリ)ペプチドまたは蛋白質と糖類との複合体、(ポリ)ペプチドまたは蛋白質と金属との複合体、(ポリ)ペプチドまたは蛋白質と補酵素との複合体など)が含まれる。なお、蛋白質の種類は問わず、例えば細胞内蛋白質、細胞外蛋白質、膜蛋白質、および核内蛋白質がいずれも含まれる。実験例3に示すように、必ずしもジスルフィド結合を有する蛋白質である必要はないが、好適な蛋白質として少なくとも1つのジスルフィド結合を含む蛋白質を挙げることができる。
 好ましくは、大腸菌などの原核生物や酵母などの真核生物や無細胞抽出系などの異種発現系を用いて遺伝子工学的に生産された組み換え体である。かかる組み換え体は、しばしば不溶性で不活性の凝集体、いわゆる封入体として得られるため、本発明のリフォールディング技術が好適に使用できる。
 本発明においてアンフォールディングされた蛋白質とは、いかなる方法でアンフォールディングされた蛋白質でもよいが、リフォールディング効果の観点から好ましいのは、塩酸グアニジン、尿素またはこれらの併用でアンフォールディングされた蛋白質である。より好ましくは、塩酸グアニジン、尿素またはこれらの合計の濃度が通常0.5モル/L以上の水溶液中でアンフォールディングされた蛋白質である。なお、蛋白質が、分子内にジスルフィド結合を含むものである場合には、塩酸グアニジンや尿素といった上記アンフォールディング剤以外に、さらに2-メルカプトエタノール、ジチオスレイトール、シスチンまたはチオフェノールなどの還元剤を加えてアンフォールディングされた蛋白質であってもよい。
 本発明において対象とするアンフォールディングされた蛋白質は、その分子量を特に制限するものではないが、通常1,000~10,000,000程度の蛋白質を挙げることができる。リフォールディング効果の点から、好ましくは分子量10,000~250,000の蛋白質である。一般に分子量の大きさとリフォールディングのし難さには相関性があり、分子量の大きな蛋白質(分子量10,000以上程度)になるとリフォールディングが著しく困難になるとされている。本発明のリフォールディング剤を用いたリフォールディング方法によれば、高いリフォールディング効果を得ることができるので、分子量10,000以上の高分子量の蛋白質に対しても有効である。分子量1,000未満の蛋白質は容易に巻き戻すことができるので、本発明のリフォールディング剤を用いたリフォールディング方法は、分子量1,000以上の蛋白質に対して特に好適に使用することができる。なお蛋白質の分子量は、一般的なゲル電気泳動法などで測定することができる。
 II.リフォールディング方法
 本発明のリフォールディング方法は、アンフォールディングされた蛋白質をリフォールディングし、活性を有する正常蛋白質を産生する方法であり、アンフォールディングされた蛋白質を前述する本発明のリフォールディング剤の存在で処理する工程を有することを特徴とする。
 このリフォールディング工程において、使用されるリフォールディング剤の割合としては制限されないが、前述するように、対象蛋白質を含む溶液(例えば、リフォールディング緩衝液)に配合される還元型グルタチオン誘導体および酸化型グルタチオン誘導体の濃度(総濃度)として、通常0.01~100ミリモル/L、好ましくは0.05~10ミリモル/L、より好ましくは0.1~5ミリモル/Lを挙げることができる。ここで、上記対象蛋白質を含む溶液(例えば、リフォールディング緩衝液)中に含まれるアンフォールディング蛋白質の濃度としては、通常0.001~50 mg/mL、好ましくは0.01~10 mg/mL、より好ましくは0.05~3 mg/mLを挙げることができる。
 リフォールディングに使用されるリフォールディング緩衝液としては、目的の蛋白質の機能を失わせるような濃度及び組成でなければ特に限定されない。例えば、トリス緩衝液、MES緩衝液およびトリシン緩衝液等のアミン系緩衝液、リン酸緩衝液、または各種Good's bufferなどを挙げることができる。緩衝液は、pH2~12に調整することができるが、好ましくはpH4~10の範囲、より好ましくはpH6~9の範囲である。
 当該緩衝液には、還元型グルタチオンまたは/および酸化型グルタチオンを添加することができるほか、種々の添加物を添加することが可能である。かかる添加物としては、塩化ナトリウム、塩化カルシウム等の塩類;クエン酸塩、リン酸塩、および酢酸塩等の緩衝液;水酸化ナトリウム等の塩基類;塩酸や酢酸等の酸類;メタノール、エタノール、プロパノール等の有機溶媒等を挙げることができる。また、上記緩衝剤には、還元型グルタチオンまたは/および酸化型グルタチオン、または種々の添加物のほか、界面活性剤、pH調整剤、または蛋白質安定化剤を配合することもできる。
 ここで界面活性剤としては、ノニオン性界面活性剤、カチオン性界面活性剤、アニオン性界面活性剤および両性界面活性剤のいずれも使用することができる。
 ノニオン性界面活性剤としては、例えば、高級アルコールアルキレンオキサイド(以下、「AO」と略記する)付加物[炭素数8~24の高級アルコール(デシルアルコール、ドデシルアルコール、ヤシ油アルキルアルコール、オクタデシルアルコールおよびオレイルアルコールなど)のエチレンオキサイド(以下、「EO」と略記する)1~20モル付加物など]、炭素数6~24のアルキルを有するアルキルフェノールのAO付加物、ポリプロピレングリコールEO付加物およびポリエチレングリコールPO付加物、プルロニック型界面活性剤、および脂肪酸AO付加物、多価アルコール型非イオン性界面活性剤などが挙げられる。好ましくは、蛋白質との相互作用が少ない点で、ノニオン性活性剤である。
 カチオン性界面活性剤としては、例えば、第4級アンモニウム塩型カチオン性界面活性剤およびアミン塩型カチオンカチオン性界面活性剤などが挙げられる。アニオン性界面活性剤としては、例えば、炭素数8~24の炭化水素基を有する、エーテルカルボン酸またはその塩、硫酸エステルもしくはエーテル硫酸エステルおよびそれらの塩、スルホン酸塩、スルホコハク酸塩、脂肪酸塩、アシル化アミノ酸塩、並びに天然由来のカルボン酸およびその塩(たとえばケノデオキシコール酸、コール酸、デオキシコール酸など)が挙げられる。両性界面活性剤としては、例えば、ベタイン型両性界面活性剤およびアミノ酸型両性界面活性剤が挙げられる。
 界面活性剤を用いる場合、対象蛋白質を含む溶液(例えばリフォールディング緩衝液)中のその含有量としては、通常20重量%以下、好ましくは0.001~10重量%、より好ましくは0.01~5重量%を挙げることができる。
 pH調整剤としては、Tris(N-トリス(ヒドロキシメチル)メチルアミノエタンスルホン酸)、HEPES(N-2-ヒドロキシエチルピペラジン-N’-2-エタンスルホン酸)、およびリン酸緩衝剤(例えば、リン酸1水素2ナトリウム+塩酸水溶液、またはリン酸2水素1ナトリウム+水酸化ナトリウム水溶液)などを挙げることができる。本発明において、リフォールディング操作はpH4~9、好ましくはpH6~8で行われる。このため、pH調整剤を添加する場合、その添加量は、このpH範囲に調整するように調節される。例えば対象蛋白質を含む溶液(リフォールディング緩衝液)中のその含有量として、通常20重量%以下、好ましくは0.001~10重量%、より好ましくは0.01~10重量%を挙げることができる。
 蛋白質安定化剤としては、還元剤、ポリオール類、金属イオン、キレート試薬などが挙げられる。ここで還元剤としては2-メルカプトエタノール、ジチオトレイトール、アスコルビン酸、還元型グルタチオンおよびシステインなどが;ポリオール類としてはグリセリン、ブドウ糖、ショ糖、エチレングリコール、ソルビトールおよびマンニトールなどが;金属イオンとしてはマグネシウムイオン、マンガンイオンおよびカルシウムイオンなどの2価金属イオンが挙げられる。ここで、キレート試薬としてはエチレンジアミン4酢酸(EDTA)およびグリコールエーテルジアミン-N,N,N’,N’-4酢酸(EGTA)などが挙げられる。
 蛋白質安定化剤を用いる場合、対象蛋白質を含む溶液(リフォールディング緩衝液)中のその含有量として、通常10重量%以下、好ましくは0.001~10重量%、より好ましくは0.01~1重量%を挙げることができる。
 なお、対象蛋白質を含む溶液(リフォールディング緩衝液)中には、その他、アンフォールディング剤、すなわち変性剤(例えば、グアニジン塩酸や尿素)が含まれていてもよい。この場合、アンフォールディング剤の含有量としては、0.01~200mM、好ましくは0.05~10mM、より好ましくは0.1~5mMを挙げることができる。
 本発明においてアンフォールディングされた蛋白質をリフォールディング剤の存在下で処理する工程には、該蛋白質とリフォールディング剤とを接触条件におく工程、具体的には両者をリフォールディング緩衝液中に配合して撹拌などにより混合する工程が含まれる。また、その後、リフォールディングをより充分に進めるために必要により一定時間静置することも含まれる。静置時間は例えば1~50時間を挙げることができる。また温度条件としては、0~100℃の範囲で、対象とする蛋白質の熱耐性に応じて適宜選択することができる。通常は4~30℃の範囲である。
 III.蛋白質再生方法
 本発明の蛋白質再生方法は、上記のリフォールディング方法を用いて、アンフォールディングされた蛋白質をリフォールディングする工程を含む方法であり、正常蛋白質を調製する方法と言い換えることもできる。
 本発明の蛋白質再生方法は、アンフォールディングされた蛋白質を、前述する本発明のリフォールディング剤の存在下で処理する工程を有するものであればよく、他の工程の有無を特に制限するものではない。例えば下記の工程(a)~(b)または(a)~(c)を含む方法であってもよい。
 (a)蛋白質をアンフォールディングする工程、
(b)上記工程でアンフォールディングされた蛋白質を、本発明のリフォールディング剤の存在下で処理してリフォールディングする工程、
(c)上記工程でリフォールディングされた蛋白質を単離する工程。
 対象の蛋白質が、例えば大腸菌や酵母や無細胞抽出系などの異種発現系を用いて遺伝子工学的に生産された組み換え体である場合は、本発明の蛋白質再生方法は、下記の(2)~(4)、(1)~(4)または(1)~(5)の工程を含む方法であってもよい。
 (1)蛋白質産生菌の培養工程:大腸菌などの蛋白質産生菌を培養し、組み換え体を産生する。
(2)溶菌工程:溶菌剤などを用いて蛋白質産生菌体内から蛋白質封入体を取り出す。
(3)アンフォールディング工程;上記蛋白質封入体の懸濁液(例えば10mg蛋白質/mL)に、0.5モル/L以上のアンフォールディング剤(変性剤)、および必要に応じて20ミリモル/L以下の還元剤を加え軽くかきまぜ、室温で数時間放置する。かかる工程により、封入体中に存在する蛋白質の分子内または分子間ジスルフィド結合が化学的に還元され、切断される。
(4)リフォールディング工程:上記工程でアンフォールディングされた蛋白質懸濁液に、本発明のリフォールディング剤を添加してアンフォールディング剤濃度を希釈し低下させるか、またはアンフォールディングされた蛋白質懸濁液を透析してアンフォールディング剤濃度を希釈し低下させ、これに本発明のリフォールディング剤を添加して、リフォールディングを行う。
(5)単離工程:上記で得られた蛋白質懸濁液から、目的とする正常蛋白質(リフォールディング蛋白質)を、カラムクロマトグラフィーなどを用いて単離する。
 上記の(1)の蛋白質産生菌培養工程における蛋白質産生菌としては、以下の細菌細胞を例示することができる。細菌細胞としては、連鎖球菌属(Streptococci)、ブドウ球菌属(Staphylococci)、エシェリヒア属菌(Escherichia)、ストレプトミセス属菌(Streptomyces)およびバチルス属菌(Bacillus)細胞、真菌細胞:例えば酵母細胞およびアスペルギルス属(Aspergillus)細胞、昆虫細胞:例えばドロソフィラS2(Drosophila S2)、スポドプテラSf9(Spodoptera Sf9)細胞、動物細胞:例えば、CHO、COS、Hela、C127、3T3、BHK、293およびボウズ(Bows)メラノーマ細胞、ならびに植物細胞等が挙げられる。
 上記(1)工程の蛋白質産生菌の培養方法にあたり、目的蛋白質をコードするcDNAを含有する発現ベクターは、(i)目的蛋白質産生細胞からメッセンジャーRNA(mRNA)を分離し、該mRNAから単鎖のcDNAを、次に二重鎖DNAを合成し、該相補DNAをファージまたはプラスミドに組み込む。(ii)得られた組み換えファージまたはプラスミドで宿主を形質転換し、培養後、目的蛋白質の一部をコードするDNAプローブとのハイブリダイゼーション、あるいは抗体を用いたイムノアッセイ法により目的とするDNAを含有するファージあるいはプラスミドを単離する。(iii)その組み換えDNAから目的とするクローン化DNAを切りだし、該クローン化DNAまたはその一部を発現ベクター中のプロモーターの下流に連結することによって製造することができる。その後、適当な方法により、宿主を発現ベクターで形質転換し培養する。培養は通常15~43℃で3~24時間行い、必要により通気、攪拌を加えることもできる。
 上記の(2)の溶菌工程で採用される溶菌方法としては、超音波による物理的破砕、リゾチーム等の溶菌酵素による処理、界面活性剤等の溶菌剤による処理などのいずれもが使用できる。生産性の観点から溶菌剤による処理が好ましい。また、有用な蛋白質を変性させないといった点からは、対イオンがギ酸、酢酸などのカルボン酸イオンである第4級アンモニウム型カチオン性界面活性剤などの溶菌剤を挙げることができる。
 上記の(3)のアンフォールディング工程において使用されるアンフォールディング剤としては、塩酸グアニジンおよび尿素などの変性剤を挙げることができる。かかる変性剤は、一種単独で使用することもできるが、両者を組み合わせて用いることもできる。なお、蛋白質が、分子内にジスルフィド結合を含む蛋白質である場合には、上記変性剤以外に、還元剤として、さらに2-メルカプトエタノール、ジチオスレイトール、シスチンまたはチオフェノールなどを加えてもよい。
 上記(5)の単離工程において、カラムクロマトグラフィーに使用される充填剤としてはシリカ、デキストラン、アガロース、セルロース、アクリルアミド、ビニルポリマーなどが挙げられる。商業的に入手できる市販品としては、Sephadexシリーズ、Sephacrylシリーズ、Sepharoseシリーズ(以上、Pharmacia社)、Bio-Gelシリーズ(Bio-Rad社)等を挙げることができる。
 以下、製造例、実験例および実施例を示して本発明を説明するが、本発明はかかる実験例などによって制限されるものではない。
 製造例1 還元型グルタチオンモノメチルエステルモノアミド(GSHAd)の製造
Figure JPOXMLDOC01-appb-C000013
 1)還元型グルタチオンのTr(トリフェニルメチル)保護
 還元型グルタチオン(1)(和光純薬工業(株))(5.0 g, 16.3 mmol) および TrOH(トリフェニルメタノール )(4.2 g, 16.3 mmol) を酢酸 16.5 mL に溶かし、60℃で攪拌しながら BF3・OEt2 (ボロントリフルオリド - エチルエーテル コンプレックス)(2.20mL, 18.0 mmol) を加えた。溶液を 80℃ に昇温して 30 分間攪拌した後、さらに室温で45分間攪拌した。反応液を、25 mL のエタノールが入った三角フラスコに移し、そこに酢酸ナトリウムを4.9 g加えた。水を加え、氷浴中で攪拌すると固体が析出した。析出した固体をろ別した後、減圧下で乾燥させることで、Tr (トリフェニルメチル)保護体 (2) を収率 89% (6.4 g, 11.7 mmol) で得た。
 2)エステル化
 Tr 保護体(2) (5 g, 9.1 mmol) と p-TsOH・H2O(p-トルエンスルホン酸一水和物) (5.2 g, 27.3 mmol) を 227 mL のエタノールに溶解させ、90℃で16時間還流した。TLC で反応の終了を確認した後、減圧下で溶媒を留去した。得られた油状物質を酢酸エチルに溶かし、有機相を飽和炭酸水素ナトリウム水溶液、水、飽和食塩水の順で洗浄した。有機相を濃縮後、シリカゲルカラムクロマトグラフィー (酢酸エチル/メタノール= 9/1) で精製することで、Tr (トリフェニルメチル)保護された還元型グルタチオンのジエチルエステル(3) を収率 76% (4.2 g, 6.9 mmol) で得た。
 3)Boc(tert-ブトキシカルボニル)保護
 上記で得られたジエチルエステル(3) (4.0 g, 6.6 mmol) とトリエチルアミン (2.8 mL, 19.8 mmol) のジクロロメタン溶液 (66 mL) に対し、(Boc)2O(二炭酸ジ-tert-ブチル) (2.3 mL, 9.9 mmol) を加え、室温で2時間攪拌した。その後、溶媒を減圧下で留去し、シリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル = 1/1) で精製した。得られた固体をヘキサン/酢酸エチルの混合溶媒を用いて再結晶することにより、上記ジエチルエステルのBoc (tert-ブトキシカルボニル)保護体(4)を収率 86% (4.0 g, 5.7 mmol) で得た。
 4)アミド化
 Boc(tert-ブトキシカルボニル)保護体(4) (3.0 g, 4.3 mmol) にアンモニアのメタノール溶液 (2 M, 60 mL) を加えた。室温で20時間攪拌し、質量分析により反応の終了を確認した。減圧下で溶媒を留去した後、シリカゲルクロマトグラフィー (クロロホルム/メタノール = 30/1) で精製することで、モノメチルエステル・モノアミド体(5) を収率 99% (2.6 g, 4.0 mmol) で得た。
 5)脱保護
 モノメチルエステル・モノアミド体(5)(0.14 g, 0.22 mmol) の無水ジクロロメタン溶液 (1.1 mL) にトリフルオロ酢酸 (1.1 mL) を加えて 30 分間攪拌した後、トリエチルシラン (70.3 μL, 0.44 mmol) を加えた。室温で 30 分間攪拌した後、塩化水素のジエチルエーテル溶液を加え、得られた結晶をろ過することで、還元型グルタチオンのモノメチルエステル・モノアミド(GSHAd)の塩酸塩を収率 97% (0.068 g, 0.021 mmol) で得た。
 GSHAd のNMRデータは下記の通りである。 
1H NMR (400 MHz, D2O) δ 4.48 (1H, t, J = 6.2 Hz), 4.15 (1H, t, J= 6.8 Hz), 3.91 (1H, d, J = 17.1 Hz), 3.90 (1H, d, J = 17.1 Hz), 3.81 (3H, s), 2.95-2.86 (2H, m), 2.64-2.50 (2H, m), 2.29-2.14 (2H, m).; 13C NMR (100 MHz, D2O) δ175.0, 174.5, 173.3, 170.8, 56.5, 54.3, 52.8, 42.7, 31.2, 25.9, 25.8。
 実験例1 
 蛋白質としてリゾチーム(生化学工業(株))を用いて、還元型グルタチオン(「GSH」ともいう)、酸化型グルタチオン(「GSSG」ともいう)(以上、和光純薬工業(株))、還元型グルタチオンジエチルエステル(「還元型グルタチオンエチルエステル」または「GSHEE」ともいう)(CAS RN:97451-40-6)、酸化型グルタチオンテトラエチルエステル(「酸化型グルタチオンエチルエステル」または「GSSGEE」ともいう)(CAS RN:113679-45-1)、および還元型グルタチオンモノメチルエステルモノアミド(「還元型グルタチオンアミド」または「GSHAd」ともいう)(製造例1)のリフォールディング剤としての機能を調べた。
 (1)実験操作
 20~40 mgリゾチームを1.5 mLサイズのチューブに秤量し、これに変性試薬(8 M 尿素,40 mM ジチオスレイトール, 0.1 M トリスアミノプロパン (pH 8.0) )(以上、和光純薬工業(株))を1 mL加えて、50℃で 2 時間処理してリゾチームを変性させた。変性したリゾチームを逆相樹脂(コスモシール 140C18-OPN, ナカライテスク(株))に吸着させ、次いで10% アセトニトリル(関東化学(株))/0.05% トリフルオロ酢酸(和光純薬工業(株))で樹脂を洗浄したのち、80% アセトニトリル/0.05% トリフルオロ酢酸で変性リゾチームを溶出した。吸光度計(波長280nm)を用いて変性リゾチームの濃度を測定し、1.5 mLサイズのチューブに1 mgずつ分取し、減圧乾燥を行った。
 得られた乾燥変性リゾチーム0.3~3.0mgに6 M 尿素/0.05% トリフルオロ酢酸を50 μL加えたのち、下記の組成からなるリフォールディング反応溶液を950 μL加えて、20℃および50℃の各々の条件で16時間静置し、リフォールディング反応を行った。
 <リフォールディング反応溶液> 
(1)50 mM Tris/HCl (pH 8.0)(空気酸化:コントロール)
(2)2 mM GSH, 1 mM GSSG, 50 mM Tris/HCl (pH 8.0)
(3)5 mM GSH, 5 mM GSSG, 50 mM Tris/HCl (pH 8.0)
(4)2 mM GSHEE, 1 mM GSSGEE, 50 mM Tris/HCl (pH 8.0)
(5)5 mM GSHEE, 5 mM GSSGEE, 50 mM Tris/HCl (pH 8.0)
(6)2 mM GSHAd, 1 mM GSSGEE, 50 mM Tris/HCl (pH 8.0)
(7)5 mM GSHAd, 5 mM GSSGEE, 50 mM Tris/HCl (pH 8.0)。
 16時間後、得られた反応液を15,000×g、20℃の条件で遠心分離し、採取した可溶性画分(遠心上清)についてリゾチーム残存濃度およびリゾチーム残存活性の測定を行った。
 リゾチームの残存濃度は、リゾチームのモル吸光度係数(2.63 mL mg-1 cm-1)、吸光度測定から得られた吸光度を用いて、リゾチームの残存濃度を計算した。なお、リゾチームの残存濃度は、変性前のリゾチーム濃度を100重量%とした場合の相対値(%)として算出した。
 また、リゾチームの活性は、まず0.5 mg/mLの割合でマイクロコッカスルテウス(Micrococcusluteus)を懸濁した溶液1 mL(和光純薬工業(株))に、リゾチーム溶液(上記で採取した可溶性画分(遠心上清))10μL加えて懸濁したのち、20℃で2分間、波長600 nmの散乱光を測定した(濁度測定)。斯くして得られた濁度の減衰一次関数の傾きから活性値を算出した(参考文献:Biochemistry (1970).9, 5015-5023.)。なお、リゾチームの残存活性は、変性前のリゾチームについて同様に濁度から算出した活性を100重量%とし、これに対する相対値(%)として算出した。
 (2)実験結果
 各種のリフォールディング剤について、リゾチームの残存濃度(%)を測定した結果を図1に、リゾチームの残存活性(%)を測定した結果を図2に、それぞれ示す。
 蛋白質のリフォールディング反応は、変性状態から天然状態(活性状態)に遷移する際の中間体の溶解性が重要だと考えられている。よって、中間体の溶解性を向上させると、蛋白質間の非特異的な凝集が抑えられ、天然状態の蛋白質を多く得ることができると考えられている。
 図1では、空気酸化(コントロール)と比べて、還元型/酸化型グルタチオン(GSH/GSSG)の存在下で、リゾチームの残存濃度の増加が確認できる。しかし、初期濃度の約40%前後しかリゾチームは残存しておらず、必ずしもリフォールディングが効率良く行われてはいない。これに対して、リフォールディング反応時に還元型/酸化型グルタチオンエチルエステル(GSHEE、GSSGEE)や還元型グルタチオンアミド(GSHAd)を存在させると、初期濃度の80~90%のリゾチームが残存しており、リフォールディング効率の著しい向上が認められた。特に、リフォールディング剤として5 mM GSHEEおよび5 mM GSSGEEを用いて、50℃で反応させると、ほぼ100%近い割合でリゾチームが回収された。この結果から、還元型/酸化型グルタチオンのエステル誘導体またはアミド誘導体を用いることによりリフォールディング効率を向上させることができ、またリフォールディング条件を適宜調節することで100%またはそれに近いリフォールディング効率が得られる可能性がある。
 ところで、生体内で生合成され細胞外で機能する蛋白質の多くはジスルフィド結合を有している。このようなジスルフィド結合を有する蛋白質をリフォールディングする際は、酸化還元電位の調節が必要不可欠である。酸化還元電位を調節する試薬が存在しない条件下では、コントロール(空気酸化)の結果から分かるように、リゾチーム(ジスルフィド結合を有する)の活性の復元は、ほぼ0%である。酸化還元電位を調節し、蛋白質科学の研究者が最も頻繁に使用する試薬として、還元型/酸化型グルタチオンが挙げられる。一方、還元型/酸化型グルタチオンは、生体内では小胞体内に多く存在し、生体内での蛋白質のフォールディングに関与していると考えられている。
 しかし、図2に示すように、かかる還元型/酸化型グルタチオン(GSH/GSSG)を用いてリフォールディング反応を行っても、20~30%のリフォールディング効率しか得られない。これに対して、還元型/酸化型グルタチオンエチルエステル(GSHEE、GSSGEE)や還元型グルタチオンアミド/酸化型グルタチオンエチルエステル(GSHAd、GSSGEE)を用いると、リフォールディング効率が向上し、30~55%のリフォールディング効率を得られた。
 従来の研究から、最も効率の良いリフォールディング手法としてアルギニンやアルギニンアミドなどの添加剤を加えてリフォールディング反応を行う方法が報告されている。本発明者らは、本発明のリフォールディング剤を用いた場合に得られるリフォールディング収率は、従来の方法で得られるリフォールディング収率と同等またはそれ以上であることを確認している。また、本発明のリフォールディング剤によれば、従来の方法で必要であったリフォールディング反応条件の検索(例えば、添加剤の種類の選択やその使用量の設定など)が不要であり、このため、微量で高価な蛋白質を条件検索のために浪費することを回避できるという利点もある。なお、図2では、還元型ジエチルエステル誘導体、酸化型テトラエステル誘導体の効果を示したものである。しかし、これらの誘導体はいずれも非誘導体であるグルタチオン自体と比べて、顕著な効果を示していることから、モノエチルエステル誘導体などのように、還元型や酸化型グルタチオンの一部のカルボン酸がエステル化されている場合であっても、リフォールディング効率は向上するものと考えられる。
 実験例2  
 前述するように、最も効率の良いリフォールディング手法として添加剤としてアルギニンを加えてリフォールディング反応を行う方法が報告されている。そこで、本実験例では、実験例1と同様にして、蛋白質としてリゾチーム(生化学工業(株))を用いて、還元型/酸化型グルタチオン(GSH/ GSSG)、還元型/酸化型グルタチオン(GSH/ GSSG)にアルギニンを添加したもの、還元型/酸化型グルタチオンエチルエステル(GSHEE/ GSSGEE)、および還元型グルタチオンアミド(GSHAd)/酸化型グルタチオンエチルエステル(GSSGEE)のリフォールディング剤としての機能を比較した。なお、各種グルタチオン、グルタチオンエチルエステル、およびグルタチオンアミドはいずれも実験例1で使用したものと同一の化合物を用いた。
 (1)実験操作
下記の組成からなるリフォールディング反応溶液を950 μL加えて、20℃の条件で16時間静置してリフォールディング反応を行う以外は、実験例1と同様の操作を実施した。
 <リフォールディング反応溶液> 
(1)50 mM Tris/HCl (pH 8.0)(空気酸化:コントロール)
(2)2 mM GSH, 1 mM GSSG, 50 mM Tris/HCl (pH 8.0)
(3)5 mM GSH, 5 mM GSSG, 50 mM Tris/HCl (pH 8.0)
(4)5 mM GSH, 5 mM GSSG, 100 mM Arg, 50 mM Tris/HCl (pH 8.0)
(5)5 mM GSH, 5 mM GSSG, 500 mM Arg, 50 mM Tris/HCl (pH 8.0)
(6)2 mM GSHEE, 1 mM GSSGEE, 50 mM Tris/HCl (pH 8.0)
(7)5 mM GSHEE, 5 mM GSSGEE, 50 mM Tris/HCl (pH 8.0)
(8)2 mM GSHAd, 1 mM GSSGEE, 50 mM Tris/HCl (pH 8.0)
(9)5 mM GSHAd, 5 mM GSSGEE, 50 mM Tris/HCl (pH 8.0)。
 16時間後、得られた反応液を15,000×g、20℃の条件で遠心分離し、採取した可溶性画分(遠心上清)について、実験例1と同様にしてリゾチーム残存濃度およびリゾチーム残存活性の測定を行った。
 (2)実験結果
 各種のリフォールディング剤について、リゾチームのリフォールディング活性(%)〔リゾチームの残存濃度(%)、リゾチームの残存活性(%)〕を測定した結果を図3に示す。
 この図から、還元型/酸化型グルタチオンにアルギニンを併用することで、還元型/酸化型グルタチオンのリフォールディング効果が増強することがわかる。しかしこの場合に使用するアルギニンは500mMといった高濃度であり、試薬に係るコスト面のみならず、リフォールディングした後の活性蛋白質の精製プロセスにも影響を与える。これに対して、本発明のリフォールディング剤(還元型/酸化型グルタチオンエチルエステル(GSHEE/ GSSGEE)、還元型グルタチオンアミド(GSHAd)/酸化型グルタチオンエチルエステル(GSSGEE))によれば、5mM以下の低濃度で、上記高濃度のアルギニンを添加した場合とほぼ同等のリフォールディング効果を得ることができる。これを1mgのリゾチームをリフォールディングするために必要なリフォールディング剤(50mL変性剤溶液中、リフォールディング溶液950μL)の量を絶対量として求めると、5mMのGSHEEおよび GSSGEEはそれぞれ1.8mgおよび3.6mgであるのに対して、500mMのアルギニンは105.3mgにもなる。このように、従来法は、リフォールディング効率を向上するために大量の添加剤を必要としていたのに対して、本発明によれば、かかる添加剤を使用することなく、低濃度のリフォールディング剤でリフォールディング効率を向上させることができる。
 実験例3  
 高濃度の蛋白質下における蛋白質のリフォールディングは困難とされている(参考文献:Biosci Biotechnol Biochem. (2000). 64, 1159-65. Journal of Biotechnology 130 (2007) 153-160)。そこで、蛋白質として、種々の濃度(0.1~3mg/ml)のリゾチーム(生化学工業(株))を用いて、各種のリフォールディング剤〔酸化型グルタチオン(GSSG)および還元型グルタチオン(GSH)(以上、和光純薬工業(株)製)、酸化型グルタチオンエチルエステル(GSSGEE)(CAS RN:113679-45-1)および還元型グルタチオンエチルエステル(GSHEE)(CAS RN:97451-40-6)〕が、高濃度の蛋白質溶液下においてリフォールディング反応を促進するかどうかを調べた。
 (1)実験操作
 まず、実験例1と同様の方法により乾燥変性リゾチームを0.1 mg~3.0 mg調製し、これに6 M 尿素/0.05% トリフルオロ酢酸を50μL加えたのち、下記の組成からなるリフォールディング反応溶液を950 μL加えて、20℃の条件で16時間、リフォールディング反応を行った。
 <リフォールディング反応溶液>
(1)5 mM GSH, 5 mM GSSG, 50 mM Tris/HCl (pH 8.0)
(2)5 mM GSHEE, 5 mM GSSGEE, 50 mM Tris/HCl (pH8.0)。
 16時間後、得られた反応液の濁度を600nmの散乱光を用いて測定した。また反応液を15,000×g、20℃の条件で遠心分離し、採取した可溶性画分(遠心上清)について、実験例1に記載する方法に従って、リゾチーム残存濃度およびリゾチーム残存活性を測定した。
 (2)実験結果
 リフォールディング剤(酸化型/還元型グルタチオン、酸化型/還元型グルタチオンエチルエステル)を用いて、各種濃度(0.3~2mg/mL)のリゾチームを処理したときの反応液の濁度(OD600nm)を測定した結果を図4に、リゾチームの残存濃度(%)を測定した結果を図5に、リゾチームの残存活性(%)を測定した結果を図6に、それぞれ示す。
 蛋白質をリフォールディングする際には、多くの凝集体が得られ、効率の良いリフォールディング反応の構築が望まれる。特に、リフォールディング反応時の蛋白質の濃度が高いと、多くの蛋白質凝集体が生じ、可溶性の天然構造を有する蛋白質を得ようとするリフォールディングの目的に合致しない。
 図4は、横軸に蛋白質初期濃度(mg/mL)を、縦軸にリフォールディング反応時の濁度(OD600nm)を示したものであり、これから蛋白質初期濃度に応じてリフォールディング反応中に生じる蛋白質の凝集体の割合を確認することができる。還元型/酸化型グルタチオン(GSH/GSSG)を用いた際は、蛋白質初期濃度が増加するにつれて、リフォールディング溶液中の蛋白質の凝集体も増加することがわかる。これに対して、本発明のリフォールディング剤である還元型/酸化型グルタチオンエチルエステル(GSHEE/GSSGEE)を用いると、蛋白質初期濃度の増加に関わらず、リフォールディング溶液中の蛋白質凝集体の生成が著しく抑えられていることが分かる。このことから、本発明のリフォールディング剤によれば、凝集体を生成することによりリフォールディング反応がうまくいかない蛋白質であってもリフォールディングさせ、またその効率を向上させる可能性があることが示唆される。
 前述するように、蛋白質のリフォールディング反応は、蛋白質初期濃度に依存する。蛋白質初期濃度が高くなれば、リフォールディングする際の蛋白質間の衝突頻度が上がり、凝集体を引き起こしやすくなるからである。このため、リフォールディング効率を上げる戦略として、蛋白質初期濃度を下げることが必要だと考えられている。事実、蛋白質濃度が希薄な溶液では、リフォールディング効率が著しく増加する。しかし、そのような希薄溶液から得られる蛋白質量は少ないため、かかる戦略を採ることは非現実的である。よって、高濃度の蛋白質溶液中で目的蛋白質を大量にリフォールディングさせるための試薬、リフォールディング法の開発が望まれている。
 図5は可溶性画分のリゾチームの残存濃度を示す。この結果から、リフォールディング剤として還元型/酸化型グルタチオン(GSH/GSSG)用いた場合は、濃度依存的にリゾチームの残存濃度が減少することがわかる。これに対して、発明のリフォールディング剤である還元型/酸化型グルタチオンエチルエステル(GSHEE/GSSGEE)を用いると、大量のリゾチームが可溶性画分に残存することが分かる。これからグルタチオンエチルエステルを用いた場合のリフォールディング効率を算出すると、グルタチオンを用いた場合の約2~12倍となる。またグルタチオンエチルエステルを用いると、従来のリフォールディング剤では不可能と考えられている蛋白質濃度(3 mg/mL以上)でも高いリゾチーム残存濃度を示すことから、本発明のリフォールディング剤は、従来のものに比してより有効なリフォールディング試薬になると考えられる。
 また図6は可溶性画分のリゾチームの残存活性を示す。この結果からわかるように、リフォールディング剤として本発明の還元型/酸化型グルタチオンエチルエステル(GSHEE/GSSGEE)を用いると、リゾチーム濃度がいずれの濃度条件下(図では、0.1~3mg/mL)でも、還元型/酸化型グルタチオン(GSH/GSSG)を用いた場合よりも高いリフォールディング効率を示した。このことからも、本発明のリフォールディング剤は、有効なリフォールディング剤であると考えられる。
 実験例4  
 蛋白質としてリボヌクレアーゼA、カルボニックアンヒドラーゼ、およびアミロイド前駆体蛋白質(膜蛋白質)を用いて、各種のリフォールディング剤〔酸化型グルタチオン(GSSG)および還元型グルタチオン(GSH)(以上、和光純薬工業(株)製)、酸化型グルタチオンエチルエステル(GSSGEE)(CAS RN:113679-45-1)および還元型グルタチオンエチルエステル(GSHEE)(CAS RN:97451-40-6)、酸化型グルタチオンテトラメチルエステル(「酸化型グルタチオンメチルエステル」または「GSSGME」ともいう)(CAS RN:96586-74-2)および還元型グルタチオンジメチルエステル(「還元型グルタチオンメチルエステル」または「GSHME」ともいう)(CAS RN:97451-41-7)〕のリフォールディング効果を確認した。なお、上記蛋白質のうち、リボヌクレアーゼAとアミロイド前駆体蛋白質は、ジスルフィド結合を有する蛋白質であり、カルボニックアンヒドラーゼはジスルフィド結合を有しない蛋白質である。 
 (1)実験操作
(1-1) リボヌクレアーゼA
 20~40 mgのリボヌクレアーゼAを1.5 mLサイズのチューブに秤量し、これに変性試薬(8 M 尿素, 40 mM ジチオスレイトール, 0.1 M トリスアミノプロパン (pH 8.0) )(以上、和光純薬工業(株))を1 mL加えて、50℃で 2 時間処理してリボヌクレアーゼAを変性させた。変性したリボヌクレアーゼAを逆相樹脂(コスモシール 140C18-OPN, ナカライテスク(株))に吸着させ、次いで10% アセトニトリル(関東化学(株))/0.05% トリフルオロ酢酸(和光純薬工業(株))で樹脂を洗浄したのち、80% アセトニトリル/0.05% トリフルオロ酢酸で変性リボヌクレアーゼAを溶出した。吸光度計(波長280nm)を用いて変性リボヌクレアーゼAの濃度を測定し、1.5 mLサイズのチューブに1 mgずつ分取し、減圧乾燥を行った。
 得られた乾燥変性リボヌクレアーゼA1mgに6 M 尿素/0.05% トリフルオロ酢酸を50 μL加えたのち、下記の組成からなるリフォールディング反応溶液を950 μL加えて、20℃の条件で16時間、リフォールディング反応を行った。
 <リフォールディング反応溶液>
(1)5 mM GSH, 5 mM GSSG, 50 mM Tris/HCl (pH 8.0)
(2)5 mM GSHEE, 5 mM GSSGEE, 50 mM Tris/HCl (pH8.0)。
 16時間後、得られた反応液を15,000×g、20℃の条件で遠心分離し、採取した可溶性画分(遠心上清)について、実験例1と同様の方法によりリボヌクレアーゼAの残存濃度を測定した。
 (1-2) カルボニックアンヒドラーゼ
 25 mgのカルボニックアンヒドラーゼに6 M 尿素/0.05% トリフルオロ酢酸(1 mL)を加えて変性させた後に、50μLの変性カルボニックアンヒドラーゼにリフォールディング剤として還元型/酸化型グルタチオン、還元型/酸化型グルタチオンエチルエステル含む下記組成からなるリフォールディング反応溶液を950μL加えて20℃の条件で16時間、リフォールディング反応を行った。
 <リフォールディング反応溶液>
(1)5 mM GSH, 5 mM GSSG, 50 mM Tris/HCl (pH 8.0)
(2)5 mM GSHEE, 5 mM GSSGEE, 50 mM Tris/HCl (pH8.0)。
 16時間後、得られた反応液を15,000×g、20℃の条件で遠心分離し、採取した可溶性画分(遠心上清)について、実験例1と同様の方法によりカルボニックアンヒドラーゼの残存濃度を測定した。
 (1-3) アミロイド前駆体蛋白質
 大腸菌発現系より、アミロイド前駆体蛋白質を大量に発現させ、Niクロマトグラフィー、陰イオン交換より、アミロイド前駆体蛋白質を調製した。これを5 M 尿素, 5 mM メルカプトエタノールにて変性し、得られた変性アミロイド前駆体蛋白質(40μL)にリフォールディング剤として還元型/酸化型グルタチオン、還元型/酸化型グルタチオンエチルエステル、還元型/酸化型グルタチオンメチルエステルを含む下記組成からなるリフォールディング反応溶液を460μL加えて、20℃の条件で16時間、リフォールディング反応を行った。
 <リフォールディング反応溶液>
(1)5 mM GSH, 5 mM GSSG, 50 mM Tris/HCl (pH 8.0)
(2)5 mM GSHEE, 5 mM GSSGEE, 50 mM Tris/HCl (pH8.0)
(3)5 mM GSHME, 5 mM GSSGME, 50 mM Tris/HCl (pH8.0)。
 16時間後、得られた反応液を15,000×g、20℃の条件で遠心分離し、採取した可溶性画分(遠心上清)について、実験例1と同様の方法によりアミロイド前駆体蛋白質の残存濃度を測定した。
 (2)実験結果
 結果を図7に示す。リフォールディング効率は、還元型/酸化型グルタチオン存在下でリフォールディング反応した後に検定した蛋白質残存濃度と、本発明のリフォールディング剤である還元型/酸化型グルタチオンエチルエステルまたは還元型/酸化型グルタチオンメチルエステルのそれぞれの存在下でリフォールディング反応した後に検定した蛋白質残存濃度に対する相対値として算出した。
 蛋白質の種類および機能は多岐に富んでいる。このため、蛋白質科学の分野では、モデル蛋白質(リゾチーム)を用いて効果の検討をするだけではなく、様々な蛋白質においてその効果が実証される必要があると考えられている。
 この実験では、ジスルフィド結合を有す他の蛋白質としてリボヌクレアーゼA、ジスルフィド結合を有さない蛋白質としてカルボニックアンヒドラーゼ、およびリフォールディングが困難とされている膜蛋白質としてアミロイド前駆体蛋白質を用いて、リフォールディング効率を検討した。その結果、図6に示すように、どの蛋白質においても還元型/酸化型グルタチオンエチルエステルや還元型/酸化型グルタチオンメチルエステルといった還元型/酸化型グルタチオンのエステル誘導体からなる本発明のリフォールディング剤を用いることにより、還元型/酸化型グルタチオンを用いた場合よりも、リフォールディング効率が向上することが確認された。
 近年、蛋白質科学の分野においては、病気、疾患などに関与する膜蛋白質が注目を集めている。しかし、これらの膜蛋白質の発現は困難を極め、またリフォールディングも困難とされている。この理由として、膜蛋白質は他の蛋白質と比べて高分子量である、他の蛋白質と比べて疎水性のアミノ酸が多く存在すると、いったことが挙げられる。しかし、本実験例の結果から、本発明のリフォールディング剤を用いると、この困難とされる膜蛋白質や高分子量蛋白質についてもリフォールディング効率を向上させることが可能であると考えられる。また、本発明のリフォールディング剤は、疎水性に富む蛋白質においても有効であると考えられる。さらに本発明のリフォールディング剤は、カルボニックアンヒドラーゼのようなジスルフィド結合を有さない蛋白質においても有効であることから、幅広い蛋白質のリフォールディングに有効であると考えられる。
各種のリフォールディング剤(2mM GSH/1mM GSSG、5mM GSH/5mM GSSG、2mM GSHEE/1mM GSSGEE、5mM GSHEE/5mM GSSGEE、2mM GSHAd/1mM GSSGEE、5mM GSHAd/5mM GSSGEE)を用いて、変性リゾチームを処理し(処理温度20℃および50℃)、得られたリゾチームの残存濃度(%)を比較した結果を示す(実験例1)。 各種のリフォールディング剤(2mM GSH/1mM GSSG、5mM GSH/5mM GSSG、2mM GSHEE/1mM GSSGEE、5mM GSHEE/5mM GSSGEE、2mM GSHAd/1mM GSSGEE、5mM GSHAd/5mM GSSGEE)を用いて、変性リゾチームを処理し(処理温度20℃および50℃)、得られたリゾチームの残存活性(%)を比較した結果を示す(実験例1)。 各種のリフォールディング剤(2mM GSH/1mM GSSG、5mM GSH/5mM GSSG、5mM GSH/5mM GSSG+100mM Arg、5mM GSH/5mM GSSG+500mM Arg、2mM GSHEE/1mM GSSGEE、5mM GSHEE/5mM GSSGEE、2mM GSHAd/1mM GSSGEE、5mM GSHAd/5mM GSSGEE)を用いて、変性リゾチームを処理し(処理温度20℃)、得られたリゾチームのリフォールディング効率(%)(残存濃度(%)および残存活性(%))を比較した結果を示す(実験例2)。 リフォールディング剤(5 mM GSH/5 mM GSSG、5 mM GSHEE/5 mM GSSGEE)を用いて、各種濃度の変性リゾチーム(0.3~2mg/mL)を処理し(処理温度20℃)、得られた反応液の濁度(OD600nm)を比較した結果を示す(実験例2)。 リフォールディング剤(5 mM GSH/5 mM GSSG、5 mM GSHEE/5 mM GSSGEE)を用いて、各種濃度の変性リゾチーム(アンフォールディングリゾチーム)(0.3~3mg/mL)を処理し(処理温度20℃)、得られたリゾチームの残存濃度(%)を比較した結果を示す(実験例2)。 リフォールディング剤(5 mM GSH/5 mM GSSG、5 mM GSHEE/5 mM GSSGEE)を用いて、各種濃度の変性リゾチーム(アンフォールディングリゾチーム)(0.1~3mg/mL)を処理し(処理温度20℃)、得られたリゾチームの残存活性(%)を比較した結果を示す(実験例2)。 リフォールディング剤(5 mM GSH/5 mM GSSG、5 mM GSHEE/5 mM GSSGEE、5 mM GSHME/5 mM GSSGME、)を用いて、異なる変性蛋白質(アンフォールディング・リボヌクレアーゼA、アンフォールディング・カルボニックアンヒロラーゼ、アンフォールディング・アミロイド前駆体蛋白質)を処理し(処理温度20℃)、得られた蛋白質の残存濃度(%)からリフォールディング効率を算出した結果を示す(実験例3)。

Claims (10)

  1.  還元型グルタチオンのエステル誘導体およびアミド誘導体、酸化型グルタチオンのエステル誘導体およびアミド誘導体、ならびにそれらの塩および溶媒和物からなる群から選択される少なくとも一種を有効成分とする、アンフォールディングされた蛋白質のリフォールディング剤。
  2. 下式
    Figure JPOXMLDOC01-appb-C000001
    〔式中、RおよびR はそれぞれ独立して、水酸基、炭素数1~4のアルコキシ基、または炭素数1~4のアルキル基で置換されていてもよいアミノ基を示す。ただし、R1 とR2とは同時に水酸基ではない。〕
    で表される還元型グルタチオン誘導体、
    下式
    Figure JPOXMLDOC01-appb-C000002
    〔式中、R、R、RおよびR6 はそれぞれ独立して、水酸基、炭素数1~4のアルコキシ基、または炭素数1~4のアルキル基で置換されていてもよいアミノ基を示す。ただし、R、R、RおよびRは同時に水酸基ではない。〕
    で表される酸化型グルタチオン誘導体、ならびに
    それらの塩および溶媒和物からなる群から選択される少なくとも一種を有効成分とする、請求項1記載のリフォールディング剤。
  3.  還元型グルタチオン誘導体、その塩および溶媒和物からなる群から選択される少なくとも1種と、酸化型グルタチオン誘導体、その塩および溶媒和物からなる群から選択される少なくとも1種とを含有する、請求項2記載のリフォールディング剤。
  4.  還元型グルタチオン誘導体、その塩および溶媒和物からなる群から選択される少なくとも1種と、酸化型グルタチオン誘導体、その塩および溶媒和物からなる群から選択される少なくとも1種とを、それぞれ別個に包装された形態で有する、請求項2記載のリフォールディング剤。
  5.  上記還元型または酸化型グルタチオンのエステル誘導体が、還元型または酸化型のグルタチオンエチルエステルまたはグルタチオンメチルエステルであり、還元型または酸化型グルタチオンのアミド誘導体が、還元型または酸化型のグルタチオンアミドである、請求項1または2記載するリフォールディング剤。
  6. 上記還元型グルタチオンのエステル誘導体が還元型グルタチオンのジエチルエステル若しくはジメチルエステル、酸化型グルタチオンのエステル誘導体が酸化型グルタチオンのテトラエチルエステル若しくはテトラメチルエステル、還元型グルタチオンのアミド誘導体が還元型グルタチオンのモノアミド若しくはモノアミドモノエステル、酸化型グルタチオンのアミド誘導体が酸化型グルタチオンのジアミド若しくはジアミドジエステルである、請求項2に記載するリフォールディング剤。
  7.  アンフォールディングされた蛋白質を、請求項1乃至6のいずれかに記載するリフォールディング剤の存在下で処理する工程を有する、上記蛋白質のリフォールディング方法。
  8.  請求項7に記載するリフォールディング方法を用いて、アンフォールディングされた蛋白質をリフォールディングする工程を含む、蛋白質の再生方法。
  9.  下式
    Figure JPOXMLDOC01-appb-C000003
    〔式中、Rは炭素数1~4のアルコキシ基を、Rは、炭素数1~4のアルキル基で置換されていてもよいアミノ基を示す。〕で示されるか、または
    下式
    Figure JPOXMLDOC01-appb-C000004
    〔式中、RおよびR11はそれぞれ独立して炭素数1~4のアルコキシ基を、R10およびR12はそれぞれ独立して 炭素数1~4のアルキル基で置換されていてもよいアミノ基を示す。〕
    で表されるグルタチオン誘導体。
  10.  上記グルタチオン誘導体が、式(3)中、Rがメトキシ基、Rがアミノ基である還元型グルタチオンのモノメチルエステルモノアミドである、請求項9記載のグルタチオン誘導体。
PCT/JP2009/068438 2008-10-28 2009-10-27 リフォールディング剤および蛋白質のリフォールディング方法 WO2010050485A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010535805A JP5637857B2 (ja) 2008-10-28 2009-10-27 リフォールディング剤および蛋白質のリフォールディング方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-277109 2008-10-28
JP2008277109 2008-10-28

Publications (1)

Publication Number Publication Date
WO2010050485A1 true WO2010050485A1 (ja) 2010-05-06

Family

ID=42128845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068438 WO2010050485A1 (ja) 2008-10-28 2009-10-27 リフォールディング剤および蛋白質のリフォールディング方法

Country Status (2)

Country Link
JP (1) JP5637857B2 (ja)
WO (1) WO2010050485A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180208910A1 (en) * 2012-05-16 2018-07-26 Noxxon Pharma Ag Enzymatic Synthesis of L-Nucleic Acids

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537150A (ja) * 2004-01-19 2007-12-20 アレス トレーディング ソシエテ アノニム 細菌で発現したタンパク質の精製方法
WO2008126401A1 (ja) * 2007-04-05 2008-10-23 Fujifilm Corporation タンパク質リフォールディング装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537150A (ja) * 2004-01-19 2007-12-20 アレス トレーディング ソシエテ アノニム 細菌で発現したタンパク質の精製方法
WO2008126401A1 (ja) * 2007-04-05 2008-10-23 Fujifilm Corporation タンパク質リフォールディング装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRZEZINSKI, B. ET AL.: "Disulphide bond formation by glutathione via the glutathione- trimethylamine-N-oxide complex", J. MOL. STRUCT., vol. 354, 1995, pages 127 - 130 *
KWON, D. S. ET AL.: "Dissection of Glutathionylspermidine Synthetase/Amidase from Escherichia coli into Autonomously Folding and Functional Synthetase and Amidase Domains", J. BIOL. CHEM., vol. 272, no. 4, 1997, pages 2429 - 2436 *
TAO, K. ET AL.: "A New Reagent for Protein Refolding", PEPTIDE SCIENCE, vol. 2008, March 2009 (2009-03-01), pages 451 - 454 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180208910A1 (en) * 2012-05-16 2018-07-26 Noxxon Pharma Ag Enzymatic Synthesis of L-Nucleic Acids
US11015178B2 (en) * 2012-05-16 2021-05-25 Aptarion Biotech Ag Enzymatic synthesis of L-nucleic acids

Also Published As

Publication number Publication date
JPWO2010050485A1 (ja) 2012-03-29
JP5637857B2 (ja) 2014-12-10

Similar Documents

Publication Publication Date Title
Evans Jr et al. Semisynthesis of cytotoxic proteins using a modified protein splicing element
US10858414B2 (en) Chemo-enzymatic synthesis of semaglutide, liraglutide and GLP-1
KR20200130712A (ko) 리라글루티드, 세마글루티드 및 glp-1의 화학-효소적 합성
JP4239412B2 (ja) トランスグルタミナーゼの製造方法
JP5637857B2 (ja) リフォールディング剤および蛋白質のリフォールディング方法
Liu et al. On-column refolding and purification of transglutaminase from Streptomyces fradiae expressed as inclusion bodies in Escherichia coli
Tan et al. Cloning, Overexpression, Refolding, and Purification of the Nonspecific Phospholipase C fromBacillus cereus
WO2012017400A1 (en) Synthesis of acyl-pantetheine derivatives and the use thereof in the synthesis of acyl-coenzyme a derivatives
CN112920086A (zh) 一种l-酪氨酸衍生物的制备方法
JP4625433B2 (ja) タンパク質のリフォールディング剤およびリフォールディング方法
JP5274795B2 (ja) タンパク質のリフォールディング方法
WO2019103106A1 (ja) 凝集タンパク質の再生剤およびこれを用いた凝集タンパク質の再生方法
US7858661B2 (en) Protein refolding agent and refolding method
WO2007063691A1 (ja) 溶菌剤
CN114761554A (zh) 具有n-酰化活性的修饰酶
CN114763552B (zh) 一种微生物转谷氨酰胺酶的重组生产方法
JP2012116812A (ja) ジスルフィド結合交換反応を利用した蛋白質の立体構造形成促進試薬
CN114181993B (zh) 产生基于类泛素或泛素蛋白的生化工具的方法
JP2019210258A (ja) タンパク質のリフォールディング剤、タンパク質のリフォールディング方法及びタンパク質の再生方法
US6841658B2 (en) Purification of human Troponin I
EP4303224A1 (en) Protein folding agent
CN111944776B (zh) 一种羰基还原酶及其应用
US20230365656A1 (en) A fusion protein
JP4786303B2 (ja) タンパク質のリフォールディング剤
JP2022089310A (ja) 環状ジセレニド化合物、タンパク質フォールディング剤、及びタンパク質のフォールディング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823595

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010535805

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823595

Country of ref document: EP

Kind code of ref document: A1