WO2010050049A1 - Coin discrimination device - Google Patents

Coin discrimination device Download PDF

Info

Publication number
WO2010050049A1
WO2010050049A1 PCT/JP2008/069894 JP2008069894W WO2010050049A1 WO 2010050049 A1 WO2010050049 A1 WO 2010050049A1 JP 2008069894 W JP2008069894 W JP 2008069894W WO 2010050049 A1 WO2010050049 A1 WO 2010050049A1
Authority
WO
WIPO (PCT)
Prior art keywords
coin
imaging
magnetic sensor
magnetic
center point
Prior art date
Application number
PCT/JP2008/069894
Other languages
French (fr)
Japanese (ja)
Inventor
友幸 佐々木
Original Assignee
グローリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グローリー株式会社 filed Critical グローリー株式会社
Priority to PCT/JP2008/069894 priority Critical patent/WO2010050049A1/en
Priority to JP2010535590A priority patent/JP5226802B2/en
Publication of WO2010050049A1 publication Critical patent/WO2010050049A1/en

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/005Testing the surface pattern, e.g. relief
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/08Testing the magnetic or electric properties

Definitions

  • the present invention relates to a coin identifying device that identifies a coin based on a captured image of a coin transported through a transport path and a magnetic field fluctuation caused by the coin, and in particular, whether the coin transport direction is a forward direction or a reverse direction.
  • the present invention relates to a coin discriminating apparatus that can maintain good discrimination accuracy and can make the discrimination processing time equivalent in forward and reverse directions.
  • Coin identification devices By illuminating the coins being transported and introducing the light reflected from the coins into a light receiving unit such as a CCD (Charge Coupled Devices) camera, the coin image is picked up to identify the denomination and authenticity of the coins.
  • a light receiving unit such as a CCD (Charge Coupled Devices) camera
  • the coin image is picked up to identify the denomination and authenticity of the coins.
  • Coin identification devices are known.
  • the accuracy of discrimination is improved by using a magnetic sensor that detects magnetic field fluctuations caused by coins.
  • a magnetic sensor that detects magnetic field fluctuations caused by coins.
  • an optical sensor for identifying a coin pattern is arranged on the upstream side of the transport path, and an optical sensor for detecting the outer diameter of the coin and a material of the coin are magnetically detected on the downstream side of the transport path.
  • Disclosed is a technique for performing a pattern identification process that requires processing time and other identification processes in parallel by disposing a magnetic sensor. In this way, by performing the pattern identification process that requires processing time prior to other identification processes, the overall processing time required for coin identification is reduced.
  • the identification capability of the coin identification device differs depending on whether the coin conveyance direction is the forward direction or the reverse direction.
  • the coins that are conveyed from the reverse direction by the conveyance mechanism provided outside while the coins are conveyed only in the forward direction in the coin identification device are guided back to the coin identification device and discharged from the coin identification device.
  • it is conceivable to fold the sheet again and carry it it is not preferable because the size of the apparatus increases.
  • the coin identification device can maintain good identification accuracy regardless of whether the coin conveyance direction is the forward direction or the reverse direction, and can make the identification processing time equal in the forward and reverse directions. How to achieve this is a big issue.
  • the present invention has been made in order to solve the above-described problems of the prior art, and can maintain good discrimination accuracy regardless of whether the coin conveyance direction is the forward direction or the reverse direction.
  • An object of the present invention is to provide a coin discriminating apparatus that can make the time equivalent in forward and reverse directions.
  • the present invention provides a coin identifying device for identifying a coin based on a captured image of a coin conveyed through a conveyance path and a magnetic field variation due to the coin,
  • An imaging unit that acquires the captured image by irradiating light and imaging reflected light from the coin, and a conveyance direction of the coin that is conveyed so as to pass through an imaging center point of the imaging unit is a forward direction or a reverse direction
  • the magnetic detection means detects the magnetic field fluctuation of the coin at a position where the remaining distance from the coin to be transported to the imaging center point is equal regardless of the transport direction.
  • the present invention is characterized in that, in the above-mentioned invention, the image pickup device further includes an image pickup instruction means for instructing the image pickup means to acquire the picked-up image based on the magnetic field fluctuation detected by the magnetic detection means. .
  • the present invention is characterized in that, in the above invention, the magnetic detection means is a magnetic sensor element having an annular shape with the imaging center point as a center.
  • the present invention is characterized in that, in the above invention, the magnetic detection means is the same magnetic sensor provided at a position that is point-symmetric with respect to the imaging center point and adjacent to the conveyance path. To do.
  • the present invention is the same reflection type pot core type magnetic sensor provided in the above-mentioned invention, wherein the magnetic detection means is provided at a position that is point-symmetrical with respect to the imaging center point and is adjacent to the conveyance path. It is characterized by that.
  • the present invention is the above invention, wherein the imaging means is arranged in an annular shape centering on the imaging center point, and is adjusted so that an optical axis of light to be irradiated is directed to the imaging center point.
  • a plurality of light emitting elements, and the magnetic detection means is disposed in place of the light emitting elements at the corresponding positions, and the optical axis of the light emitting element in the vicinity of the magnetic detection means is the imaging It is adjusted to be oriented closer to the magnetic detection means than the center point.
  • the imaging means and the magnetic detection means are configured as an integrated module.
  • the image pickup means for acquiring a picked-up image by irradiating the coin with light and picking up the reflected light from the coin, and the conveyance of the coin carried so as to pass through the image pickup center point of the image pickup means.
  • the magnetic detection means for detecting the magnetic field fluctuation of the coin at the position where the remaining distance from the conveyed coin to the imaging center point is equal is provided. Regardless of whether the coin is conveyed in the forward direction or in the opposite direction, the conveyed coin passes through the imaging center point of the imaging means after passing through the magnetic detection means, so that the coin identification accuracy is kept good. There is an effect that can be. Further, even if the transport direction is changed, it is sufficient to perform the same software processing, so that the computer program can be simplified.
  • the magnetic detection unit further includes the imaging instruction unit that instructs the imaging unit to acquire a captured image based on the magnetic field variation detected by the magnetic detection unit.
  • the imaging instruction unit that instructs the imaging unit to acquire a captured image based on the magnetic field variation detected by the magnetic detection unit.
  • the magnetic detection means is a magnetic sensor element having an annular shape with the imaging center point as the center, the imaging center can be used regardless of the direction in which the coin is conveyed. There is an effect that magnetic field fluctuations due to coins can be acquired at positions where the remaining distances to the points are equal.
  • the magnetic detection means is the same magnetic sensor provided at a position that is point-symmetric with respect to the imaging center point and adjacent to the conveyance path, the coin conveyance direction is In both forward and reverse directions, a coin is obtained in which magnetic field fluctuations due to coins can be acquired at positions where the remaining distance to the imaging center point is equal.
  • the magnetic detection means is the same reflection type pot core type magnetic sensor respectively provided at a position that is point-symmetric with respect to the imaging center point and that is adjacent to the conveyance path, There is an effect that the size of the identification device can be reduced.
  • the imaging means includes a plurality of light emitting elements that are arranged in an annular shape around the imaging center point and are adjusted so that the optical axis of the irradiated light is directed toward the imaging center point.
  • the magnetic detection means is disposed in place of the light emitting element at the corresponding position, and the optical axis of the light emitting element in the vicinity of the magnetic detection means is closer to the magnetic detection means than the imaging center point. Since the direction is adjusted, the illumination unevenness can be eliminated by preventing a decrease in illuminance around the magnetic detection means provided instead of the light emitting element.
  • the imaging means and the magnetic detection means are configured as an integrated module, the work load at the time of design and manufacture can be reduced by simplifying the configuration of the coin identification device. As a result, the development period can be shortened. In addition, since replacement in module units is possible at the time of failure, there is an effect that maintenance efficiency can be improved.
  • FIG. 1 is a diagram illustrating an outline of the coin identifying device according to the first embodiment.
  • FIG. 2 is a perspective view of the coin identifying device according to the first embodiment.
  • FIG. 3 is a top view and a cross-sectional view of the coin identifying device according to the first embodiment.
  • FIG. 4 is a cross-sectional view of a pot core type magnetic sensor.
  • FIG. 5 is a diagram illustrating an example of optical axis adjustment.
  • FIG. 6 is a block diagram illustrating the configuration of the coin identifying device according to the first embodiment.
  • FIG. 7 is a diagram illustrating an example of a circuit connected to the magnetic sensor.
  • FIG. 8 is a diagram illustrating an outline of processing executed by the coin identifying device according to the first embodiment.
  • FIG. 1 is a diagram illustrating an outline of the coin identifying device according to the first embodiment.
  • FIG. 2 is a perspective view of the coin identifying device according to the first embodiment.
  • FIG. 3 is a top view and a
  • FIG. 9 is a perspective view of the coin identifying device according to the second embodiment.
  • FIG. 10 is a diagram illustrating an outline of processing executed by the coin identifying device according to the second embodiment.
  • FIG. 11 is a perspective view showing a coin identifying device according to a modification.
  • FIG. 1 is a diagram illustrating an outline of a coin identifying device 10 according to the first embodiment.
  • (A) in the figure shows the case where the coin 200 is conveyed in the positive conveyance direction (see the direction of the arrow shown in 201 in the figure), and (B) in the figure shows the positive conveyance direction.
  • Each of the cases where the coins 200 are conveyed in the opposite direction that is, in the opposite conveyance direction (refer to the direction of the arrow indicated by 202 in the figure) is shown.
  • the coin 200 is transported at a constant speed on the transport path by a transport mechanism such as a transport belt (not shown).
  • the coin identifying device 10 includes an imaging unit 2 including an imaging device such as a CCD (Charge Coupled Devices) camera.
  • an imaging area 3 made of a transparent member such as glass is provided on the conveyance path, and the imaging unit 2 that captures an image around the imaging center 4 is used for the coin 200 that has been conveyed to the imaging area 3. Image the surface pattern.
  • CCD Charge Coupled Devices
  • a magnetic sensor 1 a and a magnetic sensor 1 b are provided on the transport path, and the magnetic sensor 1 a and the magnetic sensor 1 b have a distance R from the imaging center 4 and are point-symmetric with respect to the imaging center 4. Respectively. Note that the magnetic sensor 1 a and the magnetic sensor 1 b are provided outside the imaging range of the imaging unit 2.
  • the magnetic sensor 1a and the magnetic sensor 1b are respectively provided at positions where the distance from the imaging center 4 is equal, the positive conveyance direction shown by (A) in FIG. (Refer to the direction) and the reverse conveyance direction shown in (B) of the figure (see the direction of the arrow shown in 202 of the figure), prior to the imaging of the coin 200 by the imaging unit 2.
  • the magnetic field fluctuation by the coin 200 can be acquired.
  • the imaging unit 2 images the coin 200. In this case, the output of the magnetic sensor 1b is ignored.
  • the imaging unit 2 images the coin 200. In this case, the output of the magnetic sensor 1a is ignored.
  • the coin identifying device 10 is provided with the magnetic sensor 1a and the magnetic sensor 1b at positions where the distance from the imaging center 4 of the imaging unit 2 is equal. Therefore, even if the conveyance direction of the coin 200 is the forward direction or the reverse direction, after acquiring a magnetic field variation by the magnetic sensor 1a or the magnetic sensor 1b, after the passage of the coin 200 is confirmed, the imaging unit What is necessary is just to image the coin 200 by No.2.
  • the imaging control for the imaging unit 2 can be performed by the same computer program regardless of whether the coin 200 is conveyed in the forward direction or the reverse direction. For this reason, it becomes possible to simplify the computer program concerning coin identification.
  • FIG. 2 is a perspective view of the coin identifying device 10 according to the first embodiment.
  • 1A shows a case where the magnetic sensor 1 (magnetic sensor 1a and magnetic sensor 1b) shown in FIG. 1 and the imaging unit 2 are configured as an integrated module.
  • (B) of the same figure has shown the internal structure of the coin identification device 10 when the conveyance path side cover 21 is removed.
  • the coin 200 is conveyed in the forward direction (see the arrow in (1) in the figure) or in the reverse direction (see the arrow in (2) in the figure).
  • the coin 200 is conveyed to the imaging area 3 after passing through the magnetic sensor 1a, and the imaging unit 2 images the surface pattern. Is done.
  • the coin 200 is conveyed in the reverse direction (see the arrow (2) in the figure), the coin 200 is conveyed to the imaging area 3 after passing through the magnetic sensor 1b, and the surface pattern is captured by the imaging unit 2. Is imaged.
  • a plurality of light emitting elements 22 provided in an annular shape and a guide for guiding the light emitted from each light emitting element 22 to the imaging area 3 are provided.
  • a light body 23 is provided.
  • the upper surfaces of the magnetic sensor 1a and the magnetic sensor 1b pass through holes provided in the transport path side cover 21 and come into contact with the transport path surface, as shown in FIG.
  • variation by the coin 200 is acquirable with high precision by making a conveyance path surface and the detection surface of the magnetic sensor 1a and the magnetic sensor 1b correspond.
  • FIG. 3 is a top view and a cross-sectional view of the coin identifying device 10 according to the first embodiment.
  • 2A is a top view of the coin discriminating apparatus 10
  • FIG. 2B is a cross-sectional view taken along the line ab shown in FIG. 2A
  • FIG. (C) is a cross-sectional view taken along the line cd shown in (A) of FIG.
  • the number of the light emitting elements 22 shown in FIG. 5A is an example, and other numbers may be used.
  • the circular light transmission part 32 centering on the imaging center 4 of the imaging part 2 is formed in the upper surface of the coin identification device 10, ie, the lower surface which comprises a conveyance path. Is provided.
  • This light transmission part 32 is comprised by transparent members, such as glass, and lets the light which the light emitting element 22 provided below the conveyance path side cover 21 shown in FIG.
  • the light emitting element 22 is installed so as to form an annular shape on a concentric circle with the imaging center 4 as the center, and the optical axis of the light emitted from the light emitting element 22 is adjusted so as to be directed toward the imaging center 4 in principle. (Refer to the broken line arrow 31 in the figure).
  • the magnetic sensor 1a or the magnetic sensor 1b is attached instead of the light emitting element 22.
  • the magnetic sensor 1a or the magnetic sensor 1b is attached instead of the light emitting element 22, uneven illumination tends to occur near the magnetic sensor 1a or the magnetic sensor 1b. For this reason, in the coin identification device 10, the occurrence of such illumination unevenness is suppressed by adjusting the optical axis of the light emitting element 22 located in the vicinity of the magnetic sensor 1a or the magnetic sensor 1b. A specific example of the optical axis adjustment will be described later with reference to FIG.
  • FIG. 5B a cross-sectional view taken along the line ab shown in FIG.
  • the magnetic sensor 1a and the magnetic sensor 1b are provided at positions that are symmetrical with respect to the imaging center 4 and are outside the imaging range of the imaging unit 2. It has been.
  • the imaging unit 2 includes a camera 2b such as a CCD camera and a lens unit 2a that forms an image on the imaging surface of the camera 2b of the reflected light from the coin 200 received via the light transmission unit 32.
  • a camera 2b such as a CCD camera
  • a lens unit 2a that forms an image on the imaging surface of the camera 2b of the reflected light from the coin 200 received via the light transmission unit 32.
  • description of a substrate on which a circuit for operating the imaging unit 2 is formed, a substrate connected to the magnetic sensor 1a and the magnetic sensor 1b, and a substrate that performs light emission control of the light emitting element 22 is omitted. ing.
  • the light emitting element 22 and the light guide 23 for guiding the light emitted from the light emitting element 22 to the imaging center 4 in the light transmitting portion 32 are: They are provided at positions that are symmetrical with respect to the imaging center 4 and that are outside the imaging range of the imaging unit 2.
  • the light emitting element 22 is attached so as to emit light upward in FIG. 5C, and the light emitted from the light emitting element 22 is reflected and refracted by the light guide 23 to transmit light. Collected in the section 32 (see the broken line arrow 31 shown in the figure).
  • the magnetic sensor 1a, the magnetic sensor 1b, and the light emitting element 22 are shown arranged concentrically.
  • the magnetic sensor 1a and the magnetic sensor 1b have a radius larger than that of the circle in which the light emitting element 22 is provided. It is good also as arranging on a concentric circle. By doing in this way, the optical axis adjustment (refer FIG. 5) of the light emitting element 22 mentioned later becomes unnecessary.
  • FIG. 4 is a cross-sectional view of a pot core type magnetic sensor.
  • the magnetic sensor 1 is composed of a core part 41 corresponding to the central axis and an outer peripheral part 42 corresponding to the outer periphery. Each has a secondary coil wound around it.
  • the magnetic sensor 1 shown in the figure is a reflective magnetic sensor that energizes the primary coil wound around the outer peripheral portion 42 and detects magnetic fluctuations excited by the coin 200 to the secondary coil. Note that the upper surface of the magnetic sensor 1 shown in the figure is arranged so as to penetrate the conveyance path side cover 21 shown in FIG.
  • FIG. 5 is a diagram illustrating an example of optical axis adjustment.
  • the optical axis adjustment of the light emitting element 22a and the light emitting element 22b adjacent to the magnetic sensor 1a is shown.
  • the optical axis before the optical axis adjustment is shown as broken line arrows 51 and 52 in FIG.
  • the magnetic sensor 1a is provided on a concentric circle with the imaging center 4 as the center instead of the light emitting element 22 that should be present, and therefore the magnetic sensor 1a and the imaging center 4 are connected.
  • the amount of light in the vicinity of the straight line tends to be insufficient, resulting in uneven illumination.
  • the optical axis closer to the magnetic sensor 1a than the original optical axis is arranged by shifting the light emitting element 22a in the direction of the arrow indicated by 55 in the figure. (See 53 in the figure).
  • the light emitting element 22b is also arranged so as to be shifted in the direction of the arrow indicated by 56 in the figure so that the optical axis is closer to the magnetic sensor 1a than the original optical axis (see 52 in the figure). (Refer to 54 in the figure).
  • FIG. 5 shows the case where only the optical axis of the light emitting element 22 (the light emitting element 22a and the light emitting element 22b) adjacent to the magnetic sensor 1a is adjusted, but the optical axis of each of the light emitting elements 22 in the vicinity of the magnetic sensor 1a is shown. It is good also as adjusting.
  • FIG. 6 is a block diagram illustrating a configuration of the coin identifying device 10 according to the first embodiment. In the figure, only components necessary for explaining the features of the coin identifying device 10 are shown.
  • the coin identifying device 10 includes a magnetic sensor 1, an imaging unit 2, a control unit 11, and a storage unit 12.
  • the control unit 11 further includes a magnetic processing unit 11a, an imaging instruction unit 11b, an image processing unit 11c, and a determination unit 11d, and the storage unit 12 stores the template 12a.
  • the magnetic sensor 1 is a pot core type magnetic sensor shown in FIG. 4, and is a so-called reflection type magnetic sensor. Further, as shown in FIG. 3, the magnetic sensors 1 are respectively installed at symmetrical positions with respect to the imaging center 4 of the imaging unit 2 (see the magnetic sensor 1a and the magnetic sensor 1b in FIG. 3).
  • FIG. 4 an example of a circuit connected to the magnetic sensor 1 will be described with reference to FIG.
  • FIG. 7 is a diagram illustrating a circuit example connected to the magnetic sensor 1.
  • the primary coil 43 of the magnetic sensor 1 is excited by an excitation signal EXS from the oscillation side circuit.
  • the oscillation side circuit includes a low-frequency transmitter 71 that oscillates and outputs a low-frequency signal (4 KHz in the figure) LS, a high-frequency transmitter 72 that oscillates and outputs a high-frequency signal (250 KHz in the figure) HS, An amplifier 73 that synthesizes and amplifies the low-frequency signal LS and the high-frequency signal HS, and a drive circuit 74 that applies the combined signal amplified by the amplifier 73 to the primary coil 43 of the magnetic sensor 1 as the excitation signal EXS. .
  • the detection signal SG of the secondary coil 44 of the magnetic sensor 1 is amplified by an amplifier 75 and then input to an LPF (low pass filter) 76a and an HPF (high pass filter) 76b.
  • LPF low pass filter
  • HPF high pass filter
  • the output signal SL of the LPF 76a is output to the magnetic processing unit 11a as a digital signal DL by an A / D (analog-digital converter) 79a via a full-wave rectifier 77a and an LPF (low-pass filter) 78a.
  • the digital signal DL is a reflected low frequency signal (4 KHz in the figure) corresponding to a low frequency signal (4 KHz in the figure).
  • the output signal SH of the HPF 76b is output to the magnetic processing unit 11a as a digital signal DH by an A / D (analog-digital converter) 79b via a full-wave rectifier 77b and an LPF (low-pass filter) 78b.
  • the digital signal DH is a reflected high frequency signal (250 KHz in the figure) corresponding to a high frequency signal (250 KHz in the figure).
  • the magnetic processing unit 11a determines the denomination of the coin 200 based on the received reflected low frequency signal DL and the reflected high frequency signal DH.
  • the imaging unit 2 includes a camera 2b such as a CCD camera and a lens unit 2a that forms an image on the imaging surface of the camera 2b of reflected light from the coin 200 received via the light transmission unit 32 (see FIG. 3).
  • the imaging unit 2 executes an imaging process at a timing when an imaging instruction is received from the imaging instruction unit 11b.
  • the control unit 11 is a processing unit that performs denomination determination and authenticity determination of the coin 200 based on signals from the magnetic sensor 1 and the imaging unit 2.
  • the magnetic processing unit 11 a is a processing unit that performs a process of determining a temporary denomination of the coin 200 based on the reflected low frequency signal DL and the reflected high frequency signal DH received from the magnetic sensor 1.
  • the magnetic processing unit 11a also performs a process of passing the signal level received from the magnetic sensor 1 to the imaging instruction unit 11b.
  • the imaging instruction unit 11b is a processing unit that performs processing for transmitting an imaging instruction to the imaging unit 2 based on the signal level received from the magnetic processing unit 11a. The timing at which the imaging instruction unit 11b issues an imaging instruction to the imaging unit 2 will be described later with reference to FIG.
  • the image processing unit 11 c is a processing unit that performs processing such as cutting out a partial image corresponding to the coin 200 from the image data received from the imaging unit 2.
  • the image processing unit 11c also performs a process of performing a process of passing the processed image data to the determination unit 11d.
  • the determination unit 11d receives the temporary denomination determination result from the magnetic processing unit 11a, reads the image determination template 12a corresponding to the temporary denomination from the storage unit 12, and receives the read template 12a and the image processing unit 11c. It is a processing unit that performs final denomination determination by comparing with the image data.
  • the storage unit 12 is a storage unit configured by a storage device such as a nonvolatile memory or a hard disk drive, and stores the template 12a.
  • the template 12 a is a template for image discrimination. For example, a front surface template and a back surface template are prepared for each denomination of the coin 200.
  • FIG. 8 is a diagram illustrating an outline of processing executed by the coin identifying device 10 according to the first embodiment. Note that (A) in the figure shows a case where the coin 200 is conveyed in the positive conveyance direction, and (B) in the figure shows a case in which the coin 200 is conveyed in a conveyance direction opposite to the positive conveyance direction. , Respectively.
  • the coin 200 when the coin 200 is transported in the positive transport direction, the coin 200 first passes through the magnetic sensor 1a.
  • the level value of the signal output from the magnetic sensor 1 a changes as shown in the graph 81. Specifically, when the coin 200 reaches the magnetic sensor 1a, the level value starts to decrease from the normal state, and when the coin 200 covers the magnetic sensor 1a, the level value changes in the vicinity of the minimum value (on-sensor passage section). And it increases as the coin 200 moves away from the magnetic sensor 1a, and returns to a normal state.
  • the magnetic processing unit 11a performs temporary denomination discrimination of the coin 200 using the level value in the sensor passing section. Then, the imaging instruction unit 11b transmits an imaging instruction to the imaging unit 2 after a predetermined time has elapsed (see 83 in the figure) from the timing at which the level value of the signal starts to increase (see 82 in the figure). .
  • the determination unit 11d executes a final determination process based on the magnetic data acquired in the sensor passage section and the image data acquired at the timing 83 shown in FIG.
  • the signal output from the magnetic sensor 1b is not used for a discrimination
  • the coin 200 when the coin 200 is transported in the reverse transport direction, the coin 200 first passes through the magnetic sensor 1b.
  • the level value of the signal output from the magnetic sensor 1b changes like a graph 84 as in the graph 81 shown in FIG. Specifically, when the coin 200 reaches the magnetic sensor 1b, the level value starts to decrease from the normal state, and when the coin 200 covers the magnetic sensor 1b, the level value changes near the minimum value (passing section on the sensor). And as the coin 200 moves away from the magnetic sensor 1b, it increases and returns to the normal state.
  • the magnetic processing unit 11a performs temporary denomination discrimination of the coin 200 using the level value in the sensor passing section. Then, the imaging instruction unit 11b transmits an imaging instruction to the imaging unit 2 after a predetermined time has elapsed (see 86 in the same figure) from the timing when the signal level value starts to increase (see 85 in the same figure). .
  • the determination unit 11d executes a final determination process based on the magnetic data acquired at the timing 85 shown in the figure and the image data acquired at the timing 86 shown in the figure.
  • the signal output from the magnetic sensor 1a is not used for a discrimination
  • the coin identification device 10 if various determination processes are executed at the same timing regardless of whether the coin 200 is transported in the positive transport direction or the reverse transport direction. It ’s enough. Therefore, since the same computer program that controls the discrimination timing can cope with both the forward and reverse transport directions, the computer program can be simplified.
  • the imaging unit acquires a captured image by irradiating the coin with light and capturing the reflected light from the coin, and the imaging center point of the imaging unit is a point-symmetrical position.
  • the same reflection type magnetic sensor is provided at a position adjacent to the conveyance path, and the discriminating unit determines the denomination of the coin based on the image data acquired by the imaging unit and the magnetic data acquired by the reflection type magnetic sensor.
  • the coin discriminating apparatus was configured to discriminate true / false.
  • the coin identifying device is configured such that the imaging instruction unit instructs imaging by the imaging unit based on the magnetic data acquired by the reflective magnetic sensor.
  • the conveyed coin passes through the imaging center point of the imaging unit after passing through the magnetic sensor, so that the coin identification accuracy is improved. Can keep. Further, even if the transport direction is changed, it is sufficient to perform the same software processing, so that the computer program can be simplified.
  • FIG. 9 is a perspective view of the coin identifying device 10a according to the second embodiment. Note that (A) in the figure shows the coin identifying device 10a with the transport path side cover 92 attached, and (B) in the same figure shows the coin identifying device 10a with the transport path side cover 92 removed. Each is shown.
  • the transmission type magnetic sensor is composed of coils having the same diameter as the upper ring coil 91 shown in FIG. 5A and the lower ring coil 93 shown in FIG.
  • the coil shall be wound by the hollow of the outer peripheral part in the upper side ring coil 91 and the lower side ring coil 93 shown to the same figure.
  • the upper ring coil 91 is a primary coil
  • the lower ring coil 93 is a secondary coil.
  • the coin 200 is conveyed in the forward direction (see the arrow in (1) in the figure) or in the reverse direction (see the arrow in (2) in the figure).
  • the coin 200 enters the imaging area 3 after entering from the outside of the upper ring coil 91 to the imaging unit 2.
  • the surface pattern is imaged.
  • the coin 200 is conveyed in the reverse direction (refer to the arrow in (2) in the figure), the coin 200 is conveyed to the imaging area 3 after entering from the outer side to the inner side of the upper ring coil 91.
  • the surface pattern is imaged by the imaging unit 2.
  • the light emitting element provided in an annular shape and the outside of the light guide that guides the light emitted from each light emitting element to the imaging area 3 are provided.
  • a lower ring coil 93 is provided at a position facing the upper ring coil 91.
  • FIG. 10 is a diagram illustrating an outline of processing executed by the coin identifying device 10a according to the second embodiment. Note that (A) in the figure shows a case where the coin 200 is conveyed in the positive conveyance direction, and (B) in the figure shows a case in which the coin 200 is conveyed in a conveyance direction opposite to the positive conveyance direction. , Respectively.
  • the coin 200 when the coin 200 is transported in the positive transport direction, the coin 200 first enters the space sandwiched between the upper ring coil 91 and the lower ring coil 93. Will come.
  • the level value of the signal output from the lower ring coil 93 changes as shown in the graph 101. Since the radius of the upper ring coil 91 and the lower ring coil 93 is larger than the radius of the magnetic sensor 1a or the magnetic sensor 1b shown in FIG.
  • the level value starts to decrease from the normal state, increases after reaching a minimum value, and then increases. Take the maximum value. Note that the maximum value is smaller than that in the normal state. Then, it decreases again from the maximum value, changes near the minimum value, increases as the coin 200 moves away, and returns to the normal state.
  • the magnetic processing unit 11a starts timing at the timing when the level value of the signal output from the lower ring coil 93 starts to decrease from the steady value (see 102 in the figure).
  • the magnetic processing unit 11a then outputs a signal output from the lower ring coil 93 at a timing when a predetermined time calculated based on the conveyance speed and the distance “S” shown in FIG. Based on, the temporary denomination of the coin 200 is determined.
  • the imaging instruction unit 11b also transmits an imaging instruction to the imaging unit 2 at the timing indicated by 103 in FIG. Then, the determination unit 11d executes final determination processing based on the magnetic data and the image data acquired at the timing 103 shown in FIG.
  • the coin 200 when the coin 200 is transported in the reverse transport direction, the coin 200 is firstly sandwiched between the upper ring coil 91 and the lower ring coil 93. Will come in.
  • the level value of the signal output from the lower ring coil 93 changes like a graph 104 as in the graph 101 shown in FIG.
  • the level value starts to decrease from the normal state, increases after reaching a minimum value, and then increases. Take the maximum value. Note that the maximum value is smaller than that in the normal state. Then, it decreases again from the maximum value, changes near the minimum value, increases as the coin 200 moves away, and returns to the normal state.
  • the magnetic processing unit 11a starts timing at the timing when the level value of the signal output from the lower ring coil 93 starts to decrease from the steady value (see 105 in the figure).
  • the magnetic processing unit 11a then outputs a signal output from the lower ring coil 93 at a timing when a predetermined time calculated based on the conveyance speed and the distance “S” shown in FIG. Based on, the temporary denomination of the coin 200 is determined.
  • the imaging instruction unit 11b also transmits an imaging instruction to the imaging unit 2 at the timing indicated by 106 in FIG. Then, the determination unit 11d executes final determination processing based on the magnetic data and the image data acquired at the timing 106 shown in FIG.
  • the pair of ring coils each having the imaging center of the imaging unit as the center position are provided so as to face each other with the conveyance path therebetween, so that it is possible to cope with any conveyance direction. it can.
  • FIGS. 9 and 10 show the case where a pair of ring coils are provided so as to face each other across the conveyance path, the upper ring coil may have a shape other than the ring shape.
  • FIG. 11 is a perspective view showing a coin identifying device 10b according to a modification of the coin identifying device 10a shown in FIGS.
  • the figure shows a case where a coil 111 and a coil 112 are provided instead of the upper ring coil 91.
  • the coil is wound around the recesses on the outer periphery of the coil 111 and the coil 112.
  • the lower ring coil 93 shall be incorporated in the coin identification device 10b.
  • the lower ring coil 93 is a primary coil, and the coils 111 and 112 are secondary coils.
  • the coin discriminating apparatus according to the present invention is useful when it is desired to maintain good discrimination accuracy regardless of whether the coin conveying direction is the forward direction or the reverse direction. It is suitable when you want to make the device size compact.

Abstract

A coin discrimination device has an imaging section for applying light to a coin and capturing an image by imaging light reflected from the coin. Identical reflection type magnetic sensors are arranged at positions which are point-symmetric with respect to the imaging center point of the imaging section and are located adjacent to a conveyance path. A determination section determines the denomination or the authenticity of the coin based on image data acquired by the imaging section and on magnetic data acquired by the reflection type magnetic sensors. An imaging instructing section instructs so that imaging is performed by the imaging section based on the magnetic data acquired by the reflection type magnetic sensors.

Description

硬貨識別装置Coin identification device
 本発明は、搬送路を搬送される硬貨の撮像画像および硬貨による磁界変動に基づいて硬貨を識別する硬貨識別装置に関し、特に、硬貨の搬送方向が正方向であっても逆方向であっても識別精度を良好に保つことができるとともに識別処理時間についても正逆方向で同等とすることができる硬貨識別装置に関するものである。 The present invention relates to a coin identifying device that identifies a coin based on a captured image of a coin transported through a transport path and a magnetic field fluctuation caused by the coin, and in particular, whether the coin transport direction is a forward direction or a reverse direction. The present invention relates to a coin discriminating apparatus that can maintain good discrimination accuracy and can make the discrimination processing time equivalent in forward and reverse directions.
 搬送される硬貨に対して光を照射し、硬貨による反射光をCCD(Charge Coupled Devices)カメラなどの受光部へ導入して硬貨画像を撮像することで、硬貨の金種や真偽を識別する硬貨識別装置が知られている。 By illuminating the coins being transported and introducing the light reflected from the coins into a light receiving unit such as a CCD (Charge Coupled Devices) camera, the coin image is picked up to identify the denomination and authenticity of the coins. Coin identification devices are known.
 かかる硬貨識別装置では、硬貨による磁界変動を検出する磁気センサを併用することで識別精度の向上が図られている。たとえば、搬送路の上流側に磁気センサを配置し、下流側にカメラを配置した硬貨識別装置の場合、硬貨が磁気センサ位置に到達すると、磁気センサによる仮金種判定が行われ、硬貨がカメラ位置に到達すると、判定した仮金種の画像テンプレートを用いた硬貨画像識別が行われる。 In such a coin discriminating apparatus, the accuracy of discrimination is improved by using a magnetic sensor that detects magnetic field fluctuations caused by coins. For example, in the case of a coin identification device in which a magnetic sensor is arranged on the upstream side of the conveyance path and a camera is arranged on the downstream side, when the coin reaches the magnetic sensor position, the denomination is determined by the magnetic sensor, and the coin is the camera. When the position is reached, coin image identification using the determined temporary denomination image template is performed.
 また、特許文献1には、搬送路の上流側に硬貨の模様を識別する光学センサを配置し、搬送路の下流側に硬貨の外径を検出する光学センサと硬貨の材質を磁気的に検出する磁気センサとを配置することで、処理時間を要する模様識別処理と、その他の識別処理とを並行して行う技術が開示されている。このように、処理時間を要する模様識別処理を他の識別処理に先駆けて行うことにより、硬貨識別に要する総合的な処理時間の短縮を図っている。 Further, in Patent Document 1, an optical sensor for identifying a coin pattern is arranged on the upstream side of the transport path, and an optical sensor for detecting the outer diameter of the coin and a material of the coin are magnetically detected on the downstream side of the transport path. Disclosed is a technique for performing a pattern identification process that requires processing time and other identification processes in parallel by disposing a magnetic sensor. In this way, by performing the pattern identification process that requires processing time prior to other identification processes, the overall processing time required for coin identification is reduced.
特開平9-91484号公報JP-A-9-91484
 しかしながら、特許文献1をはじめとする従来技術を用いた場合、硬貨の搬送方向を逆方向にすると良好な識別能力を得られないという問題がある。たとえば、搬送方向が正方向である場合の上流側に仮金種判定用の磁気センサを配置し、下流側にカメラを配置した場合、搬送方向を逆方向にすると、搬送される硬貨は、まず、カメラを通過し、次に、磁気センサを通過することになる。 However, when the conventional technique such as Patent Document 1 is used, there is a problem that good discrimination ability cannot be obtained if the coin transport direction is reversed. For example, if a magnetic sensor for determining the denomination is arranged on the upstream side when the conveyance direction is the forward direction and a camera is arranged on the downstream side, when the conveyance direction is reversed, Through the camera and then through the magnetic sensor.
 しかし、この場合、磁気センサによる仮金種判定を経ることなくカメラによる硬貨画像識別を行う必要があるため、識別精度が低下してしまう。その理由は、仮金種が不明なまま画像識別を行うと、金種ごとに最適な撮像条件で撮像できないからであり、金種が固定されていない段階では複数金種との画像比較が必要となり画像識別処理に時間を要するため通常よりも粗いマッチング処理を行う必要があるからである。 However, in this case, since it is necessary to perform coin image identification by the camera without passing through the temporary denomination determination by the magnetic sensor, the identification accuracy is lowered. The reason for this is that if image identification is performed while the temporary denomination is unknown, it is not possible to capture images under optimal imaging conditions for each denomination, and it is necessary to compare images with multiple denominations when the denomination is not fixed. This is because it takes time for the image identification process, and it is necessary to perform a rougher matching process than usual.
 また、特許文献1の技術を用いた場合、搬送方向を逆方向とすると、搬送される硬貨は模様識別用の光学センサを最後に通過することになるので、上記した総合的な処理時間の短縮を実現することができない。 Further, when the technique of Patent Document 1 is used, if the transport direction is the reverse direction, the transported coins will pass through the optical sensor for pattern identification lastly, so the total processing time described above is shortened. Cannot be realized.
 このように、従来は、硬貨の搬送方向が正方向である場合と逆方向である場合とで、硬貨識別装置の識別能力が異なることが通常であった。なお、硬貨識別装置における硬貨の搬送方向を正方向のみとしつつ、外部に設けた搬送機構で、逆方向から搬送されてきた硬貨を折り返して硬貨識別装置へ導き、硬貨識別装置から排出された硬貨を再度折り返して搬送することも考えられるが、装置サイズが大型化してしまうため好ましくない。 Thus, conventionally, it has been usual that the identification capability of the coin identification device differs depending on whether the coin conveyance direction is the forward direction or the reverse direction. The coins that are conveyed from the reverse direction by the conveyance mechanism provided outside while the coins are conveyed only in the forward direction in the coin identification device are guided back to the coin identification device and discharged from the coin identification device. Although it is conceivable to fold the sheet again and carry it, it is not preferable because the size of the apparatus increases.
 これらのことから、硬貨の搬送方向が正方向であっても逆方向であっても識別精度を良好に保つことができるとともに識別処理時間についても正逆方向で同等とすることができる硬貨識別装置をいかにして実現するかが大きな課題となっている。 Therefore, the coin identification device can maintain good identification accuracy regardless of whether the coin conveyance direction is the forward direction or the reverse direction, and can make the identification processing time equal in the forward and reverse directions. How to achieve this is a big issue.
 本発明は、上述した従来技術の課題を解決するためになされたものであり、硬貨の搬送方向が正方向であっても逆方向であっても識別精度を良好に保つことができるとともに識別処理時間についても正逆方向で同等とすることができる硬貨識別装置を提供することを目的とする。 The present invention has been made in order to solve the above-described problems of the prior art, and can maintain good discrimination accuracy regardless of whether the coin conveyance direction is the forward direction or the reverse direction. An object of the present invention is to provide a coin discriminating apparatus that can make the time equivalent in forward and reverse directions.
 上述した課題を解決し、目的を達成するために、本発明は、搬送路を搬送される硬貨の撮像画像および硬貨による磁界変動に基づいて硬貨を識別する硬貨識別装置であって、硬貨に対して光を照射して硬貨による反射光を撮像することで前記撮像画像を取得する撮像手段と、前記撮像手段の撮像中心点を通過するように搬送される硬貨の搬送方向が正方向または逆方向のいずれの搬送向きであっても、搬送される硬貨から前記撮像中心点までの残距離が等しい位置において硬貨の前記磁界変動を検出する磁気検出手段とを備えたことを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a coin identifying device for identifying a coin based on a captured image of a coin conveyed through a conveyance path and a magnetic field variation due to the coin, An imaging unit that acquires the captured image by irradiating light and imaging reflected light from the coin, and a conveyance direction of the coin that is conveyed so as to pass through an imaging center point of the imaging unit is a forward direction or a reverse direction The magnetic detection means detects the magnetic field fluctuation of the coin at a position where the remaining distance from the coin to be transported to the imaging center point is equal regardless of the transport direction.
 また、本発明は、上記の発明において、前記磁気検出手段が検出した前記磁界変動に基づいて前記撮像手段に対して前記撮像画像の取得を指示する撮像指示手段をさらに備えたことを特徴とする。 Further, the present invention is characterized in that, in the above-mentioned invention, the image pickup device further includes an image pickup instruction means for instructing the image pickup means to acquire the picked-up image based on the magnetic field fluctuation detected by the magnetic detection means. .
 また、本発明は、上記の発明において、前記磁気検出手段は、前記撮像中心点を中心として円環状の形状を有する磁気センサ素子であることを特徴とする。 Further, the present invention is characterized in that, in the above invention, the magnetic detection means is a magnetic sensor element having an annular shape with the imaging center point as a center.
 また、本発明は、上記の発明において、前記磁気検出手段は、前記撮像中心点について点対称位置であって前記搬送路に隣接する位置にそれぞれ設けられた同一の磁気センサであることを特徴とする。 Further, the present invention is characterized in that, in the above invention, the magnetic detection means is the same magnetic sensor provided at a position that is point-symmetric with respect to the imaging center point and adjacent to the conveyance path. To do.
 また、本発明は、上記の発明において、前記磁気検出手段は、前記撮像中心点について点対称位置であって前記搬送路に隣接する位置にそれぞれ設けられた同一の反射型ポットコア型磁気センサであることを特徴とする。 Also, the present invention is the same reflection type pot core type magnetic sensor provided in the above-mentioned invention, wherein the magnetic detection means is provided at a position that is point-symmetrical with respect to the imaging center point and is adjacent to the conveyance path. It is characterized by that.
 また、本発明は、上記の発明において、前記撮像手段は、前記撮像中心点を中心として円環状に配設され、かつ、照射する光の光軸が前記撮像中心点に向かうように調整されている複数の発光素子を有しており、前記磁気検出手段は、該当する位置の前記発光素子と置き換えて配設されており、前記磁気検出手段の近隣における前記発光素子の光軸は、前記撮像中心点よりも前記磁気検出手段側に寄せた向きに調整されていることを特徴とする。 Further, the present invention is the above invention, wherein the imaging means is arranged in an annular shape centering on the imaging center point, and is adjusted so that an optical axis of light to be irradiated is directed to the imaging center point. A plurality of light emitting elements, and the magnetic detection means is disposed in place of the light emitting elements at the corresponding positions, and the optical axis of the light emitting element in the vicinity of the magnetic detection means is the imaging It is adjusted to be oriented closer to the magnetic detection means than the center point.
 前記撮像手段および前記磁気検出手段は、一体型のモジュールとして構成されていることを特徴とする。 The imaging means and the magnetic detection means are configured as an integrated module.
 本発明によれば、硬貨に対して光を照射して硬貨による反射光を撮像することで撮像画像を取得する撮像手段と、撮像手段の撮像中心点を通過するように搬送される硬貨の搬送方向が正方向または逆方向のいずれの搬送向きであっても、搬送される硬貨から撮像中心点までの残距離が等しい位置において硬貨の磁界変動を検出する磁気検出手段とを備えることとしたので、硬貨の搬送方向が正方向であっても逆方向であっても、搬送される硬貨は磁気検出手段の通過後に撮像手段の撮像中心点を通過するので、硬貨の識別精度を良好に保つことができるという効果を奏する。また、搬送向きが変更された場合であっても、同一のソフトウェア処理を行うことで足りるので、コンピュータプログラムを簡略化することができるという効果を奏する。 According to the present invention, the image pickup means for acquiring a picked-up image by irradiating the coin with light and picking up the reflected light from the coin, and the conveyance of the coin carried so as to pass through the image pickup center point of the image pickup means. Even if the direction is the forward direction or the reverse direction, the magnetic detection means for detecting the magnetic field fluctuation of the coin at the position where the remaining distance from the conveyed coin to the imaging center point is equal is provided. Regardless of whether the coin is conveyed in the forward direction or in the opposite direction, the conveyed coin passes through the imaging center point of the imaging means after passing through the magnetic detection means, so that the coin identification accuracy is kept good. There is an effect that can be. Further, even if the transport direction is changed, it is sufficient to perform the same software processing, so that the computer program can be simplified.
 また、本発明によれば、磁気検出手段が検出した磁界変動に基づいて撮像手段に対して撮像画像の取得を指示する撮像指示手段をさらに備えることとしたので、磁気検出手段が、撮像手段の撮像タイミングを取得するタイミングセンサの役割を兼ねることで、硬貨識別装置の構成を簡略化することができるという効果を奏する。 In addition, according to the present invention, the magnetic detection unit further includes the imaging instruction unit that instructs the imaging unit to acquire a captured image based on the magnetic field variation detected by the magnetic detection unit. By also serving as a timing sensor that acquires the imaging timing, the effect of simplifying the configuration of the coin identifying device can be achieved.
 また、本発明によれば、磁気検出手段は、撮像中心点を中心として円環状の形状を有する磁気センサ素子であることとしたので、硬貨の搬送方向がいずれの方向であっても、撮像中心点までの残距離が等しい位置で硬貨による磁界変動を取得することができるという効果を奏する。 Further, according to the present invention, since the magnetic detection means is a magnetic sensor element having an annular shape with the imaging center point as the center, the imaging center can be used regardless of the direction in which the coin is conveyed. There is an effect that magnetic field fluctuations due to coins can be acquired at positions where the remaining distances to the points are equal.
 また、本発明によれば、磁気検出手段は、撮像中心点について点対称位置であって搬送路に隣接する位置にそれぞれ設けられた同一の磁気センサであることとしたので、硬貨の搬送方向が正逆いずれの方向であっても、撮像中心点までの残距離が等しい位置で硬貨による磁界変動を取得することができるという硬貨を奏する。 Further, according to the present invention, since the magnetic detection means is the same magnetic sensor provided at a position that is point-symmetric with respect to the imaging center point and adjacent to the conveyance path, the coin conveyance direction is In both forward and reverse directions, a coin is obtained in which magnetic field fluctuations due to coins can be acquired at positions where the remaining distance to the imaging center point is equal.
 また、本発明によれば、磁気検出手段は、撮像中心点について点対称位置であって搬送路に隣接する位置にそれぞれ設けられた同一の反射型ポットコア型磁気センサであることとしたので、硬貨識別装置の装置サイズをコンパクトにすることができるという効果を奏する。 Further, according to the present invention, since the magnetic detection means is the same reflection type pot core type magnetic sensor respectively provided at a position that is point-symmetric with respect to the imaging center point and that is adjacent to the conveyance path, There is an effect that the size of the identification device can be reduced.
 また、本発明によれば、撮像手段は、撮像中心点を中心として円環状に配設され、かつ、照射する光の光軸が撮像中心点に向かうように調整されている複数の発光素子を有しており、磁気検出手段は、該当する位置の発光素子と置き換えて配設されており、磁気検出手段の近隣における発光素子の光軸は、撮像中心点よりも磁気検出手段側に寄せた向きに調整されていることとしたので、発光素子の代わりに設けられた磁気検出手段周辺の照度の低下を防止することで、照明むらを無くすことができるという効果を奏する。 Further, according to the present invention, the imaging means includes a plurality of light emitting elements that are arranged in an annular shape around the imaging center point and are adjusted so that the optical axis of the irradiated light is directed toward the imaging center point. The magnetic detection means is disposed in place of the light emitting element at the corresponding position, and the optical axis of the light emitting element in the vicinity of the magnetic detection means is closer to the magnetic detection means than the imaging center point. Since the direction is adjusted, the illumination unevenness can be eliminated by preventing a decrease in illuminance around the magnetic detection means provided instead of the light emitting element.
 また、本発明によれば、撮像手段および磁気検出手段は、一体型のモジュールとして構成されていることとしたので、硬貨識別装置の構成をシンプルにすることで、設計時や製造時における作業負荷を低減することができるとともに開発期間を短縮することができるという効果を奏する。また、故障時にはモジュール単位での交換が可能であるので、保守効率を高めることができるという効果を奏する。 Further, according to the present invention, since the imaging means and the magnetic detection means are configured as an integrated module, the work load at the time of design and manufacture can be reduced by simplifying the configuration of the coin identification device. As a result, the development period can be shortened. In addition, since replacement in module units is possible at the time of failure, there is an effect that maintenance efficiency can be improved.
図1は、実施例1に係る硬貨識別装置の概要を示す図である。FIG. 1 is a diagram illustrating an outline of the coin identifying device according to the first embodiment. 図2は、実施例1に係る硬貨識別装置の斜視図である。FIG. 2 is a perspective view of the coin identifying device according to the first embodiment. 図3は、実施例1に係る硬貨識別装置の上面図および断面図である。FIG. 3 is a top view and a cross-sectional view of the coin identifying device according to the first embodiment. 図4は、ポットコア型磁気センサの断面図である。FIG. 4 is a cross-sectional view of a pot core type magnetic sensor. 図5は、光軸調整の一例を示す図である。FIG. 5 is a diagram illustrating an example of optical axis adjustment. 図6は、実施例1に係る硬貨識別装置の構成を示すブロック図である。FIG. 6 is a block diagram illustrating the configuration of the coin identifying device according to the first embodiment. 図7は、磁気センサに接続される回路例を示す図である。FIG. 7 is a diagram illustrating an example of a circuit connected to the magnetic sensor. 図8は、実施例1に係る硬貨識別装置が実行する処理概要を示す図である。FIG. 8 is a diagram illustrating an outline of processing executed by the coin identifying device according to the first embodiment. 図9は、実施例2に係る硬貨識別装置の斜視図である。FIG. 9 is a perspective view of the coin identifying device according to the second embodiment. 図10は、実施例2に係る硬貨識別装置が実行する処理概要を示す図である。FIG. 10 is a diagram illustrating an outline of processing executed by the coin identifying device according to the second embodiment. 図11は、変形例に係る硬貨識別装置を示す斜視図である。FIG. 11 is a perspective view showing a coin identifying device according to a modification.
符号の説明Explanation of symbols
   1、1a、1b 磁気センサ
   2  撮像部
   2a レンズユニット
   2b カメラ
   3  撮像エリア
   4  撮像中心
  10、10a、10b 硬貨識別装置
  11  制御部
  11a 磁気処理部
  11b 撮像指示部
  11c 画像処理部
  11d 判別部
  12  記憶部
  12a テンプレート
  21  搬送路側カバー
  22  発光素子
  23  導光体
  31  光軸
  32  光透過部
  41  コア部
  42  外周部
  43  1次コイル
  44  2次コイル
  71  低周波発信器
  72  高周波発信器
  73  増幅器
  74  駆動回路
  75  増幅器
  76a LPF(ローパスフィルタ)
  76b HPF(ハイパスフィルタ)
  77a、77b 全波整流器
  78a、78b LPF(ローパスフィルタ)
  79a、79b A/D(アナログデジタル変換器)
  91  上側リングコイル
  92  搬送路側カバー
  93  下側リングコイル
 111、112 コイル
 200  硬貨
 201  正の搬送方向
 202  逆の搬送方向
DESCRIPTION OF SYMBOLS 1, 1a, 1b Magnetic sensor 2 Imaging part 2a Lens unit 2b Camera 3 Imaging area 4 Imaging center 10, 10a, 10b Coin identification apparatus 11 Control part 11a Magnetic processing part 11b Imaging instruction part 11c Image processing part 11d Discriminating part 12 Storage part 12a template 21 transport path side cover 22 light emitting element 23 light guide 31 optical axis 32 light transmission part 41 core part 42 outer peripheral part 43 primary coil 44 secondary coil 71 low frequency transmitter 72 high frequency transmitter 73 amplifier 74 drive circuit 75 amplifier 76a LPF (low pass filter)
76b HPF (High Pass Filter)
77a, 77b Full wave rectifier 78a, 78b LPF (low pass filter)
79a, 79b A / D (analog / digital converter)
91 Upper ring coil 92 Transport path side cover 93 Lower ring coil 111, 112 Coil 200 Coin 201 Positive transport direction 202 Reverse transport direction
 以下に、添付図面を参照して、本発明に係る硬貨識別装置の好適な実施例を詳細に説明する。なお、実施例1では、撮像部における撮像中心点についての点対称位置に、同一の反射型磁気センサを配置した場合について、実施例2では、撮像部における撮像中心点を中心とする同心円上にリング型の透過型磁気センサを配置した場合について、それぞれ説明することとする。 Hereinafter, with reference to the attached drawings, a preferred embodiment of a coin identification device according to the present invention will be described in detail. In the first embodiment, when the same reflection type magnetic sensor is disposed at a point-symmetrical position with respect to the imaging center point in the imaging unit, in the second embodiment, on the concentric circle centering on the imaging center point in the imaging unit. Each case where a ring-type transmissive magnetic sensor is arranged will be described.
 まず、実施例1に係る硬貨識別装置10の概要について図1を用いて説明する。図1は、実施例1に係る硬貨識別装置10の概要を示す図である。なお、同図の(A)には、正の搬送方向(同図の201に示す矢印の向き参照)に硬貨200を搬送する場合について、同図の(B)には、正の搬送方向の逆向き、すなわち、逆の搬送方向(同図の202に示す矢印の向き参照)に硬貨200を搬送する場合について、それぞれ示している。また、硬貨200は、図示しない搬送ベルトなどの搬送機構で搬送路上を一定速度で搬送されるものとする。 First, an outline of the coin identifying device 10 according to the first embodiment will be described with reference to FIG. FIG. 1 is a diagram illustrating an outline of a coin identifying device 10 according to the first embodiment. Note that (A) in the figure shows the case where the coin 200 is conveyed in the positive conveyance direction (see the direction of the arrow shown in 201 in the figure), and (B) in the figure shows the positive conveyance direction. Each of the cases where the coins 200 are conveyed in the opposite direction, that is, in the opposite conveyance direction (refer to the direction of the arrow indicated by 202 in the figure) is shown. In addition, the coin 200 is transported at a constant speed on the transport path by a transport mechanism such as a transport belt (not shown).
 同図の(A)に示したように、硬貨識別装置10は、CCD(Charge Coupled Devices)カメラなどの撮像デバイスを含んだ撮像部2を備えている。また、搬送路上には、ガラスなどの透明部材で構成された撮像エリア3が設けられており、撮像中心4まわりの画像を撮像する撮像部2は、撮像エリア3に搬送されてきた硬貨200の表面の模様を撮像する。 As shown in FIG. 1A, the coin identifying device 10 includes an imaging unit 2 including an imaging device such as a CCD (Charge Coupled Devices) camera. In addition, an imaging area 3 made of a transparent member such as glass is provided on the conveyance path, and the imaging unit 2 that captures an image around the imaging center 4 is used for the coin 200 that has been conveyed to the imaging area 3. Image the surface pattern.
 また、搬送路上には、磁気センサ1aおよび磁気センサ1bが設けられており、磁気センサ1aおよび磁気センサ1bは、撮像中心4からの距離がRであって、撮像中心4について点対称となる位置にそれぞれ設置されている。なお、磁気センサ1aおよび磁気センサ1bは、撮像部2の撮像範囲外に設けられている。 In addition, a magnetic sensor 1 a and a magnetic sensor 1 b are provided on the transport path, and the magnetic sensor 1 a and the magnetic sensor 1 b have a distance R from the imaging center 4 and are point-symmetric with respect to the imaging center 4. Respectively. Note that the magnetic sensor 1 a and the magnetic sensor 1 b are provided outside the imaging range of the imaging unit 2.
 すなわち、磁気センサ1aおよび磁気センサ1bは、撮像中心4からの距離が等しい位置にそれぞれ設けられているので、同図の(A)に示した正の搬送方向(同図の201に示す矢印の向き参照)および同図の(B)に示した逆の搬送方向(同図の202に示す矢印の向き参照)のいずれの搬送方向であっても、撮像部2による硬貨200の撮像に先駆けて硬貨200による磁界変動を取得することができる。 That is, since the magnetic sensor 1a and the magnetic sensor 1b are respectively provided at positions where the distance from the imaging center 4 is equal, the positive conveyance direction shown by (A) in FIG. (Refer to the direction) and the reverse conveyance direction shown in (B) of the figure (see the direction of the arrow shown in 202 of the figure), prior to the imaging of the coin 200 by the imaging unit 2. The magnetic field fluctuation by the coin 200 can be acquired.
 具体的には、同図の(A)に示した場合では、磁気センサ1aで硬貨200による磁界変動を取得した後に、撮像部2によって硬貨200の撮像が行われる。なお、この場合、磁気センサ1bの出力は無視される。 Specifically, in the case shown in FIG. 5A, after the magnetic field fluctuation caused by the coin 200 is acquired by the magnetic sensor 1a, the imaging unit 2 images the coin 200. In this case, the output of the magnetic sensor 1b is ignored.
 また、同図の(B)に示した場合では、磁気センサ1bで硬貨200による磁界変動を取得した後に、撮像部2によって硬貨200の撮像が行われる。なお、この場合、磁気センサ1aの出力は無視される。 Further, in the case shown in FIG. 5B, after the magnetic field fluctuation caused by the coin 200 is acquired by the magnetic sensor 1b, the imaging unit 2 images the coin 200. In this case, the output of the magnetic sensor 1a is ignored.
 このように、実施例1に係る硬貨識別装置10は、撮像部2の撮像中心4からの距離が等しい位置に、磁気センサ1aおよび磁気センサ1bをそれぞれ設けることとした。したがって、硬貨200の搬送方向が正方向であっても逆方向であっても、磁気センサ1aまたは磁気センサ1bによる磁界変動取得後、硬貨200の通過を確認してから所定時間経過後に、撮像部2による硬貨200の撮像を行えばよい。 As described above, the coin identifying device 10 according to the first embodiment is provided with the magnetic sensor 1a and the magnetic sensor 1b at positions where the distance from the imaging center 4 of the imaging unit 2 is equal. Therefore, even if the conveyance direction of the coin 200 is the forward direction or the reverse direction, after acquiring a magnetic field variation by the magnetic sensor 1a or the magnetic sensor 1b, after the passage of the coin 200 is confirmed, the imaging unit What is necessary is just to image the coin 200 by No.2.
 すなわち、硬貨200の搬送方向が正方向であっても逆方向であっても、撮像部2についての撮像制御を、同一のコンピュータプログラムで実施することができる。このため、硬貨識別に係るコンピュータプログラムを簡略化することが可能となる。 That is, the imaging control for the imaging unit 2 can be performed by the same computer program regardless of whether the coin 200 is conveyed in the forward direction or the reverse direction. For this reason, it becomes possible to simplify the computer program concerning coin identification.
 次に、実施例1に係る硬貨識別装置10の構成例について図2を用いて説明する。図2は、実施例1に係る硬貨識別装置10の斜視図である。なお、同図の(A)には、図1に示した磁気センサ1(磁気センサ1aおよび磁気センサ1b)と、撮像部2とを一体モジュールとして構成した場合について示している。また、同図の(B)には、搬送路側カバー21を取り外した場合における硬貨識別装置10の内部構造を示している。 Next, a configuration example of the coin identifying device 10 according to the first embodiment will be described with reference to FIG. FIG. 2 is a perspective view of the coin identifying device 10 according to the first embodiment. 1A shows a case where the magnetic sensor 1 (magnetic sensor 1a and magnetic sensor 1b) shown in FIG. 1 and the imaging unit 2 are configured as an integrated module. Moreover, (B) of the same figure has shown the internal structure of the coin identification device 10 when the conveyance path side cover 21 is removed.
 同図の(A)に示したように、硬貨200は、正方向(同図の(1)の矢印参照)または逆方向(同図の(2)の矢印参照)に搬送される。硬貨200が正方向(同図の(1)の矢印参照)に搬送される場合、硬貨200は、磁気センサ1aを通過した後に、撮像エリア3へ搬送され、撮像部2によって表面の模様を撮像される。 As shown in (A) of the figure, the coin 200 is conveyed in the forward direction (see the arrow in (1) in the figure) or in the reverse direction (see the arrow in (2) in the figure). When the coin 200 is conveyed in the forward direction (see the arrow (1) in the figure), the coin 200 is conveyed to the imaging area 3 after passing through the magnetic sensor 1a, and the imaging unit 2 images the surface pattern. Is done.
 また、硬貨200が逆方向(同図の(2)の矢印参照)に搬送される場合、硬貨200は、磁気センサ1bを通過した後に、撮像エリア3へ搬送され、撮像部2によって表面の模様を撮像される。 Further, when the coin 200 is conveyed in the reverse direction (see the arrow (2) in the figure), the coin 200 is conveyed to the imaging area 3 after passing through the magnetic sensor 1b, and the surface pattern is captured by the imaging unit 2. Is imaged.
 また、同図の(B)に示したように、搬送路側カバー21を取り外すと、円環状に設けられた複数の発光素子22と、各発光素子22が発した光を撮像エリア3へ導く導光体23とが設けられている。 Further, as shown in FIG. 5B, when the conveyance path side cover 21 is removed, a plurality of light emitting elements 22 provided in an annular shape and a guide for guiding the light emitted from each light emitting element 22 to the imaging area 3 are provided. A light body 23 is provided.
 なお、磁気センサ1aおよび磁気センサ1bの上面は、同図の(A)に示したように、搬送路側カバー21に設けられた穴を貫通して搬送路面に接するようになっている。このように、搬送路面と磁気センサ1aおよび磁気センサ1bの検出面とを一致させることで、硬貨200による磁界変動を高精度に取得することができる。 The upper surfaces of the magnetic sensor 1a and the magnetic sensor 1b pass through holes provided in the transport path side cover 21 and come into contact with the transport path surface, as shown in FIG. Thus, the magnetic field fluctuation | variation by the coin 200 is acquirable with high precision by making a conveyance path surface and the detection surface of the magnetic sensor 1a and the magnetic sensor 1b correspond.
 次に、実施例1に係る硬貨識別装置10の構成について図3を用いてさらに詳細に説明する。図3は、実施例1に係る硬貨識別装置10の上面図および断面図である。なお、同図の(A)には、硬貨識別装置10の上面図を、同図の(B)には、同図の(A)に示したa-b断面における断面図を、同図の(C)には、同図の(A)に示したc-d断面における断面図を、それぞれ示している。また、同図の(A)に示した発光素子22の個数は一例であり、他の個数としても構わない。 Next, the configuration of the coin identifying device 10 according to the first embodiment will be described in more detail with reference to FIG. FIG. 3 is a top view and a cross-sectional view of the coin identifying device 10 according to the first embodiment. 2A is a top view of the coin discriminating apparatus 10, FIG. 2B is a cross-sectional view taken along the line ab shown in FIG. 2A, and FIG. (C) is a cross-sectional view taken along the line cd shown in (A) of FIG. Further, the number of the light emitting elements 22 shown in FIG. 5A is an example, and other numbers may be used.
 同図の(A)に示したように、硬貨識別装置10の上面、すなわち、搬送路を構成する下側の面には、撮像部2の撮像中心4を中心とする円形の光透過部32が設けられている。この光透過部32は、ガラスなどの透明部材で構成されており、図2に示した搬送路側カバー21の下方に設けられた発光素子22が発した光を、硬貨200へ向けて通過させる。 As shown to (A) of the figure, the circular light transmission part 32 centering on the imaging center 4 of the imaging part 2 is formed in the upper surface of the coin identification device 10, ie, the lower surface which comprises a conveyance path. Is provided. This light transmission part 32 is comprised by transparent members, such as glass, and lets the light which the light emitting element 22 provided below the conveyance path side cover 21 shown in FIG.
 かかる発光素子22は、撮像中心4を中心とする同心円上に円環状となるように設置されており、発光素子22が発する光の光軸は、原則として撮像中心4へ向かうように調整されている(同図に示す31の破線矢印参照)。そして、同図に示すa-b断面上では、発光素子22の代わりに磁気センサ1aまたは磁気センサ1bが取り付けられている。 The light emitting element 22 is installed so as to form an annular shape on a concentric circle with the imaging center 4 as the center, and the optical axis of the light emitted from the light emitting element 22 is adjusted so as to be directed toward the imaging center 4 in principle. (Refer to the broken line arrow 31 in the figure). In addition, on the ab cross section shown in the figure, the magnetic sensor 1a or the magnetic sensor 1b is attached instead of the light emitting element 22.
 ここで、磁気センサ1aまたは磁気センサ1bは、発光素子22の代わりに取り付けられているため、磁気センサ1aまたは磁気センサ1bの近傍では、照明むらが発生しやすい傾向にある。このため、硬貨識別装置10では、磁気センサ1aまたは磁気センサ1bの近傍に位置する発光素子22の光軸を調整することで、かかる照明むらの発生を抑制している。なお、光軸調整の具体例については、図5を用いて後述することとする。 Here, since the magnetic sensor 1a or the magnetic sensor 1b is attached instead of the light emitting element 22, uneven illumination tends to occur near the magnetic sensor 1a or the magnetic sensor 1b. For this reason, in the coin identification device 10, the occurrence of such illumination unevenness is suppressed by adjusting the optical axis of the light emitting element 22 located in the vicinity of the magnetic sensor 1a or the magnetic sensor 1b. A specific example of the optical axis adjustment will be described later with reference to FIG.
 次に、同図の(A)に示したa-b断面における断面図について説明する。同図の(B)に示したように、a-b断面では、磁気センサ1aおよび磁気センサ1bが、撮像中心4について対称位置であって、撮像部2の撮像範囲外となる位置にそれぞれ設けられている。 Next, a cross-sectional view taken along the line ab shown in FIG. As shown in FIG. 5B, in the ab cross section, the magnetic sensor 1a and the magnetic sensor 1b are provided at positions that are symmetrical with respect to the imaging center 4 and are outside the imaging range of the imaging unit 2. It has been.
 また、撮像部2は、CCDカメラなどのカメラ2bと、光透過部32経由で受け取る硬貨200による反射光を、カメラ2bの撮像面に結像させるレンズユニット2aとから構成されている。なお、図3では、撮像部2を作動させるための回路が形成される基板や、磁気センサ1aおよび磁気センサ1bに接続される基板、発光素子22の発光制御を行う基板などの記載を省略している。 The imaging unit 2 includes a camera 2b such as a CCD camera and a lens unit 2a that forms an image on the imaging surface of the camera 2b of the reflected light from the coin 200 received via the light transmission unit 32. In FIG. 3, description of a substrate on which a circuit for operating the imaging unit 2 is formed, a substrate connected to the magnetic sensor 1a and the magnetic sensor 1b, and a substrate that performs light emission control of the light emitting element 22 is omitted. ing.
 次に、同図の(A)に示したc-d断面における断面図について説明する。同図の(C)に示したように、c-d断面では、発光素子22と、発光素子22が発した光を光透過部32における撮像中心4へ導くための導光体23とが、撮像中心4について対称位置であって、撮像部2の撮像範囲外となる位置にそれぞれ設けられている。 Next, a cross-sectional view taken along the line cd shown in FIG. As shown in FIG. 6C, in the cd cross section, the light emitting element 22 and the light guide 23 for guiding the light emitted from the light emitting element 22 to the imaging center 4 in the light transmitting portion 32 are: They are provided at positions that are symmetrical with respect to the imaging center 4 and that are outside the imaging range of the imaging unit 2.
 なお、発光素子22は、同図の(C)における上方向へ光を発するように取り付けられており、発光素子22が発した光は導光体23によって反射・屈折されることで、光透過部32へ集められる(同図に示す31の破線矢印参照)。 The light emitting element 22 is attached so as to emit light upward in FIG. 5C, and the light emitted from the light emitting element 22 is reflected and refracted by the light guide 23 to transmit light. Collected in the section 32 (see the broken line arrow 31 shown in the figure).
 なお、同図では、磁気センサ1a、磁気センサ1bおよび発光素子22を同心円上に配置した場合について示したが、磁気センサ1aおよび磁気センサ1bを、発光素子22が設けられる円よりも半径が大きな同心円上に配置することとしてもよい。このようにすることで、後述する発光素子22の光軸調整(図5参照)が不要となる。 In the figure, the magnetic sensor 1a, the magnetic sensor 1b, and the light emitting element 22 are shown arranged concentrically. However, the magnetic sensor 1a and the magnetic sensor 1b have a radius larger than that of the circle in which the light emitting element 22 is provided. It is good also as arranging on a concentric circle. By doing in this way, the optical axis adjustment (refer FIG. 5) of the light emitting element 22 mentioned later becomes unnecessary.
 次に、磁気センサ1aおよび磁気センサ1bの構成例について図4を用いて説明する。図4は、ポットコア型磁気センサの断面図である。同図に示すように、磁気センサ1は、中心軸に相当するコア部41と、外周に相当する外周部42とから構成されており、外周部42には1次コイルが、コア部41には2次コイルが、それぞれ巻回されている。 Next, configuration examples of the magnetic sensor 1a and the magnetic sensor 1b will be described with reference to FIG. FIG. 4 is a cross-sectional view of a pot core type magnetic sensor. As shown in the figure, the magnetic sensor 1 is composed of a core part 41 corresponding to the central axis and an outer peripheral part 42 corresponding to the outer periphery. Each has a secondary coil wound around it.
 なお、同図に示す磁気センサ1は、外周部42に巻回された1次コイルへ通電するとともに、硬貨200によって2次コイルに励起された磁気変動を検出する反射型磁気センサである。なお、同図に示した磁気センサ1の上面は、図2の(A)に示した搬送路側カバー21を貫通して搬送路面に接するように配置されることになる。 The magnetic sensor 1 shown in the figure is a reflective magnetic sensor that energizes the primary coil wound around the outer peripheral portion 42 and detects magnetic fluctuations excited by the coin 200 to the secondary coil. Note that the upper surface of the magnetic sensor 1 shown in the figure is arranged so as to penetrate the conveyance path side cover 21 shown in FIG.
 次に、図2や図3に示した発光素子22の光軸調整について図5を用いて説明する。図5は、光軸調整の一例を示す図である。なお、同図には、磁気センサ1aに隣接する発光素子22aおよび発光素子22bの光軸調整について示している。また、参考のため光軸調整を行う以前の光軸を、同図の51および52に破線矢印として示している。 Next, adjustment of the optical axis of the light emitting element 22 shown in FIGS. 2 and 3 will be described with reference to FIG. FIG. 5 is a diagram illustrating an example of optical axis adjustment. In the figure, the optical axis adjustment of the light emitting element 22a and the light emitting element 22b adjacent to the magnetic sensor 1a is shown. For reference, the optical axis before the optical axis adjustment is shown as broken line arrows 51 and 52 in FIG.
 同図に示したように、磁気センサ1aは、本来なら存在するはずの発光素子22の代わりに、撮像中心4を中心とする同心円上に設けられるため、磁気センサ1aと撮像中心4とを結ぶ直線付近の光量は不足する傾向にあり、これによって照明むらが発生してしまう。なお、磁気センサ1bについても同様のことがいえる。 As shown in the figure, the magnetic sensor 1a is provided on a concentric circle with the imaging center 4 as the center instead of the light emitting element 22 that should be present, and therefore the magnetic sensor 1a and the imaging center 4 are connected. The amount of light in the vicinity of the straight line tends to be insufficient, resulting in uneven illumination. The same applies to the magnetic sensor 1b.
 そこで、同図に示すように、発光素子22aを同図の55に示す矢印方向にずらして配置することで、本来の光軸(同図の51参照)よりも、磁気センサ1a寄りの光軸となるように調整する(同図の53参照)。また、発光素子22bについても、同図の56に示す矢印方向にずらして配置することで、本来の光軸(同図の52参照)よりも、磁気センサ1a寄りの光軸となるように調整する(同図の54参照)。 Therefore, as shown in the figure, the optical axis closer to the magnetic sensor 1a than the original optical axis (see 51 in the figure) is arranged by shifting the light emitting element 22a in the direction of the arrow indicated by 55 in the figure. (See 53 in the figure). In addition, the light emitting element 22b is also arranged so as to be shifted in the direction of the arrow indicated by 56 in the figure so that the optical axis is closer to the magnetic sensor 1a than the original optical axis (see 52 in the figure). (Refer to 54 in the figure).
 このようにすることで、磁気センサ1aと撮像中心4とを結ぶ直線付近の光量不足を解消し、磁気センサ1aあるいは磁気センサ1bの設置による照明むらの発生を防止することができる。なお、図5では、磁気センサ1aに隣接する発光素子22(発光素子22aおよび発光素子22b)の光軸のみを調整する場合について示したが、磁気センサ1aの近傍における発光素子22についてそれぞれ光軸を調整することとしてもよい。 By doing so, it is possible to eliminate the shortage of light near the straight line connecting the magnetic sensor 1a and the imaging center 4, and to prevent uneven illumination due to the installation of the magnetic sensor 1a or the magnetic sensor 1b. FIG. 5 shows the case where only the optical axis of the light emitting element 22 (the light emitting element 22a and the light emitting element 22b) adjacent to the magnetic sensor 1a is adjusted, but the optical axis of each of the light emitting elements 22 in the vicinity of the magnetic sensor 1a is shown. It is good also as adjusting.
 次に、実施例1に係る硬貨識別装置10の機能構成について図6を用いて説明する。図6は、実施例1に係る硬貨識別装置10の構成を示すブロック図である。なお、同図では、硬貨識別装置10の特徴を説明するために必要な構成要素のみを示している。 Next, the functional configuration of the coin identifying device 10 according to the first embodiment will be described with reference to FIG. FIG. 6 is a block diagram illustrating a configuration of the coin identifying device 10 according to the first embodiment. In the figure, only components necessary for explaining the features of the coin identifying device 10 are shown.
 同図に示すように、硬貨識別装置10は、磁気センサ1と、撮像部2と、制御部11と、記憶部12とを備えている。また、制御部11は、磁気処理部11aと、撮像指示部11bと、画像処理部11cと、判別部11dとをさらに備えており、記憶部12は、テンプレート12aを記憶する。 As shown in FIG. 1, the coin identifying device 10 includes a magnetic sensor 1, an imaging unit 2, a control unit 11, and a storage unit 12. The control unit 11 further includes a magnetic processing unit 11a, an imaging instruction unit 11b, an image processing unit 11c, and a determination unit 11d, and the storage unit 12 stores the template 12a.
 磁気センサ1は、図4に示したポットコア型磁気センサであり、いわゆる反射型の磁気センサである。また、磁気センサ1は、図3に示したように、撮像部2の撮像中心4について対称位置にそれぞれ設置される(図3の磁気センサ1aおよび磁気センサ1b参照)。ここで、磁気センサ1に接続される回路例について図7を用いて説明しておく。 The magnetic sensor 1 is a pot core type magnetic sensor shown in FIG. 4, and is a so-called reflection type magnetic sensor. Further, as shown in FIG. 3, the magnetic sensors 1 are respectively installed at symmetrical positions with respect to the imaging center 4 of the imaging unit 2 (see the magnetic sensor 1a and the magnetic sensor 1b in FIG. 3). Here, an example of a circuit connected to the magnetic sensor 1 will be described with reference to FIG.
 図7は、磁気センサ1に接続される回路例を示す図である。同図に示すように、磁気センサ1の1次コイル43は、発振側回路からの励磁信号EXSで励磁される。具体的には、発振側回路は、低周波信号(同図では4KHz)LSを発振出力する低周波発信器71と、高周波信号(同図では250KHz)HSを発振出力する高周波発信器72と、低周波信号LSおよび高周波信号HSを合成して増幅する増幅器73と、増幅器73で増幅された合成信号を磁気センサ1の一次コイル43へ励磁信号EXSとして印加する駆動回路74とから構成されている。 FIG. 7 is a diagram illustrating a circuit example connected to the magnetic sensor 1. As shown in the figure, the primary coil 43 of the magnetic sensor 1 is excited by an excitation signal EXS from the oscillation side circuit. Specifically, the oscillation side circuit includes a low-frequency transmitter 71 that oscillates and outputs a low-frequency signal (4 KHz in the figure) LS, a high-frequency transmitter 72 that oscillates and outputs a high-frequency signal (250 KHz in the figure) HS, An amplifier 73 that synthesizes and amplifies the low-frequency signal LS and the high-frequency signal HS, and a drive circuit 74 that applies the combined signal amplified by the amplifier 73 to the primary coil 43 of the magnetic sensor 1 as the excitation signal EXS. .
 また、磁気センサ1の2次コイル44の検出信号SGは、増幅器75で増幅されたうえでLPF(ローパスフィルタ)76aおよびHPF(ハイパスフィルタ)76bへそれぞれ入力される。 The detection signal SG of the secondary coil 44 of the magnetic sensor 1 is amplified by an amplifier 75 and then input to an LPF (low pass filter) 76a and an HPF (high pass filter) 76b.
 LPF76aの出力信号SLは、全波整流器77aおよびLPF(ローパスフィルタ)78aを経由してA/D(アナログデジタル変換器)79aでデジタル信号DLとして磁気処理部11aへ出力される。ここで、デジタル信号DLは、低周波信号(同図では4KHz)に対応する反射低周波信号(同図では4KHz)である。 The output signal SL of the LPF 76a is output to the magnetic processing unit 11a as a digital signal DL by an A / D (analog-digital converter) 79a via a full-wave rectifier 77a and an LPF (low-pass filter) 78a. Here, the digital signal DL is a reflected low frequency signal (4 KHz in the figure) corresponding to a low frequency signal (4 KHz in the figure).
 一方、HPF76bの出力信号SHは、全波整流器77bおよびLPF(ローパスフィルタ)78bを経由してA/D(アナログデジタル変換器)79bでデジタル信号DHとして磁気処理部11aへ出力される。ここで、デジタル信号DHは、高周波信号(同図では250KHz)に対応する反射高周波信号(同図では250KHz)である。 On the other hand, the output signal SH of the HPF 76b is output to the magnetic processing unit 11a as a digital signal DH by an A / D (analog-digital converter) 79b via a full-wave rectifier 77b and an LPF (low-pass filter) 78b. Here, the digital signal DH is a reflected high frequency signal (250 KHz in the figure) corresponding to a high frequency signal (250 KHz in the figure).
 磁気処理部11aでは、受け取った反射低周波信号DLおよび反射高周波信号DHに基づいて硬貨200の仮金種を判定することになる。 The magnetic processing unit 11a determines the denomination of the coin 200 based on the received reflected low frequency signal DL and the reflected high frequency signal DH.
 図6の説明に戻り、撮像部2について説明する。撮像部2は、CCDカメラなどのカメラ2bと、光透過部32経由で受け取る硬貨200による反射光をカメラ2bの撮像面に結像させるレンズユニット2aとから構成される(図3参照)。また、撮像部2は、撮像指示部11bから撮像指示を受けたタイミングで、撮像処理を実行する。 Returning to the description of FIG. 6, the imaging unit 2 will be described. The imaging unit 2 includes a camera 2b such as a CCD camera and a lens unit 2a that forms an image on the imaging surface of the camera 2b of reflected light from the coin 200 received via the light transmission unit 32 (see FIG. 3). In addition, the imaging unit 2 executes an imaging process at a timing when an imaging instruction is received from the imaging instruction unit 11b.
 制御部11は、磁気センサ1および撮像部2からの信号に基づいて硬貨200の金種判別や真偽判別を行う処理部である。磁気処理部11aは、磁気センサ1から受け取った反射低周波信号DLおよび反射高周波信号DHに基づいて硬貨200の仮金種を判定する処理を行う処理部である。また、磁気処理部11aは、磁気センサ1から受け取った信号レベルを撮像指示部11bへ渡す処理を併せて行う。 The control unit 11 is a processing unit that performs denomination determination and authenticity determination of the coin 200 based on signals from the magnetic sensor 1 and the imaging unit 2. The magnetic processing unit 11 a is a processing unit that performs a process of determining a temporary denomination of the coin 200 based on the reflected low frequency signal DL and the reflected high frequency signal DH received from the magnetic sensor 1. The magnetic processing unit 11a also performs a process of passing the signal level received from the magnetic sensor 1 to the imaging instruction unit 11b.
 撮像指示部11bは、磁気処理部11aから受け取った信号レベルに基づいて撮像部2に対して撮像指示を送信する処理を行う処理部である。なお、撮像指示部11bが撮像部2に対して撮像指示を行うタイミングについては、図8を用いて後述することとする。 The imaging instruction unit 11b is a processing unit that performs processing for transmitting an imaging instruction to the imaging unit 2 based on the signal level received from the magnetic processing unit 11a. The timing at which the imaging instruction unit 11b issues an imaging instruction to the imaging unit 2 will be described later with reference to FIG.
 画像処理部11cは、撮像部2から受け取った画像データから硬貨200に対応する部分画像を切り出すなどの加工処理を行う処理部である。また、画像処理部11cは、加工処理後の画像データを判別部11dへ渡す処理を行う処理を併せて行う。 The image processing unit 11 c is a processing unit that performs processing such as cutting out a partial image corresponding to the coin 200 from the image data received from the imaging unit 2. The image processing unit 11c also performs a process of performing a process of passing the processed image data to the determination unit 11d.
 判別部11dは、磁気処理部11aから仮金種判定結果を受け取り、仮金種に該当する画像判別用のテンプレート12aを記憶部12から読み出すとともに、読み出したテンプレート12aと、画像処理部11cから受け取った画像データとを対比することで最終的な金種判定を行う処理部である。 The determination unit 11d receives the temporary denomination determination result from the magnetic processing unit 11a, reads the image determination template 12a corresponding to the temporary denomination from the storage unit 12, and receives the read template 12a and the image processing unit 11c. It is a processing unit that performs final denomination determination by comparing with the image data.
 記憶部12は、不揮発性メモリやハードディスクドライブといった記憶デバイスで構成される記憶部であり、テンプレート12aを記憶する。テンプレート12aは、画像判別用のテンプレートであり、たとえば、硬貨200の金種ごとに表面用テンプレートおよび裏面用テンプレートが用意される。 The storage unit 12 is a storage unit configured by a storage device such as a nonvolatile memory or a hard disk drive, and stores the template 12a. The template 12 a is a template for image discrimination. For example, a front surface template and a back surface template are prepared for each denomination of the coin 200.
 次に、実施例1に係る硬貨識別装置10が実行する処理概要について図8を用いて説明する。図8は、実施例1に係る硬貨識別装置10が実行する処理概要を示す図である。なお、同図の(A)には、硬貨200が正の搬送方向に搬送される場合について、同図の(B)には、正の搬送方向とは逆の搬送方向に搬送される場合について、それぞれ示している。 Next, an outline of processing executed by the coin identifying device 10 according to the first embodiment will be described with reference to FIG. FIG. 8 is a diagram illustrating an outline of processing executed by the coin identifying device 10 according to the first embodiment. Note that (A) in the figure shows a case where the coin 200 is conveyed in the positive conveyance direction, and (B) in the figure shows a case in which the coin 200 is conveyed in a conveyance direction opposite to the positive conveyance direction. , Respectively.
 同図の(A)に示したように、硬貨200が正の搬送方向に搬送される場合には、硬貨200は、まず、磁気センサ1aを通過することになる。ここで、磁気センサ1aから出力される信号のレベル値は、グラフ81に示したように変化する。具体的には、硬貨200が磁気センサ1aに差し掛かるとレベル値は通常状態から減少しはじめ、硬貨200が磁気センサ1aを覆った状態では、極小値付近で推移する(センサ上通過区間)。そして、硬貨200が磁気センサ1aから遠ざかるにつれて増加して通常状態へと戻る。 As shown in FIG. 5A, when the coin 200 is transported in the positive transport direction, the coin 200 first passes through the magnetic sensor 1a. Here, the level value of the signal output from the magnetic sensor 1 a changes as shown in the graph 81. Specifically, when the coin 200 reaches the magnetic sensor 1a, the level value starts to decrease from the normal state, and when the coin 200 covers the magnetic sensor 1a, the level value changes in the vicinity of the minimum value (on-sensor passage section). And it increases as the coin 200 moves away from the magnetic sensor 1a, and returns to a normal state.
 ここで、磁気処理部11aは、センサ上通過区間におけるレベル値を用いて硬貨200の仮金種判別を行う。そして、撮像指示部11bは、信号のレベル値が増加し始めたタイミング(同図の82参照)から所定時間経過後(同図の83参照)に、撮像部2に対して撮像指示を送信する。 Here, the magnetic processing unit 11a performs temporary denomination discrimination of the coin 200 using the level value in the sensor passing section. Then, the imaging instruction unit 11b transmits an imaging instruction to the imaging unit 2 after a predetermined time has elapsed (see 83 in the figure) from the timing at which the level value of the signal starts to increase (see 82 in the figure). .
 そして、判別部11dは、センサ上通過区間で取得された磁気データと、同図に示す83のタイミングで取得された画像データとに基づいて最終的な判別処理を実行する。なお、同図の(A)に示した搬送方向の場合、磁気センサ1bから出力される信号は、判別処理には用いられない。 Then, the determination unit 11d executes a final determination process based on the magnetic data acquired in the sensor passage section and the image data acquired at the timing 83 shown in FIG. In addition, in the case of the conveyance direction shown to (A) of the figure, the signal output from the magnetic sensor 1b is not used for a discrimination | determination process.
 また、同図の(B)に示したように、硬貨200が逆の搬送方向に搬送される場合には、硬貨200は、まず、磁気センサ1bを通過することになる。ここで、磁気センサ1bから出力される信号のレベル値は、同図の(A)に示したグラフ81と同様に、グラフ84のように変化する。具体的には、硬貨200が磁気センサ1bに差し掛かるとレベル値は通常状態から減少しはじめ、硬貨200が磁気センサ1bを覆った状態では、極小値付近で推移する(センサ上通過区間)。そして、硬貨200が磁気センサ1bから遠ざかるにつれて増加して通常状態へと戻る。 Also, as shown in FIG. 5B, when the coin 200 is transported in the reverse transport direction, the coin 200 first passes through the magnetic sensor 1b. Here, the level value of the signal output from the magnetic sensor 1b changes like a graph 84 as in the graph 81 shown in FIG. Specifically, when the coin 200 reaches the magnetic sensor 1b, the level value starts to decrease from the normal state, and when the coin 200 covers the magnetic sensor 1b, the level value changes near the minimum value (passing section on the sensor). And as the coin 200 moves away from the magnetic sensor 1b, it increases and returns to the normal state.
 ここで、磁気処理部11aは、センサ上通過区間におけるレベル値を用いて硬貨200の仮金種判別を行う。そして、撮像指示部11bは、信号のレベル値が増加し始めたタイミング(同図の85参照)から所定時間経過後(同図の86参照)に、撮像部2に対して撮像指示を送信する。 Here, the magnetic processing unit 11a performs temporary denomination discrimination of the coin 200 using the level value in the sensor passing section. Then, the imaging instruction unit 11b transmits an imaging instruction to the imaging unit 2 after a predetermined time has elapsed (see 86 in the same figure) from the timing when the signal level value starts to increase (see 85 in the same figure). .
 そして、判別部11dは、同図に示す85のタイミングで取得された磁気データと、同図に示す86のタイミングで取得された画像データとに基づいて最終的な判別処理を実行する。なお、同図の(B)に示した搬送方向の場合、磁気センサ1aから出力される信号は、判別処理には用いられない。 Then, the determination unit 11d executes a final determination process based on the magnetic data acquired at the timing 85 shown in the figure and the image data acquired at the timing 86 shown in the figure. In addition, in the case of the conveyance direction shown to (B) of the figure, the signal output from the magnetic sensor 1a is not used for a discrimination | determination process.
 このように、実施例1に係る硬貨識別装置10では、硬貨200の搬送方向が正の搬送方向であっても、逆の搬送方向であっても、同様のタイミングで各種判別処理を実行すれば足りる。したがって、判別タイミングを制御する同一のコンピュータプログラムで、正の搬送方向にも、逆の搬送方向にも対応することができるため、コンピュータプログラムを簡略化することができる。 Thus, in the coin identification device 10 according to the first embodiment, if various determination processes are executed at the same timing regardless of whether the coin 200 is transported in the positive transport direction or the reverse transport direction. It ’s enough. Therefore, since the same computer program that controls the discrimination timing can cope with both the forward and reverse transport directions, the computer program can be simplified.
 上述してきたように、実施例1では、撮像部が、硬貨に対して光を照射して硬貨による反射光を撮像することで撮像画像を取得し、撮像部の撮像中心点について点対称位置であって搬送路に隣接する位置に同一の反射式磁気センサをそれぞれ設け、判別部が、撮像部によって取得された画像データおよび反射式磁気センサによって取得された磁気データに基づいて硬貨の金種あるいは真偽を判別するように硬貨識別装置を構成した。また、撮像指示部が、反射式磁気センサによって取得された磁気データに基づいて撮像部による撮像を指示するように硬貨識別装置を構成した。 As described above, in the first embodiment, the imaging unit acquires a captured image by irradiating the coin with light and capturing the reflected light from the coin, and the imaging center point of the imaging unit is a point-symmetrical position. The same reflection type magnetic sensor is provided at a position adjacent to the conveyance path, and the discriminating unit determines the denomination of the coin based on the image data acquired by the imaging unit and the magnetic data acquired by the reflection type magnetic sensor. The coin discriminating apparatus was configured to discriminate true / false. Further, the coin identifying device is configured such that the imaging instruction unit instructs imaging by the imaging unit based on the magnetic data acquired by the reflective magnetic sensor.
 したがって、硬貨の搬送方向が正方向であっても逆方向であっても、搬送される硬貨は、磁気センサを通過した後に撮像部の撮像中心点を通過するので、硬貨の識別精度を良好に保つことができる。また、搬送向きが変更された場合であっても、同一のソフトウェア処理を行うことで足りるので、コンピュータプログラムを簡略化することができる。 Therefore, regardless of whether the coin is conveyed in the forward direction or in the reverse direction, the conveyed coin passes through the imaging center point of the imaging unit after passing through the magnetic sensor, so that the coin identification accuracy is improved. Can keep. Further, even if the transport direction is changed, it is sufficient to perform the same software processing, so that the computer program can be simplified.
 ところで、上述した実施例1では、撮像部における撮像中心点についての点対称位置に、独立した反射型磁気センサをそれぞれ配置した場合について説明したが、撮像部における撮像中心点を中心とする同心円上にリング状の透過型磁気センサを配置することとしてもよい。そこで、以下に示す実施例2では、リング状の透過型磁気センサを用いた場合について説明する。 By the way, in the above-described first embodiment, the case where the independent reflection type magnetic sensors are respectively arranged at the point-symmetrical positions with respect to the imaging center point in the imaging unit has been described. However, on the concentric circle centered on the imaging center point in the imaging unit. It is good also as arrange | positioning a ring-shaped transmissive | pervious magnetic sensor. In the second embodiment described below, a case where a ring-shaped transmission type magnetic sensor is used will be described.
 まず、実施例2に係る硬貨識別装置10aの構成例について図9を用いて説明する。図9は、実施例2に係る硬貨識別装置10aの斜視図である。なお、同図の(A)には、搬送路側カバー92を取り付けた状態の硬貨識別装置10aを、同図の(B)には、搬送路側カバー92を取り外した状態の硬貨識別装置10aを、それぞれ示している。 First, a configuration example of the coin identifying device 10a according to the second embodiment will be described with reference to FIG. FIG. 9 is a perspective view of the coin identifying device 10a according to the second embodiment. Note that (A) in the figure shows the coin identifying device 10a with the transport path side cover 92 attached, and (B) in the same figure shows the coin identifying device 10a with the transport path side cover 92 removed. Each is shown.
 なお、透過型磁気センサは、同図の(A)に示した上側リングコイル91および同図の(B)に示した下側リングコイル93の同径のコイルで構成される。なお、同図に示した上側リングコイル91および下側リングコイル93における外周部のくぼみには、コイルが巻回されているものとする。また、上側リングコイル91は1次コイルであり、下側リングコイル93は2次コイルであるものとする。 The transmission type magnetic sensor is composed of coils having the same diameter as the upper ring coil 91 shown in FIG. 5A and the lower ring coil 93 shown in FIG. In addition, the coil shall be wound by the hollow of the outer peripheral part in the upper side ring coil 91 and the lower side ring coil 93 shown to the same figure. The upper ring coil 91 is a primary coil, and the lower ring coil 93 is a secondary coil.
 同図の(A)に示したように、硬貨200は、正方向(同図の(1)の矢印参照)または逆方向(同図の(2)の矢印参照)に搬送される。硬貨200が正方向(同図の(1)の矢印参照)に搬送される場合、硬貨200は、上側リングコイル91の外側から内側へと入った後に、撮像エリア3へ搬送され、撮像部2によって表面の模様が撮像される。 As shown in (A) of the figure, the coin 200 is conveyed in the forward direction (see the arrow in (1) in the figure) or in the reverse direction (see the arrow in (2) in the figure). When the coin 200 is conveyed in the forward direction (see the arrow (1) in the figure), the coin 200 enters the imaging area 3 after entering from the outside of the upper ring coil 91 to the imaging unit 2. The surface pattern is imaged.
 また、硬貨200が逆方向(同図の(2)の矢印参照)に搬送される場合についても、硬貨200は、上側リングコイル91の外側から内側へと入った後に、撮像エリア3へ搬送され、撮像部2によって表面の模様が撮像される。 Moreover, also when the coin 200 is conveyed in the reverse direction (refer to the arrow in (2) in the figure), the coin 200 is conveyed to the imaging area 3 after entering from the outer side to the inner side of the upper ring coil 91. The surface pattern is imaged by the imaging unit 2.
 また、同図の(B)に示したように、搬送路側カバー92を取り外すと、円環状に設けられた発光素子および各発光素子が発した光を撮像エリア3へ導く導光体の外側であって、上側リングコイル91と対向する位置に、下側リングコイル93が設けられている。 Further, as shown in FIG. 5B, when the conveyance path side cover 92 is removed, the light emitting element provided in an annular shape and the outside of the light guide that guides the light emitted from each light emitting element to the imaging area 3 are provided. Thus, a lower ring coil 93 is provided at a position facing the upper ring coil 91.
 次に、実施例2に係る硬貨識別装置10aが実行する処理概要について図10を用いて説明する。図10は、実施例2に係る硬貨識別装置10aが実行する処理概要を示す図である。なお、同図の(A)には、硬貨200が正の搬送方向に搬送される場合について、同図の(B)には、正の搬送方向とは逆の搬送方向に搬送される場合について、それぞれ示している。 Next, an outline of processing executed by the coin identifying device 10a according to the second embodiment will be described with reference to FIG. FIG. 10 is a diagram illustrating an outline of processing executed by the coin identifying device 10a according to the second embodiment. Note that (A) in the figure shows a case where the coin 200 is conveyed in the positive conveyance direction, and (B) in the figure shows a case in which the coin 200 is conveyed in a conveyance direction opposite to the positive conveyance direction. , Respectively.
 同図の(A)に示したように、硬貨200が正の搬送方向に搬送される場合には、硬貨200は、まず、上側リングコイル91および下側リングコイル93で挟まれた空間へ入ってくることになる。 As shown in FIG. 5A, when the coin 200 is transported in the positive transport direction, the coin 200 first enters the space sandwiched between the upper ring coil 91 and the lower ring coil 93. Will come.
 ここで、下側リングコイル93から出力される信号のレベル値は、グラフ101に示したように変化する。なお、上側リングコイル91および下側リングコイル93の半径は、図8等に示した磁気センサ1aあるいは磁気センサ1bの半径よりも大きいので、レベル値の変動は穏やかなものとなる。 Here, the level value of the signal output from the lower ring coil 93 changes as shown in the graph 101. Since the radius of the upper ring coil 91 and the lower ring coil 93 is larger than the radius of the magnetic sensor 1a or the magnetic sensor 1b shown in FIG.
 具体的には、硬貨200が上側リングコイル91および下側リングコイル93で挟まれた空間に差し掛かると、レベル値は、通常状態から減少しはじめ、極小値付近で推移した後、増加して極大値をとる。なお、かかる極大値は、通常状態よりも小さい値となる。そして、極大値から再び減少して極小値付近で推移し、硬貨200が遠ざかるにつれて増加して通常状態へと戻る。 Specifically, when the coin 200 reaches the space sandwiched between the upper ring coil 91 and the lower ring coil 93, the level value starts to decrease from the normal state, increases after reaching a minimum value, and then increases. Take the maximum value. Note that the maximum value is smaller than that in the normal state. Then, it decreases again from the maximum value, changes near the minimum value, increases as the coin 200 moves away, and returns to the normal state.
 ここで、磁気処理部11aは、下側リングコイル93から出力される信号のレベル値が定常値から減少しはじめたタイミング(同図の102参照)で、計時を開始する。そして、磁気処理部11aは、搬送速度および同図に示す距離「S」に基づいて算出される所定時間が経過したタイミングで(同図の103参照)、下側リングコイル93から出力される信号に基づいて硬貨200の仮金種判別を行う。 Here, the magnetic processing unit 11a starts timing at the timing when the level value of the signal output from the lower ring coil 93 starts to decrease from the steady value (see 102 in the figure). The magnetic processing unit 11a then outputs a signal output from the lower ring coil 93 at a timing when a predetermined time calculated based on the conveyance speed and the distance “S” shown in FIG. Based on, the temporary denomination of the coin 200 is determined.
 また、撮像指示部11bも、同図の103に示したタイミングで撮像部2に対して撮像指示を送信する。そして、判別部11dは、同図に示す103のタイミングで取得された磁気データおよび画像データに基づいて最終的な判別処理を実行する。 The imaging instruction unit 11b also transmits an imaging instruction to the imaging unit 2 at the timing indicated by 103 in FIG. Then, the determination unit 11d executes final determination processing based on the magnetic data and the image data acquired at the timing 103 shown in FIG.
 また、同図の(B)に示したように、硬貨200が逆の搬送方向に搬送される場合にも、硬貨200は、まず、上側リングコイル91および下側リングコイル93で挟まれた空間に入ってくることになる。ここで、下側リングコイル93から出力される信号のレベル値は、同図の(A)に示したグラフ101と同様に、グラフ104のように変化する。 Further, as shown in FIG. 5B, when the coin 200 is transported in the reverse transport direction, the coin 200 is firstly sandwiched between the upper ring coil 91 and the lower ring coil 93. Will come in. Here, the level value of the signal output from the lower ring coil 93 changes like a graph 104 as in the graph 101 shown in FIG.
 具体的には、硬貨200が上側リングコイル91および下側リングコイル93で挟まれた空間に差し掛かると、レベル値は、通常状態から減少しはじめ、極小値付近で推移した後、増加して極大値をとる。なお、かかる極大値は、通常状態よりも小さい値となる。そして、極大値から再び減少して極小値付近で推移し、硬貨200が遠ざかるにつれて増加して通常状態へと戻る。 Specifically, when the coin 200 reaches the space sandwiched between the upper ring coil 91 and the lower ring coil 93, the level value starts to decrease from the normal state, increases after reaching a minimum value, and then increases. Take the maximum value. Note that the maximum value is smaller than that in the normal state. Then, it decreases again from the maximum value, changes near the minimum value, increases as the coin 200 moves away, and returns to the normal state.
 ここで、磁気処理部11aは、下側リングコイル93から出力される信号のレベル値が定常値から減少しはじめたタイミング(同図の105参照)で、計時を開始する。そして、磁気処理部11aは、搬送速度および同図に示す距離「S」に基づいて算出される所定時間が経過したタイミングで(同図の106参照)、下側リングコイル93から出力される信号に基づいて硬貨200の仮金種判別を行う。 Here, the magnetic processing unit 11a starts timing at the timing when the level value of the signal output from the lower ring coil 93 starts to decrease from the steady value (see 105 in the figure). The magnetic processing unit 11a then outputs a signal output from the lower ring coil 93 at a timing when a predetermined time calculated based on the conveyance speed and the distance “S” shown in FIG. Based on, the temporary denomination of the coin 200 is determined.
 また、撮像指示部11bも、同図の106に示したタイミングで撮像部2に対して撮像指示を送信する。そして、判別部11dは、同図に示す106のタイミングで取得された磁気データおよび画像データに基づいて最終的な判別処理を実行する。 The imaging instruction unit 11b also transmits an imaging instruction to the imaging unit 2 at the timing indicated by 106 in FIG. Then, the determination unit 11d executes final determination processing based on the magnetic data and the image data acquired at the timing 106 shown in FIG.
 このように、実施例2では、撮像部の撮像中心をそれぞれ中心位置とする1組のリングコイルを、搬送路を隔てて対向するように設けることとしたので、あらゆる搬送方向に対応することができる。 As described above, in the second embodiment, the pair of ring coils each having the imaging center of the imaging unit as the center position are provided so as to face each other with the conveyance path therebetween, so that it is possible to cope with any conveyance direction. it can.
 なお、図9および図10では、搬送路を隔てて対向するように1組のリングコイルを設ける場合について示したが、上側リングコイルを、リング状以外の形状とすることとしてもよい。 Although FIGS. 9 and 10 show the case where a pair of ring coils are provided so as to face each other across the conveyance path, the upper ring coil may have a shape other than the ring shape.
 図11は、図9および図10に示した硬貨識別装置10aの変形例に係る硬貨識別装置10bを示す斜視図である。同図に示したのは、上側リングコイル91の代わりに、コイル111およびコイル112を設けた場合である。 FIG. 11 is a perspective view showing a coin identifying device 10b according to a modification of the coin identifying device 10a shown in FIGS. The figure shows a case where a coil 111 and a coil 112 are provided instead of the upper ring coil 91.
 コイル111およびコイル112における外周部のくぼみには、コイルが巻回されているものとする。また、硬貨識別装置10bには、図9の(B)に示したように、下側リングコイル93が内蔵されているものとする。また、図11に示した場合では、下側リングコイル93が1次コイルであり、コイル111およびコイル112が2次コイルであるものとする。 It is assumed that the coil is wound around the recesses on the outer periphery of the coil 111 and the coil 112. Moreover, as shown to (B) of FIG. 9, the lower ring coil 93 shall be incorporated in the coin identification device 10b. In the case shown in FIG. 11, the lower ring coil 93 is a primary coil, and the coils 111 and 112 are secondary coils.
 このように、上側リングコイル91の代わりにコイル111およびコイル112を用いた場合であっても、正方向(同図の(1)の矢印参照)あるいは逆方向(同図の(2)の矢印参照)のいずれの搬送方向にも対応することができる。 Thus, even when the coil 111 and the coil 112 are used in place of the upper ring coil 91, the forward direction (see the arrow (1) in the figure) or the reverse direction (the arrow (2) in the figure). It is possible to cope with any of the transport directions of (see).
 以上のように、本発明に係る硬貨識別装置は、硬貨の搬送方向が正方向であっても逆方向であっても識別精度を良好に保ちたい場合に有用であり、特に、硬貨識別装置の装置サイズをコンパクトにしたい場合に適している。 As described above, the coin discriminating apparatus according to the present invention is useful when it is desired to maintain good discrimination accuracy regardless of whether the coin conveying direction is the forward direction or the reverse direction. It is suitable when you want to make the device size compact.

Claims (7)

  1.  搬送路を搬送される硬貨の撮像画像および硬貨による磁界変動に基づいて硬貨を識別する硬貨識別装置であって、
     硬貨に対して光を照射して硬貨による反射光を撮像することで前記撮像画像を取得する撮像手段と、
     前記撮像手段の撮像中心点を通過するように搬送される硬貨の搬送方向が正方向または逆方向のいずれの搬送向きであっても、搬送される硬貨から前記撮像中心点までの残距離が等しい位置において硬貨の前記磁界変動を検出する磁気検出手段と
     を備えたことを特徴とする硬貨識別装置。
    A coin identification device for identifying a coin based on a captured image of a coin conveyed through a conveyance path and a magnetic field variation due to the coin,
    An imaging means for acquiring the captured image by irradiating light on a coin and capturing reflected light of the coin;
    The remaining distance from the conveyed coin to the imaging center point is equal regardless of whether the coin is conveyed so as to pass through the imaging center point of the imaging means. And a magnetic detection means for detecting the magnetic field fluctuation of the coin at a position.
  2.  前記磁気検出手段が検出した前記磁界変動に基づいて前記撮像手段に対して前記撮像画像の取得を指示する撮像指示手段
     をさらに備えたことを特徴とする請求項1に記載の硬貨識別装置。
    The coin identifying apparatus according to claim 1, further comprising an imaging instruction unit that instructs the imaging unit to acquire the captured image based on the magnetic field variation detected by the magnetic detection unit.
  3.  前記磁気検出手段は、
     前記撮像中心点を中心として円環状の形状を有する磁気センサ素子であることを特徴とする請求項1に記載の硬貨識別装置。
    The magnetic detection means includes
    The coin identifying device according to claim 1, wherein the coin identifying device is a magnetic sensor element having an annular shape centering on the imaging center point.
  4.  前記磁気検出手段は、
     前記撮像中心点について点対称位置であって前記搬送路に隣接する位置にそれぞれ設けられた同一の磁気センサであることを特徴とする請求項1に記載の硬貨識別装置。
    The magnetic detection means includes
    The coin identifying apparatus according to claim 1, wherein the same magnetic sensor is provided at a position that is point-symmetric with respect to the imaging center point and that is adjacent to the conveyance path.
  5.  前記磁気検出手段は、
     前記撮像中心点について点対称位置であって前記搬送路に隣接する位置にそれぞれ設けられた同一の反射型ポットコア型磁気センサであることを特徴とする請求項4に記載の硬貨識別装置。
    The magnetic detection means includes
    5. The coin identifying device according to claim 4, wherein the coin recognizing device is the same reflection type pot core type magnetic sensor provided at a position that is point-symmetric with respect to the imaging center point and that is adjacent to the transport path.
  6.  前記撮像手段は、
     前記撮像中心点を中心として円環状に配設され、かつ、照射する光の光軸が前記撮像中心点に向かうように調整されている複数の発光素子を有しており、
     前記磁気検出手段は、
     該当する位置の前記発光素子と置き換えて配設されており、
     前記磁気検出手段の近隣における前記発光素子の光軸は、
     前記撮像中心点よりも前記磁気検出手段側に寄せた向きに調整されていることを特徴とする請求項5に記載の硬貨識別装置。
    The imaging means includes
    Having a plurality of light emitting elements arranged in an annular shape around the imaging center point and adjusted so that an optical axis of light to be irradiated is directed to the imaging center point;
    The magnetic detection means includes
    It is arranged in place of the light emitting element at the corresponding position,
    The optical axis of the light emitting element in the vicinity of the magnetic detection means is
    6. The coin identifying device according to claim 5, wherein the coin identifying device is adjusted so as to be closer to the magnetic detection means than the imaging center point.
  7.  前記撮像手段および前記磁気検出手段は、
     一体型のモジュールとして構成されていることを特徴とする請求項1~6のいずれか一つに記載の硬貨識別装置。
    The imaging means and the magnetic detection means are:
    The coin identifying device according to any one of claims 1 to 6, wherein the coin identifying device is configured as an integrated module.
PCT/JP2008/069894 2008-10-31 2008-10-31 Coin discrimination device WO2010050049A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/069894 WO2010050049A1 (en) 2008-10-31 2008-10-31 Coin discrimination device
JP2010535590A JP5226802B2 (en) 2008-10-31 2008-10-31 Coin identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/069894 WO2010050049A1 (en) 2008-10-31 2008-10-31 Coin discrimination device

Publications (1)

Publication Number Publication Date
WO2010050049A1 true WO2010050049A1 (en) 2010-05-06

Family

ID=42128427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/069894 WO2010050049A1 (en) 2008-10-31 2008-10-31 Coin discrimination device

Country Status (2)

Country Link
JP (1) JP5226802B2 (en)
WO (1) WO2010050049A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20100949A1 (en) * 2010-05-27 2011-11-28 Pier Luigi Vitalini SYSTEM FOR OBTAINING IMAGES COMPLETE WITH OBJECTS IN PARTICULAR NUMISMATICS
JP2017111705A (en) * 2015-12-18 2017-06-22 日立オムロンターミナルソリューションズ株式会社 Medium identification device and medium identification method
JP2017225658A (en) * 2016-06-23 2017-12-28 株式会社ユニバーサルエンターテインメント Game machine and game medium discrimination device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0991484A (en) * 1995-09-21 1997-04-04 Toshiba Corp Coin processor
JP2003123114A (en) * 2001-10-11 2003-04-25 Nippon Conlux Co Ltd Coin discrimination device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0991484A (en) * 1995-09-21 1997-04-04 Toshiba Corp Coin processor
JP2003123114A (en) * 2001-10-11 2003-04-25 Nippon Conlux Co Ltd Coin discrimination device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20100949A1 (en) * 2010-05-27 2011-11-28 Pier Luigi Vitalini SYSTEM FOR OBTAINING IMAGES COMPLETE WITH OBJECTS IN PARTICULAR NUMISMATICS
JP2017111705A (en) * 2015-12-18 2017-06-22 日立オムロンターミナルソリューションズ株式会社 Medium identification device and medium identification method
JP2017225658A (en) * 2016-06-23 2017-12-28 株式会社ユニバーサルエンターテインメント Game machine and game medium discrimination device

Also Published As

Publication number Publication date
JP5226802B2 (en) 2013-07-03
JPWO2010050049A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
KR100502858B1 (en) Coin discriminating apparatus
JP4703403B2 (en) Inspection device
EP1054360A1 (en) Coin discriminating apparatus
EP1808825A2 (en) Image reading apparatus
JP2009301200A (en) Image reading device
WO2014097489A1 (en) Spectral sensor
JP2013020540A (en) Paper sheet identification device and paper sheet identification method
JP5193675B2 (en) Coin identification device
JP5226802B2 (en) Coin identification device
MXPA00009228A (en) Target illumination device.
EP2506224B1 (en) Subject discriminating apparatus and coin discriminating apparatus
KR101032111B1 (en) Coin discrimination apparatus
WO2018142998A1 (en) Image collection device, coin-shaped medium processing device, and image collection method
JP2018169725A (en) Coin identification device and coin identification method
JP4615343B2 (en) Coin identification device
JP2010020628A (en) Apparatus for inspecting appearance of disk-shaped object
US20060263101A1 (en) Sheet identifying device and method
JP4163822B2 (en) Fluorescence detection device for paper sheets
JP2018124858A (en) Image sampling apparatus, coin-shaped medium processor, and image sampling method
JP4381570B2 (en) Circular object identification device
WO2009110064A1 (en) Optical sensor and optical waveguide prism
JP3085876B2 (en) Work imaging device
JP2010033176A (en) Detection device for fluorescence/afterglow, and paper sheet processing unit
JP4231445B2 (en) Coin identification device
JP2012093987A (en) Light detection device and paper sheet processing apparatus with light detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010535590

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08877760

Country of ref document: EP

Kind code of ref document: A1