JP4615343B2 - Coin identification device - Google Patents

Coin identification device Download PDF

Info

Publication number
JP4615343B2
JP4615343B2 JP2005086192A JP2005086192A JP4615343B2 JP 4615343 B2 JP4615343 B2 JP 4615343B2 JP 2005086192 A JP2005086192 A JP 2005086192A JP 2005086192 A JP2005086192 A JP 2005086192A JP 4615343 B2 JP4615343 B2 JP 4615343B2
Authority
JP
Japan
Prior art keywords
coin
light
sensor
contamination
fouling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005086192A
Other languages
Japanese (ja)
Other versions
JP2006268484A (en
Inventor
裕康 山口
寿之 鍬田
優司 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glory Ltd
Original Assignee
Glory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glory Ltd filed Critical Glory Ltd
Priority to JP2005086192A priority Critical patent/JP4615343B2/en
Publication of JP2006268484A publication Critical patent/JP2006268484A/en
Application granted granted Critical
Publication of JP4615343B2 publication Critical patent/JP4615343B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Coins (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)

Description

本発明は、硬貨処理機における硬貨の金種,真偽等を識別する硬貨識別装置に関し、特に、硬貨の上下両面の汚損を検出できると共に硬貨通路面の汚れがあっても正確に汚損を判定できるようにした硬貨識別装置に関するものである。   The present invention relates to a coin discriminating apparatus for identifying the denomination, authenticity, etc. of a coin in a coin processing machine, and in particular, it can detect fouling on both upper and lower surfaces of a coin and accurately determine fouling even if the coin passage surface is dirty. The present invention relates to a coin discriminating apparatus that can be used.

汚損硬貨の識別機能を有する従来の硬貨識別装置としては、例えば特許文献1に示されるものがある。この特許文献1に記載の硬貨処理機は、硬貨の汚損状態の検出を、汚損検知センサによって検知した硬貨表面(硬貨の下側表面)からの反射光の受光量と、金種毎の汚損判別基準値とを比較することにより行っている。詳しくは、硬貨の搬送方向に直交する方向に並設された2つの発光素子と、それらの間に配置された受光素子とを有する汚損検知センサを備え、2つの発光素子で硬貨の下表面に光を照射し、硬貨の下表面からの反射光を受光素子で受光して、硬貨表面の汚損状態を検出するようにしている。そして、汚損硬貨の判定方法については、汚損検知センサの検出データと、スイッチ式等の金種設定手段によって設定された対象硬貨の金種に対応する「判別基準値データ」とを比較し、例えば汚損検知センサの検出データが判別基準値データを下回った場合に、当該硬貨が汚損硬貨であると判定するようにしている。また、この特許文献1には、汚損検知センサの固有のばらつきや取り付け条件の変化等があっても、確実に汚損硬貨を検出可能とするため、硬貨処理機の出荷前に、受光素子の受光量レベルから汚損検知センサのセンサ特性を検出し、検出したセンサ特性に応じて発光素子の発光量を決定すると共に、検出したセンサ特性に応じて判別基準値データを補正し、その補正後の判別基準値データを予め記憶手段に記憶させておき、硬貨の計数処理時には、補正後の判別基準値データを用いることが開示されている(例えば特許文献1参照)。   As a conventional coin discriminating apparatus having a function of discriminating damaged coins, for example, there is one disclosed in Patent Document 1. In the coin processing machine described in Patent Document 1, the amount of reflected light received from the coin surface (the lower surface of the coin) detected by the contamination detection sensor and the determination of the contamination for each denomination are detected. This is done by comparing the reference value. Specifically, it includes a fouling detection sensor having two light emitting elements arranged in parallel in a direction orthogonal to the coin conveying direction and a light receiving element disposed therebetween, and the two light emitting elements are provided on the lower surface of the coin. Light is irradiated, and reflected light from the lower surface of the coin is received by the light receiving element to detect the fouling state of the coin surface. Then, for the method of determining a soiled coin, the detection data of the soiling detection sensor is compared with the “discrimination reference value data” corresponding to the denomination of the target coin set by the denomination setting means such as a switch type. When the detection data of the stain detection sensor falls below the discrimination reference value data, it is determined that the coin is a dirty coin. Further, in this Patent Document 1, in order to ensure that a contaminated coin can be detected even if there is a variation in the contamination detection sensor or a change in mounting conditions, the light receiving element receives light before shipping the coin processor. The sensor characteristic of the fouling detection sensor is detected from the quantity level, the light emission amount of the light emitting element is determined according to the detected sensor characteristic, the discrimination reference value data is corrected according to the detected sensor characteristic, and the discrimination after the correction It is disclosed that reference value data is stored in a storage unit in advance, and the corrected determination reference value data is used during the coin counting process (see, for example, Patent Document 1).

特開平7−296216号公報Japanese Patent Laid-Open No. 7-296216

ところで、上述した特許文献1に記載の硬貨処理機のように、従来の硬貨処理機は、出荷前に汚損検知センサの発光量や汚損判別用の基準値を予め補正(オフセット調整)しておくことで、汚損の検出能力にばらつきが生じない様にしている。しかし、硬貨表面の汚損の検知は光学的に行うため、出荷後に生じるセンサ自体の汚れや硬貨搬送面の汚れが問題となる。例えば、ガラス板等の透明な硬貨搬送路の下方の位置に汚損検知センサを設け、硬貨搬送路の下方からガラス板を通して硬貨表面(下表面)の汚損を検出する構成とした場合は、センサ自体の汚れは回避することができる。しかし、センサ上の硬貨搬送路を硬貨が通過するため、硬貨粉等で硬貨搬送面(ガラス上面)が汚れてしまい、硬貨が汚れていないのに汚損硬貨と判定してしまうと言う問題が発生していた。   By the way, like the coin processor described in Patent Document 1 described above, a conventional coin processor previously corrects (offset adjustment) the light emission amount of the contamination detection sensor and the reference value for contamination determination before shipment. As a result, there is no variation in the ability to detect contamination. However, since the detection of the fouling on the coin surface is performed optically, contamination of the sensor itself and the fouling of the coin transport surface that occur after shipment become a problem. For example, when a contamination detection sensor is provided at a position below a transparent coin conveyance path such as a glass plate, and the structure detects the contamination of the coin surface (lower surface) through the glass plate from below the coin conveyance path, the sensor itself Dirt can be avoided. However, since the coin passes through the coin transport path on the sensor, the coin transport surface (upper surface of the glass) is soiled with coin powder, and the problem is that the coin is determined not to be soiled even though it is not soiled. Was.

このような硬貨搬送面のガラス汚れに対して、従来は、メンテナンス時にガラス汚れを清掃して硬貨搬送面の汚れを取り除き、センサ部分に基準硬貨又は白板をセットして、汚損検知センサを調整するのが一般的であった。さらに、汚損識別機能を有する従来の硬貨識別装置は、硬貨の片面のみの汚損検知であり、両面の汚損検知がされていないため、逆側が汚れていても汚損硬貨として排除できないという問題があった。また、硬貨表面からの拡散反射光の受光センサ出力に基づいて汚損検出を行う形態としているため、模様を汚損と判定したり、新貨を汚損硬貨と判定してしまうと言う問題も発生していた。   Conventionally, glass stains on the coin transfer surface are cleaned during the maintenance to remove the stains on the coin transfer surface, set the reference coin or white plate on the sensor portion, and adjust the stain detection sensor. It was common. Furthermore, the conventional coin discriminating apparatus having the fouling discrimination function is a fouling detection only on one side of the coin, and since the fouling detection on both sides is not performed, there is a problem that even if the reverse side is dirty, it cannot be excluded as a fouling coin. . Moreover, since it is set as the form which performs a stain | pollution | contamination detection based on the light reception sensor output of the diffuse reflection light from the coin surface, the problem that a pattern is judged to be dirty or a new coin is judged to be a dirty coin has also occurred. It was.

本発明は上述のような事情よりなされたものであり、本発明の目的は、上述した従来技術の問題を解消し、上下表面の硬貨汚損を検出できると共に硬貨通路面の汚れがあっても正確に汚損の判定が行える硬貨識別装置を提供することにある。   The present invention has been made under the circumstances as described above, and the object of the present invention is to solve the above-described problems of the prior art, to detect coin fouling on the upper and lower surfaces and to accurately detect the coin passage surface. Another object of the present invention is to provide a coin discriminating apparatus capable of determining a stain.

本発明は硬貨識別装置に関するものであり、本発明の上記目的は、識別硬貨の硬貨表面に垂直に光を照射する照射手段と、この照射手段の発光量をモニタして、光量をフィードバックするための光量監視手段と、前記光の硬貨表面から垂直に反射される正反射光を受光する第1の受光手段と前記光の硬貨表面からの拡散反射光を受光する第2の受光手段と、硬貨通路に面した透光部材と、を少なくとも構成要素として損貨検出用モジュールを構成し、同一の前記損貨検出用モジュールを硬貨通路を挟んで上下に設けて夫々を第1及び第2の汚損検出用モジュールとし、且つ、前記第1の汚損検出用モジュールの前記各手段と光軸および前記第2の汚損検出用モジュールの前記各手段と光軸は、それぞれ対応する構成要素と光軸が前記両モジュール間の面に対して鏡面対称となる様に配置されていることによって達成される。 The present invention relates to a coin identifying device, and the object of the present invention is to irradiate light perpendicularly to the coin surface of the identifying coin, and to monitor the amount of light emitted from the irradiating means and feed back the amount of light. a light quantity monitoring means, and a second light receiving means for receiving a first light receiving means for receiving the specularly reflected light reflected perpendicularly from the coin surface of the light, a diffuse reflection light from the coin surface of the light, A loss detection module is configured with at least a light- transmitting member facing the coin passage as a constituent element, and the same loss detection module is provided above and below the coin passage so that each of the first and second components is provided. a fouling detecting module, and, wherein each of said means and the optical axis of each unit and the optical axis and said second fouling detection module of the first fouling detection module, each corresponding component with the optical axis Both of these It is achieved by being arranged so as to be mirror-symmetrical relative to the plane between Lumpur.

さらに、本発明の上記目的は、これまでの識別硬貨の上下面の汚損判定結果に基づいて、前記第1及び第2の受光手段としての受光センサの出力を補正する制御手段を備えること、前記識別硬貨が通過する透光性通路を透過した前記照射手段からの照射光を受光した対向側の受光手段の受光信号に基づいて、前記第1及び第2の受光手段としての受光センサの出力に含まれる前記透光性通路の汚れに起因する汚れ成分を補正する制御手段を備えることによって、それぞれ一層効果的に達成される。 Furthermore, the above-mentioned object of the present invention is provided with a control means for correcting the output of the light receiving sensor as the first and second light receiving means based on the result of the determination of the contamination of the upper and lower surfaces of the identification coin so far , Based on the light reception signal of the light receiving means on the opposite side that has received the irradiation light from the irradiation means that has passed through the light transmitting passage through which the identification coin passes, the output of the light receiving sensor as the first and second light receiving means This is achieved more effectively by providing control means for correcting the dirt component caused by the dirt of the translucent passages included.

本発明によれば、硬貨表面に光を照射する照射手段とその正反射光を受光する第1の受光手段と拡散反射光を受光する第2の受光手段の各光軸を、硬貨通路面に対して対向するように配置した構成としているので、識別硬貨の上下表面の硬貨汚損を高精度で且つ略同時に検出することが可能となるといった優れた効果を奏する。さらに、識別硬貨の上下面の汚損判定結果に基づいて受光センサの出力を補正すること、あるいは、識別硬貨が通過する透光性通路を透過した照射手段からの照射光を受光した対向側の受光手段の受光信号、及び識別硬貨の上下面の汚損判定結果に基づいて受光センサの出力を補正することで、硬貨通路面の汚れがあっても正確に汚損を判定できるといった優れた効果を奏する。また、基準硬貨等が使えない運用中であっても、汚損検出部の透光性通路の汚れを受光出力に効果的にフイードバックできるといった優れた効果を奏する。   According to the present invention, the optical axes of the irradiation means for irradiating light on the coin surface, the first light receiving means for receiving the regular reflection light, and the second light receiving means for receiving the diffuse reflection light are arranged on the coin passage surface. Since it is configured so as to be opposed to each other, it has an excellent effect that it is possible to detect coin fouling on the upper and lower surfaces of the identification coin with high accuracy and substantially simultaneously. Further, it corrects the output of the light receiving sensor based on the result of determination of the contamination on the upper and lower surfaces of the identification coin, or receives the irradiation light from the irradiation means that has passed through the translucent passage through which the identification coin passes. By correcting the output of the light receiving sensor based on the light reception signal of the means and the contamination determination result of the upper and lower surfaces of the identification coin, there is an excellent effect that the contamination can be accurately determined even if the coin passage surface is contaminated. Further, even during operation in which a reference coin or the like cannot be used, there is an excellent effect that it is possible to effectively feed back the dirt in the translucent passage of the stain detection unit to the received light output.

以下、図面に基づいて本発明の好適な実施の形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る硬貨識別装置の全体構成の一例を示しており、硬貨識別装置1は、大別すると、硬貨識別用のセンサモジュール(以下、「硬貨識別センサ」と呼ぶ)10と、硬貨の金種,真偽等を識別するメイン識別部20と、硬貨の汚損を識別する汚損検出センサ30とから構成される。   FIG. 1 shows an example of the entire configuration of a coin identification device according to the present invention. The coin identification device 1 is roughly classified as a sensor module for coin identification (hereinafter referred to as “coin identification sensor”) 10. The main discriminating unit 20 identifies a coin denomination, authenticity, and the like, and a fouling detection sensor 30 that identifies the fouling of a coin.

硬貨識別センサ10は、硬貨の画像を撮像するイメージセンサ(本例では2次元イメージセンサ)11と、硬貨の磁気的特性を検知する磁気センサ12と、硬貨の到来を検知するタイミングセンサ13とを備えている。   The coin identification sensor 10 includes an image sensor (a two-dimensional image sensor in this example) 11 that captures an image of a coin, a magnetic sensor 12 that detects the magnetic characteristics of the coin, and a timing sensor 13 that detects the arrival of the coin. I have.

メイン識別部20は、硬貨識別センサ10との入出力インタフェース回路を有する基本モジュール21と、CPUやコンピュータプログラム等から構成される制御モジュール22とから構成され、識別モードや識別対象硬貨などの設定情報に従い、硬貨識別センサ10の検出情報に基づいて硬貨の金種、真偽等を識別し、その識別結果を出力する手段を備えている。基本モジュール21は、本例では、電源21a、イメージセンサ制御回路21b、メモリ21c、磁気センサ処理回路21d、A/D変換器21e、発光/受光回路21f、及びD/A変換器21gから構成される。   The main identification unit 20 includes a basic module 21 having an input / output interface circuit with the coin identification sensor 10 and a control module 22 configured by a CPU, a computer program, and the like, and setting information such as an identification mode and an identification target coin. And a means for identifying the denomination, authenticity, etc. of the coin based on the detection information of the coin identification sensor 10 and outputting the identification result. In this example, the basic module 21 includes a power source 21a, an image sensor control circuit 21b, a memory 21c, a magnetic sensor processing circuit 21d, an A / D converter 21e, a light emitting / receiving circuit 21f, and a D / A converter 21g. The

本発明においては、硬貨識別センサ10の構成及びメイン識別部20の構成は限定されるものではなく、一般的な硬貨識別装置に搭載されるものが適用できるため、詳細な説明について省略し、以下、本発明に係る汚損検出センサ30の構成について詳細に説明する。   In the present invention, the configuration of the coin identification sensor 10 and the configuration of the main identification unit 20 are not limited, and those mounted on a general coin identification device can be applied. The configuration of the contamination detection sensor 30 according to the present invention will be described in detail.

本発明に係る汚損検出センサ30は、硬貨識別装置の付加的構成要素であり、硬貨識別装置1の硬貨識別センサ10のセンサユニットに一体的に連結可能な構成とし、また、既存の硬貨識別装置に対してハードウェアの変更なしに付加できるようにしている。そして、汚損検出センサ30は、独自にCPUを内蔵し、識別対象の硬貨表面の汚損(汚損の度合若しくは汚損貨、又はその両方)を識別する機能を備えている。汚損の識別処理の際に必要となる金種情報は、磁気センサ12又はイメージセンサ11からの金種情報(本実施の形態ではメイン識別部20を経由して受信した金種情報)を利用する形態とすることで、金種情報による材質に基づいた汚損判定を可能とし、また、汚損識別に係る処理の負荷を軽減させ、汚損検出センサ30のCPUを安価なCPUで実現し、さらに、メイン識別部20側との並行処理によるCPUの負荷分散や識別処理全体の高速化を実現している。なお、本実施の形態では、汚損検出センサ30側で硬貨の汚損(硬貨表面の汚損の度合)を識別してその結果をメイン識別部20に送信し、メイン識別部20側で汚損硬貨(以下「汚損貨」と呼ぶ)の判定を行う形態を例としている。   The contamination detection sensor 30 according to the present invention is an additional component of the coin identification device, and is configured to be integrally connectable to the sensor unit of the coin identification sensor 10 of the coin identification device 1. Can be added without changing the hardware. The contamination detection sensor 30 has a function of identifying a contamination on the surface of the coin to be identified (a degree of contamination and / or a contaminated coin) by incorporating a CPU uniquely. The denomination information necessary for the fouling identification process uses denomination information from the magnetic sensor 12 or the image sensor 11 (in this embodiment, denomination information received via the main identification unit 20). By adopting the form, it is possible to determine the contamination based on the material based on the denomination information, reduce the processing load related to the contamination identification, and realize the CPU of the contamination detection sensor 30 with an inexpensive CPU. CPU load distribution by parallel processing with the identification unit 20 side and speeding up of the entire identification process are realized. In the present embodiment, the fouling detection sensor 30 side identifies the fouling of the coin (the degree of fouling on the coin surface) and transmits the result to the main identification unit 20, and the main identification unit 20 side obtains a fouling coin (hereinafter referred to as fouling coin). An example of the determination of “soiled coins” is taken as an example.

図2は、本発明に係る汚損検出センサ30の構成の一例を示すブロック図であり、汚損検出センサ30は、硬貨の汚損を光学的に検出するための複数の光学センサを一体化した損貨検出用モジュール(光複合センサモジュール30a,30bと、硬貨の通路となる通路部30cと、識別対象の硬貨表面の汚損を識別する制御手段30dとを備え、それらの構成部品を1筐体にコンパクトに包含してユニット化した構成としている。 Figure 2 is a block diagram showing an example of the configuration of a fouling detection sensor 30 according to the present invention, fouling detection sensor 30, integrating a plurality of optical sensors for detecting the fouling of the coin optically Son貨A module for detection ( optical composite sensor modules 30a and 30b ) , a passage portion 30c serving as a passage for coins, and a control means 30d for identifying contamination on the surface of the coin to be identified are provided in one housing. It has a compact and unitized structure.

2つの光複合センサモジュール30a,30bは、同一のハードウェアで構成され、それぞれ、硬貨の表面に光を照射する照射手段31と、硬貨表面からの正反射光を受光する第1の受光手段32と、硬貨表面からの拡散反射光を受光する第2の受光手段33とを少なくとも備えている。本実施例においては、同一構成の2つの光複合センサモジュール(汚損検出用モジュール)30a,30bを、通路部30cを挟んで対向して配置し、硬貨上面(硬貨の上側の表面)と硬貨下面(硬貨の下側の表面)の両面の汚損を検出する構成としている。   The two optical composite sensor modules 30a and 30b are composed of the same hardware, and each has an irradiation means 31 for irradiating light on the surface of the coin and a first light receiving means 32 for receiving regular reflection light from the coin surface. And second light receiving means 33 for receiving diffusely reflected light from the coin surface. In the present embodiment, two optical composite sensor modules (stain detection modules) 30a and 30b having the same configuration are arranged facing each other with the passage portion 30c interposed therebetween, and a coin upper surface (upper surface of the coin) and a coin lower surface. It is set as the structure which detects the stain | pollution | contamination of both surfaces of (the lower surface of a coin).

また、第1の光複合センサモジュール30a(以下、「上面汚損センサモジュール」と呼ぶ)と、第2の光複合センサモジュール30b(以下、「下面汚損センサモジュール」と呼ぶ)は、それぞれ、照射手段31の照射光の光量を監視する光量監視手段34と、照射手段31のからの照射光の光束を反射して硬貨表面に対し鉛直方向に入射させると共に、硬貨表面からの正反射光を透過して受光手段32の受光面に入射させるための光路変換手段35とを具備している。   Further, the first optical composite sensor module 30a (hereinafter referred to as “upper surface contamination sensor module”) and the second optical composite sensor module 30b (hereinafter referred to as “lower surface contamination sensor module”) are respectively irradiated. The light quantity monitoring means 34 for monitoring the light quantity of the irradiation light 31 and the light flux of the irradiation light from the irradiation means 31 are reflected and incident on the coin surface in the vertical direction, and the regular reflection light from the coin surface is transmitted. And optical path changing means 35 for making it incident on the light receiving surface of the light receiving means 32.

本実施の形態では、発光量を大きく且つ受光感度を大きくするため、照射手段31の光源としては赤外光源(例えば赤外LED)を用い、硬貨表面に対して赤外光を照射するようにしている。また、第1の受光手段32、第2の受光手段33、及び光量監視手段34としては、フォトダイオード等からなる受光センサを用い、光路変換手段35としてはハーフミラーを用いている。   In the present embodiment, an infrared light source (for example, an infrared LED) is used as the light source of the irradiation means 31 to irradiate the coin surface with infrared light in order to increase the light emission amount and increase the light receiving sensitivity. ing. As the first light receiving means 32, the second light receiving means 33, and the light quantity monitoring means 34, a light receiving sensor such as a photodiode is used, and as the optical path changing means 35, a half mirror is used.

図3は汚損検出センサ30のユニット構造を側面図で模式的に示しており、図4はそのユニット構造の具体例を斜視図で示している。これらの図面を用いて、本発明に係る汚損検出センサの具体的な構成について説明する。   FIG. 3 schematically shows a unit structure of the fouling detection sensor 30 in a side view, and FIG. 4 shows a specific example of the unit structure in a perspective view. A specific configuration of the contamination detection sensor according to the present invention will be described with reference to these drawings.

図3に示すように、汚損検出センサ30のユニットの上部中央には、透光性の通路部30cが設けられている。通路部30cは、硬貨2の通路面となる底板30c1、硬貨の片寄側のガイド片となる側板30c2、第2の受光手段33の受光素子が設置される天板30c3(及び底板30c1の下側の板30c4)等で形成されている。照射手段31から発光された光の光路に位置する底板30c1と天板30c3、及び、第2の受光手段33の受光素子が設置される下側の板30c4の部材は、サファイアガラス等からなる透光性部材を使用している。   As shown in FIG. 3, a translucent passage 30 c is provided at the upper center of the unit of the contamination detection sensor 30. The passage portion 30c includes a bottom plate 30c1 serving as a passage surface of the coin 2, a side plate 30c2 serving as a guide piece on the coin side, and a top plate 30c3 on which a light receiving element of the second light receiving means 33 is installed (and a lower side of the bottom plate 30c1). Plate 30c4) or the like. The members of the bottom plate 30c1 and the top plate 30c3, which are located in the optical path of the light emitted from the irradiation means 31, and the lower plate 30c4 on which the light receiving elements of the second light receiving means 33 are installed are sapphire glass or the like. A light member is used.

上面汚損センサモジュール30aと下面汚損センサモジュール30bの構成要素である第1の受光手段33、第2の受光手段33、及び光量監視手段34は、それぞれ互いの光軸が硬貨通路面に対して対向するように配置された構成となっている。本実施の形態では、図3に示すように、上面汚損センサモジュール30aと下面汚損センサモジュール30bの構成部品を同一とし、汚損センサモジュール30a、30bの各構成部品の位置及び向きの関係が、モジュール30a、30b間の中央の面に対して鏡面対称となるように、両モジュール30a、30bの各構成部品を対向して配置し、2つのモジュール30a、30bの間の空隙部分に透光性の通路部30cを設けて一体化した構成としている。   The first light receiving means 33, the second light receiving means 33, and the light quantity monitoring means 34, which are constituent elements of the upper surface contamination sensor module 30a and the lower surface contamination sensor module 30b, have their optical axes opposed to the coin path surface. It is the composition arranged to do. In the present embodiment, as shown in FIG. 3, the components of the upper surface contamination sensor module 30a and the lower surface contamination sensor module 30b are made the same, and the relationship between the position and orientation of each component of the contamination sensor modules 30a, 30b is the module. The components of both modules 30a and 30b are arranged to face each other so that they are mirror-symmetrical with respect to the central plane between 30a and 30b, and a light-transmitting portion is formed in the gap between the two modules 30a and 30b. The passage portion 30c is provided and integrated.

上面汚損センサモジュール30aと下面汚損センサモジュール30bの構成部品は同一のため、ここでは、上面汚損センサモジュール30aの構成部品の配置構成について詳細に説明する。   Since the components of the upper surface contamination sensor module 30a and the lower surface contamination sensor module 30b are the same, the arrangement of the components of the upper surface contamination sensor module 30a will be described in detail here.

図3に示すように、通路部30の上部には、例えば光線の出射方向が硬貨2の搬送方向と直交する方向となるように、照射手段31としての「赤外LED」が設けられており、その赤外LED31の光線を45度の入射角で入射するように、光路変換手段35としての「ハーフミラー」が傾斜して設けられている。そして、ハーフミラー35の上方には、硬貨2の表面からの正反射光を受光する第1の受光手段32としての受光センサ(以下「正反射センサ」と呼ぶ)が設けられており、その正反射センサ32と隣り合う位置(赤外LED31側の位置)には、赤外LED31からの照射光量を監視する光量監視手段34としての受光センサ(以下「モニタセンサ」と呼ぶ)が設けられている。また、硬貨通路の天板30c3の上面の所定位置(本例では、赤外LED31とハーフミラー35との間の空隙の下方の位置)には、硬貨2の表面からの拡散反射光を受光する第2の受光手段33としての受光センサ(以下「拡散反射センサ」と呼ぶ)が設けられている。   As shown in FIG. 3, an “infrared LED” as an irradiating means 31 is provided on the upper part of the passage portion 30 so that the light emission direction is, for example, a direction orthogonal to the conveying direction of the coins 2. The “half mirror” as the optical path changing means 35 is provided so as to be inclined so that the light beam of the infrared LED 31 is incident at an incident angle of 45 degrees. Above the half mirror 35, a light receiving sensor (hereinafter referred to as “regular reflection sensor”) is provided as the first light receiving means 32 that receives the specularly reflected light from the surface of the coin 2. At a position adjacent to the reflection sensor 32 (position on the infrared LED 31 side), a light receiving sensor (hereinafter referred to as “monitor sensor”) is provided as light amount monitoring means 34 for monitoring the amount of light emitted from the infrared LED 31. . In addition, diffuse reflection light from the surface of the coin 2 is received at a predetermined position on the top surface of the top plate 30c3 of the coin passage (in this example, a position below the gap between the infrared LED 31 and the half mirror 35). A light receiving sensor (hereinafter referred to as “diffuse reflection sensor”) is provided as the second light receiving means 33.

そして、制御手段30dの構成要素(CPU等)が搭載される処理基板30d1は、図3中に示すように、通路部30cの下方の空いた領域に設置されている。   Then, the processing substrate 30d1 on which the components (CPU or the like) of the control means 30d are mounted is installed in a vacant area below the passage portion 30c, as shown in FIG.

なお、本実施の形態においては、照射手段31から硬貨表面に対して照射する光は、スポット光としており、好ましい実施の形態では、集光レンズ等が一体的に形成された赤外LEDを用いて、光線が略平行なビーム状の赤外スポット光を出射する形態としている。照射光として赤外光を用いる理由は、赤外光は赤色に比べて光量が大きく、且つ硬貨表面からの反射率も大でセンサのSN比が格段に良くなるからである。また、スポット光とする理由は、検出エリアが小さくなり、硬貨の搬送・寄せの状態による硬貨のデータ採取部位(穴やエッジ)の影響が少なくなり、硬貨の部分的な汚れの検出精度が高まるからである。   In the present embodiment, the light emitted from the irradiation means 31 to the coin surface is spot light. In a preferred embodiment, an infrared LED in which a condenser lens or the like is integrally formed is used. Thus, a beam-shaped infrared spot light in which light rays are substantially parallel is emitted. The reason why infrared light is used as irradiation light is that infrared light has a larger light quantity than red and has a large reflectivity from the coin surface, so that the SN ratio of the sensor is remarkably improved. The reason for using spot light is that the detection area is small, the influence of coin data collection sites (holes and edges) due to the state of coin transportation and gathering is reduced, and the detection accuracy of partial dirt on coins is increased. Because.

上述のような汚損検出センサ30の構成において、赤外LED31から出射された光束の光路を説明する。なお、カッコ内は下面汚損センサモジュール30bの説明である。   In the configuration of the contamination detection sensor 30 as described above, the optical path of the light beam emitted from the infrared LED 31 will be described. The description in parentheses is for the lower surface contamination sensor module 30b.

上面汚損センサモジュール30a(下面汚損センサモジュール30b)の赤外LED31から出射されたスポット光L1は、ハーフミラー35により反射され、その反射光L2が硬貨2の上面(下面)に対して鉛直方向に照射される。硬貨2の上面(下面)からの正反射光L3は、ハーフミラー35を透過して正反射センサ32の受光面に入射される。一方、硬貨2の上面(下面)からの拡散反射光L4は、拡散反射センサ33の受光面に入射される。また、モニタセンサ34の受光面には、赤外LED31から発光された照射光の一部の光L5が入射される。   The spot light L1 emitted from the infrared LED 31 of the upper surface contamination sensor module 30a (lower surface contamination sensor module 30b) is reflected by the half mirror 35, and the reflected light L2 is perpendicular to the upper surface (lower surface) of the coin 2. Irradiated. The regular reflection light L3 from the upper surface (lower surface) of the coin 2 passes through the half mirror 35 and is incident on the light receiving surface of the regular reflection sensor 32. On the other hand, the diffuse reflection light L4 from the upper surface (lower surface) of the coin 2 is incident on the light receiving surface of the diffuse reflection sensor 33. Further, a part of the irradiation light L5 emitted from the infrared LED 31 is incident on the light receiving surface of the monitor sensor 34.

また、硬貨2が存在しない状態で上側(下側)の赤外LED31から出射されたスポット光は、ハーフミラー35により反射された光が、透光性の通路部30c及び反対側のハーフミラー35を透過し、下側(上側)の正反射センサ32の受光面に入射される。この正反射センサ32の出力信号は、透光性の通路部30cの汚れの検出、及び正反射センサ32と拡散反射センサ33の出力の汚れ補正に使用される。   Further, the spot light emitted from the upper (lower) infrared LED 31 in the absence of the coin 2 is the light reflected by the half mirror 35, the translucent passage portion 30 c and the opposite half mirror 35. And enters the light receiving surface of the lower (upper) regular reflection sensor 32. The output signal of the regular reflection sensor 32 is used to detect dirt on the light-transmitting passage portion 30 c and to correct dirt on the outputs of the regular reflection sensor 32 and the diffuse reflection sensor 33.

ここで、汚損検出センサ30のユニット構造について図4を参照して説明する。図3に示した上面汚損センサモジュール30a,30bの各構成部品は、図4に示すように、センサケース30Aの内部に装着される。なお、図4においては、拡散反射センサ33とモニタセンサ34は奥側の見えない位置にある。センサカバー30Bは、制御手段30dの処理基板30d1に対応する領域に放熱用又は透湿用の穴が形成されており、その領域が例えば多孔質材料等の通気可能な防塵用フィルタ30B1で覆われた構成となっている。このように1筐体でユニット化された汚損検出センサ30は、例えば硬貨識別センサ10のユニットと一体的に連結することで、硬貨識別機能と両面汚損検出機能を有する高性能ユニットとして提供することができる。   Here, the unit structure of the contamination detection sensor 30 will be described with reference to FIG. Each component of the upper surface contamination sensor modules 30a and 30b shown in FIG. 3 is mounted inside the sensor case 30A as shown in FIG. In FIG. 4, the diffuse reflection sensor 33 and the monitor sensor 34 are in an invisible position on the back side. The sensor cover 30B has a heat radiating or moisture permeable hole formed in an area corresponding to the processing substrate 30d1 of the control means 30d, and the area is covered with a dust-proof filter 30B1 that can be ventilated such as a porous material. It becomes the composition. Thus, the contamination detection sensor 30 unitized by one housing | casing is provided as a high-performance unit which has a coin identification function and a double-sided contamination detection function by integrally connecting with the unit of the coin identification sensor 10, for example. Can do.

次に、硬貨の搬送方向に対する硬貨識別センサ10と汚損検出センサ30の位置関係について、図5の模式図を用いて説明する。   Next, the positional relationship between the coin identification sensor 10 and the stain detection sensor 30 with respect to the coin conveyance direction will be described with reference to the schematic diagram of FIG.

硬貨識別センサ10の通路部10aと汚損検出センサ30の通路部30cは、硬貨処理機の硬貨通路の一部を構成しており、汚損検出センサ30の通路部30cは、硬貨識別センサ10の通路部10aの下流側に配置される。なお、図5の例では、汚損検出センサ30をイメージセンサ11に隣接させて設置した例を示しているが、汚損検出センサ30の設置位置はこの位置に限るものではなく、硬貨識別センサ10の金種判別用のセンサ(磁気センサ12又はイメージセンサ11)の下流側であれば良い。   The passage portion 10 a of the coin identification sensor 10 and the passage portion 30 c of the contamination detection sensor 30 constitute a part of the coin passage of the coin processor, and the passage portion 30 c of the contamination detection sensor 30 is the passage of the coin identification sensor 10. It arrange | positions in the downstream of the part 10a. In the example of FIG. 5, an example in which the contamination detection sensor 30 is installed adjacent to the image sensor 11 is shown, but the installation position of the contamination detection sensor 30 is not limited to this position. What is necessary is just to be the downstream of the sensor (magnetic sensor 12 or image sensor 11) for denomination discrimination.

硬貨識別センサ10の各センサは、本例では、上流側から下流側に向けて、穴検知センサ14(付加的構成要素)、磁気用タイミングセンサ13a、磁気センサ12、イメージセンサ11の順序で配置され、イメージセンサ11の撮像エリアの所定位置には、2つのイメージ用タイミングセンサ13bが硬貨搬送方向に対して直交する方向に並設されている。磁気用タイミングセンサ13aは、磁気センサ12による磁気データ(材質データ)のサンプリング開始のタイミングを検知するためのセンサであり、イメージ用タイミングセンサ13bは、イメージセンサ11の撮像タイミング(硬貨全体が撮像エリア内に入ったタイミング)を検知するためのセンサである。本例では、硬貨搬送方向(図5中の矢印x方向)に対して右側が硬貨片寄方向であり、上記穴検知センサ14と磁気用タイミングセンサ13a、及び汚損検出センサ30の検出部30Cは、それぞれ硬貨の片寄側に配置されている。   In this example, the sensors of the coin identification sensor 10 are arranged in the order of the hole detection sensor 14 (additional component), the magnetic timing sensor 13a, the magnetic sensor 12, and the image sensor 11 from the upstream side toward the downstream side. In addition, two image timing sensors 13b are juxtaposed in a direction orthogonal to the coin transport direction at a predetermined position in the imaging area of the image sensor 11. The magnetic timing sensor 13a is a sensor for detecting the timing of starting sampling of magnetic data (material data) by the magnetic sensor 12, and the image timing sensor 13b is an imaging timing of the image sensor 11 (the entire coin is in the imaging area). It is a sensor for detecting the timing of entering. In this example, the right side with respect to the coin conveyance direction (the direction of the arrow x in FIG. 5) is the coin offset direction, and the hole detection sensor 14, the magnetic timing sensor 13a, and the detection unit 30C of the fouling detection sensor 30 are: Each is arranged on the coin side.

なお、図5の例では、硬貨識別センサ10の上流側の通路は傾斜しており、その傾斜部から硬貨が慣性力によって汚損検出センサの通路部30cを通過する場合の例を示しているが、このような搬送形態に限定されるものではない。例えば、硬貨の上面を搬送ベルトで押さえて滑動させ、硬貨を隙間の無い状態で連鎖状に高速搬送させる形態においても、その搬送路に汚損検出センサの通路部30cを連結させることが可能である。その場合、硬貨は通路部30c上を搬送ベルトによって搬送されてくるが、図5中に示されるように、汚損検出センサの検出部30Cは、通路部30cの片寄側端部に設けられているため、搬送ベルトの影響を受けることは無い。   In the example of FIG. 5, the passage on the upstream side of the coin identification sensor 10 is inclined, and an example is shown in which the coin passes through the passage portion 30 c of the contamination detection sensor by inertia force from the inclined portion. However, the present invention is not limited to such a transport form. For example, even in a form in which the upper surface of a coin is pressed and slid by a conveyor belt and the coins are conveyed at a high speed in a chained state without a gap, the passage portion 30c of the fouling detection sensor can be connected to the conveyance path. . In that case, the coin is conveyed on the passage portion 30c by the conveyance belt, but as shown in FIG. 5, the detection portion 30C of the fouling detection sensor is provided at the end of the passage portion 30c on the offset side. Therefore, it is not affected by the conveyor belt.

次に、汚損検出センサ30のセンサ信号の種類と用途について説明する。なお、説明の便宜上、上面汚損センサモジュール30aに設けられている各センサを「上面○○センサ」、下面汚損センサモジュール30bに設けられている各センサを「下面○○センサ」というように、「上面」、「下面」の用語を付けて区別する。
<センサ信号の種類>
汚損検出センサ30のセンサ信号は、次の8種類の信号がある。
(1)硬貨通過時における上面正反射センサ32の受光信号(以下「上面正反射信号DS1」と呼ぶ)
(2)硬貨通過時における上面拡散反射センサ33の受光信号(以下「上面拡散反射信号DS2」と呼ぶ)
(3)上面モニタセンサ34の受光信号(以下「上面モニタ信号DS3」と呼ぶ)
(4)硬貨無し時(例えば計数動作の開始時)に上側の赤外LEDから発光して通路部30cを透過した光の下面正反射センサ32での受光信号(以下「上側発光下側透過信号DS4」と呼ぶ)
(5)下面正反射センサ32の硬貨通過時の正反射光受光信号(以下「下面正反射信号DS5」と呼ぶ)
(6)下面拡散反射センサ33の硬貨通過時の拡散反射光受光信号(以下「下面拡散反射信号DS6」と呼ぶ)
(7)下面モニタセンサ34の受光信号(以下「下面モニタ信号DS7」と呼ぶ)
(8)硬貨無し時(例えば計数動作の開始時)に下側の赤外LEDから発光して通路部30cを透過した光の上面正反射センサ32での受光信号(以下「下側発光上側透過信号DS8」と呼ぶ)
上記(1)の上面正反射信号DS1と上記(8)の下側発光上側透過信号DS8、上記(5)の下面正反射信号DS5と上記(4)の上側発光下側透過信号DS4は、それぞれ物理的には同一の受光センサであるが、発光源及び光路が異なることで2種類のセンサ機能を有することになる。
<各センサ信号の用途>
上面正反射信号DS1と上面拡散反射信号DS2は、硬貨上面の汚損判定用のセンサ信号として使用される他に、汚損判定用データ(上面正反射センサ及び上面拡散反射センサの受光出力)の補正用のセンサ信号としても使用される。上面モニタ信号DS3は、上側赤外LEDの光量調整用(発光強度の補正用)のセンサ信号として使用される。上側発光下側透過信号DS4は、硬貨通路(透光性通路部)の汚れ検出用、及び汚損判定用データの補正用(透光性通路部の汚れに伴う受光出力低下の補正用)のセンサ信号として使用される。また、その他に、硬貨進入/脱出タイミングの取得用としても使用される。例えば、上流側の硬貨識別センサから硬貨到来通知を受信してから硬貨進入までの時間を監視し、規定時間内に硬貨進入(硬貨による光の遮断)が検知されない場合は、硬貨の流動不良と判定し、上位(メイン識別部又は硬貨処理機本体)に当該コードを送信する。さらに、硬貨進入検知から脱出検知までの時間についても同様に監視して、汚損検出センサ内の通路部での硬貨の流動不良の有無を検出するというように、上側発光下側透過信号DS4は、ゴミ屑や液体の混入等による硬貨流動不良などの異常検出用としても利用される。
Next, the type and application of the sensor signal of the contamination detection sensor 30 will be described. For convenience of explanation, each sensor provided in the upper surface contamination sensor module 30a is referred to as "upper surface OO sensor", and each sensor provided in the lower surface contamination sensor module 30b is referred to as "lower surface OO sensor". The terms “upper surface” and “lower surface” are attached for distinction.
<Type of sensor signal>
The sensor signal of the contamination detection sensor 30 includes the following eight types of signals.
(1) Light reception signal of the upper surface regular reflection sensor 32 during coin passage (hereinafter referred to as “upper surface regular reflection signal DS1”)
(2) Light reception signal of upper surface diffuse reflection sensor 33 during coin passage (hereinafter referred to as “upper surface diffuse reflection signal DS2”)
(3) Light reception signal of the upper surface monitor sensor 34 (hereinafter referred to as “upper surface monitor signal DS3”)
(4) When there is no coin (for example, at the start of the counting operation), the light received by the lower regular reflection sensor 32 of the light emitted from the upper infrared LED and transmitted through the passage portion 30c (hereinafter referred to as “upper emission lower transmission signal”). DS4 ")
(5) Regular reflection light receiving signal when coins pass through the bottom regular reflection sensor 32 (hereinafter referred to as “bottom regular reflection signal DS5”)
(6) Diffuse reflected light receiving signal when the lower surface diffuse reflection sensor 33 passes a coin (hereinafter referred to as “lower surface diffuse reflection signal DS6”)
(7) Light reception signal of the lower surface monitor sensor 34 (hereinafter referred to as “lower surface monitor signal DS7”)
(8) When no coin is present (for example, at the start of the counting operation), light received from the lower infrared LED and transmitted through the passage portion 30c is received by the upper regular reflection sensor 32 (hereinafter referred to as “lower emission upper transmission). Called signal DS8 ")
The upper regular reflection signal DS1 in (1) and the lower emission upper transmission signal DS8 in (8), the lower regular reflection signal DS5 in (5), and the upper emission lower transmission signal DS4 in (4) are respectively Although it is physically the same light receiving sensor, it has two types of sensor functions due to different light emitting sources and optical paths.
<Application of each sensor signal>
The upper surface regular reflection signal DS1 and the upper surface diffuse reflection signal DS2 are used as sensor signals for determining the contamination on the upper surface of the coin, and for correcting contamination determination data (light reception outputs of the upper surface regular reflection sensor and the upper surface diffuse reflection sensor). It is also used as a sensor signal. The upper surface monitor signal DS3 is used as a sensor signal for adjusting the light amount of the upper infrared LED (for correcting the light emission intensity). The upper light emission lower transmission signal DS4 is a sensor for detecting dirt on the coin passage (translucent passage portion) and correcting dirt determination data (for correcting reduction in received light output due to contamination of the light transmission passage portion). Used as a signal. In addition, it is also used for acquiring coin entry / exit timing. For example, if the time from receiving a coin arrival notification from the upstream coin identification sensor to the coin entry is monitored and no coin entry (light blockage by the coin) is detected within the specified time, It determines and transmits the said code | cord | chord to high-order (a main identification part or a coin processor main body). Furthermore, the time from the coin entry detection to the escape detection is similarly monitored, and the upper emission lower transmission signal DS4 is detected so as to detect the presence or absence of coin flow failure in the passage portion in the contamination detection sensor. It is also used for detecting abnormalities such as coin flow failure due to dust or liquid contamination.

一方、下面正反射信号DS5と下面拡散反射信号DS6は、硬貨下面の汚損判定用のセンサ信号として使用される他に、汚損判定用データ(下面正反射センサ及び下面拡散反射センサの受光出力)の補正用のセンサ信号としても使用される。下面モニタ信号DS7は、下側赤外LEDの光量調整用(発光強度の補正用)のセンサ信号として使用される。下側発光上側透過信号DS8は、センサ間に形成されている透光性通路部の汚れ検出用、及び汚損判定用データの補正用(透光性通路部の汚れに伴う受光出力低下の補正用)のセンサ信号として使用される他に、上側発光下側透過信号DS4と同様に、硬貨進入/脱出タイミングの取得用としても使用される。   On the other hand, the lower surface regular reflection signal DS5 and the lower surface diffuse reflection signal DS6 are used as sensor signals for determining the contamination on the lower surface of the coin, and are also used for the data for determining the contamination (light reception outputs of the lower surface regular reflection sensor and the lower surface diffuse reflection sensor) It is also used as a sensor signal for correction. The lower surface monitor signal DS7 is used as a sensor signal for adjusting the amount of light (for correcting the emission intensity) of the lower infrared LED. The lower emission upper transmission signal DS8 is used to detect dirt in the light-transmitting passage formed between the sensors and to correct the data for determining dirt (for correcting reduction in received light output due to dirt in the light-transmitting passage). ) As well as the upper emission lower transmission signal DS4, it is also used for acquiring coin entry / exit timing.

次に、上記8つのセンサ信号DS1〜DS8の取得タイミングについて、図6のタイミングチャートを用いて説明する。   Next, the acquisition timing of the eight sensor signals DS1 to DS8 will be described with reference to the timing chart of FIG.

汚損検出センサの制御手段30dは、センサ信号取得間隔St(例えば500μs)を1サイクルとして、その1サイクルの間に8つの信号DS1〜DS8をそれぞれ1回読取る。このセンサ信号取得処理は、例えば、汚損検出センサ30の検出部30Cへの硬貨到来から硬貨脱出までの間に複数サイクル実行し、硬貨上面と硬貨下面についてそれぞれ1ポイント若しくは複数ポイントのデータ(例えば硬貨進入から硬貨脱出までの間の中央4ポイントのデータ)を汚損貨識別用データとして用いる。   The control unit 30d of the contamination detection sensor reads each of the eight signals DS1 to DS8 once during one cycle of the sensor signal acquisition interval St (for example, 500 μs) as one cycle. This sensor signal acquisition processing is executed for a plurality of cycles, for example, from the arrival of a coin to the detection unit 30C of the fouling detection sensor 30 until the escape of the coin, and data of one point or a plurality of points (for example, a coin) The data of the central 4 points from the time of entry to the escape of coins) is used as data for identifying damaged coins.

先ず、図6に示されるように、1サイクルの開始時に上側赤外LED31aを発光させ、上面正反射信号DS1、上面拡散反射信号DS2、上面モニタ信号DS3、上側発光下側透過信号DS4を読取り、上側赤外LED31aを消灯させた後に下側赤外LED31bを発光させ、下面正反射信号DS5、下面拡散反射信号DS6、下面モニタ信号DS7、下側発光上側透過信号DS8を読取り、下側赤外LED31bを消灯させて1サイクルを終了し、次のサイクルに移行する。   First, as shown in FIG. 6, the upper infrared LED 31a emits light at the start of one cycle, and the upper surface regular reflection signal DS1, the upper surface diffuse reflection signal DS2, the upper surface monitor signal DS3, and the upper light emission lower transmission signal DS4 are read. After turning off the upper infrared LED 31a, the lower infrared LED 31b emits light, reads the lower regular reflection signal DS5, the lower diffuse reflection signal DS6, the lower monitor signal DS7, and the lower emission upper transmission signal DS8, and the lower infrared LED 31b Is turned off to complete one cycle, and the process proceeds to the next cycle.

以上のような構成において、本発明に係る硬貨識別装置及び汚損検出センサの動作例、並びに、汚損検出センサが有する受光センサ出力の汚れ補正機能について説明する。   In the above configuration, an operation example of the coin discriminating apparatus and the contamination detection sensor according to the present invention, and the dirt correction function of the light receiving sensor output of the contamination detection sensor will be described.

先ず、本発明に係る硬貨識別装置の全体の動作例の概要を図7のデータフローを参照して説明する。なお、図7のデータフローは、処理機本体と硬貨処理機内のメイン識別部との間のコマンド等のデータのやり取り、及びメイン識別部と汚損検出センサとの間のコマンド等のデータのやり取りを示している。   First, an outline of an overall operation example of the coin identifying device according to the present invention will be described with reference to the data flow of FIG. Note that the data flow in FIG. 7 is for exchanging data such as commands between the processor main body and the main identifying unit in the coin processor, and exchanging data such as commands between the main identifying unit and the fouling detection sensor. Show.

硬貨識別装置のメイン識別部20は、硬貨処理機本体のCPUからスタートコマンドを受信すると、同コマンドを汚損検出センサ30に対して送信して応答を受信した後、硬貨処理機本体へ同コマンドに対する応答を送信する。硬貨が搬送されてくると、硬貨識別装置のメイン識別部20は、磁気用タイミングセンサ13aの信号によって硬貨の到来を検知し、磁気センサ12により硬貨情報を採取し、材質、径等の判別を行い、金種を判別する。これと並行して、メイン識別部20では、磁気センサ12の下流側(図5を参照)で硬貨の到来をイメージセンサ用タイミングセンサ13bによって検知すると、硬貨到来通知を汚損検出センサ30へ送信すると共に、イメージセンサ11によって硬貨の表面画像を採取する。このときメイン識別部20では、前段の磁気センサ12の情報により判別した金種情報、及びイメージセンサ11によって採取した硬貨表面の画像情報に基づいて、硬貨の金種及び真偽を総合的に判別する。そして、磁気センサ12により採取したデータに基づいて判別した金種情報(又は、イメージセンサ11によって判別した金種情報)を、汚損検出センサ30へ送信する。   When receiving the start command from the CPU of the coin processing machine main body, the main identification unit 20 of the coin identification device transmits the command to the fouling detection sensor 30 and receives a response, and then receives the response to the coin processing machine main body. Send a response. When the coin is conveyed, the main identification unit 20 of the coin identification device detects the arrival of the coin by the signal of the magnetic timing sensor 13a, collects the coin information by the magnetic sensor 12, and discriminates the material, the diameter, and the like. To determine the denomination. In parallel with this, when the arrival of coins is detected by the image sensor timing sensor 13b on the downstream side of the magnetic sensor 12 (see FIG. 5), the main identification unit 20 transmits a coin arrival notification to the contamination detection sensor 30. At the same time, a surface image of the coin is collected by the image sensor 11. At this time, the main discriminating unit 20 comprehensively discriminates the denomination and authenticity of the coin based on the denomination information determined by the information of the magnetic sensor 12 in the previous stage and the image information of the coin surface collected by the image sensor 11. To do. Then, the denomination information determined based on the data collected by the magnetic sensor 12 (or the denomination information determined by the image sensor 11) is transmitted to the contamination detection sensor 30.

一方、メイン識別部20からの硬貨到来通知を受信した最終段の汚損検出センサ30では、前述のサイクルで各センサの信号DS1〜DS8の読取動作を開始し、採取した汚損貨識別用データ(硬貨表面からの正反射光及び拡散反射光の受光データ)及びメイン識別部20から受信した金種情報に基づいて、当該硬貨の汚損の度合を判定し、硬貨の上面及び下面の汚損結果(汚損度等の識別結果)を別々にメイン識別部20に通知する。   On the other hand, in the last stage contamination detection sensor 30 that has received the coin arrival notification from the main identification unit 20, reading operation of the signals DS1 to DS8 of each sensor is started in the above-described cycle, and the collected contamination identification data (coin Based on the received light data of regular reflection light and diffuse reflection light from the surface) and denomination information received from the main identification unit 20, the degree of contamination of the coin is determined, and the result of contamination on the upper and lower surfaces of the coin (degree of contamination) And the like) are separately notified to the main identification unit 20.

メイン識別部20では、汚損検出センサ30から受信した上面、下面の汚損度をチェックし、設定レベル(閾値)に応じて汚損貨か否かの判定を実施して、例えば当該硬貨の金種コード、真偽情報、汚損貨情報等の識別結果を処理機本体へ送信する。   The main identification unit 20 checks the degree of fouling of the upper and lower surfaces received from the fouling detection sensor 30 and determines whether or not it is a fouled coin according to a set level (threshold). For example, the denomination code of the coin Then, identification results such as authenticity information and defaced currency information are transmitted to the processor main body.

なお、汚損貨か否かの判定は、メイン識別部20ではなく、汚損検出センサ30側で行うようにしても良い。その場合、メイン識別部20から硬貨の真偽情報を受信し、真の硬貨の場合のみ汚損貨の識別をする形態としても良い。   In addition, you may make it determine not the main identification part 20 but the contamination detection sensor 30 side whether it is a corruption coin. In that case, it is good also as a form which receives the authenticity information of a coin from the main identification part 20, and identifies a dirty coin only in the case of a true coin.

次に、汚損検出センサ30が有する受光センサ出力の汚れ補正機能について説明する。   Next, the dirt correction function of the light receiving sensor output of the dirt detection sensor 30 will be described.

なお、本発明で言う「汚れ補正機能」とは、硬貨の通路部30cに汚れがあっても正確に汚損の判定が行えるように、汚損貨の判定に用いる正反射センサ32及び拡散反射センサ33の出力に含まれる汚れ成分を補正する機能のことを言う。また、受光センサ出力に含まれる「汚れ成分」とは、例えば、硬貨に付着していた汚れの剥離,硬貨粉等の透光性通路部の汚れに起因する汚れ成分、センサ自体の受光部の汚れに起因する汚れ成分など、照射光が受光されるまでの光路中の部材の汚れに起因する受光センサ出力の汚れ成分のことを言う。   The “dirt correction function” referred to in the present invention means a regular reflection sensor 32 and a diffuse reflection sensor 33 used for determining a dirty coin so that the dirt can be accurately determined even if the coin passage portion 30c is dirty. This is a function that corrects the dirt component contained in the output of. In addition, the “dirt component” included in the light receiving sensor output is, for example, a dirt component caused by peeling of dirt adhered to a coin, dirt on a translucent passage part such as coin powder, and the light receiving part of the sensor itself. This refers to a dirt component of the light receiving sensor output caused by dirt on a member in the optical path until irradiation light is received, such as a dirt component caused by dirt.

図3に示したように、上面正反射センサ32及び上面拡散反射センサ33は、通路部30cの天板30c3(本例では硬質ガラス製の天板)を透過した正反射光及び拡散反射光(硬貨上面からの反射光)をそれぞれ受光するが、硬貨粉などにより天板30c3の下面が汚れると、その汚れでセンサ信号が小さくなり、実際には汚れていない正常貨を汚損貨としてしまう確率が増加する。一方、下面正反射センサ32及び下面拡散反射センサ33は、通路部30cの底板30c1(本例では硬質ガラス製の底板)を透過した正反射光及び拡散反射光(硬貨下面からの反射光)をそれぞれ受光するが、硬貨粉や硬貨に付着している汚れなどにより、硬貨通路面となる底板30c1の上面が汚れると、その汚れでセンサ信号が小さくなり、実際には汚れていない正常貨を汚損貨と判定してしまう確率が増加する。   As shown in FIG. 3, the upper surface regular reflection sensor 32 and the upper surface diffuse reflection sensor 33 are specular reflection light and diffuse reflection light (in this example, a hard glass top plate) transmitted through the top plate 30c3 of the passage portion 30c. The reflected light from the upper surface of the coin is received, but if the lower surface of the top plate 30c3 is soiled by coin powder or the like, the sensor signal becomes small due to the soiling, and there is a probability that normal coins that are not actually soiled will become dirty. To increase. On the other hand, the lower surface regular reflection sensor 32 and the lower surface diffuse reflection sensor 33 receive regular reflection light and diffuse reflection light (reflected light from the lower surface of the coin) transmitted through the bottom plate 30c1 (in this example, a hard glass bottom plate) of the passage portion 30c. Each light is received, but if the upper surface of the bottom plate 30c1 that becomes the coin passage surface becomes dirty due to coin dust or dirt adhering to the coin, the sensor signal becomes small due to the dirt, and the actual dirt that is not actually dirty is soiled. The probability that it will be determined as a currency increases.

そこで、汚損検出センサ30の制御手段30dでは、過去の流動硬貨の上下面のセンサ出力差を利用し、上下面汚れの分配を行い、各々の汚れ分の信号を補正することによりセンサガラス汚れによる検出能力の低下を防ぐようにしている。上記センサ出力差とは、汚損貨の出現枚数、センサ信号の積,和等のセンサから得られたレベル、汚損の判定結果より得られる情報(例えば汚損度を示すレベル)など、上面汚損センサモジュールのセンサ出力から得られる情報と、下面汚損センサモジュールのセンサ出力から得られる「上下面での検出情報の差」である。また、各々の汚れ分の信号を補正する処理としては、上記補正を実施した状態で硬貨を流動させ、継続して補正を行い、収束するまで補正を行うようにしている。   Therefore, the control means 30d of the contamination detection sensor 30 uses the sensor output difference between the upper and lower surfaces of the past flowing coins, distributes the upper and lower surface stains, and corrects the signal for each stain so that the sensor glass stains. We try to prevent a drop in detection capability. The sensor output difference refers to the number of appearance of fouling coins, the level obtained from sensors such as the product and sum of sensor signals, and the information obtained from the result of fouling determination (for example, the level indicating the degree of fouling). The information obtained from the sensor output of “2” and the “difference in detection information on the upper and lower surfaces” obtained from the sensor output of the lower surface contamination sensor module. Further, as a process for correcting the signal for each stain, the coin is flowed in the state where the above correction is performed, the correction is continuously performed, and the correction is performed until it converges.

具体的には、例えば、初期調整時に設定された各センサの基準値(補正処理に用いる基準透過データ等)をRAM等の記憶媒体に記憶させておき、硬貨の計数処理の開始直前に赤外LED31の光量をモニタセンサ34で確認し、規定値であれば通路部30cのガラス面の汚れを検出するために、発光側に対して対向側の正反射センサ32で上下のガラス面を通過した透過光を受光する。これを、初期値である基準透過データと比較してガラス汚れ率を算出している。また、計数後には、汚損判定された硬貨が所定枚数以上になれば上下それぞれの汚損枚数に基づき、ガラス汚れ修正値を算出する。これら2つの値を計数中の正反射データ及び拡散反射データの補正に用いて、より正確な汚損判定を行うようにしている。このようにすることで、基準硬貨等が使えない運用中であっても搬走路のガラス面汚れを受光出力に効果的にフイードバックできる。なお、補正処理の形態としては第1実施形態及び第2実施形態があり、具体例についてはフローチャートを用いて以下に説明する。   Specifically, for example, the reference value (reference transmission data used for the correction process) of each sensor set at the time of initial adjustment is stored in a storage medium such as a RAM, and the infrared ray immediately before the start of the coin counting process. The light amount of the LED 31 is confirmed by the monitor sensor 34, and if it is a specified value, the upper and lower glass surfaces are passed by the specular reflection sensor 32 on the opposite side to the light emitting side in order to detect dirt on the glass surface of the passage portion 30c. Receives transmitted light. This is compared with the reference transmission data, which is the initial value, to calculate the glass stain rate. Further, after the counting, if the number of coins determined to be fouled exceeds a predetermined number, a glass fouling correction value is calculated based on the upper and lower fouling numbers. These two values are used for correction of regular reflection data and diffuse reflection data being counted, so that more accurate contamination determination is performed. By doing in this way, even if the operation | use which cannot use a reference | standard coin etc. is in operation, the glass surface stain | pollution | contamination of a runway can be effectively fed back to a light reception output. Note that the correction processing includes the first embodiment and the second embodiment, and specific examples will be described below with reference to flowcharts.

次に、本発明に係る汚損検出センサ30の動作例の詳細、並びに、汚損貨識別処理と受光センサ出力の汚れ補正処理の詳細を説明する。なお、以下の説明では、硬貨処理機による硬貨の「計数前」の動作、「計数中」の動作、「計数後」の動作に分けて説明する。   Next, the details of the operation example of the contamination detection sensor 30 according to the present invention and the details of the contamination coin identification processing and the contamination correction processing of the light receiving sensor output will be described. In the following description, the operation of “before counting”, “during counting”, and “after counting” of coins by the coin processor will be described separately.

先ず、汚損検出センサ30における計数前の動作例を図8のフローチャートの流れに沿って説明する。   First, an operation example before counting in the contamination detection sensor 30 will be described along the flow of the flowchart of FIG.

汚損検出センサの制御手段30dは、計数前の処理として、先ず、モニタセンサ34の検出信号(上面モニタ信号DS3、下面モニタ信号DS7)を入力し、上側及び下側のLED31の発光量が規定量(規定値又は規定範囲内)となっているか否かをそれぞれ確認し(ステップS1)、規定量となっていない場合は該当のLED31の発光量を調整する(ステップS2)。続いて、上側発光下側透過信号DS4と下側発光上側透過信号DS8に基づいて、ガラス汚れ率を算出する。ここで言う「ガラス汚れ率」とは、硬貨が通過する透光性通路部30c(スポット光の光路に入る領域)の汚れ率である。このガラス汚れ率は、上側発光下側透過信号DS4のAD変換値を「下透過データ」、その基準値を「基準下透過データ」、下側発光上側透過信号DS8のAD変換値を「上透過データ」、その基準値を「基準上透過データ」として、例えば次の数1、数2により算出する(ステップS3)。
(数1)
ガラス汚れ率1=下透過データ/基準下透過データ
(数2)
ガラス汚れ率2=上透過データ/基準上透過データ
なお、上記ステップS3において、「ガラス汚れ率」の代わりに「透過出力低下量率」を算出する形態としても良い。ここで言う「透過出力低下量率」とは、(a)上側発光下側透過信号DS4の受光出力の低下量の割合(基準値に対する実測値の割合)、即ち、硬貨が存在しない状態で、上側の赤外LEDから発光され、通路部30cを透過した赤外光の下面正反射センサ(対向側の受光センサ)での受光信号の低下率、又は、(b)下側発光上側透過信号DS8の受光出力の低下量の割合(基準値に対する実測値の割合)、即ち、硬貨が存在しない状態で、下側の赤外LEDから発光され、通路部30cを透過した赤外光の上面正反射センサ32での受光信号の低下率のことを言う。
The control unit 30d of the contamination detection sensor first inputs detection signals (upper surface monitor signal DS3, lower surface monitor signal DS7) of the monitor sensor 34 as processing before counting, and the light emission amounts of the upper and lower LEDs 31 are specified amounts. Whether or not it is within a specified value or within a specified range is determined (step S1), and if it is not the specified amount, the light emission amount of the corresponding LED 31 is adjusted (step S2). Subsequently, the glass stain rate is calculated based on the upper emission lower transmission signal DS4 and the lower emission upper transmission signal DS8. The “glass contamination rate” referred to here is the contamination rate of the translucent passage portion 30c (a region entering the optical path of the spot light) through which coins pass. This glass stain ratio is obtained by setting the AD conversion value of the upper emission lower transmission signal DS4 to “lower transmission data”, its reference value as “reference lower transmission data”, and the AD conversion value of the lower emission upper transmission signal DS8 as “upper transmission”. “Data” and its reference value as “transmission data on reference” are calculated by the following equations 1 and 2, for example (step S3).
(Equation 1)
Glass stain ratio 1 = Bottom transmission data / Standard bottom transmission data (Equation 2)
Glass stain rate 2 = upper transmission data / reference upper transmission data Note that, in the above step S3, a “transmission output decrease rate” may be calculated instead of the “glass stain rate”. The “transmission output decrease amount rate” here refers to (a) the ratio of the decrease amount of the light reception output of the upper light emission lower transmission signal DS4 (the ratio of the actual measurement value to the reference value), that is, in the absence of coins. The decrease rate of the received light signal at the lower surface regular reflection sensor (opposite light receiving sensor) of the infrared light emitted from the upper infrared LED and transmitted through the passage portion 30c, or (b) the lower light emitting upper transmitted signal DS8. Ratio of the amount of decrease in the received light output (the ratio of the measured value with respect to the reference value), that is, the regular reflection of the upper surface of the infrared light emitted from the lower infrared LED and transmitted through the passage portion 30c in the absence of coins This is the rate of decrease in the received light signal at the sensor 32.

以下、汚損貨判定データの補正要素として「ガラス汚れ率」を用いた場合を第1実施形態、汚損貨判定データの補正要素として「透過出力低下量率」を用いた場合を第2実施形態とし、これらの形態によって処理が異なるステップの部分については、第1実施形態と第2実施形態とに分けて説明する。   Hereinafter, the case where “glass stain rate” is used as the correction factor of the damaged coin determination data is referred to as the first embodiment, and the case where “transmission output decrease amount rate” is used as the correction factor of the dirty coin determination data is referred to as the second embodiment. The portions of the steps that differ in processing depending on these forms will be described separately in the first embodiment and the second embodiment.

次に、汚損検出センサ30における計数中の動作例を図9のフローチャートの流れに沿って説明する。なお、硬貨上面の処理と硬貨下面の処理は、上面のセンサ信号を用いるか下面のセンサ信号を用いるかの違いがあるだけなので、簡略化して説明する。   Next, an operation example during counting in the contamination detection sensor 30 will be described along the flow of the flowchart of FIG. 9. Note that the processing on the upper surface of the coin and the processing on the lower surface of the coin have only a difference between using the sensor signal on the upper surface and the sensor signal on the lower surface, and therefore will be described in a simplified manner.

汚損検出センサの制御手段30dは、硬貨識別装置のメイン識別部20から硬貨到来通知を受信すると(ステップS11)、所定のスキャン周期(前述のサイクル)で各センサからのデータ取込みを開始し、汚損貨識別用データを採取する(ステップS12)。続いて、メイン識別部20から金種通知を受信すると(ステップS13)、汚損貨識別用データに含まれる正反射信号のAD変換値を「正反射データ」、拡散反射信号のAD変換値を「拡散反射データ」とし、少なくとも正反射データ及び拡散反射データの両方を汚損判定要素としたデータ(本例では両方の和)を「判定データ」として算出する。その際、第1実施形態の場合には、後述の「ガラス汚れ修正値」を用いて、下記の数3又は数4によって判定データ(上面用判定データ及び下面用判定データ)を補正し、第2実施形態の場合には、後述の「汚損判定率」を用いて下記の数5によって判定データ(上面用判定データ及び下面用判定データ)を補正する。
(数3)
判定データ=(正反射データ+拡散反射データ)*(ガラス汚れ修正値/K)
(数4)
判定データ=(正反射データ+拡散反射データ)*(ガラス汚れ修正値/K)/
((1−α)+α*ガラス汚れ率1+(1−β)+β*ガラス汚れ率2)
ここで、上記数3、数4における「K」は、判定データの補正量の基準値(定数)であり、本例ではK=128としている。また、上記数3、数4における「ガラス汚れ修正値(初期値=K)」は、汚損貨のカウント値に応じて変化させる変数である(後述する「計数後」の処理を参照)。また、上記数4における「α」,「β」は金種による固有値である。
(数5)
判定データ=(正反射データ+拡散反射データ)/(1−透過出力低下量率
*汚損判定率)
ここで、上記数5における「汚損判定率(初期値=1)」は、汚損貨のカウント値に応じて変化させる変数である(後述する「計数後」の処理を参照)。
When receiving the coin arrival notification from the main identification unit 20 of the coin identification device (step S11), the contamination detection sensor control means 30d starts taking data from each sensor in a predetermined scan cycle (the above-described cycle), Data for identifying coins is collected (step S12). Subsequently, when a denomination notification is received from the main identification unit 20 (step S13), the AD conversion value of the regular reflection signal included in the dirty coin identification data is “regular reflection data”, and the AD conversion value of the diffuse reflection signal is “ The data (diffuse reflection data) and data having at least both regular reflection data and diffuse reflection data as contamination determination elements (the sum of both in this example) are calculated as “determination data”. At that time, in the case of the first embodiment, the determination data (upper surface determination data and lower surface determination data) is corrected by the following Equation 3 or Equation 4 using a “glass stain correction value” to be described later. In the case of the second embodiment, the determination data (upper surface determination data and lower surface determination data) is corrected by the following equation 5 using a “fouling determination rate” described later.
(Equation 3)
Judgment data = (regular reflection data + diffuse reflection data) * (glass stain correction value / K)
(Equation 4)
Judgment data = (regular reflection data + diffuse reflection data) * (glass stain correction value / K) /
((1-α) + α * glass stain rate 1+ (1-β) + β * glass stain rate 2)
Here, “K” in the above equations 3 and 4 is a reference value (constant) of the correction amount of the determination data, and in this example, K = 128. Further, the “glass stain correction value (initial value = K)” in the above formulas 3 and 4 is a variable that is changed according to the count value of the damaged coins (see “after count” processing described later). Further, “α” and “β” in the above equation 4 are eigenvalues depending on the denomination.
(Equation 5)
Determination data = (regular reflection data + diffuse reflection data) / (1−transmission output decrease rate)
* Fouling judgment rate)
Here, the “fouling judgment rate (initial value = 1)” in the above equation 5 is a variable that is changed according to the count value of the fouled coins (see “after counting” processing described later).

汚損検出センサの制御手段30dは、前記数3〜数5のいずれかの数式によって判定データを補正した後(ステップS14)、その補正後の判定データと硬貨の金種に対応する汚損判定基準情報(例えば、金種毎に設定された複数段階の汚損度判定基準値を示す基準レベルデータ)とを比較して、硬貨の汚損レベル(本例では、複数段階の汚損度のいずれの段階の汚損度であるか示す硬貨上面の汚損度、及び硬貨下面の汚損度)を判定する(ステップS15)。そして、その上下面の汚損判定結果をメイン識別部20に送信すると共に(ステップS16)、例えば硬貨の汚損度と汚損貨判定用の基準値(閾値)とを比較して汚損貨か否かを判定し、汚損貨と判定したのであれば、汚損貨の枚数を示すカウント値を1カウントアップし(ステップS17)、当該硬貨の処理を終了する。なお、ステップS16において算出する汚損貨のカウント値は、前記数3又は数4で用いる「ガラス汚れ修正値」あるいは前記数4で用いる「汚損判定率」を求めるために使用する補正用パラメータである。   The control unit 30d of the contamination detection sensor corrects the determination data by any one of the equations 3 to 5 (step S14), and then the determination data after the correction and the contamination determination reference information corresponding to the denomination of the coin (E.g., reference level data indicating a plurality of levels of contamination degree judgment reference values set for each denomination), and the level of coin contamination (in this example, the level of contamination of multiple levels of contamination) The degree of contamination on the upper surface of the coin and the degree of contamination on the lower surface of the coin, which indicate whether the degree is a degree, are determined (step S15). Then, the result of the determination on the upper and lower surfaces is transmitted to the main identification unit 20 (step S16), and for example, the degree of contamination of the coin is compared with a reference value (threshold value) for determining the damaged coin to determine whether it is a damaged coin. If it is determined that it is a dirty coin, the count value indicating the number of dirty coins is incremented by 1 (step S17), and the processing of the coin is terminated. The count value of the damaged coins calculated in step S16 is a correction parameter used to obtain the “glass stain correction value” used in Equation 3 or Equation 4 or the “dirt determination rate” used in Equation 4. .

なお、上述した「計数中」の動作における実施の形態では、汚損検出センサの制御手段30dで求めた硬貨の汚損度(硬貨上面の汚損度及び硬貨下面の汚損度)をメイン識別部20に通知し、汚損貨の判定をメイン識別部側で実施する形態を例としているが、汚損検出センサ側で汚損貨の判定を行い、その判定結果をメイン識別部20に通知する形態としても良く、硬貨処理機本体の操作部からの選択操作により、いずれかの形態をオペレータが選択して設定可能な形態としても良い。   In the above-described embodiment in the “counting” operation, the main identification unit 20 is notified of the degree of coin fouling (the degree of fouling on the upper surface of the coin and the degree of fouling on the lower surface of the coin) obtained by the control means 30d of the fouling detection sensor. However, it is possible to adopt a mode in which the determination of the dirty coin is performed on the main identification unit side, but the dirty detection sensor side may determine the dirty coin and notify the determination result to the main identification unit 20. It is also possible to adopt a form in which the operator can select and set any form by a selection operation from the operation unit of the processor main body.

次に、汚損検出センサ30における計数後の動作例を図10のフローチャートの流れに沿って説明する。   Next, an example of the operation after counting in the contamination detection sensor 30 will be described along the flow of the flowchart of FIG.

汚損検出センサの制御手段30dは、計数後の処理として、前記ステップS16で求めた汚損貨のカウント値(枚数)が規定値(例えば1000枚)以上であるか否かを判定し(ステップS21)、規定値以上であれば、第1実施形態の場合には前記数3又は数4で用いる「ガラス汚れ修正値」を次の処理により補正する。例えば、上汚損判定枚数が(下汚損判定枚数+50)以上であれば、下記の数6及び数7により補正し、下汚損判定枚数が(上汚損判定枚数+50)以上であれば、下記の数8及び数9により補正する。
(数6)
上ガラス汚れ修正値=上ガラス汚れ修正値+1
(数7)
下ガラス汚れ修正値=下ガラス汚れ修正値−1
(数8)
下ガラス汚れ修正値=下ガラス汚れ修正値+1
(数9)
上ガラス汚れ修正値=上ガラス汚れ修正値−1
一方、第2実施形態の場合には、前記数5で用いる「汚損判定率」を例えば次の数10及び数11により補正する。
(数10)
上汚損判定率=上汚損枚数/(上汚損枚数+下汚損枚数)
(数11)
下汚損判定率=下汚損枚数/(上汚損枚数+下汚損枚数)
そして、前記数6及び数7、又は前記数8及び数9により上下面の「ガラス汚れ修正」を算出、あるいは前記数10及び数11により上下面の「汚損判定率」を算出して記憶した後(ステップS22)、汚損貨のカウント値(枚数)をクリアし(ステップS23)、当該硬貨の計数後の動作を終了する。
The control unit 30d of the contamination detection sensor determines whether or not the count value (number) of the contaminated coins obtained in step S16 is equal to or greater than a specified value (for example, 1000) as the processing after counting (step S21). If the value is equal to or greater than the specified value, the “glass stain correction value” used in the expression 3 or 4 in the first embodiment is corrected by the following process. For example, if the upper stain determination number is equal to or greater than (lower stain determination number +50), correction is performed using the following equations 6 and 7. If the lower stain determination number is equal to or greater than (upper stain determination number +50), the following number is corrected. Correction is performed by 8 and Equation 9.
(Equation 6)
Upper glass stain correction value = Upper glass stain correction value + 1
(Equation 7)
Lower glass stain correction value = Lower glass stain correction value -1
(Equation 8)
Lower glass stain correction value = Lower glass stain correction value + 1
(Equation 9)
Upper glass stain correction value = Upper glass stain correction value-1
On the other hand, in the case of the second embodiment, the “fouling determination rate” used in Equation 5 is corrected by the following Equation 10 and Equation 11, for example.
(Equation 10)
Upper fouling judgment rate = number of upper fouling / (number of upper fouling + number of lower fouling)
(Equation 11)
Lower fouling judgment rate = lower fouling number / (upper fouling number + lower fouling number)
Then, the “glass stain correction” of the upper and lower surfaces is calculated according to the equations 6 and 7, or the equations 8 and 9, or the “dirt determination rate” of the upper and lower surfaces is calculated and stored according to the equations 10 and 11. After (step S22), the count value (number) of the damaged coins is cleared (step S23), and the operation after counting the coins is finished.

以上のような実施の形態とすることにより、硬貨表面の模様の有無にかかわらず汚損貨と正常貨(汚れていない硬貨)とを高精度で識別することが可能となる。また、上述した「汚れ補正機能」を備えることにより、汚損検出センサ内の通路部が硬貨粉等によって汚れていても、安定した汚損検出能力を保つことができる。また、オペレータへの清掃要求(画面表示等による通知)の頻度を低減させることが可能となる。   By setting it as the above embodiments, it becomes possible to identify a dirty coin and a normal coin (unstained coin) with high accuracy regardless of the presence or absence of a pattern on the coin surface. In addition, by providing the “dirt correction function” described above, it is possible to maintain stable stain detection capability even if the passage portion in the stain detection sensor is soiled with coin powder or the like. In addition, it is possible to reduce the frequency of the cleaning request (notification by screen display etc.) to the operator.

以下に、図11に示される実際の実験結果を参照して、硬貨表面の模様の有無にかかわらず汚損貨と正常貨とを識別できる理由を説明する。   In the following, with reference to the actual experimental results shown in FIG. 11, the reason why a damaged coin and a normal coin can be identified regardless of the presence or absence of a pattern on the coin surface will be described.

図11(A)及び(B)は、汚損検出センサ30における正反射光/拡散反射光の受光出力の分布を示しており、正反射センサの出力を縦軸、拡散反射センサの出力を横軸として、硬貨表面(表側の面)でのセンサ出力を、流通貨については“●”、新貨ついては“○”で示し、また、硬貨裏面でのセンサ出力を、流通貨については“▲”、新貨ついては“△”で示している。また、データを採取した硬貨表面(表側及び裏側)の部位は、30度刻みの円環状の部位(12箇所の部位)である。本例では、照射光は直径3mm程度のスポット光とし、500円硬貨の新貨と流通貨と、1円硬貨の新貨と流通貨について、それぞれ、表側及び裏側の各部位のデータを採取している。ここでは、流通貨を汚損貨と見なし、新貨を正常貨と見なして説明する。   FIGS. 11A and 11B show the distribution of the received light output of specular reflection light / diffuse reflection light in the fouling detection sensor 30. The vertical axis represents the output of the regular reflection sensor and the horizontal axis represents the output of the diffuse reflection sensor. The sensor output on the coin surface (front side) is indicated by “●” for current currency, “○” for new currency, and the sensor output on the reverse side of coin, “▲” for current currency, New coins are indicated by “△”. Moreover, the site | part of the coin surface (front side and back side) which extract | collected data is an annular | circular shaped site | part (12 site | parts) for every 30 degree | times. In this example, the irradiation light is a spot light with a diameter of about 3 mm, and the data of the front side and the back side are collected for a new coin and current currency of 500 yen coins and a new coin and current currency of 1 yen coins, respectively. ing. Here, the explanation will be made assuming that the current currency is regarded as a corrupt currency and the new currency is regarded as a normal currency.

硬貨の「模様無し部」は、光が当たっても拡散が生じないため、正反射成分が多く、拡散成分は少ない。その結果、図11に示されるように、センサ出力は左斜め上側の方向に分布する。一方、硬貨の「模様有り部」は、光が当たると拡散されるため、正反射成分が減り、拡散成分が増加する。その結果、センサ出力は右斜め下側の方向に分布する。また、新貨と流通貨とを比較すると、流通貨は光沢が少なくなるため、正反射光、拡散反射光とも反射成分が減少するため、センサ出力は、左斜め下側の方向に分布し、結果として、新貨と流通貨のデータの分布は、図11中の線分Laより上側と下側とに分かれる。   Since the “patternless portion” of the coin does not diffuse even when exposed to light, the specular reflection component is large and the diffusion component is small. As a result, as shown in FIG. 11, the sensor output is distributed in the diagonally upper left direction. On the other hand, since the “patterned portion” of the coin is diffused when exposed to light, the specular reflection component decreases and the diffusion component increases. As a result, the sensor output is distributed in the diagonally lower right direction. In addition, when comparing the new currency and the current currency, the current currency is less glossy, so the reflection component of both regular reflection light and diffuse reflection light decreases, so the sensor output is distributed in the diagonally lower left direction, As a result, the distribution of the data of the new currency and the current currency is divided into an upper side and a lower side from the line segment La in FIG.

そのため、正反射光と拡散反射光の両方のセンサ出力を利用した場合、線分Laで汚損閾値(例えば実測値の分布から得られた関数で表わされる汚損閾値)を設定すれば、模様の有無にかかわらず流通貨(汚損貨)と新貨(正常貨)とを識別することができる。これに対して、従来の拡散反射方式(拡散反射光のみを用いた方式)では、線分Lbで汚損閾値を設定した場合、新貨と流通貨共、閾値の両側に分布するため、分離できないことが分かる。また、正反射方式(正反射光のみを用いた方式)とした場合も、拡散反射方式と同様に、新貨と流通貨は閾値(線分Lc)の両側に分布するため、分離できないことが分かる。   Therefore, when sensor outputs of both regular reflection light and diffuse reflection light are used, if a contamination threshold value (for example, a contamination threshold value represented by a function obtained from the distribution of measured values) is set with the line segment La, the presence or absence of a pattern Regardless of the current currency (soiled currency) and new currency (normal currency) can be identified. On the other hand, in the conventional diffuse reflection method (method using only diffuse reflection light), when the contamination threshold is set with the line segment Lb, both the new coin and the current currency are distributed on both sides of the threshold, and therefore cannot be separated. I understand that. Even in the case of the regular reflection method (method using only regular reflection light), the new currency and the current currency are distributed on both sides of the threshold (line segment Lc) as in the case of the diffuse reflection method. I understand.

なお、上述した実施の形態においては、硬貨の計数機能を有する硬貨処理機に搭載される硬貨識別装置を例として説明したが、計数機能の有無に限定されるものでない。即ち、本発明に係る硬貨識別装置及び汚損検出センサは、硬貨の汚損検出が必要な硬貨処理機全般に適用でき、メダル等を用いた業務用ゲーム機にも適用できる。また、本発明に係る硬貨識別装置は、汚損貨の識別に限らず、新貨と流通貨とを識別する装置としても適用可能である。さらに、上述した実施の形態においては、汚損検出センサのユニットは、硬貨識別センサのユニットと一体的に連結される形態を例として説明したが、独立して搬送路に設置することも可能である。また、上流側の硬貨識別センサで判別された硬貨の金種情報は、メイン識別部から受信する形態を例として説明したが、イメージセンサ(又は磁気センサ)が独自のCPUで金種を判別する機能を持っている場合は、イメージセンサ(又は磁気センサ)から金種情報を受信する形態としても良い。   In the above-described embodiment, the coin identification device mounted on the coin processor having the coin counting function has been described as an example. However, the present invention is not limited to the presence or absence of the counting function. That is, the coin identification device and the contamination detection sensor according to the present invention can be applied to all coin processing machines that require the detection of coin contamination, and can also be applied to arcade game machines using medals and the like. Moreover, the coin identifying device according to the present invention is not limited to identifying a damaged coin, but can also be applied as a device for identifying a new coin and a current currency. Furthermore, in the above-described embodiment, the unit of the fouling detection sensor has been described as an example in which the unit of the fouling detection sensor is integrally connected to the unit of the coin identification sensor. However, the unit can be independently installed in the conveyance path. . Moreover, although the denomination information of the coin discriminated by the upstream coin discriminating sensor has been described as an example received from the main discriminating unit, the image sensor (or magnetic sensor) discriminates the denomination by its own CPU. When it has a function, it is good also as a form which receives denomination information from an image sensor (or magnetic sensor).

本発明に係る硬貨識別装置の全体構成の一例を示すブロック図である。It is a block diagram which shows an example of the whole structure of the coin identification device which concerns on this invention. 本発明に係る汚損検出センサの構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the contamination detection sensor which concerns on this invention. 本発明に係る汚損検出センサの構造の一例を模式的に示す側面構造図である。It is a side structure figure showing typically an example of the structure of the pollution detection sensor concerning the present invention. 図3の汚損検出センサのユニット構造の一例を示す斜視構造図である。FIG. 4 is a perspective structural diagram illustrating an example of a unit structure of the contamination detection sensor of FIG. 3. 本発明に係る硬貨識別装置が有する主要なセンサの配置構成の一例を示す模式図である。It is a schematic diagram which shows an example of arrangement | positioning structure of the main sensors which the coin identification device which concerns on this invention has. 本発明に係る汚損検出センサの信号取込タイミングを説明するためのタイミングチャートである。It is a timing chart for demonstrating the signal taking-in timing of the contamination detection sensor which concerns on this invention. 本発明に係る硬貨識別装置の全体の動作例を説明するための図である。It is a figure for demonstrating the operation example of the whole coin identification device which concerns on this invention. 本発明に係る汚損検出センサの動作例を説明するための第1のフローチャートである。It is a 1st flowchart for demonstrating the operation example of the pollution detection sensor which concerns on this invention. 本発明に係る汚損検出センサの動作例を説明するための第2のフローチャートである。It is a 2nd flowchart for demonstrating the operation example of the pollution detection sensor which concerns on this invention. 本発明に係る汚損検出センサの動作例を説明するための第3のフローチャートである。It is a 3rd flowchart for demonstrating the operation example of the pollution detection sensor which concerns on this invention. 本発明に係る汚損検出センサにおける汚損貨の検出原理を説明するための図である。It is a figure for demonstrating the detection principle of the fouling coin in the fouling detection sensor which concerns on this invention.

符号の説明Explanation of symbols

1 硬貨識別装置
2 硬貨
10 硬貨識別センサ
11 イメージセンサ
12 磁気センサ
13 タイミングセンサ
20 メイン識別部
21 基本モジュール
22 制御モジュール
30 汚損検出センサ
30a 上面汚損センサモジュール
30b 下面汚損センサモジュール
30c 通路部
30d 制御手段
31 照射手段(赤外LED)
32 第1の受光手段(正反射センサ)
33 第2の受光手段(拡散反射センサ)
34 光量監視手段(モニタセンサ)
35 光路変換手段(ハーフミラー)
DESCRIPTION OF SYMBOLS 1 Coin identification apparatus 2 Coin 10 Coin identification sensor 11 Image sensor 12 Magnetic sensor 13 Timing sensor 20 Main identification part 21 Basic module 22 Control module 30 Fouling detection sensor 30a Upper surface pollution sensor module 30b Lower surface pollution sensor module 30c Passage part 30d Control means 31 Irradiation means (infrared LED)
32 1st light-receiving means (regular reflection sensor)
33 Second light receiving means (diffuse reflection sensor)
34 Light intensity monitoring means (monitor sensor)
35 Optical path conversion means (half mirror)

Claims (3)

識別硬貨の硬貨表面に垂直に光を照射する照射手段と、この照射手段の発光量をモニタして、光量をフィードバックするための光量監視手段と、前記光の硬貨表面から垂直に反射される正反射光を受光する第1の受光手段と前記光の硬貨表面からの拡散反射光を受光する第2の受光手段と、硬貨通路に面した透光部材と、を少なくとも構成要素として損貨検出用モジュールを構成し、同一の前記損貨検出用モジュールを硬貨通路を挟んで上下に設けて夫々を第1及び第2の汚損検出用モジュールとし、且つ、前記第1の汚損検出用モジュールの前記各手段と光軸および前記第2の汚損検出用モジュールの前記各手段と光軸は、それぞれ対応する構成要素と光軸が前記両モジュール間の面に対して鏡面対称となる様に配置されていることを特徴とする硬貨識別装置。 An irradiating means for irradiating light perpendicularly to the coin surface of the identification coin, a light quantity monitoring means for monitoring the light emission amount of the irradiating means and feeding back the light quantity, and a positive light reflected vertically from the coin surface of the light a first light receiving means for receiving reflected light, a second light receiving means for receiving diffuse reflected light from the coin surface of the light, Son貨detection and translucent member facing the coin passage, as at least a component configure use module, respectively a first and second defacement detection module provided module output identical the loss貨検vertically across the coin passage, and, said first fouling detection module wherein each of the means and the optical axis of each unit and the optical axis and said second fouling detection module is disposed so as to respectively corresponding components and the optical axis is mirror symmetrical with respect to the plane between the two modules Specially Coin identification device to. これまでの識別硬貨の上下面の汚損判定結果に基づいて、前記第1及び第2の受光手段としての受光センサの出力を補正する制御手段を備えたことを特徴とする請求項1に記載の硬貨識別装置。 The control means which correct | amends the output of the light receiving sensor as said 1st and 2nd light-receiving means based on the contamination determination result of the upper and lower surfaces of the identification coin until now is provided. Coin identification device. 前記識別硬貨が通過する透光性通路を透過した前記照射手段からの照射光を受光した対向側の受光手段の受光信号に基づいて、前記第1及び第2の受光手段としての受光センサの出力に含まれる前記透光性通路の汚れに起因する汚れ成分を補正する制御手段を備えたことを特徴とする請求項1又は2に記載の硬貨識別装置。   Outputs of light receiving sensors as the first and second light receiving means based on the light receiving signal of the light receiving means on the opposite side that has received the irradiation light from the irradiation means that has passed through the light transmitting passage through which the identification coin passes. 3. The coin identifying device according to claim 1, further comprising a control unit that corrects a dirt component caused by dirt of the light-transmitting passage included in the light-transmitting passage.
JP2005086192A 2005-03-24 2005-03-24 Coin identification device Expired - Fee Related JP4615343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005086192A JP4615343B2 (en) 2005-03-24 2005-03-24 Coin identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005086192A JP4615343B2 (en) 2005-03-24 2005-03-24 Coin identification device

Publications (2)

Publication Number Publication Date
JP2006268484A JP2006268484A (en) 2006-10-05
JP4615343B2 true JP4615343B2 (en) 2011-01-19

Family

ID=37204381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005086192A Expired - Fee Related JP4615343B2 (en) 2005-03-24 2005-03-24 Coin identification device

Country Status (1)

Country Link
JP (1) JP4615343B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5193709B2 (en) * 2008-07-11 2013-05-08 ローレル精機株式会社 Fouling status identification device
JP2012212222A (en) * 2011-03-30 2012-11-01 Fujifilm Corp Subject identification device and coin identification device
JP2017010149A (en) * 2015-06-18 2017-01-12 沖電気工業株式会社 Medium processing device and automatic transaction device
US10062235B2 (en) 2016-06-09 2018-08-28 Glory Ltd. Coin recognition unit
JP2018041512A (en) * 2017-12-13 2018-03-15 ローレル精機株式会社 Coin processor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167269A (en) * 1995-10-11 1997-06-24 Fuji Electric Co Ltd Coin discrimination device
JPH09190558A (en) * 1996-01-08 1997-07-22 Omron Corp Medium detection device
JPH11351962A (en) * 1998-06-12 1999-12-24 Fuji Electric Co Ltd Optical density detector for sheet and the like media
JP2000163624A (en) * 1998-11-27 2000-06-16 Omron Corp Discriminating device for paper sheet or the like
JP2001148043A (en) * 1999-11-22 2001-05-29 Laurel Bank Mach Co Ltd Coin discriminating device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413695A (en) * 1987-07-07 1989-01-18 Fuji Electric Co Ltd Damaged paper money discriminator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167269A (en) * 1995-10-11 1997-06-24 Fuji Electric Co Ltd Coin discrimination device
JPH09190558A (en) * 1996-01-08 1997-07-22 Omron Corp Medium detection device
JPH11351962A (en) * 1998-06-12 1999-12-24 Fuji Electric Co Ltd Optical density detector for sheet and the like media
JP2000163624A (en) * 1998-11-27 2000-06-16 Omron Corp Discriminating device for paper sheet or the like
JP2001148043A (en) * 1999-11-22 2001-05-29 Laurel Bank Mach Co Ltd Coin discriminating device

Also Published As

Publication number Publication date
JP2006268484A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
US7551274B1 (en) Defect detection lighting system and methods for large glass sheets
JP3652558B2 (en) Coin discrimination device
JP4703403B2 (en) Inspection device
US20070034783A1 (en) Multitasking radiation sensor
JP4615343B2 (en) Coin identification device
US8210337B2 (en) Method and sensor for sensing coins for valuation
JP2011228963A (en) Image reader
JP2002260051A (en) Paper money identification discrimination device
JPH0248951B2 (en)
WO2018142998A1 (en) Image collection device, coin-shaped medium processing device, and image collection method
JP2008134875A (en) Coin sortor
JP2018169725A (en) Coin identification device and coin identification method
JP2006268482A (en) Coin discriminating device
JP4058246B2 (en) Method and apparatus for detecting tape body attached to paper sheet
RU2271576C2 (en) Method for determining authenticity of bank notes and device for realization of said method
JP5558150B2 (en) Coin discrimination device for coin processing machine
JPH0944633A (en) Paper sheet discriminating device
JP4057293B2 (en) Document presence / absence detection sensor and document size detection sensor
JPH09218968A (en) Coin identifier
JP2004279127A (en) Light curtain
JP2003346124A (en) Method and device for counting moving articles
JP4381570B2 (en) Circular object identification device
JP2003332614A (en) Optical coupling device and information apparatus using the same
US20240071173A1 (en) Casino token counting systems, devices, and methods
RU35455U1 (en) Banknote authentication device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101020

R150 Certificate of patent or registration of utility model

Ref document number: 4615343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees