WO2010047459A1 - 발광 소자 및 그 제조방법 - Google Patents

발광 소자 및 그 제조방법 Download PDF

Info

Publication number
WO2010047459A1
WO2010047459A1 PCT/KR2009/003695 KR2009003695W WO2010047459A1 WO 2010047459 A1 WO2010047459 A1 WO 2010047459A1 KR 2009003695 W KR2009003695 W KR 2009003695W WO 2010047459 A1 WO2010047459 A1 WO 2010047459A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
conductive semiconductor
layer
region
thickness
Prior art date
Application number
PCT/KR2009/003695
Other languages
English (en)
French (fr)
Inventor
조현경
박경근
황성민
Original Assignee
엘지이노텍주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍주식회사 filed Critical 엘지이노텍주식회사
Priority to CN2009801331206A priority Critical patent/CN102132427B/zh
Priority to EP09822135.1A priority patent/EP2339653B1/en
Publication of WO2010047459A1 publication Critical patent/WO2010047459A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0033Devices characterised by their operation having Schottky barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor

Definitions

  • the present invention relates to a light emitting device and a method of manufacturing the same.
  • LEDs light emitting diodes
  • the LED converts an electrical signal into light using characteristics of a compound semiconductor, and the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer are stacked to emit light from the active layer as power is applied.
  • the first conductive semiconductor layer may be an n-type semiconductor layer, and the second conductive semiconductor layer may be a p-type semiconductor layer, or vice versa.
  • the first A phenomenon in which current is concentrated under the electrode layer may occur.
  • the generated light is not extracted to the outside of the light emitting device, but is reflected by the first electrode layer and absorbed in the light emitting device, thereby improving light efficiency of the light emitting device. Degrades.
  • the embodiment provides a light emitting device having a novel structure and a method of manufacturing the same.
  • the embodiment provides a light emitting device capable of eliminating current concentration and a method of manufacturing the same.
  • the embodiment provides a light emitting device capable of driving at a stable operating voltage and improving light extraction efficiency and a method of manufacturing the same.
  • the embodiment provides a light emitting device capable of reducing leakage current or an electrical short and a method of manufacturing the same.
  • the light emitting device includes a second electrode layer; A third conductive semiconductor layer including a schottky contact region and an ohmic contact region on the second electrode layer; A second conductive semiconductor layer on the third conductive semiconductor layer; An active layer on the second conductive semiconductor layer; A first conductive semiconductor layer on the active layer; And a first electrode layer on the first conductive semiconductor layer.
  • the light emitting device includes a second electrode layer; A third conductive semiconductor layer comprising a third region having a third thickness and a fourth region having a fourth thickness thinner than the third thickness on the second electrode layer; A second conductive semiconductor layer on the third conductive semiconductor layer; An active layer on the second conductive semiconductor layer; A first conductive semiconductor layer on the active layer; And a first electrode layer on which the third region is at least partially overlapped in the vertical direction on the first conductive semiconductor layer.
  • the light emitting device includes a second electrode layer; A third conductive semiconductor layer including a third region having a third thickness on the second electrode layer and disposed in a periphery thereof, and a fourth region having a fourth thickness thinner than the third thickness; A second conductive semiconductor layer on the third conductive semiconductor layer; An active layer on the second conductive semiconductor layer; A first conductive semiconductor layer on the active layer; And a first electrode layer on the first conductive semiconductor layer.
  • the embodiment can provide a light emitting device having a new structure and a method of manufacturing the same.
  • the embodiment can provide a light emitting device capable of removing a current concentration phenomenon and a method of manufacturing the same.
  • the embodiment can provide a light emitting device capable of driving at a stable operating voltage and improving light extraction efficiency and a method of manufacturing the same.
  • the embodiment can provide a light emitting device capable of reducing leakage current or an electrical short and a method of manufacturing the same.
  • 1 to 5 are views illustrating a light emitting device and a method of manufacturing the same according to the embodiment.
  • FIG. 6 is a diagram illustrating light extraction characteristics of a light emitting device according to an embodiment
  • FIG. 7 and 8 illustrate an ohmic contact region and a Schottky contact region in the light emitting device according to the embodiment
  • each layer (film), region, pattern or structure may be “on / on” or “down / bottom” of the substrate, each layer (film), region, pad or patterns.
  • “on” and “under” are “directly” or “indirectly” formed through another layer. It includes everything that is done.
  • the criteria for the top or bottom of each layer will be described with reference to the drawings.
  • each layer is exaggerated, omitted, or schematically illustrated for convenience and clarity of description.
  • the size of each component does not necessarily reflect the actual size.
  • 1 to 5 are views illustrating a light emitting device and a method of manufacturing the same according to an embodiment.
  • the light emitting device includes a second electrode layer 90, a third conductive semiconductor layer 60 formed on the second electrode layer 90, and the third conductive type.
  • the second conductive semiconductor layer 50 On the second conductive semiconductor layer 50, the active layer 40, and the first conductive semiconductor layer 30 formed on the semiconductor layer 60 of the first conductive semiconductor layer 30.
  • the formed first electrode layer 100 is included.
  • the second electrode layer 90 may include a region having a first thickness and a second thickness thinner than the first thickness, and the third conductive semiconductor layer 60 formed on the second electrode layer 90. ) May include a region having a third thickness and a fourth thickness thinner than the third thickness.
  • the third thickness may be formed of 100 ⁇ 1000 ⁇
  • the fourth thickness may be formed of 10 ⁇ 90 ⁇ .
  • the first conductive semiconductor layer 30 may be formed of an n-type semiconductor layer
  • the second conductive semiconductor layer 50 may be formed of a p-type semiconductor layer
  • the semiconductor layer 60 may be formed of an n-type semiconductor layer or an un-doped nitride semiconductor layer.
  • the region having the fourth thickness of the third conductive semiconductor layer 60 formed on the region having the first thickness of the second electrode layer 90 is formed of an ohmic contact region 62,
  • the region having the third thickness of the third conductive semiconductor layer 60 formed on the region having the second thickness of the second electrode layer 90 is formed as a schottky contact region 61. .
  • the schottky contact region 61 and the ohmic contact region 62 are formed according to the thickness of the third conductive semiconductor layer 60.
  • FIG. 7 and 8 illustrate experimental structures and experimental results for explaining that the Schottky contact region and the ohmic contact region are formed according to the thickness of the third conductive semiconductor layer in the light emitting device according to the embodiment of the present invention. Drawing.
  • an n-type GaN layer 61 having a thickness of 300 ⁇ s and 50 ⁇ s is formed on the p-type GaN layer 51, and a plurality of spaced apart from each other on the n-type GaN layer 61.
  • the electrode layer 71 was formed.
  • the n-type GaN layer 61 may be replaced with an un-doped GaN layer.
  • the experiment was performed while adjusting the distance between the two electrode layers 71 to 10 ⁇ m, 35 ⁇ m, and 55 ⁇ m.
  • the Schottky barrier property is shown.
  • the thickness of the n-type GaN layer 61 is 50 mW, the ohmic barrier property is shown.
  • the ohmic contact region 62 and the schottky contact region 61 are formed according to the thickness of the third conductive semiconductor layer 60. It can be seen that it is formed.
  • the ohmic contact region 62 and the schottky contact region 61 change a path of a current flowing through the light emitting device.
  • the schottky contact region 61 may be formed at a position overlapping with the first electrode layer 100 in the vertical direction. That is, the first electrode layer 100 is formed at the center of the upper surface of the first conductive semiconductor layer 30, and the schottky contact region 61 is the central portion of the third conductive semiconductor layer 60. Can be formed on.
  • the schottky contact region 61 may be formed at a periphery of the third conductive semiconductor layer 60, and the schottky contact region 61 may be the third conductive semiconductor layer 60. It may be arranged in a plurality of areas of. Similarly, the ohmic contact region 62 may be disposed in a plurality of regions of the third conductive semiconductor layer 60.
  • the schottky contact region 61 when the schottky contact region 61 is formed at the periphery of the third conductive semiconductor layer 60, the current flowing in the periphery or side surface of the light emitting device is reduced. Current leakage can be reduced.
  • the schottky contact region 61 is formed to be thicker than the ohmic contact region 62, the second electrode layer 90, the first electrode layer 100, or the first conductive semiconductor layer 30 are formed. Increase the distance between them. Therefore, the electrical short circuit of the light emitting device may be prevented from occurring in the light emitting device.
  • the second electrode layer 90 may include a conductive substrate and a reflective electrode layer formed on the conductive substrate.
  • the conductive substrate is a semiconductor substrate in which copper (Cu), titanium (Ti), chromium (Cr), nickel (Ni), aluminum (Al), platinum (Pt), gold (Au), and impurities are implanted. It may be formed of at least one, and the reflective electrode layer may be formed of aluminum (Al) or silver (Ag).
  • the first electrode layer 100 in the second electrode layer 90 is formed.
  • the current flowing to the first electrode layer 100 is not concentrated only in the vertical direction of the first electrode layer 100 but is also dispersed in the horizontal direction so that the second conductive semiconductor layer 50, the active layer 40, and the first conductive semiconductor are distributed. It spreads over a large area of the layer 30.
  • the light emitting device can be driven at a stable operating voltage.
  • the first electrode layer 100 when current flows concentrated in a vertical direction of the first electrode layer 100, light is mainly generated in an area of the active layer 40 positioned below the first electrode layer 100. The light generated under) is likely to be absorbed by the first electrode layer 100 so that the amount of light decreases or is reflected by the first electrode layer 100 to be dissipated within the light emitting device.
  • the schottky contact region 61 and the ohmic contact region 62 are formed under the second conductive semiconductor layer 50 to thereby form the second electrode layer 90.
  • the current flowing to the first electrode layer 100 is spread to flow in a horizontal direction. Therefore, since light is generated in a wide area of the active layer 40, light generated in the area of the active layer 40 is absorbed by the first electrode layer 100 or reflected by the first electrode layer 100. It is less likely to disappear within the light emitting element. Therefore, the light emitting device according to the embodiment may increase the light efficiency.
  • 1 to 5 are views for explaining a method of manufacturing a light emitting device according to an embodiment of the present invention.
  • an un-doped GaN layer 20 a first conductive semiconductor layer 30, an active layer 40, a second conductive semiconductor layer 50, and a third semiconductor substrate 50 are formed on a substrate 10.
  • a conductive semiconductor layer 60 is formed.
  • a buffer layer (not shown) may be further formed between the substrate 10 and the un-doped GaN layer 20.
  • the substrate 10 may be formed of at least one of sapphire (Al 2 O 3 ), Si, SiC, GaAs, ZnO, or MgO.
  • the buffer layer (not shown) has a stacked structure such as Al x In 1-x N / GaN, In x Ga 1-x N / GaN, Al x In y Ga 1-xy N / In x Ga 1-x N / GaN, and the like.
  • a multi-layer comprising a layer comprising at least one of Al x In y Ga 1-xy N, Al x In 1-x N, and In x Ga 1-x N (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1), for example, trimethyl gallium (TMGa) and trimethyl indium (TMIn) and trimethyl aluminum (TMAl) together with hydrogen gas and ammonia gas into the chamber It can grow by injecting.
  • TMGa trimethyl gallium
  • TMIn trimethyl indium
  • TMAl trimethyl aluminum
  • the undoped GaN layer 20 may be grown by injecting trimethyl gallium (TMGa) into the chamber together with hydrogen gas and ammonia gas.
  • TMGa trimethyl gallium
  • the first conductive semiconductor layer 30 may be a nitride semiconductor layer implanted with impurity ions of the first conductivity type, for example, a semiconductor layer implanted with n-type impurity ions.
  • the first conductive semiconductor layer 30 injects a siren gas (SiN 4 ) containing trimethyl gallium (TMGa) and n-type impurities (eg, Si) together with hydrogen gas and ammonia gas into the chamber. You can grow.
  • the active layer 40 may be formed of a single quantum well structure or a multi-quantum well structure.
  • an InGaN well layer / GaN barrier layer or an Al x In y Ga 1-xy N well layer / Al x In y Ga 1-xy N barrier layer may be formed of a laminated structure (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • the second conductive semiconductor layer 50 may be a nitride semiconductor layer implanted with impurity ions of a second conductivity type, for example, a semiconductor layer implanted with p-type impurity ions.
  • the second conductive semiconductor layer 50 may be bicetyl cyclopentadienyl magnesium (EtCp 2 Mg) ⁇ Mg (C 2 H 5 ) containing trimethyl gallium (TMGa) and p-type impurities (for example, Mg).
  • C 5 H 4 ) 2 ⁇ may be grown by injecting the gas together with hydrogen gas and ammonia gas.
  • the third conductive semiconductor layer 60 may be a nitride semiconductor layer into which impurity ions of the third conductivity type are implanted, for example, a semiconductor layer into which n-type impurity ions are implanted.
  • the third conductive semiconductor layer 60 like the first conductive semiconductor layer 30, includes a siren gas (SiN 4 ) containing trimethyl gallium (TMGa) and n-type impurities (eg, Si). May be injected into the chamber together with hydrogen gas and ammonia gas to grow.
  • a mask layer 70 is formed on the third conductive semiconductor layer 60.
  • the mask layer 70 is formed to selectively etch the third conductive semiconductor layer 60.
  • the third conductive semiconductor layer 60 is selectively etched using the mask layer 70 as a mask.
  • the third conductive semiconductor layer 60 may be formed to a third thickness of 100 to 1000 ⁇ , and the third conductive semiconductor layer 60 may be used as the mask layer 70 as a mask. It is selectively etched to have a fourth thickness of 10 to 90 mm 3.
  • the third conductive semiconductor layer 60 may be formed to have a third thickness and a fourth thickness thinner than the third thickness.
  • a second electrode layer 90 is formed on the third conductive semiconductor layer 60.
  • the second electrode layer 90 may be formed of a single layer or multiple layers of a metal, a metal alloy, or a metal oxide such as Ni, Pd, or Pt.
  • metal oxides include ITO, IZO (In-ZnO), GZO (Ga-ZnO), AZO (Al-ZnO), AGZO (Al-Ga ZnO), IGZO (In-Ga ZnO), IrO x , RuO At least one of x , RuO x / ITO, Ni / IrO x / Au, and Ni / IrO x / Au / ITO may be formed, but is not limited thereto.
  • the second electrode layer 90 may be formed of a reflective electrode layer such as Ag, Al APC, or may be formed of a conductive substrate.
  • the reflective electrode layer is formed on the third conductive semiconductor layer 60, and the conductive substrate is formed on the reflective electrode layer.
  • the buffer layer is also removed.
  • the first electrode layer 100 is formed on the first conductive semiconductor layer 30.
  • the first electrode layer 100 may be formed of at least one of titanium (Ti), chromium (Cr), nickel (Ni), aluminum (Al), platinum (Pt), or gold (Au). .
  • the light emitting device according to the embodiment can be manufactured.
  • FIG. 6 is a view for explaining the light extraction efficiency of the light emitting device according to the embodiment.
  • the X axis represents the distance from the left end to the right end of the light emitting device in the cross-sectional view of FIG. 5, and the schottky contact is made at a portion corresponding to 0 to 50 ⁇ m, 225 to 275 ⁇ m, and 450 to 500 ⁇ m. Region 61 is disposed.
  • the Y-axis is a value indicating relatively the amount of light extracted from the light emitting device when the amount of light generated by the light emitting device is 1.
  • the conventional structure of the light emitting device refers to a structure in which the third conductive semiconductor layer 60 is not formed between the second conductive semiconductor layer 50 and the second electrode layer 90.
  • the existing structure of since the current flows toward the center portion, the most light is generated and extracted in the region of the active layer 40 overlapping with the first electrode layer 100 in the vertical direction.
  • the light generated in the region of the active layer 40 overlapping the first electrode layer 100 in the vertical direction is absorbed by the first electrode layer 100 so that the amount of light is reduced or the first electrode layer 100 is lowered. ) Is highly likely to be consumed in the light emitting device.
  • the embodiment can be applied to a light emitting device and a method of manufacturing the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

실시예에 따른 발광 소자는 제2 전극층; 상기 제2 전극층 상에 쇼트키 접촉 영역 및 오믹 접촉 영역을 포함하는 제3 도전형의 반도체층; 상기 제3 도전형의 반도체층 상에 제2 도전형의 반도체층; 상기 제2 도전형의 반도체층 상에 활성층; 상기 활성층 상에 제1 도전형의 반도체층; 및 상기 제1 도전형의 반도체층 상에 제1 전극층을 포함한다.

Description

발광 소자 및 그 제조방법
본 발명은 발광 소자 및 그 제조방법에 관한 것이다.
최근, 발광 소자로써 LED(Light Emitting Diode)를 이용한 장치가 많이 연구되고 있다.
LED는 화합물 반도체의 특성을 이용하여 전기 신호를 빛으로 변환시키는 것으로, 제1 도전형의 반도체층, 활성층, 제2 도전형의 반도체층이 적층되어 전원이 인가됨에 따라 상기 활성층에서 빛을 방출한다. 상기 제1 도전형의 반도체층은 n형 반도체층이 되고 상기 제2 도전형의 반도체층은 p형 반도체층이 될 수 있고, 또는 그 반대가 될 수도 있다.
한편, 상기 제1 도전형의 반도체층에 전원을 인가하는 제1 전극층과 상기 제2 도전형의 반도체층에 전원을 인가하는 제2 전극층이 수직 방향으로 배치되는 수직형 LED 구조에서, 상기 제1 전극층의 하측에 전류가 집중되는 현상이 발생될 수 있다.
상기 제1 전극층의 하측에 전류가 집중되는 형상이 발생되는 경우, 동작 전압이 상승되고, 발광 소자의 수명이 저하되며, 신뢰성이 떨어진다.
또한, 상기 제1 전극층 하측의 활성층에서 주로 빛이 발생됨에 따라, 상기 발생된 빛이 상기 발광 소자 외부로 추출되지 못하고 상기 제1 전극층에서 반사되어 발광 소자 내에서 흡수됨으로써 상기 발광 소자의 광 효율이 저하된다.
실시예는 새로운 구조를 갖는 발광 소자 및 그 제조방법을 제공한다.
실시예는 전류 집중 현상을 제거할 수 있는 발광 소자 및 그 제조방법을 제공한다.
실시예는 안정적인 동작 전압으로 구동될 수 있고, 광 추출 효율이 향상될 수 있는 발광 소자 및 그 제조방법을 제공한다.
실시예는 누설 전류 또는 전기적 단락을 감소시킬 수 있는 발광 소자 및 그 제조방법을 제공한다.
실시예에 따른 발광 소자는 제2 전극층; 상기 제2 전극층 상에 쇼트키 접촉 영역 및 오믹 접촉 영역을 포함하는 제3 도전형의 반도체층; 상기 제3 도전형의 반도체층 상에 제2 도전형의 반도체층; 상기 제2 도전형의 반도체층 상에 활성층; 상기 활성층 상에 제1 도전형의 반도체층; 및 상기 제1 도전형의 반도체층 상에 제1 전극층을 포함한다.
실시예에 따른 발광 소자는 제2 전극층; 상기 제2 전극층 상에 제3 두께를 갖는 제3 영역 및 상기 제3 두께보다 얇은 제4 두께를 갖는 제4 영역을 포함하는 제3 도전형의 반도체층; 상기 제3 도전형의 반도체층 상에 제2 도전형의 반도체층; 상기 제2 도전형의 반도체층 상에 활성층; 상기 활성층 상에 제1 도전형의 반도체층; 및 상기 제1 도전형의 반도체층 상에 상기 제3 영역과 적어도 일부분이 수직방향으로 오버랩되어 배치되는 제1 전극층을 포함한다.
실시예에 따른 발광 소자는 제2 전극층; 상기 제2 전극층 상에 제3 두께를 갖고 주변부에 배치되는 제3 영역과, 상기 제3 두께보다 얇은 제4 두께를 갖는 제4 영역을 포함하는 제3 도전형의 반도체층; 상기 제3 도전형의 반도체층 상에 제2 도전형의 반도체층; 상기 제2 도전형의 반도체층 상에 활성층; 상기 활성층 상에 제1 도전형의 반도체층; 및 상기 제1 도전형의 반도체층 상에 제1 전극층을 포함한다.
실시예는 새로운 구조를 갖는 발광 소자 및 그 제조방법을 제공할 수 있다.
실시예는 전류 집중 현상을 제거할 수 있는 발광 소자 및 그 제조방법을 제공할 수 있다.
실시예는 안정적인 동작 전압으로 구동될 수 있고, 광 추출 효율이 향상될 수 있는 발광 소자 및 그 제조방법을 제공할 수 있다.
실시예는 누설 전류 또는 전기적 단락을 감소시킬 수 있는 발광 소자 및 그 제조방법을 제공할 수 있다.
도 1 내지 도 5는 실시예에 따른 발광 소자 및 그 제조방법을 설명하는 도면.
도 6은 실시예에 따른 발광 소자를 광 추출 특성을 설명하는 도면.
도 7과 도 8은 실시예에 따른 발광 소자에서, 오믹 접촉 영역과 쇼트키 접촉 영역를 설명하는 도면.
본 발명에 따른 실시예의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "위/상(on)"에 또는 "아래/하(under)"에 형성되는 것으로 기재되는 경우에 있어, "위/상(on)"와 "아래/하(under)"는 "직접(directly)" 또는 "다른 층을 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 위 또는 아래에 대한 기준은 도면을 기준으로 설명한다.
도면에서 각층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다.
이하, 첨부된 도면을 참조하여 실시예에 따른 발광 소자 및 그 제조방법에 대해 상세히 설명하도록 한다.
도 1 내지 도 5는 실시예에 따른 발광 소자 및 그 제조방법을 설명하는 도면이다.
먼저, 도 5를 참조하면, 실시예에 따른 발광 소자는 제2 전극층(90)과, 상기 제2 전극층(90) 상에 형성된 제3 도전형의 반도체층(60)과, 상기 제3 도전형의 반도체층(60) 상에 형성된 제2 도전형의 반도체층(50), 활성층(40) 및 제1 도전형의 반도체층(30)과, 상기 제1 도전형의 반도체층(30) 상에 형성된 제1 전극층(100)이 포함된다.
상기 제2 전극층(90)은 제1 두께 및 상기 제1 두께보다 얇은 제2 두께를 갖는 영역을 포함할 수 있고, 상기 제2 전극층(90) 상에 형성된 상기 제3 도전형의 반도체층(60)은 제3 두께 및 상기 제3 두께보다 얇은 제4 두께를 갖는 영역을 포함할 수 있다. 여기서, 상기 제3 두께는 100~1000Å으로 형성될 수 있고, 상기 제4 두께는 10~90Å으로 형성될 수 있다.
예를 들어, 상기 제1 도전형의 반도체층(30)은 n형 반도체층으로 형성되고, 상기 제2 도전형의 반도체층(50)은 p형 반도체층으로 형성되고, 상기 제3 도전형의 반도체층(60)은 n형 반도체층 또는 Un-doped 질화물 반도체층으로 형성될 수 있다.
상기 제2 전극층(90)의 제1 두께를 갖는 영역 상에 형성된 상기 제3 도전형의 반도체층(60)의 제4 두께를 갖는 영역은 오믹 접촉(ohmic contact) 영역(62)으로 형성되고, 상기 제2 전극층(90)의 제2 두께를 갖는 영역 상에 형성된 상기 제3 도전형의 반도체층(60)의 제3 두께를 갖는 영역은 쇼트키 접촉(schottky contact) 영역(61)으로 형성된다.
상기 쇼트키 접촉 영역(61)과 오믹 접촉 영역(62)은 상기 제3 도전형의 반도체층(60)의 두께에 따라 형성된다.
도 7과 도 8을 본 발명의 실시예에 따른 발광 소자에서 제3 도전형의 반도체층의 두께에 따라 쇼트키 접촉 영역과 오믹 접촉 영역이 형성되는 것을 설명하기 위한 실험 구조물 및 실험 결과를 설명하는 도면이다.
도 7과 도 8을 참조하면, p형 GaN층(51) 상에 각각 300Å 및 50Å 두께의 n형 GaN층(61)을 형성하고, 상기 n형 GaN층(61) 상에 서로 이격된 복수의 전극층(71)을 형성하였다. 이때, 상기 n형 GaN층(61)은 Un-doped GaN층으로 대체될 수도 있다.
상기 복수의 전극층(71)들 중 두개의 전극층(71)에 각각 양전압 및 음전압을 인가하면, 전류는 하나의 전극층(71)으로부터 상기 n형 GaN층(61)을 수직 방향으로 지나, 상기 p형 GaN층(51)에서 수평 방향으로 흐른 뒤, 다시 상기 n형 GaN층(61)을 수직 방향으로 지나 다른 하나의 전극층(71)으로 흐른다.
본 실험에서는 상기 두개의 전극층(71)의 간격을 10㎛, 35㎛, 55㎛으로 조정하면서 실험을 하였다.
실험 결과, 상기 n형 GaN층(61)의 두께가 300Å인 경우 쇼트키 배리어 특성을 나타냈으며, 상기 n형 GaN층(61)의 두께가 50Å인 경우 오믹 배리어 특성을 나타내었다.
상기 실험에서 확인된 바와 같이, 본 발명의 실시예에 따른 발광 소자에서 상기 제3 도전형의 반도체층(60)의 두께에 따라 상기 오믹 접촉 영역(62)과 상기 쇼트키 접촉 영역(61)이 형성되는 것을 알 수 있다.
상기 오믹 접촉 영역(62)과 상기 쇼트키 접촉 영역(61)은 상기 발광 소자에 흐르는 전류의 경로를 변화시킨다.
예를 들어, 상기 쇼트키 접촉 영역(61)의 적어도 일부분은 상기 제1 전극층(100)과 수직 방향에서 오버랩되는 위치에 형성될 수 있다. 즉, 상기 제1 전극층(100)은 상기 제1 도전형의 반도체층(30)의 상면 중앙부에 형성되고, 상기 쇼트키 접촉 영역(61)은 상기 제3 도전형의 반도체층(60)의 중앙부에 형성될 수 있다.
또한, 상기 쇼트키 접촉 영역(61)은 상기 제3 도전형의 반도체층(60)의 주변부에 형성될 수도 있고, 상기 쇼트키 접촉 영역(61)은 상기 제3 도전형의 반도체층(60)의 복수의 영역에 배치될 수 있다. 마찬가지로, 상기 오믹 접촉 영역(62)은 상기 제3 도전형의 반도체층(60)의 복수의 영역에 배치될 수 있다.
한편, 상기 쇼트키 접촉 영역(61)은 저항이 크기 때문에 전류가 거의 흐르지 않고, 상기 오믹 접촉 영역(62)은 저항이 작기 때문에 전류가 쉽게 흐를 수 있다.
또한, 실시예에 따른 발광 소자에서, 상기 쇼트키 접촉 영역(61)이 상기 제3 도전형의 반도체층(60)의 주변부에 형성되는 경우, 상기 발광 소자의 주변부 또는 측면에 흐르는 전류를 감소시켜 전류 누설을 감소시킬 수 있다. 또한, 상기 쇼트키 접촉 영역(61)은 상기 오믹 접촉 영역(62)보다 두껍게 형성되므로, 상기 제2 전극층(90)과, 상기 제1 전극층(100) 또는 제1 도전형의 반도체층(30) 사이의 거리를 증가시킨다. 따라서, 상기 발광 소자에서 전기적 단락이 발생되는 것을 방지하여 발광 소자의 전기적 특성을 향상시킬 수 있다.
따라서, 도 5에 점선으로 도시된 바와 같이, 상기 제2 전극층(90)으로부터 상기 제1 전극층(100)으로 흐르는 전류는 상기 쇼트키 접촉 영역(61)을 통해서는 거의 흐르지 않고, 상기 오믹 접촉 영역(62)을 통해 상기 제1 전극층(100)으로 흐른다.
상기 제2 전극층(90)은 도전성 기판과, 상기 도전성 기판 상에 형성된 반사 전극층을 포함할 수 있다.
예를 들어, 상기 도전성 기판은 구리(Cu), 티타늄(Ti), 크롬(Cr), 니켈(Ni), 알루미늄(Al), 백금(Pt), 금(Au), 불순물이 주입된 반도체 기판 중 적어도 어느 하나로 형성될 수 있고, 상기 반사 전극층은 알루미늄(Al) 또는 은(Ag)으로 형성될 수 있다.
실시예에 따른 발광 소자에서 상기 쇼트키 접촉 영역(61)이 상기 제1 전극층(100)과 수직 방향으로 오버랩되는 위치에 형성되는 경우, 상기 제2 전극층(90)에서 상기 제1 전극층(100)으로 흐르는 전류는 상기 제1 전극층(100)의 수직 방향으로만 집중되어 흐르지 않고, 수평 방향으로도 분산되어 상기 제2 도전형의 반도체층(50), 활성층(40) 및 제1 도전형의 반도체층(30)의 넓은 영역으로 퍼져 흐르게 된다.
따라서, 상기 제1 전극층(100)의 수직 방향으로 전류가 집중되어 흐르는 전류 집중 현상을 방지할 수 있고, 결과적으로 발광 소자가 안정적인 동작 전압으로 구동될 수 있도록 한다.
또한, 상기 제1 전극층(100)의 수직 방향으로 전류가 집중되어 흐르는 경우, 상기 제1 전극층(100) 아래에 위치한 상기 활성층(40)의 영역에서 주로 빛이 발생되는데, 상기 제1 전극층(100) 아래에서 발생된 빛은 상기 제1 전극층(100)에 흡수되어 광량이 저하되거나 상기 제1 전극층(100)에 반사되어 상기 발광 소자의 내부에서 소멸될 가능성이 높다.
그러나, 실시예에 따른 발광 소자에서는, 상기 제2 도전형의 반도체층(50) 아래에 상기 쇼트키 접촉 영역(61) 및 오믹 접촉 영역(62)을 형성함으로써, 상기 제2 전극층(90)에서 상기 제1 전극층(100)으로 흐르는 전류가 수평 방향으로 넓게 퍼져 흐르도록 한다. 따라서, 상기 활성층(40)의 넓은 영역에서 빛이 발생되기 때문에, 상기 활성층(40)의 영역에서 발생된 빛이 상기 제1 전극층(100)에 흡수되거나 상기 제1 전극층(100)에 의해 반사되어 상기 발광 소자의 내부에서 소멸될 가능성이 적다. 따라서, 실시예에 따른 발광 소자는 광 효율이 증가될 수 있다.
이하에서는 도 1 내지 도 5를 참조하여 본 발명의 실시예에 따른 발광 소자의 제조방법에 대해 상세히 설명하도록 한다.
도 1 내지 도 5는 본 발명의 실시예에 따른 발광 소자의 제조방법을 설명하기 위한 도면이다.
도 1을 참조하면, 기판(10) 상에 Un-doped GaN층(20), 제1 도전형의 반도체층(30), 활성층(40), 제2 도전형의 반도체층(50) 및 제3 도전형의 반도체층(60)을 형성한다. 또한, 상기 기판(10)과 상기 Un-doped GaN층(20) 사이에는 버퍼층(미도시)가 더 형성될 수도 있다.
상기 기판(10)은 사파이어(Al2O3), Si, SiC, GaAs, ZnO, 또는 MgO 중 적어도 어느 하나로 형성될 수도 있다.
상기 버퍼층(미도시)은 AlxIn1-xN/GaN, InxGa1-xN/GaN, AlxInyGa1-x-yN/InxGa1-xN/GaN 등과 같은 적층 구조 또는 AlxInyGa1-x-yN, AlxIn1-xN 및 InxGa1-xN 중 적어도 어느 하나를 포함하는 층으로 이루어지는 멀티층(여기서, 0≤x≤1, 0≤y≤1, 0≤x+y≤1)으로 형성될 수도 있고, 예를 들어, 트리메틸 갈륨(TMGa)과 트리메틸 인듐(TMIn) 및 트리메틸 알루미늄(TMAl)을 수소 가스 및 암모니아 가스와 함께 상기 챔버 내부로 주입시킴으로써 성장시킬 수 있다.
상기 Un-doped GaN층(20)은 트리메틸 갈륨(TMGa)을 수소 가스 및 암모니아 가스와 함께 상기 챔버에 주입하여 성장시킬 수 있다.
상기 제1 도전형의 반도체층(30)은 제1 도전형의 불순물 이온이 주입된 질화물 반도체층이 될 수 있고, 예를 들어, n형 불순물 이온이 주입된 반도체층이 될 수 있다. 상기 제1 도전형의 반도체층(30)은 트리메틸 갈륨(TMGa), n형 불순물(예를 들어, Si)을 포함하는 사이렌 가스(SiN4)를 수소 가스 및 암모니아 가스와 함께 상기 챔버에 주입하여 성장시킬 수 있다.
상기 활성층(40)은 단일 양자 우물 구조 또는 다중 양자 우물(Multi-Quantum Well) 구조로 형성될 수 있고, 예를 들어, InGaN 우물층/GaN 장벽층 또는 AlxInyGa1-x-yN 우물층/ AlxInyGa1-x-yN 장벽층의 적층구조(여기서, 0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 형성될 수도 있다.
상기 제2 도전형의 반도체층(50)은 제2 도전형의 불순물 이온이 주입된 질화물 반도체층이 될 수 있고, 예를 들어, p형 불순물 이온이 주입된 반도체층이 될 수 있다. 상기 제2 도전형의 반도체층(50)은 트리메틸 갈륨(TMGa), p형 불순물(예를 들어, Mg)을 포함하는 비세틸 사이클로 펜타디에닐 마그네슘(EtCp2Mg){Mg(C2H5C5H4)2}을 수소 가스 및 암모니아 가스와 함께 상기 챔버에 주입하여 성장시킬 수 있다.
상기 제3 도전형의 반도체층(60)은 제3 도전형의 불순물 이온이 주입된 질화물 반도체층이 될 수 있고, 예를 들어, n형 불순물 이온이 주입된 반도체층이 될 수 있다. 상기 제3 도전형의 반도체층(60)은 상기 제1 도전형의 반도체층(30)과 마찬가지로 트리메틸 갈륨(TMGa), n형 불순물(예를 들어, Si)을 포함하는 사이렌 가스(SiN4)을 수소 가스 및 암모니아 가스와 함께 상기 챔버에 주입하여 성장시킬 수 있다.
그리고, 상기 제3 도전형의 반도체층(60) 상에 마스크층(70)을 형성한다. 상기 마스크층(70)은 상기 제3 도전형의 반도체층(60)을 선택적으로 식각하기 위해 형성된다.
도 2를 참조하면, 상기 마스크층(70)을 마스크로 하여 상기 제3 도전형의 반도체층(60)을 선택적으로 식각한다.
예를 들어, 상기 제3 도전형의 반도체층(60)은 100~1000Å의 제3 두께로 형성될 수 있으며, 상기 마스크층(70)을 마스크로 하여 상기 제3 도전형의 반도체층(60)이 10~90Å의 제4 두께를 갖도록 선택적으로 식각한다.
따라서, 상기 제3 도전형의 반도체층(60)은 상기 제3 두께와 상기 제3 두께보다 얇은 제4 두께로 형성될 수 있다.
도 3을 참조하면, 상기 제3 도전형의 반도체층(60)을 선택적으로 식각한 후, 상기 제3 도전형의 반도체층(60) 상에 제2 전극층(90)을 형성한다.
상기 제2 전극층(90)은 Ni, Pd, Pt 등과 같은 금속, 금속 합금 또는 금속 산화물의 단일층 또는 다중층으로 형성될 수 있다. 예를 들어, 금속 산화물은 ITO, IZO(In-ZnO), GZO(Ga-ZnO), AZO(Al-ZnO), AGZO(Al-Ga ZnO), IGZO(In-Ga ZnO), IrOx, RuOx, RuOx/ITO, Ni/IrOx/Au, 및 Ni/IrOx/Au/ITO 중 적어도 어느 하나를 포함하여 형성될 수 있으며, 이러한 재료에 한정되는 것은 아니다.
또한, 상기 제2 전극층(90)은 Ag, Al APC 등의 반사 전극층으로 형성될 수 있고, 또는 도전성 기판으로 형성될 수도 있다. 이때, 상기 제3 도전형의 반도체층(60) 상에 상기 반사 전극층을 형성하고, 상기 반사 전극층 상에 상기 도전성 기판을 형성한다.
도 4를 참조하면, 상기 제2 전극층(90)을 형성한 후, 상기 기판(10) 및 Un-doped GaN층(20)을 제거한다. 버퍼층이 형성된 경우에 상기 버퍼층도 제거된다.
도 5을 참조하면, 상기 제1 도전형의 반도체층(30) 상에 상기 제1 전극층(100)을 형성한다.
상기 제1 전극층(100)은 예를 들어, 티탄(Ti), 크롬(Cr), 니켈(Ni), 알루미늄(Al), 백금(Pt), 또는 금(Au) 중 적어도 어느 하나로 형성될 수도 있다.
이와 같은 방법으로 실시예에 따른 발광 소자가 제조될 수 있다.
도 6은 실시예에 따른 발광 소자의 광 추출 효율을 설명하는 도면이다.
도 6에서, X축은 도 5의 단면도에서 상기 발광 소자의 좌측 끝단부터 우측 끝단까지의 거리를 나타낸 것으로, 0~50㎛, 225~275㎛, 450~500㎛에 대응되는 부분에 상기 쇼트키 접촉 영역(61)이 배치된다. Y축은 상기 발광 소자에서 생성되는 빛의 양을 1이라고 할때, 상기 발광 소자에서 추출되는 빛의 양을 상대적으로 나타낸 값이다.
도 6에서 발광 소자의 기존 구조는 상기 제2 도전형의 반도체층(50)과 제2 전극층(90) 사이에 상기 제3 도전형의 반도체층(60)이 형성되지 않는 구조를 말하며, 발광 소자의 기존 구조에서는 전류가 중앙부로 갈수록 많이 흐르기 때문에 상기 제1 전극층(100)과 수직 방향에서 오버랩되는 상기 활성층(40)의 영역에서 가장 많은 빛이 발생되고 추출된다.
한편, 본 발명의 구조에서는 전류가 상기 쇼트키 접촉 영역(61)과 쇼트키 접촉 영역(61) 사이의 상기 오믹 접촉 영역(62)을 통해 주로 흐르기 때문에, 상기 오믹 접촉 영역(62)이 형성된 영역에 대응하는 위치의 활성층(40)에서 가장 많은 빛이 발생되고 추출된다.
현존하는 구조에 따르면, 상기 제1 전극층(100)과 수직 방향에서 오버랩되는 활성층(40)의 영역에서 발생된 빛은 상기 제1 전극층(100)에서 흡수되어 광량이 저하되거나 상기 제1 전극층(100)에서 반사되어 상기 발광 소자 내에서 소모될 가능성이 높다.
반면에, 본 발명의 실시예에서는 도 6에 도시된 바와 같이, 상기 제1 전극층(100)과 수직 방향에서 오버랩되지 않은 상기 활성층(40)의 영역에서 많은 빛이 발생되므로, 상기 제1 전극층(100)에서 반사되어 상기 발광 소자 내에서 소모되는 빛이 감소될 수 있다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
실시예는 발광 소자 및 그 제조방법에 적용될 수 있다.

Claims (15)

  1. 제2 전극층;
    상기 제2 전극층 상에 쇼트키 접촉 영역 및 오믹 접촉 영역을 포함하는 제3 도전형의 반도체층;
    상기 제3 도전형의 반도체층 상에 제2 도전형의 반도체층;
    상기 제2 도전형의 반도체층 상에 활성층;
    상기 활성층 상에 제1 도전형의 반도체층; 및
    상기 제1 도전형의 반도체층 상에 제1 전극층을 포함하는 발광 소자.
  2. 제 1항에 있어서,
    상기 제1 도전형의 반도체층은 n형 반도체층이고, 상기 제2 도전형의 반도체층은 p형 반도체층이고, 상기 제3 도전형의 반도체층은 n형 반도체층 또는 Un-doped 반도체층인 발광 소자.
  3. 제 1항에 있어서,
    상기 쇼트키 접촉 영역은 상기 제3 도전형의 반도체층의 중앙부에 형성되고, 상기 쇼트키 접촉 영역의 주위에 오믹 접촉 영역이 형성되는 발광 소자.
  4. 제 3항에 있어서,
    상기 쇼트키 접촉 영역은 상기 제3 도전형의 반도체층의 주변부에 형성되는 발광 소자.
  5. 제 1항에 있어서,
    상기 제1 전극층과 상기 쇼트키 접촉 영역은 적어도 일부분이 수직 방향에서 오버랩되는 발광 소자.
  6. 제 1항에 있어서,
    상기 오믹 접촉 영역 아래의 상기 제2 전극층은 제1 두께로 형성되고, 상기 쇼트키 접촉 영역 아래의 상기 제2 전극층은 상기 제1 두께보다 얇은 제2 두께로 형성된 발광 소자.
  7. 제2 전극층;
    상기 제2 전극층 상에 제3 두께를 갖는 제3 영역 및 상기 제3 두께보다 얇은 제4 두께를 갖는 제4 영역을 포함하는 제3 도전형의 반도체층;
    상기 제3 도전형의 반도체층 상에 제2 도전형의 반도체층;
    상기 제2 도전형의 반도체층 상에 활성층;
    상기 활성층 상에 제1 도전형의 반도체층; 및
    상기 제1 도전형의 반도체층 상에 상기 제3 영역과 적어도 일부분이 수직방향으로 오버랩되어 배치되는 제1 전극층을 포함하는 발광 소자.
  8. 제 7항에 있어서,
    상기 제2 전극층은 상기 제4 영역과 적어도 일부분이 수직방향으로 오버랩되는 영역에 배치되는 제1 두께를 갖는 제1 영역과, 상기 제3 영역과 적어도 일부분이 수직방향으로 오버랩되는 영역에 배치되고 상기 제1 두께보다 얇은 제2 두께를 갖는 제2 영역을 포함하는 발광 소자.
  9. 제 7항에 있어서,
    상기 제1 도전형의 반도체층은 n형 반도체층이고, 상기 제2 도전형의 반도체층은 p형 반도체층이고, 상기 제3 도전형의 반도체층은 n형 반도체층 또는 Un-doped 반도체층인 발광 소자.
  10. 제 7항에 있어서,
    상기 제3 영역은 적어도 일부분이 상기 제3 도전형의 반도체층의 중앙부에 배치되는 발광 소자.
  11. 제2 전극층;
    상기 제2 전극층 상에 제3 두께를 갖고 주변부에 배치되는 제3 영역과, 상기 제3 두께보다 얇은 제4 두께를 갖는 제4 영역을 포함하는 제3 도전형의 반도체층;
    상기 제3 도전형의 반도체층 상에 제2 도전형의 반도체층;
    상기 제2 도전형의 반도체층 상에 활성층;
    상기 활성층 상에 제1 도전형의 반도체층; 및
    상기 제1 도전형의 반도체층 상에 제1 전극층을 포함하는 발광 소자.
  12. 제 11항에 있어서,
    상기 제3 영역은 상기 제3 도전형의 반도체층의 상기 주변부와 이격된 위치에 배치되는 또 다른 제3 영역을 포함하는 발광 소자.
  13. 제 11항에 있어서,
    상기 제1 전극층은 상기 제3 영역과 적어도 일부분이 수직방향으로 오버랩되어 배치되는 발광 소자.
  14. 제 11항에 있어서,
    상기 제2 전극층은 상기 제4 영역과 적어도 일부분이 수직방향으로 오버랩되는 영역에 배치되는 제1 두께를 갖는 제1 영역과, 상기 제3 영역과 적어도 일부분이 수직방향으로 오버랩되는 영역에 배치되고 상기 제1 두께보다 얇은 제2 두께를 갖는 제2 영역을 포함하는 발광 소자.
  15. 제 11항에 있어서,
    상기 제1 도전형의 반도체층은 n형 반도체층이고, 상기 제2 도전형의 반도체층은 p형 반도체층이고, 상기 제3 도전형의 반도체층은 n형 반도체층 또는 Un-doped 반도체층인 발광 소자.
PCT/KR2009/003695 2008-10-20 2009-07-07 발광 소자 및 그 제조방법 WO2010047459A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801331206A CN102132427B (zh) 2008-10-20 2009-07-07 发光器件及其制造方法
EP09822135.1A EP2339653B1 (en) 2008-10-20 2009-07-07 Light emitting device, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0102799 2008-10-20
KR1020080102799A KR100992728B1 (ko) 2008-10-20 2008-10-20 발광 소자 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2010047459A1 true WO2010047459A1 (ko) 2010-04-29

Family

ID=42107944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003695 WO2010047459A1 (ko) 2008-10-20 2009-07-07 발광 소자 및 그 제조방법

Country Status (5)

Country Link
US (1) US8008684B2 (ko)
EP (1) EP2339653B1 (ko)
KR (1) KR100992728B1 (ko)
CN (1) CN102132427B (ko)
WO (1) WO2010047459A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140027836A (ko) * 2012-08-27 2014-03-07 엘지이노텍 주식회사 발광 소자
CN108565320B (zh) * 2018-01-12 2019-09-27 厦门乾照光电股份有限公司 一种发光二极管及其制备方法
US11362237B2 (en) * 2020-06-02 2022-06-14 Facebook Technologies, Llc High-efficiency red micro-LED with localized current aperture
KR102618972B1 (ko) * 2021-08-25 2023-12-29 인하대학교 산학협력단 반도체 발광 다이오드 및 그의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050060740A (ko) * 2003-12-17 2005-06-22 엘지전자 주식회사 질화물 반도체 발광 다이오드 및 그의 제조 방법
KR100638819B1 (ko) * 2005-05-19 2006-10-27 삼성전기주식회사 광추출효율이 개선된 수직구조 질화물 반도체 발광소자
KR100723150B1 (ko) * 2005-12-26 2007-05-30 삼성전기주식회사 수직구조 질화물 반도체 발광소자 및 제조방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW253999B (ko) * 1993-06-30 1995-08-11 Hitachi Cable
TWI276230B (en) * 2001-12-04 2007-03-11 Epitech Corp Ltd Structure and manufacturing method of light emitting diode
WO2004051758A1 (ja) * 2002-11-29 2004-06-17 Sanken Electric Co., Ltd. 半導体発光素子及びその製造方法
TWI244220B (en) * 2004-02-20 2005-11-21 Epistar Corp Organic binding light-emitting device with vertical structure
US20060002442A1 (en) * 2004-06-30 2006-01-05 Kevin Haberern Light emitting devices having current blocking structures and methods of fabricating light emitting devices having current blocking structures
KR20050029167A (ko) 2005-02-17 2005-03-24 이강재 광결정 공진기를 갖는 질화물반도체 발광소자
KR20070012930A (ko) * 2005-07-25 2007-01-30 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
DE102005061346A1 (de) * 2005-09-30 2007-04-05 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip
KR100640497B1 (ko) * 2005-11-24 2006-11-01 삼성전기주식회사 수직 구조 질화갈륨계 발광다이오드 소자
DE102006034847A1 (de) * 2006-04-27 2007-10-31 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip
KR100730755B1 (ko) 2006-05-12 2007-06-21 서울옵토디바이스주식회사 수직형 발광소자 제조 방법 및 그 수직형 발광소자
KR100878979B1 (ko) 2007-01-18 2009-01-14 광주과학기술원 광결정 구조를 가지는 발광 다이오드
KR20100003469A (ko) 2008-07-01 2010-01-11 삼성전기주식회사 Led 패키지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050060740A (ko) * 2003-12-17 2005-06-22 엘지전자 주식회사 질화물 반도체 발광 다이오드 및 그의 제조 방법
KR100638819B1 (ko) * 2005-05-19 2006-10-27 삼성전기주식회사 광추출효율이 개선된 수직구조 질화물 반도체 발광소자
KR100723150B1 (ko) * 2005-12-26 2007-05-30 삼성전기주식회사 수직구조 질화물 반도체 발광소자 및 제조방법

Also Published As

Publication number Publication date
EP2339653A4 (en) 2012-07-04
KR20100043678A (ko) 2010-04-29
KR100992728B1 (ko) 2010-11-05
CN102132427A (zh) 2011-07-20
EP2339653A1 (en) 2011-06-29
US8008684B2 (en) 2011-08-30
EP2339653B1 (en) 2013-08-21
US20100096641A1 (en) 2010-04-22
CN102132427B (zh) 2013-07-17

Similar Documents

Publication Publication Date Title
CN102169937B (zh) 发光器件、发光器件封装、制造发光器件的方法及照明系统
EP2432036B1 (en) Light emitting diode
CN103996776B (zh) 发光器件和发光器件封装
WO2010095781A1 (ko) 발광소자 및 그 제조방법
WO2014081251A1 (ko) 전류 분산 효과가 우수한 발광소자 및 그 제조 방법
WO2009134095A2 (ko) 발광 소자 및 그 제조방법
EP2249405B1 (en) Method of manufacturing a light emitting device
CN102222741B (zh) 发光器件和发光器件封装
WO2018080224A1 (ko) 반도체 소자 패키지
WO2017057978A1 (ko) 발광소자
WO2009145501A2 (ko) 발광 소자 및 그 제조방법
WO2012023662A1 (ko) 멀티셀 구조를 갖는 발광다이오드 및 그 제조방법
WO2017014512A1 (ko) 발광 소자
WO2009131335A2 (ko) 반도체 발광소자
US20130037848A1 (en) Light emitting device and light emitting device package having the same
EP2246891B1 (en) Light emitting device, light emitting device package, and lighting system including the same
KR20120037636A (ko) 발광 소자 및 발광 소자 패키지
CN102122692A (zh) 发光器件及其制造方法、发光器件封装以及照明系统
US8686456B2 (en) Light emitting device, light emitting device package, and light unit
WO2017052344A1 (ko) 발광소자, 발광소자 패키지 및 발광장치
WO2010047459A1 (ko) 발광 소자 및 그 제조방법
WO2013137554A1 (ko) 발광 소자 및 그 제조 방법
US20110193127A1 (en) Light Emitting Apparatus And Lighting System
WO2019045435A1 (en) LIGHT EMITTING DIODE APPARATUS AND METHOD FOR MANUFACTURING THE SAME
WO2009136769A2 (ko) 발광 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980133120.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09822135

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009822135

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE