WO2010047346A1 - Underlayer film for image formation - Google Patents

Underlayer film for image formation Download PDF

Info

Publication number
WO2010047346A1
WO2010047346A1 PCT/JP2009/068132 JP2009068132W WO2010047346A1 WO 2010047346 A1 WO2010047346 A1 WO 2010047346A1 JP 2009068132 W JP2009068132 W JP 2009068132W WO 2010047346 A1 WO2010047346 A1 WO 2010047346A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
carbon atoms
polyimide
group
film
Prior art date
Application number
PCT/JP2009/068132
Other languages
French (fr)
Japanese (ja)
Inventor
前田 真一
小野 豪
悟志 南
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020117011436A priority Critical patent/KR101674645B1/en
Priority to JP2010534828A priority patent/JP5532259B2/en
Priority to CN2009801419753A priority patent/CN102197489B/en
Publication of WO2010047346A1 publication Critical patent/WO2010047346A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • H01L2029/7863Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile with an LDD consisting of more than one lightly doped zone or having a non-homogeneous dopant distribution, e.g. graded LDD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a lower layer film for image formation, and further relates to an organic transistor fabricated using the lower layer film for image formation.
  • a photocatalyst containing layer made of titanium dioxide and organopolysiloxane is irradiated with ultraviolet light through a mask (see, for example, Patent Document 1), and has a light absorption site such as a dye.
  • a layer formed of a compound and a fluoropolymer which is irradiated with ultraviolet light through laser irradiation or a mask (see, for example, Patent Document 2).
  • a method has been proposed in which a fluorine-based coating agent is deposited through a mask to form the patterning layer (see, for example, Patent Document 3).
  • the patterning layer proposed so far remains in the element even after the role of patterning the functional thin film is finished. Therefore, this patterning layer is required to have durability against subsequent processes and reliability that does not adversely affect the characteristics even in the electronic device.
  • Such required characteristics of the patterning layer vary depending on the device to be manufactured and the use location of the patterning layer. Among them, electrical insulation is an important required characteristic for the patterning layer of the electrode.
  • polyimide is excellent in heat resistance, mechanical strength, electrical insulation, chemical resistance, and the like, and is used in various electronic devices.
  • polyimide As an example of using polyimide as a patterning layer, one using a tetracarboxylic acid anhydride having an alicyclic structure (for example, see Patent Document 4) is disclosed.
  • Patent Document 4 As an example of using polyimide as a patterning layer, one using a tetracarboxylic acid anhydride having an alicyclic structure (for example, see Patent Document 4) is disclosed.
  • Patent Document 4 a tetracarboxylic acid anhydride having an alicyclic structure
  • the present invention has been made in view of such circumstances, and can easily change the hydrophilicity / hydrophobicity of the film surface of the formed lower layer film for image formation even with a small amount of ultraviolet irradiation. It is to provide an underlayer film for formation.
  • a lower layer for image formation comprising a polyimide precursor having a repeating structure represented by the following formula (1) or a polyimide obtained by dehydrating and ring-closing the polyimide precursor: Relates to the membrane.
  • A represents a tetravalent organic group
  • B represents a divalent structure represented by the following formula (2) or (3)
  • R 1 and R 2 are each independently a hydrogen atom or Represents a monovalent organic group
  • n represents a natural number.
  • X represents a single bond or a divalent aromatic group having 6 to 20 carbon atoms
  • Y represents a single bond, —O—, —COO—, —OCO—, —CONH—, —CH 2 O. —, —CH 2 COO— or —CH 2 CH 2 COO—
  • Z represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms which may be substituted with a fluorine atom
  • R represents independently And represents a fluorine atom, an alkoxy group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms
  • t represents an integer of 0 to 3.
  • A represents a tetravalent organic group
  • B represents the formula (2) or the formula (3).
  • X represents a single bond or a divalent aromatic group having 6 to 20 carbon atoms
  • Y represents a single bond, —O—, —COO—, —OCO—, —CONH—, —CH 2 O. —, —CH 2 COO— or —CH 2 CH 2 COO—
  • Z represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms which may be substituted with a fluorine atom
  • R represents independently Represents a fluorine atom, an alkoxy group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms
  • t represents an integer of 0 to 3).
  • Z in formula (2) or formula (3) represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms in which an arbitrary hydrogen atom is substituted with a fluorine atom.
  • the present invention relates to the underlayer film for image formation according to any one of the first to third aspects, wherein A represents a tetravalent organic group having an aliphatic ring or consisting only of an aliphatic group.
  • the present invention relates to the lower film for image formation according to any one of the first aspect to the fourth aspect, in which B represents a divalent structure represented by the formula (2).
  • the present invention relates to the lower film for image formation according to any one of the first to fifth aspects, in which X and Y represent a single bond.
  • the present invention relates to an organic transistor having the image forming lower layer film according to any one of the first aspect to the sixth aspect.
  • the present invention relates to a diamine compound represented by the following formula (14) or the following formula (15).
  • X represents a single bond or a divalent aromatic group having 6 to 20 carbon atoms
  • Y represents a single bond, —O—, —COO—, —OCO—, —CONH—, —CH 2 O. —, —CH 2 COO— or —CH 2 CH 2 COO—
  • Z represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms in which any hydrogen atom is substituted with a fluorine atom
  • R represents Independently represents a fluorine atom, an alkoxy group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms
  • t represents an integer of 0 to 3).
  • the present invention relates to a polyimide precursor containing a repeating unit represented by the following formula (1) or a polyimide obtained by dehydrating and ring-closing the polyimide precursor.
  • A represents a tetravalent organic group
  • B represents a divalent structure represented by the following formula (2a) or (3a)
  • R 1 and R 2 each independently represents a hydrogen atom or Represents a monovalent organic group
  • n represents a natural number.
  • X represents a single bond or a divalent aromatic group having 6 to 20 carbon atoms
  • Y represents a single bond, —O—, —COO—, —OCO—, —CONH—, —CH 2 O. —, —CH 2 COO— or —CH 2 CH 2 COO—
  • Z represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms in which any hydrogen atom is substituted with a fluorine atom
  • R represents Independently represents a fluorine atom, an alkoxy group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms
  • t represents an integer of 0 to 3).
  • the present invention relates to an image-forming underlayer film coating solution comprising a polyimide precursor or a polyimide obtained by dehydrating and ring-closing the polyimide precursor.
  • A represents a tetravalent organic group
  • B represents Formula (2) or Formula (3).
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent organic group
  • X is a single bond or a divalent aromatic group having 6 to 20 carbon atoms.
  • Y is a single bond, -O -, - COO -, - OCO -, - CONH -, - CH 2 O -, - CH 2 COO- or -CH 2 CH 2 COO- represents,
  • Z is fluorine atom
  • R independently represents a fluorine atom, an alkoxy group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms; t represents an integer of 0 to 3.
  • Z in the formula (2) or the formula (3) represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms in which an arbitrary hydrogen atom is substituted with a fluorine atom.
  • the present invention relates to an image-forming underlayer coating solution.
  • the present invention relates to the image-forming underlayer coating solution according to claim 10 or 11, further comprising a soluble polyimide having an imidization rate of 80% or more.
  • the present invention relates to an image forming lower layer film obtained by baking the image forming lower layer coating solution according to claim 10.
  • the present invention relates to an organic transistor having a film obtained by baking the image-forming underlayer coating solution according to any one of claims 10 to 13.
  • the underlayer film for image formation of the present invention can change the surface of the film from hydrophobic to hydrophilic with a small amount of UV irradiation, and therefore, by using these characteristics, image formation of functional materials such as electrodes can be performed. Is possible. Therefore, it is possible to greatly shorten the process time in the manufacture of electronic devices, and it becomes a very effective material in terms of productivity.
  • the present invention is a novel image-forming underlayer film containing a polyimide precursor having a thiol ester bond in the side chain or a polyimide obtained from the polyimide precursor. Further, the present invention relates to an organic transistor using the image forming film. Details will be described below.
  • the present invention is an image-forming underlayer film comprising a polyimide precursor having a repeating structure represented by the following formula (1) or a polyimide obtained by dehydrating and ring-closing the polyimide precursor. is there.
  • A represents a tetravalent organic group
  • B represents a divalent structure represented by Formula (2) or Formula (3)
  • R 1 and R 2 each independently represent a hydrogen atom or Represents a monovalent organic group
  • n represents a natural number.
  • R 1 and R 2 each represent a hydrogen atom or a monovalent organic group, and specific examples of the monovalent organic group include, for example, an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, and t-butyl group.
  • R 1 and R 2 are hydrogen atoms.
  • the structure of the organic group represented by A is not particularly limited as long as it is a tetravalent organic group.
  • the polyimide precursor may have a structure represented by 1 type or multiple types of Formula (1). Therefore, in the polyimide precursor, the structure of the organic group represented by A may be one type or a plurality of types may be mixed. Especially, it is preferable that A is a tetravalent organic group which has an aliphatic ring or consists only of an aliphatic. More preferably, it is a tetravalent organic group having an aliphatic ring.
  • Preferable specific examples of the organic group represented by A include organic groups of the following formulas A-1 to A-46.
  • the above formulas A-1 to A-46 can be appropriately selected depending on the required characteristics when the image forming lower layer film is used.
  • exposure sensitivity in this specification, exposure sensitivity represents the degree of conversion from hydrophobicity to hydrophilicity per exposure amount (ultraviolet irradiation amount)
  • the tetravalent organic group include tetravalent organic groups having an aliphatic ring represented by formulas A-1 to A-25 or consisting only of aliphatic groups.
  • Particularly effective organic groups include A-1 , A-6, A-16 or A-19.
  • the tetravalent organic groups of the formulas A-1 to A-25 are preferable from the viewpoint of improving the insulating properties.
  • the ratio of the formulas A-1 to A-25 is 10 mol% or more.
  • 50 mol% or more is more preferable, and 80 mol% or more is most preferable.
  • B represents a divalent structure having a thiol ester bond in the side chain, as represented by the following formula (2) or formula (3).
  • the thiol ester group is photodegraded by incorporating a thiol bond in the side chain of the polyimide precursor (or polyimide obtained therefrom) containing the repeating structure represented by the formula (1), the thiol ester group is introduced via the thiol ester group. The bonded side chain will be cleaved from the polymer main chain.
  • X represents a single bond or a divalent aromatic group having 6 to 20 carbon atoms.
  • Y is a single bond, -O -, - COO -, - OCO -, - CONH -, - CH 2 O -, - CH 2 COO- or an -CH 2 CH 2 COO-.
  • Z represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms, and any hydrogen atom may be substituted with a fluorine atom.
  • R independently represents a fluorine atom, an alkoxy group having 1 to 3 carbon atoms, or an alkyl group having 1 to 3 carbon atoms, and t represents an integer of 0 to 3.
  • the structure of B represented by the above formula (2) or (3) may contain an aromatic carbocycle in the side chain structure from the viewpoint of improving the absorption efficiency of ultraviolet rays. Therefore, in the above formula (2) or (3), when X represents a divalent aromatic group having 6 to 20 carbon atoms, preferred aromatic groups are phenylene group, biphenylene group, terphenylene group, naphthylene. Group, anthracenylene group and the like.
  • Examples of the aliphatic hydrocarbon group having 3 to 26 carbon atoms in Z include propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, hexyl, octyl, 2-ethylhexyl, nonyl, sec-nonyl, isononyl, Alicyclic hydrocarbon having linear or branched alkyl groups such as decyl, dodecyl, tetradecyl, hexadecyl, octadecyl; alkenyl groups such as allyl, hexenyl; cyclobutane, cyclopentane, cyclohexane, cyclodecane, steroid skeleton, adamantane, etc.
  • any hydrogen atom may be substituted with a fluorine atom, and preferably an aliphatic hydrocarbon having 3 to 26 carbon atoms in which any hydrogen atom is substituted with a fluorine atom Group, particularly preferably a linear fluoroalkyl group having 4 to 7 carbon atoms.
  • Preferred examples of the structure of B represented by the above formula (2) or (3) include the structures shown in the following [B-1] to [B-17].
  • the divalent structures represented by [B-13] to [B-17] are particularly preferable, and more preferably [B-15], from the viewpoint of facilitating the improvement of hydrophobicity.
  • a polyimide precursor used for the image-forming underlayer film of the present invention (in addition to the structure represented by the formula (1), the divalent organic group B in the formula (1) is a divalent organic compound having no thiol ester bond in the side chain. It may be a polyimide precursor (and a polyimide obtained therefrom) containing a structure represented by the following formula (4) replaced by the group D.
  • bonding with the structure of Formula (4) to perform may be any of a block coupling
  • A, R 1 and R 2 have the same definitions as in the above formula (1), m represents a natural number, and D represents another divalent structure having no thiol ester bond in the side chain.
  • the ratio of the structure represented by Formula (1) is preferably 30 mol% or more. Further, in order to further increase the exposure sensitivity and shorten the ultraviolet irradiation time, it is necessary to further increase the content ratio of the structure represented by the formula (1). In this case, the content ratio is 50 mol% or more. preferable.
  • the hydrophobicity of the film is mainly affected by the proportion of the structure represented by the formula (1).
  • the ratio of the structure represented by the formula (1) may be determined in consideration of the surface tension of the material and the adhesion to the upper layer member.
  • the proportion of the structure represented by the formula (1) Even if it is 10 mol% or less, high hydrophobicity and sensitivity can be obtained.
  • the other divalent structure D having no thiol ester bond preferably has a highly insulating structure, and specific examples thereof include the following [D-1] to [D D-57].
  • the structures [D-1] to [D-5] are preferable from the viewpoint of easy improvement of insulation.
  • the structures [D-2], [D-5], [D-7], [D-8], [D-12], [D-22], [D-24] to [D-27], [D-29] are included.
  • the hydrophobic structure having a long-chain alkyl group in the side chain the structures [D-55] to [D-57] can be given. Improvement can be expected, and it can be used in a range where the sensitivity does not decrease.
  • the aforementioned polyimide precursor is produced, for example, by polymerizing tetracarboxylic dianhydride and its derivative and diamine.
  • a polyimide precursor (polyamide acid) represented by the following formula (5) is preferable because it can be obtained relatively easily by reacting a tetracarboxylic acid anhydride component and a diamine component as raw materials.
  • the tetracarboxylic dianhydride and its derivative are not particularly limited, but it is preferable to use a tetracarboxylic dianhydride represented by the following formula (6).
  • A has the same definition as in the above formula (1), and specific examples thereof include those shown in the above formulas A-1 to A-46.
  • the structure of the organic group represented by A may be one type or a plurality of types may be mixed.
  • A is a tetravalent organic group which has an aliphatic ring or consists only of an aliphatic, More preferably, it is a tetravalent organic group which has an aliphatic ring. Therefore, it is preferable that the tetracarboxylic dianhydride component contains a large amount of the compound of the formula (6), which is a tetravalent organic group in which A has an aliphatic ring or consists only of an aliphatic group.
  • A contains a large amount of the compound of the formula (6), which is a tetravalent organic group that is a tetravalent organic group having an aliphatic ring.
  • the diamine used for the diamine component is represented by the following formula (7)
  • B is a structure represented by the following formula (2) or the following formula (3), that is, a divalent having a thiol ester bond in the side chain. This is the structure.
  • Specific examples of B include the structures shown in the above [B-1] to [B-17].
  • X represents a single bond or a divalent aromatic group having 6 to 20 carbon atoms
  • Y represents a single bond, —O—, —COO—, —OCO—, —CONH—, —CH 2 O. —, —CH 2 COO— or —CH 2 CH 2 COO—
  • Z represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms which may be substituted with a fluorine atom
  • R independently represents a fluorine atom.
  • t represents an integer of 0 to 3.
  • a diamine other than the formula (7) represented by the formula (Q1) can be used in combination as long as the effect of the present invention is exhibited.
  • D has the same definition as in formula (4) above. Therefore, specific examples of the diamine represented by the formula (Q1) include diamines having a divalent structure in which the structure of D is represented by [D-1] to [D-57] described above.
  • the method for obtaining a diamine in which B is the structure of the formula (2) is not particularly limited.
  • it can be obtained by synthesizing a corresponding dinitro compound represented by the following general formula (8), reducing the nitro group and converting it to an amino group.
  • the method for reducing the dinitro compound and usually palladium-carbon, platinum oxide, Raney nickel, iron, tin chloride, platinum black, rhodium-alumina, etc. are used as catalysts, ethyl acetate, toluene, tetrahydrofuran, dioxane.
  • a reaction using a solvent such as an alcohol, hydrogen gas, hydrazine, hydrogen chloride, ammonium chloride and the like a compound having a sulfur atom or the like in the skeleton of a dinitro compound sometimes becomes a catalyst poison and may deactivate the catalyst. Therefore, a chemical reduction method using Raney nickel, iron, tin chloride, etc. Is more preferable.
  • the dinitro compound of the above formula (8) can be obtained by reaction of dinitobenzoyl chloride (9) and thiol group-containing compound (10) shown below.
  • the method for obtaining a diamine in which B is the structure of the formula (3) is not particularly limited.
  • it can be obtained by synthesizing a corresponding dinitro compound represented by the following formula (11) and then reducing the nitro group and converting it to an amino group in the same manner as in the case of the dinitro compound (8).
  • the dinitro compound of the above formula (11) is obtained by reacting the thiol group-containing dinitro compound (12) shown below with an acid chloride (13) having an aliphatic hydrocarbon which may contain a fluorine atom. Can do.
  • a solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride component is used as it is or in an organic solvent.
  • a method of adding by dispersing or dissolving in a solvent a method of adding a diamine component to a solution in which a tetracarboxylic dianhydride component is dispersed or dissolved in an organic solvent, and a tetracarboxylic dianhydride component and a diamine component alternately. And the like.
  • the polymerization reaction may be performed in a state where these plural components are mixed in advance, or the polymerization reaction may be performed individually and sequentially.
  • the mixing ratio of the tetracarboxylic dianhydride component and the diamine component that is, ⁇ total number of moles of tetracarboxylic dianhydride component>: ⁇ total number of moles of diamine component > Is preferably 1: 0.5 to 1: 1.5. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1: 1, the higher the degree of polymerization of the polyimide precursor produced, and the higher the molecular weight.
  • the temperature at which the tetracarboxylic dianhydride component and the diamine component are reacted in an organic solvent is usually ⁇ 20 to 150 ° C., preferably 0 to 80 ° C. If the reaction temperature is set to a high temperature, the polymerization reaction proceeds rapidly and is completed, but if it is too high, a high molecular weight polyimide precursor may not be obtained.
  • the solid content concentration of both components is not particularly limited, but if the concentration is too low, a high molecular weight polyimide precursor is used. It becomes difficult to obtain a body, and when the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring becomes difficult, so 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the polymerization reaction is carried out at a high concentration, and it is possible to add an organic solvent after the purification of the polymer (polyimide precursor).
  • the organic solvent used in the polymerization reaction is not particularly limited as long as the generated polyimide precursor can be dissolved, but specific examples thereof include N, N-dimethylformamide, N, N-dimethylformacetamide. , N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, ⁇ -butyrolactone, and the like. These may be used alone or in admixture of two or more. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix with the said solvent in the range which the produced
  • the solution containing the polyimide precursor thus obtained can be used as it is for the preparation of an image-forming underlayer film coating solution described later. Further, the polyimide precursor can be precipitated and isolated in a poor solvent such as water, methanol, ethanol, etc. and recovered for use.
  • a poor solvent such as water, methanol, ethanol, etc.
  • polyimide The polyimide precursor having the structure represented by the above formulas (1) and (4) (and the above formula (5)) can be made into polyimide by dehydration ring closure.
  • the method of this imidation reaction is not particularly limited, the catalyst imidization using a basic catalyst and an acid anhydride is unlikely to cause a decrease in the molecular weight of the polyimide during the imidation reaction, and the imidation rate can be easily controlled. preferable.
  • Catalytic imidation is possible by stirring the polyimide precursor in an organic solvent for 1 to 100 hours in the presence of a basic catalyst and an acid anhydride.
  • a solution containing the polyimide precursor obtained by polymerization of the above-described tetracarboxylic acid anhydride component and diamine component may be used as it is (without isolation).
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has a suitable basicity for proceeding with the reaction.
  • the acid anhydride examples include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, acetic anhydride is preferable because the obtained polyimide can be easily purified after imidization.
  • an organic solvent the solvent used at the time of the polymerization reaction of the polyimide precursor mentioned above can be used.
  • the reaction temperature for the catalyst imidization is preferably -20 to 250 ° C, more preferably 0 to 180 ° C. If the reaction temperature is set to a high temperature, imidization proceeds rapidly, but if it is too high, the molecular weight of the polyimide may decrease.
  • the amount of the basic catalyst is preferably 0.5 to 30 mol times, more preferably 2 to 20 mol times based on the acid amide group in the polyimide precursor. Further, the amount of the acid anhydride is preferably 1 to 50 mol times, more preferably 3 to 30 mol times based on the acid amide group in the polyimide precursor.
  • the solvent-soluble polyimide reaction solution obtained as described above can be used as it is for the production of a gate insulating film described later, the reaction solution contains an imidization catalyst and the like. It is preferable to use a purified, recovered and washed product.
  • the polyimide can be easily recovered by putting the reaction solution into a poor solvent that is being stirred to precipitate the polyimide and filtering it. Although it does not specifically limit as a poor solvent used in this case, Methanol, hexane, heptane, ethanol, toluene, water etc. can be illustrated. After the precipitate is collected by filtration, it is preferably washed with the above poor solvent.
  • the recovered polyimide can be made into a polyimide powder by drying at normal temperature or under reduced pressure at room temperature or by heating.
  • the good solvent used at this time is not particularly limited as long as it can dissolve the polyimide precursor or the polyimide, but examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, 2-pyrrolidone, N— Examples include methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethylurea, pyridine, and ⁇ -butyrolactone. Further, when three or more kinds of poor solvents such as alcohols, ketones, and hydrocarbons are used as the poor solvent used for reprecipitation, the purification efficiency is further improved.
  • poor solvents such as alcohols, ketones, and hydrocarbons
  • the underlayer film for image formation of the present invention can be formed using an image forming underlayer film coating solution.
  • the image-forming underlayer film coating solution is a coating solution that contains the polyimide precursor, the polyimide, and a solvent, and can further contain a coupling agent and a surfactant described later if desired.
  • a polyimide precursor obtained by reacting a tetracarboxylic dianhydride component containing a tetracarboxylic dianhydride represented by the following formula (6) with a diamine component containing a diamine represented by the formula (7), or
  • a coating solution containing polyimide obtained by dehydrating and ring-closing the polyimide precursor.
  • A represents a tetravalent organic group
  • B represents Formula (2) or Formula (3).
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent organic group
  • X is a single bond or a divalent aromatic group having 6 to 20 carbon atoms.
  • Y is a single bond, -O -, - COO -, - OCO -, - CONH -, - CH 2 O -, - CH 2 COO- or -CH 2 CH 2 COO- represents,
  • Z is fluorine atom
  • R independently represents a fluorine atom, an alkoxy group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms; t represents an integer of 0 to 3.
  • Z in the formula (2) or formula (3) represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms in which an arbitrary hydrogen atom is substituted with a fluorine atom. is there.
  • the molecular weight of the polyimide precursor and / or polyimide used in the above-mentioned image-forming underlayer coating solution is polyethylene glycol (or polyethylene oxide) from the viewpoint of ease of handling and stability such as solvent resistance when the film is formed.
  • the weight average molecular weight in terms of conversion is preferably 2,000 to 200,000, more preferably 5,000 to 50,000.
  • the imidation rate is not particularly limited.
  • polyimide it is possible to obtain a highly reliable film by low-temperature firing (180 ° C. or less) that can be used for plastic substrates, and polyimide has a lower polarity than polyimide precursor, and before ultraviolet irradiation. Since advantages such as a high water contact angle (high hydrophobicity) can be obtained, it is more preferable to use polyimide.
  • the imidation ratio of the coating solution is preferably 90% or more.
  • the solvent solubility is impaired, the imidization rate can be lowered.
  • the lowermost layer is made highly imidized (high insulation) by using a blending method described later. Therefore, it is possible to maintain high insulation as the lower layer film, which is useful.
  • the solvent used in the above-described image-forming underlayer coating solution is not particularly limited as long as it can dissolve the polyimide precursor or polyimide.
  • examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, Good solvents such as 2-pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethylurea, pyridine, ⁇ -butyrolactone Can be mentioned. These may be used alone or as a mixture, and a poor solvent such as alcohols, ketones and hydrocarbons may be mixed with the good solvent.
  • the ratio of the solid content in the above-mentioned image-forming underlayer coating solution is not particularly limited as long as each component is uniformly dissolved in a solvent, including a coupling agent and the like described later. % By weight, for example, 5 to 20% by weight.
  • solid content means what remove
  • the method for preparing the above-mentioned image-forming underlayer coating solution is not particularly limited, but a solution containing a polyimide precursor obtained by polymerization of the above-described tetracarboxylic acid anhydride component and diamine component, or obtained using this solution A polyimide reaction solution may be used as it is.
  • the above-described image-forming underlayer coating solution may further contain a coupling agent for the purpose of improving the adhesion between the coating solution and the substrate as long as the effects of the present invention are not impaired.
  • Examples of the coupling agent include functional silane-containing compounds and epoxy group-containing compounds. Specific examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane.
  • the content thereof is preferably added at 0.1 to 30 parts by weight, more preferably 1 to 20 parts by weight with respect to 100 parts by weight of the image forming lower layer coating solution. .
  • the above-mentioned image-forming underlayer film coating solution may contain a surfactant for the purpose of improving the coating property of the coating solution, the film thickness uniformity and the surface smoothness of the film obtained from the coating solution. .
  • the surfactant is not particularly limited, and examples thereof include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant.
  • examples of this type of surfactant include EFTOP EF301, EF303, EF352 (manufactured by Gemco), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink & Chemicals, Inc.), Florard FC430. FC431 (manufactured by Sumitomo 3M Limited), Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.).
  • the content thereof is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of the polymer component contained in the image forming lower layer coating solution. 1 part by mass.
  • the image-forming underlayer coating solution may be mixed with another polymer capable of forming a film (for example, a highly insulating polymer) to take a so-called polymer blend form. is there.
  • a polymer blend when the lower layer film for image formation is formed by appropriately adjusting the structure and the like of the contained polymer (the aforementioned polyimide precursor, polyimide, and other polymers), each in the thickness direction in the film Since a polymer concentration gradient can be generated, it can be used as a useful means.
  • the polyimide precursor and / or polyimide having a thiol ester bond in the side chain is the upper layer (surface layer) of the lower layer film for image formation.
  • the coating liquid of this form is referred to as a blend coating liquid
  • the blending liquid of the polyimide precursor or polyimide described above is used as the blend coating liquid. 1% by mass to 100% by mass in the solid content. When it is 1% by mass or less, it is difficult to completely cover the outermost surface of the film when the blend coating solution is formed on the film, and the image forming ability may be deteriorated.
  • the above polymer blend is useful, for example, when the above-mentioned image forming lower layer coating solution is used for a gate insulating film application that requires particularly high insulation.
  • the coating solution can handle a baking temperature of 180 ° C. or lower, can be formed by coating, has solvent resistance to organic semiconductor coating solutions (polar solvents such as xylene and trimethylbenzene), low Various characteristics such as water absorption are required, but the required performance for insulation is particularly high.
  • the imidation rate of the above-mentioned image-forming underlayer film coating solution is required to be at least 80% or more, and in some cases 90% or more, but on the other hand, the imidation rate is 90%.
  • the high insulating layer is positioned only in the lowermost layer of the insulating film, and the layer made of the image forming lower layer coating liquid is positioned in the upper layer, thereby maintaining the high insulating property of the insulating film, and The solubility problem can also be solved.
  • the material of the high insulating layer and the material of the hydrophilic / hydrophobic conversion layer that is, the aforementioned polyimide precursor and / or polyimide
  • the polarity or molecular weight of the upper layer material is compared with that of the lower layer.
  • the most preferable material for forming a highly insulating film capable of forming the lower layer is soluble polyimide.
  • soluble polyimide When soluble polyimide is used as the lower layer material, from the viewpoint of insulation, it is desirable that the imidation ratio of the polyimide in the solution is high, and it is at least 50% or more, preferably 80% or more, and most preferably 90% or more.
  • Other materials that can be used as the lower layer material include general organic polymers such as epoxy resin, acrylic resin, polypropylene, polyvinyl alcohol, polyvinyl phenol, polyisobutylene, and polymethyl methacrylate.
  • Preferred soluble polyimides include soluble polyimides composed of one or more structures selected from the group consisting of the structure of formula (16).
  • A represents a tetravalent organic group consisting of an aliphatic ring or an aliphatic group only, and D represents a divalent organic group
  • the molecular weight of the soluble polyimide is preferably 2,000 to 200,000, more preferably 5,000 to 50,000 in terms of polyethylene glycol (or polyethylene oxide) weight average molecular weight (measurement result by GPC). It is desirable to use it.
  • specific examples of A include tetravalent organic groups selected from A-1 to A-25, and specific examples of D include D-1 to D-57.
  • particularly preferred structures of A are A-5, A-6, A-16, A-18, A-19, A-20, A-21, A tetravalent organic group of A-22 and A-25, and the structure of D is D-7, D-8, D-9, D-12, D-19, D-20, D-22, D- 29, D-39, D-41 and D-42.
  • Such soluble polyimides can be used alone or in combination.
  • the polyimide precursor and / or the polyimide blend required for providing an upper layer hydrophobic / hydrophobic conversion layer
  • the content ratio of may be 1% by mass or more. If the amount is too small, there may be a large variation in the surface properties of the lower layer film for image formation. Preferably it is 5 mass% or more.
  • a coating film can be formed by coating by a method, a roll coating method, an ink jet method, a spray method, a brush coating, etc., and then pre-drying with a hot plate or an oven. Thereafter, the coating film is heated to form an image forming lower layer film that can be used as an image forming lower layer film or an insulating film.
  • the method performed in a suitable atmosphere ie, inert gas, such as air
  • the firing temperature is preferably 180 ° C. to 250 ° C. from the viewpoint of promoting thermal imidization of the polyimide precursor, and more preferably 180 ° C. or less from the viewpoint of forming a film on a plastic substrate. Firing may be performed at two or more stages. The uniformity of the film obtained by baking in steps can be further increased.
  • the image-forming underlayer film coating solution is in a form containing a polyimide precursor and / or polyimide and the above-mentioned solvent, and thus can be used as it is for application to a substrate.
  • a solvent may be added and used as a coating solution.
  • Such a solvent include 1-methoxy-2 such as ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, and ethylene glycol in addition to the solvents described in the above paragraph [0084].
  • concentration of a coating liquid does not have a restriction
  • the film thickness is preferably 5 nm to 1000 nm, more preferably 10 nm to 300 nm, and most preferably 20 nm to 100 nm.
  • the lower layer film for image formation of the present invention can function as an insulating film when the insulating property is sufficiently high.
  • the lower layer film for image formation is disposed directly on the gate electrode, for example, in an organic FET element and used as a gate insulating film.
  • the film thickness of the lower layer film for image formation is preferably larger than that used for the lower layer film for image formation for the purpose of ensuring insulation.
  • the film thickness is preferably 20 nm to 1000 nm, more preferably 50 nm to 800 nm, and most preferably 100 nm to 500 nm.
  • An image forming electrode can be produced by irradiating the image forming lower layer film of the present invention with ultraviolet rays in a pattern and subsequently applying an image forming liquid described later.
  • the method of irradiating the image-forming underlayer film with ultraviolet rays in a pattern is not particularly limited, but for example, a method of irradiating through a mask on which an electrode pattern is drawn, an electrode pattern using laser light.
  • the drawing method etc. are mentioned.
  • the material and shape of the mask are not particularly limited, as long as the region requiring the electrode transmits ultraviolet light and the other region does not transmit ultraviolet light.
  • the wavelength of ultraviolet rays to be used is generally in the range of 200 nm to 500 nm, and it is desirable to select and use the wavelength of ultraviolet rays appropriately according to the type of the image forming lower layer film to be used. Specific examples include wavelengths such as 248 nm, 254 nm, 303 nm, 313 nm, and 365 nm. Particularly preferred are 248 nm and 254 nm.
  • the surface energy is gradually increased by irradiation with ultraviolet rays, and is saturated with a sufficient irradiation amount.
  • This increase in surface energy results in a decrease in the contact angle of the image forming liquid, and as a result, the wettability of the image forming liquid in the ultraviolet irradiation section is improved.
  • the image forming liquid when the image forming liquid is applied on the image forming lower layer film of the present invention after the ultraviolet irradiation, the image forming liquid is self-organized along the pattern shape drawn as the difference in surface energy on the image forming lower layer film. Patterns can be formed automatically, and electrodes having an arbitrary pattern shape can be obtained.
  • the lower layer film for image formation it is necessary to irradiate the lower layer film for image formation with an amount of ultraviolet light that sufficiently changes the contact angle of the image forming solution, but it is 20 J / cm 2 from the viewpoint of energy efficiency and shortening of the manufacturing process. preferably less, more preferably 10J / cm 2 or less, and most preferably 5 J / cm 2 or less.
  • the amount of change in contact angle due to ultraviolet irradiation is preferably 5 ° or more, more preferably 10 ° or more, and most preferably 20 ° or more.
  • the contact angle of the image forming liquid is 30 ° or more in the ultraviolet non-irradiated portion and 20 ° or less in the ultraviolet irradiated portion.
  • water is often used as the solvent for the image forming solution. Therefore, when evaluating the performance of the lower layer film, the amount of change in the contact angle of the image forming solution is simply replaced with the amount of change in the contact angle of water. May be evaluated.
  • the image forming liquid in the present invention is a coating liquid that can be used as a functional thin film by evaporating the solvent contained therein after being applied to a substrate.
  • the charge transporting substance is at least one kind. Examples thereof include those dissolved or uniformly dispersed in a solvent.
  • the charge transportability is synonymous with conductivity, and means any one of hole transportability, electron transportability, and both charge transportability of holes and electrons.
  • the charge transporting substance is not particularly limited as long as it has conductivity capable of transporting holes or electrons.
  • examples thereof include inorganic materials such as metal fine particles such as gold, silver, copper, and aluminum, carbon black, fullerenes, carbon nanotubes, and organic ⁇ -conjugated polymers such as polythiophene, polyaniline, polypyrrole, polyfluorene, and derivatives thereof. Etc.
  • halogen Lewis acid, proton acid, transition metal compound
  • transition metal compound specifically examples include Br 2 , I 2 , Cl 2 , FeCl 3 , MoCl 5 , BF 3 , AsF 5 , SO 3 , HNO 3 , H 2 SO 4 , polystyrene sulfonic acid, etc.
  • alkali metals, alkylammonium ions specifically examples are Li, Na, K, Cs, tetraethyleneammonium, tetoabutyl
  • a charge donating substance such as ammonium
  • the solvent for the image forming solution is not particularly limited as long as it dissolves or uniformly disperses the charge transporting substance or dopant. However, from the viewpoint of obtaining an accurate electrode pattern, a sufficiently large contact angle is exhibited with respect to the non-irradiated portion of the image forming lower layer film, and damage to the image forming lower layer film of the present invention is small. Since it is preferable, water and various alcohols are preferable.
  • N, N-dimethylformamide, N, N-dimethylacetamide, 2-pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, N-methylcaprolactam, dimethyl Polar solvents such as sulfoxide and tetramethylurea are also preferable from the viewpoint that they are excellent in solubility of organic charge transport materials and exhibit a sufficiently large contact angle with respect to an unirradiated portion of the underlayer film for image formation. Is preferably used in a range where the damage to the image-forming underlayer film of the present invention is small.
  • the concentration of the charge transporting substance in the image forming liquid is preferably 0.01 to 30% by mass, more preferably 0.1 to 10% by mass, and most preferably 1 to 5% by mass.
  • image forming liquid according to the present invention examples include Baytron (registered trademark) P (polyethylene dioxythiophene, manufactured by Bayer).
  • the electrode according to the present invention is produced by applying the image forming liquid on the image forming lower layer film of the present invention to form a pattern and then evaporating the solvent.
  • the method for evaporating the solvent is not particularly limited, but a uniform film-forming surface is obtained by evaporating in an appropriate atmosphere, that is, in an inert gas such as air or nitrogen, in a vacuum, or the like, using a hot plate or an oven. Can be obtained.
  • the temperature for evaporating the solvent is not particularly limited, but it is preferably 40 to 250 ° C. From the standpoint of maintaining the pattern shape and achieving the uniformity of the film thickness, a temperature change in two or more steps may be applied.
  • the electrodes created from this image forming solution are used not only as wiring for connecting electronic devices but also as electrodes for electronic devices such as field effect transistors, bipolar transistors, various diodes, and various sensors.
  • the electronic device according to the present invention has the electrode of the present invention.
  • membrane for image formation of this invention for the organic FET element below is shown, this invention is not limited to this.
  • a highly doped n-type silicon substrate is prepared. It is preferable that the substrate is cleaned in advance by liquid cleaning with a detergent, alcohol, pure water or the like, and surface treatment such as ozone treatment or oxygen-plasma treatment is performed immediately before use.
  • a gate insulating film is formed by depositing SiO 2 , Ta 2 O 5 , Al 2 O 3 or the like on the substrate by a method such as thermal oxidation, sputtering, CVD, or vapor deposition.
  • the film thickness of the gate insulating layer varies depending on the use of the organic FET, but is preferably in the range of 30 nm to 1000 nm from the viewpoint of the driving voltage and the electric insulation.
  • a layer containing polyimide precursor and / or polyimide having a repeating structure represented by the general formula (1) is formed on the insulating film according to the above-described procedure.
  • the thickness of the layer is most preferably 20 nm to 100 nm.
  • ultraviolet rays are irradiated using a mask or the like so as to obtain a desired electrode shape.
  • an image forming liquid using a polar solvent such as water is applied to the surface of the lower layer film for image formation.
  • the applied image forming solution spreads and stabilizes quickly in the hydrophilic part (ultraviolet irradiation part) to repel the hydrophobic part (ultraviolet irradiation part), and is dried to form patterned source and drain electrodes. Is done.
  • the application method of the image forming liquid is not particularly limited, such as a spin coating method or a casting method, but an ink jet printing method or a spray coating method that allows easy control of the liquid amount is preferable.
  • organic semiconductor material such as pentacene or polythiophene, which is the active layer of the organic FET.
  • a method for forming the organic semiconductor material is not particularly limited, and examples thereof include vacuum deposition and solution spin coating, casting, ink jet printing, and spray coating.
  • the manufactured organic FET can greatly reduce the manufacturing process, and further, an organic FET having a channel shorter than that of the mask vapor deposition method can be manufactured. Even when a semiconductor material is used, a large current can be taken out.
  • the image-forming lower layer film obtained by the method of the present invention also has excellent electrical insulation, it can also be used as a gate insulating layer, and the manufacturing process can be further simplified. is there.
  • the number average molecular weight (hereinafter referred to as Mn) and the weight average molecular weight (hereinafter referred to as Mw) of the polyimide precursor obtained according to the following synthesis examples are determined by GPC (room temperature gel permeation chromatography) according to the following apparatus and measurement conditions. And calculated as a polyethylene glycol (or polyethylene oxide) equivalent value.
  • GPC device Shodex (registered trademark) (GPC-101) manufactured by Showa Denko KK
  • UV irradiation Ultraviolet rays were irradiated onto the polyimide film through a band-pass filter that passed light having a wavelength of 254 nm using a high-pressure mercury lamp as a light source.
  • the illuminance of ultraviolet rays was measured by attaching a Deep UV probe having a peak sensitivity at a wavelength of 253.7 nm to an illuminometer (MODEL 306 manufactured by OAI).
  • the obtained illuminance was 45-50 mW / cm 2 .
  • the obtained illuminance was multiplied by the exposure time to obtain the exposure amount (J / cm 2 ).
  • the contact angle was measured using a fully automatic contact angle meter CA-W (manufactured by Kyowa Interface Chemical Co., Ltd.) in a constant temperature and humidity environment (25 ° C. ⁇ 2 ° C., 50% RH ⁇ 5%).
  • the contact angle of water was measured after the amount of liquid was 3 ⁇ L, and after resting for 5 seconds.
  • the contact angle of propylene glycol monomethyl ether (PGME) was measured after a liquid amount of 3.0 to 3.5 ⁇ L and after resting for 5 seconds.
  • a polymerization reaction was carried out and further diluted with NMP to obtain an 8% by mass solution of a polyimide precursor (PI-1).
  • N-fluoro-N ′-(chloromethyl) triethylenediamine bis (tetrafluoroborate) was added to a solution of compound [vi] (52.00 g, 117.6 mmol) in acetonitrile (347 g) / pure water (17 g). ) (43.63 g, 123.2 mmol) was added, and the reaction was performed at 23 ° C. After confirming the completion of the reaction by HPLC, the solvent was distilled off. Next, dichloromethane (1.2 L) was added, and saturated aqueous sodium hydrogen carbonate (700 mL) was added little by little.
  • N-fluoro-N ′-(chloromethyl) triethylenediamine bis (tetrafluoroborate) was added to a solution of compound [xii] (50.00 g, 92.21 mmol) in acetonitrile (333 g) / pure water (17 g). ) (32.67 g, 92.21 mmol) was added, and the reaction was performed at 23 ° C. After confirming the completion of the reaction by HPLC, the solvent was distilled off. Next, dichloromethane (800 mL) was added, and saturated aqueous sodium hydrogen carbonate (500 mL) was added little by little.
  • the obtained polyamic acid solution was diluted to 8% by mass with NMP.
  • 11 g of acetic anhydride and 5.2 g of pyridine were added as an imidization catalyst and reacted at 50 ° C. for 3 hours to obtain a polyimide solution.
  • This solution was put into a large amount of methanol, and the resulting white precipitate was filtered and dried to obtain a white polyimide powder.
  • This polyimide powder was confirmed to be imidized by 90% or more by 1 H-NMR.
  • Example 1 Change in water contact angle Using a syringe having a glass substrate with ITO (2.5 cm square, thickness 0.7 mm) and the PI-1 solution prepared in Synthesis Example 2 attached with a 0.2 ⁇ m pore filter. The solution was dropped and applied by spin coating. Thereafter, it was heat-treated for 5 minutes on a hot plate at 80 ° C. in the atmosphere to volatilize the organic solvent, and then baked for 30 minutes on a hot plate at 210 ° C. to obtain a polyimide film having a film thickness of about 400 nm. The water contact angle ⁇ (°) of the polyimide film was measured.
  • Example 2 Change in water contact angle
  • Three polyimide films were prepared using the same procedure as in Example 1 except that the PI-2 solution prepared in Synthesis Example 3 was used. A film, a film irradiated with ultraviolet rays 20 J / cm 2 , or a film irradiated with ultraviolet rays 40 J / cm 2 were used, and the contact angle ⁇ (°) of each water was measured. The results are shown in Table A.
  • Example 3> was prepared 3 sheets of polyimide film using the same procedure as PGME contact angle variation Example 1, respectively, not irradiated with ultraviolet rays of the film, ultraviolet 2J / cm 2 the irradiated film, or ultraviolet 6J / cm 2 was used as the irradiated film, and the contact angle ⁇ (°) of PGME was measured. The results are shown in Table B.
  • PGME contact angle change Two polyimide films were prepared using the same procedure as in Example 1 except that the PI-3 solution prepared in Synthesis Example 4 was used. The contact angle ⁇ (°) of PGME was measured using a film or a film irradiated with ultraviolet rays 6 J / cm 2 . The results are shown in Table B.
  • Example 4 PGME contact angle variation ITO-coated glass substrate (2.5 cm square, thickness 0.7 mm), the dropping a solution of PI-4 was manufactured by adjusting in Synthesis Example 8 in a syringe with a 0.2 ⁇ m pore filter And applied by spin coating. Thereafter, heat treatment was performed for 5 minutes on an 80 ° C. hot plate in the atmosphere to volatilize the organic solvent, and then baked for 30 minutes on a 180 ° C. hot plate to obtain a polyimide film having a film thickness of about 400 nm. The contact angle of the PGME solution of this polyimide film was measured.
  • One polyimide film was prepared in the same procedure, and ultraviolet rays were irradiated at a dose of 1 J / cm 2 to measure the contact angle ⁇ (°) of PGME. The results are shown in Table C.
  • Example 5 PGME contact angle change Two polyimide films were prepared using the same procedure as in Example 4 except that PI-5 prepared in Synthesis Example 9 was used. The film was irradiated with ultraviolet light 1 J / cm 2 and the contact angle ⁇ (°) of PGME was measured. The results are shown in Table C.
  • Example 6 PGME contact angle change Two polyimide films were prepared using the same procedure as in Example 4 except that PI-6 prepared in Synthesis Example 10 was used. The film was irradiated with ultraviolet light 1 J / cm 2 and the contact angle ⁇ (°) of PGME was measured. The results are shown in Table C.
  • Example 7 PGME contact angle change Two polyimide films were prepared using the same procedure as in Example 4 except that the composition A prepared in Synthesis Example 14 was used. The film was irradiated with ultraviolet light 1 J / cm 2 and the contact angle ⁇ (°) of PGME was measured. The results are shown in Table C.
  • Example 8 PGME contact angle change Two polyimide films were prepared using the same procedure as in Example 6 except that the composition C prepared in Synthesis Example 16 was used. The film was irradiated with ultraviolet light 1 J / cm 2 and the contact angle ⁇ (°) of PGME was measured. The results are shown in Table C.
  • the side chain of the polyimide precursor has a structure in which a hydrophobic group exists via a thiol ester group, that is, the thiol ester group is photodegraded by ultraviolet irradiation, and the hydrophobic part of the side chain is the main part. It seems that the cleavage and separation from the chain led to a large change in hydrophilicity / hydrophobicity.
  • Example 9 Evaluation of electrode patterning property
  • the solution of PI-4 prepared in Synthesis Example 8 was dropped onto a glass substrate with ITO (2.5 cm square, thickness 0.7 mm) with a syringe with a 0.2 ⁇ m pore filter. It was applied by spin coating. Thereafter, heat treatment was performed for 5 minutes on an 80 ° C. hot plate in the atmosphere to volatilize the organic solvent, and then baked for 30 minutes on a 180 ° C. hot plate to obtain a polyimide film having a film thickness of about 400 nm.
  • This polyimide film was irradiated with ultraviolet rays of 1 J / cm 2 through a photomask (line and space with a line width of 100 ⁇ m and a pitch of 100 ⁇ m) to make part of the polyimide hydrophilic.
  • a small amount of the silver fine particle dispersion was dropped on the ultraviolet irradiation part and baked on a hot plate at 180 ° C. for 60 minutes to form a silver electrode having a thickness of 50 nm.
  • a photomicrograph of this silver electrode is shown in FIG.
  • the film made of PI-4 was able to form a silver electrode having the desired line width.
  • Example 10 Evaluation of electrode patterning property A polyimide film was formed using the same procedure as in Example 9 except that the composition A prepared in Synthesis Example 14 was used, and a photomask (line width) was formed on this polyimide film. A portion of polyimide was hydrophilized by irradiating ultraviolet rays of 1 J / cm 2 through a line and space of 100 ⁇ m and a pitch of 100 ⁇ m. Next, a small amount of the silver fine particle dispersion was dropped on the ultraviolet irradiation part and baked on a hot plate at 180 ° C. for 60 minutes to form a silver electrode having a thickness of 50 nm. A photomicrograph of this silver electrode is shown in FIG. The film made of the composition A was able to form a silver electrode having a target line width.
  • Example 3 Evaluation of electrode patterning property A polyimide film was formed using the same procedure as in Example 11 except that PI-3 prepared in Synthesis Example 4 was used and the firing temperature was 210 ° C. The film was irradiated with ultraviolet rays of 1 J / cm 2 through a photomask (line and space with a line width of 100 ⁇ m and a pitch of 100 ⁇ m). Thereafter, a small amount of the silver fine particle dispersion was dropped, but the electrode could not be formed because the ultraviolet-irradiated part was not hydrophilized.
  • Example 9 to 10 and Comparative Example 3 are shown in Table D.
  • the film composed of PI-4 having a thiol ester bond and the composition A was sufficiently hydrophilic at an ultraviolet irradiation amount of 1 J / cm 2 , whereas a silver electrode having a line width of 100 ⁇ m could be formed.
  • the film made of the composition D having no thiol ester bond did not change to hydrophilicity sufficiently at an ultraviolet irradiation amount of 1 J / cm 2 , and electrode formation was impossible.
  • Example 11 Insulation To a glass substrate with ITO (2.5 cm square, thickness 0.7 mm), the PI-1 solution prepared in Synthesis Example 2 was dropped using a syringe with a 0.2 ⁇ m pore filter. It was applied by spin coating. Thereafter, in the atmosphere, heat treatment was performed on an 80 ° C. hot plate for 5 minutes to volatilize the organic solvent, and then baked on a 210 ° C. hot plate for 30 minutes to obtain a polyimide film having a thickness of about 450 nm.
  • a portion of the polyimide film is scraped to expose the ITO, and then a diameter of 1.0 mm is formed on the polyimide film and on the ITO using a vacuum deposition apparatus.
  • An aluminum electrode having a thickness of 100 nm was laminated.
  • the vacuum deposition conditions at this time were room temperature, a degree of vacuum of 3 ⁇ 10 ⁇ 3 Pa or less, and an aluminum deposition rate of 0.3 nm / sec or less.
  • the prepared sample was immediately measured for current-voltage characteristics in a nitrogen atmosphere.
  • the measurement voltage was from 0V to 90V in 2V increments.
  • the relative dielectric constant of the polyimide film was 3.37, and the leakage current density was 3 ⁇ 10 ⁇ 10 A / cm 2 .
  • the polyimide film did not break down at an electric field of 2 MV / cm.
  • FIG. 3 shows the measurement results of current-voltage characteristics in a nitrogen atmosphere.
  • FIG. 4 shows the measurement results of current-voltage characteristics in the atmosphere.
  • Example 12 Insulating property A sample for current-voltage characteristics was prepared using the same procedure as in Example 11 except that the baking temperature of the polyimide film was 230 ° C. At this time, the relative dielectric constant of the polyimide film was 3.14, and the leakage current density was 1.0 ⁇ 10 ⁇ 10 A / cm 2 . The polyimide film did not break down at an electric field of 2 MV / cm. Next, the same sample as above was allowed to stand in the atmosphere (25 degrees, humidity 45%) for 15 hours, and then the current-voltage characteristics were measured. The measurement voltage was from 0V to 90V in 2V increments. The leakage current density of the sample at this time was 1.8 ⁇ 10 ⁇ 8 A / cm 2 .
  • FIG. 3 shows the measurement results of current-voltage characteristics in a nitrogen atmosphere
  • FIG. 4 shows the measurement results in air.
  • Example 13 Insulation To a glass substrate with ITO (2.5 cm square, thickness 0.7 mm), the PI-4 solution prepared in Synthesis Example 8 was dropped with a syringe with a 0.2 ⁇ m pore filter, The coating was performed by a spin coating method. Thereafter, in the atmosphere, the organic solvent was volatilized by heating on an 80 ° C. hot plate for 5 minutes, and then baked on a 180 ° C. hot plate for 30 minutes to obtain a polyimide film having a film thickness of about 400 nm.
  • a part of the polyimide film is scraped to expose the ITO, and then a diameter of 1.0 mm is formed on the polyimide film and on the ITO using a vacuum deposition apparatus.
  • An aluminum electrode having a thickness of 100 nm was stacked.
  • the vacuum deposition conditions at this time were room temperature, a degree of vacuum of 3 ⁇ 10 ⁇ 3 Pa or less, and an aluminum deposition rate of 0.3 nm / sec or less.
  • the sample was allowed to stand for 15 hours in an environment of 23 ° C. ⁇ 3 ° C. and humidity of 45% ⁇ 5%, and then the current-voltage characteristics were measured.
  • the measurement voltage was from 0V to 100V in increments of 2V.
  • the leakage current density of this sample at 1 MV / cm was 4.3 ⁇ 10 ⁇ 11 A / cm 2 .
  • the polyimide film did not break down to 2 MV / cm.
  • FIG. 5 shows the measurement results of the current-voltage characteristics.
  • Example 14 Insulation A sample for evaluating current-voltage characteristics was prepared in the same procedure as in Example 13 except that the composition A prepared in Synthesis Example 14 was used. The leakage current density of this sample at 1 MV / cm was 1.7 ⁇ 10 ⁇ 10 A / cm 2 . The polyimide film did not break down to 2 MV / cm. FIG. 5 shows the measurement results of the current-voltage characteristics.
  • Example 15 Insulation A sample for current-voltage evaluation was produced in the same procedure as in Example 13 except that the firing temperature was set to 230 ° C using the composition B prepared in Synthesis Example 15. The leakage current density of this sample at 1 MV / cm was 1.2 ⁇ 10 ⁇ 10 A / cm 2 . The polyimide film did not break down to 2 MV / cm.
  • FIG. 5 shows the measurement results of the current-voltage characteristics.
  • Example 16 Insulation A sample for current-voltage evaluation was prepared in the same procedure as in Example 13 except that the firing temperature was changed to 230 ° C using the composition C prepared in Synthesis Example 16. The leakage current density of this sample at 1 MV / cm was 3.4 ⁇ 10 ⁇ 10 A / cm 2 . The polyimide film did not break down to 2 MV / cm.
  • FIG. 5 shows the measurement results of the current-voltage characteristics.
  • the film made of PI-1 was an excellent insulating film in a nitrogen atmosphere (Example 11 and Example 12). Further, as shown in FIG. 4, the film made of PI-1 showed an increase in leakage current density in the atmosphere susceptible to moisture compared with the nitrogen atmosphere, but it was used as an underlayer film for image formation. Was a level with no problem (Example 11 and Example 12). Further, as shown in FIG. 5, the films made of PI-4 and compositions A to C were all excellent insulating films (Examples 13 to 16). That is, the lower layer film for image formation of the present invention was a lower layer film having sufficient insulation performance as the lower layer film for image formation.
  • Example 17 Transistor characteristics> The solution of PI-4 prepared in Synthesis Example 8 was dropped onto a glass substrate with a Cr electrode (2.5 cm square, thickness 0.7 mm) with a syringe with a 0.2 ⁇ m pore filter and applied by spin coating. Thereafter, heat treatment was performed for 5 minutes on a hot plate at 80 ° C. in the atmosphere to volatilize the organic solvent, followed by baking for 30 minutes on a hot plate at 180 ° C. to obtain a polyimide film having a thickness of about 450 nm. This polyimide film was irradiated with ultraviolet rays of 2 J / cm 2 through a photomask to make part of the polyimide hydrophilic.
  • an appropriate amount of the silver fine particle dispersion was dropped onto the ultraviolet irradiation part and baked on a hot plate at 180 ° C. for 60 minutes to form a source / drain electrode having a thickness of 50 nm.
  • a film of pentacene (manufactured by Aldrich) was formed on the silver electrode to a thickness of 70 nm by a vacuum deposition method. The deposition rate of pentacene was 0.05 nm / sec.
  • the electrical characteristics of the organic thin film transistor obtained as described above were evaluated by measuring the change of the drain current with respect to the gate voltage. Specifically, the source-drain voltage (V D ) is set to ⁇ 80 V, the gate voltage (V G ) is changed from +20 V to ⁇ 80 V in 2 V steps, and the voltage is held for 1 second until the current is sufficiently stabilized at each voltage. This value was recorded as a measured value of the drain current, and this operation was repeated 5 times. The measurement was performed in a nitrogen atmosphere using a semiconductor parameter analyzer HP4156C (manufactured by Agilent Technologies).
  • the drain current ID in a saturated state can be expressed by the following formula. That is, the mobility ⁇ of the organic semiconductor can be obtained from the slope of the graph when the square root of the absolute value of the drain current ID is plotted on the vertical axis and the gate voltage V G is plotted on the horizontal axis.
  • I D WC ⁇ (V G ⁇ V T ) 2 / 2L
  • W is the channel width of the transistor
  • L is the channel length of the transistor
  • C the capacitance of the gate insulating film
  • V T is the threshold voltage of the transistor
  • the mobility.
  • Example 18 Transistor characteristics> An organic transistor was produced in the same manner as in Example 17 except that the composition A prepared in Synthesis Example 14 was used.
  • the average was 5 ⁇ 10 ⁇ 2 cm 2 / Vs.
  • the threshold voltage was ⁇ 19 to ⁇ 21 V, and the ratio between the on state and the off state (on / off ratio) was on the order of 10 6 . Further, even when repeated measurement was performed, no shift in the transfer characteristic was observed, and a stable characteristic was obtained (FIG. 7). It was shown that the film obtained from the composition A is excellent not only as an electrode forming film but also as a gate insulating film for an organic transistor.
  • Example 19 Transistor characteristics> An organic transistor was fabricated in the same procedure as in Example 17 except that the amount of ultraviolet irradiation was 1 J / cm 2 .
  • W 2 mm
  • L 100 ⁇ m
  • C 6.4 nF / cm 2 .
  • the threshold voltage was ⁇ 16 to ⁇ 20 V, and the ratio between the on state and the off state (on / off ratio) was on the order of 10 6 .
  • FIG. 8 shows that the film obtained from the composition A is excellent not only as an electrode forming film but also as a gate insulating film for an organic transistor.
  • the underlayer film for image form according to the present invention can realize a reduction in the exposure time required for changing the hydrophilicity / hydrophobicity, and can be expected to reduce the manufacturing cost in forming a patterning layer of a functional material such as an electrode.
  • anisotropy can be imparted to the film obtained from the aforementioned polyimide precursor and polyimide by irradiating polarized UV light. That is, it can also be used as an alignment treatment film of a functional material such as a liquid crystal or a semiconductor, and shortening of the manufacturing time can be expected as in the case of using it as a base film for image formation.
  • FIG. 1 is a view showing a micrograph of a silver electrode on PI-4 produced in Example 9 (the line width of the silver electrode is 100 ⁇ m).
  • FIG. 2 is a view showing a micrograph of the silver electrode on the composition A produced in Example 10 (the line width of the silver electrode is 100 ⁇ m).
  • FIG. 3 is a graph showing current-voltage characteristics in a nitrogen atmosphere of a polyimide film obtained by firing a polyimide precursor (PI-1) (Examples 11 and 12).
  • FIG. 4 is a graph showing the current-voltage characteristics in air of a polyimide film obtained by firing a polyimide precursor (PI-1) (Examples 11 and 12).
  • FIG. 5 is a graph showing the current-voltage characteristics in the atmosphere of the polyimide films produced in Examples 13 to 16.
  • FIG. 6 is a graph showing the transfer characteristics of an organic transistor obtained by processing an electrode by irradiating a film obtained from PI-4 with 2 J / cm 2 of ultraviolet rays (Example 17).
  • FIG. 7 is a graph showing the transfer characteristics of an organic transistor in which an electrode is processed by irradiating a film obtained from the composition A with ultraviolet rays at 2 J / cm 2 (Example 18).
  • FIG. 8 is a graph showing the transfer characteristics of an organic transistor obtained by processing an electrode by irradiating a film obtained from PI-4 with 1 J / cm 2 of ultraviolet rays (Example 19).

Abstract

An underlayer film for image formation, which is characterized by containing a polyimide precursor having a repeating structure represented by formula (1) or a polyimide obtained by dehydration ring closing of the polyimide precursor.  In the formula, A represents a tetravalent organic group, and B represents a divalent organic group represented by formula (2) or (3).

Description

画像形成用下層膜Underlayer film for image formation
 本発明は、画像形成用下層膜に関するものであり、更には該画像形成下層膜を用いて作製された有機トランジスタに関するものである。 The present invention relates to a lower layer film for image formation, and further relates to an organic transistor fabricated using the lower layer film for image formation.
 現在、電子デバイスの製造工程において、電極や機能性薄膜のパターン形成には、主にマスク蒸着法やフォトリソグラフィによるエッチング法が用いられている。これら従来の方法では、基板の大型化が困難であったり、工程が煩雑であるなどの問題点が指摘されている。 Currently, in the manufacturing process of electronic devices, mask vapor deposition or photolithography etching is mainly used for pattern formation of electrodes and functional thin films. In these conventional methods, problems such as difficulty in increasing the size of the substrate and complicated processes have been pointed out.
 近年、これら従来法に対して、液体の濡れ性の差を利用した塗り分け技術を機能性薄膜のパターニングに応用することが提案されている。これは、基板表面に、液体に濡れやすい領域と液体に濡れにくい領域とからなるパターニング層を作り、次いでこのパターニング層上に機能性薄膜形成材料の溶液を塗布・乾燥させることで、液体に濡れやすい領域にのみ機能性薄膜を形成させ、有機EL(エレクトロルミネッセンス)素子や、有機FET(電界効果型トランジスタ)素子などの電子デバイスを作製するという方法である。 In recent years, it has been proposed to apply a coating technique using the difference in wettability of liquid to the patterning of a functional thin film in contrast to these conventional methods. This is because a patterning layer is formed on the substrate surface, which consists of areas that are easily wetted by liquid and areas that are not easily wetted by liquid, and then a functional thin film forming material solution is applied and dried on this patterning layer. In this method, a functional thin film is formed only in an easy region, and an electronic device such as an organic EL (electroluminescence) element or an organic FET (field effect transistor) element is manufactured.
 かかる機能性薄膜用のパターニング層としては、二酸化チタンとオルガノポリシロキサンとからなる光触媒含有層にマスクを介して紫外光を照射したもの(例えば特許文献1参照)、染料などの光吸収部位を持つ化合物と含フッ素重合体とからなる層にレーザー照射またはマスクを介して紫外光を照射したもの(例えば特許文献2参照)などが知られている。また、マスクを介してフッ素系コーティング剤を蒸着して上記パターニング層を形成する方法も提案されている(例えば特許文献3参照)。 As a patterning layer for such a functional thin film, a photocatalyst containing layer made of titanium dioxide and organopolysiloxane is irradiated with ultraviolet light through a mask (see, for example, Patent Document 1), and has a light absorption site such as a dye. Known is a layer formed of a compound and a fluoropolymer, which is irradiated with ultraviolet light through laser irradiation or a mask (see, for example, Patent Document 2). In addition, a method has been proposed in which a fluorine-based coating agent is deposited through a mask to form the patterning layer (see, for example, Patent Document 3).
 上記特許文献など、これまでに提案されたパターニング層は、機能性薄膜のパターニングという役割を終えても素子中に残ることとなる。よって、このパターニング層は、その後の工程に対する耐久性と、電子デバイス中にあってもその特性に悪影響を与えない信頼性が必要となる。パターニング層の斯様な必要特性は、作製されるデバイスやパターニング層の使用箇所によって異なるが、中でも、電極のパターニング層にあっては電気絶縁性が重要な必要特性となる。 The patterning layer proposed so far, such as the above-mentioned patent document, remains in the element even after the role of patterning the functional thin film is finished. Therefore, this patterning layer is required to have durability against subsequent processes and reliability that does not adversely affect the characteristics even in the electronic device. Such required characteristics of the patterning layer vary depending on the device to be manufactured and the use location of the patterning layer. Among them, electrical insulation is an important required characteristic for the patterning layer of the electrode.
 また、これまでに提案されている手法は、パターニング層としての特性のみに重点を置くものであった。したがって、例えば有機FET素子のソース電極およびドレイン電極をパターニングする場合は、パターニング層の下に別途ゲート絶縁膜を準備することが必要とされる。 In addition, the methods proposed so far focus only on the characteristics of the patterning layer. Therefore, for example, when patterning the source electrode and the drain electrode of the organic FET element, it is necessary to separately prepare a gate insulating film under the patterning layer.
 一方で、ポリイミドは、耐熱性や機械強度、電気絶縁性、耐薬品性などに優れており、様々な電子デバイスに使用されている。ポリイミドをパターニング層として用いた例として、脂環構造を有するテトラカルボン酸無水物を用いたもの(例えば特許文献4参照)が開示されている。しかし、これらの例では紫外線の照射量が極めて大きいため、長時間の露光処理が余儀なくなされていた。
特開2000-223270号公報 特開2004-146478号公報 特開2004-273851号公報 特開2006-185898号公報
On the other hand, polyimide is excellent in heat resistance, mechanical strength, electrical insulation, chemical resistance, and the like, and is used in various electronic devices. As an example of using polyimide as a patterning layer, one using a tetracarboxylic acid anhydride having an alicyclic structure (for example, see Patent Document 4) is disclosed. However, in these examples, since the amount of ultraviolet irradiation is extremely large, a long exposure process has been unavoidable.
JP 2000-223270 A JP 2004-146478 A JP 2004-238551 A JP 2006-185898 A
 本発明は、このような事情に鑑みてなされたものであり、少ない紫外線照射量であっても、形成された画像形成用下層膜の膜表面の親疎水性を容易に変化させることができる、画像形成用下層膜を提供する事にある。 The present invention has been made in view of such circumstances, and can easily change the hydrophilicity / hydrophobicity of the film surface of the formed lower layer film for image formation even with a small amount of ultraviolet irradiation. It is to provide an underlayer film for formation.
 本発明者らは、上記目的を達成するため、鋭意検討を重ねた結果、ポリイミド前駆体又は該ポリイミド前駆体から得られるポリイミドの側鎖中に、チオールエステル構造を含有させることにより、該ポリイミド前駆体及びポリイミドより得られる硬化膜の表面において、少ない露光量で水接触角が大きく変化することを見出し、本発明を完成するに至った。
 即ち、本発明は第1観点として、下記式(1)で表される繰り返し構造を含むポリイミド前駆体又は該ポリイミド前駆体を脱水閉環して得られるポリイミドを含むことを特徴とする画像形成用下層膜に関する。
As a result of intensive studies to achieve the above object, the present inventors have included a thiol ester structure in the polyimide precursor or the side chain of the polyimide obtained from the polyimide precursor. On the surface of the cured film obtained from the body and polyimide, the water contact angle was found to change greatly with a small exposure amount, and the present invention was completed.
That is, as a first aspect of the present invention, a lower layer for image formation comprising a polyimide precursor having a repeating structure represented by the following formula (1) or a polyimide obtained by dehydrating and ring-closing the polyimide precursor: Relates to the membrane.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中、Aは4価の有機基を表し、Bは下記式(2)又は式(3)で表される2価の構造を表し、R,Rはそれぞれ独立して水素原子又は1価の有機基を表し、nは自然数を表す。) (In the formula, A represents a tetravalent organic group, B represents a divalent structure represented by the following formula (2) or (3), and R 1 and R 2 are each independently a hydrogen atom or Represents a monovalent organic group, and n represents a natural number.)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式中、Xは単結合又は炭素原子数6乃至20の2価の芳香族基を表し、Yは単結合、-O-、-COO-、-OCO-、-CONH-、-CHO-、-CHCOO-又は-CHCHCOO-を表し、Zはフッ素原子で置換されていても良い炭素原子数3乃至26の脂肪族炭化水素基を表し、Rは夫々独立してフッ素原子、炭素原子数1乃至3のアルコキシ基又は炭素原子数1乃至3のアルキル基を表し、tは0乃至3の整数を表す。)
  第2観点として、下記式(6)で表されるテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と式(7)で表されるジアミンを含むジアミン成分とを反応させて得られるポリイミド前駆体、又は該ポリイミド前駆体を脱水閉環して得られるポリイミドを含むことを特徴とする画像形成用下層膜に関する。
Wherein X represents a single bond or a divalent aromatic group having 6 to 20 carbon atoms, and Y represents a single bond, —O—, —COO—, —OCO—, —CONH—, —CH 2 O. —, —CH 2 COO— or —CH 2 CH 2 COO—, Z represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms which may be substituted with a fluorine atom, and R represents independently And represents a fluorine atom, an alkoxy group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms, and t represents an integer of 0 to 3.)
As a 2nd viewpoint, it is obtained by making the tetracarboxylic dianhydride component containing the tetracarboxylic dianhydride represented by following formula (6) react with the diamine component containing the diamine represented by Formula (7). The present invention relates to a lower layer film for image formation comprising a polyimide precursor or a polyimide obtained by dehydrating and ring-closing the polyimide precursor.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[式中、Aは4価の有機基を表し、Bは式(2)又は式(3) [In the formula, A represents a tetravalent organic group, and B represents the formula (2) or the formula (3).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式中、Xは単結合又は炭素原子数6乃至20の2価の芳香族基を表し、Yは単結合、-O-、-COO-、-OCO-、-CONH-、-CHO-、-CHCOO-又は-CHCHCOO-を表し、Zはフッ素原子で置換されていても良い炭素原子数3乃至26の脂肪族炭化水素基を表し、Rは夫々独立してフッ素原子、炭素原子数1乃至3のアルコキシ基又は炭素原子数1乃至3のアルキル基を表し、tは0乃至3の整数を表す。)で表される2価の構造を表す。] Wherein X represents a single bond or a divalent aromatic group having 6 to 20 carbon atoms, and Y represents a single bond, —O—, —COO—, —OCO—, —CONH—, —CH 2 O. —, —CH 2 COO— or —CH 2 CH 2 COO—, Z represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms which may be substituted with a fluorine atom, and R represents independently Represents a fluorine atom, an alkoxy group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms, and t represents an integer of 0 to 3). ]
  第3観点として式(2)又は式(3)のZが、任意の水素原子がフッ素原子で置換されている炭素原子数3乃至26の脂肪族炭化水素基を表す、請求項1又は請求項2に記載の画像形成用下層膜に関する。 As a third aspect, Z in formula (2) or formula (3) represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms in which an arbitrary hydrogen atom is substituted with a fluorine atom. The underlayer film for image formation described in 2.
 第4観点として、Aが脂肪族環を有するか又は脂肪族のみからなる4価の有機基を表す、第1観点乃至第3観点に記載の画像形成用下層膜に関する。 As a fourth aspect, the present invention relates to the underlayer film for image formation according to any one of the first to third aspects, wherein A represents a tetravalent organic group having an aliphatic ring or consisting only of an aliphatic group.
 第5観点として、Bが式(2)で表される2価の構造を表す、第1観点乃至第4観点のうち何れか一項に記載の画像形成用下層膜に関する。 As a fifth aspect, the present invention relates to the lower film for image formation according to any one of the first aspect to the fourth aspect, in which B represents a divalent structure represented by the formula (2).
 第6観点として、X及びYが単結合を表す、第1観点乃至第5観点のうち何れか一項に記載の画像形成用下層膜に関する。 As a sixth aspect, the present invention relates to the lower film for image formation according to any one of the first to fifth aspects, in which X and Y represent a single bond.
 第7観点として、第1観点乃至第6観点のうち何れか一項に記載の画像形成下層膜を有する有機トランジスタに関する。 As a seventh aspect, the present invention relates to an organic transistor having the image forming lower layer film according to any one of the first aspect to the sixth aspect.
 第8観点として、下記式(14)又は下記式(15)で表されるジアミン化合物に関する。 As an eighth aspect, the present invention relates to a diamine compound represented by the following formula (14) or the following formula (15).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式中、Xは単結合又は炭素原子数6乃至20の2価の芳香族基を表し、Yは単結合、-O-、-COO-、-OCO-、-CONH-、-CHO-、-CHCOO-又は-CHCHCOO-を表し、Zは任意の水素原子がフッ素原子で置換されている炭素原子数3乃至26の脂肪族炭化水素基を表し、Rは夫々独立してフッ素原子、炭素原子数1乃至3のアルコキシ基又は炭素原子数1乃至3のアルキル基を表し、tは0乃至3の整数を表す。) Wherein X represents a single bond or a divalent aromatic group having 6 to 20 carbon atoms, and Y represents a single bond, —O—, —COO—, —OCO—, —CONH—, —CH 2 O. —, —CH 2 COO— or —CH 2 CH 2 COO—, wherein Z represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms in which any hydrogen atom is substituted with a fluorine atom, and R represents Independently represents a fluorine atom, an alkoxy group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms, and t represents an integer of 0 to 3).
 第9観点として、下記式(1)で表される繰り返し単位を含むポリイミド前駆体又は該ポリイミド前駆体を脱水閉環して得られるポリイミドに関する。 As a ninth aspect, the present invention relates to a polyimide precursor containing a repeating unit represented by the following formula (1) or a polyimide obtained by dehydrating and ring-closing the polyimide precursor.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(式中、Aは4価の有機基を表し、Bは下記式(2a)又は式(3a)で表される2価の構造を表し、R,Rはそれぞれ独立して水素原子又は1価の有機基を表し、nは自然数を表す。) (In the formula, A represents a tetravalent organic group, B represents a divalent structure represented by the following formula (2a) or (3a), and R 1 and R 2 each independently represents a hydrogen atom or Represents a monovalent organic group, and n represents a natural number.)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(式中、Xは単結合又は炭素原子数6乃至20の2価の芳香族基を表し、Yは単結合、-O-、-COO-、-OCO-、-CONH-、-CHO-、-CHCOO-又は-CHCHCOO-を表し、Zは任意の水素原子がフッ素原子で置換されている炭素原子数3乃至26の脂肪族炭化水素基を表し、Rは夫々独立してフッ素原子、炭素原子数1乃至3のアルコキシ基又は炭素原子数1乃至3のアルキル基を表し、tは0乃至3の整数を表す。) Wherein X represents a single bond or a divalent aromatic group having 6 to 20 carbon atoms, and Y represents a single bond, —O—, —COO—, —OCO—, —CONH—, —CH 2 O. —, —CH 2 COO— or —CH 2 CH 2 COO—, wherein Z represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms in which any hydrogen atom is substituted with a fluorine atom, and R represents Independently represents a fluorine atom, an alkoxy group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms, and t represents an integer of 0 to 3).
 第10観点として、下記式(6)で表されるテトラカルボン酸ニ無水物を含むテトラカルボン酸ニ無水物成分と式(7)で表されるジアミンを含むジアミン成分とを反応させて得られるポリイミド前駆体、又は該ポリイミド前駆体を脱水閉環して得られるポリイミドを含むことを特徴とする画像形成下層膜塗布液に関する。 As a tenth aspect, it is obtained by reacting a tetracarboxylic dianhydride component containing a tetracarboxylic dianhydride represented by the following formula (6) with a diamine component containing a diamine represented by the formula (7). The present invention relates to an image-forming underlayer film coating solution comprising a polyimide precursor or a polyimide obtained by dehydrating and ring-closing the polyimide precursor.
Figure JPOXMLDOC01-appb-C000017
 (式中、Aは4価の有機基を表し、Bは式(2)又は式(3)
Figure JPOXMLDOC01-appb-C000018
で表される2価の構造を表し、R、Rはそれぞれ独立して水素原子又は1価の有機基を表し、Xは単結合又は炭素原子数6乃至20の2価の芳香族基を表し、Yは単結合、-O-、-COO-、-OCO-、-CONH-、-CHO-、-CHCOO-又は-CHCHCOO-を表し、Zはフッ素原子で置換されていても良い炭素原子数3乃至26の脂肪族炭化水素を表し、Rは独立にフッ素原子、炭素原子数1乃至3のアルコキシ基又は炭素原子数1乃至3のアルキル基を表し、tは0乃至3の整数を表す。)
Figure JPOXMLDOC01-appb-C000017
(In the formula, A represents a tetravalent organic group, and B represents Formula (2) or Formula (3).
Figure JPOXMLDOC01-appb-C000018
Wherein R 1 and R 2 each independently represent a hydrogen atom or a monovalent organic group, and X is a single bond or a divalent aromatic group having 6 to 20 carbon atoms. the stands, Y is a single bond, -O -, - COO -, - OCO -, - CONH -, - CH 2 O -, - CH 2 COO- or -CH 2 CH 2 COO- represents, Z is fluorine atom Represents an aliphatic hydrocarbon having 3 to 26 carbon atoms which may be substituted with, R independently represents a fluorine atom, an alkoxy group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms; t represents an integer of 0 to 3. )
 第11観点として、式(2)又は式(3)のZが、任意の水素原子がフッ素原子で置換されている炭素原子数3乃至26の脂肪族炭化水素基を表す請求項10に記載の画像形成下層膜塗布液に関する。 11. The eleventh aspect according to claim 10, wherein Z in the formula (2) or the formula (3) represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms in which an arbitrary hydrogen atom is substituted with a fluorine atom. The present invention relates to an image-forming underlayer coating solution.
 第12観点として、さらにイミド化率が80%以上の可溶性ポリイミドを含む請求項10又は請求項11に記載の画像形成用下層膜塗布液に関する。 As a twelfth aspect, the present invention relates to the image-forming underlayer coating solution according to claim 10 or 11, further comprising a soluble polyimide having an imidization rate of 80% or more.
 第13観点として、請求項10乃至請求項12に記載の画像形成下層膜塗布液を焼成して得られる画像形成下層膜に関する。 As a thirteenth aspect, the present invention relates to an image forming lower layer film obtained by baking the image forming lower layer coating solution according to claim 10.
 第14観点として、請求項10乃至請求項13に記載の画像形成下層膜塗布液を焼成して得られる膜を有する有機トランジスタに関する。 As a fourteenth aspect, the present invention relates to an organic transistor having a film obtained by baking the image-forming underlayer coating solution according to any one of claims 10 to 13.
 本発明の画像形成用下層膜は、少ない紫外線照射量で、膜の表面を疎水性から親水性に変化させることができ、従って、こうした特性を利用して電極などの機能性材料等の画像形成が可能となる。そのため、電子デバイスの製造において工程時間の大幅な短縮が可能となり、生産性の点で大変有効な材料となる。 The underlayer film for image formation of the present invention can change the surface of the film from hydrophobic to hydrophilic with a small amount of UV irradiation, and therefore, by using these characteristics, image formation of functional materials such as electrodes can be performed. Is possible. Therefore, it is possible to greatly shorten the process time in the manufacture of electronic devices, and it becomes a very effective material in terms of productivity.
 本発明は、側鎖にチオールエステル結合を有するポリイミド前駆体又は該ポリイミド前駆体から得られるポリイミドを含む新規な画像形成下層膜である。更に、前記の画像形成膜を用いる有機トランジスタに関する。
以下、詳細を説明する。
The present invention is a novel image-forming underlayer film containing a polyimide precursor having a thiol ester bond in the side chain or a polyimide obtained from the polyimide precursor. Further, the present invention relates to an organic transistor using the image forming film.
Details will be described below.
[ポリイミド前駆体] 本発明は下記式(1)で表される繰り返し構造を含むポリイミド前駆体又は該ポリイミド前駆体を脱水閉環して得られるポリイミドを含むことを特徴とする画像形成用下層膜である。 [Polyimide Precursor] The present invention is an image-forming underlayer film comprising a polyimide precursor having a repeating structure represented by the following formula (1) or a polyimide obtained by dehydrating and ring-closing the polyimide precursor. is there.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(式中、Aは4価の有機基を表し、Bは前記式(2)又は式(3)で表される2価の構造を表し、R,Rはそれぞれ独立して水素原子又は1価の有機基を表し、nは自然数を表す。) (In the formula, A represents a tetravalent organic group, B represents a divalent structure represented by Formula (2) or Formula (3), and R 1 and R 2 each independently represent a hydrogen atom or Represents a monovalent organic group, and n represents a natural number.)
 上記式(1)中、R、Rはそれぞれ、水素原子又は1価の有機基を表し、1価の有機基の具体例として例えば炭素原子数1乃至4のアルキル基が挙げられる。
 炭素原子数1乃至4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基を挙げることができる。
 なかでも、R及びRが水素原子であることが好ましい。
In the above formula (1), R 1 and R 2 each represent a hydrogen atom or a monovalent organic group, and specific examples of the monovalent organic group include, for example, an alkyl group having 1 to 4 carbon atoms.
Examples of the alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, and t-butyl group.
Among these, it is preferable that R 1 and R 2 are hydrogen atoms.
 上記式(1)中、Aで表される有機基の構造は4価の有機基であれば特に限定されない。また、ポリイミド前駆体は、1種又は複数種の式(1)で表される構造を有していても良い。従って、ポリイミド前駆体において、Aで表される有機基の構造は1種類であっても、複数種が混在していてもよい。なかでもAが脂肪族環を有するか又は脂肪族のみからなる4価の有機基であることが好ましい。より好ましくは脂肪族環を有する4価の有機基である。
 Aで表される有機基の好ましい具体例としては、下記式A-1乃至A-46の有機基を挙げることができる。
In the above formula (1), the structure of the organic group represented by A is not particularly limited as long as it is a tetravalent organic group. Moreover, the polyimide precursor may have a structure represented by 1 type or multiple types of Formula (1). Therefore, in the polyimide precursor, the structure of the organic group represented by A may be one type or a plurality of types may be mixed. Especially, it is preferable that A is a tetravalent organic group which has an aliphatic ring or consists only of an aliphatic. More preferably, it is a tetravalent organic group having an aliphatic ring.
Preferable specific examples of the organic group represented by A include organic groups of the following formulas A-1 to A-46.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021

 
Figure JPOXMLDOC01-appb-T000021

 
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 上記式A-1乃至A-46は、画像形成用下層膜としたとき、求められる特性によって適宜選択され得る。
 例えば、上記式A-1乃至A-46のうち、露光感度(本明細書において、露光感度とは、露光量(紫外線照射量)当たりの疎水性から親水性への変換度合いを表す)が向上する4価の有機基としては、式A-1乃至A-25の脂肪族環を有するか又は脂肪族のみからなる4価の有機基が挙げられ、特に効果の高い有機基として、A-1、A-6、A-16又はA-19が挙げられる。
 また、式A-1乃至A-25の4価の有機基は絶縁性を高める効果がある観点からも好ましい。
 前記式(1)中、Aで表される有機基において、式A-1乃至A-25以外の基が混在する場合、式A-1乃至A-25の割合としては、10モル%以上が好ましく、50モル%以上がより好ましく、80モル%以上がもっとも好ましい。
The above formulas A-1 to A-46 can be appropriately selected depending on the required characteristics when the image forming lower layer film is used.
For example, among the above formulas A-1 to A-46, exposure sensitivity (in this specification, exposure sensitivity represents the degree of conversion from hydrophobicity to hydrophilicity per exposure amount (ultraviolet irradiation amount)) is improved. Examples of the tetravalent organic group include tetravalent organic groups having an aliphatic ring represented by formulas A-1 to A-25 or consisting only of aliphatic groups. Particularly effective organic groups include A-1 , A-6, A-16 or A-19.
In addition, the tetravalent organic groups of the formulas A-1 to A-25 are preferable from the viewpoint of improving the insulating properties.
In the formula (1), when the organic group represented by A includes a group other than the formulas A-1 to A-25, the ratio of the formulas A-1 to A-25 is 10 mol% or more. Preferably, 50 mol% or more is more preferable, and 80 mol% or more is most preferable.
 上記式(1)中、Bは下記式(2)または式(3)で表されるように、側鎖にチオールエステル結合を有する2価の構造を表す。
 式(1)で表される繰り返し構造を含むポリイミド前駆体(又はそれより得られるポリイミド)の側鎖にチオール結合を含有させることにより、チオールエステル基が光分解されるとチオールエステル基を介して結合していた側鎖がポリマー主鎖から切断されることとなる。従って、チオール結合を介して結合する側鎖の親疎水性を調整することにより、紫外線等の光照射によって親疎水性の変化につながるものと期待できる。
In the above formula (1), B represents a divalent structure having a thiol ester bond in the side chain, as represented by the following formula (2) or formula (3).
When the thiol ester group is photodegraded by incorporating a thiol bond in the side chain of the polyimide precursor (or polyimide obtained therefrom) containing the repeating structure represented by the formula (1), the thiol ester group is introduced via the thiol ester group. The bonded side chain will be cleaved from the polymer main chain. Therefore, by adjusting the hydrophilicity / hydrophobicity of the side chain bonded through a thiol bond, it can be expected that the irradiation with light such as ultraviolet rays leads to a change in hydrophilicity / hydrophobicity.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 上記式(2)または(3)中、Xは単結合又は炭素原子数6乃至20の2価の芳香族基を表す。
 Yは単結合、-O-、-COO-、-OCO-、-CONH-、-CHO-、-CHCOO-又は-CHCHCOO-を表す。
 Zは炭素原子数3乃至26の脂肪族炭化水素基を表し、任意の水素原子がフッ素原子で置換されていても良い。
 Rは夫々独立してフッ素原子、炭素原子数1乃至3のアルコキシ基又は炭素原子数1乃至3のアルキル基を表し、tは0乃至3の整数を表す。
In the above formula (2) or (3), X represents a single bond or a divalent aromatic group having 6 to 20 carbon atoms.
Y is a single bond, -O -, - COO -, - OCO -, - CONH -, - CH 2 O -, - CH 2 COO- or an -CH 2 CH 2 COO-.
Z represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms, and any hydrogen atom may be substituted with a fluorine atom.
R independently represents a fluorine atom, an alkoxy group having 1 to 3 carbon atoms, or an alkyl group having 1 to 3 carbon atoms, and t represents an integer of 0 to 3.
 上記式(2)又は(3)で表されるBの構造には、紫外線の吸収効率を向上させる観点から側鎖構造中に芳香族の炭素環を含んでいてもよい。
 したがって、上記式(2)又は(3)中、Xが炭素原子数6乃至20の2価の芳香族基を表す場合、好ましい芳香族基としては、フェニレン基、ビフェニレン基、ターフェニレン基、ナフチレン基、アントラセニレン基などが挙げられる。
The structure of B represented by the above formula (2) or (3) may contain an aromatic carbocycle in the side chain structure from the viewpoint of improving the absorption efficiency of ultraviolet rays.
Therefore, in the above formula (2) or (3), when X represents a divalent aromatic group having 6 to 20 carbon atoms, preferred aromatic groups are phenylene group, biphenylene group, terphenylene group, naphthylene. Group, anthracenylene group and the like.
 上記Zにおける炭素原子数3乃至26の脂肪族炭化水素基としては、例えば、プロピル、イソプロピル、ブチル、イソブチル、t-ブチル、ペンチル、ヘキシル、オクチル、2-エチルヘキシル、ノニル、sec-ノニル、イソノニル、デシル、ドデシル、テトラデシル、ヘキサデシル、オクタデシルなどの直鎖状又は分岐鎖状アルキル基;アリル、ヘキセニル等のアルケニル基;シクロブタン、シクロペンタン、シクロヘキサン、シクロデカン、ステロイド骨格、アダマンタン等を有する脂環式炭化水素基;エチルホルメート、メチルアセテート、エチルアセテート、メチルプロピオネート、ジアセチル、メチルイソブチレート、エチルイソブチレート、エチルブチレート、プロピルブチレート、イソブチルアセテート、イソブチルイソブチレート、イソブチルブチレート、イソブチルイソバレレート、イソアミルアセテート、イソアミルプロピオネート、アミルプロピオネート、アミルイソブチレート、アミルブチレート、アミルイソバレレート、アリルヘキサノエート、エチルアセトアセテート、エチルヘプチレート、ヘプチルアセテート、エチルオクチレート、スチラリルアセテート、ノニルアセテート、ボロニルアセテート、ジエチルフタレートのエステル基などが挙げられ、炭素原子数12乃至26の直鎖状アルキル基が特に好ましい。
 上記の脂肪族炭化水素基は、任意の水素原子がフッ素原子で置換されていてもよく、好ましくは、任意の水素原子がフッ素原子で置換されている炭素原子数3乃至26の脂肪族炭化水素基であり、特に好ましくは炭素数4乃至7の直鎖状フルオロアルキル基である。
Examples of the aliphatic hydrocarbon group having 3 to 26 carbon atoms in Z include propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, hexyl, octyl, 2-ethylhexyl, nonyl, sec-nonyl, isononyl, Alicyclic hydrocarbon having linear or branched alkyl groups such as decyl, dodecyl, tetradecyl, hexadecyl, octadecyl; alkenyl groups such as allyl, hexenyl; cyclobutane, cyclopentane, cyclohexane, cyclodecane, steroid skeleton, adamantane, etc. Groups: ethyl formate, methyl acetate, ethyl acetate, methyl propionate, diacetyl, methyl isobutyrate, ethyl isobutyrate, ethyl butyrate, propyl butyrate, isobutyl acetate, isobutyl isobutyl Rate, isobutyl butyrate, isobutyl isovalerate, isoamyl acetate, isoamyl propionate, amyl propionate, amyl isobutyrate, amyl butyrate, amyl isovalerate, allyl hexanoate, ethyl acetoacetate, ethyl heptyl Examples thereof include ester groups of rate, heptyl acetate, ethyl octylate, styrylyl acetate, nonyl acetate, boronyl acetate, and diethyl phthalate, and linear alkyl groups having 12 to 26 carbon atoms are particularly preferable.
In the above aliphatic hydrocarbon group, any hydrogen atom may be substituted with a fluorine atom, and preferably an aliphatic hydrocarbon having 3 to 26 carbon atoms in which any hydrogen atom is substituted with a fluorine atom Group, particularly preferably a linear fluoroalkyl group having 4 to 7 carbon atoms.
 上記式(2)又は(3)で表されるBの構造の好ましい具体例としては、下記[B-1]乃至[B-17]に示す構造が挙げられる。これらの2価の構造の中でも、疎水性の向上を容易にする観点から、[B-13]乃至[B-17]で示される2価の構造が特に好ましく、さらに好ましくは[B-15]乃至[B-17]で示される2価の構造である。 Preferred examples of the structure of B represented by the above formula (2) or (3) include the structures shown in the following [B-1] to [B-17]. Among these divalent structures, the divalent structures represented by [B-13] to [B-17] are particularly preferable, and more preferably [B-15], from the viewpoint of facilitating the improvement of hydrophobicity. To a bivalent structure represented by [B-17].
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 なお、他の特性、例えば、絶縁性、溶媒溶解性、成膜性、さらには膜の密着性なども重要な特性として考慮する場合、本発明の画像形成用下層膜に用いられるポリイミド前駆体(及びそれから得られるポリイミド)は、前記式(1)で表される構造に加え、前記式(1)における2価の有機基Bが、側鎖にチオールエステル結合を有しないその他の2価の有機基Dに置き換えられた下記式(4)で表される構造を含むポリイミド前駆体(及びそれから得られるポリイミド)であってよい。 In addition, when other characteristics such as insulation, solvent solubility, film formability, and film adhesion are also considered as important characteristics, a polyimide precursor used for the image-forming underlayer film of the present invention ( In addition to the structure represented by the formula (1), the divalent organic group B in the formula (1) is a divalent organic compound having no thiol ester bond in the side chain. It may be a polyimide precursor (and a polyimide obtained therefrom) containing a structure represented by the following formula (4) replaced by the group D.
 この場合、側鎖にチオールエステル結合を有する2価の有機基Bを含有する上記式(1)で表される構造と、側鎖にチオールエステル結合を有しないその他の2価の有機基を含有する式(4)の構造との結合は、ブロック結合及び/又はランダム結合の何れであってもよい。 In this case, the structure represented by the above formula (1) containing a divalent organic group B having a thiol ester bond in the side chain, and other divalent organic groups not having a thiol ester bond in the side chain The coupling | bonding with the structure of Formula (4) to perform may be any of a block coupling | bonding and / or a random coupling | bonding.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 式中、A、R及びRは上記式(1)における定義と同義であり、mは自然数を表し、Dは側鎖にチオールエステル結合を有しないその他の2価の構造を表す。 In the formula, A, R 1 and R 2 have the same definitions as in the above formula (1), m represents a natural number, and D represents another divalent structure having no thiol ester bond in the side chain.
 本発明の画像形成用下層膜に用いられるポリイミド前駆体(及びそれから得られるポリイミド)において、式(4)中、Dが側鎖に長鎖アルキル基を有する場合、式(4)で表される構造(側鎖にチオールエステル結合を有しない構造)の含有割合を高くしすぎると紫外線に対する感度が低下する。従って、式(4)で表される構造を含む場合、式(1)で表される構造(側鎖にチオールエステル結合を有する構造)の割合を30モル%以上にするのが好ましい。
 また、露光感度をさらに高め、紫外線の照射時間を短縮するためには、式(1)で表される構造の含有割合をさらに高める必要があり、その場合の含有割合としては50モル%以上が好ましい。
In the polyimide precursor (and polyimide obtained therefrom) used for the image-forming underlayer film of the present invention, when D has a long-chain alkyl group in the side chain, it is represented by formula (4). If the content ratio of the structure (structure having no thiol ester bond in the side chain) is too high, the sensitivity to ultraviolet rays decreases. Therefore, when the structure represented by Formula (4) is included, the ratio of the structure represented by Formula (1) (the structure having a thiol ester bond in the side chain) is preferably 30 mol% or more.
Further, in order to further increase the exposure sensitivity and shorten the ultraviolet irradiation time, it is necessary to further increase the content ratio of the structure represented by the formula (1). In this case, the content ratio is 50 mol% or more. preferable.
 また式(4)中、Dが側鎖に長鎖アルキル基を有しない場合、膜の疎水性は、主に式(1)で表される構造の割合に影響されることから、画像形成液の表面張力や上層の部材との密着性などを考慮して、式(1)で表される構造の割合を決定すればよい。
 なお、上記式(2)又は式(3)で表される構造中、Zの脂肪族炭化水素基の一部がフッ素原子で置換されている場合、式(1)で表される構造の割合が10モル%以下であっても高い疎水性と感度を得ることができる。すなわち、膜の親疎水性の変化は側鎖構造の分解・分離に由来していると考えられ、式(1)の割合が10モル%以下の場合においても、露光感度が必ずしも低下するわけではない。
In the formula (4), when D does not have a long-chain alkyl group in the side chain, the hydrophobicity of the film is mainly affected by the proportion of the structure represented by the formula (1). The ratio of the structure represented by the formula (1) may be determined in consideration of the surface tension of the material and the adhesion to the upper layer member.
In the structure represented by the above formula (2) or formula (3), when a part of the aliphatic hydrocarbon group of Z is substituted with a fluorine atom, the proportion of the structure represented by the formula (1) Even if it is 10 mol% or less, high hydrophobicity and sensitivity can be obtained. That is, it is considered that the change in hydrophilicity / hydrophobicity of the film is caused by decomposition / separation of the side chain structure, and even when the ratio of the formula (1) is 10 mol% or less, the exposure sensitivity does not necessarily decrease. .
 上記式(4)中、チオールエステル結合を有しないその他の2価の構造Dとしては、絶縁性の高い構造を有しているものが好ましく、具体例としては、下記[D-1]乃至[D-57]の構造を挙げることができる。 In the above formula (4), the other divalent structure D having no thiol ester bond preferably has a highly insulating structure, and specific examples thereof include the following [D-1] to [D D-57].
 下記[D-1]乃至[D-57]のうち、絶縁性の向上し易さという観点から[D-1]乃至[D-5]の構造が好ましい。
 また、溶媒溶解性の向上効果の高い構造としては、[D-2]、[D-5]、[D-7]、[D-8]、[D-12]、[D-22]、[D-24]乃至[D-27]、[D-29]が挙げられる。
 なお、側鎖に長鎖アルキル基を有する疎水性の構造の具体例として[D-55]乃至[D-57]の構造を挙げることができるが、これらは有機トランジスタの特性として、絶縁性の向上が期待でき、感度が低下しない範囲において使用する事ができ、使用する場合にはその使用割合等に注意を要する。
Of the following [D-1] to [D-57], the structures [D-1] to [D-5] are preferable from the viewpoint of easy improvement of insulation.
In addition, as a structure having a high effect of improving solvent solubility, [D-2], [D-5], [D-7], [D-8], [D-12], [D-22], [D-24] to [D-27], [D-29] are included.
As specific examples of the hydrophobic structure having a long-chain alkyl group in the side chain, the structures [D-55] to [D-57] can be given. Improvement can be expected, and it can be used in a range where the sensitivity does not decrease.
Figure JPOXMLDOC01-appb-C000030

 
 
 
Figure JPOXMLDOC01-appb-C000030

 
 
 
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032

Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 前述のポリイミド前駆体は、例えば、テトラカルボン酸二無水物及びその誘導体と、ジアミンとを重合することにより製造される。特に、テトラカルボン酸無水物成分とジアミン成分を原料として反応させる事で比較的簡便に得られるという理由から、下記式(5)で表されるポリイミド前駆体(ポリアミド酸)であることが好ましい。 The aforementioned polyimide precursor is produced, for example, by polymerizing tetracarboxylic dianhydride and its derivative and diamine. In particular, a polyimide precursor (polyamide acid) represented by the following formula (5) is preferable because it can be obtained relatively easily by reacting a tetracarboxylic acid anhydride component and a diamine component as raw materials.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
(式中、A、B及びnは式(1)における定義と同義である。) (In the formula, A, B and n have the same definitions as in formula (1).)
《テトラカルボン酸二無水物及びその誘導体》
 本発明において、テトラカルボン酸二無水物及びその誘導体は特に限定されないが、下記式(6)で示されるテトラカルボン酸二無水物を用いることが好ましい。式中のAは上述した式(1)の定義と同義であり、その具体例は上述の式A-1乃至A-46に示したものが挙げられる。
<Tetracarboxylic dianhydride and its derivative>
In the present invention, the tetracarboxylic dianhydride and its derivative are not particularly limited, but it is preferable to use a tetracarboxylic dianhydride represented by the following formula (6). In the formula, A has the same definition as in the above formula (1), and specific examples thereof include those shown in the above formulas A-1 to A-46.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
(式中、Aは式(1)における定義と同義である。) (In the formula, A has the same definition as in formula (1).)
 これまで述べたように、ポリイミド前駆体において、Aで表される有機基の構造は1種類であっても、複数種が混在していてもよい。なかでもAが脂肪族環を有するか又は脂肪族のみからなる4価の有機基であることが好ましく、より好ましくは脂肪族環を有する4価の有機基である。従って、テトラカルボン酸二無水物成分に、Aが脂肪族環を有するか又は脂肪族のみからなる4価の有機基である式(6)の化合物を多く含むことが好ましい。より好ましくは、Aが脂肪族環を有する4価の有機基である4価の有機基である式(6)の化合物を多く含むことが好ましい。
 これは、芳香族酸二無水物のみを用いてポリイミド前駆体等を製造し、画像形成用下層膜とした場合、該画像形成用下層膜に高電界を印加すると絶縁性が著しく低下する傾向がある。反対に、脂肪族酸二無水物を用いると、高電界における絶縁性が優れる。
 例えば有機トランジスタの動作電圧は1MV/cm程度になることもあり、該用途の場合には、絶縁性の観点から、特に、脂肪族酸二無水物をポリイミド前駆体の原料として用いることが望ましい。
As described above, in the polyimide precursor, the structure of the organic group represented by A may be one type or a plurality of types may be mixed. Especially, it is preferable that A is a tetravalent organic group which has an aliphatic ring or consists only of an aliphatic, More preferably, it is a tetravalent organic group which has an aliphatic ring. Therefore, it is preferable that the tetracarboxylic dianhydride component contains a large amount of the compound of the formula (6), which is a tetravalent organic group in which A has an aliphatic ring or consists only of an aliphatic group. More preferably, it is preferable that A contains a large amount of the compound of the formula (6), which is a tetravalent organic group that is a tetravalent organic group having an aliphatic ring.
This is because, when a polyimide precursor or the like is produced using only an aromatic dianhydride and used as an image-forming underlayer film, the insulation tends to be remarkably lowered when a high electric field is applied to the image-forming underlayer film. is there. On the contrary, when an aliphatic acid dianhydride is used, the insulation in a high electric field is excellent.
For example, the operating voltage of the organic transistor may be about 1 MV / cm. In the case of the use, it is desirable to use aliphatic dianhydride as a raw material for the polyimide precursor, particularly from the viewpoint of insulation.
《ジアミン》
 本発明において、ジアミン成分に用いるジアミンは、下記式(7)で表され、Bは下記式(2)又は下記式(3)で表される構造、すなわち側鎖にチオールエステル結合を有する2価の構造である。Bの具体例としては、上述の[B-1]乃至[B-17]に示した構造が挙げられる。
<Diamine>
In the present invention, the diamine used for the diamine component is represented by the following formula (7), and B is a structure represented by the following formula (2) or the following formula (3), that is, a divalent having a thiol ester bond in the side chain. This is the structure. Specific examples of B include the structures shown in the above [B-1] to [B-17].
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
(式中、Xは単結合又は炭素原子数6乃至20の2価の芳香族基を表し、Yは単結合、-O-、-COO-、-OCO-、-CONH-、-CHO-、-CHCOO-又は-CHCHCOO-を表し、Zはフッ素原子で置換されていても良い炭素原子数3乃至26の脂肪族炭化水素基を表し、Rは独立にフッ素原子、炭素原子数1乃至3のアルコキシ基又は炭素原子数1乃至3のアルキル基を表し、tは0乃至3の整数を表す。) Wherein X represents a single bond or a divalent aromatic group having 6 to 20 carbon atoms, and Y represents a single bond, —O—, —COO—, —OCO—, —CONH—, —CH 2 O. —, —CH 2 COO— or —CH 2 CH 2 COO—, Z represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms which may be substituted with a fluorine atom, and R independently represents a fluorine atom. Represents an alkoxy group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms, and t represents an integer of 0 to 3.)
 また、本発明の効果が発現される範囲で、式(7)で表されるジアミンに加えて、式(Q1)で表される、式(7)以外のジアミンも併用することができる。 In addition to the diamine represented by the formula (7), a diamine other than the formula (7) represented by the formula (Q1) can be used in combination as long as the effect of the present invention is exhibited.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 式(Q1)中、Dは上記式(4)における定義と同義である。従って、式(Q1)で表されるジアミンの具体例としては、Dの構造が上述した[D-1]乃至[D-57]に示される2価の構造を有するジアミンが挙げられる。 In formula (Q1), D has the same definition as in formula (4) above. Therefore, specific examples of the diamine represented by the formula (Q1) include diamines having a divalent structure in which the structure of D is represented by [D-1] to [D-57] described above.
[ジアミン化合物の合成方法]
 上記式(7)で表されるジアミンのうち、Bが式(2)の構造であるジアミンを得る方法は特に限定されない。一例を示すならば、対応する下記一般式(8)で表されるジニトロ化合物を合成し、ニトロ基を還元してアミノ基に変換することで得られる。ジニトロ化合物を還元する方法には、特に制限はなく、通常、パラジウム-炭素、酸化白金、ラネーニッケル、鉄、塩化スズ、白金黒、ロジウム-アルミナなどを触媒として用い、酢酸エチル、トルエン、テトラヒドロフラン、ジオキサン、アルコール系などの溶媒、水素ガス、ヒドラジン、塩化水素、塩化アンモニウムなどを用いた反応によって行う方法がある。本発明のように、ジニトロ化合物の骨格中に硫黄原子など有する化合物は、時として触媒毒となり、触媒を失活させてしまうことがあるため、ラネーニッケル、鉄、塩化スズなどを用いた化学還元法を用いるのがより好ましい。
[Synthesis Method of Diamine Compound]
Of the diamines represented by the above formula (7), the method for obtaining a diamine in which B is the structure of the formula (2) is not particularly limited. As an example, it can be obtained by synthesizing a corresponding dinitro compound represented by the following general formula (8), reducing the nitro group and converting it to an amino group. There is no particular limitation on the method for reducing the dinitro compound, and usually palladium-carbon, platinum oxide, Raney nickel, iron, tin chloride, platinum black, rhodium-alumina, etc. are used as catalysts, ethyl acetate, toluene, tetrahydrofuran, dioxane. And a reaction using a solvent such as an alcohol, hydrogen gas, hydrazine, hydrogen chloride, ammonium chloride and the like. As in the present invention, a compound having a sulfur atom or the like in the skeleton of a dinitro compound sometimes becomes a catalyst poison and may deactivate the catalyst. Therefore, a chemical reduction method using Raney nickel, iron, tin chloride, etc. Is more preferable.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
(式中、X、Y、Z、R及びtは上記式(2)における定義と同義である) (In the formula, X, Y, Z, R and t have the same definitions as in the above formula (2)).
 上記式(8)のジニトロ化合物は、下記に示されるジニトベンゾイルクロリド(9)とチオール基含有化合物(10)との反応などにより得ることができる。 The dinitro compound of the above formula (8) can be obtained by reaction of dinitobenzoyl chloride (9) and thiol group-containing compound (10) shown below.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
(式中、X、Y、Z、R及びtは式(2)における定義と同義である)  (In the formula, X, Y, Z, R and t have the same definitions as in formula (2)).
 上記式(7)で表されるジアミンのうち、Bが式(3)の構造であるジアミンを得る方法は特に限定されない。例えば、対応する下記式(11)で表されるジニトロ化合物を合成し、その後上記ジニトロ化合物(8)の場合と同様にニトロ基を還元してアミノ基に変換することで得ることができる。 Among the diamines represented by the above formula (7), the method for obtaining a diamine in which B is the structure of the formula (3) is not particularly limited. For example, it can be obtained by synthesizing a corresponding dinitro compound represented by the following formula (11) and then reducing the nitro group and converting it to an amino group in the same manner as in the case of the dinitro compound (8).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
(式中、X、Y、Z、R及びtは式(3)における定義と同義である。) (In the formula, X, Y, Z, R and t have the same definitions as in formula (3).)
 上記式(11)のジニトロ化合物は、下記に示されるチオール基含有ジニトロ化合物(12)とフッ素原子を含有していても良い脂肪族炭化水素を有する酸クロリド(13)との反応などにより得ることができる。 The dinitro compound of the above formula (11) is obtained by reacting the thiol group-containing dinitro compound (12) shown below with an acid chloride (13) having an aliphatic hydrocarbon which may contain a fluorine atom. Can do.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
(式中、X、Y、Z、R及びtは式(3)における定義と同義である) (In the formula, X, Y, Z, R and t have the same definitions as in formula (3)).
《ポリイミド前駆体の製造方法》
 式(1)で表される繰り返し構造を有するポリイミド前駆体を得るには、上記式(6)で表されるテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と、上記式(7)で表されるジアミン並びに所望により上記式(Q1)で表されるジアミン成分を含むジアミン成分とを、有機溶媒中で混合して反応させる方法が簡便である。
<< Method for producing polyimide precursor >>
In order to obtain a polyimide precursor having a repeating structure represented by the formula (1), a tetracarboxylic dianhydride component including the tetracarboxylic dianhydride represented by the above formula (6) and the above formula (7) And a diamine component containing the diamine component represented by the above formula (Q1), if desired, are mixed in an organic solvent and reacted.
 テトラカルボン酸二無水物成分とジアミン成分とを有機溶媒中で混合させる方法としては、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物成分をそのまま、または有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物成分を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物成分とジアミン成分を交互に添加する方法などが挙げられる。
 また、テトラカルボン酸二無水物成分とジアミン成分が複数種存在する化合物の場合、これら複数種の成分をあらかじめ混合した状態で重合反応させても良く、個別に順次重合反応させてもよい。
As a method of mixing the tetracarboxylic dianhydride component and the diamine component in an organic solvent, a solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride component is used as it is or in an organic solvent. A method of adding by dispersing or dissolving in a solvent, a method of adding a diamine component to a solution in which a tetracarboxylic dianhydride component is dispersed or dissolved in an organic solvent, and a tetracarboxylic dianhydride component and a diamine component alternately. And the like.
Further, in the case of a compound having a plurality of tetracarboxylic dianhydride components and diamine components, the polymerization reaction may be performed in a state where these plural components are mixed in advance, or the polymerization reaction may be performed individually and sequentially.
 本発明で用いられる上記ポリイミド前駆体を重合する際、テトラカルボン酸二無水物成分とジアミン成分の配合比、即ち〈テトラカルボン酸二無水物成分の総モル数〉:〈ジアミン成分の総モル数〉は1:0.5乃至1:1.5であることが望ましい。通常の重縮合反応同様、このモル比が1:1に近いほど生成するポリイミド前駆体の重合度は大きくなり、分子量が増加する。 When polymerizing the polyimide precursor used in the present invention, the mixing ratio of the tetracarboxylic dianhydride component and the diamine component, that is, <total number of moles of tetracarboxylic dianhydride component>: <total number of moles of diamine component > Is preferably 1: 0.5 to 1: 1.5. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1: 1, the higher the degree of polymerization of the polyimide precursor produced, and the higher the molecular weight.
 前記ポリイミド前駆体の製造方法において、テトラカルボン酸二無水物成分とジアミン成分とを有機溶媒中で反応させる際の温度は通常-20乃至150℃、好ましくは0乃至80℃である。
 反応温度を高温に設定すると重合反応は迅速に進行し完了するが、高すぎると高分子量のポリイミド前駆体が得られない場合がある。
In the method for producing a polyimide precursor, the temperature at which the tetracarboxylic dianhydride component and the diamine component are reacted in an organic solvent is usually −20 to 150 ° C., preferably 0 to 80 ° C.
If the reaction temperature is set to a high temperature, the polymerization reaction proceeds rapidly and is completed, but if it is too high, a high molecular weight polyimide precursor may not be obtained.
 また、有機溶媒中で行う重合反応において、溶媒中の両成分(テトラカルボン酸無水物成分及びジアミン成分の合計質量)の固形分濃度は特に限定されないが、濃度が低すぎると高分子量のポリイミド前駆体を得ることが難しくなり、濃度が高すぎると反応液の粘度が高くなり過ぎて均一な攪拌が困難となるので、好ましくは1乃至50質量%、より好ましくは5乃至30質量%である。重合反応初期は高濃度で行い、重合体(ポリイミド前駆体)の精製と共に、その後、有機溶媒を追加することも可能である。 In the polymerization reaction performed in an organic solvent, the solid content concentration of both components (the total mass of the tetracarboxylic acid anhydride component and the diamine component) in the solvent is not particularly limited, but if the concentration is too low, a high molecular weight polyimide precursor is used. It becomes difficult to obtain a body, and when the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring becomes difficult, so 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the polymerization reaction is carried out at a high concentration, and it is possible to add an organic solvent after the purification of the polymer (polyimide precursor).
 上記重合反応に用いられる有機溶媒は、生成したポリイミド前駆体が溶解するものであれば特に限定されないが、あえてその具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジメチルホルムアセトアミド,N-メチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン等を挙げることができる。これらは単独でも、また二種以上を混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、上記溶媒に混合してもよい。 The organic solvent used in the polymerization reaction is not particularly limited as long as the generated polyimide precursor can be dissolved, but specific examples thereof include N, N-dimethylformamide, N, N-dimethylformacetamide. , N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, γ-butyrolactone, and the like. These may be used alone or in admixture of two or more. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix with the said solvent in the range which the produced | generated polyimide precursor does not precipitate.
 このようにして得られたポリイミド前駆体を含む溶液は、後述する画像形成下層膜塗布液の調製にそのまま用いることができる。また、ポリイミド前駆体を水、メタノール、エタノール等の貧溶媒に沈殿単離させて回収して用いることもできる。 The solution containing the polyimide precursor thus obtained can be used as it is for the preparation of an image-forming underlayer film coating solution described later. Further, the polyimide precursor can be precipitated and isolated in a poor solvent such as water, methanol, ethanol, etc. and recovered for use.
[ポリイミド]
 前記式(1)及び(4)(並びに前記式(5))で表される構造を有するポリイミド前駆体は脱水閉環によりポリイミドとすることができる。このイミド化反応の方法は特に限定されないが、塩基性触媒と酸無水物を用いる触媒イミド化が、イミド化反応の際にポリイミドの分子量低下が起こりにくく、またイミド化率の制御が容易なため好ましい。
[Polyimide]
The polyimide precursor having the structure represented by the above formulas (1) and (4) (and the above formula (5)) can be made into polyimide by dehydration ring closure. Although the method of this imidation reaction is not particularly limited, the catalyst imidization using a basic catalyst and an acid anhydride is unlikely to cause a decrease in the molecular weight of the polyimide during the imidation reaction, and the imidation rate can be easily controlled. preferable.
 触媒イミド化は、前記ポリイミド前駆体を有機溶媒中において、塩基性触媒と酸無水物の存在下で1乃至100時間攪拌することにより可能である。
 なおここで、ポリイミド前駆体は、前述のテトラカルボン酸無水物成分及びジアミン成分の重合によって得られたポリイミド前駆体を含む溶液をそのまま(単離せずに)用いてもよい。
 塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。なかでも、ピリジンは、反応を進行させるのに適度な塩基性を持つので好ましい。
 酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができる。中でも無水酢酸は、イミド化終了後に、得られたポリイミドの精製が容易となるので好ましい。
 有機溶媒としては前述したポリイミド前駆体の重合反応時に用いる溶媒を使用することができる。
Catalytic imidation is possible by stirring the polyimide precursor in an organic solvent for 1 to 100 hours in the presence of a basic catalyst and an acid anhydride.
Here, as the polyimide precursor, a solution containing the polyimide precursor obtained by polymerization of the above-described tetracarboxylic acid anhydride component and diamine component may be used as it is (without isolation).
Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has a suitable basicity for proceeding with the reaction.
Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, acetic anhydride is preferable because the obtained polyimide can be easily purified after imidization.
As an organic solvent, the solvent used at the time of the polymerization reaction of the polyimide precursor mentioned above can be used.
 触媒イミド化させるときの反応温度は-20乃至250℃が好ましく、より好ましくは0乃至180℃である。反応温度を高温に設定するとイミド化は迅速に進行するが、高すぎるとポリイミドの分子量が低下する場合がある。
 塩基性触媒の量は前記ポリイミド前駆体中の酸アミド基に対して0.5乃至30モル倍が好ましく、より好ましくは2乃至20モル倍である。また、酸無水物の量は前記ポリイミド前駆体中の酸アミド基に対して1乃至50モル倍が好ましく、より好ましくは3乃至30モル倍である。
 上記反応温度及び触媒量を調整することで、得られるポリイミドのイミド化率を制御することができる。
The reaction temperature for the catalyst imidization is preferably -20 to 250 ° C, more preferably 0 to 180 ° C. If the reaction temperature is set to a high temperature, imidization proceeds rapidly, but if it is too high, the molecular weight of the polyimide may decrease.
The amount of the basic catalyst is preferably 0.5 to 30 mol times, more preferably 2 to 20 mol times based on the acid amide group in the polyimide precursor. Further, the amount of the acid anhydride is preferably 1 to 50 mol times, more preferably 3 to 30 mol times based on the acid amide group in the polyimide precursor.
By adjusting the reaction temperature and the amount of catalyst, the imidization ratio of the resulting polyimide can be controlled.
 以上のようにして得られた溶媒可溶性ポリイミドの反応溶液は、そのまま後述するゲート絶縁膜の作製に用いることが可能であるものの、反応液中にはイミド化触媒等が含まれているため、ポリイミドを精製・回収・洗浄したものを使用することが好ましい。 Although the solvent-soluble polyimide reaction solution obtained as described above can be used as it is for the production of a gate insulating film described later, the reaction solution contains an imidization catalyst and the like. It is preferable to use a purified, recovered and washed product.
 ポリイミドの回収は、攪拌させている貧溶媒に反応液を投入してポリイミドを沈殿させ、これを濾過する方法が簡便である。
 この際に用いる貧溶媒としては特に限定されないが、メタノール、ヘキサン、ヘプタン、エタノール、トルエン、水などが例示できる。沈殿を濾過して回収した後は、上記貧溶媒で洗浄することが好ましい。
 回収したポリイミドは常圧あるいは減圧下で、常温あるいは加熱乾燥してポリイミド粉末とすることができる。
The polyimide can be easily recovered by putting the reaction solution into a poor solvent that is being stirred to precipitate the polyimide and filtering it.
Although it does not specifically limit as a poor solvent used in this case, Methanol, hexane, heptane, ethanol, toluene, water etc. can be illustrated. After the precipitate is collected by filtration, it is preferably washed with the above poor solvent.
The recovered polyimide can be made into a polyimide powder by drying at normal temperature or under reduced pressure at room temperature or by heating.
 このポリイミド粉末をさらに良溶媒に溶解して、貧溶媒に再沈殿する操作を2乃至10回繰り返すと、ポリマー中の不純物を更に少なくすることもできる。
 このとき用いる良溶媒としては、ポリイミド前駆体又はポリイミドを溶解することができれば特に限定はされないが、その例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、2-ピロリドン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ビニル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、γ-ブチロラクトン等が挙げられる。
 また、再沈殿に用いる貧溶媒として例えばアルコール類、ケトン類、炭化水素など3種類以上の貧溶媒を用いると、より一層精製の効率が上がる。
If the operation of dissolving this polyimide powder in a good solvent and reprecipitating it in a poor solvent is repeated 2 to 10 times, the impurities in the polymer can be further reduced.
The good solvent used at this time is not particularly limited as long as it can dissolve the polyimide precursor or the polyimide, but examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, 2-pyrrolidone, N— Examples include methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethylurea, pyridine, and γ-butyrolactone.
Further, when three or more kinds of poor solvents such as alcohols, ketones, and hydrocarbons are used as the poor solvent used for reprecipitation, the purification efficiency is further improved.
[画像形成下層膜塗布液]
 本発明の画像形成用下層膜は、画像形成下層膜塗布液を用いて形成することができる。該画像形成下層膜塗布液は、前記のポリイミド前駆体、前記ポリイミド、並びに溶媒を含有し、所望により後述のカップリング剤や界面活性剤を更に含有することができる塗布液であり、好ましくは、下記式(6)で表されるテトラカルボン酸ニ無水物を含むテトラカルボン酸ニ無水物成分と式(7)で表されるジアミンを含むジアミン成分とを反応させて得られるポリイミド前駆体、又は該ポリイミド前駆体を脱水閉環して得られるポリイミドを含む塗布液である。
Figure JPOXMLDOC01-appb-C000044
(式中、Aは4価の有機基を表し、Bは式(2)又は式(3)
Figure JPOXMLDOC01-appb-C000045
で表される2価の構造を表し、R、Rはそれぞれ独立して水素原子又は1価の有機基を表し、Xは単結合又は炭素原子数6乃至20の2価の芳香族基を表し、Yは単結合、-O-、-COO-、-OCO-、-CONH-、-CHO-、-CHCOO-又は-CHCHCOO-を表し、Zはフッ素原子で置換されていても良い炭素原子数3乃至26の脂肪族炭化水素を表し、Rは独立にフッ素原子、炭素原子数1乃至3のアルコキシ基又は炭素原子数1乃至3のアルキル基を表し、tは0乃至3の整数を表す。)
[Image forming underlayer coating solution]
The underlayer film for image formation of the present invention can be formed using an image forming underlayer film coating solution. The image-forming underlayer film coating solution is a coating solution that contains the polyimide precursor, the polyimide, and a solvent, and can further contain a coupling agent and a surfactant described later if desired. A polyimide precursor obtained by reacting a tetracarboxylic dianhydride component containing a tetracarboxylic dianhydride represented by the following formula (6) with a diamine component containing a diamine represented by the formula (7), or A coating solution containing polyimide obtained by dehydrating and ring-closing the polyimide precursor.
Figure JPOXMLDOC01-appb-C000044
(In the formula, A represents a tetravalent organic group, and B represents Formula (2) or Formula (3).
Figure JPOXMLDOC01-appb-C000045
Wherein R 1 and R 2 each independently represent a hydrogen atom or a monovalent organic group, and X is a single bond or a divalent aromatic group having 6 to 20 carbon atoms. the stands, Y is a single bond, -O -, - COO -, - OCO -, - CONH -, - CH 2 O -, - CH 2 COO- or -CH 2 CH 2 COO- represents, Z is fluorine atom Represents an aliphatic hydrocarbon having 3 to 26 carbon atoms which may be substituted with, R independently represents a fluorine atom, an alkoxy group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms; t represents an integer of 0 to 3. )
 特に好ましくは前記式(2)又は式(3)のZが、任意の水素原子がフッ素原子で置換されている炭素原子数3乃至26の脂肪族炭化水素基を表す画像形成下層膜塗布液である。 Particularly preferably, in the image-forming underlayer coating solution, Z in the formula (2) or formula (3) represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms in which an arbitrary hydrogen atom is substituted with a fluorine atom. is there.
 前述の画像形成下層膜塗布液に用いる前記ポリイミド前駆体及び/又はポリイミドの分子量は、取扱いの容易さ、膜形成した際の耐溶剤性等の安定性の観点から、ポリエチレングリコール(又はポリエチレンオキシド)換算の重量平均分子量(GPCによる測定結果)で2,000乃至200,000が好ましく、より好ましくは5,000乃至50,000であるものを用いることが望ましい。 The molecular weight of the polyimide precursor and / or polyimide used in the above-mentioned image-forming underlayer coating solution is polyethylene glycol (or polyethylene oxide) from the viewpoint of ease of handling and stability such as solvent resistance when the film is formed. The weight average molecular weight in terms of conversion (measurement result by GPC) is preferably 2,000 to 200,000, more preferably 5,000 to 50,000.
 前述の画像形成下層膜塗布液を用いて画像形成用下層膜を作製し、紫外線を照射したとき、親疎水性の変化量に関してはポリイミド前駆体とポリイミドの間に大きな差がないため、得られる画像形成用下層膜がこの点に重点をおく場合、イミド化率は特には限定されない。
 但し、ポリイミドを用いることにより、プラスチック基板が対応できる低温焼成(180℃以下)で信頼性の高い膜を得られる点、ポリイミドの方がポリイミド前駆体に比して極性が低く、紫外線照射前の水接触角を高くできる(疎水性を高くできる)点などの利点が得られることから、ポリイミドを用いることがより好ましい。
When an image-forming underlayer film is prepared using the above-mentioned image-forming underlayer coating solution and irradiated with ultraviolet rays, there is no significant difference between the polyimide precursor and the polyimide with respect to the amount of change in hydrophilicity / hydrophobicity. When the lower layer film for formation focuses on this point, the imidation rate is not particularly limited.
However, by using polyimide, it is possible to obtain a highly reliable film by low-temperature firing (180 ° C. or less) that can be used for plastic substrates, and polyimide has a lower polarity than polyimide precursor, and before ultraviolet irradiation. Since advantages such as a high water contact angle (high hydrophobicity) can be obtained, it is more preferable to use polyimide.
 一方、前述の画像形成下層膜塗布液を絶縁性を重点におく画像形成用下層膜(例えばゲート絶縁膜)に用いる場合、該塗布液のイミド化率は90%以上とすることが好ましい。但し、溶媒溶解性が損なわれる場合にはイミド化率を低くすることもできるが、この場合には、膜を形成する際、後述するブレンドの手法を用いて最下層を高イミド化(高絶縁性)することにより、下層膜としての高絶縁性を保つことができ有用である。 On the other hand, when the above-described image forming lower layer coating solution is used for an image forming lower layer film (for example, a gate insulating film) with emphasis on insulation, the imidation ratio of the coating solution is preferably 90% or more. However, if the solvent solubility is impaired, the imidization rate can be lowered. In this case, when forming a film, the lowermost layer is made highly imidized (high insulation) by using a blending method described later. Therefore, it is possible to maintain high insulation as the lower layer film, which is useful.
 前述の画像形成下層膜塗布液に用いる溶媒としては、ポリイミド前駆体又はポリイミドを溶解することができれば特に限定はされず、その例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、2-ピロリドン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ビニル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、γ-ブチロラクトン等の良溶媒が挙げられる。これらは一種単独で用いても混合して用いても良く、さらに、アルコール類、ケトン類、炭化水素などの貧溶媒を前記良溶媒と混合して用いてもよい。 The solvent used in the above-described image-forming underlayer coating solution is not particularly limited as long as it can dissolve the polyimide precursor or polyimide. Examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, Good solvents such as 2-pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethylurea, pyridine, γ-butyrolactone Can be mentioned. These may be used alone or as a mixture, and a poor solvent such as alcohols, ketones and hydrocarbons may be mixed with the good solvent.
 前述の画像形成下層膜塗布液における固形分の割合は、後述するカップリング剤等も含め、各成分が均一に溶媒に溶解している限り、特に限定されるものではないが、例えば1乃至30質量%であり、また例えば5乃至20質量%である。ここで、固形分とは、画像形成下層膜塗布液の全成分から溶媒を除いたものをいう。 The ratio of the solid content in the above-mentioned image-forming underlayer coating solution is not particularly limited as long as each component is uniformly dissolved in a solvent, including a coupling agent and the like described later. % By weight, for example, 5 to 20% by weight. Here, solid content means what remove | excluded the solvent from all the components of the image formation lower layer film coating liquid.
 前述の画像形成下層膜塗布液の調製方法は特に限定されないが、前述のテトラカルボン酸無水物成分及びジアミン成分の重合によって得られたポリイミド前駆体を含む溶液、あるいは該溶液を用いて得られたポリイミドの反応溶液をそのまま用いてもよい。 The method for preparing the above-mentioned image-forming underlayer coating solution is not particularly limited, but a solution containing a polyimide precursor obtained by polymerization of the above-described tetracarboxylic acid anhydride component and diamine component, or obtained using this solution A polyimide reaction solution may be used as it is.
 また、前述の画像形成下層膜塗布液にあっては、該塗布液と基板との密着性を向上させる目的で、本発明の効果を損なわない限りにおいてカップリング剤を更に含有することができる。 In addition, the above-described image-forming underlayer coating solution may further contain a coupling agent for the purpose of improving the adhesion between the coating solution and the substrate as long as the effects of the present invention are not impaired.
 上記カップリング剤としては、官能性シラン含有化合物やエポキシ基含有化合物を挙げることができ、具体的には、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリメトキシシリルプロピルトリエチレントリアミン、N-トリエトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタンなどの化合物を挙げることができる。
 これらは一種単独で用いても、二種以上を組合せて用いてもよい。
Examples of the coupling agent include functional silane-containing compounds and epoxy group-containing compounds. Specific examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane. Silane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxy Silane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-trimethoxysilylpropyltriethylenetriamine, N-triethoxy Siri Propyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9- Triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N -Phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-aminopropyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene Glycol diglycid Ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl Glycol diglycidyl ether, 6-tetraglycidyl-2,4-hexanediol, N, N, N ′, N′-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) Mention may be made of compounds such as cyclohexane, N, N, N ′, N′-tetraglycidyl-4,4′-diaminodiphenylmethane.
These may be used alone or in combination of two or more.
 該カップリング剤を使用する場合、その含有量は、画像形成下層膜塗布液100質量部に対して0.1乃至30質量部で添加することが好ましく、より好ましくは1乃至20質量部である。 When the coupling agent is used, the content thereof is preferably added at 0.1 to 30 parts by weight, more preferably 1 to 20 parts by weight with respect to 100 parts by weight of the image forming lower layer coating solution. .
 さらに前述の画像形成下層膜塗布液には、該塗布液の塗布性、該塗布液から得られる膜の膜厚均一性や表面平滑性を向上させる目的で、界面活性剤を含有することもできる。 Further, the above-mentioned image-forming underlayer film coating solution may contain a surfactant for the purpose of improving the coating property of the coating solution, the film thickness uniformity and the surface smoothness of the film obtained from the coating solution. .
 前記界面活性剤としては特に制限されないが、例えば、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。この種の界面活性剤としては、例えば、エフトップEF301、EF303、EF352((株)ジェムコ製))、メガファックF171、F173、R-30(大日本インキ化学工業(株)製)、フロラードFC430、FC431(住友スリーエム(株)社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子(株)社製)などが挙げられる。 The surfactant is not particularly limited, and examples thereof include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant. Examples of this type of surfactant include EFTOP EF301, EF303, EF352 (manufactured by Gemco), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink & Chemicals, Inc.), Florard FC430. FC431 (manufactured by Sumitomo 3M Limited), Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.).
 該界面活性剤を使用する場合、その含有量は、画像形成下層膜塗布液に含有されるポリマー成分100質量部に対して、好ましくは0.01乃至2質量部、より好ましくは0.01乃至1質量部である。 When the surfactant is used, the content thereof is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of the polymer component contained in the image forming lower layer coating solution. 1 part by mass.
[ポリマーブレンドについて]
 前述の画像形成下層膜塗布液は、前述のポリイミド前駆体またはポリイミドに加えて、膜形成可能な他のポリマー(例えば高絶縁性ポリマー)を混合し、所謂ポリマーブレンドの形態をとることも可能である。
 このポリマーブレンドにおいて、含有するポリマー(前述のポリイミド前駆体、ポリイミド、及びその他のポリマー)の構造等を適宜調整することにより、画像形成用下層膜を形成した際に膜内の厚さ方向で各ポリマーの濃度勾配を生じさせることが可能となるため、有用な手段として利用できる。
[About polymer blends]
In addition to the polyimide precursor or polyimide described above, the image-forming underlayer coating solution may be mixed with another polymer capable of forming a film (for example, a highly insulating polymer) to take a so-called polymer blend form. is there.
In this polymer blend, when the lower layer film for image formation is formed by appropriately adjusting the structure and the like of the contained polymer (the aforementioned polyimide precursor, polyimide, and other polymers), each in the thickness direction in the film Since a polymer concentration gradient can be generated, it can be used as a useful means.
 例えば、主として親疎水性の変化が起こるのは膜表面であるため、この観点からは、前述の側鎖にチオールエステル結合を有するポリイミド前駆体及び/又はポリイミドは画像形成用下層膜の上層(表面層)にのみ存在すればよい。
 したがって、前記画像形成下層膜塗布液をポリマーブレンドの形態(以降、この形態の塗布液をブレンド塗布液と称する)とした場合、前述のポリイミド前駆体又はポリイミドの配合割合としては、該ブレンド塗布液の固形分中において1質量%乃至100質量%である。1質量%以下であると、該ブレンド塗布液を膜に形成したとき、膜の最表面を完全に覆う事が困難となり、画像形成能力が劣化する恐れがある。
For example, since the hydrophilicity / hydrophobicity change mainly occurs on the film surface, from this point of view, the polyimide precursor and / or polyimide having a thiol ester bond in the side chain is the upper layer (surface layer) of the lower layer film for image formation. ) Only exist.
Therefore, when the image-forming underlayer film coating liquid is in the form of a polymer blend (hereinafter, the coating liquid of this form is referred to as a blend coating liquid), the blending liquid of the polyimide precursor or polyimide described above is used as the blend coating liquid. 1% by mass to 100% by mass in the solid content. When it is 1% by mass or less, it is difficult to completely cover the outermost surface of the film when the blend coating solution is formed on the film, and the image forming ability may be deteriorated.
 上記ポリマーブレンドが有用となるのは、例えば特に高絶縁性を求められるゲート絶縁膜用途に前述の画像形成下層膜塗布液を用いる場合を挙げることができる。
 ゲート絶縁膜用途に用いる場合、該塗布液は180℃以下の焼成温度への対応、塗布による成膜が可能、有機半導体塗布液に対する耐溶剤性(キシレン、トリメチルベンゼンなどのむ極性溶媒)、低吸水率などの数々の特性が要求されるが、特に絶縁性に関する要求性能は高い。この高絶縁性を達成するため、前述の画像形成下層膜塗布液のイミド化率は少なくとも80%以上、場合によっては90%以上を求められることもあるが、反面、イミド化率が90%を超えると溶媒溶解性が失われる。このとき、該絶縁膜の最下層にのみ高絶縁性の層を位置させ、上層に前述の画像形成下層膜塗布液からなる層が位置させることにより、該絶縁膜の高絶縁性を保ち、且つ溶解性の問題も解消できる。
The above polymer blend is useful, for example, when the above-mentioned image forming lower layer coating solution is used for a gate insulating film application that requires particularly high insulation.
When used in gate insulating film applications, the coating solution can handle a baking temperature of 180 ° C. or lower, can be formed by coating, has solvent resistance to organic semiconductor coating solutions (polar solvents such as xylene and trimethylbenzene), low Various characteristics such as water absorption are required, but the required performance for insulation is particularly high. In order to achieve this high insulating property, the imidation rate of the above-mentioned image-forming underlayer film coating solution is required to be at least 80% or more, and in some cases 90% or more, but on the other hand, the imidation rate is 90%. If exceeded, solvent solubility is lost. At this time, the high insulating layer is positioned only in the lowermost layer of the insulating film, and the layer made of the image forming lower layer coating liquid is positioned in the upper layer, thereby maintaining the high insulating property of the insulating film, and The solubility problem can also be solved.
 上述のように、画像形成用下層膜の下層を高絶縁層、上層を親疎水性変換層と為すには、それらの層を順次積層して作製することも可能であるが、操作が煩雑である。
 このとき、高絶縁層の材料と親疎水性変換層の材料(すなわち前述のポリイミド前駆体及び/又はポリイミド)とを混合し、その際、上層の材料の極性又は分子量を、下層のものと比較して小さいものとすれば、混合液を基板に塗布・乾燥して溶媒が蒸発する間、上層の材料が表面に移行し層を形成する挙動を示すため、上述の濃度勾配(ここでいう層分離)を容易に制御することができる。
As described above, in order to make the lower layer of the lower layer film for image formation a high insulating layer and the upper layer to be a hydrophilic / hydrophobic conversion layer, it is possible to sequentially laminate these layers, but the operation is complicated. .
At this time, the material of the high insulating layer and the material of the hydrophilic / hydrophobic conversion layer (that is, the aforementioned polyimide precursor and / or polyimide) are mixed, and the polarity or molecular weight of the upper layer material is compared with that of the lower layer. When the mixture is applied to the substrate and dried, the upper layer material moves to the surface and forms a layer while the solvent evaporates. ) Can be easily controlled.
 前記下層を形成し得る高絶縁性の膜の形成材料として最も好ましいものは可溶性ポリイミドである。可溶性ポリイミドを下層材として用いる場合、絶縁性の観点から、溶液中のポリイミドのイミド化率は高いことが望まれ、少なくとも50%以上、好ましくは80%以上、最も好ましくは90%以上である。
 下層材として用いられ得るその他の材料としては、エポキシ樹脂、アクリル樹脂、ポリプロピレン、ポリビニルアルコール、ポリビニルフェノール、ポリイソブチレン、ポリメチルメタクリレートなどの一般的な有機ポリマーが挙げられる。
 好ましい可溶性ポリイミドとしては式(16)の構造からなる群より選ばれる一種又は複数種の構造からなる可溶性ポリイミドが挙げられる。
The most preferable material for forming a highly insulating film capable of forming the lower layer is soluble polyimide. When soluble polyimide is used as the lower layer material, from the viewpoint of insulation, it is desirable that the imidation ratio of the polyimide in the solution is high, and it is at least 50% or more, preferably 80% or more, and most preferably 90% or more.
Other materials that can be used as the lower layer material include general organic polymers such as epoxy resin, acrylic resin, polypropylene, polyvinyl alcohol, polyvinyl phenol, polyisobutylene, and polymethyl methacrylate.
Preferred soluble polyimides include soluble polyimides composed of one or more structures selected from the group consisting of the structure of formula (16).
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 (式中Aは、脂肪族環もしくは脂肪族のみからなる4価の有機基を表し、Dは2価の有機基を表す) (Wherein A represents a tetravalent organic group consisting of an aliphatic ring or an aliphatic group only, and D represents a divalent organic group)
 前記可溶性ポリイミドの分子量は、ポリエチレングリコール(又はポリエチレンオキシド)換算の重量平均分子量(GPCによる測定結果)で2,000乃至200,000が好ましく、より好ましくは5,000乃至50,000であるものを用いることが望ましい。 The molecular weight of the soluble polyimide is preferably 2,000 to 200,000, more preferably 5,000 to 50,000 in terms of polyethylene glycol (or polyethylene oxide) weight average molecular weight (measurement result by GPC). It is desirable to use it.
 式(16)中、Aの具体例としてはA-1乃至A-25から選ばれる4価の有機基が上挙げられ、Dの具体例としてはD-1乃至D-57が挙げられる。このなかで、可溶性ポリイミドが高い溶解性を有する観点から、特に好ましいAの構造は、A-5、A-6、A-16、A-18、A-19、A-20、A-21、A-22、A-25の4価の有機基であり、Dの構造はD-7、D-8、D-9、D-12、D-19、D-20、D-22、D-29、D-39、D-41、D-42の2価の有機基である。
 このような可溶性ポリイミドは、単独で用いることも複数を組み合わせて用いる事もできる。
In Formula (16), specific examples of A include tetravalent organic groups selected from A-1 to A-25, and specific examples of D include D-1 to D-57. Of these, from the viewpoint of high solubility of the soluble polyimide, particularly preferred structures of A are A-5, A-6, A-16, A-18, A-19, A-20, A-21, A tetravalent organic group of A-22 and A-25, and the structure of D is D-7, D-8, D-9, D-12, D-19, D-20, D-22, D- 29, D-39, D-41 and D-42.
Such soluble polyimides can be used alone or in combination.
 また、上記ポリマーブレンドを、例えば膜厚400nm前後を要求される有機トランジスタ用途に用いる場合、上層(親疎水性変換層)を設けるのに必要な前述のポリイミド前駆体及び/又はポリイミドの該ポリマーブレンド中の含有割合は、1質量%以上であればよい。少なすぎると画像形成用下層膜表面物性の面内におけるばらつきが大きくなることがある。好ましくは5質量%以上である。 In addition, when the polymer blend is used for, for example, an organic transistor application requiring a film thickness of around 400 nm, the polyimide precursor and / or the polyimide blend required for providing an upper layer (hydrophobic / hydrophobic conversion layer) The content ratio of may be 1% by mass or more. If the amount is too small, there may be a large variation in the surface properties of the lower layer film for image formation. Preferably it is 5 mass% or more.
[塗膜及び画像形成用下層膜の製造方法]
 前述の画像形成下層膜塗布液をポリプロピレン、ポリエチレン、ポリカーボネート、ポリエチレンテレフタレート、ポリエーテルスルホン、ポリエチレンナフタレート、ポリイミドなどの汎用のプラスチック基板やガラス基板などの上に、ディップ法、スピンコート法、転写印刷法、ロールコート法、インクジェット法、スプレー法、刷毛塗り等によって塗布し、その後、ホットプレートまたはオーブン等で予備乾燥することにより、塗膜を形成することができる。その後、この塗膜を加熱処理することにより、画像形成用下層膜や絶縁膜として使用できる画像形成用下層膜が形成される。
[Manufacturing method of coating film and lower layer film for image formation]
Dip method, spin coat method, transfer printing on general-purpose plastic substrate such as polypropylene, polyethylene, polycarbonate, polyethylene terephthalate, polyethersulfone, polyethylene naphthalate, polyimide, glass substrate, etc. A coating film can be formed by coating by a method, a roll coating method, an ink jet method, a spray method, a brush coating, etc., and then pre-drying with a hot plate or an oven. Thereafter, the coating film is heated to form an image forming lower layer film that can be used as an image forming lower layer film or an insulating film.
 上記加熱処理の方法としては特に限定されるものでないが、ホットプレートやオーブンを用いて、適切な雰囲気下、即ち大気、窒素等の不活性ガス、真空中等で行う方法を例示することができる。
 焼成温度は、ポリイミド前駆体の熱イミド化を促進する観点から、180℃乃至250℃であることが好ましく、プラスチック基板上に成膜するという観点からは180℃以下であることがより好ましい。
 焼成は2段階以上の温度変化をつけてもよい。段階的に焼成することで得られる膜の均一性をより高めることができる。
Although it does not specifically limit as a method of the said heat processing, The method performed in a suitable atmosphere, ie, inert gas, such as air | atmosphere and nitrogen, a vacuum, etc. can be illustrated using a hotplate and oven.
The firing temperature is preferably 180 ° C. to 250 ° C. from the viewpoint of promoting thermal imidization of the polyimide precursor, and more preferably 180 ° C. or less from the viewpoint of forming a film on a plastic substrate.
Firing may be performed at two or more stages. The uniformity of the film obtained by baking in steps can be further increased.
 また画像形成用下層膜を作製する際、画像形成下層膜塗布液はポリイミド前駆体及び/またはポリイミドと上述の溶媒とを含む形態であるため、そのまま基板への塗布に用いることができるが、濃度調整のため、又は塗膜の平坦性を確保や、塗布液の基板への濡れ性の向上、塗布液の表面張力、極性、沸点の調整等の目的で、上述の溶媒、さらにはその他種々の溶媒を添加し、塗布液として用いてもよい。 Further, when the image-forming underlayer film is produced, the image-forming underlayer film coating solution is in a form containing a polyimide precursor and / or polyimide and the above-mentioned solvent, and thus can be used as it is for application to a substrate. For the purpose of adjustment or ensuring the flatness of the coating film, improving the wettability of the coating solution to the substrate, and adjusting the surface tension, polarity and boiling point of the coating solution, the above-mentioned solvents, and various other types A solvent may be added and used as a coating solution.
 このような溶媒の具体例としては、上述の段落[0084]で述べた溶媒に加え、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコールなど、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-メトキシプロポキシ)プロパノール、2-(2-エトキシプロポキシ)プロパノール及び2-(2-ブトキシプロポキシ)プロパノールなどのプロピレングリコール誘導体、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルなどの乳酸誘導体などが挙げられる。これらは単独で用いても併用して用いても良い。 Specific examples of such a solvent include 1-methoxy-2 such as ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, and ethylene glycol in addition to the solvents described in the above paragraph [0084]. -Propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene Glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-methoxypropoxy) propanol, 2- (2-ethoxypropoxy) propanol and 2- (2-butoxypro Alkoxy) propylene glycol derivatives such as propanol, methyl lactate ester, ethyl lactate esters, lactate n- propyl ester, lactate n- butyl ester, lactic acid derivatives such as lactic isoamyl ester. These may be used alone or in combination.
 なお、塗布液の保存性、塗膜の膜厚均一性を向上させる観点からは、全溶媒量の20乃至80質量%を、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、γ-ブチロラクトン、ジメチルスルホキシドから選ばれる少なくとも1種類の溶媒とすることが好ましい。
 塗布液の濃度は、特に制限はないが、ポリイミド前駆体及びポリイミドの固形分濃度として0.1乃至30質量%が好ましく、より好ましくは1乃至10質量%である。これらは、塗布装置の仕様や得ようとする膜厚によって任意に設定する。
From the viewpoint of improving the storage stability of the coating solution and the film thickness uniformity of the coating film, 20 to 80% by mass of the total amount of the solvent is N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl. It is preferable to use at least one solvent selected from -2-pyrrolidone, γ-butyrolactone, and dimethyl sulfoxide.
Although the density | concentration of a coating liquid does not have a restriction | limiting in particular, 0.1 thru | or 30 mass% is preferable as a solid content density | concentration of a polyimide precursor and a polyimide, More preferably, it is 1 thru | or 10 mass%. These are arbitrarily set according to the specifications of the coating apparatus and the film thickness to be obtained.
 上述の通り作製された本発明の画像形成用下層膜は、画像形成用下層膜として用いる際、膜厚が薄すぎると紫外線照射後のパターニング性が低下し、また厚すぎると表面の均一性が損なわれる。従って、その膜厚としては、5nm乃至1000nmが好ましく、より好ましくは10nm乃至300nmであり、最も好ましくは20nm乃至100nmである。 When the underlayer film for image formation of the present invention prepared as described above is used as the underlayer film for image formation, if the film thickness is too thin, the patterning property after ultraviolet irradiation is reduced, and if it is too thick, the surface uniformity is low. Damaged. Accordingly, the film thickness is preferably 5 nm to 1000 nm, more preferably 10 nm to 300 nm, and most preferably 20 nm to 100 nm.
 また、本発明の画像形成用下層膜は、十分絶縁性が高い場合、絶縁膜として機能させることもできる。その場合、該画像形成用下層膜は、例えば有機FET素子において、直接ゲート電極上に配置しゲート絶縁膜として使用される。その際、該画像形成用下層膜の膜厚は絶縁性を確保する目的で、上述の画像形成用下層膜として用いる場合よりも厚い方が望ましい。その膜厚としては好ましくは20nm乃至1000nmであり、より好ましくは50nm乃至800nmであり、最も好ましくは100nm乃至500nmである。 In addition, the lower layer film for image formation of the present invention can function as an insulating film when the insulating property is sufficiently high. In this case, the lower layer film for image formation is disposed directly on the gate electrode, for example, in an organic FET element and used as a gate insulating film. At that time, the film thickness of the lower layer film for image formation is preferably larger than that used for the lower layer film for image formation for the purpose of ensuring insulation. The film thickness is preferably 20 nm to 1000 nm, more preferably 50 nm to 800 nm, and most preferably 100 nm to 500 nm.
[画像形成用電極の製造方法]
 本発明の画像形成用下層膜に紫外線をパターン状に照射し、続いて、後述する画像形成液を塗布することにより、画像形成用電極を製造することができる。
[Method for Manufacturing Image Forming Electrode]
An image forming electrode can be produced by irradiating the image forming lower layer film of the present invention with ultraviolet rays in a pattern and subsequently applying an image forming liquid described later.
 本発明において、上記画像形成用下層膜に対して紫外線をパターン状に照射する方法は特に限定されないが、例えば電極パターンが描かれたマスクを介して照射する方法、レーザー光を用いて電極パターンを描画する方法などが挙げられる。
 上記マスクとしては、材質や形状は特に限定されることはなく、電極を必要とする領域が紫外線を透過し、それ以外の領域が紫外線に不透過であればよい。
In the present invention, the method of irradiating the image-forming underlayer film with ultraviolet rays in a pattern is not particularly limited, but for example, a method of irradiating through a mask on which an electrode pattern is drawn, an electrode pattern using laser light. The drawing method etc. are mentioned.
The material and shape of the mask are not particularly limited, as long as the region requiring the electrode transmits ultraviolet light and the other region does not transmit ultraviolet light.
 このとき、使用する紫外線の波長は200nm乃至500nmの範囲であることが一般的であり、使用する画像形成下層膜の種類に合わせて適宜紫外線の波長を選択して用いる事が望ましい。具体的には、248nm、254nm、303nm、313nm、365nmなどの波長が挙げられる。特に好ましくは、248nm、254nmである。 At this time, the wavelength of ultraviolet rays to be used is generally in the range of 200 nm to 500 nm, and it is desirable to select and use the wavelength of ultraviolet rays appropriately according to the type of the image forming lower layer film to be used. Specific examples include wavelengths such as 248 nm, 254 nm, 303 nm, 313 nm, and 365 nm. Particularly preferred are 248 nm and 254 nm.
 本発明の画像形成用下層膜は、紫外線の照射によってその表面エネルギーが徐々に上昇し、十分な照射量とともに飽和する。この表面エネルギーの上昇は、画像形成液の接触角の低下をもたらし、結果として紫外線照射部における画像形成液の濡れ性が向上する。 In the underlayer film for image formation of the present invention, the surface energy is gradually increased by irradiation with ultraviolet rays, and is saturated with a sufficient irradiation amount. This increase in surface energy results in a decrease in the contact angle of the image forming liquid, and as a result, the wettability of the image forming liquid in the ultraviolet irradiation section is improved.
 従って、紫外線照射後の本発明の画像形成用下層膜上に画像形成液を塗布すると、画像形成用下層膜に表面エネルギーの差として描かれているパターン形状に沿って、画像形成液が自己組織的にパターンを形成し、任意のパターン形状の電極を得ることができる。 Therefore, when the image forming liquid is applied on the image forming lower layer film of the present invention after the ultraviolet irradiation, the image forming liquid is self-organized along the pattern shape drawn as the difference in surface energy on the image forming lower layer film. Patterns can be formed automatically, and electrodes having an arbitrary pattern shape can be obtained.
 このため、画像形成用下層膜に対する紫外線の照射量は、画像形成液の接触角が十分変化する量を照射する必要があるが、エネルギー効率および製造工程の時間短縮などの点から20J/cm以下であることが好ましく、10J/cm以下であることがより好ましく、5J/cm以下であることがもっとも好ましい。 For this reason, it is necessary to irradiate the lower layer film for image formation with an amount of ultraviolet light that sufficiently changes the contact angle of the image forming solution, but it is 20 J / cm 2 from the viewpoint of energy efficiency and shortening of the manufacturing process. preferably less, more preferably 10J / cm 2 or less, and most preferably 5 J / cm 2 or less.
 また、画像形成用下層膜の紫外線照射部と未照射部とで画像形成液の接触角の差が大きいほどパターニングが容易となり、複雑なパターンや微細なパターン形状に電極を加工する事が可能となる。よって、紫外線照射による接触角の変化量は5°以上であることが好ましく、10°以上であることがより好ましく、20°以上であることが最も好ましい。
 同様の理由で、画像形成液の接触角が、紫外線未照射部では30°以上であり、紫外線照射部では20°以下であることが好ましい。
 なお現在、画像形成液の溶媒は水が用いられることが多いことから、下層膜の性能評価にあたり、前記画像形成液の接触角の変化量を、簡易的に水の接触角の変化量に置き換えて評価してもよい。
In addition, the larger the difference in the contact angle of the image forming liquid between the UV-irradiated part and the non-irradiated part of the image-forming underlayer film, the easier the patterning becomes, and it becomes possible to process the electrode into a complicated pattern or a fine pattern shape. Become. Therefore, the amount of change in contact angle due to ultraviolet irradiation is preferably 5 ° or more, more preferably 10 ° or more, and most preferably 20 ° or more.
For the same reason, it is preferable that the contact angle of the image forming liquid is 30 ° or more in the ultraviolet non-irradiated portion and 20 ° or less in the ultraviolet irradiated portion.
Currently, water is often used as the solvent for the image forming solution. Therefore, when evaluating the performance of the lower layer film, the amount of change in the contact angle of the image forming solution is simply replaced with the amount of change in the contact angle of water. May be evaluated.
 本発明における画像形成液とは、基板に塗布した後、そこに含まれる溶媒を蒸発させることで、機能性薄膜として使用することができる塗布液であり、例えば、電荷輸送性物質が少なくとも一種の溶媒に溶解もしくは均一に分散したものが挙げられる。ここで、電荷輸送性とは導電性と同義であり、正孔輸送性、電子輸送性、正孔および電子の両電荷輸送性のいずれかを意味する。 The image forming liquid in the present invention is a coating liquid that can be used as a functional thin film by evaporating the solvent contained therein after being applied to a substrate. For example, the charge transporting substance is at least one kind. Examples thereof include those dissolved or uniformly dispersed in a solvent. Here, the charge transportability is synonymous with conductivity, and means any one of hole transportability, electron transportability, and both charge transportability of holes and electrons.
 上記の電荷輸送性物質としては、正孔または電子を輸送可能な導電性を有していれば、特に限定されない。その例としては、例えば、金、銀、銅、アルミニウムなどの金属微粒子やカーボンブラック、フラーレン類、カーボンナノチューブなどの無機材料や、ポリチオフェン,ポリアニリン,ポリピロール,ポリフルオレンおよびこれらの誘導体など有機π共役ポリマーなどが挙げられる。
 また、電荷輸送物質の電荷輸送能を向上させる目的でハロゲン、ルイス酸、プロトン酸、遷移金属化合物(具体例としてはBr、I、Cl、FeCl、MoCl、BF、AsF、SO、HNO、HSO、ポリスチレンスルホン酸等)などの電荷受容性物質、またはアルカリ金属、アルキルアンモニウムイオン(具体例としてはLi、Na、K、Cs、テトラエチレンアンモニウム、テトアブチルアンモニウム等)などの電荷供与性物質をドーパントとして更に画像形成液に加えても良い。
The charge transporting substance is not particularly limited as long as it has conductivity capable of transporting holes or electrons. Examples thereof include inorganic materials such as metal fine particles such as gold, silver, copper, and aluminum, carbon black, fullerenes, carbon nanotubes, and organic π-conjugated polymers such as polythiophene, polyaniline, polypyrrole, polyfluorene, and derivatives thereof. Etc.
Further, for the purpose of improving the charge transport ability of the charge transport material, halogen, Lewis acid, proton acid, transition metal compound (specific examples include Br 2 , I 2 , Cl 2 , FeCl 3 , MoCl 5 , BF 3 , AsF 5 , SO 3 , HNO 3 , H 2 SO 4 , polystyrene sulfonic acid, etc.) or alkali metals, alkylammonium ions (specific examples are Li, Na, K, Cs, tetraethyleneammonium, tetoabutyl) A charge donating substance such as ammonium) may be further added to the image forming solution as a dopant.
 画像形成液の溶媒としては、上記電荷輸送性物質あるいはドーパントを溶解もしくは均一に分散させるものであればとくに限定されない。ただし、正確な電極パターンを得るという観点からは、画像形成用下層膜の紫外線未照射部に対して、十分大きな接触角を示し、かつ本発明の画像形成用下層膜へのダメージが少ない事が好ましいことから、水や各種アルコール類が好ましい。
 また、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、2-ピロリドン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ビニル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素などの極性溶媒も有機系の電荷輸送性物質の溶解性に優れ、画像形成用下層膜の紫外線未照射部に対して、十分大きな接触角を示すという観点から好ましいが、これらは、本発明の画像形成用下層膜へのダメージが少ない範囲において使用することが好ましい。
The solvent for the image forming solution is not particularly limited as long as it dissolves or uniformly disperses the charge transporting substance or dopant. However, from the viewpoint of obtaining an accurate electrode pattern, a sufficiently large contact angle is exhibited with respect to the non-irradiated portion of the image forming lower layer film, and damage to the image forming lower layer film of the present invention is small. Since it is preferable, water and various alcohols are preferable.
N, N-dimethylformamide, N, N-dimethylacetamide, 2-pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, N-methylcaprolactam, dimethyl Polar solvents such as sulfoxide and tetramethylurea are also preferable from the viewpoint that they are excellent in solubility of organic charge transport materials and exhibit a sufficiently large contact angle with respect to an unirradiated portion of the underlayer film for image formation. Is preferably used in a range where the damage to the image-forming underlayer film of the present invention is small.
 画像形成液における電荷輸送性物質の濃度は、0.01乃至30質量%が好ましく、0.1乃至10質量%であることがより好ましく、最も好ましくは1乃至5質量%である。 The concentration of the charge transporting substance in the image forming liquid is preferably 0.01 to 30% by mass, more preferably 0.1 to 10% by mass, and most preferably 1 to 5% by mass.
 本発明に係る画像形成液の具体例としては、Baytron(登録商標) P(ポリエチレンジオキシチオフェン、バイエル社製)などが挙げられる。 Specific examples of the image forming liquid according to the present invention include Baytron (registered trademark) P (polyethylene dioxythiophene, manufactured by Bayer).
 本発明に係る電極は、本発明の画像形成用下層膜上に上記画像形成液を塗布し、パターン形成した後に、溶媒を蒸発させることで作製される。溶媒の蒸発方法としては特に限定されるものではないが、ホットプレートやオーブンを用いて、適切な雰囲気下、即ち大気、窒素等の不活性ガス、真空中等で蒸発を行い、均一な成膜面を得る事が可能である。 The electrode according to the present invention is produced by applying the image forming liquid on the image forming lower layer film of the present invention to form a pattern and then evaporating the solvent. The method for evaporating the solvent is not particularly limited, but a uniform film-forming surface is obtained by evaporating in an appropriate atmosphere, that is, in an inert gas such as air or nitrogen, in a vacuum, or the like, using a hot plate or an oven. Can be obtained.
 溶媒を蒸発させる温度は特に限定されないが、40乃至250℃で行うのが好ましい。パターン形状の維持及び膜厚の均一性を達成させる等の観点から、2段階以上の温度変化をつけても良い。 The temperature for evaporating the solvent is not particularly limited, but it is preferably 40 to 250 ° C. From the standpoint of maintaining the pattern shape and achieving the uniformity of the film thickness, a temperature change in two or more steps may be applied.
 この画像形成液から作成された電極は、電子デバイス同士を接続する配線のみならず電界効果トランジスタ、バイポーラトランジスタ、各種ダイオード、各種センサーなどの電子デバイスの電極などとして利用される。 The electrodes created from this image forming solution are used not only as wiring for connecting electronic devices but also as electrodes for electronic devices such as field effect transistors, bipolar transistors, various diodes, and various sensors.
 本発明に係る電子デバイスは、上記本発明の電極を有するものである。
 以下に本発明の画像形成用下層膜を有機FET素子に用いた例を示すが、本発明はこれに限定されるものではない。
The electronic device according to the present invention has the electrode of the present invention.
Although the example which used the lower film | membrane for image formation of this invention for the organic FET element below is shown, this invention is not limited to this.
 はじめに高ドープ型n型シリコン基板を用意する。基板は予め洗剤、アルコール、純水等による液体洗浄を行って浄化しておき、使用直前にオゾン処理、酸素-プラズマ処理等の表面処理を行う事が好ましい。基板上にSiO、Ta、Alなどを熱酸化、スパッタ、CVD、蒸着などの方法で成膜して、ゲート絶縁膜を形成する。ゲート絶縁層の膜厚は、有機FETの用途により異なるが、駆動電圧と電気絶縁性の兼ね合いから、30nm乃至1000nmの範囲であることが好ましい。 First, a highly doped n-type silicon substrate is prepared. It is preferable that the substrate is cleaned in advance by liquid cleaning with a detergent, alcohol, pure water or the like, and surface treatment such as ozone treatment or oxygen-plasma treatment is performed immediately before use. A gate insulating film is formed by depositing SiO 2 , Ta 2 O 5 , Al 2 O 3 or the like on the substrate by a method such as thermal oxidation, sputtering, CVD, or vapor deposition. The film thickness of the gate insulating layer varies depending on the use of the organic FET, but is preferably in the range of 30 nm to 1000 nm from the viewpoint of the driving voltage and the electric insulation.
 次に、絶縁膜上に、前記一般式(1)で表される繰り返し構造を有するポリイミド前駆体及び/又はポリイミドを含有する層を前述の手順に従い形成する。層の膜厚は、20nm乃至100nmとするのがもっとも好ましい。その後、所望の電極形状が得られるようにマスク等を用いるなどして紫外線を照射する。 Next, a layer containing polyimide precursor and / or polyimide having a repeating structure represented by the general formula (1) is formed on the insulating film according to the above-described procedure. The thickness of the layer is most preferably 20 nm to 100 nm. Thereafter, ultraviolet rays are irradiated using a mask or the like so as to obtain a desired electrode shape.
 続いて、水などの極性溶媒を用いた画像形成液を、画像形成用下層膜表面に塗布する。塗布された画像形成液は疎水性部(紫外線未照射部)をはじくように親水性部(紫外線照射部)に速やかに広がって安定化し、乾燥させることで、パターン化したソース及びドレイン電極が形成される。画像形成液の塗布法は、スピンコート法、キャスト法など特に限定されないが、液量がコントロールしやすいインクジェットプリント法やスプレー塗布法が好ましい。 Subsequently, an image forming liquid using a polar solvent such as water is applied to the surface of the lower layer film for image formation. The applied image forming solution spreads and stabilizes quickly in the hydrophilic part (ultraviolet irradiation part) to repel the hydrophobic part (ultraviolet irradiation part), and is dried to form patterned source and drain electrodes. Is done. The application method of the image forming liquid is not particularly limited, such as a spin coating method or a casting method, but an ink jet printing method or a spray coating method that allows easy control of the liquid amount is preferable.
 最後に、有機FETの活性層である、ペンタセン、ポリチオフェンなどの有機半導体材料を成膜する事により完成する。有機半導体材料の成膜方法は特に限定されないが、例えば真空蒸着や溶液をスピンコート法、キャスト法、インクジェットプリント法やスプレー塗布法などが挙げられる。 Finally, it is completed by depositing an organic semiconductor material such as pentacene or polythiophene, which is the active layer of the organic FET. A method for forming the organic semiconductor material is not particularly limited, and examples thereof include vacuum deposition and solution spin coating, casting, ink jet printing, and spray coating.
 このようにして、作製された有機FETは、製造工程が大幅に削減可能であり、さらには、マスク蒸着法よりも短いチャネルの有機FETが作製可能であるため、活性層として低移動度の有機半導体材料を用いた場合においても大電流を取り出すことが可能となる。また、本発明の方法により得られる画像形成用下層膜は優れた電気絶縁性も有していることから、ゲート絶縁層としても用いることも可能であり、製造工程の更なる簡略化が可能である。 In this way, the manufactured organic FET can greatly reduce the manufacturing process, and further, an organic FET having a channel shorter than that of the mask vapor deposition method can be manufactured. Even when a semiconductor material is used, a large current can be taken out. In addition, since the image-forming lower layer film obtained by the method of the present invention also has excellent electrical insulation, it can also be used as a gate insulating layer, and the manufacturing process can be further simplified. is there.
 以下に実施例をあげて本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
[数平均分子量及び重量平均分子量の測定]
 以下の合成例に従い得られるポリイミド前駆体の数平均分子量(以下、Mnと称する)及び重量平均分子量(以下、Mwと称する)は、GPC(常温ゲル浸透クロマトグラフィー)によって下記の装置及び測定条件にて測定し、ポリエチレングリコール(又はポリエチレンオキシド)換算値として算出した。
 GPC装置:昭和電工(株)製 Shodex(登録商標)(GPC-101)
 カラム:昭和電工(株)製 Shodex(登録商標)(KD803、KD805の直列)
 カラム温度:50℃
 溶離液:N,N-ジメチルホルムアミド
(添加剤として、臭化リチウム-水和物(LiBr・HO)30mmol/L、リン酸・無水結晶(o-リン酸)30mmol/L、テトラヒドロフラン(THF)10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:
 東ソー(株)製 TSK標準ポリエチレンオキシド(分子量:約900,000、150,000、100,000、30,000)
 ポリマー・ラボラトリー社製 ポリエチレングリコール(分子量:約12,000、4,000、1,000)。
[Measurement of number average molecular weight and weight average molecular weight]
The number average molecular weight (hereinafter referred to as Mn) and the weight average molecular weight (hereinafter referred to as Mw) of the polyimide precursor obtained according to the following synthesis examples are determined by GPC (room temperature gel permeation chromatography) according to the following apparatus and measurement conditions. And calculated as a polyethylene glycol (or polyethylene oxide) equivalent value.
GPC device: Shodex (registered trademark) (GPC-101) manufactured by Showa Denko KK
Column: Shodex (registered trademark) manufactured by Showa Denko KK (series of KD803 and KD805)
Column temperature: 50 ° C
Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) ) 10ml / L)
Flow rate: 1.0 ml / min Standard sample for creating a calibration curve:
TSK standard polyethylene oxide (Molecular weight: about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation
Polyethylene glycol (molecular weight: about 12,000, 4,000, 1,000) manufactured by Polymer Laboratory.
[膜厚の測定]
 ポリイミド膜の膜厚は、カッターナイフで膜の一部を剥離し、その段差を全自動微細形状測定機(ET4000A、(株)小坂研究所製)を用い、測定力を10μN、掃引速度を0.05mm/secとして測定することにより求めた。
[Measurement of film thickness]
The film thickness of the polyimide film was peeled off with a cutter knife, and the level difference was measured using a fully automatic fine shape measuring machine (ET4000A, manufactured by Kosaka Laboratory Ltd.) with a measuring force of 10 μN and a sweep speed of 0. It was determined by measuring as .05 mm / sec.
[紫外線の照射]
 紫外線は、高圧水銀ランプを光源として波長254nmの光を通すバンドパスフィルタを介してポリイミド膜上に照射した。
 なお、ポリイミド膜上の露光量の算出にあたり、紫外線の照度は、照度計(OAI社製 MODEL306)に波長253.7nmにピーク感度を持つDeep UV用のプローブを装着し測定した。
 得られた照度は45~50mW/cmであった。得られた照度に露光時間を乗じて露光量(J/cm)とした。
[UV irradiation]
Ultraviolet rays were irradiated onto the polyimide film through a band-pass filter that passed light having a wavelength of 254 nm using a high-pressure mercury lamp as a light source.
In calculating the amount of exposure on the polyimide film, the illuminance of ultraviolet rays was measured by attaching a Deep UV probe having a peak sensitivity at a wavelength of 253.7 nm to an illuminometer (MODEL 306 manufactured by OAI).
The obtained illuminance was 45-50 mW / cm 2 . The obtained illuminance was multiplied by the exposure time to obtain the exposure amount (J / cm 2 ).
[接触角の測定]
 接触角の測定は、恒温恒湿環境(25℃±2℃、50%RH±5%)において、全自動接触角計 CA-W(協和界面化学社製)を使用し測定した。
 水の接触角は、液量3μL、着液後5秒間静止してから測定した。
 プロピレングリコールモノメチルエーテル(PGME)の接触角は、液量3.0~3.5μL、着液後5秒間静止してから測定した。
[Measurement of contact angle]
The contact angle was measured using a fully automatic contact angle meter CA-W (manufactured by Kyowa Interface Chemical Co., Ltd.) in a constant temperature and humidity environment (25 ° C. ± 2 ° C., 50% RH ± 5%).
The contact angle of water was measured after the amount of liquid was 3 μL, and after resting for 5 seconds.
The contact angle of propylene glycol monomethyl ether (PGME) was measured after a liquid amount of 3.0 to 3.5 μL and after resting for 5 seconds.
<合成例>
[合成例1:ジアミン化合物(DA-1:3,5-ジアミノチオ安息香酸オクタデシル)の合成]
Figure JPOXMLDOC01-appb-C000047
<Synthesis example>
[Synthesis Example 1: Synthesis of diamine compound (DA-1: octadecyl 3,5-diaminothiobenzoate)]
Figure JPOXMLDOC01-appb-C000047
 窒素雰囲気下、化合物[ii](20.00g,69.79mmol)、トリエチルアミン(8.07g,79.76mmol)のテトラヒドロフラン(155g)溶液を10℃以下に冷却し、化合物[i](15.33g,66.47mmol)のテトラヒドロフラン(70g)溶液を発熱に注意しながら滴下した。滴下終了後、反応温度を23℃に上げ、さらに反応を行った。HPLC(高速液体クロマトグラフ)にて反応終了確認後、蒸留水(1.8L)に反応液を空け、析出した固体をろ過、水洗後、メタノール(192g)で分散洗浄し、化合物[iii]を得た(収量:26.4g,収率:83%)。
H-NMR(400MHz,CDCl,δppm):9.21-9.20(1H,m),9.07-9.06(2H,m),3.18(2H,t),1.73-1.67(2H,m),1.48-1.37(2H,m),1.23(28H,s),0.86(3H,t).
Under a nitrogen atmosphere, a solution of compound [ii] (20.00 g, 69.79 mmol) and triethylamine (8.07 g, 79.76 mmol) in tetrahydrofuran (155 g) is cooled to 10 ° C. or lower to obtain compound [i] (15.33 g). , 66.47 mmol) in tetrahydrofuran (70 g) was added dropwise while paying attention to heat generation. After completion of the dropwise addition, the reaction temperature was raised to 23 ° C. and further reaction was performed. After confirming the completion of the reaction by HPLC (high performance liquid chromatograph), the reaction solution is poured into distilled water (1.8 L), the precipitated solid is filtered, washed with water, dispersed and washed with methanol (192 g), and compound [iii] is obtained. Obtained (yield: 26.4 g, yield: 83%).
1 H-NMR (400 MHz, CDCl 3 , δ ppm): 9.21-9.20 (1H, m), 9.07-9.06 (2H, m), 3.18 (2H, t), 1. 73-1.67 (2H, m), 1.48-1.37 (2H, m), 1.23 (28H, s), 0.86 (3H, t).
 窒素雰囲気下、化合物[iii](19.95g,41.5mmol)、鉄粉(還元鉄,13.91g,249.0mmol)、酢酸エチル(180g)の混合物を、70℃に加熱した後、塩化アンモニウム(6.66g,124.5mmol)の10%水溶液を滴下して加えた。HPLCにて反応終了後、セライトろ過にて固体をろ過した。酢酸エチルと蒸留水各200mLで洗浄後、水層を除去し、有機層を蒸留水(300mL)で3回洗浄した。その後、有機層を無水硫酸マグネシウムで乾燥、ろ過後、溶媒を留去した。得られた化合物(DA-1)の粗物をメタノール(104g)にて再結晶し、化合物(DA-1)を得た(収量:11.7g、収率:67%)。
H-NMR(400MHz,CDCl,δppm):6.69(2H,dd),6.18(1H,t),3.69(4H,brs),3.00(2H,t),1.66-1.56(2H,m),1.42-1.25(30H,m),0.88(3H,t).
Under a nitrogen atmosphere, a mixture of compound [iii] (19.95 g, 41.5 mmol), iron powder (reduced iron, 13.91 g, 249.0 mmol), and ethyl acetate (180 g) was heated to 70 ° C., and then chlorinated. A 10% aqueous solution of ammonium (6.66 g, 124.5 mmol) was added dropwise. After completion of the reaction by HPLC, the solid was filtered by Celite filtration. After washing with 200 mL each of ethyl acetate and distilled water, the aqueous layer was removed, and the organic layer was washed 3 times with distilled water (300 mL). Thereafter, the organic layer was dried over anhydrous magnesium sulfate and filtered, and then the solvent was distilled off. The resulting crude product of compound (DA-1) was recrystallized from methanol (104 g) to obtain compound (DA-1) (yield: 11.7 g, yield: 67%).
1 H-NMR (400 MHz, CDCl 3 , δ ppm): 6.69 (2H, dd), 6.18 (1H, t), 3.69 (4H, brs), 3.00 (2H, t), 1 .66-1.56 (2H, m), 1.42-1.25 (30H, m), 0.88 (3H, t).
[合成例2:ポリイミド前駆体(PI-1)の合成]
 窒素気流下中、50mLの4つ口フラスコに、合成例1で調製した3,5-ジアミノチオ安息香酸オクタデシル(DA-1)1.2621g(0.003mol)を入れ、N-メチル-2-ピロリドン(以後 NMP)10.42gに溶解させた後、1,2,3,4-シクロブタンテトラカルボン酸無水物(以後 CBDA)0.5766g(0.003mol)を加え、これを23℃で10時間攪拌して重合反応を行い、さらにNMPで希釈することで、ポリイミド前駆体(PI-1)の8質量%溶液を得た。
 得られたポリイミド前駆体(PI-1)の数平均分子量(Mn)と重量平均分子量(Mw)はそれぞれMn=11,650、Mw=28,380であった。
[Synthesis Example 2: Synthesis of polyimide precursor (PI-1)]
In a 50 mL four-necked flask under nitrogen flow, 1.2621 g (0.003 mol) of octadecyl 3,5-diaminothiobenzoate (DA-1) prepared in Synthesis Example 1 was placed, and N-methyl-2-pyrrolidone was added. (Hereinafter referred to as NMP) After dissolving in 10.42 g, 0.5766 g (0.003 mol) of 1,2,3,4-cyclobutanetetracarboxylic anhydride (hereinafter referred to as CBDA) was added, and this was stirred at 23 ° C. for 10 hours. Then, a polymerization reaction was carried out and further diluted with NMP to obtain an 8% by mass solution of a polyimide precursor (PI-1).
The number average molecular weight (Mn) and weight average molecular weight (Mw) of the obtained polyimide precursor (PI-1) were Mn = 11,650 and Mw = 28,380, respectively.
[合成例3:ポリイミド前駆体(PI-2)の合成]
 窒素気流下中、50mLの4つ口フラスコに、DA-1 0.8835g(0.0021mol)、p-フェニレンジアミン(p-PDA)0.0973g(0.0009mol)を入れ、NMP 8.83gに溶解させた後、CBDA 0.5766g(0.00294mol)を加え、これを23℃で10時間攪拌して重合反応を行い、さらにNMPで希釈することで、ポリイミド前駆体(PI-2)の6質量%溶液を得た。
 得られたポリイミド前駆体(PI-2)の数平均分子量(Mn)と重量平均分子量(Mw)はそれぞれMn=34,670、Mw=97,560であった。
[Synthesis Example 3: Synthesis of polyimide precursor (PI-2)]
Under a nitrogen stream, 0.8835 g (0.0021 mol) of DA-1 and 0.0973 g (0.0009 mol) of p-phenylenediamine (p-PDA) were placed in a 50 mL four-necked flask, and 8.83 g of NMP was added. After dissolution, 0.5766 g (0.00294 mol) of CBDA was added, this was stirred at 23 ° C. for 10 hours to conduct a polymerization reaction, and further diluted with NMP to obtain 6 of polyimide precursor (PI-2). A mass% solution was obtained.
The number average molecular weight (Mn) and weight average molecular weight (Mw) of the obtained polyimide precursor (PI-2) were Mn = 34,670 and Mw = 97,560, respectively.
[合成例4:比較例のポリイミド前駆体(PI-3)の合成]
 窒素気流下中、200mLの4つ口フラスコに、1-オクタデシルオキシ-2,4-ジアミノベンゼン(APC18)15.065g(0.040mol)を入れ、NMP 127.6gに溶解させた後、CBDA 7.45g(0.038mol)を加え、これを23℃で12時間攪拌して重合反応を行い、さらにNMPで希釈することで、ポリイミド前駆体(PI-3)の6重量%溶液を得た。
 得られたポリアミド前駆体(PI-3)の数平均分子量(Mn)と重量平均分子量(Mw)はそれぞれMn=16,000、Mw=48,000であった。
[Synthesis Example 4: Synthesis of Polyimide Precursor (PI-3) of Comparative Example]
Under a nitrogen stream, 15.065 g (0.040 mol) of 1-octadecyloxy-2,4-diaminobenzene (APC18) was placed in a 200 mL four-necked flask, dissolved in 127.6 g of NMP, and then CBDA 7 .45 g (0.038 mol) was added, this was stirred at 23 ° C. for 12 hours to conduct a polymerization reaction, and further diluted with NMP to obtain a 6 wt% solution of polyimide precursor (PI-3).
The number average molecular weight (Mn) and weight average molecular weight (Mw) of the obtained polyamide precursor (PI-3) were Mn = 16,000 and Mw = 48,000, respectively.
[合成例5:ジアミン化合物(DA-2)]
DA-2の合成
Figure JPOXMLDOC01-appb-C000048
[Synthesis Example 5: Diamine Compound (DA-2)]
Synthesis of DA-2
Figure JPOXMLDOC01-appb-C000048
 窒素雰囲気下、化合物[iv](42.63g,209.9mmol)、化合物[v](102.97g,230.9mmol)、銅粉末(29.35g,461.8mmol)、2,2’-ビピリジル(3.28g,20.99mmol)、ジメチルスルホキシド(341g)の混合物を120℃にて撹拌した。HPLCにて反応終了確認後、蒸留水(2730g)に反応液を加え、ろ過、蒸留水(2L)、酢酸エチル(1.5L)でろ物を洗浄した。次に、ろ過ろ液に、ヘキサン(500g)を加え、飽和食塩水(1L)で3回有機層を洗浄し、無水硫酸マグネシウムで乾燥した。その後、ろ過、溶媒留去することで、化合物[vi]を得た(収量:75.33g、収率:81%)。
H-NMR(400MHz, CDCl, δppm):7.48(2H, d), 7.32(2H, d), 2.52 (3H, s).
Under a nitrogen atmosphere, compound [iv] (42.63 g, 209.9 mmol), compound [v] (102.97 g, 230.9 mmol), copper powder (29.35 g, 461.8 mmol), 2,2′-bipyridyl (3.28 g, 20.99 mmol) and a mixture of dimethyl sulfoxide (341 g) were stirred at 120 ° C. After confirming the completion of the reaction by HPLC, the reaction solution was added to distilled water (2730 g), and the filtrate was washed with filtration, distilled water (2 L), and ethyl acetate (1.5 L). Next, hexane (500 g) was added to the filtrate, and the organic layer was washed 3 times with saturated brine (1 L) and dried over anhydrous magnesium sulfate. Then, the compound [vi] was obtained by filtering and evaporating the solvent (yield: 75.33 g, yield: 81%).
1 H-NMR (400 MHz, CDCl 3 , δ ppm): 7.48 (2H, d), 7.32 (2H, d), 2.52 (3H, s).
 窒素雰囲気下、化合物[vi](52.00g,117.6mmol)のアセトニトリル(347g)/純水(17g)溶液に、N-フルオロ-N’-(クロロメチル)トリエチレンジアミン ビス(テトラフルオロボラート)(43.63g,123.2mmol)を加え、23℃にて反応を行った。HPLCにて反応終了確認後、溶媒留去した。次に、ジクロロメタン(1.2L)を加え、飽和重曹水(700mL)を少しずつ加えた。水層を除去した後、飽和食塩水(700mL)で有機層を3回洗浄し、有機層を無水硫酸マグネシウムにて乾燥させた。その後、ろ過、溶媒留去を行い、化合物[vii]を得た(収量:48.05g、収率:89%)。
H-NMR(400MHz, CDCl, δppm):7.81(2H, d), 7.78(2H, d), 2.71 (3H, s).
Under a nitrogen atmosphere, N-fluoro-N ′-(chloromethyl) triethylenediamine bis (tetrafluoroborate) was added to a solution of compound [vi] (52.00 g, 117.6 mmol) in acetonitrile (347 g) / pure water (17 g). ) (43.63 g, 123.2 mmol) was added, and the reaction was performed at 23 ° C. After confirming the completion of the reaction by HPLC, the solvent was distilled off. Next, dichloromethane (1.2 L) was added, and saturated aqueous sodium hydrogen carbonate (700 mL) was added little by little. After removing the aqueous layer, the organic layer was washed three times with saturated brine (700 mL), and the organic layer was dried over anhydrous magnesium sulfate. Then, filtration and solvent distillation were performed and compound [vii] was obtained (yield: 48.05 g, yield: 89%).
1 H-NMR (400 MHz, CDCl 3 , δ ppm): 7.81 (2H, d), 7.78 (2H, d), 2.71 (3H, s).
 窒素雰囲気下、化合物[vii](26.03g,56.8mmol)に無水酢酸(46.39g,454.4mmol)を加え、加熱還流下反応を行った。HPLCにて反応終了確認後、溶媒留去し、化合物[viii]の粗物を得た。得られた粗物をカラムクロマトグラフィー(SiO、ヘキサン/酢酸エチル)にて精製し、化合物[viii]を得た(収量:24.11g、収率:85%)。
H-NMR(400MHz, CDCl, δppm):7.54(4H, s), 5.50(2H, s), 2.14 (3H, s).
Acetic anhydride (46.39 g, 454.4 mmol) was added to compound [vii] (26.03 g, 56.8 mmol) under a nitrogen atmosphere, and the reaction was carried out under reflux with heating. After confirmation of completion of the reaction by HPLC, the solvent was distilled off to obtain a crude product of compound [viii]. The resulting crude product was purified by column chromatography (SiO 2 , hexane / ethyl acetate) to obtain compound [viii] (yield: 24.11 g, yield: 85%).
1 H-NMR (400 MHz, CDCl 3 , δ ppm): 7.54 (4H, s), 5.50 (2H, s), 2.14 (3H, s).
 窒素雰囲気下、化合物[viii](37.67g,75.3mmol)のメタノール(150g)溶液に、28%アンモニア水溶液(13.73g)を加え、23℃にて撹拌を行なった。HPLCにて反応終了確認後、35%塩酸にてpHを6に調整した後、溶媒留去した。その後、ジクロロメタン(1L)にて粗物を溶解させた後、飽和食塩水(500mL)で3回洗浄、無水硫酸マグネシウムにて乾燥を行なった。その後、ろ過、溶媒留去し、化合物[ix]を得た(収量:31.28g、収率:97%)。
 1H-NMR(400MHz, CDCl, δppm):7.44(2H, d), 7.37(2H, d), 3.61 (1H, s).
Under a nitrogen atmosphere, 28% aqueous ammonia solution (13.73 g) was added to a methanol (150 g) solution of compound [viii] (37.67 g, 75.3 mmol), and the mixture was stirred at 23 ° C. After confirming the completion of the reaction by HPLC, the pH was adjusted to 6 with 35% hydrochloric acid, and then the solvent was distilled off. Thereafter, the crude product was dissolved with dichloromethane (1 L), washed 3 times with saturated saline (500 mL), and dried over anhydrous magnesium sulfate. Thereafter, filtration and evaporation of the solvent yielded compound [ix] (yield: 31.28 g, yield: 97%).
1 H-NMR (400 MHz, CDCl 3 , δ ppm): 7.44 (2H, d), 7.37 (2H, d), 3.61 (1H, s).
 窒素雰囲気下、化合物[ix](31.00g,72.4mmol)、トリエチルアミン(7.33g,72.4mmol)のテトラヒドロフラン(139g)溶液を10℃以下に冷却し、化合物[i](15.90g,68.95mmol)のテトラヒドロフラン(100g)溶液を発熱に注意しながら滴下した。滴下終了後、反応温度を23℃に上げ、さらに反応を行った。HPLCにて反応終了確認後、蒸留水(1.9L)に反応液を加え、析出した固体をろ過、水洗後、2-プロパノール(257g)から再結晶することで、化合物[x]を得た(収量:27.01g,収率:63%)。
 1H-NMR(400MHz, CDCl, δppm):9.30(1H, t), 9.15(2H, d), 7.74 (4H, q).
Under a nitrogen atmosphere, a solution of compound [ix] (31.00 g, 72.4 mmol) and triethylamine (7.33 g, 72.4 mmol) in tetrahydrofuran (139 g) was cooled to 10 ° C. or lower to obtain compound [i] (15.90 g). , 68.95 mmol) in tetrahydrofuran (100 g) was added dropwise, taking care of the exotherm. After completion of the dropwise addition, the reaction temperature was raised to 23 ° C. and further reaction was performed. After confirming the completion of the reaction by HPLC, the reaction solution was added to distilled water (1.9 L), and the precipitated solid was filtered, washed with water, and recrystallized from 2-propanol (257 g) to obtain compound [x]. (Yield: 27.01 g, yield: 63%).
1 H-NMR (400 MHz, CDCl 3 , δ ppm): 9.30 (1H, t), 9.15 (2H, d), 7.74 (4H, q).
 窒素雰囲気下、化合物[x](14.00g,22.5mmol)、3%白金カーボン(0.3%鉄担持、含水,2.8g,20wt%)、メタノール(210g)の混合物を、水素存在下、23℃にて撹拌した。HPLCにて反応終了確認後、反応混合物をセライトにてろ過し、セライトをメタノール(50mL)で洗浄し、溶媒留去を行った。得られた化合物(DA-2)の粗物を2-プロパノール(60g)にて分散洗浄し、ろ過、乾燥を行い、化合物(DA-2)を得た(収量:9.13g、収率:72%)。
H-NMR(400MHz, CDCl, δppm):7.65(4H, s), 6.73(2H, d), 6.24 (1H, t), 3.76(4H, brs).
Under a nitrogen atmosphere, a mixture of compound [x] (14.00 g, 22.5 mmol), 3% platinum carbon (0.3% iron supported, water content, 2.8 g, 20 wt%), methanol (210 g) was present in the presence of hydrogen. Under stirring at 23 ° C. After confirming the completion of the reaction by HPLC, the reaction mixture was filtered through celite, the celite was washed with methanol (50 mL), and the solvent was distilled off. The resulting crude product of compound (DA-2) was dispersed and washed with 2-propanol (60 g), filtered and dried to obtain compound (DA-2) (yield: 9.13 g, yield: 72%).
1 H-NMR (400 MHz, CDCl 3 , δ ppm): 7.65 (4H, s), 6.73 (2H, d), 6.24 (1H, t), 3.76 (4H, brs).
[合成例6:ジアミン化合物(DA-3)]
DA-3の合成
Figure JPOXMLDOC01-appb-C000049
[Synthesis Example 6: Diamine Compound (DA-3)]
Synthesis of DA-3
Figure JPOXMLDOC01-appb-C000049
 窒素雰囲気下、化合物[iv](27.05g,133.2mmol)、化合物[xi](80.00g,146.5mmol)、銅粉末(18.62g,293.0mmol)、2,2’-ビピリジル(2.08g,13.32mmol)、ジメチルスルホキシド(216g)の混合物を120℃にて撹拌した。HPLCにて反応終了確認後、蒸留水(1730g)に反応液を加え、ろ過、蒸留水(1L)、酢酸エチル(1L)でろ物を洗浄した。次に、ろ過ろ液に、ヘキサン(500g)を加え、飽和食塩水(1L)で3回有機層を洗浄し、無水硫酸マグネシウムで乾燥した。その後、ろ過、溶媒留去することで、化合物[xii]を得た(収量:65.72g、収率:91%)。
H-NMR(400MHz, CDCl, δppm):7.58(2H, d), 7.47(2H, d), 2.54 (3H, s).
Under a nitrogen atmosphere, compound [iv] (27.05 g, 133.2 mmol), compound [xi] (80.00 g, 146.5 mmol), copper powder (18.62 g, 293.0 mmol), 2,2′-bipyridyl (2.08 g, 13.32 mmol) and a mixture of dimethyl sulfoxide (216 g) were stirred at 120 ° C. After confirming the completion of the reaction by HPLC, the reaction solution was added to distilled water (1730 g), and the filtrate was washed with filtration, distilled water (1 L) and ethyl acetate (1 L). Next, hexane (500 g) was added to the filtrate, and the organic layer was washed 3 times with saturated brine (1 L) and dried over anhydrous magnesium sulfate. Then, the compound [xii] was obtained by filtering and distilling a solvent off (yield: 65.72 g, yield: 91%).
1 H-NMR (400 MHz, CDCl 3 , δ ppm): 7.58 (2H, d), 7.47 (2H, d), 2.54 (3H, s).
 窒素雰囲気下、化合物[xii](50.00g,92.21mmol)のアセトニトリル(333g)/純水(17g)溶液に、N-フルオロ-N’-(クロロメチル)トリエチレンジアミン ビス(テトラフルオロボラート)(32.67g,92.21mmol)を加え、23℃にて反応を行った。HPLCにて反応終了確認後、溶媒留去した。次に、ジクロロメタン(800mL)を加え、飽和重曹水(500mL)を少しずつ加えた。水層を除去した後、飽和食塩水(500mL)で有機層を3回洗浄し、有機層を無水硫酸マグネシウムにて乾燥させた。その後、ろ過、溶媒留去を行い、化合物[xiii]を得た(収量:47.98g、収率:93%)。
H-NMR(400MHz, CDCl, δppm):7.81(2H, d), 7.77(2H, d), 2.78 (3H, s).
Under a nitrogen atmosphere, N-fluoro-N ′-(chloromethyl) triethylenediamine bis (tetrafluoroborate) was added to a solution of compound [xii] (50.00 g, 92.21 mmol) in acetonitrile (333 g) / pure water (17 g). ) (32.67 g, 92.21 mmol) was added, and the reaction was performed at 23 ° C. After confirming the completion of the reaction by HPLC, the solvent was distilled off. Next, dichloromethane (800 mL) was added, and saturated aqueous sodium hydrogen carbonate (500 mL) was added little by little. After removing the aqueous layer, the organic layer was washed three times with saturated brine (500 mL), and the organic layer was dried over anhydrous magnesium sulfate. Then, filtration and solvent distillation were performed and compound [xiii] was obtained (yield: 47.98 g, yield: 93%).
1 H-NMR (400 MHz, CDCl 3 , δ ppm): 7.81 (2H, d), 7.77 (2H, d), 2.78 (3H, s).
 窒素雰囲気下、化合物[xiii](70.63g,126.5mmol)に無水トリフルオロ酢酸(220.56g,1.05mol)を加え、加熱還流下反応を行った。HPLCにて反応終了確認後、溶媒留去し、粗物を得た。次に、メタノール(226g)およびトリエチルアミン(211.89g)を加え、30分間、23℃にて撹拌後、溶媒留去を行った。さらに、得られた粗物を酢酸エチル(1L)で溶解させた後、飽和塩化アンモニウム水溶液(1L)、飽和食塩水(1L)2回で洗浄後、有機層を硫酸マグネシウムで乾燥させ、溶媒留去することで、化合物[xiv]を得た(収量:64.7g、収率:97%)。
 1H-NMR(400MHz, CDCl, δppm):7.44 (2H, d), 7.36(2H, d), 3.61 (1H, s).
Under a nitrogen atmosphere, trifluoroacetic anhydride (220.56 g, 1.05 mol) was added to compound [xiii] (70.63 g, 126.5 mmol), and the reaction was carried out under reflux. After confirming the completion of the reaction by HPLC, the solvent was distilled off to obtain a crude product. Next, methanol (226 g) and triethylamine (211.89 g) were added, and the solvent was distilled off after stirring at 23 ° C. for 30 minutes. Further, the obtained crude product was dissolved in ethyl acetate (1 L), washed with saturated aqueous ammonium chloride (1 L) and saturated brine (1 L) twice, the organic layer was dried over magnesium sulfate, The compound [xiv] was obtained by leaving (yield: 64.7 g, yield: 97%).
1 H-NMR (400 MHz, CDCl 3 , δ ppm): 7.44 (2H, d), 7.36 (2H, d), 3.61 (1H, s).
 窒素雰囲気下、化合物[xiv](69.00g,130.62mmol)、トリエチルアミン(13.22g,130.62mmol)のテトラヒドロフラン(290g)溶液を10℃以下に冷却し、化合物[i](28.68g,124.40mmol)のテトラヒドロフラン(145g)溶液を発熱に注意しながら滴下した。滴下終了後、反応温度を23℃に上げ、さらに反応を行った。HPLCにて反応終了確認後、蒸留水(3.5L)に反応液を加え、析出した固体をろ過、水洗後、2-プロパノール(270g)から再結晶することで、化合物[xv]を得た(収量:77.99g,収率:88%)。
H-NMR(400MHz, CDCl, δppm):9.27(1H, t), 9.17(2H, d), 7.61 (4H, q).
Under a nitrogen atmosphere, a solution of compound [xiv] (69.00 g, 130.62 mmol) and triethylamine (13.22 g, 130.62 mmol) in tetrahydrofuran (290 g) is cooled to 10 ° C. or lower to obtain compound [i] (28.68 g). , 124.40 mmol) in tetrahydrofuran (145 g) was added dropwise, taking care of the exotherm. After completion of the dropwise addition, the reaction temperature was raised to 23 ° C. and further reaction was performed. After confirming the completion of the reaction by HPLC, the reaction solution was added to distilled water (3.5 L), and the precipitated solid was filtered, washed with water, and recrystallized from 2-propanol (270 g) to obtain compound [xv]. (Yield: 79.99 g, yield: 88%).
1 H-NMR (400 MHz, CDCl 3 , δ ppm): 9.27 (1H, t), 9.17 (2H, d), 7.61 (4H, q).
 窒素雰囲気下、化合物[xvii](8.00g,11.1mmol)、3%白金カーボン(0.3%鉄担持、含水,1.6g,20wt%)、メタノール(120g)の混合物を、水素存在下、23℃にて撹拌した。HPLCにて反応終了確認後、反応混合物をセライトにてろ過し、セライトをメタノール(30mL)で洗浄し、溶媒留去を行った。得られた化合物(DA-3)の粗物を2-プロパノール(28g)にて分散洗浄し、ろ過、乾燥を行い、化合物(DA-3)を得た(収量:5.6g、収率:76%)。
H-NMR(400MHz, CDCl, δppm):7.65(4H, s), 6.73(2H, d), 6.24 (1H, t), 3.76(4H, brs).
Under a nitrogen atmosphere, a mixture of compound [xvii] (8.00 g, 11.1 mmol), 3% platinum carbon (0.3% iron supported, water content, 1.6 g, 20 wt%), methanol (120 g) was present in the presence of hydrogen. Under stirring at 23 ° C. After confirming the completion of the reaction by HPLC, the reaction mixture was filtered through celite, the celite was washed with methanol (30 mL), and the solvent was distilled off. The obtained crude compound (DA-3) was dispersed and washed with 2-propanol (28 g), filtered and dried to obtain compound (DA-3) (yield: 5.6 g, yield: 76%).
1 H-NMR (400 MHz, CDCl 3 , δ ppm): 7.65 (4H, s), 6.73 (2H, d), 6.24 (1H, t), 3.76 (4H, brs).
[合成例7:ジアミン化合物(DA-4)]
DA-4の合成
Figure JPOXMLDOC01-appb-C000050
[Synthesis Example 7: Diamine Compound (DA-4)]
Synthesis of DA-4
Figure JPOXMLDOC01-appb-C000050
 窒素雰囲気下、化合物[xvi](21.87g,45.54mmol)、トリエチルアミン(4.61g,45.54mmol)のテトラヒドロフラン(90g)溶液を10℃以下に冷却し、化合物[i](10.00g,43.37mmol)のテトラヒドロフラン(60g)溶液を発熱に注意しながら滴下した。滴下終了後、反応温度を23℃に上げ、さらに反応を行った。HPLC(高速液体クロマトグラフィー)にて反応終了確認後、蒸留水(1.2L)に反応液を加え、析出した固体をろ過、水洗後、2-プロパノール(232g)で分散洗浄し、化合物[xvii]を得た(収量:27.69g,収率:95%)。
 1H-NMR(400MHz, DMSO-d, δppm):9.06(1H, t), 8.86(2H, d), 3.44 (2H, t), 2.79-2.66(2H, m).
Under a nitrogen atmosphere, a solution of compound [xvi] (21.87 g, 45.54 mmol) and triethylamine (4.61 g, 45.54 mmol) in tetrahydrofuran (90 g) is cooled to 10 ° C. or lower, and compound [i] (10.00 g , 43.37 mmol) in tetrahydrofuran (60 g) was added dropwise while paying attention to heat generation. After completion of the dropwise addition, the reaction temperature was raised to 23 ° C. and further reaction was performed. After confirming the completion of the reaction by HPLC (High Performance Liquid Chromatography), the reaction solution was added to distilled water (1.2 L), the precipitated solid was filtered, washed with water, dispersed and washed with 2-propanol (232 g), and the compound [xvii (Yield: 27.69 g, Yield: 95%).
1 H-NMR (400 MHz, DMSO-d 6 , δ ppm): 9.06 (1H, t), 8.86 (2H, d), 3.44 (2H, t), 2.79-2.66 ( 2H, m).
 窒素雰囲気下、化合物[xvii](25.00g,37.1mmol)、鉄粉(還元鉄,12.42g,222.5mmol)、酢酸エチル(225g)の混合物を、70℃に加熱した後、塩化アンモニウム(5.95g,111.3mmol)の10%水溶液を滴下して加えた。HPLCにて反応終了確認後、セライトろ過にて固体をろ過した。酢酸エチルと蒸留水各500mLで洗浄後、水層を除去し、有機層を蒸留水(500mL)で3回洗浄した。その後、有機層を無水硫酸マグネシウムで乾燥、ろ過後、溶媒を留去した。得られた化合物(DA-4)の粗物をヘキサン(60g)にて分散洗浄し、ろ過、乾燥を行い、化合物(DA-4)を得た(収量:19.5g,収率:85%)。
H-NMR(400MHz, DMSO-d, δppm):6.36(2H, d), 6.06(1H, t), 5.14 (4H, brs), 3.19(2H, t), 2.64-2.51(2H, m).
Under a nitrogen atmosphere, a mixture of compound [xvii] (25.00 g, 37.1 mmol), iron powder (reduced iron, 12.42 g, 222.5 mmol), and ethyl acetate (225 g) was heated to 70 ° C. and then chlorinated. A 10% aqueous solution of ammonium (5.95 g, 111.3 mmol) was added dropwise. After confirming the completion of the reaction by HPLC, the solid was filtered by Celite filtration. After washing with 500 mL each of ethyl acetate and distilled water, the aqueous layer was removed, and the organic layer was washed 3 times with distilled water (500 mL). Thereafter, the organic layer was dried over anhydrous magnesium sulfate and filtered, and then the solvent was distilled off. The resulting crude product of compound (DA-4) was dispersed and washed with hexane (60 g), filtered and dried to obtain compound (DA-4) (yield: 19.5 g, yield: 85%). ).
1 H-NMR (400 MHz, DMSO-d 6 , δ ppm): 6.36 (2H, d), 6.06 (1H, t), 5.14 (4H, brs), 3.19 (2H, t) , 2.64-2.51 (2H, m).
[合成例8:ポリイミド(PI-4)の合成]
 窒素気流下中、100mLの4つ口フラスコに、2,2‐ビス(4‐アミノフェノキシフェニル)プロパン(以後BAPP) 3.5837g(8.73mmol)、DA-2 0.1518g(0.27mmol)を入れNMP 36.02gに溶解させた後、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物(以後TDA)2.6214g(8.73mmol)を加え、これを50℃で24時間攪拌して重合反応を行った。得られたポリアミド酸の溶液をNMPで8質量%に希釈した。
 この溶液30gにイミド化触媒として無水酢酸11g、ピリジン5.2gを加え、50℃で3時間反応させポリイミド溶液を得た。この溶液を大量のメタノール中に投入し、得られた白色沈殿をろ別、乾燥し、白色のポリイミド粉末を得た。このポリイミド粉末はH-NMRより90%以上イミド化されていることを確認した。この粉末2.1gをγ-ブチロラクトン27.7gとジプロピレングリコールモノメチルエーテル 5.3gの混合溶媒に溶解させて、ポリイミド(PI-4)の6質量%溶液を得た。
 得られたポリイミド(PI-4)の数平均分子量(Mn)と重量平均分子量(Mw)はそれぞれMn=14,300、Mw=38,000であった。
[Synthesis Example 8: Synthesis of polyimide (PI-4)]
In a 100 mL four-necked flask under nitrogen stream, 2,2-bis (4-aminophenoxyphenyl) propane (hereinafter BAPP) 3.55837 g (8.73 mmol), DA-2 0.1518 g (0.27 mmol) Was dissolved in 36.02 g of NMP, and 2.6214 g (8.73 mmol) of 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride (hereinafter TDA) was added. In addition, this was stirred at 50 ° C. for 24 hours to carry out a polymerization reaction. The obtained polyamic acid solution was diluted to 8% by mass with NMP.
To 30 g of this solution, 11 g of acetic anhydride and 5.2 g of pyridine were added as an imidization catalyst and reacted at 50 ° C. for 3 hours to obtain a polyimide solution. This solution was put into a large amount of methanol, and the resulting white precipitate was filtered and dried to obtain a white polyimide powder. This polyimide powder was confirmed to be imidized by 90% or more by 1 H-NMR. 2.1 g of this powder was dissolved in a mixed solvent of 27.7 g of γ-butyrolactone and 5.3 g of dipropylene glycol monomethyl ether to obtain a 6% by mass solution of polyimide (PI-4).
The number average molecular weight (Mn) and the weight average molecular weight (Mw) of the obtained polyimide (PI-4) were Mn = 14,300 and Mw = 38,000, respectively.
[合成例9:ポリイミド(PI-5)の合成]
 窒素気流下中、100mLの4つ口フラスコに、BAPP 3.4728g(8.46mmol)、DA-2 0.3037g(0.54mmol)を入れNMP 36.25gに溶解させた後、TDA 2.6214g(8.73mmol)を加え、これを50℃で24時間攪拌して重合反応を行った。得られたポリアミド酸の溶液をNMPで8質量%に希釈した。
 この溶液30gにイミド化触媒として無水酢酸11g、ピリジン5.2gを加え、50℃で3時間反応させポリイミド溶液を得た。この溶液を大量のメタノール中に投入し、得られた白色沈殿をろ別、乾燥し、白色のポリイミド粉末を得た。このポリイミド粉末はH-NMRより90%以上イミド化されていることを確認した。この粉末2.1gをγ-ブチロラクトン27.7gとジプロピレングリコールモノメチルエーテル 5.3gの混合溶媒に溶解させて、ポリイミド(PI-5)の6質量%溶液を得た。
 得られたポリイミド(PI-5)の数平均分子量(Mn)と重量平均分子量(Mw)はそれぞれMn=16,400、Mw=39,400であった。
[Synthesis Example 9: Synthesis of polyimide (PI-5)]
In a 100 mL four-necked flask under nitrogen flow, 3.4728 g (8.46 mmol) of BAPP and 0.3037 g (0.54 mmol) of DA-2 were added and dissolved in 36.25 g of NMP, and then 2.6214 g of TDA. (8.73 mmol) was added, and this was stirred at 50 ° C. for 24 hours to carry out a polymerization reaction. The obtained polyamic acid solution was diluted with NMP to 8% by mass.
To 30 g of this solution, 11 g of acetic anhydride and 5.2 g of pyridine were added as an imidization catalyst and reacted at 50 ° C. for 3 hours to obtain a polyimide solution. This solution was put into a large amount of methanol, and the resulting white precipitate was filtered and dried to obtain a white polyimide powder. This polyimide powder was confirmed to be imidized by 90% or more by 1 H-NMR. 2.1 g of this powder was dissolved in a mixed solvent of 27.7 g of γ-butyrolactone and 5.3 g of dipropylene glycol monomethyl ether to obtain a 6% by mass solution of polyimide (PI-5).
The number average molecular weight (Mn) and weight average molecular weight (Mw) of the obtained polyimide (PI-5) were Mn = 16,400 and Mw = 39,400, respectively.
[合成例10:ポリイミド(PI-6)の合成]
 窒素気流下中、100mLの4つ口フラスコに、BAPP 3.6206g(8.82mmol)、DA-3 0.1192g(0.18mmol)を入れNMP 36.05gに溶解させた後、TDA 2.6214g(8.73mmol)を加え、これを50℃で24時間攪拌して重合反応を行った。得られたポリアミド酸の溶液をNMPで8質量%に希釈した。
 この溶液30gにイミド化触媒として無水酢酸11g、ピリジン5.2gを加え、50℃で3時間反応させポリイミド溶液を得た。この溶液を大量のメタノール中に投入し、得られた白色沈殿をろ別、乾燥し、白色のポリイミド粉末を得た。このポリイミド粉末はH-NMRより90%以上イミド化されていることを確認した。この粉末2.1gをγ-ブチロラクトン27.7gとジプロピレングリコールモノメチルエーテル 5.3gの混合溶媒に溶解させて、ポリイミド(PI-6)の6質量%溶液を得た。
 得られたポリイミド(PI-6)の数平均分子量(Mn)と重量平均分子量(Mw)はそれぞれMn=20,200、Mw=51,400であった。
[Synthesis Example 10: Synthesis of polyimide (PI-6)]
In a 100 mL four-necked flask under nitrogen flow, 3.6206 g (8.82 mmol) of BAPP and 0.1192 g (0.18 mmol) of DA-3 were added and dissolved in 36.05 g of NMP, and then 2.6214 g of TDA. (8.73 mmol) was added, and this was stirred at 50 ° C. for 24 hours to carry out a polymerization reaction. The obtained polyamic acid solution was diluted to 8% by mass with NMP.
To 30 g of this solution, 11 g of acetic anhydride and 5.2 g of pyridine were added as an imidization catalyst and reacted at 50 ° C. for 3 hours to obtain a polyimide solution. This solution was put into a large amount of methanol, and the resulting white precipitate was filtered and dried to obtain a white polyimide powder. This polyimide powder was confirmed to be imidized by 90% or more by 1 H-NMR. 2.1 g of this powder was dissolved in a mixed solvent of 27.7 g of γ-butyrolactone and 5.3 g of dipropylene glycol monomethyl ether to obtain a 6% by mass solution of polyimide (PI-6).
The number average molecular weight (Mn) and weight average molecular weight (Mw) of the obtained polyimide (PI-6) were Mn = 20,200 and Mw = 51,400, respectively.
[合成例11:ポリイミド(PI-7)の合成]
 窒素気流下中、100mLの4つ口フラスコに、BAPP 3.9819g(9.7mmol)、DA-4 0.1842g(0.3mmol)を入れNMP 40.11gに溶解させた後、TDA 2.9126g(9.7mmol)を加え、これを50℃で24時間攪拌して重合反応を行った。得られたポリアミド酸の溶液をNMPで8質量%に希釈した。
 この溶液30gにイミド化触媒として無水酢酸11g、ピリジン5.2gを加え、50℃で3時間反応させポリイミド溶液を得た。この溶液を大量のメタノール中に投入し、得られた白色沈殿をろ別、乾燥し、白色のポリイミド粉末を得た。このポリイミド粉末はH-NMRより90%以上イミド化されていることを確認した。この粉末2.1gをγ-ブチロラクトン27.7gとジプロピレングリコールモノメチルエーテル 5.3gの混合溶媒に溶解させて、ポリイミド(PI-7)の6質量%溶液を得た。
 得られたポリイミド(PI-7)の数平均分子量(Mn)と重量平均分子量(Mw)はそれぞれMn=17,800、Mw=45,000であった。
[Synthesis Example 11: Synthesis of polyimide (PI-7)]
In a 100 mL four-necked flask under nitrogen flow, BAPP 3.9819 g (9.7 mmol) and DA-4 0.1842 g (0.3 mmol) were added and dissolved in 40.11 g of NMP, and then 2.9126 g of TDA. (9.7 mmol) was added, and this was stirred at 50 ° C. for 24 hours to carry out a polymerization reaction. The obtained polyamic acid solution was diluted to 8% by mass with NMP.
To 30 g of this solution, 11 g of acetic anhydride and 5.2 g of pyridine were added as an imidization catalyst and reacted at 50 ° C. for 3 hours to obtain a polyimide solution. This solution was put into a large amount of methanol, and the resulting white precipitate was filtered and dried to obtain a white polyimide powder. This polyimide powder was confirmed to be imidized by 90% or more by 1 H-NMR. 2.1 g of this powder was dissolved in a mixed solvent of 27.7 g of γ-butyrolactone and 5.3 g of dipropylene glycol monomethyl ether to obtain a 6% by mass solution of polyimide (PI-7).
The number average molecular weight (Mn) and the weight average molecular weight (Mw) of the obtained polyimide (PI-7) were Mn = 17,800 and Mw = 45,000, respectively.
[合成例12:ポリイミド前駆体(PI-8)の合成]
 窒素気流下中、100mLの4つ口フラスコに、BAPP 3.9819g(9.7mmol)、DA-4 0.1842g(0.3mmol)を入れNMP 34.39gに溶解させた後、CBDA 1.9023g(9.7mmol)を加え、これを23℃で10時間攪拌して重合反応を行い、さらにNMPで希釈する事で、ポリイミド前駆体(PI-8)の6質量%溶液を得た。
 得られたポリイミド前駆体(PI-8)の数平均分子量(Mn)と重量平均分子量(Mw)はそれぞれMn=14,300、Mw=32,100であった。
[Synthesis Example 12: Synthesis of polyimide precursor (PI-8)]
In a 100 mL four-necked flask under nitrogen flow, BAPP 3.9819 g (9.7 mmol) and DA-4 0.1842 g (0.3 mmol) were added and dissolved in NMP 34.39 g, and then CBDA 1.9023 g (9.7 mmol) was added, this was stirred at 23 ° C. for 10 hours to conduct a polymerization reaction, and further diluted with NMP to obtain a 6% by mass solution of a polyimide precursor (PI-8).
The number average molecular weight (Mn) and weight average molecular weight (Mw) of the obtained polyimide precursor (PI-8) were Mn = 14,300 and Mw = 32,100, respectively.
[合成例13:ブレンド用のポリイミド(PI-9)の合成] 
 窒素気流下中、200mLの4つ口フラスコに、p-フェニレンジアミン 4.86g(0.045mol)、4-ヘキサデシルオキシ-1、3-ジアミノベンゼン 1.74g(0.005mol)を入れ、NMP 122.5gに溶解させた後、TDA 15.01g(0.05mol)を加え、これを室温で10時間攪拌して重合反応を行った。得られたポリアミド酸の溶液をNMPで8質量%に希釈した。
 この溶液50gにイミド化触媒として無水酢酸10.8g、ピリジン5.0gを加え、50℃で3時間反応させポリイミド溶液を得た。この溶液を大量のメタノール中に投入し、得られた白色沈殿をろ別、乾燥し、白色のポリイミド粉末を得た。このポリイミド粉末はH-NMRより90%以上イミド化されていることを確認した。この粉末4gをγ-ブチロラクトン 52.67gとジプロピレングリコールモノメチルエーテル 10gの混合溶媒に溶解させて、ポリイミド(PI-9)の6質量%溶液を得た。
 得られたポリイミド(PI-9)の数平均分子量(Mn)と重量平均分子量(Mw)はそれぞれMn=18,000、Mw=54,000であった。
[Synthesis Example 13: Synthesis of polyimide (PI-9) for blending]
Under a nitrogen stream, 4.86 g (0.045 mol) of p-phenylenediamine and 1.74 g (0.005 mol) of 4-hexadecyloxy-1,3-diaminobenzene were placed in a 200 mL four-necked flask. After dissolving in 122.5 g, 15.01 g (0.05 mol) of TDA was added, and this was stirred at room temperature for 10 hours to conduct a polymerization reaction. The obtained polyamic acid solution was diluted to 8% by mass with NMP.
To 50 g of this solution, 10.8 g of acetic anhydride and 5.0 g of pyridine were added as imidation catalysts and reacted at 50 ° C. for 3 hours to obtain a polyimide solution. This solution was put into a large amount of methanol, and the resulting white precipitate was filtered and dried to obtain a white polyimide powder. This polyimide powder was confirmed to be imidized by 90% or more by 1 H-NMR. 4 g of this powder was dissolved in a mixed solvent of 52.67 g of γ-butyrolactone and 10 g of dipropylene glycol monomethyl ether to obtain a 6% by mass solution of polyimide (PI-9).
The number average molecular weight (Mn) and weight average molecular weight (Mw) of the obtained polyimide (PI-9) were Mn = 18,000 and Mw = 54,000, respectively.
[合成例14:ポリマーブレンド(組成物A)の調製]
 合成例13で調製したポリイミド(PI-9)の6wt%の溶液9gと合成例11で調製したポリイミド(PI-7)の6wt%の溶液1gを混ぜ合わせ、室温で6時間撹拌し、組成物Aを得た。
[Synthesis Example 14: Preparation of polymer blend (Composition A)]
9 g of a 6 wt% solution of polyimide (PI-9) prepared in Synthesis Example 13 and 1 g of a 6 wt% solution of polyimide (PI-7) prepared in Synthesis Example 11 were mixed and stirred for 6 hours at room temperature. A was obtained.
[合成例15:ポリマーブレンド(組成物B)の調製]
 合成例13で調製したポリイミド(PI-9)の6wt%の溶液9gと合成例12で調製したポリイミド(PI-8)の6wt%の溶液1gを混ぜ合わせ、室温で6時間撹拌し、組成物Bを得た。
[Synthesis Example 15: Preparation of polymer blend (Composition B)]
9 g of a 6 wt% solution of polyimide (PI-9) prepared in Synthesis Example 13 and 1 g of a 6 wt% solution of polyimide (PI-8) prepared in Synthesis Example 12 were mixed and stirred for 6 hours at room temperature. B was obtained.
[合成例16:ポリマーブレンド(組成物C)の調製]
 合成例13で調製したポリイミド(PI-9)の6wt%の溶液8gと合成例12で調製したポリイミド(PI-8)の6wt%の溶液2gを混ぜ合わせ、室温で6時間撹拌し、組成物Cを得た。
[Synthesis Example 16: Preparation of polymer blend (composition C)]
8 g of a 6 wt% solution of polyimide (PI-9) prepared in Synthesis Example 13 and 2 g of a 6 wt% solution of polyimide (PI-8) prepared in Synthesis Example 12 were mixed and stirred for 6 hours at room temperature. C was obtained.
 以下に本実施例で合成又は使用したテトラカルボン酸無水物及びジアミン化合物の構造式を示す。
[本実施例で使用したテトラカルボン酸無水物]
Figure JPOXMLDOC01-appb-C000051
[本実施例で使用したジアミン]
Figure JPOXMLDOC01-appb-C000052
The structural formulas of the tetracarboxylic acid anhydride and diamine compound synthesized or used in this example are shown below.
[Tetracarboxylic anhydride used in this example]
Figure JPOXMLDOC01-appb-C000051
[Diamine used in this example]
Figure JPOXMLDOC01-appb-C000052
<実施例1> 水接触角変化
 ITO付きガラス基板(2.5cm角、厚み0.7mm)に、合成例2で調製したPI-1の溶液を0.2μm孔フィルタを付けたシリンジを用いて滴下し、スピンコート法により塗布した。その後大気下で、80℃のホットプレートで5分間加熱処理し、有機溶媒を揮発させ、次いで210℃のホットプレートで30分間焼成し、膜厚約400nmのポリイミド膜を得た。このポリイミド膜の水の接触角θ(°)を測定した。
 同様の手順にてポリイミド膜を2枚作製し、紫外線を20J/cm又は40J/cmの照射量で照射した後、該膜の水の接触角θ(°)を測定した。
 結果を表Aに示す。
<Example 1> Change in water contact angle Using a syringe having a glass substrate with ITO (2.5 cm square, thickness 0.7 mm) and the PI-1 solution prepared in Synthesis Example 2 attached with a 0.2 μm pore filter. The solution was dropped and applied by spin coating. Thereafter, it was heat-treated for 5 minutes on a hot plate at 80 ° C. in the atmosphere to volatilize the organic solvent, and then baked for 30 minutes on a hot plate at 210 ° C. to obtain a polyimide film having a film thickness of about 400 nm. The water contact angle θ (°) of the polyimide film was measured.
Two polyimide films were prepared in the same procedure, and after irradiating with ultraviolet rays at a dose of 20 J / cm 2 or 40 J / cm 2 , the water contact angle θ (°) of the film was measured.
The results are shown in Table A.
<実施例2> 水接触角変化
 合成例3で調製したPI-2の溶液を用いた以外は、実施例1と同様の手順を用いてポリイミド膜を3枚作製し、夫々、紫外線未照射の膜、紫外線20J/cmを照射した膜又は紫外線40J/cmを照射した膜とし、各々の水の接触角θ(°)を測定した。
 結果を表Aに示す。
<Example 2> Change in water contact angle Three polyimide films were prepared using the same procedure as in Example 1 except that the PI-2 solution prepared in Synthesis Example 3 was used. A film, a film irradiated with ultraviolet rays 20 J / cm 2 , or a film irradiated with ultraviolet rays 40 J / cm 2 were used, and the contact angle θ (°) of each water was measured.
The results are shown in Table A.
<比較例1> 水接触角変化
 合成例4で調製したPI-3の溶液を用いた以外は、実施例1と同様の手順を用いてポリイミド膜を2枚作製し、夫々、紫外線未照射の膜又は紫外線40J/cmを照射した膜とし、水の接触角θ(°)を測定した。
 結果を表Aに示す。
<Comparative Example 1> Change in water contact angle Two polyimide films were prepared using the same procedure as in Example 1 except that the solution of PI-3 prepared in Synthesis Example 4 was used. The contact angle θ (°) of water was measured using a film or a film irradiated with ultraviolet light 40 J / cm 2 .
The results are shown in Table A.
<実施例3> PGME接触角変化
 実施例1と同様の手順を用いてポリイミド膜を3枚作製し、夫々、紫外線未照射の膜、紫外線2J/cmを照射した膜、又は紫外線6J/cmを照射した膜とし、PGMEの接触角θ(°)を測定した。
 結果を表Bに示す。
<Example 3> was prepared 3 sheets of polyimide film using the same procedure as PGME contact angle variation Example 1, respectively, not irradiated with ultraviolet rays of the film, ultraviolet 2J / cm 2 the irradiated film, or ultraviolet 6J / cm 2 was used as the irradiated film, and the contact angle θ (°) of PGME was measured.
The results are shown in Table B.
<比較例2> PGME接触角変化
 合成例4で調製したPI-3の溶液を用いた以外は、実施例1と同様の手順を用いてポリイミド膜を2枚作製し、夫々、紫外線未照射の膜又は紫外線6J/cmを照射した膜とし、PGMEの接触角θ(°)を測定した。
 結果を表Bに示す。
<Comparative Example 2> PGME contact angle change Two polyimide films were prepared using the same procedure as in Example 1 except that the PI-3 solution prepared in Synthesis Example 4 was used. The contact angle θ (°) of PGME was measured using a film or a film irradiated with ultraviolet rays 6 J / cm 2 .
The results are shown in Table B.
<実施例4> PGME接触角変化
ITO付きガラス基板(2.5cm角、厚み0.7mm)に、合成例8で調したPI-4の溶液を0.2μm孔フィルタを付けたシリンジで滴下し、スピンコート法により塗布した。その後大気下で、80℃のホットプレートで5分間加熱処理し、有機溶媒を揮発させ、次いで180℃のホットプレートで30分間焼成し、膜厚約400nmのポリイミド膜を得た。このポリイミド膜のPGME溶液の接触角を測定した。
 同様の手順にてポリイミド膜を1枚作製し、紫外線を1J/cmの照射量で照射しPGMEの接触角θ(°)を測定した。
  結果を表Cに示す。
<Example 4> PGME contact angle variation ITO-coated glass substrate (2.5 cm square, thickness 0.7 mm), the dropping a solution of PI-4 was manufactured by adjusting in Synthesis Example 8 in a syringe with a 0.2μm pore filter And applied by spin coating. Thereafter, heat treatment was performed for 5 minutes on an 80 ° C. hot plate in the atmosphere to volatilize the organic solvent, and then baked for 30 minutes on a 180 ° C. hot plate to obtain a polyimide film having a film thickness of about 400 nm. The contact angle of the PGME solution of this polyimide film was measured.
One polyimide film was prepared in the same procedure, and ultraviolet rays were irradiated at a dose of 1 J / cm 2 to measure the contact angle θ (°) of PGME.
The results are shown in Table C.
<実施例5> PGME接触角変化
 合成例9で調製したPI-5を用いた以外は、実施例4と同様の手順を用いてポリイミド膜を2枚作製し、夫々、紫外線未照射の膜、紫外線1J/cmを照射した膜とし、PGMEの接触角θ(°)を測定した。
 結果を表Cに示す。
<Example 5> PGME contact angle change Two polyimide films were prepared using the same procedure as in Example 4 except that PI-5 prepared in Synthesis Example 9 was used. The film was irradiated with ultraviolet light 1 J / cm 2 and the contact angle θ (°) of PGME was measured.
The results are shown in Table C.
<実施例6> PGME接触角変化
 合成例10で調製したPI-6を用いた以外は、実施例4と同様の手順を用いてポリイミド膜を2枚作製し、夫々、紫外線未照射の膜、紫外線1J/cmを照射した膜とし、PGMEの接触角θ(°)を測定した。
 結果を表Cに示す。
<Example 6> PGME contact angle change Two polyimide films were prepared using the same procedure as in Example 4 except that PI-6 prepared in Synthesis Example 10 was used. The film was irradiated with ultraviolet light 1 J / cm 2 and the contact angle θ (°) of PGME was measured.
The results are shown in Table C.
<実施例7> PGME接触角変化
 合成例14で調製した組成物Aを用いた以外は、実施例4と同様の手順を用いてポリイミド膜を2枚作製し、夫々、紫外線未照射の膜、紫外線1J/cmを照射した膜とし、PGMEの接触角θ(°)を測定した。
 結果を表Cに示す。
<Example 7> PGME contact angle change Two polyimide films were prepared using the same procedure as in Example 4 except that the composition A prepared in Synthesis Example 14 was used. The film was irradiated with ultraviolet light 1 J / cm 2 and the contact angle θ (°) of PGME was measured.
The results are shown in Table C.
<実施例8> PGME接触角変化
 合成例16で調製した組成物Cを用いた以外は、実施例6と同様の手順を用いてポリイミド膜を2枚作製し、夫々、紫外線未照射の膜、紫外線1J/cmを照射した膜とし、PGMEの接触角θ(°)を測定した。
 結果を表Cに示す。
<Example 8> PGME contact angle change Two polyimide films were prepared using the same procedure as in Example 6 except that the composition C prepared in Synthesis Example 16 was used. The film was irradiated with ultraviolet light 1 J / cm 2 and the contact angle θ (°) of PGME was measured.
The results are shown in Table C.
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
 
Figure JPOXMLDOC01-appb-T000054
 
Figure JPOXMLDOC01-appb-T000055
  
Figure JPOXMLDOC01-appb-T000055
  
 表A、表B及び表Cに示すように、側鎖にチオール結合を有するジアミンより作製したポリイミド及びポリイミド前駆体を用いた実施例においては、紫外線照射後のPGMEの接触角がいずれの場合も大きく変化した。
 一方、側鎖にチオール結合を有するジアミンを用いずに製造したポリイミド前駆体(PI-3)を使用した比較例1及び2においては、水又はPGMEの接触角の変化量は小さいものであった。
 この結果は、ポリイミド前駆体の側鎖をチオールエステル基を介して疎水性基が存在する構造としたこと、すなわち、該チオールエステル基が紫外線照射によって光分解し、側鎖の疎水性部分が主鎖より切断されて分離したことにより、親疎水性の大きな変化という結果につながったものとみられる。
As shown in Table A, Table B, and Table C, in Examples using polyimides and polyimide precursors prepared from diamines having thiol bonds in the side chains, the contact angle of PGME after UV irradiation was any case. It changed a lot.
On the other hand, in Comparative Examples 1 and 2 using the polyimide precursor (PI-3) produced without using a diamine having a thiol bond in the side chain, the amount of change in the contact angle of water or PGME was small. .
This result shows that the side chain of the polyimide precursor has a structure in which a hydrophobic group exists via a thiol ester group, that is, the thiol ester group is photodegraded by ultraviolet irradiation, and the hydrophobic part of the side chain is the main part. It seems that the cleavage and separation from the chain led to a large change in hydrophilicity / hydrophobicity.
<実施例9> 電極パターニング性評価
 ITO付きガラス基板(2.5cm角、厚み0.7mm)に、合成例8で調製したPI-4の溶液を0.2μm孔フィルタを付けたシリンジで滴下し、スピンコート法により塗布した。その後大気下で、80℃のホットプレートで5分間加熱処理し、有機溶媒を揮発させ、次いで180℃のホットプレートで30分間焼成し、膜厚約400nmのポリイミド膜を得た。このポリイミド膜にフォトマスク(線幅100μm、ピッチ100μmのラインアンドスペース)を介して紫外線1J/cmを照射し、ポリイミドの一部を親水化した。次いで、銀微粒子分散液を紫外線照射部に微量滴下し、180℃のホットプレートで60分間焼成し、膜厚50nmの銀電極を形成した。
 この銀電極の顕微鏡写真を図1に示す。PI-4からなる膜は、目的とする線幅の銀電極を形成することが出来た。
<Example 9> Evaluation of electrode patterning property The solution of PI-4 prepared in Synthesis Example 8 was dropped onto a glass substrate with ITO (2.5 cm square, thickness 0.7 mm) with a syringe with a 0.2 μm pore filter. It was applied by spin coating. Thereafter, heat treatment was performed for 5 minutes on an 80 ° C. hot plate in the atmosphere to volatilize the organic solvent, and then baked for 30 minutes on a 180 ° C. hot plate to obtain a polyimide film having a film thickness of about 400 nm. This polyimide film was irradiated with ultraviolet rays of 1 J / cm 2 through a photomask (line and space with a line width of 100 μm and a pitch of 100 μm) to make part of the polyimide hydrophilic. Next, a small amount of the silver fine particle dispersion was dropped on the ultraviolet irradiation part and baked on a hot plate at 180 ° C. for 60 minutes to form a silver electrode having a thickness of 50 nm.
A photomicrograph of this silver electrode is shown in FIG. The film made of PI-4 was able to form a silver electrode having the desired line width.
<実施例10>電極パターニング性評価
 合成例14で調製した組成物Aを用いた以外は、実施例9と同様の手順を用いてポリイミド膜を成膜し、このポリイミド膜にフォトマスク(線幅100μm、ピッチ100μmのラインアンドスペース)を介して紫外線1J/cmを照射し、ポリイミドの一部を親水化した。次いで、銀微粒子分散液を紫外線照射部に微量滴下し、180℃のホットプレートで60分間焼成し、膜厚50nmの銀電極を形成した。
 この銀電極の顕微鏡写真を図2に示す。組成物Aからなる膜は目的とする線幅の銀電極を形成することが出来た。
<Example 10> Evaluation of electrode patterning property A polyimide film was formed using the same procedure as in Example 9 except that the composition A prepared in Synthesis Example 14 was used, and a photomask (line width) was formed on this polyimide film. A portion of polyimide was hydrophilized by irradiating ultraviolet rays of 1 J / cm 2 through a line and space of 100 μm and a pitch of 100 μm. Next, a small amount of the silver fine particle dispersion was dropped on the ultraviolet irradiation part and baked on a hot plate at 180 ° C. for 60 minutes to form a silver electrode having a thickness of 50 nm.
A photomicrograph of this silver electrode is shown in FIG. The film made of the composition A was able to form a silver electrode having a target line width.
<比較例3>電極パターニング性評価
 合成例4で調製したPI-3を用い、焼成温度を210℃とした以外は、実施例11と同様の手順を用いてポリイミド膜を成膜し、このポリイミド膜にフォトマスク(線幅100μm、ピッチ100μmのラインアンドスペース)を介して紫外線1J/cmを照射した。その後、銀微粒子分散液を微量滴下したが、紫外線照射部が親水化していないため電極を形成できなかった。
<Comparative Example 3> Evaluation of electrode patterning property A polyimide film was formed using the same procedure as in Example 11 except that PI-3 prepared in Synthesis Example 4 was used and the firing temperature was 210 ° C. The film was irradiated with ultraviolet rays of 1 J / cm 2 through a photomask (line and space with a line width of 100 μm and a pitch of 100 μm). Thereafter, a small amount of the silver fine particle dispersion was dropped, but the electrode could not be formed because the ultraviolet-irradiated part was not hydrophilized.
 実施例9から実施例10と比較例3の結果を表Dに示す。
 チオールエステル結合を有するPI-4及び組成物Aからなる膜は、1J/cmの紫外線照射量で十分に親水性に変化し、100μm線幅の銀電極の形成が可能であったのに対して、チオールエステル結合を有さない組成物Dからなる膜は、1J/cmの紫外線照射量では十分に親水性に変化せず、電極形成は不可能であった。
The results of Examples 9 to 10 and Comparative Example 3 are shown in Table D.
The film composed of PI-4 having a thiol ester bond and the composition A was sufficiently hydrophilic at an ultraviolet irradiation amount of 1 J / cm 2 , whereas a silver electrode having a line width of 100 μm could be formed. Thus, the film made of the composition D having no thiol ester bond did not change to hydrophilicity sufficiently at an ultraviolet irradiation amount of 1 J / cm 2 , and electrode formation was impossible.
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
<実施例11> 絶縁性
 ITO付きガラス基板(2.5cm角、厚み0.7mm)に、合成例2で調製したPI-1の溶液を0.2μm孔フィルタを付けたシリンジを用いて滴下し、スピンコート法により塗布した。その後大気下で、80℃のホットプレートで5分間加熱処理し、有機溶剤を揮発させ、次いで210℃のホットプレートで30分間焼成し、膜厚約450nmのポリイミド膜を得た。
 次にITO電極と測定装置の探針との良好なコンタクトを得るため、ポリイミド膜の一部分を削り取ってITOを露出させた後、真空蒸着装置を用いてポリイミド膜上およびITO上に直径1.0mm、膜厚100nmのアルミニウム電極を積層させた。このときの真空蒸着条件は、室温、真空度3×10-3Pa以下、アルミニウム蒸着速度0.3nm/sec以下とした。このようにしてポリイミド膜の上下に電極を形成することで、ポリイミド膜の電流-電圧特性評価用のサンプルを作製した。
 作製したサンプルは、直ちに窒素雰囲気中で、電流-電圧特性を測定した。測定電圧は0Vから2V刻みで90Vまでとした。このときのポリイミド膜の比誘電率は3.37、リーク電流密度は3×10-10A/cmとなった。なお、ポリイミド膜は2MV/cmの電界では絶縁破壊しなかった。
 図3に窒素雰囲気中の電流-電圧特性の測定結果を示す。
<Example 11> Insulation To a glass substrate with ITO (2.5 cm square, thickness 0.7 mm), the PI-1 solution prepared in Synthesis Example 2 was dropped using a syringe with a 0.2 μm pore filter. It was applied by spin coating. Thereafter, in the atmosphere, heat treatment was performed on an 80 ° C. hot plate for 5 minutes to volatilize the organic solvent, and then baked on a 210 ° C. hot plate for 30 minutes to obtain a polyimide film having a thickness of about 450 nm.
Next, in order to obtain a good contact between the ITO electrode and the probe of the measuring device, a portion of the polyimide film is scraped to expose the ITO, and then a diameter of 1.0 mm is formed on the polyimide film and on the ITO using a vacuum deposition apparatus. An aluminum electrode having a thickness of 100 nm was laminated. The vacuum deposition conditions at this time were room temperature, a degree of vacuum of 3 × 10 −3 Pa or less, and an aluminum deposition rate of 0.3 nm / sec or less. By forming electrodes on the upper and lower sides of the polyimide film in this way, a sample for evaluating the current-voltage characteristics of the polyimide film was produced.
The prepared sample was immediately measured for current-voltage characteristics in a nitrogen atmosphere. The measurement voltage was from 0V to 90V in 2V increments. At this time, the relative dielectric constant of the polyimide film was 3.37, and the leakage current density was 3 × 10 −10 A / cm 2 . The polyimide film did not break down at an electric field of 2 MV / cm.
FIG. 3 shows the measurement results of current-voltage characteristics in a nitrogen atmosphere.
 次に、上記と同一のサンプルを大気中(25度、湿度45%)で15時間静置した後、電流-電圧特性を測定した。測定電圧は0Vから2V刻みで90Vまでとした。このときのサンプルのリーク電流密度は1.8×10-7A/cmとなった。
 図4に大気中の電流-電圧特性の測定結果を示す。
Next, the same sample as described above was allowed to stand for 15 hours in the atmosphere (25 degrees, humidity 45%), and then the current-voltage characteristics were measured. The measurement voltage was from 0V to 90V in 2V increments. The leakage current density of the sample at this time was 1.8 × 10 −7 A / cm 2 .
FIG. 4 shows the measurement results of current-voltage characteristics in the atmosphere.
<実施例12> 絶縁性
 ポリイミド膜の焼成温度を230℃とした以外は、実施例11と同様の手順を用いて電流-電圧特性用のサンプルを作製した。このときのポリイミド膜の比誘電率は3.14、リーク電流密度は1.0×10-10A/cmとなった。なお、ポリイミド膜は、2MV/cmの電界では絶縁破壊しなかった。
 次に、上記と同一のサンプルを大気中(25度、湿度45%)で15時間静置したのち、電流-電圧特性を測定した。測定電圧は0Vから2V刻みで90Vまでとした。このときのサンプルのリーク電流密度は1.8×10-8A/cmとなった。
 図3に窒素雰囲気中の、図4に大気中の電流-電圧特性の測定結果を夫々示す。
<Example 12> Insulating property A sample for current-voltage characteristics was prepared using the same procedure as in Example 11 except that the baking temperature of the polyimide film was 230 ° C. At this time, the relative dielectric constant of the polyimide film was 3.14, and the leakage current density was 1.0 × 10 −10 A / cm 2 . The polyimide film did not break down at an electric field of 2 MV / cm.
Next, the same sample as above was allowed to stand in the atmosphere (25 degrees, humidity 45%) for 15 hours, and then the current-voltage characteristics were measured. The measurement voltage was from 0V to 90V in 2V increments. The leakage current density of the sample at this time was 1.8 × 10 −8 A / cm 2 .
FIG. 3 shows the measurement results of current-voltage characteristics in a nitrogen atmosphere, and FIG. 4 shows the measurement results in air.
<実施例13> 絶縁性
 ITO付きガラス基板(2.5cm角、厚み0.7mm)に、合成例8で調製したPI-4の溶液を、0.2μm孔フィルタを付けたシリンジで滴下し、スピンコート法により塗布した。その後大気下で、80℃のホットプレートで5分間加熱を行って有機溶剤を揮発させ、次いで180℃のホットプレートで30分焼成する事で、膜厚約400nmのポリイミド膜を得た。次にITO電極と測定装置の探針との良好なコンタクトを得るため、ポリイミド膜の一部分を削り取りITOを露出させた後、真空蒸着装置を用いてポリイミド膜上およびITO上に直径1.0mm、膜厚100nmのアルミニウム電極を積層させた。このときの真空蒸着条件は、室温、真空度3×10-3Pa以下、アルミニウム蒸着速度0.3nm/sec以下とした。このようにしてポリイミド膜の上下に電極を形成することで、ポリイミド膜の電流-電圧特性評価用のサンプルを作製した。
サンプルは、23℃±3℃、湿度45%±5%の環境で、15時間静置したのち電流電圧特性を測定した。測定電圧は0Vから2V刻み100Vまでとした。このサンプルの1MV/cmでのリーク電流密度は4.3×10-11A/cmであった。なお、ポリイミド膜は2MV/cmまでは絶縁破壊しなかった。
 図5に電流-電圧特性の測定結果を示す。
<Example 13> Insulation To a glass substrate with ITO (2.5 cm square, thickness 0.7 mm), the PI-4 solution prepared in Synthesis Example 8 was dropped with a syringe with a 0.2 μm pore filter, The coating was performed by a spin coating method. Thereafter, in the atmosphere, the organic solvent was volatilized by heating on an 80 ° C. hot plate for 5 minutes, and then baked on a 180 ° C. hot plate for 30 minutes to obtain a polyimide film having a film thickness of about 400 nm. Next, in order to obtain a good contact between the ITO electrode and the probe of the measuring device, a part of the polyimide film is scraped to expose the ITO, and then a diameter of 1.0 mm is formed on the polyimide film and on the ITO using a vacuum deposition apparatus. An aluminum electrode having a thickness of 100 nm was stacked. The vacuum deposition conditions at this time were room temperature, a degree of vacuum of 3 × 10 −3 Pa or less, and an aluminum deposition rate of 0.3 nm / sec or less. By forming electrodes on the upper and lower sides of the polyimide film in this way, a sample for evaluating the current-voltage characteristics of the polyimide film was produced.
The sample was allowed to stand for 15 hours in an environment of 23 ° C. ± 3 ° C. and humidity of 45% ± 5%, and then the current-voltage characteristics were measured. The measurement voltage was from 0V to 100V in increments of 2V. The leakage current density of this sample at 1 MV / cm was 4.3 × 10 −11 A / cm 2 . The polyimide film did not break down to 2 MV / cm.
FIG. 5 shows the measurement results of the current-voltage characteristics.
<実施例14> 絶縁性
 合成例14で調製した組成物Aを用いた以外は実施例13と同様の手順で電流-電圧特性評価用のサンプルを作製した。
 このサンプルの1MV/cmでのリーク電流密度は1.7×10-10A/cmであった。なお、ポリイミド膜は2MV/cmまでは絶縁破壊しなかった。
 図5に電流-電圧特性の測定結果を示す。
<Example 14> Insulation A sample for evaluating current-voltage characteristics was prepared in the same procedure as in Example 13 except that the composition A prepared in Synthesis Example 14 was used.
The leakage current density of this sample at 1 MV / cm was 1.7 × 10 −10 A / cm 2 . The polyimide film did not break down to 2 MV / cm.
FIG. 5 shows the measurement results of the current-voltage characteristics.
<実施例15> 絶縁性
 合成例15で調製した組成物Bを用いて焼成温度を230℃とした以外は実施例13と同様の手順で電流-電圧評価用のサンプルを作製した。
 このサンプルの1MV/cmでのリーク電流密度は1.2×10-10A/cmであった。なお、ポリイミド膜は2MV/cmまでは絶縁破壊しなかった。
 図5に電流-電圧特性の測定結果を示す。
<Example 15> Insulation A sample for current-voltage evaluation was produced in the same procedure as in Example 13 except that the firing temperature was set to 230 ° C using the composition B prepared in Synthesis Example 15.
The leakage current density of this sample at 1 MV / cm was 1.2 × 10 −10 A / cm 2 . The polyimide film did not break down to 2 MV / cm.
FIG. 5 shows the measurement results of the current-voltage characteristics.
<実施例16> 絶縁性
 合成例16で調製した組成物Cを用いて焼成温度を230℃とした以外は実施例13と同様の手順で電流‐電圧評価用のサンプルを作製した。
 このサンプルの1MV/cmでのリーク電流密度は3.4×10-10A/cmであった。なお、ポリイミド膜は2MV/cmまでは絶縁破壊しなかった。
 図5に電流-電圧特性の測定結果を示す。
<Example 16> Insulation A sample for current-voltage evaluation was prepared in the same procedure as in Example 13 except that the firing temperature was changed to 230 ° C using the composition C prepared in Synthesis Example 16.
The leakage current density of this sample at 1 MV / cm was 3.4 × 10 −10 A / cm 2 . The polyimide film did not break down to 2 MV / cm.
FIG. 5 shows the measurement results of the current-voltage characteristics.
 図3に示すように、PI-1からなる膜は、窒素雰囲気中において優れた絶縁膜であった(実施例11及び実施例12)。
 また図4に示すように、PI-1からなる膜は、水分の影響を受け易い大気中では窒素雰囲気中と比べてリーク電流密度の増加がみられたが、画像形成用下層膜としての用途においては問題の無い水準であった(実施例11及び実施例12)。
 また、図5に示すように、PI-4及び組成物A乃至Cからなる膜はいずれも優れた絶縁膜であった(実施例13乃至実施例16)。
 すなわち、本発明の画像形成用下層膜は、画像形成用下層膜として十分な絶縁性能を有する下層膜であった。
As shown in FIG. 3, the film made of PI-1 was an excellent insulating film in a nitrogen atmosphere (Example 11 and Example 12).
Further, as shown in FIG. 4, the film made of PI-1 showed an increase in leakage current density in the atmosphere susceptible to moisture compared with the nitrogen atmosphere, but it was used as an underlayer film for image formation. Was a level with no problem (Example 11 and Example 12).
Further, as shown in FIG. 5, the films made of PI-4 and compositions A to C were all excellent insulating films (Examples 13 to 16).
That is, the lower layer film for image formation of the present invention was a lower layer film having sufficient insulation performance as the lower layer film for image formation.
<実施例17:トランジスタ特性>
 Cr電極付きガラス基板(2.5cm角、厚み0.7mm)に、合成例8で調製したPI-4の溶液を0.2μm孔フィルタを付けたシリンジで滴下し、スピンコート法により塗布した。その後大気下で、80℃のホットプレートで5分間加熱処理し、有機溶媒を揮発させ、次いで180℃のホットプレートで30分間焼成し、膜厚約450nmのポリイミド膜を得た。このポリイミド膜にフォトマスクを介して紫外線2J/cmを照射し、ポリイミドの一部を親水化した。次いで、銀微粒子分散液を紫外線照射部に適量滴下し、180℃のホットプレートで60分間焼成し、膜厚50nmのソース・ドレイン電極を形成した。
 この銀電極上に、ペンタセン(アルドリッチ製)を真空蒸着法により70nm成膜した。ペンタセンの蒸着速度は0.05nm/secとした。
<Example 17: Transistor characteristics>
The solution of PI-4 prepared in Synthesis Example 8 was dropped onto a glass substrate with a Cr electrode (2.5 cm square, thickness 0.7 mm) with a syringe with a 0.2 μm pore filter and applied by spin coating. Thereafter, heat treatment was performed for 5 minutes on a hot plate at 80 ° C. in the atmosphere to volatilize the organic solvent, followed by baking for 30 minutes on a hot plate at 180 ° C. to obtain a polyimide film having a thickness of about 450 nm. This polyimide film was irradiated with ultraviolet rays of 2 J / cm 2 through a photomask to make part of the polyimide hydrophilic. Next, an appropriate amount of the silver fine particle dispersion was dropped onto the ultraviolet irradiation part and baked on a hot plate at 180 ° C. for 60 minutes to form a source / drain electrode having a thickness of 50 nm.
A film of pentacene (manufactured by Aldrich) was formed on the silver electrode to a thickness of 70 nm by a vacuum deposition method. The deposition rate of pentacene was 0.05 nm / sec.
 上述の通り得られた有機薄膜トランジスタの電気特性を、ゲート電圧に対するドレイン電流の変化を測定することにより評価した。
 詳細には、ソース・ドレイン電圧(V)を-80Vとして、ゲート電圧(V)を+20Vから-80Vまで、2Vステップで変化させ、各電圧で電流が十分安定するまで1秒間電圧を保持した後の値をドレイン電流の測定値として記録し、この操作を5回繰り返した。なお測定には、半導体パラメータアナライザー HP4156C(アジレント・テクノロジー製)を用い、窒素雰囲気中で測定した。
The electrical characteristics of the organic thin film transistor obtained as described above were evaluated by measuring the change of the drain current with respect to the gate voltage.
Specifically, the source-drain voltage (V D ) is set to −80 V, the gate voltage (V G ) is changed from +20 V to −80 V in 2 V steps, and the voltage is held for 1 second until the current is sufficiently stabilized at each voltage. This value was recorded as a measured value of the drain current, and this operation was repeated 5 times. The measurement was performed in a nitrogen atmosphere using a semiconductor parameter analyzer HP4156C (manufactured by Agilent Technologies).
 一般に、飽和状態におけるドレイン電流Iは下記式で表すことができる。つまり、有機半導体の移動度μは、ドレイン電流Iの絶対値の平方根を縦軸に、ゲート電圧Vを横軸にプロットしたときのグラフの傾きから求めることができる。
   I=WCμ(V-V/2L
 上記式において、Wはトランジスタのチャネル幅、Lはトランジスタのチャネル長、Cはゲート絶縁膜の静電容量、Vはトランジスタの閾値電圧、μは移動度である。本実施例で作成したトランジスタは、W=2mm、L=100μm、C=6.4nF/cmであった。
In general, the drain current ID in a saturated state can be expressed by the following formula. That is, the mobility μ of the organic semiconductor can be obtained from the slope of the graph when the square root of the absolute value of the drain current ID is plotted on the vertical axis and the gate voltage V G is plotted on the horizontal axis.
I D = WCμ (V G −V T ) 2 / 2L
In the above equation, W is the channel width of the transistor, L is the channel length of the transistor, C is the capacitance of the gate insulating film, V T is the threshold voltage of the transistor, and μ is the mobility. The transistor formed in this example had W = 2 mm, L = 100 μm, and C = 6.4 nF / cm 2 .
 ペンタセンの移動度μをこの式を元に計算したところ、平均で5×10-2cm/Vsとなった。また、閾値電圧は-18から-20V、オン状態とオフ状態の比(オン/オフ比)は10のオーダーであった。また、繰り返し測定を行っても伝達特性(Transfer Characteristics)のシフトは見られず安定した特性が得られた(図6)。
 PI-4から得られた膜は、電極形成膜のみならず、有機トランジスタ用のゲート絶縁膜としても優れている事が示された。
When the mobility μ of pentacene was calculated based on this formula, the average was 5 × 10 −2 cm 2 / Vs. The threshold voltage was −18 to −20 V, and the ratio between the on state and the off state (on / off ratio) was on the order of 10 6 . Further, even when repeated measurement was performed, a stable characteristic was obtained without any shift in transfer characteristics (Transfer Characteristics) being observed (FIG. 6).
It was shown that the film obtained from PI-4 is excellent not only as an electrode forming film but also as a gate insulating film for organic transistors.
<実施例18:トランジスタ特性>
 合成例14で調製した組成物Aを用いた以外は実施例17と同様にして有機トランジスタを作製した。本実施例で作成したトランジスタは、W=2mm、L=100μm、C=6.5nF/cmであった。
 ペンタセンの移動度μをこの式を元に計算したところ、平均で5×10-2cm/Vsとなった。また、閾値電圧は-19から-21V、オン状態とオフ状態の比(オン/オフ比)は10のオーダーであった。また、繰り返し測定を行っても伝達特性のシフトは見られず安定した特性が得られた(図7)。
 組成物Aから得られた膜は、電極形成膜のみならず、有機トランジスタ用のゲート絶縁膜としても優れている事が示された。
<Example 18: Transistor characteristics>
An organic transistor was produced in the same manner as in Example 17 except that the composition A prepared in Synthesis Example 14 was used. The transistor formed in this example had W = 2 mm, L = 100 μm, and C = 6.5 nF / cm 2 .
When the mobility μ of pentacene was calculated based on this formula, the average was 5 × 10 −2 cm 2 / Vs. The threshold voltage was −19 to −21 V, and the ratio between the on state and the off state (on / off ratio) was on the order of 10 6 . Further, even when repeated measurement was performed, no shift in the transfer characteristic was observed, and a stable characteristic was obtained (FIG. 7).
It was shown that the film obtained from the composition A is excellent not only as an electrode forming film but also as a gate insulating film for an organic transistor.
<実施例19:トランジスタ特性>
 紫外線の照射量を1J/cmとした以外は、実施例17と同様の手順で有機トランジスタを作製した。本実施例で作成したトランジスタはW=2mm、L=100μm、C=6.4nF/cmであった。
 ペンタセンの移動度μをこの式を元に計算したところ、平均で3×10‐2cm/Vsとなった。また、閾値電圧は-16から-20V、オン状態とオフ状態の比(オン/オフ比)は10のオーダーであった。また、繰り返し測定を行っても伝達特性のシフトは見られず安定した特性が得られた(図8)。
 組成物Aから得られた膜は、電極形成膜のみならず、有機トランジスタ用のゲート絶縁膜としても優れている事が示された。
<Example 19: Transistor characteristics>
An organic transistor was fabricated in the same procedure as in Example 17 except that the amount of ultraviolet irradiation was 1 J / cm 2 . The transistor formed in this example had W = 2 mm, L = 100 μm, and C = 6.4 nF / cm 2 .
When the mobility μ of pentacene was calculated based on this formula, it was 3 × 10 −2 cm 2 / Vs on average. The threshold voltage was −16 to −20 V, and the ratio between the on state and the off state (on / off ratio) was on the order of 10 6 . In addition, even when repeated measurements were made, no shift in transfer characteristics was observed, and stable characteristics were obtained (FIG. 8).
It was shown that the film obtained from the composition A is excellent not only as an electrode forming film but also as a gate insulating film for an organic transistor.
 本発明による画像形用下層膜は、親疎水性を変化させるための必要露光時間の短縮が実現でき、電極などの機能性材料のパターニング層形成における製造コストの削減が期待できる。
 加えて、偏光UVを照射することで、前述のポリイミド前駆体及びポリイミドから得られる膜に異方性を付与する事も可能である。即ち、液晶や半導体などの機能性材料の配向処理膜としても使用する事ができ、画像形成用下地膜として用いた場合と同じように製造時間の短縮が期待できる。
The underlayer film for image form according to the present invention can realize a reduction in the exposure time required for changing the hydrophilicity / hydrophobicity, and can be expected to reduce the manufacturing cost in forming a patterning layer of a functional material such as an electrode.
In addition, anisotropy can be imparted to the film obtained from the aforementioned polyimide precursor and polyimide by irradiating polarized UV light. That is, it can also be used as an alignment treatment film of a functional material such as a liquid crystal or a semiconductor, and shortening of the manufacturing time can be expected as in the case of using it as a base film for image formation.
図1は実施例9で作製したPI-4上の銀電極の顕微鏡写真を示す図である(銀電極の線幅は100μm)。1 is a view showing a micrograph of a silver electrode on PI-4 produced in Example 9 (the line width of the silver electrode is 100 μm). 図2は実施例10で作製した組成物A上の銀電極の顕微鏡写真を示す図である(銀電極の線幅は100μm)。FIG. 2 is a view showing a micrograph of the silver electrode on the composition A produced in Example 10 (the line width of the silver electrode is 100 μm). 図3はポリイミド前駆体(PI-1)を焼成して得られたポリイミド膜の、窒素雰囲気中の電流-電圧特性を示す図である(実施例11及び実施例12)。FIG. 3 is a graph showing current-voltage characteristics in a nitrogen atmosphere of a polyimide film obtained by firing a polyimide precursor (PI-1) (Examples 11 and 12). 図4はポリイミド前駆体(PI-1)を焼成して得られたポリイミド膜の、大気中の電流-電圧特性を示す図である(実施例11及び実施例12)。FIG. 4 is a graph showing the current-voltage characteristics in air of a polyimide film obtained by firing a polyimide precursor (PI-1) (Examples 11 and 12). 図5は実施例13乃至実施例16で作製したポリイミド膜の大気中の電流-電圧特性を示す図である。FIG. 5 is a graph showing the current-voltage characteristics in the atmosphere of the polyimide films produced in Examples 13 to 16. 図6はPI-4から得られた膜に紫外線を2J/cm照射し電極を加工した有機トランジスタの伝達特性を示す図である(実施例17)。FIG. 6 is a graph showing the transfer characteristics of an organic transistor obtained by processing an electrode by irradiating a film obtained from PI-4 with 2 J / cm 2 of ultraviolet rays (Example 17). 図7は組成物Aから得られた膜に紫外線を2J/cm照射し電極を加工した有機トランジスタの伝達特性を示す図である(実施例18)。FIG. 7 is a graph showing the transfer characteristics of an organic transistor in which an electrode is processed by irradiating a film obtained from the composition A with ultraviolet rays at 2 J / cm 2 (Example 18). 図8はPI-4から得られた膜に紫外線を1J/cm照射し電極を加工した有機トランジスタの伝達特性を示す図である(実施例19)。FIG. 8 is a graph showing the transfer characteristics of an organic transistor obtained by processing an electrode by irradiating a film obtained from PI-4 with 1 J / cm 2 of ultraviolet rays (Example 19).

Claims (14)

  1.  下記式(1)で表される繰り返し構造を含むポリイミド前駆体又は該ポリイミド前駆体を脱水閉環して得られるポリイミドを含むことを特徴とする画像形成用下層膜。
    Figure JPOXMLDOC01-appb-C000001

    (式中、Aは4価の有機基を表し、Bは下記式(2)又は式(3)で表される2価の構造を表し、R,Rはそれぞれ独立して水素原子又は1価の有機基を表し、nは自然数を表す。)
    Figure JPOXMLDOC01-appb-C000002

    (式中、Xは単結合又は炭素原子数6乃至20の2価の芳香族基を表し、Yは単結合、-O-、-COO-、-OCO-、-CONH-、-CHO-、-CHCOO-又は-CHCHCOO-を表し、Zはフッ素原子で置換されていても良い炭素原子数3乃至26の脂肪族炭化水素基を表し、Rは夫々独立してフッ素原子、炭素原子数1乃至3のアルコキシ基又は炭素原子数1乃至3のアルキル基を表し、tは0乃至3の整数を表す。)
    A lower layer film for image formation comprising a polyimide precursor having a repeating structure represented by the following formula (1) or a polyimide obtained by dehydrating and ring-closing the polyimide precursor.
    Figure JPOXMLDOC01-appb-C000001

    (In the formula, A represents a tetravalent organic group, B represents a divalent structure represented by the following formula (2) or (3), and R 1 and R 2 are each independently a hydrogen atom or Represents a monovalent organic group, and n represents a natural number.)
    Figure JPOXMLDOC01-appb-C000002

    Wherein X represents a single bond or a divalent aromatic group having 6 to 20 carbon atoms, and Y represents a single bond, —O—, —COO—, —OCO—, —CONH—, —CH 2 O. —, —CH 2 COO— or —CH 2 CH 2 COO—, Z represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms which may be substituted with a fluorine atom, and R represents independently And represents a fluorine atom, an alkoxy group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms, and t represents an integer of 0 to 3.)
  2.  下記式(6)で表されるテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と式(7)で表されるジアミンを含むジアミン成分とを反応させて得られるポリイミド前駆体、又は該ポリイミド前駆体を脱水閉環して得られるポリイミドを含むことを特徴とする画像形成用下層膜。
    Figure JPOXMLDOC01-appb-C000003

    [式中、Aは4価の有機基を表し、Bは式(2)又は式(3)
    Figure JPOXMLDOC01-appb-C000004

    (式中、Xは単結合又は炭素原子数6乃至20の2価の芳香族基を表し、Yは単結合、-O-、-COO-、-OCO-、-CONH-、-CHO-、-CHCOO-又は-CHCHCOO-を表し、Zはフッ素原子で置換されていても良い炭素原子数3乃至26の脂肪族炭化水素基を表し、Rは夫々独立してフッ素原子、炭素原子数1乃至3のアルコキシ基又は炭素原子数1乃至3のアルキル基を表し、tは0乃至3の整数を表す。)で表される2価の構造を表す。]
    A polyimide precursor obtained by reacting a tetracarboxylic dianhydride component containing a tetracarboxylic dianhydride represented by the following formula (6) with a diamine component containing a diamine represented by the formula (7), or A lower layer film for image formation comprising a polyimide obtained by dehydrating and ring-closing the polyimide precursor.
    Figure JPOXMLDOC01-appb-C000003

    [In the formula, A represents a tetravalent organic group, and B represents the formula (2) or the formula (3).
    Figure JPOXMLDOC01-appb-C000004

    Wherein X represents a single bond or a divalent aromatic group having 6 to 20 carbon atoms, and Y represents a single bond, —O—, —COO—, —OCO—, —CONH—, —CH 2 O. —, —CH 2 COO— or —CH 2 CH 2 COO—, Z represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms which may be substituted with a fluorine atom, and R represents independently Represents a fluorine atom, an alkoxy group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms, and t represents an integer of 0 to 3). ]
  3.  式(2)又は式(3)のZが、任意の水素原子がフッ素原子で置換されている炭素原子数3乃至26の脂肪族炭化水素基を表す、請求項1又は請求項2に記載の画像形成用下層膜。 The Z in the formula (2) or the formula (3) represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms in which an arbitrary hydrogen atom is substituted with a fluorine atom. Underlayer film for image formation.
  4.  Aが脂肪族環を有するか又は脂肪族のみからなる4価の有機基を表す、請求項1乃至請求項3に記載の画像形成用下層膜。 The underlayer film for image formation according to claim 1, wherein A represents a tetravalent organic group having an aliphatic ring or consisting only of an aliphatic group.
  5.  Bが式(2)で表される2価の構造を表す、請求項1乃至請求項4のうち何れか一項に記載の画像形成用下層膜。 The underlayer film for image formation according to any one of claims 1 to 4, wherein B represents a divalent structure represented by the formula (2).
  6.  X及びYが単結合を表す、請求項1乃至請求項5のうち何れか一項に記載の画像形成用下層膜。 The underlayer film for image formation according to any one of claims 1 to 5, wherein X and Y represent a single bond.
  7.  請求項1乃至請求項6のうち何れか一項に記載の画像形成下層膜を有する有機トランジスタ。 An organic transistor having the image forming lower layer film according to any one of claims 1 to 6.
  8.  下記式(14)又は下記式(15)で表されるジアミン化合物。
    Figure JPOXMLDOC01-appb-C000005
    (式中、Xは単結合又は炭素原子数6乃至20の2価の芳香族基を表し、Yは単結合、-O-、-COO-、-OCO-、-CONH-、-CHO-、-CHCOO-又は-CHCHCOO-を表し、Zは任意の水素原子がフッ素原子で置換されている炭素原子数3乃至26の脂肪族炭化水素基を表し、Rは夫々独立してフッ素原子、炭素原子数1乃至3のアルコキシ基又は炭素原子数1乃至3のアルキル基を表し、tは0乃至3の整数を表す。)
    A diamine compound represented by the following formula (14) or the following formula (15).
    Figure JPOXMLDOC01-appb-C000005
    Wherein X represents a single bond or a divalent aromatic group having 6 to 20 carbon atoms, and Y represents a single bond, —O—, —COO—, —OCO—, —CONH—, —CH 2 O. —, —CH 2 COO— or —CH 2 CH 2 COO—, wherein Z represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms in which any hydrogen atom is substituted with a fluorine atom, and R represents Independently represents a fluorine atom, an alkoxy group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms, and t represents an integer of 0 to 3).
  9.  下記式(1)で表される繰り返し単位を含むポリイミド前駆体又は該ポリイミド前駆体を脱水閉環して得られるポリイミド。
    Figure JPOXMLDOC01-appb-C000006

    (式中、Aは4価の有機基を表し、Bは下記式(2a)又は式(3a)で表される2価の構造を表し、R,Rはそれぞれ独立して水素原子又は1価の有機基を表し、nは自然数を表す。)
    Figure JPOXMLDOC01-appb-C000007

    (式中、Xは単結合又は炭素原子数6乃至20の2価の芳香族基を表し、Yは単結合、-O-、-COO-、-OCO-、-CONH-、-CHO-、-CHCOO-又は-CHCHCOO-を表し、Zは任意の水素原子がフッ素原子で置換されている炭素原子数3乃至26の脂肪族炭化水素基を表し、Rは夫々独立してフッ素原子、炭素原子数1乃至3のアルコキシ基又は炭素原子数1乃至3のアルキル基を表し、tは0乃至3の整数を表す。)
    The polyimide obtained by dehydrating and ring-closing the polyimide precursor containing the repeating unit represented by following formula (1), or this polyimide precursor.
    Figure JPOXMLDOC01-appb-C000006

    (In the formula, A represents a tetravalent organic group, B represents a divalent structure represented by the following formula (2a) or (3a), and R 1 and R 2 each independently represents a hydrogen atom or Represents a monovalent organic group, and n represents a natural number.)
    Figure JPOXMLDOC01-appb-C000007

    Wherein X represents a single bond or a divalent aromatic group having 6 to 20 carbon atoms, and Y represents a single bond, —O—, —COO—, —OCO—, —CONH—, —CH 2 O. —, —CH 2 COO— or —CH 2 CH 2 COO—, wherein Z represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms in which any hydrogen atom is substituted with a fluorine atom, and R represents Independently represents a fluorine atom, an alkoxy group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms, and t represents an integer of 0 to 3).
  10.  下記式(6)で表されるテトラカルボン酸ニ無水物を含むテトラカルボン酸ニ無水物成分と式(7)で表されるジアミンを含むジアミン成分とを反応させて得られるポリイミド前駆体、又は該ポリイミド前駆体を脱水閉環して得られるポリイミドを含むことを特徴とする画像形成下層膜塗布液。
    Figure JPOXMLDOC01-appb-C000008
     (式中、Aは4価の有機基を表し、Bは式(2)又は式(3)
    Figure JPOXMLDOC01-appb-C000009
    で表される2価の構造を表し、R、Rはそれぞれ独立して水素原子又は1価の有機基を表し、Xは単結合又は炭素原子数6乃至20の2価の芳香族基を表し、Yは単結合、-O-、-COO-、-OCO-、-CONH-、-CHO-、-CHCOO-又は-CHCHCOO-を表し、Zはフッ素原子で置換されていても良い炭素原子数3乃至26の脂肪族炭化水素を表し、Rは独立にフッ素原子、炭素原子数1乃至3のアルコキシ基又は炭素原子数1乃至3のアルキル基を表し、tは0乃至3の整数を表す。)
    A polyimide precursor obtained by reacting a tetracarboxylic dianhydride component containing a tetracarboxylic dianhydride represented by the following formula (6) with a diamine component containing a diamine represented by the formula (7), or An image-forming underlayer film coating solution comprising a polyimide obtained by dehydrating and ring-closing the polyimide precursor.
    Figure JPOXMLDOC01-appb-C000008
    (In the formula, A represents a tetravalent organic group, and B represents Formula (2) or Formula (3).
    Figure JPOXMLDOC01-appb-C000009
    Wherein R 1 and R 2 each independently represent a hydrogen atom or a monovalent organic group, and X is a single bond or a divalent aromatic group having 6 to 20 carbon atoms. the stands, Y is a single bond, -O -, - COO -, - OCO -, - CONH -, - CH 2 O -, - CH 2 COO- or -CH 2 CH 2 COO- represents, Z is fluorine atom Represents an aliphatic hydrocarbon having 3 to 26 carbon atoms which may be substituted with, R independently represents a fluorine atom, an alkoxy group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms; t represents an integer of 0 to 3. )
  11.  式(2)又は式(3)のZが、任意の水素原子がフッ素原子で置換されている炭素原子数3乃至26の脂肪族炭化水素基を表す請求項10に記載の画像形成下層膜塗布液。 11. The image-forming underlayer film coating according to claim 10, wherein Z in the formula (2) or the formula (3) represents an aliphatic hydrocarbon group having 3 to 26 carbon atoms in which an arbitrary hydrogen atom is substituted with a fluorine atom. liquid.
  12.  さらにイミド化率が80%以上の可溶性ポリイミドを含む請求項10又は請求項11に記載の画像形成用下層膜塗布液。 The coating solution for a lower layer film for image formation according to claim 10 or 11, further comprising a soluble polyimide having an imidization rate of 80% or more.
  13.  請求項10乃至請求項12に記載の画像形成下層膜塗布液を焼成して得られる画像形成下層膜。 An image-forming underlayer film obtained by baking the image-forming underlayer film coating solution according to claim 10.
  14.  請求項10乃至請求項13に記載の画像形成下層膜塗布液を焼成して得られる膜を有する有機トランジスタ。 An organic transistor having a film obtained by baking the image-forming underlayer film coating solution according to claim 10.
PCT/JP2009/068132 2008-10-23 2009-10-21 Underlayer film for image formation WO2010047346A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117011436A KR101674645B1 (en) 2008-10-23 2009-10-21 Underlayer Film for Image Formation
JP2010534828A JP5532259B2 (en) 2008-10-23 2009-10-21 Underlayer film for image formation
CN2009801419753A CN102197489B (en) 2008-10-23 2009-10-21 Underlayer film for image formation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008273217 2008-10-23
JP2008-273217 2008-10-23

Publications (1)

Publication Number Publication Date
WO2010047346A1 true WO2010047346A1 (en) 2010-04-29

Family

ID=42119383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068132 WO2010047346A1 (en) 2008-10-23 2009-10-21 Underlayer film for image formation

Country Status (5)

Country Link
JP (1) JP5532259B2 (en)
KR (1) KR101674645B1 (en)
CN (1) CN102197489B (en)
TW (1) TWI453235B (en)
WO (1) WO2010047346A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019001859A (en) * 2017-06-13 2019-01-10 Dic株式会社 Modification method of polymer film surface
KR20200106560A (en) * 2012-12-18 2020-09-14 닛산 가가쿠 가부시키가이샤 Bottom layer film-formation composition of self-organizing film containing polycyclic organic vinyl compound
JPWO2021006133A1 (en) * 2019-07-11 2021-01-14

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5783380B2 (en) * 2012-03-23 2015-09-24 Jsr株式会社 Liquid crystal aligning agent and method for forming liquid crystal aligning film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284124A (en) * 1985-08-30 1987-04-17 ゼネラル・エレクトリツク・カンパニイ Crystalline polyimide containing cumulative phenylenesulfideunit
JPH08146431A (en) * 1994-11-24 1996-06-07 Hitachi Ltd Composition for liquid crystal oriented film, and liquid crystal oriented film
JP2006185898A (en) * 2004-11-30 2006-07-13 Ricoh Co Ltd Electronic element, arithmetic element, and display element

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288588A (en) * 1989-10-27 1994-02-22 Nissan Chemical Industries Ltd. Positive photosensitive polyimide resin composition comprising an o-quinone diazide as a photosensitive compound
US5449741A (en) * 1990-09-28 1995-09-12 Nippon Telegraph And Telephone Corporation Polyimide optical material
JP2743860B2 (en) * 1994-04-28 1998-04-22 日本電気株式会社 User program debug processing system
TW498091B (en) * 1998-11-09 2002-08-11 Kanegafuchi Chemical Ind Polyimide composition and its manufacture process
JP3635615B2 (en) 1999-02-02 2005-04-06 大日本印刷株式会社 ELECTROLUMINESCENT ELEMENT AND MANUFACTURING METHOD THEREOF
AU2001265390A1 (en) * 2000-06-06 2001-12-17 Ekc Technology, Inc. Method of making electronic materials
JP4894120B2 (en) * 2001-09-27 2012-03-14 Jnc株式会社 Phenylenediamine derivative, liquid crystal alignment film, and liquid crystal display element
JP3951886B2 (en) 2002-10-23 2007-08-01 株式会社日立製作所 WIRING BOARD, DISPLAY DEVICE, DISPLAY DEVICE COLOR FILTER, WIRING BOARD FORMING METHOD, DISPLAY DEVICE FORMING METHOD, DISPLAY DEVICE COLOR FILTER FORMING METHOD
JP4009181B2 (en) * 2002-11-08 2007-11-14 富士フイルム株式会社 Planographic printing plate precursor
JP4312476B2 (en) 2003-03-10 2009-08-12 株式会社リコー Pattern forming method, electronic device, electronic device array, and image display device
JP2006021491A (en) * 2004-07-09 2006-01-26 Ricoh Co Ltd Laminated structure, optics using laminated structure, display element, arithmetic element and method for manufacturing these elements
JP4678574B2 (en) * 2004-08-23 2011-04-27 株式会社リコー Multilayer structure, electronic element using the multilayer structure, electronic element array, and display device
JP4614349B2 (en) * 2004-09-30 2011-01-19 信越化学工業株式会社 Polyimide having alcoholic hydroxyl group and method for producing the same
JP4386454B2 (en) * 2006-08-22 2009-12-16 信越化学工業株式会社 Photosensitive polyimide resin soluble in alkaline aqueous solution, composition containing the resin, and film obtained from the composition
CN105542164A (en) * 2008-03-10 2016-05-04 日产化学工业株式会社 Composition for forming underlayer film for image formation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284124A (en) * 1985-08-30 1987-04-17 ゼネラル・エレクトリツク・カンパニイ Crystalline polyimide containing cumulative phenylenesulfideunit
JPH08146431A (en) * 1994-11-24 1996-06-07 Hitachi Ltd Composition for liquid crystal oriented film, and liquid crystal oriented film
JP2006185898A (en) * 2004-11-30 2006-07-13 Ricoh Co Ltd Electronic element, arithmetic element, and display element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200106560A (en) * 2012-12-18 2020-09-14 닛산 가가쿠 가부시키가이샤 Bottom layer film-formation composition of self-organizing film containing polycyclic organic vinyl compound
KR102357731B1 (en) 2012-12-18 2022-02-08 닛산 가가쿠 가부시키가이샤 Bottom layer film-formation composition of self-organizing film containing polycyclic organic vinyl compound
JP2019001859A (en) * 2017-06-13 2019-01-10 Dic株式会社 Modification method of polymer film surface
JPWO2021006133A1 (en) * 2019-07-11 2021-01-14
WO2021006133A1 (en) * 2019-07-11 2021-01-14 富士フイルム株式会社 Resin composition, film, color filter, solid-state image sensor, image display device, resin, and compound
JP7229354B2 (en) 2019-07-11 2023-02-27 富士フイルム株式会社 Resin composition, film, color filter, solid-state imaging device, image display device, resin and compound

Also Published As

Publication number Publication date
JP5532259B2 (en) 2014-06-25
JPWO2010047346A1 (en) 2012-03-22
KR101674645B1 (en) 2016-11-09
CN102197489B (en) 2013-08-21
CN102197489A (en) 2011-09-21
KR20110082051A (en) 2011-07-15
TWI453235B (en) 2014-09-21
TW201031687A (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP5321839B2 (en) Polyimide precursor, polyimide, and image-forming underlayer coating solution
JP5445788B2 (en) Underlayer film composition for image formation
JP5212596B2 (en) Organic transistor
JP5534229B2 (en) Gate insulating film forming composition for thin film transistor
JP5196194B2 (en) Gate insulating film, forming agent thereof, manufacturing method, thin film transistor using the same, and manufacturing method thereof
JP5532259B2 (en) Underlayer film for image formation
JPWO2010047346A6 (en) Underlayer film for image formation
US10573834B2 (en) Coating liquid for gate insulating film, gate insulating film and organic transistor
JP5212600B2 (en) Gate insulating film and organic transistor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141975.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09822043

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010534828

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117011436

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09822043

Country of ref document: EP

Kind code of ref document: A1