JP5445788B2 - Underlayer film composition for image formation - Google Patents

Underlayer film composition for image formation Download PDF

Info

Publication number
JP5445788B2
JP5445788B2 JP2010502837A JP2010502837A JP5445788B2 JP 5445788 B2 JP5445788 B2 JP 5445788B2 JP 2010502837 A JP2010502837 A JP 2010502837A JP 2010502837 A JP2010502837 A JP 2010502837A JP 5445788 B2 JP5445788 B2 JP 5445788B2
Authority
JP
Japan
Prior art keywords
polyimide
group
formula
film
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010502837A
Other languages
Japanese (ja)
Other versions
JPWO2009113549A1 (en
Inventor
真一 前田
豪 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP2010502837A priority Critical patent/JP5445788B2/en
Publication of JPWO2009113549A1 publication Critical patent/JPWO2009113549A1/en
Application granted granted Critical
Publication of JP5445788B2 publication Critical patent/JP5445788B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)

Description

本発明は、ポリイミドの前駆体及び/又はこのポリイミドの前駆体を脱水閉環したポリイミドを含む画像形成用下層膜組成物に関するものであり、更には該組成物を用いて作製された硬化膜及び電子デバイスに関するものである。   The present invention relates to a polyimide precursor and / or an underlayer film composition for image formation containing a polyimide obtained by dehydrating and ring-closing this polyimide precursor. Furthermore, the present invention relates to a cured film and an electron produced using the composition. It is about the device.

電子デバイスの製造工程において、電極や機能性薄膜のパターン形成にあたり、液体の濡れ性の差を利用した塗り分け技術を機能性薄膜のパターニングに応用することが提案されている。これは、基板表面に、液体に濡れやすい領域と液体に濡れにくい領域とからなるパターニング層を作り、次いでこのパターニング層上に機能性薄膜形成材料の含有液体を塗布し続いて乾燥させることで、液体に濡れやすい領域にのみ機能性薄膜を形成させ、有機EL(エレクトロルミネッセンス)素子や、有機FET(電界効果型トランジスタ)素子などの電子デバイスを作製するという方法である。   In the manufacturing process of an electronic device, it has been proposed to apply a coating technique using a difference in wettability of liquid to patterning of a functional thin film when forming a pattern of an electrode or a functional thin film. This is because a patterning layer composed of a region that easily wets liquid and a region that does not easily wet liquid is formed on the substrate surface, and then a liquid containing a functional thin film forming material is applied onto the patterning layer and then dried. This is a method of forming an electronic device such as an organic EL (electroluminescence) element or an organic FET (field effect transistor) element by forming a functional thin film only in a region that easily gets wet with liquid.

上記電極のパターン形成に用いる画像形成液として、主にPEDOT/PSS水溶液が用いられているが、該PEDOT/PSS水溶液は表面張力が比較的高いことからスピンコート法や印刷法などの方法で成膜することが困難であるため、一般に表面張力が低くなるように調整されている。表面張力が低い画像形成液は、成膜対象となる基板に対して濡れ広がる性質を示すため、目的とする部位以外の領域に液の濡れ広がりを抑えるためには、目的とする部位のみを親水性化し、該領域表面は疎水性化する必要がある。
近年、電極や機能性薄膜等のパターニング層として疎水性側鎖を含有するポリイミド前駆体または該ポリイミド前駆体から得られるポリイミドを採用し、ポリイミド膜の親疎水性を変化させることにより、水接触角を変化する事が可能であることを利用して、塗布型機能材料を塗り分ける技術が広く研究されている。
The PEDOT / PSS aqueous solution is mainly used as the image forming liquid used for the pattern formation of the electrode. Since the PEDOT / PSS aqueous solution has a relatively high surface tension, it is formed by a method such as a spin coating method or a printing method. Since it is difficult to form a film, the surface tension is generally adjusted to be low. Since the image forming liquid having a low surface tension exhibits the property of spreading on the substrate to be deposited, in order to suppress the wetting and spreading of the liquid to a region other than the target portion, only the target portion is hydrophilic. It is necessary to make the surface of the region hydrophobic.
In recent years, a polyimide precursor containing a hydrophobic side chain or a polyimide obtained from the polyimide precursor has been adopted as a patterning layer for electrodes, functional thin films, etc., and the water contact angle is changed by changing the hydrophilicity / hydrophobicity of the polyimide film. A technique for painting coating-type functional materials using the fact that they can change has been widely studied.

例えば、脂肪族環を有するポリイミド前駆体又はポリイミドを用いて得られる濡れ性変化層の特性が明示されている(例えば特許文献1参照)。該文献においては、ポリイミドの脂肪族環が開裂することが、親疎水性の変化をもたらす要因の一つであると推察されており、側鎖の量(すなわち側鎖の数)が多いほど、表面エネルギー(臨界表面張力)が低くなり、疎液性になるとも推察されている。
また同文献の実施例において、脂肪族環を有する酸二無水物と炭化水素基を側鎖に有するジアミンを用いて得られるポリアミド酸を濡れ性変化層として用いた場合に、紫外線照射により親疎水性が大きく変化したとする結果が示されており、また該濡れ性変化層上にPEDOT/PSSからなる電極層を形成して、電子素子を作製したことが示されている。
国際公開第2006/137366号パンフレット
For example, the characteristics of a wettability changing layer obtained by using a polyimide precursor having an aliphatic ring or a polyimide are specified (for example, see Patent Document 1). In this document, it is presumed that the cleavage of the aliphatic ring of polyimide is one of the factors causing the change in hydrophilicity / hydrophobicity, and the larger the amount of side chains (that is, the number of side chains), the more the surface It is presumed that the energy (critical surface tension) becomes low and the liquid becomes lyophobic.
In Examples of the same document, when polyamic acid obtained by using an acid dianhydride having an aliphatic ring and a diamine having a hydrocarbon group in the side chain is used as a wettability changing layer, the hydrophilicity / hydrophobicity by ultraviolet irradiation is increased. The results show that the change has greatly changed, and it is also shown that an electrode layer made of PEDOT / PSS was formed on the wettability changing layer to produce an electronic device.
International Publication No. 2006/137366 Pamphlet

通常、画像形成液は成膜可能とするために、水よりも低い表面張力を有するように設計されている。そのため、画像形成液は、塗布のし易さを考慮して、水よりも表面張力が低い有機溶媒系であることが多い。
しかし、上記文献に例示される疎水性の側鎖では、側鎖の含有量を十分に多くした場合においても、未露光部の疎水性(すなわち撥水性)は十分に高いとは言えず、例えば未露光部に画像形成液がはみ出した場合、そのまま画像形成液が乾燥してしまい、目的の画像が得られないという問題があった。
Usually, the image forming liquid is designed to have a surface tension lower than that of water in order to enable film formation. Therefore, the image forming liquid is often an organic solvent system having a surface tension lower than that of water in consideration of ease of application.
However, in the hydrophobic side chain exemplified in the above document, even when the content of the side chain is sufficiently increased, the hydrophobicity (that is, water repellency) of the unexposed part is not sufficiently high. When the image forming liquid protrudes from the unexposed area, the image forming liquid is dried as it is, and there is a problem that a target image cannot be obtained.

さらに、疎水性基は一般に比誘電率が低く、側鎖含有量の増加は比誘電率の低下を招き、特に疎水性の高いフルオロアルキル基は他の疎水性基と比較しても比誘電率が極めて低いことから、有機トランジスタなどに使われるゲート絶縁膜においては好ましいとは言えないという問題があった。
このため、主に有機トランジスタのソース・ドレイン電極のパターニングに用いられる画像形成用下層膜は、ゲート絶縁膜としての機能をも併せ持つ必要性があることから、上述のフルオロアルキル基を側鎖に含むポリイミド系材料を画像形成用下層膜として用いられた例は無かった。
Furthermore, hydrophobic groups generally have a low dielectric constant, and an increase in side chain content leads to a decrease in the dielectric constant. Particularly, highly hydrophobic fluoroalkyl groups have a relative dielectric constant even when compared to other hydrophobic groups. Therefore, there is a problem that it is not preferable in a gate insulating film used for an organic transistor or the like.
For this reason, the lower layer film for image formation mainly used for patterning the source / drain electrodes of the organic transistor must also have a function as a gate insulating film, and therefore includes the above-described fluoroalkyl group in the side chain. There was no example in which a polyimide-based material was used as an underlayer film for image formation.

このように、一般にゲート絶縁膜は有機トランジスタの駆動電圧を下げる目的で比誘電率が高くなるように材料設計されているが、撥水性(疎水性)を高める目的でフルオロアルキル基を含む側鎖の含有量を増やすだけでは、比誘電率が大幅に低下してしまい、例え高い撥水性によって微細な画像が描けたとしても、ゲート絶縁膜の性能が低下する問題があった。つまり、比誘電率の低下を抑えつつ、高い撥水性が得られる新たな疎水性側鎖を有する材料が求められていた。   As described above, the gate insulating film is generally designed to have a high dielectric constant for the purpose of lowering the driving voltage of the organic transistor, but the side chain containing a fluoroalkyl group is intended to increase the water repellency (hydrophobicity). Increasing the content of the material significantly reduces the relative permittivity, and even if a fine image can be drawn due to high water repellency, the performance of the gate insulating film is degraded. That is, a material having a new hydrophobic side chain capable of obtaining high water repellency while suppressing a decrease in relative dielectric constant has been demanded.

本発明は、このような事情に鑑みてなされたものであり、形成された画像形成用下層膜が高い撥水性(疎水性)を有し、少ない紫外線露光量で親疎水性を容易に変化させることができ、しかも、比誘電率の低下を抑制できる、画像形成用下層膜組成物を提供することを目的とする。
また、形成された下層膜が、低表面張力溶媒を主溶媒とした画像形成液を、スピンコート法やインクジェットプリント法などの塗布方法で塗布し、高精細なパターニング(画像形成)が可能である、画像形成用下層膜組成物を提供することを目的とする。
さらに、200℃以下(180℃以下)の温度で焼成可能で、電気絶縁性や化学的安定性が高い画像形成用下層膜形成組成物、並びに、絶縁性に優れゲートリーク電流が少ない良好な特性の有機トランジスタ用ゲート絶縁膜を提供することを目的とする。
The present invention has been made in view of such circumstances, and the formed underlayer film for image formation has high water repellency (hydrophobicity), and the hydrophilicity / hydrophobicity can be easily changed with a small amount of UV exposure. An object of the present invention is to provide an image-forming underlayer film composition that can suppress the decrease in relative permittivity.
In addition, the formed lower layer film can be applied with an image forming liquid containing a low surface tension solvent as a main solvent by a coating method such as a spin coating method or an ink jet printing method, thereby enabling high-definition patterning (image formation). An object of the present invention is to provide an underlayer film composition for image formation.
Furthermore, it can be baked at a temperature of 200 ° C. or lower (180 ° C. or lower), has a high electrical insulating property and chemical stability, and has an excellent insulating property and low gate leakage current. An object of the present invention is to provide a gate insulating film for an organic transistor.

本発明者らは、上記目的を達成するため、鋭意検討を重ねた結果、ポリイミド前駆体及び/又は該ポリイミド前駆体から得られるポリイミドの構造内に、フルオロアルキル基を有するフェニル基を30モル%を超えない範囲で導入させることにより、紫外線照射によって親水性/疎水性を大きく変化させることができるだけでなく、また高い撥水性を付与し、比誘電率の低下が起こらないことを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that 30 mol% of a phenyl group having a fluoroalkyl group is contained in the polyimide precursor and / or the structure of the polyimide obtained from the polyimide precursor. It is found that by introducing it in a range not exceeding the range, hydrophilicity / hydrophobicity can be greatly changed by ultraviolet irradiation, high water repellency is imparted, and the relative dielectric constant does not decrease. It came to complete.

即ち、本発明は第1観点として、下記式(1)及び式(1a)で表される構造単位を含むポリイミド前駆体及び該ポリイミド前駆体を脱水閉環して得られるポリイミドからなる群より選ばれる少なくとも一種の化合物を含む事を特徴とする画像形成用下層膜組成物に関する。   That is, as a first aspect, the present invention is selected from the group consisting of a polyimide precursor containing structural units represented by the following formulas (1) and (1a) and a polyimide obtained by dehydrating and ring-closing the polyimide precursor. The present invention relates to an underlayer film composition for image formation, comprising at least one compound.

(式中、Aは4価の有機基を表し、B1は下記式(2)で表される少なくとも1種の2価の有機基を表し、B2は2価の有機基を表し、R1、R2、R1a、R2aはそれぞれ独立して水素原子または一価の有機基を表し、nは式(1)で表される構造単位の合計モル数であり、mは式(1a)で表される構造単位の合計モル数であって、nとmはそれぞれ正の整数を表し且つ0.01≦n/(n+m)≦0.3を満たす。)(In the formula, A represents a tetravalent organic group, B 1 represents at least one divalent organic group represented by the following formula (2), B 2 represents a divalent organic group, R 1 , R 2 , R 1a and R 2a each independently represents a hydrogen atom or a monovalent organic group, n is the total number of moles of the structural unit represented by the formula (1), and m is the formula (1a ), And n and m each represent a positive integer and satisfy 0.01 ≦ n / (n + m) ≦ 0.3.)

(式中、X1は、単結合、−O−、−COO−、−OCO−、−CONH−、−CH2O−を表し、X2は、炭素原子数3乃至18の2価の有機基を表し、R3は炭素原子数2乃至12のパーフルオロアルキル基を表す。)
第2観点として、前記式(1a)中、B2が下記式(3)乃至(5)からなる群より選択される少なくとも一種の基である、第1観点に記載の画像形成用下層膜組成物。
(In the formula, X 1 represents a single bond, —O—, —COO—, —OCO—, —CONH—, —CH 2 O—, and X 2 represents a divalent organic compound having 3 to 18 carbon atoms. And R 3 represents a perfluoroalkyl group having 2 to 12 carbon atoms.)
As a second aspect, in the formula (1a), B 2 is at least one group selected from the group consisting of the following formulas (3) to (5), and the underlayer film composition for image formation according to the first aspect object.

(式中、Y1は、それぞれ独立して、単結合、エーテル結合、エステル結合、チオエーテル結合、アミド結合、炭素原子数1乃至3の分岐構造を有していても良いアルキレン基又は炭素原子数1乃至3の分岐構造を有していても良いアルキレンジオキソ基を表し、Y2は、単結合、エーテル結合、エステル結合、チオエーテル結合、アミド結合を表し、R4はそれぞれ独立して、水素原子、メチル基、エチル基、トリフルオロメチル基を表し、R5は、水素原子、メチル基、トリフルオロメチル基を表し、R6は、メチレン基、エチレン基を表し、jはそれぞれ独立して0又は1を表す。)
第3観点として、前記式(1)及び式(1a)中、Aで表される4価の有機基が下記式(6)乃至(11)からなる群より選択される少なくとも一種の基である、第1観点又は第2観点に記載の画像形成用下層膜組成物。
(In the formula, each Y 1 independently represents a single bond, an ether bond, an ester bond, a thioether bond, an amide bond, an alkylene group which may have a branched structure having 1 to 3 carbon atoms, or the number of carbon atoms. Represents an alkylenedioxo group which may have 1 to 3 branched structures, Y 2 represents a single bond, an ether bond, an ester bond, a thioether bond, an amide bond, and R 4 each independently represents hydrogen Represents an atom, a methyl group, an ethyl group, or a trifluoromethyl group; R 5 represents a hydrogen atom, a methyl group, or a trifluoromethyl group; R 6 represents a methylene group or an ethylene group; Represents 0 or 1)
As a third aspect, in the formulas (1) and (1a), the tetravalent organic group represented by A is at least one group selected from the group consisting of the following formulas (6) to (11). The underlayer film composition for image formation according to the first aspect or the second aspect.

(式中、R7、R8、R9、R10、はそれぞれ独立して水素原子、フッ素原子または炭素原子数1乃至4の炭化水素基を表す。)
第4観点として、前記式(1)及び式(1a)で表される構造単位を含むポリイミド前駆体及び該ポリイミド前駆体を脱水閉環して得られるポリイミドが、下記式(16)で表されるテトラカルボン酸二無水物と、下記式(17)及び(18)で表されるジアミン成分を反応させて得られるポリイミド前駆体及びポリイミドである、第1観点乃至第3観点のうち何れか一項に記載の画像形成用下層膜組成物。
(Wherein R 7 , R 8 , R 9 and R 10 each independently represents a hydrogen atom, a fluorine atom or a hydrocarbon group having 1 to 4 carbon atoms.)
As a 4th viewpoint, the polyimide obtained by dehydrating and ring-closing the polyimide precursor containing the structural unit represented by the said Formula (1) and Formula (1a) and this polyimide precursor is represented by following formula (16). Any one of the first to third aspects, which is a polyimide precursor and polyimide obtained by reacting tetracarboxylic dianhydride with a diamine component represented by the following formulas (17) and (18): The underlayer film composition for image formation described in 1.

(式中、A、B1及びB2は前記式(1)及び式(1a)における定義と同義である。)
第5観点として、第1観点乃至第4観点のうちいずれか一項に記載の画像形成用下層膜組成物を用いて得られる画像形成用下層膜。
第6観点として、第1観点乃至第5観点のうちいずれか一項に記載の画像形成用下層膜組成物を用いて得られる電極パターン形成用下層膜。
第7観点として、第1観点乃至第5観点のうちいずれか一項に記載の画像形成用下層膜組成物を用いて得られる有機トランジスタ用ゲート絶縁膜。
第8観点として、第7観点に記載の有機トランジスタ用ゲート絶縁膜を用いて得られる有機トランジスタ。
(In the formula, A, B 1 and B 2 have the same definitions as in the formula (1) and formula (1a)).
As a fifth aspect, an image-forming underlayer film obtained using the image-forming underlayer film composition according to any one of the first to fourth aspects.
As a sixth aspect, an electrode pattern forming lower layer film obtained using the image forming lower layer film composition according to any one of the first to fifth aspects.
As a seventh aspect, a gate insulating film for an organic transistor obtained using the image-forming underlayer film composition according to any one of the first aspect to the fifth aspect.
As an eighth aspect, an organic transistor obtained using the organic transistor gate insulating film according to the seventh aspect.

本発明のポリイミド前駆体及び該ポリイミド前駆体から得られるポリイミドからなる群より選ばれる少なくとも一種の化合物を含む画像形成用下層膜組成物は、これより形成された膜において、低表面張力の溶媒を主溶媒として用いた画像形成液に対して、紫外線照射によって大きな接触角変化つまり親疎水性の変化を付与する事ができる。従って、こうした特性を利用して電極などの機能性材料等の画像形成が可能な下層膜を形成することができる。
さらに、本発明の組成物から形成される硬化膜は、比誘電率が高い画像形成用下層膜を形成することができる。比誘電率の高い画像形成用下層膜は、有機トランジスタ用ゲート絶縁膜としても用いる事ができる。また、比誘電率の高い画像形成用下層膜は、有機トランジスタの駆動電圧を下げることができる。
さらに、本発明の組成物から形成される硬化膜は、画像形成液をインクジェットのみならずスピンコートやディップ法など様々な方法で塗布することが可能であるため、生産性の点で有効な材料となる。
An underlayer film composition for image formation containing at least one compound selected from the group consisting of the polyimide precursor of the present invention and a polyimide obtained from the polyimide precursor is a low surface tension solvent in a film formed therefrom. A large change in contact angle, that is, a change in hydrophilicity / hydrophobicity can be imparted to the image forming liquid used as the main solvent by ultraviolet irradiation. Therefore, a lower layer film capable of forming an image of a functional material such as an electrode can be formed using such characteristics.
Furthermore, the cured film formed from the composition of the present invention can form an image-forming underlayer film having a high relative dielectric constant. The lower film for image formation having a high relative dielectric constant can also be used as a gate insulating film for organic transistors. In addition, an image forming lower layer film having a high relative dielectric constant can lower the driving voltage of the organic transistor.
Furthermore, the cured film formed from the composition of the present invention can be applied with an image forming solution by various methods such as spin coating and dipping as well as inkjet, and is therefore an effective material in terms of productivity. It becomes.

本発明は、新規な構造を有するポリイミド前駆体及び該ポリイミド前駆体から得られるポリイミドからなる群から選ばれる少なくとも一種の化合物を含有する画像形成用下層膜組成物である。更に、前記組成物を用いて得られる硬化膜(画像形成用下層膜、電極パターン形成用下層膜、有機トランジスタ用ゲート絶縁膜)、及びその硬化膜を用いる電子デバイスに関する。
以下、詳細を説明する。
The present invention is an image-forming underlayer film composition containing a polyimide precursor having a novel structure and at least one compound selected from the group consisting of polyimides obtained from the polyimide precursor. Furthermore, the present invention relates to a cured film (an image forming lower layer film, an electrode pattern forming lower layer film, an organic transistor gate insulating film) obtained by using the composition, and an electronic device using the cured film.
Details will be described below.

[ポリイミド前駆体及び該ポリイミド前駆体より得られるポリイミド]
本発明は下記式(1)及び式(1a)で表される構造単位単位を含むポリイミド前駆体及び該ポリイミド前駆体を脱水開環して得られるポリイミドからなる群より選ばれる少なくとも一種の化合物を含む、画像形成用下層膜組成物である。
[Polyimide precursor and polyimide obtained from the polyimide precursor]
The present invention provides at least one compound selected from the group consisting of a polyimide precursor containing structural unit units represented by the following formulas (1) and (1a) and a polyimide obtained by dehydrating and ring-opening the polyimide precursor. An underlayer film composition for image formation.

(式中、Aは4価の有機基を表し、B1は前記式(2)で表される少なくとも1種の2価の有機基を表し、B2は2価の有機基を表し、R1、R2、R1a、R2aはそれぞれ独立して水素原子または一価の有機基を表し、nは式(1)で表される構造単位の合計モル数であり、mは式(1a)で表される構造単位の合計モル数であって、nとmはそれぞれ正の整数を表し且つ0.01≦n/(n+m)≦0.3を満たす。)(In the formula, A represents a tetravalent organic group, B 1 represents at least one divalent organic group represented by the formula (2), B 2 represents a divalent organic group, R 1 , R 2 , R 1a and R 2a each independently represents a hydrogen atom or a monovalent organic group, n is the total number of moles of the structural unit represented by the formula (1), and m is the formula (1a ), And n and m each represent a positive integer and satisfy 0.01 ≦ n / (n + m) ≦ 0.3.)

上記式(1)及び式(1a)中、Aで表される有機基の構造は4価の有機基であれば特に限定されない。また、式(1)及び式(1a)で表されるポリイミド前駆体及び該ポリイミド前駆体より得られるポリイミドからなる群より選ばれる少なくとも一種の化合物において、Aで表される有機基の構造は1種類であっても、複数種が混在していてもよい。
Aで表される有機基の具体例としては、下記式A−1乃至A−36の有機基を挙げることができる。
In the above formula (1) and formula (1a), the structure of the organic group represented by A is not particularly limited as long as it is a tetravalent organic group. In at least one compound selected from the group consisting of polyimide precursors represented by formula (1) and formula (1a) and polyimide obtained from the polyimide precursor, the structure of the organic group represented by A is 1 Even if it is a kind, multiple kinds may be mixed.
Specific examples of the organic group represented by A include organic groups of the following formulas A-1 to A-36.

上記式A−1乃至A−36は、画像形成用下層膜と為したとき、求められる特性によって適宜選択され得る。
例えば、上記式A−1乃至A−36のうち、A−1乃至A−11は、式(1)及び式(1a)で表される構造単位を含むポリイミド前駆体をポリイミドとなした場合に、芳香族環がイミド環に直接結合することとなるため、絶縁性が低下する(リーク電流が大きい)と考えられるが、脂肪族環がイミド環に直接結合した場合と比べて比誘電率が高くなるという特徴を有する。
一方、A−12乃至A−35は、基内に脂環構造を有していることから、絶縁性が高くなる(リーク電流が少ない)だけでなく、後述する接触角変化に必要な紫外線の照射量を減ずることができるという観点からも好適であり、特にA−12乃至A−15が好ましい。
また、A−17、A−27、A−29、A−30、A−31、A−32又はA−36などが、接触角変化に必要な紫外線の照射量を減ずることができ、且つ、ポリイミドとした際に溶媒への溶解性が高いことから最も好ましい。また、溶解性の向上と親疎水性の変化に必要な紫外線の照射量の低減を目的に脂環構造を有する4価の有機基を複数種類組み合わせて用いても良い。
The above formulas A-1 to A-36 can be appropriately selected according to required characteristics when used as an image forming lower layer film.
For example, among the formulas A-1 to A-36, A-1 to A-11 are obtained when a polyimide precursor including the structural unit represented by the formula (1) and the formula (1a) is converted to a polyimide. Since the aromatic ring is directly bonded to the imide ring, the insulating property is considered to be reduced (leakage current is large), but the relative dielectric constant is higher than that in the case where the aliphatic ring is directly bonded to the imide ring. It has the feature of becoming higher.
On the other hand, since A-12 to A-35 have an alicyclic structure in the group, they not only have high insulation (leakage current is small) but also ultraviolet rays necessary for contact angle change described later. It is also preferable from the viewpoint that the irradiation amount can be reduced, and A-12 to A-15 are particularly preferable.
In addition, A-17, A-27, A-29, A-30, A-31, A-32, A-36, etc. can reduce the irradiation amount of ultraviolet rays necessary for changing the contact angle, and When polyimide is used, it is most preferable because of its high solubility in a solvent. Further, a plurality of types of tetravalent organic groups having an alicyclic structure may be used in combination for the purpose of improving the solubility and reducing the irradiation amount of ultraviolet rays necessary for the change of hydrophilicity / hydrophobicity.

上記式(1)中、B1はフルオロアルキル基を有する2価の有機基であり、具体的には下記式(2)で表される少なくとも1種の2価の有機基を表す。In the above formula (1), B 1 is a divalent organic group having a fluoroalkyl group, and specifically represents at least one divalent organic group represented by the following formula (2).

(式中、X1は、単結合、−O−、−COO−、−OCO−、−CONH−、−CH2O−を表し、X2は、炭素原子数3乃至18の2価の有機基を表し、R3は炭素原子数2乃至12のパーフルオロアルキル基を表す。)(In the formula, X 1 represents a single bond, —O—, —COO—, —OCO—, —CONH—, —CH 2 O—, and X 2 represents a divalent organic compound having 3 to 18 carbon atoms. And R 3 represents a perfluoroalkyl group having 2 to 12 carbon atoms.)

前記R3で表されるフルオロアルキル基は、表面自由エネルギーが小さく高い撥水性を付与することができるが、炭素原子数が2未満では高い撥水性が得られず、また長すぎると撥水性のコントロールが困難になるだけでなく、比誘電率が低くなるなどの理由から、炭素原子数は2以上乃至12、より好ましくは4乃至8であることが望ましい。The fluoroalkyl group represented by R 3 has a small surface free energy and can impart high water repellency. However, when the number of carbon atoms is less than 2, high water repellency cannot be obtained. It is desirable that the number of carbon atoms is 2 or more to 12 and more preferably 4 to 8 because not only the control is difficult but also the relative dielectric constant is lowered.

また、フッ素含有量を増加させることで、より高い撥水性を得ることができるが、長鎖アルキルすべてがフッ素化された構造では、反対に比誘電率の大きな低下を引き起こすこととなる。
このため、フッ素原子を含有しないアルキレン基などの炭素鎖をスペーサー(式(2)中、X2)として用いることにより、比誘電率の低下を抑えつつ、高い撥水性を得る事が可能となる。
Further, by increasing the fluorine content, higher water repellency can be obtained. However, in the structure in which all the long-chain alkyls are fluorinated, the relative dielectric constant is greatly reduced.
For this reason, by using a carbon chain such as an alkylene group containing no fluorine atom as a spacer (X 2 in the formula (2)), it is possible to obtain a high water repellency while suppressing a decrease in the dielectric constant. .

2は炭素原子数3乃至18の2価の有機基であり、より好ましくは炭素原子数6乃至18、最も好ましくは炭素原子数9乃至18の2価の有機基である。
2は炭素原子数3乃至18の2価の有機基であれば構造は特に限定されないが、好ましくはアルキレン基、芳香族環又は脂肪族環、或いはその両方を有する2価の炭化水素基から選択される。
X 2 is a divalent organic group having 3 to 18 carbon atoms, more preferably a divalent organic group having 6 to 18 carbon atoms, and most preferably 9 to 18 carbon atoms.
The structure is not particularly limited as long as X 2 is a divalent organic group having 3 to 18 carbon atoms. Preferably, X 2 is a divalent hydrocarbon group having an alkylene group, an aromatic ring or an aliphatic ring, or both. Selected.

式(2)中、上記X2は直接ベンゼン環に結合していてもよいが、結合基を介して結合していてもよい。すなわち、式(2)において、X1としては、単結合、−O−、−COO−、−OCO−、−CONH−、−CH2O−が挙げられる。In formula (2), X 2 may be directly bonded to the benzene ring, but may be bonded via a linking group. That is, in Formula (2), X 1 includes a single bond, —O—, —COO—, —OCO—, —CONH—, and —CH 2 O—.

前記式(2)で表される2価の有機基であるB1の具体例としては、下記式(12)乃至(15)が挙げられる。Specific examples of B 1 which is a divalent organic group represented by the formula (2) include the following formulas (12) to (15).

なお、親水性−疎水性の変化を示す接触角の変化は、紫外線照射によって式(1)中B1のフルオロ含有側鎖が分解することで起こると考えられる。それに加え、前述のAで表される4価の有機基も紫外線によって分解し、接触角が大きく変化する事が知られている(特許文献1)。Incidentally, the hydrophilic - change in contact angle indicating a hydrophobic variation is believed to occur by fluoro containing side chains of formula (1) Medium B 1 is degraded by ultraviolet radiation. In addition, it is known that the tetravalent organic group represented by A described above is also decomposed by ultraviolet rays, and the contact angle changes greatly (Patent Document 1).

前記一般式(1)中、B1で表されるフルオロアルキルを有する2価の有機基(式(2)で表される基)は少量でも高い撥水性を付与できる。しかしながら、含有量を多くしすぎると比誘電率が低くなり、また、紫外線の照射による親疎水性の変化量も小さくなることから、下記B2で表される2価の有機基を併用する。In the general formula (1), the divalent organic group having a fluoroalkyl represented by B 1 (group represented by the formula (2)) can impart high water repellency even in a small amount. However, if the content is excessively increased, the relative dielectric constant is decreased and the amount of change in hydrophilicity / hydrophobicity due to irradiation with ultraviolet rays is also decreased. Therefore, a divalent organic group represented by B 2 below is used in combination.

上記式(1a)中、B2は2価の有機基であり、以下の要件を満たすような有機基が好ましい。
従来、撥水性付与を目的として長鎖側鎖が導入されてきたが、前述の通り、B1基内のフルオロアルキル基は、少量で高い撥水性を付与できることから、長鎖側鎖の導入割合を低減できる
従って、撥水性付与、すなわち、表面自由エネルギーを下げるというという観点からは、フルオロアルキル基以外の長鎖アルキル基は必要なく、むしろ比誘電率の低下を引き起こすことから、含まれない方が好ましい。
なお、長鎖側鎖の導入割合の低減は、接触角変化部位(酸無水物成分)の密度を高めることとなり、感度向上の期待ができるという観点からも好ましい。本明細書において、感度とは、露光量(紫外線照射量)当たりの疎水性から親水性への変換度合いを表す。
In the above formula (1a), B 2 is a divalent organic group, and an organic group that satisfies the following requirements is preferable.
Conventionally, long-chain side chains have been introduced for the purpose of imparting water repellency. As described above, since the fluoroalkyl group in the B 1 group can impart high water repellency in a small amount, the introduction ratio of long-chain side chains Therefore, from the viewpoint of imparting water repellency, that is, reducing the surface free energy, long-chain alkyl groups other than fluoroalkyl groups are not necessary, but rather they are not included because they cause a decrease in relative dielectric constant. Is preferred.
In addition, the reduction of the introduction ratio of the long side chain is preferable from the viewpoint that the density of the contact angle change site (acid anhydride component) is increased and the improvement in sensitivity can be expected. In this specification, the sensitivity represents the degree of conversion from hydrophobicity to hydrophilicity per exposure amount (ultraviolet ray irradiation amount).

すなわち、B2で表される2価の有機基は、上記条件を満たし、そして紫外線を効率的に吸収し、接触角変化が効率よく進行するという観点から芳香族環を有している方が好ましい。例えば、以下の式(3)乃至(5)で表される有機基であることが望ましい。That is, the divalent organic group represented by B 2 should have an aromatic ring from the viewpoint of satisfying the above conditions, efficiently absorbing ultraviolet rays, and efficiently changing the contact angle. preferable. For example, an organic group represented by the following formulas (3) to (5) is desirable.

(式中、Y1は、それぞれ独立して、単結合、エーテル結合、エステル結合、チオエーテル結合、アミド結合、炭素原子数1乃至3の分岐構造を有していても良いアルキレン基又は炭素原子数1乃至3の分岐構造を有していても良いアルキレンジオキソ基を表し、Y2は、単結合、エーテル結合、エステル結合、チオエーテル結合、アミド結合を表し、R4はそれぞれ独立して、水素原子、メチル基、エチル基、トリフルオロメチル基を表し、R5は、水素原子、メチル基、トリフルオロメチル基を表し、R6は、メチレン基、エチレン基を表し、jはそれぞれ独立して0又は1を表す。)(In the formula, each Y 1 independently represents a single bond, an ether bond, an ester bond, a thioether bond, an amide bond, an alkylene group which may have a branched structure having 1 to 3 carbon atoms, or the number of carbon atoms. Represents an alkylenedioxo group which may have 1 to 3 branched structures, Y 2 represents a single bond, an ether bond, an ester bond, a thioether bond, an amide bond, and R 4 each independently represents hydrogen Represents an atom, a methyl group, an ethyl group, or a trifluoromethyl group; R 5 represents a hydrogen atom, a methyl group, or a trifluoromethyl group; R 6 represents a methylene group or an ethylene group; Represents 0 or 1)

上記式(3)乃至(5)で表されるB2の具体例として、下記B−1乃至B−23の2価の有機基が挙げられる。Specific examples of B 2 represented by the above formulas (3) to (5) include the following divalent organic groups B-1 to B-23.

このなかで、B−2、B−3、B−5、B−10、B−13は溶解性が高く、溶解性の高い可溶性ポリイミドを製造可能なことからより好ましい。
また、B2で表される2価の有機基は、溶解性、露光量の低減などの観点から2種類以上を組み合わせて用いてもよい。また、比誘電率が低下しない範囲においては、長鎖アルキル側鎖を有するその他の2価の有機基を用いることも可能である。
Among these, B-2, B-3, B-5, B-10, and B-13 are more preferable because they have high solubility and can produce a soluble polyimide having high solubility.
Further, the divalent organic group represented by B 2 may be used in combination of two or more from the viewpoints of solubility and reduction of exposure amount. In addition, other divalent organic groups having a long alkyl side chain can be used as long as the dielectric constant does not decrease.

前述したように、前記一般式(1)中、B1基内に含まれるフルオロアルキルは、含有量を多くしすぎると比誘電率の低下及び紫外線の照射による親疎水性の変化量の低下につながることから、上記B2で表される2価の有機基を併用する。
但し、フルオロアルキル基の含有量を少なくしすぎると、未露光部の撥水性が低くなり、表面張力の低い画像形成液をパターニングすることが出来なくなる。
従って、B1とB2の含有割合、すなわち、式(1)中に表されるnと式(1a)中に表されるmの割合は、好ましくは0.01≦n/(n+m)<0.1、最も好ましくは、0.01≦n/(n+m)<0.06の範囲にあることが望ましい。
As described above, in the general formula (1), the fluoroalkyl contained in the B 1 group leads to a decrease in relative permittivity and a decrease in hydrophilicity / hydrophobicity change due to ultraviolet irradiation when the content is excessively increased. Therefore, the divalent organic group represented by B 2 is used in combination.
However, if the content of the fluoroalkyl group is too small, the water repellency of the unexposed area is lowered, and it becomes impossible to pattern an image forming liquid having a low surface tension.
Therefore, the content ratio of B 1 and B 2 , that is, the ratio of n represented in formula (1) to m represented in formula (1a) is preferably 0.01 ≦ n / (n + m) <. It is desirable that the ratio be 0.1, most preferably 0.01 ≦ n / (n + m) <0.06.

《ポリイミド前駆体の製造方法》
前記式(1)及び式(1a)で表される構造単位を含むポリイミド前駆体を得るには、下記式(16)で表されるテトラカルボン酸二無水物成分と下記式(17)及び(18)で表されるジアミン成分とを、有機溶媒中で混合させる方法が簡便である。なお、これらのテトラカルボン酸二無水物成分及びジアミン成分は、それぞれ一種又は二種以上のものであってもよい。
<< Method for producing polyimide precursor >>
In order to obtain the polyimide precursor containing the structural unit represented by the formula (1) and the formula (1a), a tetracarboxylic dianhydride component represented by the following formula (16) and the following formulas (17) and ( A method of mixing the diamine component represented by 18) in an organic solvent is simple. These tetracarboxylic dianhydride components and diamine components may each be one kind or two or more kinds.

(式中、Aは4価の有機基であり、B1は前記一般式(2)で表される2価の有機基であり、B2はB1以外の2価の有機基を表す。)(In the formula, A is a tetravalent organic group, B 1 is a divalent organic group represented by the general formula (2), and B 2 represents a divalent organic group other than B 1 . )

上記式(16)で表されるテトラカルボン酸二無水物成分において、Aで表される4価の有機基の具体例は、上述の式A−1乃至A−36に示したものが挙げられる。
上記式(17)又は(18)で表されるジアミン成分において、B1はフルオロアルキル基を含む2価の有機基であって、具体的には前述の式(12)乃至(15)で表されるものが挙げられる。また、B2で表される2価の有機基の具体例は、上述の式B−1乃至B−23に示したものが挙げられる。
In the tetracarboxylic dianhydride component represented by the above formula (16), specific examples of the tetravalent organic group represented by A include those represented by the above formulas A-1 to A-36. .
In the diamine component represented by the above formula (17) or (18), B 1 is a divalent organic group containing a fluoroalkyl group, specifically represented by the above formulas (12) to (15). What is done. Specific examples of the divalent organic group represented by B 2 include those represented by the aforementioned formulas B-1 to B-23.

前述において示したとおり、Aは脂肪族環を含む4価の有機基を多く含む有機基であること、すなわち、テトラカルボン酸二無水物成分は脂肪族酸二無水物の割合が多いものであるものが好ましい。
これは、芳香族酸無水物を用いてポリイミド前駆体等を製造し、硬化膜を為した場合、該硬化膜に高電界を印加すると絶縁性が著しく低下することとなるが、脂肪族酸無水物は高電界における絶縁性が優れていることによる。
例えば有機トランジスタの動作電圧は1MV/cm程度になることもあり、該用途の場合には、絶縁性の観点から、脂肪族酸無水物をポリイミド前駆体の原料として用いることが望ましい。
As indicated above, A is an organic group containing many tetravalent organic groups containing an aliphatic ring, that is, the tetracarboxylic dianhydride component has a high proportion of aliphatic acid dianhydrides. Those are preferred.
This is because, when a polyimide precursor or the like is produced using an aromatic acid anhydride and a cured film is formed, insulation is significantly reduced when a high electric field is applied to the cured film. This is because the material has excellent insulation in a high electric field.
For example, the operating voltage of the organic transistor may be about 1 MV / cm, and in the case of the application, it is desirable to use an aliphatic acid anhydride as a raw material for the polyimide precursor from the viewpoint of insulation.

上述のテトラカルボン酸二無水物成分とジアミン成分とを有機溶媒中で混合させる方法としては、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物成分をそのまま、または有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物成分を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物成分とジアミン成分を交互に添加する方法などが挙げられる。
また、テトラカルボン酸二無水物成分とジアミン成分が複数種の化合物は、これら複数種の成分をあらかじめ混合した状態で重合反応させても良く、個別に順次重合反応させてもよい。
As a method of mixing the tetracarboxylic dianhydride component and the diamine component in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride component is left as it is. Or a method of adding by dispersing or dissolving in an organic solvent, conversely a method of adding a diamine component to a solution in which a tetracarboxylic dianhydride component is dispersed or dissolved in an organic solvent, a tetracarboxylic dianhydride component and a diamine component A method of alternately adding can be mentioned.
In addition, a compound having a plurality of tetracarboxylic dianhydride components and diamine components may be subjected to a polymerization reaction in a state in which these plurality of components are mixed in advance, or may be separately sequentially polymerized.

本発明で用いられる上記ポリイミド前駆体が、上記式(16)で表されるテトラカルボン酸二無水物成分と上記式(17)及び(18)で表されるジアミンから製造される場合、両成分の配合比、すなわち即ち〈テトラカルボン酸二無水物成分の総モル数〉:〈ジアミン成分の総モル数〉は1:0.5乃至1:1.5であることが望ましい。通常の重縮合反応同様、このモル比が1:1に近いほど生成するポリイミド前駆体の重合度は大きくなり、分子量が増加する。   When the polyimide precursor used in the present invention is produced from a tetracarboxylic dianhydride component represented by the above formula (16) and a diamine represented by the above formulas (17) and (18), both components It is desirable that the blending ratio, that is, <the total number of moles of the tetracarboxylic dianhydride component>: <the total number of moles of the diamine component> is 1: 0.5 to 1: 1.5. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1: 1, the higher the degree of polymerization of the polyimide precursor produced, and the higher the molecular weight.

前記ポリイミド前駆体の製造方法において、テトラカルボン酸二無水物成分とジアミン成分とを有機溶媒中で反応させる際の温度は通常−20乃至150℃、好ましくは0乃至80℃である。
反応温度を高温に設定すると重合反応は迅速に進行し完了するが、高すぎると高分子量のポリイミド前駆体が得られない場合がある。
In the method for producing the polyimide precursor, the temperature at which the tetracarboxylic dianhydride component and the diamine component are reacted in an organic solvent is usually −20 to 150 ° C., preferably 0 to 80 ° C.
If the reaction temperature is set to a high temperature, the polymerization reaction proceeds rapidly and is completed, but if it is too high, a high molecular weight polyimide precursor may not be obtained.

また、有機溶媒中で行う重合反応において、溶媒中の両成分(テトラカルボン酸二無水物成分及びジアミン成分)の固形分濃度は特に限定されないが、濃度が低すぎると高分子量のポリイミド前駆体を得ることが難しくなり、濃度が高すぎると反応液の粘度が高くなり過ぎて均一な攪拌が困難となるので、好ましくは1乃至50質量%、より好ましくは5乃至30質量%である。重合反応初期は高濃度で行い、重合体(ポリイミド前駆体)の生成と共に、その後、有機溶媒を追加しても構わない。   In the polymerization reaction performed in an organic solvent, the solid content concentration of both components (tetracarboxylic dianhydride component and diamine component) in the solvent is not particularly limited, but if the concentration is too low, a high molecular weight polyimide precursor is added. When the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring becomes difficult, so 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the polymerization reaction may be performed at a high concentration, and an organic solvent may be added after the formation of the polymer (polyimide precursor).

上記反応の際に用いられる有機溶媒は、生成したポリイミド前駆体が溶解するものであれば特に限定されないが、あえてその具体例を挙げるならば、N,N−ジメチルホルムアミド、N,N−ジメチルホルムアセトアミド,N−メチル−2−ピロリドン、N−メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ−ブチロラクトン等を挙げることができる。これらは単独でも、また二種以上を混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、上記溶媒に混合してもよい。   The organic solvent used in the above reaction is not particularly limited as long as the produced polyimide precursor can be dissolved, but N, N-dimethylformamide, N, N-dimethylform can be mentioned as specific examples. Examples include acetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, and γ-butyrolactone. These may be used alone or in admixture of two or more. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix with the said solvent in the range which the produced | generated polyimide precursor does not precipitate.

このようにして得られたポリイミド前駆体を含む溶液は、後述する画像形成下層膜塗布液の調製にそのまま用いることができる。また、ポリイミド前駆体を水、メタノール、エタノール等の貧溶媒に沈殿単離させて回収して用いることもできる。   The solution containing the polyimide precursor thus obtained can be used as it is for the preparation of an image-forming underlayer film coating solution described later. Further, the polyimide precursor can be precipitated and isolated in a poor solvent such as water, methanol, ethanol, etc. and recovered for use.

《ポリイミドへの変換》
一般式(1)及び式(1a)で表される構造単位を有するポリイミド前駆体は脱水閉環によりポリイミドとすることができる。このイミド化反応の方法は特に限定されないが、塩基性触媒と酸無水物を用いる触媒イミド化が、イミド化反応の際にポリイミドの分子量低下が起こりにくく、またイミド化率の制御が容易なため好ましい。
<Conversion to polyimide>
The polyimide precursor having the structural unit represented by the general formula (1) and the formula (1a) can be converted to a polyimide by dehydration ring closure. Although the method of this imidation reaction is not particularly limited, the catalyst imidization using a basic catalyst and an acid anhydride is unlikely to cause a decrease in the molecular weight of the polyimide during the imidation reaction, and the imidation rate can be easily controlled. preferable.

触媒イミド化は、前記ポリイミド前駆体を有機溶媒中において、塩基性触媒と酸無水物の存在下で1乃至100時間攪拌することにより可能である。
なおここで、ポリイミド前駆体は、前述のテトラカルボン酸二無水物成分及びジアミン成分の重合によって得られたポリイミド前駆体を含む溶液をそのまま(単離せずに)用いてもよい。
塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。なかでも、ピリジンは、反応を進行させるのに適度な塩基性を持つので好ましい。
酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができる。中でも無水酢酸は、イミド化終了後に、得られたポリイミドの精製が容易となるので好ましい。
有機溶媒としては前述したポリイミド前駆体の重合反応時に用いる溶媒を使用することができる。
Catalytic imidation is possible by stirring the polyimide precursor in an organic solvent for 1 to 100 hours in the presence of a basic catalyst and an acid anhydride.
Here, as the polyimide precursor, a solution containing the polyimide precursor obtained by polymerization of the above-described tetracarboxylic dianhydride component and diamine component may be used as it is (without isolation).
Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has a suitable basicity for proceeding with the reaction.
Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, acetic anhydride is preferable because the obtained polyimide can be easily purified after imidization.
As an organic solvent, the solvent used at the time of the polymerization reaction of the polyimide precursor mentioned above can be used.

触媒イミド化させるときの反応温度は−20乃至250℃が好ましく、より好ましくは0乃至180℃である。反応温度が高温に設定するとイミド化は迅速に進行するが、高すぎるとポリイミドの分子量が低下する場合がある。
塩基性触媒の量は前記ポリイミド前駆体中の酸アミド基に対して0.5乃至30モル倍が好ましく、より好ましくは2乃至20モル倍である。また、酸無水物の量は前記ポリイミド前駆体中の酸アミド基に対して1乃至50モル倍が好ましく、より好ましくは3乃至30モル倍である。
上記反応温度及び触媒量を調整することで、得られるポリイミドのイミド化率を制御することができる。
The reaction temperature for the catalyst imidization is preferably -20 to 250 ° C, more preferably 0 to 180 ° C. If the reaction temperature is set to a high temperature, imidization proceeds rapidly, but if it is too high, the molecular weight of the polyimide may decrease.
The amount of the basic catalyst is preferably 0.5 to 30 mol times, more preferably 2 to 20 mol times based on the acid amide group in the polyimide precursor. Further, the amount of the acid anhydride is preferably 1 to 50 mol times, more preferably 3 to 30 mol times based on the acid amide group in the polyimide precursor.
By adjusting the reaction temperature and the amount of catalyst, the imidization ratio of the resulting polyimide can be controlled.

以上のようにして得られた溶媒可溶性ポリイミドの反応溶液は、そのまま後述するゲート絶縁膜の作製に用いることが可能であるものの、反応液中にはイミド化触媒等が含まれているのでポリイミドを精製・回収・洗浄してから、後の膜の作製に使用することが好ましい。   Although the solvent-soluble polyimide reaction solution obtained as described above can be used as it is for the production of the gate insulating film described later, the reaction solution contains an imidization catalyst and the like. After purification, recovery and washing, it is preferable to use the membrane for later production.

ポリイミドの回収は、攪拌させている貧溶媒に反応液を投入してポリイミドを沈殿させ、これを濾過する方法が簡便である。
この際に用いる貧溶媒としては特に限定されないが、メタノール、ヘキサン、ヘプタン、エタノール、トルエン、水などが例示できる。沈殿を濾過して回収した後は、上記貧溶媒で洗浄することが好ましい。
回収したポリイミドは常圧あるいは減圧下で、常温あるいは加熱乾燥してポリイミド粉末とすることができる。
The polyimide can be easily recovered by putting the reaction solution into a poor solvent that is being stirred to precipitate the polyimide and filtering it.
Although it does not specifically limit as a poor solvent used in this case, Methanol, hexane, heptane, ethanol, toluene, water etc. can be illustrated. After the precipitate is collected by filtration, it is preferably washed with the above poor solvent.
The recovered polyimide can be made into a polyimide powder by drying at normal temperature or under reduced pressure at room temperature or by heating.

このポリイミド粉末をさらに良溶媒に溶解して、貧溶媒に再沈殿する操作を2乃至10回繰り返すと、ポリマー中の不純物を更に少なくすることもできる。
このとき用いる良溶媒としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、2−ピロリドン、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、N−ビニル−2−ピロリドン、N−メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、γ−ブチロラクトン等が挙げられる。これらは単独で用いても混合して用いても良い。
また、再沈殿に用いる貧溶媒として例えばアルコール類、ケトン類、炭化水素など3種類以上の貧溶媒を用いると、より一層精製の効率が上がる。
If the operation of dissolving this polyimide powder in a good solvent and reprecipitating it in a poor solvent is repeated 2 to 10 times, the impurities in the polymer can be further reduced.
Good solvents used at this time include N, N-dimethylformamide, N, N-dimethylacetamide, 2-pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethylurea, pyridine, γ-butyrolactone and the like can be mentioned. These may be used alone or in combination.
Further, when three or more kinds of poor solvents such as alcohols, ketones, and hydrocarbons are used as the poor solvent used for reprecipitation, the purification efficiency is further improved.

[画像形成用下層膜組成物]
本発明の画像形成用下層膜組成物は、前記ポリイミド前駆体及び/又は前記ポリイミド、並びに溶媒を含有し、所望により後述のカップリング剤や界面活性剤等を更に含有することができる組成物である。
[Underlayer film composition for image formation]
The underlayer film composition for image formation of the present invention is a composition that contains the polyimide precursor and / or the polyimide, and a solvent, and can further contain a coupling agent, a surfactant, and the like as described below if desired. is there.

本発明の画像形成用下層膜組成物に用いる前記ポリイミド前駆体及び/又はポリイミドの分子量は、取扱いの容易さ、膜形成した際の耐溶剤性等の安定性の観点から、重量平均分子(GPCによる測定結果)で2,000乃至200,000が好ましく、より好ましくは5,000乃至50,000であるものを用いることが望ましい。   The molecular weight of the polyimide precursor and / or polyimide used in the underlayer film composition for image formation of the present invention is a weight average molecule (GPC) from the viewpoint of ease of handling and stability such as solvent resistance when the film is formed. 2,000 to 200,000 are preferable, and it is desirable to use those having a measurement result of 5,000 to 50,000.

本発明の画像形成用下層膜組成物を用いて硬化膜を作製し、紫外線を照射したとき、親疎水性の変化量に関してはポリイミド前駆体とポリイミドの間に大きな差がないため、得られる硬化膜がこの点に重点をおく場合、イミド化率は特には限定されない。
但し、ポリイミドを用いることにより、プラスチック基板が対応できる低温焼成(180℃以下)で信頼性の高い膜を得られる点、ポリイミドの方がポリイミド前駆体に比して極性が低く、紫外線照射前の水接触角を高くできる(疎水性を高くできる)点などの利点が得られることから、ポリイミドを用いることがより好ましい。
When a cured film is produced using the underlayer film composition for image formation of the present invention and irradiated with ultraviolet rays, there is no significant difference between the polyimide precursor and the polyimide with respect to the amount of change in hydrophilicity / hydrophobicity, so the cured film obtained However, when emphasizing this point, the imidation rate is not particularly limited.
However, by using polyimide, it is possible to obtain a highly reliable film by low-temperature firing (180 ° C. or less) that can be used for plastic substrates, and polyimide has a lower polarity than polyimide precursor, and before ultraviolet irradiation. Since advantages such as a high water contact angle (high hydrophobicity) can be obtained, it is more preferable to use polyimide.

本発明の画像形成用下層膜組成物においては、主な用途として有機トランジスタ用の電極形成が想定され、画像形成用下層膜としての機能だけでなく、高い絶縁性も要求される。
このように、絶縁性を重点におく硬化膜(例えばゲート絶縁膜)に用いる場合、ポリイミド前駆体をイミド化したポリイミドを直接溶媒に溶解させ、画像形成用下層膜形成組成物とすることが好ましい。
この場合、イミド化率が高いと溶媒溶解性が低下するが、溶解性が損なわれない範囲でイミド化率は高いほうが好ましく、具体的には80%以上、より好ましくは90%以上である。
なお本発明において、イミド化率とは、ポリイミドをd6−DMSO(ジメチルスルホキシド−d6)に溶解し、1H−NMRを測定し、アミドプロトン数と芳香族プロトン数の比率から、イミド化せずに残存しているアミド酸基の比率を求めイミド化率を算出したものを指す。
In the lower layer film composition for image formation of the present invention, electrode formation for organic transistors is assumed as a main application, and not only a function as a lower layer film for image formation but also high insulation is required.
Thus, when using for the cured film (for example, gate insulating film) which attaches importance to insulation, it is preferable to make the polyimide which imidized the polyimide precursor melt | dissolved in a solvent directly, and to make the lower layer film formation composition for image formation. .
In this case, when the imidization rate is high, the solvent solubility is lowered, but the imidation rate is preferably high as long as the solubility is not impaired, specifically 80% or more, more preferably 90% or more.
In the present invention, the imidization ratio is defined as the imidization ratio obtained by dissolving polyimide in d 6 -DMSO (dimethyl sulfoxide-d 6 ), measuring 1 H-NMR, and measuring the ratio between the number of amide protons and the number of aromatic protons. The ratio of the amic acid groups remaining without being calculated and the imidization rate calculated.

本発明の画像形成用下層膜組成物に用いる溶媒としては、ポリイミド前駆体又はポリイミドを溶解することができれば特に限定はされず、その例としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、2−ピロリドン、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、N−ビニル−2−ピロリドン、N−メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、γ−ブチロラクトン等の良溶媒が挙げられる。これらは一種単独で用いても混合して用いても良く、さらに、アルコール類、ケトン類、炭化水素などの貧溶媒を前記良溶媒と混合して用いてもよい。   The solvent used in the underlayer film composition for image formation of the present invention is not particularly limited as long as it can dissolve a polyimide precursor or polyimide, and examples thereof include N, N-dimethylformamide, N, N-dimethyl. Good such as acetamide, 2-pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethylurea, pyridine, γ-butyrolactone A solvent is mentioned. These may be used alone or as a mixture, and a poor solvent such as alcohols, ketones and hydrocarbons may be mixed with the good solvent.

本発明の画像形成用下層膜組成物におけるポリイミド前駆体及び/又はポリイミドの合計質量の割合は、ポリイミド前駆体及び/又はポリイミドが均一に溶媒に溶解している限り、特に限定されるものではないが、例えば1乃至30質量%であり、また例えば5乃至20質量%である。   The ratio of the total mass of the polyimide precursor and / or polyimide in the underlayer film composition for image formation of the present invention is not particularly limited as long as the polyimide precursor and / or polyimide is uniformly dissolved in the solvent. Is, for example, 1 to 30% by mass, and for example 5 to 20% by mass.

本発明の画像形成用下層膜組成物の調製方法は特に限定されないが、前述のテトラカルボン酸二無水物成分及びジアミン成分の重合によって得られたポリイミド前駆体を含む溶液、あるいは該溶液を用いて得られたポリイミドの反応溶液をそのまま用いてもよい。   The method for preparing the underlayer film composition for image formation of the present invention is not particularly limited, but a solution containing the polyimide precursor obtained by polymerization of the above-described tetracarboxylic dianhydride component and diamine component, or the solution is used. The obtained polyimide reaction solution may be used as it is.

また、本発明の画像形成用下層膜組成物にあっては、該組成物と基板との密着性を向上させる目的で、本発明の効果を損なわない限りにおいてカップリング剤を更に含有することができる   In addition, the image-forming underlayer film composition of the present invention may further contain a coupling agent for the purpose of improving the adhesion between the composition and the substrate as long as the effects of the present invention are not impaired. it can

上記カップリング剤としては、官能性シラン含有化合物やエポキシ基含有化合物を挙げることができ、具体的には、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−アミノプロピルトリメトキシシラン、2−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリメトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリエトキシシラン、N−トリメトキシシリルプロピルトリエチレントリアミン、N−トリエトキシシリルプロピルトリエチレントリアミン、10−トリメトキシシリル−1,4,7−トリアザデカン、10−トリエトキシシリル−1,4,7−トリアザデカン、9−トリメトキシシリル−3,6−ジアザノニルアセテート、9−トリエトキシシリル−3,6−ジアザノニルアセテート、N−ベンジル−3−アミノプロピルトリメトキシシラン、N−ベンジル−3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリエトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリメトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2−ジブロモネオペンチルグリコールジグリシジルエーテル、6−テトラグリシジル−2,4−ヘキサンジオール、N,N,N',N'−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N',N'−テトラグリシジル−4,4'−ジアミノジフェニルメタンなどの化合物を挙げることができる。
これらは一種単独で用いても、二種以上を組合せて用いてもよい。
Examples of the coupling agent include functional silane-containing compounds and epoxy group-containing compounds. Specifically, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxy Silane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxy Silane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-trimethoxysilylpropyltriethylenetriamine, N-triethoxy Siri Propyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9- Triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N -Phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-aminopropyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene Glycol diglycid Ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl Glycol diglycidyl ether, 6-tetraglycidyl-2,4-hexanediol, N, N, N ′, N′-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) Mention may be made of compounds such as cyclohexane, N, N, N ′, N′-tetraglycidyl-4,4′-diaminodiphenylmethane.
These may be used alone or in combination of two or more.

該カップリング剤を使用する場合、その含有量は、画像形成用下層膜組成物100質量部に対して0.1乃至30質量部で添加することが好ましく、より好ましくは1乃至20質量部である。   When the coupling agent is used, the content is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the image forming lower layer film composition. is there.

さらに、本発明の画像形成用下層膜組成物には、該組成物の塗布性、該組成物から得られる膜の膜厚均一性や表面平滑性を向上させる目的で、界面活性剤を含有することもできる。   Furthermore, the lower layer film composition for image formation of the present invention contains a surfactant for the purpose of improving the coating property of the composition, the film thickness uniformity and the surface smoothness of the film obtained from the composition. You can also.

前記界面活性剤としては特に制限されないが、例えば、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。この種の界面活性剤としては、例えば、エフトップEF301、EF303、EF352((株)ジェムコ製))、メガファックF171、F173、R−30(大日本インキ化学工業(株)製)、フロラードFC430、FC431(住友スリーエム(株)製)、アサヒガードAG710、サーフロンS−382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子(株))などが挙げられる。   Although it does not restrict | limit especially as said surfactant, For example, a fluorine-type surfactant, a silicone type surfactant, a nonionic surfactant, etc. are mentioned. Examples of this type of surfactant include F-top EF301, EF303, EF352 (manufactured by Gemco), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink & Chemicals, Inc.), Florard FC430. FC431 (manufactured by Sumitomo 3M Limited), Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.).

該界面活性剤を使用する場合、その含有量は、画像形成用下層膜組成物に含有されるポリマー成分100質量部に対して、好ましくは0.01乃至2質量部、より好ましくは0.01乃至1質量部である。   When the surfactant is used, the content thereof is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 100 parts by mass of the polymer component contained in the image forming lower layer film composition. Thru | or 1 mass part.

[ポリマーブレンドについて]
本発明の画像形成用下層膜組成物は、本発明のポリイミド前駆体及び/又はポリイミドに加えて、膜形成可能な他のポリマー(例えば高絶縁性ポリマー)を混合し、所謂ポリマーブレンドの形態をとることも可能である。
このポリマーブレンドにおいて、含有するポリマー(本発明のポリイミド前駆体、ポリイミド、及びその他のポリマー)の構造等を適宜調整することにより、硬化膜を形成した際に膜内の厚さ方向で各ポリマーの濃度勾配を生じさせることが可能となるため、有用な手段として利用できる。
[About polymer blends]
The underlayer film composition for image formation according to the present invention is mixed with the polyimide precursor and / or polyimide according to the present invention in addition to another polymer capable of forming a film (for example, a highly insulating polymer) to form a so-called polymer blend. It is also possible to take.
In this polymer blend, by appropriately adjusting the structure of the contained polymer (polyimide precursor of the present invention, polyimide, and other polymers), etc., when a cured film is formed, each polymer in the thickness direction in the film is Since a concentration gradient can be generated, it can be used as a useful means.

例えば、親疎水性の変化が問題となるのは膜表面のみであるため、この観点からは、本発明のフルオロアルキル基を有するポリイミド前駆体及び/又はポリイミドは硬化膜の上層(表面層)にのみ存在すればよい。
したがって、前記画像形成用下層膜組成物をポリマーブレンドの形態とした場合、本発明のポリイミド前駆体又はポリイミドの配合割合としては、ブレンドしたポリマーの全質量に対して1質量%乃至100質量%である。1質量%以下であると、形成された膜の最表面における本発明のポリイミド前駆体又はポリイミドが過少となり、画像形成能力が劣化する恐れがある。
For example, since the change in hydrophilicity / hydrophobicity becomes a problem only on the film surface, from this point of view, the polyimide precursor and / or polyimide having the fluoroalkyl group of the present invention is only in the upper layer (surface layer) of the cured film. It only has to exist.
Therefore, when the image-forming underlayer film composition is in the form of a polymer blend, the blending ratio of the polyimide precursor or polyimide of the present invention is 1% by mass to 100% by mass with respect to the total mass of the blended polymer. is there. When the content is 1% by mass or less, the polyimide precursor or polyimide of the present invention on the outermost surface of the formed film becomes insufficient, and the image forming ability may be deteriorated.

上記ポリマーブレンドが有用となるのは、例えば特に高絶縁性を求められるゲート絶縁膜用途に本発明の画像形成用下層膜組成物を用いる場合を挙げることができる。
ゲート絶縁膜用途に用いる場合、該塗布液は180℃以下の焼成温度への対応、塗布による成膜が可能、有機半導体塗布液に対する耐溶剤性(キシレン、トリメチルベンゼンなどの無極性溶媒)、低吸水率などの数々の特性が要求されるが、特に絶縁性に関する要求性能は高い。この高絶縁性を達成するため、本発明の画像形成用下層膜組成物のイミド化率は少なくとも80%以上、場合によっては90%以上を求められることもあるが、反面、イミド化率が90%を超えると溶媒に対する溶解度が低下する場合もある。このとき、該絶縁膜の最下層にのみ高絶縁性の層を位置させ、上層に本発明の画像形成用下層膜組成物からなる層が位置させることにより、該絶縁膜の高絶縁性を保ち、且つ溶解性の問題も解消できる。
The polymer blend is useful when, for example, the image-forming underlayer film composition of the present invention is used for a gate insulating film application that requires particularly high insulation.
When used in gate insulating film applications, the coating solution can handle a baking temperature of 180 ° C. or lower, can be formed by coating, and has solvent resistance to organic semiconductor coating solutions (nonpolar solvents such as xylene and trimethylbenzene), low Various characteristics such as water absorption are required, but the required performance for insulation is particularly high. In order to achieve this high insulating property, the imidation rate of the image-forming underlayer film composition of the present invention is required to be at least 80% or more, and in some cases 90% or more. If it exceeds%, the solubility in the solvent may decrease. At this time, a high insulating layer is positioned only in the lowermost layer of the insulating film, and a layer made of the lower film composition for image formation of the present invention is positioned in the upper layer, thereby maintaining the high insulating property of the insulating film. In addition, the solubility problem can be solved.

上述のように、硬化膜の下層を高絶縁層、上層を親疎水性変換層と為すには、それらの層を順次積層して作製することも可能であるが、操作が煩雑である。
このとき、高絶縁層の材料と親疎水性変換層の材料(すなわち本発明のポリイミド前駆体及び/又はポリイミド)とを混合し、その際、上層の材料の極性又は分子量を、下層のものと比較して小さいものとすれば、混合液を基板に塗布・乾燥して溶媒が蒸発する間、上層の材料が表面に移行し層を形成する挙動を示すため、上述の濃度勾配(ここでいう層分離)を容易に制御することができる。
As described above, in order to make the lower layer of the cured film a high insulating layer and the upper layer to be a hydrophilic / hydrophobic conversion layer, these layers can be sequentially laminated, but the operation is complicated.
At this time, the material of the high insulating layer and the material of the hydrophilic / hydrophobic conversion layer (that is, the polyimide precursor and / or polyimide of the present invention) are mixed, and the polarity or molecular weight of the upper layer material is compared with that of the lower layer. If the mixture is small, the above-mentioned concentration gradient (herein referred to as layer) is used because the upper layer material moves to the surface and forms a layer while the mixture is applied to the substrate and dried to evaporate the solvent. Separation) can be easily controlled.

前記下層を形成し得る高絶縁性の膜の形成材料として最も好ましいものは可溶性ポリイミドである。可溶性ポリイミドを下層材として用いる場合、絶縁性の観点から、溶液中のポリイミドのイミド化率は高いことが望まれ、少なくとも50%以上、好ましくは80%以上、最も好ましくは90%以上である。
下層材として用いられ得るその他の材料としては、エポキシ樹脂、アクリル樹脂、ポリプロピレン、ポリビニルアルコール、ポリビニルフェノール、ポリイソブチレン、ポリメチルメタクリレートなどの一般的な有機ポリマーが挙げられる。
The most preferable material for forming a highly insulating film capable of forming the lower layer is soluble polyimide. When soluble polyimide is used as the lower layer material, from the viewpoint of insulation, it is desirable that the imidation ratio of the polyimide in the solution is high, and it is at least 50% or more, preferably 80% or more, and most preferably 90% or more.
Other materials that can be used as the lower layer material include general organic polymers such as epoxy resin, acrylic resin, polypropylene, polyvinyl alcohol, polyvinyl phenol, polyisobutylene, and polymethyl methacrylate.

また、上記ポリマーブレンドを、例えば膜厚400nm前後を要求される有機トランジスタ用途に用いる場合、上層(親疎水性変換層)を設けるのに必要な本発明のポリイミド前駆体及び/又はポリイミドの該ポリマーブレンド中の含有割合は、理論上は1%程度となるが、少なすぎると硬化膜表面物性の面内におけるばらつきが大きくなることから、該ポリイミド前駆体及び/又はポリイミドを少なくとも5%以上含有することが好ましい。   In addition, when the polymer blend is used for, for example, an organic transistor application requiring a film thickness of around 400 nm, the polymer precursor of the present invention and / or the polymer blend of polyimide required for providing an upper layer (hydrophobic / hydrophobic conversion layer). The content ratio is theoretically about 1%, but if it is too small, there will be a large variation in the surface properties of the cured film, so that it contains at least 5% of the polyimide precursor and / or polyimide. Is preferred.

[塗膜及び硬化膜の製造方法]
本発明の画像形成用下層膜組成物をポリプロピレン、ポリエチレン、ポリカーボネート、ポリエチレンテレフタレート、ポリエーテルスルホン、ポリエチレンナフタレート、ポリイミドなどの汎用のプラスチック基板やガラス基板などの上に、ディップ法、スピンコート法、転写印刷法、ロールコート法、インクジェット法、スプレー法、刷毛塗り等によって塗布し、その後、ホットプレートまたはオーブン等で予備乾燥することにより、塗膜を形成することができる。その後、この塗膜を加熱処理することにより、画像形成用下層膜や絶縁膜として使用できる硬化膜が形成される。
[Method for producing coating film and cured film]
The underlayer film composition for image formation of the present invention is formed on a general-purpose plastic substrate or glass substrate such as polypropylene, polyethylene, polycarbonate, polyethylene terephthalate, polyethersulfone, polyethylene naphthalate, polyimide, etc., by dipping, spin coating, A coating film can be formed by applying by a transfer printing method, a roll coating method, an ink jet method, a spray method, a brush coating, etc., and then pre-drying with a hot plate or oven. Then, the coating film is heated to form a cured film that can be used as an image forming lower layer film or an insulating film.

上記加熱処理の方法としては特に限定されるものでないが、ホットプレートやオーブンを用いて、適切な雰囲気下、即ち大気、窒素等の不活性ガス、真空中等で行う方法を例示することができる。
焼成温度は、ポリイミド前駆体の熱イミド化を促進する観点から、180℃乃至250℃であることが好ましく、プラスチック基板上に成膜するという観点からは180℃以下であることがより好ましい。
焼成は2段階以上の温度変化をつけてもよい。段階的に焼成することで得られる膜の均一性をより高めることができる。
Although it does not specifically limit as a method of the said heat processing, The method performed in a suitable atmosphere, ie, inert gas, such as air | atmosphere and nitrogen, a vacuum, etc. can be illustrated using a hotplate and oven.
The firing temperature is preferably 180 ° C. to 250 ° C. from the viewpoint of promoting thermal imidization of the polyimide precursor, and more preferably 180 ° C. or less from the viewpoint of forming a film on a plastic substrate.
Firing may be performed at two or more stages. The uniformity of the film obtained by baking in steps can be further increased.

また硬化膜を作製する際、画像形成用下層膜組成物はポリイミド前駆体及び/またはポリイミドと上述の溶媒とを含む形態であるため、そのまま基板への塗布に用いることができるが、濃度調整のため、又は塗膜の平坦性を確保や、塗布液の基板への濡れ性の向上、塗布液の表面張力、極性、沸点の調整等の目的で、上述の溶媒、さらにはその他種々の溶媒を添加し、塗布液として用いてもよい。   Further, when forming a cured film, the image-forming underlayer film composition is in a form containing a polyimide precursor and / or polyimide and the above-described solvent, and thus can be used as it is for application to a substrate. For the purpose of ensuring the flatness of the coating film, improving the wettability of the coating liquid to the substrate, adjusting the surface tension, polarity, boiling point of the coating liquid, etc. It may be added and used as a coating solution.

このような溶媒の具体例としては、上述の段落(0071)で述べた溶媒に加え、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコールなど、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、1−ブトキシ−2−プロパノール、1−フェノキシ−2−プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール−1−モノメチルエーテル−2−アセテート、プロピレングリコール−1−モノエチルエーテル−2−アセテート、ジプロピレングリコール、2−(2−メトキシプロポキシ)プロパノール、2−(2−エトキシプロポキシ)プロパノール及び2−(2−ブトキシプロポキシ)プロパノールなどのプロピレングリコール誘導体、乳酸メチルエステル、乳酸エチルエステル、乳酸n−プロピルエステル、乳酸n−ブチルエステル、乳酸イソアミルエステルなどの乳酸誘導体などが挙げられる。これらは単独で用いても併用して用いても良い。   Specific examples of such a solvent include 1-methoxy-2, such as ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, and ethylene glycol, in addition to the solvents described in the above paragraph (0071). -Propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene Glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-methoxypropoxy) propanol, 2- (2-ethoxypropoxy) propanol and 2- (2-butoxypropoxy) Shi) propylene glycol derivatives such as propanol, methyl lactate ester, ethyl lactate esters, lactate n- propyl ester, lactate n- butyl ester, lactic acid derivatives such as lactic isoamyl ester. These may be used alone or in combination.

なお、画像形成用下層膜組成物の保存性、塗膜の膜厚均一性を向上させる観点からは、全溶媒量の20乃至80質量%を、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、γ−ブチロラクトン、ジメチルスルホキシドから選ばれる少なくとも1種類の溶媒とすることが好ましい。
画像形成用下層膜組成物の濃度は、特に制限はないが、ポリイミド前駆体及びポリイミドの固形分濃度として0.1乃至30質量%が好ましく、より好ましくは1乃至10質量%である。これらは、塗布装置の仕様や得ようとする膜厚によって任意に設定する。
From the viewpoint of improving the storage stability of the underlayer film composition for image formation and the film thickness uniformity of the coating film, 20 to 80% by mass of the total amount of solvent is N, N-dimethylformamide, N, N-dimethyl. It is preferable to use at least one solvent selected from acetamide, N-methyl-2-pyrrolidone, γ-butyrolactone, and dimethyl sulfoxide.
The concentration of the lower layer film composition for image formation is not particularly limited, but is preferably 0.1 to 30% by mass, more preferably 1 to 10% by mass as the solid content concentration of the polyimide precursor and polyimide. These are arbitrarily set according to the specifications of the coating apparatus and the film thickness to be obtained.

上述の通り作製された本発明の硬化膜は、画像形成用下層膜として用いる際、膜厚が薄すぎると紫外線照射後のパターニング性が低下し、また厚すぎると表面の均一性が損なわれる。従って、その膜厚としては、5nm乃至1000nmが好ましく、より好ましくは10nm乃至300nmであり、最も好ましくは20nm乃至100nmである。   When the cured film of the present invention produced as described above is used as an underlayer film for image formation, if the film thickness is too thin, the patternability after ultraviolet irradiation is lowered, and if it is too thick, the surface uniformity is impaired. Accordingly, the film thickness is preferably 5 nm to 1000 nm, more preferably 10 nm to 300 nm, and most preferably 20 nm to 100 nm.

また、本発明の硬化膜は、十分絶縁性が高い場合、絶縁膜として機能させることもできる。その場合、該硬化膜は、例えば有機FET素子において、直接ゲート電極上に配置しゲート絶縁膜として使用される。その際、該硬化膜の膜厚は絶縁性を確保する目的で、上述の画像形成用下層膜として用いる場合よりも厚い方が望ましい。その膜厚としては好ましくは20nm乃至1000nmであり、より好ましくは50nm乃至800nmであり、最も好ましくは100nm乃至500nmである。   In addition, the cured film of the present invention can function as an insulating film when the insulating property is sufficiently high. In that case, the cured film is directly disposed on the gate electrode in an organic FET element, for example, and used as a gate insulating film. At that time, the thickness of the cured film is preferably thicker than that used for the image forming lower layer film for the purpose of ensuring insulation. The film thickness is preferably 20 nm to 1000 nm, more preferably 50 nm to 800 nm, and most preferably 100 nm to 500 nm.

[画像形成用下層膜としての使用:画像形成用電極の製造方法]
本発明の画像形成用下層膜に紫外線をパターン状に照射し、続いて、後述する画像形成液を塗布することにより、画像形成用電極を製造することができる。
[Use as lower layer film for image formation: Method for producing electrode for image formation]
An image forming electrode can be produced by irradiating the image forming lower layer film of the present invention with ultraviolet rays in a pattern and subsequently applying an image forming liquid described later.

本発明において、上記画像形用成下層膜に対して紫外線をパターン状に照射する方法は特に限定されないが、例えば電極パターンが描かれたマスクを介して照射する方法、レーザー光を用いて電極パターンを描画する方法などが挙げられる。
上記マスクとしては、材質や形状は特に限定されることはなく、電極を必要とする領域が紫外線を透過し、それ以外の領域が紫外線に不透過であればよい。
In the present invention, the method of irradiating the image forming sublayer film with ultraviolet rays in a pattern is not particularly limited, but for example, a method of irradiating through a mask on which an electrode pattern is drawn, an electrode pattern using laser light The method of drawing is mentioned.
The material and shape of the mask are not particularly limited, as long as the region requiring the electrode transmits ultraviolet light and the other region does not transmit ultraviolet light.

このとき、一般に200nm乃至500nmの範囲の波長を有する紫外線を照射に用いる事が出来、使用するポリイミドの種類によりフィルタ等を介して適宜波長を選択する事が望ましい。具体的には、248nm、254nm、303nm、313nm、365nmなどの波長が挙げられる。特に好ましくは、248nm、254nmである。   At this time, it is generally possible to use ultraviolet rays having a wavelength in the range of 200 nm to 500 nm for irradiation, and it is desirable to select the wavelength appropriately through a filter or the like depending on the type of polyimide used. Specific examples include wavelengths such as 248 nm, 254 nm, 303 nm, 313 nm, and 365 nm. Particularly preferred are 248 nm and 254 nm.

本発明の画像形成用下層膜は、紫外線の照射によってその表面エネルギーが徐々に上昇し、十分な照射量とともに飽和する。この表面エネルギーの上昇は、画像形成液の接触角の低下をもたらし、結果として紫外線照射部における画像形成液の濡れ性が向上する。   The surface energy of the underlayer film for image formation of the present invention is gradually increased by irradiation with ultraviolet rays, and is saturated with a sufficient irradiation amount. This increase in surface energy results in a decrease in the contact angle of the image forming liquid, and as a result, the wettability of the image forming liquid in the ultraviolet irradiation section is improved.

従って、紫外線照射後の本発明の画像形成用下層膜上に画像形成液を塗布すると、画像形成用下層膜に表面エネルギーの差として描かれているパターン形状に沿って、画像形成液が自己組織的にパターンを形成し、任意のパターン形状の電極を得ることができる。   Therefore, when the image forming liquid is applied on the image forming lower layer film of the present invention after the ultraviolet irradiation, the image forming liquid is self-organized along the pattern shape drawn as the difference in surface energy on the image forming lower layer film. Patterns can be formed automatically, and electrodes having an arbitrary pattern shape can be obtained.

このため、画像形成用下層膜に対する紫外線の照射量は、画像形成液の接触角が十分変化する量を照射する必要があるが、エネルギー効率および製造工程の時間短縮など点から40J/cm2以下であることが好ましく、20J/cm2以下であることがより好ましく、10J/cm2以下であることがもっとも好ましい。For this reason, it is necessary to irradiate the lower layer film for image formation with an amount of ultraviolet light that sufficiently changes the contact angle of the image forming solution, but it is 40 J / cm 2 or less from the viewpoint of energy efficiency and shortening of the manufacturing process. Preferably, it is 20 J / cm 2 or less, and most preferably 10 J / cm 2 or less.

また、画像形成用下層膜の紫外線照射部と未照射部とで画像形成液の接触角の差が大きいほどパターニングが容易となり、複雑なパターンや微細なパターン形状に電極を加工する事が可能となる。表面張力が低い溶液を用いた場合、露光部と未露光部の接触角差は5°以上であることが好ましく、10°以上であることがより好ましく、20°以上であることが最も好ましい。しかし、画像形成液の塗布方法、画像形成液の表面張力、画像の精細度、膜の平坦性を考慮し適宜最適化したほうがよい。
同様の理由で、画像形成液の接触角が、紫外線未照射部では30°以上であり、紫外線照射部では20°以下であることが好ましい。
In addition, the larger the difference in the contact angle of the image forming liquid between the UV-irradiated part and the non-irradiated part of the image-forming underlayer film, the easier the patterning becomes, and it becomes possible to process the electrode into a complicated pattern or a fine pattern shape. Become. When a solution having a low surface tension is used, the contact angle difference between the exposed part and the unexposed part is preferably 5 ° or more, more preferably 10 ° or more, and most preferably 20 ° or more. However, it is better to optimize appropriately in consideration of the application method of the image forming liquid, the surface tension of the image forming liquid, the fineness of the image, and the flatness of the film.
For the same reason, it is preferable that the contact angle of the image forming liquid is 30 ° or more in the ultraviolet non-irradiated portion and 20 ° or less in the ultraviolet irradiated portion.

本発明における画像形成液とは、基板に塗布した後、そこに含まれる溶媒を蒸発させることで、機能性薄膜として使用することができる塗布液であり、例えば、電荷輸送性物質が少なくとも一種の溶媒に溶解もしくは均一に分散したものが挙げられる。ここで、電荷輸送性とは導電性と同義であり、正孔輸送性、電子輸送性、正孔および電子の両電荷輸送性のいずれかを意味する。   The image forming liquid in the present invention is a coating liquid that can be used as a functional thin film by evaporating the solvent contained therein after being applied to a substrate. For example, the charge transporting substance is at least one kind. Examples thereof include those dissolved or uniformly dispersed in a solvent. Here, the charge transportability is synonymous with conductivity, and means any one of hole transportability, electron transportability, and both charge transportability of holes and electrons.

上記の電荷輸送性物質としては、正孔または電子を輸送可能な導電性を有していれば、特に限定されない。その例としては、例えば、金、銀、銅、アルミニウムなどの金属微粒子やカーボンブラック、フラーレン類、カーボンナノチューブなどの無機材料や、ポリチオフェン、ポリアニリン、ポリピロール、ポリフルオレンおよびこれらの誘導体など有機π共役ポリマーなどが挙げられる。
また、電荷輸送物質の電荷輸送能を向上させる目的でハロゲン、ルイス酸、プロトン酸、遷移金属化合物(具体例としてはBr2、I2、Cl2、FeCl3、MoCl5、BF4、AsF6、SO4、HNO4、H2SO4、ポリスチレンスルホン酸等)などの電荷受容性物質、あるいはアルカリ金属、アルキルアンモニウムイオン(具体例としてはLi、Na、K、Cs、テトラエチレンアンモニウム、テトアブチルアンモニウム等)などの電荷供与性物質をドーパントとして更に画像形成液に加えても良い。
The charge transporting substance is not particularly limited as long as it has conductivity capable of transporting holes or electrons. Examples thereof include, for example, metal fine particles such as gold, silver, copper and aluminum, inorganic materials such as carbon black, fullerenes and carbon nanotubes, and organic π-conjugated polymers such as polythiophene, polyaniline, polypyrrole, polyfluorene and derivatives thereof. Etc.
In addition, halogen, Lewis acid, proton acid, transition metal compound (specific examples include Br 2 , I 2 , Cl 2 , FeCl 3 , MoCl 5 , BF 4 , AsF 6 for the purpose of improving the charge transporting ability of the charge transport material. , SO 4 , HNO 4 , H 2 SO 4 , polystyrene sulfonic acid, etc.), or alkali metals, alkylammonium ions (specific examples are Li, Na, K, Cs, tetraethyleneammonium, tetoabutyl) A charge donating substance such as ammonium) may be further added to the image forming solution as a dopant.

画像形成液の溶媒としては、上記電荷輸送性物質あるいはドーパントを溶解もしくは均一に分散させるものであればとくに限定されない。正確な電極画像(パターン)を得るという観点からは、画像形成液の表面張力は25mN/m乃至50mN/mである事が好ましい。表面張力が上記範囲より低すぎる場合、紫外線未照射部に対して、十分大きな接触角を示さず、また、表面張力が上記範囲より高すぎる場合、紫外線照射部の接触角が高くなり、紫外線の照射量が増えてしまうことから好ましくない。   The solvent for the image forming solution is not particularly limited as long as it dissolves or uniformly disperses the charge transporting substance or dopant. From the viewpoint of obtaining an accurate electrode image (pattern), the surface tension of the image forming liquid is preferably 25 mN / m to 50 mN / m. When the surface tension is too lower than the above range, it does not show a sufficiently large contact angle with respect to the unirradiated part of the ultraviolet ray, and when the surface tension is too high than the above range, the contact angle of the ultraviolet ray irradiated part becomes high, and This is not preferable because the amount of irradiation increases.

画像形成液の溶媒としては特に限定されないが、アルコール類、ケトン類、エーテル類、エステル類、芳香族炭化水素類、グリコール類などの各種有機溶剤を用いる事ができる。アルコール類としては、メタノール、イソプロパノール、ノルマルブタノール、イソブタノール、セカンダリーブタノール、イソアミルアルコール、オクタノールなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン・ジアセトンアルコールなどが挙げられる。エーテル類としては、エーテル・イソプロピルエーテル、ジオキサン、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブなどなどが挙げられる。エステル類としては、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸アミル、酢酸セロソルブ、脂肪酸メチルエステルなどが挙げられる。芳香族炭化水素類としては、ベンゼン、トルエン、キシレン、メシチレンなどが挙げられる。
脂肪族炭化水素類としては、ノルマルヘキサン、イソヘキサン、シクロヘキサン、ミネラルターペン、ノルマルペンタンなどが挙げられる。グリコール類としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテルなどが挙げられる。
The solvent for the image forming solution is not particularly limited, and various organic solvents such as alcohols, ketones, ethers, esters, aromatic hydrocarbons, glycols and the like can be used. Examples of alcohols include methanol, isopropanol, normal butanol, isobutanol, secondary butanol, isoamyl alcohol, octanol and the like. Examples of ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone / diacetone alcohol. Examples of ethers include ether / isopropyl ether, dioxane, methyl cellosolve, ethyl cellosolve, and butyl cellosolve. Examples of the esters include ethyl acetate, butyl acetate, isobutyl acetate, amyl acetate, cellosolve acetate, and fatty acid methyl ester. Aromatic hydrocarbons include benzene, toluene, xylene, mesitylene and the like.
Examples of the aliphatic hydrocarbons include normal hexane, isohexane, cyclohexane, mineral terpene, and normal pentane. Examples of glycols include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, and propylene glycol monomethyl ether.

また、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、2−ピロリドン、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、N−ビニル−2−ピロリドン、N−メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素などの極性溶媒も有機系の電荷輸送性物質の溶解性に優れる観点から好ましいが、これらは、本発明の画像形成用下層膜へのダメージが少ない範囲において使用することが好ましい。
また、水など特に表面張力の大きな溶媒も用いる事が可能であるが、界面活性剤などを添加し表面張力を調整した方が好ましい。
N, N-dimethylformamide, N, N-dimethylacetamide, 2-pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, N-methylcaprolactam, dimethyl Polar solvents such as sulfoxide and tetramethylurea are also preferable from the viewpoint of excellent solubility of the organic charge transporting substance, but these are preferably used in a range where the damage to the lower layer film for image formation of the present invention is small. .
Although a solvent having a particularly large surface tension such as water can be used, it is preferable to adjust the surface tension by adding a surfactant or the like.

画像形成液における電荷輸送性物質の濃度は、0.01乃至30質量%が好ましく、0.1乃至10質量%であることがより好ましく、最も好ましくは1乃至5質量%である。   The concentration of the charge transporting substance in the image forming liquid is preferably 0.01 to 30% by mass, more preferably 0.1 to 10% by mass, and most preferably 1 to 5% by mass.

本発明に係る画像形成液の具体例としては、Baytron(登録商標) P(ポリエチレンジオキシチオフェン、バイエル社製)などの導電性ポリマー溶液、ドータイトXA−9069(藤倉化成社製)、W4A(住友電工製)、NPS−J(ハリマ化成社製)などの銀微粒子分散液などが挙げられる。   Specific examples of the image forming liquid according to the present invention include conductive polymer solutions such as Baytron (registered trademark) P (polyethylenedioxythiophene, manufactured by Bayer), Dotite XA-9069 (manufactured by Fujikura Kasei), W4A (Sumitomo). And silver fine particle dispersions such as NPS-J (manufactured by Harima Chemicals).

本発明に係る電極は、本発明の画像形成用下層膜上に上記画像形成液を塗布し、画像を形成した後に、溶媒を蒸発させることで作製される。溶媒の蒸発方法としては特に限定されるものではないが、ホットプレートやオーブンを用いて、適切な雰囲気下、即ち大気、窒素等の不活性ガス、真空中等で蒸発を行い、均一な成膜面を得る事が可能である。   The electrode according to the present invention is produced by applying the image forming liquid on the image forming lower layer film of the present invention to form an image and then evaporating the solvent. The method for evaporating the solvent is not particularly limited, but a uniform film-forming surface is obtained by evaporating in an appropriate atmosphere, that is, in an inert gas such as air or nitrogen, in a vacuum, or the like, using a hot plate or an oven. Can be obtained.

溶媒を蒸発させる温度は特に限定されないが、40乃至250℃で行うのが好ましい。画像形成用下層膜形状の維持及び膜厚の均一性を達成させる等の観点から、2段階以上の温度変化をつけても良い。   The temperature for evaporating the solvent is not particularly limited, but is preferably 40 to 250 ° C. From the standpoint of maintaining the shape of the lower layer film for image formation and achieving film thickness uniformity, a temperature change in two or more steps may be applied.

この画像形成液から作成された電極は、電子デバイス同士を接続する配線としてのみならず電界効果トランジスタ、バイポーラトランジスタ、各種ダイオード、各種センサーなどの電子デバイスの電極などとして利用される。   Electrodes prepared from this image forming solution are used not only as wirings for connecting electronic devices but also as electrodes for electronic devices such as field effect transistors, bipolar transistors, various diodes, and various sensors.

本発明に係る電子デバイスは、上記本発明の画像形成用下層膜上に形成された、画像形成液より作製された電極を有するものである。
以下に本発明の画像形成用下層膜を有機FET素子に用いた例を示すが、本発明はこれに限定されるものではない。
The electronic device according to the present invention has an electrode formed from the image forming solution formed on the image forming lower layer film of the present invention.
Although the example which used the lower film | membrane for image formation of this invention for the organic FET element below is shown, this invention is not limited to this.

はじめにITO電極が片面に成膜されたガラス基板を用意する。基板は予め、洗剤、アルコール、純水等による液体洗浄を行って浄化しておき、使用直前にオゾン処理、酸素−プラズマ処理等の表面処理を行う事が好ましい。ITO電極付基板上に、前記一般式(1)及び式(1a)で表される構造単位を有するポリイミド前駆体及び/又はポリイミドを含有する層を、前述の[塗膜及び硬化膜の製造方法]の手順に従い形成する。層の膜厚は、駆動電圧と電気絶縁性の兼ね合いから100nm乃至1000nmとするのがもっとも好ましい。その後、紫外線をマスク等を用いるなどしてパターン状に照射する。   First, a glass substrate having an ITO electrode formed on one side is prepared. It is preferable that the substrate is cleaned in advance by cleaning with a liquid such as a detergent, alcohol, or pure water, and surface treatment such as ozone treatment or oxygen-plasma treatment is performed immediately before use. A layer containing a polyimide precursor and / or a polyimide having the structural unit represented by the general formula (1) and the formula (1a) on the substrate with an ITO electrode is added to the above-mentioned method for producing a coating film and a cured film. ] Is formed according to the procedure. The thickness of the layer is most preferably set to 100 nm to 1000 nm in consideration of the driving voltage and the electrical insulation. Thereafter, ultraviolet rays are irradiated in a pattern using a mask or the like.

続いて、PGMEなどの低表面張力溶媒を用いた画像形成液を、画像形成用下層膜表面に塗布する。塗布された画像形成液は疎水性部(紫外線未照射部)をはじくように親水性部(紫外線照射部)に速やかに広がって安定化し、乾燥させることで、パターン化したソース及びドレイン電極が形成される。画像形成液の塗布法は、スピンコート法、キャスト法など特に限定されないが、液量がコントロールしやすいインクジェットプリント法やスプレー塗布法が好ましい。   Subsequently, an image forming liquid using a low surface tension solvent such as PGME is applied to the surface of the lower layer film for image formation. The applied image forming solution spreads and stabilizes quickly in the hydrophilic part (ultraviolet irradiation part) to repel the hydrophobic part (ultraviolet irradiation part), and is dried to form patterned source and drain electrodes. Is done. The application method of the image forming liquid is not particularly limited, such as a spin coating method or a casting method, but an ink jet printing method or a spray coating method that allows easy control of the liquid amount is preferable.

最後に、有機FETの活性層である、ペンタセン、ポリチオフェンなどの有機半導体材料を成膜する事により完成する。有機半導体材料の成膜方法は特に限定されないが、例えば真空蒸着や溶液をスピンコート法、キャスト法、インクジェットプリント法やスプレー塗布法などが挙げられる。   Finally, it is completed by depositing an organic semiconductor material such as pentacene or polythiophene, which is an active layer of the organic FET. A method for forming the organic semiconductor material is not particularly limited, and examples thereof include vacuum deposition and solution spin coating, casting, ink jet printing, and spray coating.

このようにして、作製された有機FETは、製造工程が大幅に削減可能であり、さらには、マスク蒸着法よりも短いチャネルの有機FETが作製可能であるため、活性層として低移動度の有機半導体材料を用いた場合においても大電流を取り出すことが可能となる。また、有機トランジスタ向けの絶縁膜として、可能なものは比誘電率が3.0以上の値を有する膜である。本発明の方法により得られる画像形成用下層膜は優れた電気絶縁性と3.0という高い比誘電率も有しているので、ゲート絶縁層(絶縁膜)としても用いることも可能であり、製造工程の更なる簡略化が可能である。
上記の方法で作成した有機トランジスタの概略断面図を図1に示す。
In this way, the manufactured organic FET can greatly reduce the manufacturing process, and further, an organic FET having a channel shorter than that of the mask vapor deposition method can be manufactured. Even when a semiconductor material is used, a large current can be taken out. As an insulating film for an organic transistor, a possible one is a film having a relative dielectric constant of 3.0 or more. Since the lower layer film for image formation obtained by the method of the present invention has excellent electrical insulation and a high relative dielectric constant of 3.0, it can also be used as a gate insulating layer (insulating film). The manufacturing process can be further simplified.
A schematic cross-sectional view of an organic transistor prepared by the above method is shown in FIG.

以下に実施例をあげて本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

[数平均分子量及び重量平均分子量の測定]
以下の合成例に従い得られるポリイミド前駆体の数平均分子量(以下、Mnと称する)及び重量平均分子量(以下、Mwと称する)は、GPC(常温ゲル浸透クロマトグラフィー)によって下記の装置及び測定条件にて測定し、ポリエチレングリコール(又はポリエチレンオキシド)換算値として算出した。
GPC装置:昭和電工(株)製 Shodex(登録商標)(GPC−101)
カラム:昭和電工(株)製 Shodex(登録商標)(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N−ジメチルホルムアミド
(添加剤として、臭化リチウム−水和物(LiBr・H2O)30mmol/L、リン酸・無水結晶(o−リン酸)30mmol/L、テトラヒドロフラン(THF)10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:
東ソー(株)製 TSK標準ポリエチレンオキシド(分子量:900,000、150,000、100,000、30,000)
ポリマー・ラボラトリー社製 ポリエチレングリコール(分子量:約12,000、4,000、1,000)。
[Measurement of number average molecular weight and weight average molecular weight]
The number average molecular weight (hereinafter referred to as Mn) and the weight average molecular weight (hereinafter referred to as Mw) of the polyimide precursor obtained according to the following synthesis examples are determined by GPC (room temperature gel permeation chromatography) according to the following apparatus and measurement conditions. And calculated as a polyethylene glycol (or polyethylene oxide) equivalent value.
GPC device: Shodex (registered trademark) (GPC-101) manufactured by Showa Denko KK
Column: Shodex (registered trademark) manufactured by Showa Denko KK (series of KD803 and KD805)
Column temperature: 50 ° C
Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) ) 10ml / L)
Flow rate: 1.0 ml / min Standard sample for creating a calibration curve:
TSK standard polyethylene oxide (molecular weight: 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation
Polyethylene glycol (molecular weight: about 12,000, 4,000, 1,000) manufactured by Polymer Laboratory.

[膜厚の測定]
ポリイミド膜の膜厚は、カッターナイフで膜の一部を剥離し、その段差を全自動微細形状測定機(ET4000A、(株)小坂研究所製)を用い、測定力を10μN、掃引速度を0.05mm/secとして測定することにより求めた
[Measurement of film thickness]
The film thickness of the polyimide film was peeled off with a cutter knife, and the level difference was measured using a fully automatic fine shape measuring machine (ET4000A, manufactured by Kosaka Laboratory Ltd.) with a measuring force of 10 μN and a sweep speed of 0. .05 mm / sec.

[紫外線の照射]
紫外線は、高圧水銀ランプを光源として波長254nm付近の光を通すバンドパスフィルタを介してポリイミド膜上に照射した。
なお、ポリイミド膜上の紫外線の照度に露光時間を乗じたものを、ポリイミド膜上の露光量(J/cm2)として算出した。
上記紫外線の照度は、照度計(OAI社製 MODEL306)に波長253.7nmにピーク感度を持つDeep UV用のプローブを装着し測定し、得られた照度は45〜50mW/cm2であった。
[UV irradiation]
Ultraviolet rays were irradiated onto the polyimide film through a bandpass filter that passed light having a wavelength of about 254 nm using a high-pressure mercury lamp as a light source.
In addition, what multiplied the exposure time for the illumination intensity of the ultraviolet-ray on a polyimide film was computed as exposure amount (J / cm < 2 >) on a polyimide film.
The illuminance of the ultraviolet rays was measured by attaching a Deep UV probe having a peak sensitivity at a wavelength of 253.7 nm to an illuminometer (MODEL 306 manufactured by OAI), and the obtained illuminance was 45 to 50 mW / cm 2 .

[接触角の測定]
接触角の測定は、恒温恒湿環境(25℃±2℃、50%RH±5%)において、全自動接触角計 CA−W(協和界面科学(株)製)を使用し測定した。
なお、プロピレングリコールモノメチルエーテル(PGME)の接触角は、液量3.0〜3.5μl、着液後5秒間静止してから、また、純水の接触角は、液量3μl、着液後5秒間静止してから測定した。
[Measurement of contact angle]
The contact angle was measured using a fully automatic contact angle meter CA-W (Kyowa Interface Science Co., Ltd.) in a constant temperature and humidity environment (25 ° C. ± 2 ° C., 50% RH ± 5%).
In addition, the contact angle of propylene glycol monomethyl ether (PGME) is 3.0 to 3.5 μl in liquid volume, and after resting for 5 seconds, and the contact angle for pure water is 3 μl in liquid volume, after liquid landing. Measurements were taken after 5 seconds of rest.

<合成例1>
ポリイミド前駆体(PI−1)の重合
窒素気流下中、50mLの4つ口フラスコに、4,4’−ジアミノジフェニルエーテル(以後ODA)1.8823g(0.0094mol)と3、5−ジアミノ安息香酸 11−(パーフルオロ−n−ヘキシル)−n−ウンデシル(以後APC11−6F)0.3579g(0.0006mol)を入れ、N−メチル−2−ピロリドン(以後NMP)23.58gに溶解させた後、1,2,3,4−シクロブタンテトラカルボン酸二無水物(以後CBDA)1.9219g(0.0098mol)を加え、これを23℃で12時間攪拌して重合反応を行い、さらにNMPで希釈することで、ポリイミド前駆体(PI−1)の6質量%溶液を得た。
得られたポリイミド前駆体(PI−1)の数平均分子量(Mn)と重量平均分子量(M
w)はそれぞれMn=35,200、Mw=83,600であった。
<Synthesis Example 1>
Polymerization of polyimide precursor (PI-1) In a nitrogen stream, in a 50 mL four-necked flask, 1.8823 g (0.0094 mol) of 4,4′-diaminodiphenyl ether (hereinafter referred to as ODA) and 3,5-diaminobenzoic acid. After adding 0.3579 g (0.0006 mol) of 11- (perfluoro-n-hexyl) -n-undecyl (hereinafter APC11-6F) and dissolving in 23.58 g of N-methyl-2-pyrrolidone (hereinafter NMP) 1,2,3,4-cyclobutanetetracarboxylic dianhydride (hereinafter referred to as CBDA) 1.9219 g (0.0098 mol) was added, and this was stirred at 23 ° C. for 12 hours to conduct a polymerization reaction, and further diluted with NMP. By doing this, the 6 mass% solution of the polyimide precursor (PI-1) was obtained.
The number average molecular weight (Mn) and weight average molecular weight (M) of the obtained polyimide precursor (PI-1)
w) were Mn = 35,200 and Mw = 83,600, respectively.

<合成例2>
ポリイミド(PI−2)の重合
窒素気流下中、100mLの4つ口フラスコに、ODA 3.3501g(0.0167325mol)、2,2−ビス(3−アミノ−4−メチルフェニル)ヘキサフルオロプロパン(以後AMF)1.6164g(0.004462mol)、APC11−6F 0.6965g(0.0011155mol)、を入れ、NMP 49.44gに溶解させた後、3,4−ジカルボキシ−1,2,3,4−テトラヒドロ−1−ナフタレンコハク酸二無水物(以後TDA)6.6981g(0.02231mol)を加え、これを50℃で24時間攪拌して重合反応を行った。得られたポリアミド酸の溶液をNMPで8質量%に希釈した。
この溶液60gにイミド化触媒として無水酢酸22.1g、ピリジン10.3gを加え、50℃で3時間反応させポリイミド溶液を得た。この溶液を大量のメタノール中に投入し、得られた白色沈殿をろ別、乾燥し、白色のポリイミド粉末を得た。このポリイミド粉末は1H−NMRより90%以上イミド化されていることを確認した。この粉末4gをγ−ブチロラクトン 30gとジプロピレングリコールモノメチルエーテル 6gの混合溶媒に溶解させて、ポリイミド(PI−2)の10質量%溶液を得た。
得られたポリイミド(PI−2)の数平均分子量(Mn)と重量平均分子量(Mw)はそれぞれMn=13,900、Mw=28,400であった。
<Synthesis Example 2>
Polymerization of polyimide (PI-2) In a 100 mL four-necked flask in a nitrogen stream, 3.3501 g (0.0167325 mol) of ODA, 2,2-bis (3-amino-4-methylphenyl) hexafluoropropane ( AMF) 1.6164 g (0.004462 mol) and APC11-6F 0.6965 g (0.0011155 mol) were added and dissolved in 49.44 g of NMP, and 3,4-dicarboxy-1,2,3, 4-Tetrahydro-1-naphthalene succinic dianhydride (hereinafter TDA) 6.681 g (0.02231 mol) was added, and this was stirred at 50 ° C. for 24 hours to carry out a polymerization reaction. The obtained polyamic acid solution was diluted to 8% by mass with NMP.
To 60 g of this solution, 22.1 g of acetic anhydride and 10.3 g of pyridine were added as an imidization catalyst and reacted at 50 ° C. for 3 hours to obtain a polyimide solution. This solution was put into a large amount of methanol, and the resulting white precipitate was filtered and dried to obtain a white polyimide powder. It was confirmed that 90% or more of this polyimide powder was imidized by 1 H-NMR. 4 g of this powder was dissolved in a mixed solvent of 30 g of γ-butyrolactone and 6 g of dipropylene glycol monomethyl ether to obtain a 10% by mass solution of polyimide (PI-2).
The number average molecular weight (Mn) and the weight average molecular weight (Mw) of the obtained polyimide (PI-2) were Mn = 13,900 and Mw = 28,400, respectively.

<合成例3>
ポリイミド(PI−3)の重合
窒素気流下中、50mLの4つ口フラスコに、1,3−ビス(4−アミノフェノキシ)ベンゼン(以後DA−4P)2.7769g(0.0095mol)、APC11−6F 0.3122g(0.0005mol)、を入れ、NMP 21.96gに溶解させた後、ビシクロ[3.3.0]−オクタン−2,4,6,8−テトラカルボン酸二無水物(以後BODA)2.402g(0.0099mol)を加え、これを40℃で24時間攪拌して重合反応を行った。得られたポリアミド酸の溶液をNMPで8質量%に希釈した。
この溶液23gにイミド化触媒として無水酢酸8.5g、ピリジン3.9gを加え、100℃で3時間反応させポリイミド溶液を得た。この溶液を大量のメタノール中に投入し、得られた白色沈殿をろ別、乾燥し、白色のポリイミド粉末を得た。このポリイミド粉末は1H−NMRより90%以上イミド化されていることを確認した。この粉末3gをγ−ブチロラクトン 22.5gとジプロピレングリコールモノメチルエーテル 4.5gの混合溶媒に溶解させて、ポリイミド(PI−3)の10質量%溶液を得た。
得られたポリイミド(PI−3)の数平均分子量(Mn)と重量平均分子量(Mw)はそれぞれMn=19,300、Mw=50,300であった。
<Synthesis Example 3>
Polymerization of polyimide (PI-3) In a 50 mL four-necked flask under a nitrogen stream, 2.7769 g (0.0095 mol) of 1,3-bis (4-aminophenoxy) benzene (hereinafter DA-4P), APC11- After adding 0.3122 g (0.0005 mol) of 6F and dissolving it in 21.96 g of NMP, bicyclo [3.3.0] -octane-2,4,6,8-tetracarboxylic dianhydride (hereinafter referred to as “NF”) (BODA) 2.402 g (0.0099 mol) was added, and this was stirred at 40 ° C. for 24 hours to carry out a polymerization reaction. The obtained polyamic acid solution was diluted to 8% by mass with NMP.
To 23 g of this solution, 8.5 g of acetic anhydride and 3.9 g of pyridine were added as imidation catalysts, and reacted at 100 ° C. for 3 hours to obtain a polyimide solution. This solution was put into a large amount of methanol, and the resulting white precipitate was filtered and dried to obtain a white polyimide powder. It was confirmed that 90% or more of this polyimide powder was imidized by 1 H-NMR. 3 g of this powder was dissolved in a mixed solvent of 22.5 g of γ-butyrolactone and 4.5 g of dipropylene glycol monomethyl ether to obtain a 10% by mass solution of polyimide (PI-3).
The number average molecular weight (Mn) and the weight average molecular weight (Mw) of the obtained polyimide (PI-3) were Mn = 19,300 and Mw = 50,300, respectively.

<合成例4>
ポリイミド前駆体(PI−4)の重合
窒素気流下中、100mLの4つ口フラスコに、ODA 2.8234g(0.0141mol)とAPC11−6F 0.5620g(0.0009mol)を入れ、NMP36.97gに溶解させた後、ピロメリット酸二無水物(以後PMDA)3.1084g(0.01425mol)を加え、これを23℃で5時間攪拌して重合反応を行い、さらにNMPで希釈することで、ポリイミド前駆体(PI−4)の8質量%溶液を得た。
得られたポリイミド前駆体(PI−4)の数平均分子量(Mn)と重量平均分子量(M
w)はそれぞれMn=15,500、Mw=35,000であった。
<Synthesis Example 4>
Polymerization of polyimide precursor (PI-4) Under a nitrogen stream, 2.8234 g (0.0141 mol) of ODA and 0.5620 g (0.0009 mol) of APC11-6F were placed in a 100 mL four-necked flask, and 36.97 g of NMP. Then, 3.1084 g (0.01425 mol) of pyromellitic dianhydride (hereinafter PMDA) was added, this was stirred at 23 ° C. for 5 hours to conduct a polymerization reaction, and further diluted with NMP. An 8 mass% solution of polyimide precursor (PI-4) was obtained.
Number average molecular weight (Mn) and weight average molecular weight (M) of the obtained polyimide precursor (PI-4)
w) were Mn = 15,000 and Mw = 35,000, respectively.

<比較合成例1>
ポリイミド前駆体(PI−5)の重合
窒素気流下中、200mLの4つ口フラスコに、1−オクタデシルオキシ−2、4−ジアミノベンゼン(以後APC18)15.065g(0.040mol)を入れ、NMP 127.6gに溶解させた後、CBDA 7.45g(0.038mol)を加え、これを23℃で12時間攪拌して重合反応を行い、さらにNMPで希釈することで、ポリアミド酸(PI−5)の2質量%溶液を得た。
得られたポリアミド酸(PI−5)の数平均分子量(Mn)と重量平均分子量(Mw)はそれぞれMn=16,000、Mw=48,000であった。
<Comparative Synthesis Example 1>
Polymerization of polyimide precursor (PI-5) In a nitrogen stream, 15.065 g (0.040 mol) of 1-octadecyloxy-2,4-diaminobenzene (hereinafter APC18) was placed in a 200 mL four-necked flask, and NMP After dissolving in 127.6 g, 7.45 g (0.038 mol) of CBDA was added, this was stirred at 23 ° C. for 12 hours to conduct a polymerization reaction, and further diluted with NMP to obtain polyamic acid (PI-5 ) Was obtained.
The number average molecular weight (Mn) and weight average molecular weight (Mw) of the obtained polyamic acid (PI-5) were Mn = 16,000 and Mw = 48,000, respectively.

<比較合成例2>
ポリイミド前駆体(PI−6)の重合
窒素気流下中、50mLの4つ口フラスコに、ODA 2.9856(0.01491mol)とAPC11−6F 0.0562g(0.00009mol)を入れ、NMP 24.93gに溶解させた後、CBDA 2.7946g(0.01425mol)を加え、これを23℃で12時間攪拌して重合反応を行い、さらにNMPで希釈することで、ポリイミド前駆体(PI−6)の6質量%溶液を得た。
得られたポリイミド前駆体(PI−6)の数平均分子量(Mn)と重量平均分子量(M
w)はそれぞれMn=14,200、Mw=28,500であった。
<Comparative Synthesis Example 2>
Polymerization of polyimide precursor (PI-6) In a nitrogen stream, 2.9856 g (0.0491 mol) of ODA and 0.0562 g (0.00009 mol) of APC11-6F were placed in a 50 mL four-necked flask, and NMP 24 After being dissolved in .93 g, CBDA 2.7946 g (0.01425 mol) was added, and this was stirred at 23 ° C. for 12 hours to conduct a polymerization reaction, and further diluted with NMP to obtain a polyimide precursor (PI-6). ) Was obtained.
The number average molecular weight (Mn) and weight average molecular weight (M) of the obtained polyimide precursor (PI-6)
w) were Mn = 14,200 and Mw = 28,500, respectively.

以下に合成例及び比較合成例で使用したテトラカルボン酸二無水物及びジアミンの一覧を示す。   A list of tetracarboxylic dianhydrides and diamines used in Synthesis Examples and Comparative Synthesis Examples is shown below.

<実施例1:PI−1より形成したポリイミド膜の紫外線感度特性(PGMEの接触角)>
ITO付きガラス基板(2.5cm角、厚み0.7mm)に、合成例1で調製したPI−1の溶液を0.2μm孔フィルタを付けたシリンジで滴下し、スピンコート法により塗布した。その後大気下で、80℃のホットプレートで5分間加熱処理し、有機溶媒を揮発させ、次いで180℃のホットプレートで30分間焼成し、膜厚約400nmのポリイミド膜を得た。このポリイミド膜のPGMEの接触角を測定した。
同様の手順にて得たポリイミド膜に紫外線を6J/cm2の照射量で照射し、PGMEの接触角を測定した。
PGMEの接触角の測定結果を表2に示す。
<Example 1: UV sensitivity characteristic of polyimide film formed from PI-1 (contact angle of PGME)>
The solution of PI-1 prepared in Synthesis Example 1 was dropped onto a glass substrate with ITO (2.5 cm square, thickness 0.7 mm) with a syringe with a 0.2 μm pore filter and applied by spin coating. Thereafter, heat treatment was performed for 5 minutes on an 80 ° C. hot plate in the atmosphere to volatilize the organic solvent, and then baked for 30 minutes on a 180 ° C. hot plate to obtain a polyimide film having a film thickness of about 400 nm. The contact angle of PGME of this polyimide film was measured.
The polyimide film obtained in the same procedure was irradiated with ultraviolet rays at a dose of 6 J / cm 2 , and the contact angle of PGME was measured.
Table 2 shows the measurement results of the contact angle of PGME.

<実施例2乃至実施例4、比較例1及び比較例2:PI−2乃至PI−6より形成したポリイミド膜の紫外線感度特性(PGMEの接触角)>
合成例2乃至合成例4、比較合成例1及び比較合成例2で調製したPI−2乃至PI−6の溶液を用い、実施例1と同様の手順を用いてポリイミド膜を作製し、紫外線未照射、紫外線6J/cm2照射後のPGMEの接触角をそれぞれ測定した。
PGMEの接触角の測定結果を表2に示す。
<Examples 2 to 4, Comparative Example 1 and Comparative Example 2: UV sensitivity characteristics of polyimide films formed from PI-2 to PI-6 (PGME contact angle)>
Using a solution of PI-2 to PI-6 prepared in Synthesis Example 2 to Synthesis Example 4, Comparative Synthesis Example 1 and Comparative Synthesis Example 2, a polyimide film was prepared using the same procedure as in Example 1, and ultraviolet rays were not used. The contact angle of PGME after irradiation and UV 6 J / cm 2 irradiation was measured.
Table 2 shows the measurement results of the contact angle of PGME.

上記表2に示すとおり、本発明の画像形成用下層膜組成物に係るポリイミド前駆体又はポリイミドから得られる硬化膜に相当する実施例1乃至実施例4は撥液性を示し、紫外線照射による親疎水性の変化量は8〜21°であり、画像形成が可能な接触角差(5°以上)を得ることができた。
一方、PI−5から得られたポリイミド膜(比較例1)は撥液性を示さず、さらに、紫外線を照射してもより親水性には変化しなかった。むしろ紫外線照射後の接触角はわずかに増加したことから、画像の形成は不可能であるとみられる。
またPI−6から得られたポリイミド膜(比較例2)は、撥液性を示したものの、紫外線照射による親疎水性の変化量は3.7°と小さく、画像の形成が可能な接触角差を得ることはできなかった。
As shown in Table 2 above, Examples 1 to 4 corresponding to the polyimide precursor or the cured film obtained from the polyimide according to the underlayer film composition for image formation of the present invention exhibit liquid repellency and are intimate by ultraviolet irradiation. The amount of change in water was 8 to 21 °, and a contact angle difference (5 ° or more) capable of image formation could be obtained.
On the other hand, the polyimide film obtained from PI-5 (Comparative Example 1) did not exhibit liquid repellency, and did not change to more hydrophilic even when irradiated with ultraviolet rays. Rather, the contact angle after UV irradiation increased slightly, so that it seems impossible to form an image.
In addition, although the polyimide film obtained from PI-6 (Comparative Example 2) showed liquid repellency, the change in hydrophilicity / hydrophobicity due to ultraviolet irradiation was as small as 3.7 °, and the contact angle difference capable of forming an image. Could not get.

<実施例5乃至8:PI−1乃至PI−4より形成したポリイミド膜の紫外線感度特性(水の接触角)>
前記合成例1乃至合成例4で調製したPI−1乃至PI−4の溶液を用い、実施例1と同様の手順を用いてポリイミド膜を作製し、紫外線未照射、紫外線40J/cm2照射後の水の接触角をそれぞれ測定した。
水の接触角の測定結果を表3に示す。
<Examples 5 to 8: UV sensitivity characteristics of polyimide films formed from PI-1 to PI-4 (contact angle of water)>
Using the solutions of PI-1 to PI-4 prepared in Synthesis Example 1 to Synthesis Example 4 and using the same procedure as in Example 1, a polyimide film was produced, and after UV irradiation, irradiation with 40 J / cm 2 was not performed. The contact angle of water was measured.
Table 3 shows the measurement results of the water contact angle.

表3に示すように、本発明の画像形成用下層膜組成物に係るポリイミド前駆体又はポリイミドから得られる硬化膜に相当する実施例5乃至実施例8は、紫外線照射によって大きな接触角差を得ることができた。
すなわち、本発明の画像形成用下層膜は、様々な表面張力の画像形成液パターニング可能であることが示された。
As shown in Table 3, Examples 5 to 8 corresponding to the cured film obtained from the polyimide precursor or polyimide according to the underlayer film composition for image formation of the present invention obtain a large contact angle difference by ultraviolet irradiation. I was able to.
That is, it was shown that the image-forming underlayer film of the present invention can be patterned with an image-forming liquid having various surface tensions.

<実施例9:PI−2より成膜したポリイミド膜の比誘電率>
ITO付きガラス基板(2.5cm角、厚み0.7mm)に、合成例2で調製したPI−2の溶液を、0.2μm孔フィルタを付けたシリンジで滴下し、スピンコート法により塗布した。その後大気下で、80℃のホットプレートで5分間加熱を行って有機溶剤を揮発させ、次いで180℃のホットプレートで60分焼成する事で、膜厚約400nmのポリイミド膜を得た。
次にITO電極と測定装置の探針との良好なコンタクトを得るため、ポリイミド膜の一部分を削り取りITOを露出させた後、真空蒸着装置を用いてポリイミド膜上およびITO上に直径1.0mm、膜厚100nmのアルミニウム電極を積層させた。このときの真空蒸着条件は、室温、真空度3×10-3Pa以下、アルミニウム蒸着速度0.3nm/sec以下とした。このようにしてポリイミド膜の上下に電極を形成し、ポリイミド膜の比誘電率評価用のサンプルを作製した。
<Example 9: Relative permittivity of polyimide film formed from PI-2>
The solution of PI-2 prepared in Synthesis Example 2 was dropped onto a glass substrate with ITO (2.5 cm square, thickness 0.7 mm) with a syringe with a 0.2 μm pore filter and applied by spin coating. Thereafter, heating was performed for 5 minutes on an 80 ° C. hot plate in the atmosphere to volatilize the organic solvent, followed by baking for 60 minutes on a 180 ° C. hot plate to obtain a polyimide film having a thickness of about 400 nm.
Next, in order to obtain a good contact between the ITO electrode and the probe of the measuring device, a part of the polyimide film is scraped to expose the ITO, and then a diameter of 1.0 mm is formed on the polyimide film and on the ITO using a vacuum deposition apparatus. An aluminum electrode having a thickness of 100 nm was stacked. The vacuum deposition conditions at this time were room temperature, a degree of vacuum of 3 × 10 −3 Pa or less, and an aluminum deposition rate of 0.3 nm / sec or less. In this way, electrodes were formed above and below the polyimide film, and a sample for evaluating the relative dielectric constant of the polyimide film was produced.

このポリイミド膜の比誘電率評価用のサンプルの比誘電率は3.0であり、撥水性が高いにもかかわらず、有機トランジスタ向けゲート絶縁膜として使用可能な3.0以上の比誘電率を確保し、優れた特性を示すことが判った。
また、電界を1MV/cm加えたときのリーク電流密度は2×10-10A/cm2であり、有機トランジスタ向けゲート絶縁膜として絶縁性についても実用上問題がないことを確認した。
The relative dielectric constant of a sample for evaluating the relative dielectric constant of this polyimide film is 3.0, and it has a relative dielectric constant of 3.0 or more that can be used as a gate insulating film for organic transistors, despite having high water repellency. It has been found that it has secured and exhibits excellent properties.
In addition, the leakage current density when an electric field was applied at 1 MV / cm was 2 × 10 −10 A / cm 2 , and it was confirmed that there was no practical problem with respect to insulation as a gate insulating film for organic transistors.

なお、本実施例において、ポリイミド膜の比誘電率は、安藤電気(株)製AG−4311Bを用い、静電容量を測定し求めた。静電容量は窒素雰囲気中、周波数1KHzにて測定した。また、ポリイミド膜のリーク電流密度の測定には、アジレント・テクノロジー社製HP4156Cを用いた。   In this example, the relative dielectric constant of the polyimide film was obtained by measuring the capacitance using AG-4411B manufactured by Ando Electric Co., Ltd. The capacitance was measured at a frequency of 1 KHz in a nitrogen atmosphere. Further, HP4156C manufactured by Agilent Technologies was used for measurement of the leakage current density of the polyimide film.

<比較例3:PI−5より成膜したポリイミド膜の比誘電率>
比較合成例1で調製したPI−5の溶液を用い、膜の焼成温度を真空中250℃、60分とし、膜厚を270nmとした以外は実施例9と同様の方法でPI−5より成膜したポリイミド膜の比誘電率を評価した。
PI−5より成膜したポリイミド膜は、リーク電流密度が1×10-10A/cm2以下であるが、比誘電率が2.7であった。ゲート絶縁膜として用いるには比誘電率が低く、たとえ画像形成下層膜としての性能は得られたとしても、ゲート絶縁膜として用いることは不可能であるとみられる。
<Comparative Example 3: Relative dielectric constant of polyimide film formed from PI-5>
A solution of PI-5 prepared in Comparative Synthesis Example 1 was used, and the baking temperature of the film was 250 ° C. in vacuum for 60 minutes, and the film thickness was 270 nm. The relative dielectric constant of the formed polyimide film was evaluated.
The polyimide film formed from PI-5 had a leakage current density of 1 × 10 −10 A / cm 2 or less, but a relative dielectric constant of 2.7. The relative dielectric constant is low for use as a gate insulating film, and even if performance as an image forming lower layer film is obtained, it cannot be used as a gate insulating film.

<合成例5>
ポリイミド前駆体(PI−7)の重合
窒素気流下中、100mLの4つ口フラスコに、ODA 1.7621(0.0088mol)と以後APC11−6F 0.7158g(0.0012mol)を入れ、NMP24.93gに溶解させた後、CBDA 1.9219g(0.0098mol)を加え、これを23℃で12時間攪拌して重合反応を行い、さらにNMPで希釈することで、ポリイミド前駆体(PI−7)の6質量%溶液を得た。
得られたポリイミド前駆体(PI−7)の数平均分子量(Mn)と重量平均分子量(M
w)はそれぞれMn=29,630、Mw=67,400であった。
<Synthesis Example 5>
Polymerization of polyimide precursor (PI-7) In a nitrogen stream, ODA 1.7621 g (0.0088 mol) and hereafter APC11-6F 0.7158 g (0.0012 mol) were placed in a 100 mL four-necked flask, and NMP24 After being dissolved in .93 g, 1.9219 g (0.0098 mol) of CBDA was added, this was stirred at 23 ° C. for 12 hours to carry out a polymerization reaction, and further diluted with NMP to obtain a polyimide precursor (PI-7 ) Was obtained.
The number average molecular weight (Mn) and weight average molecular weight (M) of the obtained polyimide precursor (PI-7)
w) were Mn = 29,630 and Mw = 67,400, respectively.

<合成例6>
ポリイミド(PI−8)の重合
窒素気流下中、100mLの4つ口フラスコに、ODA 3.4366g(0.01716mol)、AMF 1.6151g(0.004458mol)、APC11−6F 0.4176g(0.000669mol)、を入れ、NMP 48.65gに溶解させた後、TDA 6.6927g(0.02229mol)を加え、これを50℃で24時間攪拌して重合反応を行った。得られたポリアミド酸の溶液をNMPで8質量%に希釈した。
この溶液148gにイミド化触媒として無水酢酸22.2g、ピリジン10.3gを加え、50℃で3時間反応させポリイミド溶液を得た。この溶液を大量のメタノール中に投入し、得られた白色沈殿をろ別、乾燥し、白色のポリイミド粉末を得た。このポリイミド粉末は1H−NMRより90%以上イミド化されていることを確認した。この粉末4gをγ−ブチロラクトン 30gとジプロピレングリコールモノメチルエーテル 6gの混合溶媒に溶解させて、ポリイミド(PI−8)の10質量%溶液を得た。
得られたポリイミド(PI−8)の数平均分子量(Mn)と重量平均分子量(Mw)はそれぞれMn=15,300、Mw=31,500であった。
<Synthesis Example 6>
Polymerization of polyimide (PI-8) Under a nitrogen stream, in a 100 mL four-necked flask, ODA 3.4366 g (0.01716 mol), AMF 1.6151 g (0.004458 mol), APC11-6F 0.4176 g (0. 000669 mol) was added and dissolved in 48.65 g of NMP, 6.6927 g (0.02229 mol) of TDA was added, and this was stirred at 50 ° C. for 24 hours to conduct a polymerization reaction. The obtained polyamic acid solution was diluted to 8% by mass with NMP.
Acetic anhydride 22.2g and pyridine 10.3g were added to 148g of this solution as an imidation catalyst, and it was made to react at 50 degreeC for 3 hours, and the polyimide solution was obtained. This solution was put into a large amount of methanol, and the resulting white precipitate was filtered and dried to obtain a white polyimide powder. It was confirmed that 90% or more of this polyimide powder was imidized by 1 H-NMR. 4 g of this powder was dissolved in a mixed solvent of 30 g of γ-butyrolactone and 6 g of dipropylene glycol monomethyl ether to obtain a 10% by mass solution of polyimide (PI-8).
The number average molecular weight (Mn) and the weight average molecular weight (Mw) of the obtained polyimide (PI-8) were Mn = 15,300 and Mw = 31,500, respectively.

<合成例7>
ポリイミド前駆体(PI−9)の重合
窒素気流下中、100mLの4つ口フラスコに、ODA 3.5683g(0.01782mol)、1−(4−パーフルオロオクチル)フェノキシ−2,4−ジアミノベンゼン(以後DA−1) 0.1113g(0.00018mol)、を入れ、NMP 27.99gに溶解させた後、CBDA 3.3182g(0.01692mol)を加え、これを23℃で12時間攪拌して重合反応を行い、さらにNMPで希釈することで、ポリイミド前駆体(PI−9)の8質量%溶液を得た。
得られたポリイミド前駆体(PI−9)の数平均分子量(Mn)と重量平均分子量(M
w)はそれぞれMn=31,500、Mw=67,200であった。
<Synthesis Example 7>
Polymerization of polyimide precursor (PI-9) In a 100 mL four-necked flask in a nitrogen stream, ODA 3.5683 g (0.01782 mol), 1- (4-perfluorooctyl) phenoxy-2,4-diaminobenzene (Hereinafter DA-1) 0.1113 g (0.00018 mol) was added and dissolved in 27.99 g of NMP, then 3.3182 g (0.01692 mol) of CBDA was added, and this was stirred at 23 ° C. for 12 hours. A polymerization reaction was carried out and further diluted with NMP to obtain an 8% by mass solution of a polyimide precursor (PI-9).
Number average molecular weight (Mn) and weight average molecular weight (M) of the obtained polyimide precursor (PI-9)
w) were Mn = 31,500 and Mw = 67,200, respectively.

<合成例8>
ポリイミド前駆体(PI−10)の重合
窒素気流下中、100mLの4つ口フラスコに、ODA 1.9624g(0.0098mol)、DA−1 0.1237g(0.0002mol)、を入れ、NMP 15.72gに溶解させた後、CBDA 1.8434g(0.0094mol)を加え、これを23℃で12時間攪拌して重合反応を行い、さらにNMPで希釈することで、ポリイミド前駆体(PI−10)の8質量%溶液を得た。
得られたポリイミド前駆体(PI−10)の数平均分子量(Mn)と重量平均分子量(M
w)はそれぞれMn=31,200、Mw=68,100であった。
<Synthesis Example 8>
Polymerization of polyimide precursor (PI-10) Under a nitrogen stream, ODA 1.9624 g (0.0098 mol) and DA-1 0.1237 g (0.0002 mol) were placed in a 100 mL four-necked flask, and NMP 15 After dissolving in 0.72 g, CBDA 1.8434 g (0.0094 mol) was added, this was stirred at 23 ° C. for 12 hours to conduct a polymerization reaction, and further diluted with NMP to obtain a polyimide precursor (PI-10 8% by mass solution was obtained.
The number average molecular weight (Mn) and weight average molecular weight (M) of the obtained polyimide precursor (PI-10)
w) were Mn = 31,200 and Mw = 68,100, respectively.

<合成例9>
ポリイミド(PI−11)の重合
窒素気流下中、100mLの4つ口フラスコに、ODA 5.887g(0.0294mol)、DA−1 0.371g(0.0006mol)、を入れ、NMP 60.88gに溶解させた後、TDA 8.9631g(0.03mol)を加え、これを50℃で24時間攪拌して重合反応を行った。得られたポリアミド酸の溶液をNMPで8質量%に希釈した。
この溶液170gにイミド化触媒として無水酢酸27.8g、ピリジン12.9gを加え、50℃で3時間反応させポリイミド溶液を得た。この溶液を大量のメタノール中に投入し、得られた白色沈殿をろ別、乾燥し、白色のポリイミド粉末を得た。このポリイミド粉末は1H−NMRより90%以上イミド化されていることを確認した。この粉末4gをγ−ブチロラクトン 30gとジプロピレングリコールモノメチルエーテル 6gの混合溶媒に溶解させて、ポリイミド(PI−11)の10質量%溶液を得た。
得られたポリイミド(PI−11)の数平均分子量(Mn)と重量平均分子量(Mw)はそれぞれMn=30,470、Mw=66,900であった。
<Synthesis Example 9>
Polymerization of polyimide (PI-11) In a 100 mL four-necked flask under nitrogen flow, ODA 5.887 g (0.0294 mol) and DA-1 0.371 g (0.0006 mol) were placed, and NMP 60.88 g After being dissolved in TDA, 8.9931 g (0.03 mol) of TDA was added, and this was stirred at 50 ° C. for 24 hours to carry out a polymerization reaction. The obtained polyamic acid solution was diluted to 8% by mass with NMP.
To 170 g of this solution, 27.8 g of acetic anhydride and 12.9 g of pyridine were added as imidization catalysts, and reacted at 50 ° C. for 3 hours to obtain a polyimide solution. This solution was put into a large amount of methanol, and the resulting white precipitate was filtered and dried to obtain a white polyimide powder. It was confirmed that 90% or more of this polyimide powder was imidized by 1 H-NMR. 4 g of this powder was dissolved in a mixed solvent of 30 g of γ-butyrolactone and 6 g of dipropylene glycol monomethyl ether to obtain a 10% by mass solution of polyimide (PI-11).
The number average molecular weight (Mn) and the weight average molecular weight (Mw) of the obtained polyimide (PI-11) were Mn = 30,470 and Mw = 66,900, respectively.

<合成例10>
ポリイミド(PI−12)の重合
窒素気流下中、100mLの4つ口フラスコに、DA−3 8.0458g(0.0196mol)、DA−1 0.2473g(0.0004mol)、を入れ、NMP 56.7gに溶解させた後、TDA 5.8853g(0.0196mol)を加え、これを50℃で24時間攪拌して重合反応を行った。得られたポリアミド酸の溶液をNMPで8質量%に希釈した。
この溶液177gにイミド化触媒として無水酢酸19.3g、ピリジン8.9gを加え、50℃で3時間反応させポリイミド溶液を得た。この溶液を大量のメタノール中に投入し、得られた白色沈殿をろ別、乾燥し、白色のポリイミド粉末を得た。このポリイミド粉末は1H−NMRより90%以上イミド化されていることを確認した。この粉末4gをγ−ブチロラクトン 52.67gとジプロピレングリコールモノメチルエーテル 10gの混合溶媒に溶解させて、ポリイミド(PI−12)の6質量%溶液を得た。
得られたポリイミド(PI−12)の数平均分子量(Mn)と重量平均分子量(Mw)はそれぞれMn=19,700、Mw=47,960であった。
<Synthesis Example 10>
Polymerization of polyimide (PI-12) Under a nitrogen stream, DA-3 8.0458 g (0.0196 mol) and DA-1 0.2473 g (0.0004 mol) were placed in a 100 mL four-necked flask, and NMP 56 After dissolving in 0.7 g, 5.853 g (0.0196 mol) of TDA was added, and this was stirred at 50 ° C. for 24 hours to conduct a polymerization reaction. The obtained polyamic acid solution was diluted to 8% by mass with NMP.
17.7 g of acetic anhydride and 8.9 g of pyridine were added to 177 g of this solution as an imidation catalyst and reacted at 50 ° C. for 3 hours to obtain a polyimide solution. This solution was put into a large amount of methanol, and the resulting white precipitate was filtered and dried to obtain a white polyimide powder. It was confirmed that 90% or more of this polyimide powder was imidized by 1 H-NMR. 4 g of this powder was dissolved in a mixed solvent of 52.67 g of γ-butyrolactone and 10 g of dipropylene glycol monomethyl ether to obtain a 6% by mass solution of polyimide (PI-12).
The number average molecular weight (Mn) and the weight average molecular weight (Mw) of the obtained polyimide (PI-12) were Mn = 19,700 and Mw = 47,960, respectively.

<合成例11>
ポリイミド(PI−13)の重合
窒素気流下中、100mLの4つ口フラスコに、DA−3 5.1764g(0.01261mol)、DA−1 0.2411g(0.00039mol)、を入れ、NMP 36.77gに溶解させた後、TDA 5.1764g(0.012571mol)を加え、これを50℃で24時間攪拌して重合反応を行った。得られたポリアミド酸の溶液をNMPで8質量%に希釈した。
この溶液130gにイミド化触媒として無水酢酸11.6g、ピリジン5.4gを加え、50℃で3時間反応させポリイミド溶液を得た。この溶液を大量のメタノール中に投入し、得られた白色沈殿をろ別、乾燥し、白色のポリイミド粉末を得た。このポリイミド粉末は1H−NMRより90%以上イミド化されていることを確認した。この粉末4gをγ−ブチロラクトン 52.67gとジプロピレングリコールモノメチルエーテル 10gの混合溶媒に溶解させて、ポリイミド(PI−13)の6質量%溶液を得た。
得られたポリイミド(PI−13)の数平均分子量(Mn)と重量平均分子量(Mw)はそれぞれMn=20,970、Mw=51,220であった。
<Synthesis Example 11>
Polymerization of polyimide (PI-13) In a 100 mL four-necked flask under nitrogen flow, 5.176 g (0.01261 mol) of DA-3 and 0.2411 g (0.00039 mol) of DA-1 were placed, and NMP 36 After dissolving in 0.77 g, 5.176 g (0.012571 mol) of TDA was added, and this was stirred at 50 ° C. for 24 hours to conduct a polymerization reaction. The obtained polyamic acid solution was diluted to 8% by mass with NMP.
To 130 g of this solution, 11.6 g of acetic anhydride and 5.4 g of pyridine were added as an imidization catalyst and reacted at 50 ° C. for 3 hours to obtain a polyimide solution. This solution was put into a large amount of methanol, and the resulting white precipitate was filtered and dried to obtain a white polyimide powder. It was confirmed that 90% or more of this polyimide powder was imidized by 1 H-NMR. 4 g of this powder was dissolved in a mixed solvent of 52.67 g of γ-butyrolactone and 10 g of dipropylene glycol monomethyl ether to obtain a 6 mass% solution of polyimide (PI-13).
The number average molecular weight (Mn) and the weight average molecular weight (Mw) of the obtained polyimide (PI-13) were Mn = 20,970 and Mw = 51,220, respectively.

<比較合成例3>
ポリイミド前駆体(PI−14)の重合
窒素気流下中、50mLの4つ口フラスコに、DA−3 1.0673(0.0026mol)とDA−1 0.8656g(0.0014mol)を入れ、NMP 15.31gに溶解させた後、CBDA 0.7688g(0.00392mol)を加え、これを23℃で12時間攪拌して重合反応を行い、さらにNMPで希釈することで、ポリイミド前駆体(PI−14)の6質量%溶液を得た。
得られたポリイミド前駆体(PI−14)の数平均分子量(Mn)と重量平均分子量(M
w)はそれぞれMn=20,130、Mw=48,280であった。
<Comparative Synthesis Example 3>
Polymerization of polyimide precursor (PI-14) In a nitrogen stream, DA-3 1.0673 g (0.0026 mol) and DA-1 0.8656 g (0.0014 mol) were placed in a 50 mL four-necked flask, After dissolving in 15.31 g of NMP, 0.7688 g (0.00392 mol) of CBDA was added, and this was stirred at 23 ° C. for 12 hours to conduct a polymerization reaction, and further diluted with NMP to obtain a polyimide precursor (PI A 14 mass% solution of -14) was obtained.
The number average molecular weight (Mn) and weight average molecular weight (M) of the obtained polyimide precursor (PI-14)
w) were Mn = 20,130 and Mw = 48,280, respectively.

以下に合成例5から合成例11及び比較合成例3で使用したテトラカルボン酸二無水物及びジアミンの一覧を示す。表内の数字はテトラカルボン酸二無水物とジアミンの添加量を各々100とした場合のモル比率である。   A list of tetracarboxylic dianhydrides and diamines used in Synthesis Examples 5 to 11 and Comparative Synthesis Example 3 is shown below. The numbers in the table are molar ratios when the addition amounts of tetracarboxylic dianhydride and diamine are each 100.

<合成例12>
ポリイミド(PI−15)の重合
窒素気流下中、200mLの4つ口フラスコに、p-フェニレンジアミン 4.86g(0.045mol)、4−ヘキサデシルオキシ−1、3−ジアミノベンゼン 1.74g(0.005mol)を入れ、NMP 122.5gに溶解させた後、TDA 15.01g(0.05mol)を加え、これを室温で10時間攪拌して重合反応を行った。得られたポリアミド酸の溶液をNMPで8質量%に希釈した。
この溶液50gにイミド化触媒として無水酢酸10.8g、ピリジン5.0gを加え、50℃で3時間反応させポリイミド溶液を得た。この溶液を大量のメタノール中に投入し、得られた白色沈殿をろ別、乾燥し、白色のポリイミド粉末を得た。このポリイミド粉末は1H−NMRより90%以上イミド化されていることを確認した。この粉末4gをγ−ブチロラクトン 52.67gとジプロピレングリコールモノメチルエーテル 10gの混合溶媒に溶解させて、ポリイミド(PI−15)の6質量%溶液を得た。
得られたポリイミド(PI−15)の数平均分子量(Mn)と重量平均分子量(Mw)はそれぞれMn=18,000、Mw=54,000であった。
<Synthesis Example 12>
Polymerization of polyimide (PI-15) In a 200 mL four-necked flask under a nitrogen stream, 4.86 g (0.045 mol) of p-phenylenediamine, 1.74 g of 4-hexadecyloxy-1,3-diaminobenzene ( 0.005 mol) was added and dissolved in 122.5 g of NMP, then 15.01 g (0.05 mol) of TDA was added, and this was stirred at room temperature for 10 hours to conduct a polymerization reaction. The obtained polyamic acid solution was diluted to 8% by mass with NMP.
To 50 g of this solution, 10.8 g of acetic anhydride and 5.0 g of pyridine were added as imidation catalysts and reacted at 50 ° C. for 3 hours to obtain a polyimide solution. This solution was put into a large amount of methanol, and the resulting white precipitate was filtered and dried to obtain a white polyimide powder. It was confirmed that 90% or more of this polyimide powder was imidized by 1 H-NMR. 4 g of this powder was dissolved in a mixed solvent of 52.67 g of γ-butyrolactone and 10 g of dipropylene glycol monomethyl ether to obtain a 6 mass% solution of polyimide (PI-15).
The number average molecular weight (Mn) and the weight average molecular weight (Mw) of the obtained polyimide (PI-15) were Mn = 18,000 and Mw = 54,000, respectively.

<実施例10:PI−1より形成したポリイミド膜の銀微粒子分散液(W4A)の塗れ性変化の観察>
ITO付きガラス基板(2.5cm角、厚み0.7mm)に、合成例1で調製したPI−1の溶液を0.2μm孔フィルタを付けたシリンジで滴下し、スピンコート法により塗布した。その後大気下で、80℃のホットプレートで5分間加熱処理し、有機溶媒を揮発させ、次いで180℃のホットプレートで30分間焼成し、膜厚約400nmのポリイミド膜を得た。このポリイミド膜上に銀微粒子分散液(製品名W4A、住友電工製)を3μl滴下したところ、ポリイミド膜は銀微粒子分散液に対して撥液性を示した。
同様の手順にて得たポリイミド膜に紫外線を6J/cm2の照射量で照射し、このポリイミド膜上に銀微粒子分散液を3μl滴下したところ、ポリイミド膜は銀微粒子分散液に対して親液性を示した。
PI−1から得られたポリイミド膜は、紫外線照射による銀微粒子分散液の撥液性・親液性の制御が可能であった。
<Example 10: Observation of change in wettability of silver fine particle dispersion (W4A) of polyimide film formed from PI-1>
The solution of PI-1 prepared in Synthesis Example 1 was dropped onto a glass substrate with ITO (2.5 cm square, thickness 0.7 mm) with a syringe with a 0.2 μm pore filter and applied by spin coating. Thereafter, heat treatment was performed for 5 minutes on an 80 ° C. hot plate in the atmosphere to volatilize the organic solvent, and then baked for 30 minutes on a 180 ° C. hot plate to obtain a polyimide film having a film thickness of about 400 nm. When 3 μl of a silver fine particle dispersion (product name: W4A, manufactured by Sumitomo Electric Industries) was dropped on this polyimide film, the polyimide film showed liquid repellency with respect to the silver fine particle dispersion.
The polyimide film obtained in the same procedure was irradiated with ultraviolet rays at a dose of 6 J / cm 2 , and 3 μl of silver fine particle dispersion was dropped onto this polyimide film. The polyimide film was lyophilic with respect to the silver fine particle dispersion. Showed sex.
The polyimide film obtained from PI-1 was capable of controlling the liquid repellency and lyophilicity of the silver fine particle dispersion by ultraviolet irradiation.

<実施例11乃至実施例19、比較例4乃至比較例6:PI−1乃至PI−3、PI−5乃至PI−13より形成したポリイミド膜の塗れ性変化の観察>
PI−2、PI−3,PI−5乃至PI−14の溶液を用い、実施例1と同様の手順を用いてポリイミド膜を作製し、紫外線未照射、紫外線6J/cm2照射後におけるポリイミド膜の銀微粒子分散液に対する撥液性・親液性を観察した。結果を表5に示す。
<Examples 11 to 19, Comparative Examples 4 to 6: Observation of change in wettability of polyimide films formed from PI-1 to PI-3, PI-5 to PI-13>
Using a solution of PI-2, PI-3, PI-5 to PI-14, a polyimide film was prepared using the same procedure as in Example 1, and the polyimide film was not irradiated with ultraviolet rays and irradiated with ultraviolet rays of 6 J / cm 2. The liquid repellency and lyophilicity to the silver fine particle dispersion were observed. The results are shown in Table 5.

※1:カッコ内の数字は全ジアミン中の各アミンのモル分率を示す。
※2:ポリイミド膜に紫外線を6J/cm2照射したとき、ポリイミド膜が撥液性から親液性に変化したものをぬれ性の変化有りとし、それ以外のものをぬれ性の変化無しとした。
上記表5に示すとおり、本発明の画像形成用下層膜組成物に係るポリイミド前駆体又はポリイミドから得られる硬化膜に相当する実施例10乃至実施例19は紫外線照射により
銀微粒子分散液に対するぬれ性の変化があった。ぬれ性の差を変化を利用した画像の形成が可能である。
一方、PI−5、PI−6から得られたポリイミド膜(比較例4、比較例5)は、紫外線を照射しても、ぬれ性は変化しなかった。
* 1: The numbers in parentheses indicate the mole fraction of each amine in the total diamine.
* 2: When the polyimide film is irradiated with 6 J / cm 2 of ultraviolet light, the polyimide film changes from liquid repellency to lyophilic, and the wettability changes. .
As shown in Table 5 above, Examples 10 to 19 corresponding to the polyimide precursor or the cured film obtained from the polyimide according to the underlayer film composition for image formation of the present invention are wettability to the silver fine particle dispersion by ultraviolet irradiation. There was a change. It is possible to form an image using a change in wettability difference.
On the other hand, the polyimide films obtained from PI-5 and PI-6 (Comparative Example 4 and Comparative Example 5) did not change wettability even when irradiated with ultraviolet rays.

[ポリマーブレンドについて]
<組成物の調製例1:画像形成用下層膜組成物の調製>
合成例12で調整したポリイミド(PI−15)の6wt%の溶液8.5gと合成例10で調製したポリイミド(PI−12)の6wt%の溶液1.5gを混ぜ合わせ、室温で6時間撹拌し、組成物Aを得た。
[About polymer blends]
<Composition Preparation Example 1: Preparation of image-forming underlayer film composition>
8.5 g of a 6 wt% solution of polyimide (PI-15) prepared in Synthesis Example 12 and 1.5 g of a 6 wt% solution of polyimide (PI-12) prepared in Synthesis Example 10 were mixed and stirred at room temperature for 6 hours. And composition A was obtained.

<組成物の調製例2:画像形成用下層膜組成物の調製>
合成例12で調整したポリイミド(PI−15)の6wt%の溶液9gと合成例11で調製したポリイミド(PI−13)の6wt%の溶液1gを混ぜ合わせ、室温で6時間撹拌し、組成物Bを得た。
<Composition Preparation Example 2: Preparation of image-forming underlayer film composition>
9 g of a 6 wt% solution of polyimide (PI-15) prepared in Synthesis Example 12 and 1 g of a 6 wt% solution of polyimide (PI-13) prepared in Synthesis Example 11 were mixed together and stirred at room temperature for 6 hours. B was obtained.

<組成物の調製例3:画像形成用下層膜組成物の調製>
合成例12で調整したポリイミド(PI−15)の6wt%の溶液8.5gと合成例11で調製したポリイミド(PI−13)の6wt%の溶液1.5gを混ぜ合わせ、室温で6時間撹拌し、組成物Cを得た。
<Composition Preparation Example 3: Preparation of image-forming underlayer film composition>
8.5 g of a 6 wt% solution of polyimide (PI-15) prepared in Synthesis Example 12 and 1.5 g of a 6 wt% solution of polyimide (PI-13) prepared in Synthesis Example 11 were mixed and stirred at room temperature for 6 hours. And composition C was obtained.

<組成物の調製例4:画像形成用下層膜組成物の調製>
合成例12で調整したポリイミド(PI−15)の6wt%の溶液8gと合成例11で調製したポリイミド(PI−13)の6wt%の溶液2gを混ぜ合わせ、室温で6時間撹拌し、組成物Dを得た。
<Composition Preparation Example 4: Preparation of image-forming underlayer film composition>
8 g of a 6 wt% solution of polyimide (PI-15) prepared in Synthesis Example 12 and 2 g of a 6 wt% solution of polyimide (PI-13) prepared in Synthesis Example 11 were mixed together and stirred at room temperature for 6 hours. D was obtained.

<組成物の調製例5:画像形成用下層膜組成物の調製>
合成例12で調整したポリイミド(PI−15)の6wt%の溶液7.5gと合成例11で調製したポリイミド(PI−13)の6wt%の溶液2.5gを混ぜ合わせ、室温で6時間撹拌し、組成物Eを得た。
<Composition Preparation Example 5: Preparation of image-forming underlayer film composition>
7.5 g of a 6 wt% solution of polyimide (PI-15) prepared in Synthesis Example 12 and 2.5 g of a 6 wt% solution of polyimide (PI-13) prepared in Synthesis Example 11 were mixed and stirred at room temperature for 6 hours. And composition E was obtained.

<組成物の調製例6:画像形成用下層膜組成物の調製>
合成例12で調整したポリイミド(PI−15)の6wt%の溶液7gと合成例11で調製したポリイミド(PI−13)の6wt%の溶液3gを混ぜ合わせ、室温で6時間撹拌し、組成物Fを得た。
<Composition Preparation Example 6: Preparation of image-forming underlayer film composition>
7 g of a 6 wt% solution of polyimide (PI-15) prepared in Synthesis Example 12 and 3 g of a 6 wt% solution of polyimide (PI-13) prepared in Synthesis Example 11 were mixed and stirred at room temperature for 6 hours to obtain a composition. F was obtained.

<組成物の調製例7:画像形成用下層膜組成物の調製>
合成例12で調整したポリイミド(PI−15)の6wt%の溶液9gと比較例合成例3で調製したポリイミド(PI−14)の6wt%の溶液1gを混ぜ合わせ、室温で6時間撹拌し、組成物Gを得た。
<Composition Preparation Example 7: Preparation of image-forming underlayer film composition>
9 g of a 6 wt% solution of polyimide (PI-15) prepared in Synthesis Example 12 and 1 g of a 6 wt% solution of polyimide (PI-14) prepared in Comparative Example Synthesis Example 3 were mixed and stirred at room temperature for 6 hours. Composition G was obtained.

<実施例20:電極のパターニング性>
ITO付きガラス基板(2.5cm角、厚み0.7mm)に、組成物の調整例1で調製した組成物Aを0.2μm孔フィルタを付けたシリンジで滴下し、スピンコート法により塗布した。その後大気下で、80℃のホットプレートで5分間加熱処理し、有機溶媒を揮発させ、次いで180℃のホットプレートで30分間焼成し、膜厚約450nmのポリイミド膜を得た。このポリイミド膜にフォトマスクを介して紫外線6J/cm2をパターン状に照射した。次いで、銀微粒子分散液を紫外線照射部に極微量滴下したところ、ポリイミド膜の紫外線照射部は親液性を示した。その後、180℃のホットプレートで60分間焼成し、膜厚50nmの銀電極を形成した。
この銀電極の顕微鏡写真を図2に示す。
<Example 20: Patterning property of electrode>
The composition A prepared in Preparation Example 1 of the composition was dropped onto a glass substrate with ITO (2.5 cm square, thickness 0.7 mm) with a syringe with a 0.2 μm pore filter and applied by spin coating. Thereafter, heat treatment was performed for 5 minutes on a hot plate at 80 ° C. in the atmosphere to volatilize the organic solvent, followed by baking for 30 minutes on a hot plate at 180 ° C. to obtain a polyimide film having a thickness of about 450 nm. The polyimide film was irradiated with ultraviolet rays 6 J / cm 2 in a pattern through a photomask. Subsequently, when a very small amount of the silver fine particle dispersion was dropped onto the ultraviolet irradiation part, the ultraviolet irradiation part of the polyimide film showed lyophilicity. Then, it baked for 60 minutes with a 180 degreeC hotplate, and formed the 50-nm-thick silver electrode.
A photomicrograph of this silver electrode is shown in FIG.

<実施例21乃至実施例27:電極のパターニング性>
組成物B乃至組成物F、及びPI−12乃至PI−13の溶液を用いた以外は、実施例20と同様の手順を用いてポリイミド膜を成膜し、銀微粒子分散液を用いて銀電極を形成した。全てのポリイミド膜で、電極間隔10μmの銀電極を形成することが可能であった。
<Example 21 to Example 27: Patterning property of electrode>
A polyimide film was formed using the same procedure as in Example 20 except that the solutions of Composition B to Composition F and PI-12 to PI-13 were used, and a silver electrode was prepared using a silver fine particle dispersion. Formed. It was possible to form silver electrodes with an electrode spacing of 10 μm with all polyimide films.

<比較例7>
組成物Gの溶液を用いた以外は実施例20と同様の手順を用いてポリイミド膜を成膜し、銀微粒子分散液を用いて銀電極の形成を試みた。組成物Gの溶液から得られたポリイミド膜は、紫外線照射部が撥水性を示し、目的の銀電極は形成できなかった(図3)。
<Comparative Example 7>
A polyimide film was formed using the same procedure as in Example 20 except that the composition G solution was used, and a silver electrode dispersion was attempted using a silver fine particle dispersion. The polyimide film obtained from the solution of the composition G showed water repellency at the ultraviolet irradiation part, and the target silver electrode could not be formed (FIG. 3).

<比較例8乃至比較例9>
PI−5乃至PI−6の溶液を用いた以外は実施例20と同様の手順を用いてポリイミド膜を成膜し、銀微粒子分散液を用いて銀電極の形成を試みた。PI−5乃至PI−6の溶液から得られたポリイミド膜は、紫外線照射の有る無しに関わらず電極が形成され、目的の銀電極は形成できなかった。
<Comparative Example 8 to Comparative Example 9>
A polyimide film was formed using the same procedure as in Example 20 except that a solution of PI-5 to PI-6 was used, and an attempt was made to form a silver electrode using a silver fine particle dispersion. In the polyimide film obtained from the PI-5 to PI-6 solution, an electrode was formed regardless of whether there was ultraviolet irradiation, and the target silver electrode could not be formed.

<実施例28:比抵抗の比誘電率の測定>
ITO付きガラス基板(2.5cm角、厚み0.7mm)に、組成液調整例1で調製した組成物Aを0.2μm孔フィルタを付けたシリンジで滴下し、スピンコート法により塗布した。その後大気中で、80℃のホットプレートで5分間加熱処理し、有機溶媒を揮発させた。次いで180℃のホットプレートで30分間焼成し、膜厚約450nmのポリイミド膜を得た。
次に真空蒸着装置を用いて、上記ポリイミド膜上に直径1.0mm乃至2.0mm、膜厚100nmのアルミニウム電極を積層させ、ポリイミド膜の上下に電極を設置したポリイミド膜の絶縁性評価用サンプルを作製した。なおこのときの真空蒸着条件は、室温、真空度3×10-3Pa以下、アルミニウムの蒸着速度0.5nm/sec以下とした。
該サンプルを用いて、室温、湿度45%±5%の大気雰囲気中で電流−電圧特性を測定した。電圧はアルミニウム電極側に正の電圧を0Vから80Vまで2Vステップ毎に3秒間の保持時間を設けながら印加し、電界1MV/cmのときの電流値から比抵抗を求めた。比抵抗と比誘電率の測定結果を表7に示す。
<Example 28: Measurement of relative permittivity of specific resistance>
Composition A prepared in Composition Solution Preparation Example 1 was dropped onto a glass substrate with ITO (2.5 cm square, thickness 0.7 mm) with a syringe with a 0.2 μm pore filter and applied by spin coating. Thereafter, the mixture was heat-treated in an air at 80 ° C. for 5 minutes to volatilize the organic solvent. Subsequently, it was baked on a hot plate at 180 ° C. for 30 minutes to obtain a polyimide film having a film thickness of about 450 nm.
Next, using a vacuum vapor deposition apparatus, an aluminum electrode having a diameter of 1.0 mm to 2.0 mm and a thickness of 100 nm is laminated on the polyimide film, and a sample for evaluating the insulating property of the polyimide film in which electrodes are placed on the upper and lower sides of the polyimide film. Was made. The vacuum deposition conditions at this time were room temperature, a degree of vacuum of 3 × 10 −3 Pa or less, and an aluminum deposition rate of 0.5 nm / sec or less.
Using the sample, current-voltage characteristics were measured in an air atmosphere at room temperature and humidity of 45% ± 5%. The voltage was applied to the aluminum electrode side from 0 V to 80 V with a holding time of 3 seconds every 2 V step, and the specific resistance was obtained from the current value when the electric field was 1 MV / cm. Table 7 shows the measurement results of the specific resistance and the relative dielectric constant.

<実施例29乃至実施例35>
組成物B乃至組成物F、及びPI−12乃至PI−13の溶液を用いた以外は、実施例28と同様の手順を用いてポリイミド膜を成膜し、比抵抗と比誘電率を測定した。
結果を表7に示す。
<Example 29 to Example 35>
A polyimide film was formed using the same procedure as in Example 28 except that the solutions of Composition B to Composition F and PI-12 to PI-13 were used, and the specific resistance and dielectric constant were measured. .
The results are shown in Table 7.

<実施例36:有機トランジスタ作製>
実施例20で得た銀電極上に、ポリ(3−ヘキシルチオフェン−2,5−ジイル)(メルク(株)より入手、以後、P3HTと略す)を2質量%の濃度でキシレンに溶解してP3HTの塗布溶液を調整し、該塗布溶液を前述のポリイミド膜上にスピンコート法を用い、酸素濃度0.5ppm以下の窒素雰囲気下で塗布した。
その後、溶媒を完全に揮発させるため、真空状態で100℃、60分間加熱処理し、半導体層を形成し、有機薄膜トランジスタを完成した。
上述の通り得られた有機薄膜トランジスタの電気特性を、ゲート電圧に対するドレイン電流の変化を測定することにより評価した。
詳細には、ソース・ドレイン電圧(VD)を−40Vとして、ゲート電圧(VG)を+30Vから−30Vまで、2Vステップで変化させ、電流が十分安定するまで1秒間電圧を保持した後の値をドレイン電流の測定値として記録した。なお測定には、半導体パラメータアナライザー HP4156C(アジレント・テクノロジー(株)製)を用いた。
ゲート電圧をマイナスに印加したとき、ドレイン電流の大幅な増加が見られており、P3HTはp型半導体として動作している事を確認した(図4)。
次に、ゲート電圧(VG)を+20Vから−30Vまで、10Vステップで変化させたときのドレイン電流とドレイン電圧の関係を測定し、有機トランジスタが正常に動作している事を確認した(図5)。
<Example 36: Preparation of organic transistor>
On the silver electrode obtained in Example 20, poly (3-hexylthiophene-2,5-diyl) (obtained from Merck Ltd., hereinafter abbreviated as P3HT) was dissolved in xylene at a concentration of 2% by mass. A coating solution of P3HT was prepared, and the coating solution was coated on the polyimide film described above using a spin coating method in a nitrogen atmosphere having an oxygen concentration of 0.5 ppm or less.
Then, in order to volatilize a solvent completely, it heat-processed for 100 minutes at 100 degreeC in the vacuum state, the semiconductor layer was formed, and the organic thin-film transistor was completed.
The electrical characteristics of the organic thin film transistor obtained as described above were evaluated by measuring the change of the drain current with respect to the gate voltage.
Specifically, after the source / drain voltage (V D ) is set to −40 V and the gate voltage (V G ) is changed from +30 V to −30 V in 2 V steps, the voltage is maintained for 1 second until the current is sufficiently stabilized. The value was recorded as the measured drain current. For the measurement, a semiconductor parameter analyzer HP4156C (manufactured by Agilent Technologies) was used.
When the gate voltage was applied negatively, a large increase in drain current was observed, confirming that P3HT was operating as a p-type semiconductor (FIG. 4).
Next, the relationship between the drain current and the drain voltage when the gate voltage (VG) was changed from + 20V to −30V in 10V steps was measured, and it was confirmed that the organic transistor was operating normally (FIG. 5). ).

一般に、飽和状態におけるドレイン電流IDは下記式で表すことができる。つまり、有機半導体の移動度μは、ドレイン電流IDの絶対値の平方根を縦軸に、ゲート電圧VGを横軸にプロットしたときのグラフの傾きから求めることができる。
D=WCμ(VG−VT2/2L
上記式において、Wはトランジスタのチャネル幅、Lはトランジスタのチャネル長、Cはゲート絶縁膜の静電容量、VTはトランジスタの閾値電圧、μは移動度である。P3HTの移動度μをこの式を元に計算したところ、2×10-3cm2/Vsとなった。また、閾値電圧は16V、オン状態とオフ状態の比(オン/オフ比)は102のオーダーであった(表8)。
なお、有機薄膜トランジスタ電気特性は、周辺の湿度および活性物質の影響を取り除くために、素子完成後、速やかに真空中(真空度5×10-2Pa以下)に移し、30分ほど放置させた後、真空度5×10-2Pa以下を保ったまま測定した。
In general, the drain current ID in the saturated state can be expressed by the following formula. That is, the mobility μ of the organic semiconductor can be obtained from the slope of the graph when the square root of the absolute value of the drain current I D is plotted on the vertical axis and the gate voltage V G is plotted on the horizontal axis.
I D = WCμ (V G −V T ) 2 / 2L
In the above equation, W is the channel width of the transistor, L is the channel length of the transistor, C is the capacitance of the gate insulating film, V T is the threshold voltage of the transistor, and μ is the mobility. When the mobility μ of P3HT was calculated based on this formula, it was 2 × 10 −3 cm 2 / Vs. The threshold voltage was 16 V, and the ratio between the on state and the off state (on / off ratio) was on the order of 10 2 (Table 8).
The organic thin-film transistor electrical characteristics were quickly transferred to a vacuum (vacuum degree of 5 × 10 −2 Pa or less) after the device was completed in order to remove the influence of ambient humidity and active substances, and left for about 30 minutes. The measurement was carried out while maintaining a vacuum of 5 × 10 −2 Pa or less.

<実施例37:有機トランジスタ>
実施例21で得た銀電極を用いた以外は、実施例36と同様の手順を用いて有機トランジスタを作製した。
<Example 37: Organic transistor>
An organic transistor was produced using the same procedure as in Example 36 except that the silver electrode obtained in Example 21 was used.

<実施例38:有機トランジスタ>
実施例27で得た銀電極を用いた以外は、実施例36と同様の手順を用いて有機トランジスタを作製した。
<Example 38: Organic transistor>
An organic transistor was produced using the same procedure as in Example 36 except that the silver electrode obtained in Example 27 was used.

本発明のポリイミドは、親疎水の差を用いた電極のパターニングが可能であり、チャネル長10μmを持つ有機トランジスタを作製可能であることが示された。
さらに、1015Ωcm以上の高い絶縁性と3.0以上の比誘電率を示しており、画像形成用下層膜としてのみならず、有機トランジスタ用ゲート絶縁膜としても高い性能を有していることが示された。
It has been shown that the polyimide of the present invention can be subjected to electrode patterning using a difference in hydrophilicity / hydrophobicity and can produce an organic transistor having a channel length of 10 μm.
Furthermore, it has a high insulating property of 10 15 Ωcm or more and a relative dielectric constant of 3.0 or more, and has high performance not only as a lower layer film for image formation but also as a gate insulating film for organic transistors. It has been shown.

以上の結果より、フルオロアルキル基を含有するポリイミド前駆体及び/又は該ポリイミド前駆体より得られるポリイミドを含む本発明の画像形成用下層膜組成物から得られる硬化膜は、撥水性が極めて高く、比誘電率が高いためゲート絶縁膜として用いた場合も有用であることが示された。   From the above results, the cured film obtained from the lower layer film composition for image formation of the present invention containing a polyimide precursor containing a fluoroalkyl group and / or a polyimide obtained from the polyimide precursor has extremely high water repellency, It was shown that it is useful when used as a gate insulating film because of its high relative dielectric constant.

本発明の画像形用下層膜を有する有機トランジスタの構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the organic transistor which has the lower film for image forms of this invention. 実施例20で得た銀微粒子分散液のパターニング例Example of patterning of silver fine particle dispersion obtained in Example 20 比較例7で得た銀微粒子分散液のパターニング例Patterning example of silver fine particle dispersion obtained in Comparative Example 7 実施例36において、組成物Aから得られたポリイミド膜を画像形成用下層兼ゲート絶縁膜とした有機トランジスタのドレイン電流(Drain Current)とゲート電圧(Gate Voltage)の関係を示すグラフである。In Example 36, it is a graph which shows the relationship between the drain current (Drain Current) and gate voltage (Gate Voltage) of the organic transistor which made the polyimide film obtained from the composition A the lower layer and gate insulating film for image formation. 実施例36において、組成物Aから得られたポリイミド膜を画像形成用下層兼ゲート絶縁膜とした有機トランジスタのドレイン電流(Drain Current)とドレイン電圧(Drain Voltage)の関係を示すグラフである。In Example 36, it is a graph which shows the relationship between the drain current (Drain Current) and drain voltage (Drain Voltage) of the organic transistor which used the polyimide film obtained from the composition A as the image formation lower layer and gate insulating film.

符号の説明Explanation of symbols


1 ・・・・・・・・ 基板
2 ・・・・・・・・ ゲート電極
3 ・・・・・・・・ 電極形成用下層膜兼ゲート絶縁膜
4 ・・・・・・・・ ソース電極、ドレイン電極
5 ・・・・・・・・ 半導体層

DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Gate electrode 3 ... Electrode forming lower layer film and gate insulating film 4 ... Source electrode , Drain electrode 5... Semiconductor layer

Claims (5)

下記式(1)及び式(1a)で表される構造単位を含むポリイミド前駆体及び該ポリイミド前駆体を脱水閉環して得られるポリイミドからなる群より選ばれる少なくとも一種の化合物を含む画像形成用下層膜組成物を用いて得られる有機トランジスタ用ゲート絶縁膜
(式中、Aは4価の有機基を表し、Bは下記式(2)で表される少なくとも1種の2価の有機基を表し、Bは2価の有機基を表し、R、R、R1a、R2aはそれぞれ独立して水素原子または一価の有機基を表し、nは式(1)で表される構造単位の合計モル数であり、mは式(1a)で表される構造単位の合計モル数であって、nとmはそれぞれ正の整数を表し且つ0.01≦n/(n+m)≦0.3を満たす。)
(式中、Xは、単結合、−O−、−COO−、−OCO−、−CONH−、−CHO−を表し、Xは、炭素原子数3乃至18の2価の有機基を表し、Rは炭素原子数2乃至12のパーフルオロアルキル基を表す。)
At least one compound including images forming a polyimide precursor and the polyimide precursor selected from the group consisting of polyimide obtained by cyclodehydration including the following equation (1) and the structural unit represented by the formula (1a) A gate insulating film for an organic transistor obtained by using the underlayer film composition for an organic transistor .
(In the formula, A represents a tetravalent organic group, B 1 represents at least one divalent organic group represented by the following formula (2), B 2 represents a divalent organic group, R 1 , R 2 , R 1a and R 2a each independently represents a hydrogen atom or a monovalent organic group, n is the total number of moles of the structural unit represented by the formula (1), and m is the formula (1a ), And n and m each represent a positive integer and satisfy 0.01 ≦ n / (n + m) ≦ 0.3.)
(In the formula, X 1 represents a single bond, —O—, —COO—, —OCO—, —CONH—, —CH 2 O—, and X 2 represents a divalent organic compound having 3 to 18 carbon atoms. And R 3 represents a perfluoroalkyl group having 2 to 12 carbon atoms.)
前記式(1a)中、Bが下記式(3)乃至(5)からなる群より選択される少なくとも一種の基である、請求項1に記載の有機トランジスタ用ゲート絶縁膜
(式中、Yは、それぞれ独立して、単結合、エーテル結合、エステル結合、チオエーテル結合、アミド結合、炭素原子数1乃至3の分岐構造を有していても良いアルキレン基又は炭素原子数1乃至3の分岐構造を有していても良いアルキレンジオキソ基を表し、Yは、単結合、エーテル結合、エステル結合、チオエーテル結合、アミド結合を表し、Rはそれぞれ独立して、水素原子、メチル基、エチル基、トリフルオロメチル基を表し、Rは、水素原子、メチル基、トリフルオロメチル基を表し、Rは、メチレン基、エチレン基を表し、jはそれぞれ独立して0又は1を表す。)
2. The gate insulating film for an organic transistor according to claim 1, wherein in the formula (1a), B 2 is at least one group selected from the group consisting of the following formulas (3) to (5).
(In the formula, each Y 1 independently represents a single bond, an ether bond, an ester bond, a thioether bond, an amide bond, an alkylene group or a carbon atom number which may have a branched structure having 1 to 3 carbon atoms. Represents an alkylenedioxo group which may have 1 to 3 branched structures, Y 2 represents a single bond, an ether bond, an ester bond, a thioether bond, an amide bond, and R 4 each independently represents hydrogen Represents an atom, a methyl group, an ethyl group, or a trifluoromethyl group; R 5 represents a hydrogen atom, a methyl group, or a trifluoromethyl group; R 6 represents a methylene group or an ethylene group; Represents 0 or 1)
前記式(1)及び式(1a)中、Aで表される4価の有機基が下記式(6)乃至(11)からなる群より選択される少なくとも一種の基である、請求項1又は請求項2に記載の有機トランジスタ用ゲート絶縁膜
(式中、R、R、R、R10、はそれぞれ独立して水素原子、フッ素原子または炭素原子数1乃至4の炭化水素基を表す。)
In the formula (1) and the formula (1a), the tetravalent organic group represented by A is at least one group selected from the group consisting of the following formulas (6) to (11). The gate insulating film for organic transistors according to claim 2.
(In the formula, R 7 , R 8 , R 9 and R 10 each independently represents a hydrogen atom, a fluorine atom or a hydrocarbon group having 1 to 4 carbon atoms.)
前記式(1)及び式(1a)で表される構造単位を含むポリイミド前駆体及び該ポリイミド前駆体を脱水閉環して得られるポリイミドが、下記式(16)で表されるテトラカルボン酸二無水物と、下記式(17)及び(18)で表されるジアミン成分を反応させて得られるポリイミド前駆体及びポリイミドである、請求項1乃至請求項3のうち何れか一項に記載の有機トランジスタ用ゲート絶縁膜
(式中、A、B及びBは前記式(1)及び式(1a)における定義と同義である。)
The polyimide precursor containing the structural unit represented by the formula (1) and the formula (1a) and the polyimide obtained by dehydrating and ring-closing the polyimide precursor are tetracarboxylic dianhydrides represented by the following formula (16) The organic transistor as described in any one of Claims 1 thru | or 3 which is the polyimide precursor and polyimide which are obtained by making a product react with the diamine component represented by following formula (17) and (18) Gate insulation film .
(In the formula, A, B 1 and B 2 have the same definitions as those in the formula (1) and the formula (1a)).
請求項1乃至請求項4のいずれか1項に記載の有機トランジスタ用ゲート絶縁膜を用いて得られる有機トランジスタ。 The organic transistor obtained using the gate insulating film for organic transistors of any one of Claim 1 thru | or 4 .
JP2010502837A 2008-03-10 2009-03-10 Underlayer film composition for image formation Active JP5445788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010502837A JP5445788B2 (en) 2008-03-10 2009-03-10 Underlayer film composition for image formation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008059534 2008-03-10
JP2008059534 2008-03-10
JP2010502837A JP5445788B2 (en) 2008-03-10 2009-03-10 Underlayer film composition for image formation
PCT/JP2009/054561 WO2009113549A1 (en) 2008-03-10 2009-03-10 Composition for forming underlayer film for image formation

Publications (2)

Publication Number Publication Date
JPWO2009113549A1 JPWO2009113549A1 (en) 2011-07-21
JP5445788B2 true JP5445788B2 (en) 2014-03-19

Family

ID=41065217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010502837A Active JP5445788B2 (en) 2008-03-10 2009-03-10 Underlayer film composition for image formation

Country Status (5)

Country Link
JP (1) JP5445788B2 (en)
KR (1) KR101547588B1 (en)
CN (3) CN101970537A (en)
TW (1) TWI461461B (en)
WO (1) WO2009113549A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101674645B1 (en) * 2008-10-23 2016-11-09 닛산 가가쿠 고교 가부시키 가이샤 Underlayer Film for Image Formation
JP5678492B2 (en) * 2010-06-30 2015-03-04 日産化学工業株式会社 Pattern image forming method
JP5893040B2 (en) * 2010-11-01 2016-03-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Polyimide as dielectric
KR20200105976A (en) * 2012-11-16 2020-09-09 닛산 가가쿠 가부시키가이샤 Polyimide resin film and electronic-device substrate comprising polyimide resin film
JPWO2014097993A1 (en) * 2012-12-18 2017-01-12 日産化学工業株式会社 Composition for forming underlayer of self-assembled film containing polycyclic aromatic vinyl compound
CN103227190B (en) * 2013-04-28 2015-06-10 京东方科技集团股份有限公司 Pixel definition layer, preparation method thereof, OLED substrate and display device
JP6248506B2 (en) * 2013-09-25 2017-12-20 Jnc株式会社 Composition for forming cured film
CN105219080A (en) * 2014-06-24 2016-01-06 Tcl集团股份有限公司 Organic/Inorganic Composite Nanomaterials and its production and use and TFT
JP6926939B2 (en) * 2017-10-23 2021-08-25 東京エレクトロン株式会社 Manufacturing method of semiconductor devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225522A (en) * 1989-02-27 1990-09-07 Toray Ind Inc Fluorinated polyimide and polyimide acid
JP2006021491A (en) * 2004-07-09 2006-01-26 Ricoh Co Ltd Laminated structure, optics using laminated structure, display element, arithmetic element and method for manufacturing these elements

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186985A (en) * 1991-04-04 1993-02-16 E. I. Du Pont De Nemours And Company Liquid crystal displays of high tilt bias angles
JP3978754B2 (en) * 1997-12-29 2007-09-19 チッソ株式会社 Polyamic acid composition, liquid crystal alignment film, and liquid crystal display element
EP1411088B1 (en) * 2001-07-26 2013-08-21 Nissan Chemical Industries, Ltd. Polyamic acid resin composition
JPWO2005091373A1 (en) * 2004-03-22 2008-02-07 ローム株式会社 Organic semiconductor device and organic EL display device using the same
JP4678574B2 (en) * 2004-08-23 2011-04-27 株式会社リコー Multilayer structure, electronic element using the multilayer structure, electronic element array, and display device
CN101116187B (en) * 2004-12-06 2010-05-26 株式会社半导体能源研究所 Organic field-effect transistor and semiconductor device including the same
CN101051643A (en) * 2006-04-03 2007-10-10 精工爱普生株式会社 Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225522A (en) * 1989-02-27 1990-09-07 Toray Ind Inc Fluorinated polyimide and polyimide acid
JP2006021491A (en) * 2004-07-09 2006-01-26 Ricoh Co Ltd Laminated structure, optics using laminated structure, display element, arithmetic element and method for manufacturing these elements

Also Published As

Publication number Publication date
TW201002762A (en) 2010-01-16
CN105542164A (en) 2016-05-04
KR20100125396A (en) 2010-11-30
JPWO2009113549A1 (en) 2011-07-21
WO2009113549A1 (en) 2009-09-17
CN103788653A (en) 2014-05-14
TWI461461B (en) 2014-11-21
CN101970537A (en) 2011-02-09
KR101547588B1 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5321839B2 (en) Polyimide precursor, polyimide, and image-forming underlayer coating solution
JP5445788B2 (en) Underlayer film composition for image formation
JP5212596B2 (en) Organic transistor
EP1898451B1 (en) Method for producing an electrode patterning layer comprising polyamic acid or polyimide
JP5534229B2 (en) Gate insulating film forming composition for thin film transistor
JP5196194B2 (en) Gate insulating film, forming agent thereof, manufacturing method, thin film transistor using the same, and manufacturing method thereof
US10573834B2 (en) Coating liquid for gate insulating film, gate insulating film and organic transistor
JP5532259B2 (en) Underlayer film for image formation
JPWO2010047346A6 (en) Underlayer film for image formation
JP5212600B2 (en) Gate insulating film and organic transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131210

R151 Written notification of patent or utility model registration

Ref document number: 5445788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350