WO2010047341A1 - スクアリリウム化合物の金属錯体およびそれを含有する光記録媒体 - Google Patents
スクアリリウム化合物の金属錯体およびそれを含有する光記録媒体 Download PDFInfo
- Publication number
- WO2010047341A1 WO2010047341A1 PCT/JP2009/068094 JP2009068094W WO2010047341A1 WO 2010047341 A1 WO2010047341 A1 WO 2010047341A1 JP 2009068094 W JP2009068094 W JP 2009068094W WO 2010047341 A1 WO2010047341 A1 WO 2010047341A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- substituent
- compound
- metal complex
- ring
- Prior art date
Links
- 0 *C(C(*1N(*)NC(*)=O)[O-])C1[O-] Chemical compound *C(C(*1N(*)NC(*)=O)[O-])C1[O-] 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/246—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B57/00—Other synthetic dyes of known constitution
- C09B57/007—Squaraine dyes
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/246—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
- G11B7/2463—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes azulene
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/26—Apparatus or processes specially adapted for the manufacture of record carriers
Definitions
- the present invention relates to a metal complex of a squarylium compound used for an optical recording medium or the like.
- an optical recording medium capable of performing ultra-high density recording using a technique for increasing the numerical aperture NA of the objective lens, a technique for reducing the laser wavelength ⁇ , and the like has been developed.
- an optical recording medium having the same size as a DVD and a capacity of at least 23 GB is required.
- an optical recording medium that records higher density information by using a 405 nm blue-violet laser, setting the NA of the objective lens to 0.85, and reducing the laser spot diameter, so-called Blu-ray Disc (BD) was developed.
- BD Blu-ray Disc
- the write-once Blu-ray Disc is required to have various excellent characteristics in terms of recording sensitivity, modulation degree, jitter (jitter), error rate, etc., in addition to the required performance that enables recording and playback. .
- those properties in BD-R using conventional organic dyes are not sufficient.
- a metal complex of a squarylium compound having a pyrazole structure is useful as a dye used for a write-once digital versatile disk (DVD-R) (Patent Document 1).
- the dye is suitable for recording with a laser beam of about 650 nm used for DVD-R recording, but is not suitable for recording with a laser beam of 405 nm.
- An object of the present invention is to provide a metal complex of a squarylium compound used for an optical recording medium having a highly sensitive photoresponsiveness to blue-violet laser light.
- R 1 represents an aryl group which may have a substituent, a heterocyclic group which may have a substituent, or NR 4 R 5 (wherein R 4 and R 5 are the same or Differently, a hydrogen atom, an alkyl group which may have a substituent, an aralkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent Represents an alicyclic hydrocarbon group or a heterocyclic group which may have a substituent), and R 2 may have an alkyl group which may have a substituent or a substituent.
- R 3 represents a hydrogen atom, an alkyl group which may have a substituent, An aralkyl group which may have a substituent, an aryl group which may have a substituent, an alicyclic hydrocarbon group which may have a substituent, or a heterocycle which may have a substituent
- R 9 represents a hydrogen atom, an alkyl group which may have a substituent, an aralkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
- R 10 represents a hydrogen atom, a hydroxyl group, a carboxyl group, a halogen atom, a nitro group, a cyano group,
- R 10 may have an alkyl group which may have a substituent, an aralkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
- R 1 is NR 4 R 5 (wherein R 4 and R 5 are as defined above).
- R 1 is NR 4 R 5 (wherein, R 4 and R 5 are each the same meanings as defined above) and, R 4 and R 5 are the same or different, have a substituent
- the metal complex of the squarylium compound according to [1] which may be an aryl group or a heterocyclic group which may have a substituent.
- the compound represented by formula (I) is referred to as compound (I).
- the alkyl group include a linear or branched alkyl group having 1 to 20 carbon atoms, specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group.
- Examples of the aralkyl group include an aralkyl group having 7 to 15 carbon atoms, and specific examples include a benzyl group, a phenethyl group, a phenylpropyl group, and a naphthylmethyl group.
- Examples of the aryl group include aryl groups having 6 to 14 carbon atoms, and specific examples include a phenyl group, a naphthyl group, an anthryl group, and an azulenyl group.
- Examples of the alicyclic hydrocarbon in the alicyclic hydrocarbon group include, for example, a cycloalkane having 3 to 8 carbon atoms, a cycloalkene having 3 to 8 carbon atoms, and a bicyclic or tricyclic condensed 3- to 8-membered ring. And alicyclic hydrocarbons.
- Specific examples of the cycloalkane having 3 to 8 carbon atoms include, for example, cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane and the like.
- C3-C8 cycloalkene examples include, for example, cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene and the like.
- Specific examples of the bicyclic or tricyclic alicyclic hydrocarbon condensed with a 3- to 8-membered ring include dihydropentalene, dihydroindene, tetrahydronaphthalene, hexahydrofluorene and the like.
- heterocyclic ring in the heterocyclic group examples include an aromatic heterocyclic ring and an alicyclic heterocyclic ring.
- aromatic heterocyclic ring for example, a 5- or 6-membered monocyclic aromatic heterocyclic ring containing at least one atom selected from a nitrogen atom, an oxygen atom and a sulfur atom is condensed.
- bicyclic or tricyclic condensed aromatic heterocycles containing at least one atom selected from a nitrogen atom, an oxygen atom, and a sulfur atom.
- Specific examples include a pyridine ring, a pyrazine ring, and a pyrimidine ring.
- alicyclic heterocycle for example, a 5- to 8-membered monocyclic alicyclic heterocycle containing at least one atom selected from a nitrogen atom, an oxygen atom and a sulfur atom is condensed.
- a bicyclic or tricyclic condensed alicyclic heterocyclic ring containing at least one atom selected from a nitrogen atom, an oxygen atom and a sulfur atom specifically, a pyrrolidine ring, a piperidine ring
- Examples include piperazine ring, morpholine ring, thiomorpholine ring, homopiperidine ring, homopiperazine ring, tetrahydropyridine ring, tetrahydroquinoline ring, tetrahydroisoquinoline ring, tetrahydrofuran ring, tetrahydropyran ring, dihydrobenzofuran ring, indoline ring, tetrahydrocarbazole ring, etc. It is done
- an aromatic heterocyclic ring in an aromatic heterocyclic group the same thing as the aromatic heterocyclic ring illustrated above is mentioned, for example.
- the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- the substituent of the amino group include one or two substituents, specifically, an alkyl group, an aralkyl group, an aryl group, an alicyclic hydrocarbon group, a heterocyclic group, and the like.
- an alkyl group, an aralkyl group, an aryl group, an alicyclic hydrocarbon group, and a heterocyclic group have the same meanings as described above.
- each of the substituents may be the same or different.
- substituent of the alkyl group examples include the same or different 1 to 5 substituents, specifically, hydroxyl group, carboxyl group, halogen atom, nitro group, cyano group, carbamoyl group, alkoxyl group, alkoxyalkoxyl.
- substituents specifically, hydroxyl group, carboxyl group, halogen atom, nitro group, cyano group, carbamoyl group, alkoxyl group, alkoxyalkoxyl.
- a halogen atom and a heterocyclic group are as defined above.
- the alkyl moiety of the alkoxyl group, alkanoyl group, alkylcarbonyloxy group and alkoxycarbonyl group has the same meaning as the above alkyl group.
- the two alkoxy moieties of the alkoxyalkoxyl group have the same meaning as the above alkoxyl group, respectively.
- the aryl part of the aroyl group, aryloxy group, arylcarbonyloxy group and aryloxycarbonyl group has the same meaning as the above aryl group.
- substituents for the aralkyl group, aryl group and alicyclic hydrocarbon group include the same or different 1 to 5 substituents, specifically, a hydroxyl group, a carboxyl group, a halogen atom, a nitro group, a cyano group.
- carbamoyl group optionally substituted alkyl group, optionally substituted alkoxyl group, aralkyl group, alkanoyl group, alkylcarbonyloxy group, alkoxycarbonyl group, aryl group, aroyl group, Examples thereof include an aryloxy group, an arylcarbonyloxy group, an aryloxycarbonyl group, an alicyclic hydrocarbon group, a heterocyclic group, and an amino group which may have a substituent.
- halogen atom optionally substituted alkyl group, alkoxyl group, aralkyl group, alkanoyl group, alkylcarbonyloxy group, alkoxycarbonyl group, aryl group, aroyl group, aryloxy group, arylcarbonyloxy group ,
- An aryloxycarbonyl group, an alicyclic hydrocarbon group, a heterocyclic group and an amino group which may have a substituent are as defined above.
- substituent of an alkoxyl group the same thing as the functional group illustrated above as a substituent of an alkyl group is mentioned, for example.
- Examples of the substituent of the aromatic heterocyclic group include the same or different 1 to 5 substituents, specifically, a hydroxyl group, an oxo group, a carboxyl group, a halogen atom, a nitro group, a cyano group, and a carbamoyl group.
- Aryl group optionally having a group, aroyl group, aryloxy group, arylcarbonyloxy group, aryloxycarbonyl group, alicyclic hydrocarbon group optionally having substituent (s), heterocyclic group, substituent And an amino group which may have.
- a halogen atom an alkyl group which may have a substituent, an alkoxyl group which may have a substituent, an aralkyl group which may have a substituent, an alkanoyl group, an alkylcarbonyloxy group, An alkoxycarbonyl group, an optionally substituted aryl group, an aroyl group, an aryloxy group, an arylcarbonyloxy group, an aryloxycarbonyl group, an optionally substituted alicyclic hydrocarbon group, a heterocycle
- the cyclic group and the amino group which may have a substituent are as defined above.
- R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 or R 10 is a heterocyclic group which may have a substituent Examples thereof include the same functional groups as those exemplified above as the substituent of the aromatic heterocyclic group.
- Examples of the substituent of the heterocyclic group when R 1 is an optionally substituted heterocyclic group include, for example, 1 to 5 substituents that are the same or different, specifically, a hydroxyl group, An oxo group, a carboxyl group, a halogen atom, a nitro group, a cyano group, a carbamoyl group, an alkyl group which may have a substituent, an alkoxyl group which may have a substituent, or a substituent Good aralkyl group, alkanoyl group, alkylcarbonyloxy group, alkoxycarbonyl group, aryl group optionally having substituent, aroyl group, aryloxy group, arylcarbonyloxy group, aryloxycarbonyl group, having substituent Examples thereof include an alicyclic hydrocarbon group which may be present, a heterocyclic group which may have a substituent, and an amino group which may have a substituent.
- a halogen atom an alkyl group which may have a substituent, an alkoxyl group which may have a substituent, an aralkyl group which may have a substituent, an alkanoyl group, an alkylcarbonyloxy group, An alkoxycarbonyl group, an aryl group which may have a substituent, an aroyl group, an aryloxy group, an arylcarbonyloxy group, an aryloxycarbonyl group, an alicyclic hydrocarbon group which may have a substituent, and
- the amino group which may have a substituent is as defined above.
- substituent of the heterocyclic group in the heterocyclic group which may have a substituent include the same functional groups exemplified above as the substituent of the aromatic heterocyclic group.
- Examples of the metal in the metal complex include aluminum, ruthenium, osmium, iron, platinum, zinc, beryllium, copper, nickel, chromium, cobalt, manganese, iridium, vanadium, titanium, etc., among which nickel, cobalt, aluminum, Copper, zinc and iron are preferred.
- R 1 is preferably NR 4 R 5 (wherein R 4 and R 5 are as defined above) or an aromatic heterocyclic group which may have a substituent.
- R 1 is NR 4 R 5
- R 4 and R 5 are the same or different and are an aryl group which may have a substituent or a heterocyclic group which may have a substituent. Is preferred.
- R 4 or R 5 is an aryl group which may have a substituent
- the aryl group is preferably a phenyl group
- R 4 or R 5 may have a substituent.
- the heterocyclic ring in the heterocyclic group is preferably a pyridine ring.
- the heterocyclic ring in the heterocyclic group is preferably an aromatic heterocyclic ring containing at least one nitrogen atom.
- the aromatic heterocycle containing at least one nitrogen atom include those containing at least a nitrogen atom among the aromatic heterocycles exemplified above, and more specifically, for example, Pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, quinoline ring, isoquinoline ring, phthalazine ring, quinazoline ring, quinoxaline ring, naphthyridine ring, cinnoline ring, pyrrole ring, pyrazole ring, imidazole ring, triazole ring, triazine ring, tetrazole Ring, thiazole ring, oxazole ring, isoxazole ring, indole ring, isoin
- R 9 has an alkyl group which may have a substituent, an aralkyl group which may have a substituent, and a substituent. It is preferably an aryl group, an alicyclic hydrocarbon group which may have a substituent, or a heterocyclic group which may have a substituent.
- R 10 has an alkyl group which may have a substituent, an aralkyl group which may have a substituent, and a substituent.
- R 2 is preferably an aryl group which may have a substituent or a heterocyclic group which may have a substituent.
- R 1 is a group represented by the formula (X)
- R 2 is more preferably an aryl group which may have a substituent.
- R 2 is YR 6 (wherein R 6 is as defined above), Y is preferably an oxygen atom.
- R 3 is preferably a hydrogen atom.
- R 1 , R 2 and R 3 are as defined above, and W represents a chlorine atom, a bromine atom, an alkoxyl group having 1 to 4 carbon atoms, etc.
- alkoxyl group having 1 to 4 carbon atoms include a methoxy group, an ethoxy group, and a butoxy group.
- R 1 is NR 4 R 5
- R 4 and R 5 have the same meanings as described above
- Compound (V) can be obtained as a commercial product or can be obtained by publicly known methods, for example, the Chemical Society of Japan, “Experimental Chemistry Course (Vol. 20) Synthesis and Reaction of Organic Compounds II, Synthesis of Diazo, Azo and Azoxy Compounds” "First Edition, Maruzen Co., Ltd., 1956, p. 347-389, edited by The Chemical Society of Japan, “New Experimental Chemistry Course (Vol. 14) Synthesis and Reaction of Organic Compounds III Nitrogen-containing Compounds”, 2nd Edition, Maruzen Co., Ltd., 1978, p. Saul Patai, “The Chemistry of the hydrazo, azo, and azoxy group (Volume 1)”, John Wiley & Sons, 1975, p.
- Compound (VII) can be obtained by a known method, for example, Journal of Organic Chemistry, 1977, Vol. 42, No. 7, p. 1126-1130, Dyes and Pigments, 2001, Vol. 49, p. 161 to 179 and the like. Specifically, for example, compound (II) and 1 to 2 moles of compound (III) are optionally added in the presence of 1 to 2 moles of acid or 1 to 2 moles of base in a solvent. It can be obtained by reacting at 0 to 100 ° C. for 1 to 20 hours.
- the solvent examples include halogenated hydrocarbon solvents such as chloroform, dichloromethane, 1,2-dichloroethane, ether solvents such as diethyl ether and tert-butyl methyl ether, aromatic hydrocarbon solvents such as toluene and benzene, Examples thereof include alcohol solvents such as methanol, ethanol and propanol, tetrahydrofuran, ethyl acetate, dimethylformamide, dimethyl sulfoxide (DMSO) and the like.
- halogenated hydrocarbon solvents such as chloroform, dichloromethane, 1,2-dichloroethane
- ether solvents such as diethyl ether and tert-butyl methyl ether
- aromatic hydrocarbon solvents such as toluene and benzene
- alcohol solvents such as methanol, ethanol and propanol, tetrahydrofuran, ethyl acetate, dimethylformamide, di
- Examples of the acid include aluminum halides such as aluminum chloride and aluminum bromide, ferric halides such as ferric fluoride, ferric chloride and ferric bromide, and iron oxides such as ferric oxide. , Antimony halides such as antimony fluoride and antimony chloride, zinc chloride, ferric sulfate, trifluoromethanesulfonic acid, and fluorosulfonic acid.
- Examples of the base include organic bases such as quinoline, triethylamine and pyridine, or potassium carbonate, potassium hydrogen carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide, sodium hydroxide and the like.
- Reaction formula 2 Compound (VI) is obtained, for example, by treating compound (VII) in 40 to 90% by volume of acetic acid aqueous solution at 40 to 120 ° C. for 0.5 to 7 hours, or in 1 to 10% by weight of potassium carbonate aqueous solution. It can be obtained by treating at 40 to 120 ° C. for 0.5 to 20 hours.
- Reaction formula 3 Compound (I) can be obtained, for example, by reacting compound (VI) with 1 to 5 moles of compound (V) in a solvent at 40 to 100 ° C. for 1 to 100 hours.
- the solvent examples include alcohol solvents such as ethanol, propanol, 2-propanol, butanol and octanol, or a mixed solvent of the alcohol solvent (20% by volume or more) and benzene, toluene or xylene, acetonitrile, and the like. .
- the compound (I) may be purified by methods usually used in organic synthetic chemistry (various chromatographic methods, recrystallization methods, distillation methods, etc.).
- Compound (IV) can be produced and produced according to a known method, for example, the method described in JP-A No. 2002-131530. Specifically, for example, squalic acid and compound (III) in which R 1 is NR 4 R 5 (wherein R 4 and R 5 are as defined above) in a solvent, 80 It can be obtained by reacting at ⁇ 150 ° C. for 1 to 100 hours.
- examples of the solvent include alcohol solvents such as ethanol, propanol, 2-propanol, butanol and octanol, or a mixed solvent of the alcohol solvent (20% by volume or more) and benzene, toluene or xylene. It is done.
- R 1 is NR 4 R 5 (wherein R 4 and R 5 have the same meanings as described above), and the amount used is 2 to 5 moles relative to squaric acid. Is preferred.
- the compound (IV) may be purified by methods usually used in organic synthetic chemistry (various chromatographic methods, recrystallization methods, distillation methods, etc.).
- the metal complex of compound (I) can be produced according to a known method, for example, the method described in WO 02/050190. Specifically, the organometallic compound or metal salt and the compound (I) are added in an amount of 0.1 to 30 at a temperature of 25 to 120 ° C. in a solvent, if necessary, in the presence of 1 to 5 moles of acetic acid.
- a metal complex of compound (I) can be produced by reacting for a period of time.
- the amount of compound (I) used is preferably 0.5 to 5 times the molar amount of the organometallic compound or metal salt.
- the organometallic compound include aluminum tris (acetylacetonate), aluminum tris (ethylacetoacetate), aluminum isopropoxide, aluminum sec-butoxide, aluminum ethoxide, copper acetylacetonate, zinc acetylacetonate, iron tris. (2,4-pentanedionate), tris (carbonate) cobalt (III) sodium salt, and the like.
- Examples of the metal salt include aluminum chloride, copper chloride, copper acetate, nickel acetate, nickel chloride, cobalt acetate, cobalt chloride, and hydrates thereof.
- Examples of the solvent include alcohol solvents such as methanol, ethanol, propanol, 2-propanol, butanol and isobutanol, halogen solvents such as chloroform and dichloromethane, aromatic solvents such as benzene, toluene and xylene, tetrahydrofuran and methyl.
- Examples include ether solvents such as -tert-butyl ether, ester solvents such as ethyl acetate, ketone solvents such as acetone and methyl ethyl ketone, and mixed solvents thereof.
- the metal complex of compound (I) may be purified by methods usually used in organic synthetic chemistry (various column chromatography methods, recrystallization methods, washing with a solvent, etc.). Specific examples of compound (I) are illustrated below. In the table, Me represents a methyl group, Et represents an ethyl group, i Pr represents an isopropyl group, t Bu represents a tert-butyl group, and i Bu represents an isobutyl group.
- the metal complex of the compound (I) of the present invention comprises a dye for optical recording media, an ultraviolet absorber, a two-photon absorption dye as a three-dimensional recording material, and a sensitizing dye for short wavelength laser (for example, blue-violet laser). Can be used as etc.
- the metal complex of compound (I) is suitable as a dye for an optical recording medium because it has excellent light resistance, excellent weather resistance, excellent moisture and heat resistance, excellent coating properties, and excellent solubility.
- those having particularly excellent light resistance include, for example, the following (1) and (2).
- R 1 is NR 4 R 5 , R 4 and R 5 are the same or different and each is a phenyl group which may have a substituent, and R 2 is a substituent
- R 1 is a group represented by Formula (X)
- R 2 is a phenyl group which may have a substituent
- R 3 is a hydrogen atom
- R 9 is an optionally substituted alkyl group, an optionally substituted phenyl group, or an optionally substituted pyrimidinyl group
- R 10 is A cobalt or nickel complex of the compound (I) which is an alkyl group which may have a substituent.
- the alkyl group which may have a substituent is as defined above.
- substituent of the phenyl group include the same functional groups exemplified above as the substituent of the aryl group.
- substituent of the pyridyl group and the pyrimidinyl group include an aromatic heterocyclic group.
- substituent include the same functional groups exemplified above.
- the optical recording medium of the present invention contains a metal complex of compound (I) and has high sensitivity photoresponsiveness to blue-violet laser light, excellent recording signal quality, and the like.
- Examples of the optical recording medium of the present invention include a substrate, a reflective layer, a recording layer, a transparent protective layer, and a cover layer. The reflective layer, the recording layer, the transparent protective layer, and the cover are provided on the substrate. It is preferable that the layers are provided in this order.
- Examples of the optical recording medium of the present invention include those having a recording layer containing a metal complex of compound (I). When the recording layer is formed using the metal complex of compound (I), the metal complex of compound (I) may be used alone or in admixture of two or more.
- the metal complex of compound (I) and other dyes may be used in combination.
- Other dyes preferably have absorption in the wavelength region of the recording laser light.
- a dye that does not hinder the formation of information recording (recording marks, etc. formed at a laser irradiation site due to thermal deformation in the recording layer, the reflective layer or the transparent protective layer, and the cover layer) may be used as another dye. preferable.
- dyes examples include metal-containing azo dyes, phthalocyanine dyes, naphthalocyanine dyes, cyanine dyes, azo dyes, squarylium dyes other than the metal complex of compound (I), metal-containing indoaniline dyes , Triarylmethane dyes, merocyanine dyes, azurenium dyes, naphthoquinone dyes, anthraquinone dyes, indophenol dyes, xanthene dyes, oxazine dyes, pyrylium dyes, and the like. You may use these individually or in mixture of 2 or more types.
- a combination of a dye suitable for recording using a laser beam such as a near infrared laser beam of 770 to 830 nm and a red laser beam of 620 to 690 nm and a metal complex of compound (I) can be used at a plurality of wavelengths.
- An optical recording medium capable of recording with a laser beam in the region can also be produced.
- the recording layer may contain a binder as necessary.
- the binder include polyvinyl alcohol, polyvinyl pyrrolidone, ketone resin, nitrocellulose, cellulose acetate, polyvinyl butyral, and polycarbonate. You may use these individually or in mixture of 2 or more types.
- the recording layer may contain, for example, a singlet oxygen quencher, a recording sensitivity improver, or the like in order to improve the stability and light resistance of the recording layer.
- the singlet oxygen quencher examples include a transition metal chelate compound (for example, a chelate compound of a transition metal with acetylacetonate, bisphenyldithiol, salicylaldehyde oxime, bisdithio- ⁇ -diketone, or the like). You may use these individually or in mixture of 2 or more types.
- a transition metal chelate compound for example, a chelate compound of a transition metal with acetylacetonate, bisphenyldithiol, salicylaldehyde oxime, bisdithio- ⁇ -diketone, or the like. You may use these individually or in mixture of 2 or more types.
- a compound in which a metal such as a transition metal is contained in a compound in the form of atoms, ions, clusters, etc. for example, an ethylenediamine complex, an azomethine complex, a phenylhydroxyamine complex, a phenanthroline complex, And organic metal compounds such as dihydroxyazobenzene complex, dioxime complex, nitrosoaminophenol complex, pyridyltriazine complex, acetylacetonate complex, metallocene complex and porphyrin complex. You may use these individually or in mixture of 2 or more types.
- the thickness of the recording layer of the optical recording medium of the present invention is preferably 1 nm to 5 ⁇ m, more preferably 5 to 100 nm, and further preferably 20 to 60 nm.
- the recording layer can be formed by a known thin film forming method such as a vacuum deposition method, a sputtering method, a doctor blade method, a cast method, a spin coating method, or an immersion method, but the spin coating method is preferable from the viewpoint of mass productivity and cost. .
- the number is preferably 500 to 10,000 rpm.
- treatment such as heating, drying under reduced pressure, or exposure to solvent vapor may be performed.
- the solvent of the solution may be on the substrate before applying the substrate and the recording layer.
- the solvent is not particularly limited as long as it is a solvent that does not attack the formed layer (for example, a reflective layer).
- ketone alcohol solvents such as diacetone alcohol and 3-hydroxy-3-methyl-2-butanone
- cellosolv solvents such as methyl cellosolve and ethyl cellosolve, n-hexane, n-octane, cyclohexane, methylcyclohexane, ethylcyclohexane
- Hydrocarbon solvents such as dimethylcyclohexane, n-butylcyclohexane, tert-butylcyclohexane, cyclooctane
- ether solvents such as diisopropyl ether and dibutyl ether, tetrafluoropropanol (TFP), octafluoropentanol, hexafluorobutanol, etc.
- fluoroalkyl alcohol solvents, and ester solvents such as methyl lactate, ethyl lactate and methyl isobutyrate. You may
- the substrate of the optical recording medium of the present invention is preferably such that a guide groove formed in a spiral shape is formed on the surface for recording / reproduction with a laser beam.
- the substrate those that can easily form fine grooves having a narrow track pitch are preferable, and specific examples thereof include glass and plastic.
- plastics include acrylic resin, methacrylic resin, polycarbonate resin, vinyl chloride resin, vinyl acetate resin, nitrocellulose, polyester resin, polyethylene resin, polypropylene resin, polyimide resin, polystyrene resin, epoxy resin, and alicyclic polyolefin resin.
- a polycarbonate resin is preferable from the viewpoint of high productivity, cost, moisture absorption resistance, and the like.
- the substrate is preferably produced by injection molding the plastic.
- a method for producing a substrate by injection molding include a method using a stamper made of a metal such as Ni in which a guide groove is formed.
- the master for producing the stamper is produced, for example, as follows. Polish the surface of the disk-shaped glass substrate to be smooth. A photoresist whose thickness is adjusted according to a desired groove depth is applied on the substrate. Next, the photoresist is exposed using a laser beam or an electron beam having a wavelength shorter than that of the blue-violet laser beam and developed, thereby producing a master having a guide groove.
- a conductive film such as Ni is vacuum-deposited on the surface of the master, and a stamper made of a metal such as Ni in which a guide groove is formed is produced through a plating process.
- a substrate having guide grooves formed on the surface is produced by injection molding the plastic using this stamper.
- the guide groove preferably has a height difference (groove depth) between the top and bottom surfaces of the unevenness of 15 to 80 nm, and more preferably 25 to 50 nm.
- the ratio of the width of the convex part to the concave part is preferably in the range of 40%: 60% to 60%: 40% (convex part: concave part).
- the reflective layer is preferably a metal.
- the metal include gold, silver, aluminum, and alloys thereof. From the viewpoint of reflectivity with respect to laser light having a wavelength of 550 nm or less and surface smoothness, an alloy mainly composed of silver or silver is used. preferable.
- the silver-based alloy preferably contains about 90% or more of silver, and as a component other than silver, a group of Cu, Pd, Nd, Ni, Si, Au, Al, Ti, Zn, Zr, Nb, and Mo What contains 1 or more types chosen from is preferable.
- the reflective layer can be formed on the substrate by, for example, vapor deposition, sputtering (eg, DC sputtering), ion plating, or the like.
- An intermediate layer may be provided between the reflective layer and the recording layer for the purpose of improving the recording / reproducing characteristics or adjusting the reflectance.
- Examples of the material for the intermediate layer include metals, metal oxides, metal nitrides, and the like.
- the thickness of the reflective layer is preferably 5 to 300 nm, and more preferably 30 to 100 nm.
- the transparent protective layer preferably has no or little absorption with respect to the laser beam used during recording and reproduction, and the real part of the refractive index is relatively large, about 1.5 to 2.0. What has the value of is preferable.
- the material for the transparent protective layer include metal oxides, metal nitrides, metal sulfides, and mixtures thereof.
- the thickness of the transparent protective layer is preferably 5 to 50 nm. When the thickness of the protective layer is 5 nm or more, a recording signal formed by deforming the recording layer can be clearly separated from an unrecorded portion between the recording marks, so that a better signal can be obtained. Further, when the thickness of the protective layer is 50 nm or less, the transparent protective layer is easily deformed, so that a better signal can be obtained.
- the transparent protective layer can be formed on the recording layer by sputtering (for example, RF sputtering).
- the cover layer for example, a polycarbonate sheet having a thickness of about 0.1 mm having an adhesive layer that is transparent to the recording / reproducing laser beam on the surface is used, and the sheet is transparently protected via the adhesive layer. By pressure-bonding to the layer, it can be formed on the transparent protective layer.
- the adhesive layer is preferably one that does not hinder the deformation of the recording layer and the transparent protective layer during information recording.
- the cover layer can also be formed using an ultraviolet curable resin, and the ultraviolet curable resin is preferably one that does not hinder the deformation of the recording layer and the transparent protective layer during information recording, like the adhesive layer.
- the wavelength of the laser beam used during recording is preferably 350 to 530 nm.
- the shorter the wavelength of laser light used for recording the higher the density recording possible.
- Specific examples of laser light include, for example, blue-violet laser light having a center wavelength of 405 nm, 410 nm, etc., blue-green high-power semiconductor laser light having a center wavelength of 515 nm, and the center wavelength is 405 nm. Blue-green high-power semiconductor laser light is preferred.
- Light obtained by wavelength conversion by SHG may be used.
- SHG may be any piezo element that lacks reflection symmetry, but KDP (KH 2 PO 4 ), ADP (NH 4 H 2 PO 4 ), BNN (Ba 2 NaNb 5 O 15 ), KN ( Preferred examples of SHG include KNbO 3 ), LBO (LiB 3 O 5 ), and compound semiconductors.
- Specific examples of light (second harmonic) obtained by wavelength conversion by SHG include, for example, 430 nm light obtained by wavelength conversion of semiconductor laser light having a fundamental oscillation wavelength of 860 nm, and semiconductor laser having a fundamental oscillation wavelength of 860 nm. Examples thereof include 430 nm light obtained by wavelength conversion of excitation solid-state laser light.
- the optical recording medium of the present invention is preferably a BD.
- the BD is an optical recording medium that uses a blue-violet laser having a wavelength of 405 nm and records a higher density information by reducing the laser spot diameter by setting the NA of the objective lens to 0.85.
- a reflective layer, a recording layer, a transparent protective layer, and a cover layer thinner than the substrate are sequentially laminated on the substrate. Recording and reproduction is performed by irradiating a blue-violet laser beam from the cover layer side.
- a squarylium compound (IV-2) was obtained in the same manner as in Reference Example 1 except that 3,4,4′-trifluorodiphenylamine was used instead of 3,3 ′, 4-trifluorodiphenylamine.
- Reference Example 3 Compound (VI-1) 17.46 g of 4-methoxyphenylhydrazine hydrochloride, 10.12 g of triethylamine and 100 ml of chloroform were mixed and stirred at room temperature for 0.5 hour. The reaction solution was washed with 50 ml of water and the solvent was distilled off.
- Thermogravimetric analysis was performed under the following conditions using a TG / DTA6200 manufactured by Seiko Instruments Inc. to determine the decomposition start temperature of the metal complex of the squarylium compound obtained in the following examples.
- the temperature at which a weight loss of 0.05% by weight / ° C. or more was observed was taken as the decomposition start temperature.
- a compound having a decomposition start temperature of 300 ° C. or lower is preferred because high-sensitivity photoresponsiveness to blue-violet laser light or the like is expected.
- Measurement temperature 40 to 400 ° C., temperature rising temperature: 10 ° C./min, atmosphere; nitrogen aeration (300 ml / min), sample container: 15 ⁇ l (open) made of aluminum, sample: 1 to 1.5 mg
- polycarbonate resin manufactured by Taiko Equipment Co., Ltd .; 5 cm ⁇ 5 cm, thickness 1 mm
- the solution was applied onto a substrate by spin coating (3000 rpm, 30 seconds, amount of solution used: 10 to 15 drops) using Mikasa 1H-SX, and dried in an oven at 70 ° C. for 30 minutes. And a thin film of a metal complex of a squarylium compound, respectively. It was visually confirmed that each thin film had no unevenness and was formed uniformly.
- the dot interval (track pitch) in the radial direction was set to 0.32 ⁇ m, and the dot interval in the rotation direction was set to 0.50 ⁇ m.
- the thin film was irradiated with a laser beam having an output of 3 mW at a linear velocity of 9.84 m / sec.
- SEM scanning microscope
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
Abstract
本発明は、青紫色レーザー光に対する高感度な光応答性等を有する光記録媒体に用いられるスクアリリウム化合物の金属錯体等を提供する。 本発明は、式(I)[式中、R1は置換基を有していてもよい複素環基、NR4R5(式中、R4およびR5は、同一または異なって、置換基を有していてもよいアリール基等を表す)等を表し、R2は置換基を有していてもよいアリール基、置換基を有していてもよい複素環基等を表し、R3は水素原子等を表す]で表されるスクアリリウム化合物の金属錯体等を提供する。
Description
本発明は、光記録媒体等に用いられるスクアリリウム化合物の金属錯体等に関する。
近年、対物レンズの開口数NAを大きくする技術、レーザー波長λを小さくする技術等を用い、さらに超高密度記録が可能となる光記録媒体の開発が進んでいる。例えば、HDTV(高精細度テレビ)の映像情報を2時間以上記録するためには、DVDと同サイズで少なくとも23GB以上の容量をもつ光記録媒体が要望されている。こういった要望に応えるために、405nmの青紫色レーザーを使用し、対物レンズのNAを0.85とし、レーザースポット径を小さくすることによって、より高密度の情報を記録する光記録媒体、いわゆるBlu-ray Disc(BD)が開発された。
追記型Blu-ray Disc(BD-R)には、記録・再生を可能にする要求性能に加えて、記録感度、変調度、ジッタ(Jitter)、エラー率等において様々な優れた特性が求められる。しかし、従来の有機色素を用いたBD-Rにおけるそれらの特性は十分でない。
ピラゾール構造を有するスクアリリウム化合物の金属錯体は、追記型デジタルバーサタイルディスク(DVD-R)に用いる色素として有用であることが知られている(特許文献1)。該色素はDVD-Rの記録に用いられる約650nmのレーザー光で記録するのに適しているが、405nmのレーザー光で記録するのに適していない。
ピラゾール構造を有するスクアリリウム化合物の金属錯体は、追記型デジタルバーサタイルディスク(DVD-R)に用いる色素として有用であることが知られている(特許文献1)。該色素はDVD-Rの記録に用いられる約650nmのレーザー光で記録するのに適しているが、405nmのレーザー光で記録するのに適していない。
本発明の目的は、青紫色レーザー光に対する高感度な光応答性等を有する光記録媒体に用いられるスクアリリウム化合物の金属錯体等を提供することにある。
本発明は、以下の[1]~[11]を提供する。
[1]式(I)
[1]式(I)
[式中、R1は、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基またはNR4R5(式中、R4およびR5は、同一または異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい脂環式炭化水素基または置換基を有していてもよい複素環基を表す)を表し、R2は、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよい複素環基、YR6(式中、Yは酸素原子または硫黄原子を表し、R6は置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい脂環式炭化水素基または置換基を有していてもよい複素環基を表す)またはNR7R8(式中、R7およびR8は、同一または異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい脂環式炭化水素基または置換基を有していてもよい複素環基を表す)を表し、R3は、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい脂環式炭化水素基または置換基を有していてもよい複素環基を表す]で表されるスクアリリウム化合物の金属錯体。
[2]R1が置換基を有していてもよい複素環基である[1]記載のスクアリリウム化合物の金属錯体。
[3]R1が置換基を有していてもよい複素環基であり、該複素環基が置換基を有していてもよい芳香族複素環基である[1]記載のスクアリリウム化合物の金属錯体。
[4]R1が置換基を有する複素環基であり、該置換基を有する複素環基が、式(X)
[3]R1が置換基を有していてもよい複素環基であり、該複素環基が置換基を有していてもよい芳香族複素環基である[1]記載のスクアリリウム化合物の金属錯体。
[4]R1が置換基を有する複素環基であり、該置換基を有する複素環基が、式(X)
(式中、R9は、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい脂環式炭化水素基または置換基を有していてもよい複素環基を表し、R10は、水素原子、ヒドロキシル基、カルボキシル基、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい脂環式炭化水素基または置換基を有していてもよい複素環基を表す)で表される基である[1]記載のスクアリリウム化合物の金属錯体。
[5]R10が置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい脂環式炭化水素基または置換基を有していてもよい複素環基である[4]記載のスクアリリウム化合物の金属錯体。
[6]R1がNR4R5(式中、R4およびR5は、それぞれ前記と同義である)である[1]記載のスクアリリウム化合物の金属錯体。
[7]R1がNR4R5(式中、R4およびR5は、それぞれ前記と同義である)であり、R4およびR5が、同一または異なって、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基である[1]記載のスクアリリウム化合物の金属錯体。
[6]R1がNR4R5(式中、R4およびR5は、それぞれ前記と同義である)である[1]記載のスクアリリウム化合物の金属錯体。
[7]R1がNR4R5(式中、R4およびR5は、それぞれ前記と同義である)であり、R4およびR5が、同一または異なって、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基である[1]記載のスクアリリウム化合物の金属錯体。
[8]R2が置換基を有していてもよいアリール基または置換基を有していてもよい複素環基である[1]~[7]のいずれかに記載のスクアリリウム化合物の金属錯体。
[9]R3が水素原子である[1]~[8]のいずれかに記載のスクアリリウム化合物の金属錯体。
[10]金属がニッケル、コバルト、アルミニウム、銅、亜鉛または鉄である[1]~[9]のいずれかに記載のスクアリリウム化合物の金属錯体。
[11][1]~[10]のいずれかに記載のスクアリリウム化合物の金属錯体を含有する光記録媒体。
[9]R3が水素原子である[1]~[8]のいずれかに記載のスクアリリウム化合物の金属錯体。
[10]金属がニッケル、コバルト、アルミニウム、銅、亜鉛または鉄である[1]~[9]のいずれかに記載のスクアリリウム化合物の金属錯体。
[11][1]~[10]のいずれかに記載のスクアリリウム化合物の金属錯体を含有する光記録媒体。
本発明により、青紫色レーザー光に対する高感度な光応答性等を有する光記録媒体に用いられるスクアリリウム化合物の金属錯体等を提供できる。
以下、式(I)で表される化合物を化合物(I)という。他の式番号の化合物についても同様である。
一般式の各基の定義において、アルキル基としては、例えば、直鎖または分岐状の炭素数1~20のアルキル基が挙げられ、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、1-メチルブチル基、2-メチルブチル基、tert-ペンチル基、ヘキシル基、ヘプチル基、1-イソプロピル-2-メチルプロピル基、オクチル基、ノニル基、デシル基、エイコシル基等が挙げられ、中でも炭素数が1~10であるものが好ましい。
一般式の各基の定義において、アルキル基としては、例えば、直鎖または分岐状の炭素数1~20のアルキル基が挙げられ、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、1-メチルブチル基、2-メチルブチル基、tert-ペンチル基、ヘキシル基、ヘプチル基、1-イソプロピル-2-メチルプロピル基、オクチル基、ノニル基、デシル基、エイコシル基等が挙げられ、中でも炭素数が1~10であるものが好ましい。
アラルキル基としては、例えば、炭素数7~15のアラルキル基が挙げられ、具体的には、ベンジル基、フェネチル基、フェニルプロピル基、ナフチルメチル基等が挙げられる。
アリール基としては、例えば、炭素数6~14のアリール基が挙げられ、具体的には、フェニル基、ナフチル基、アントリル基、アズレニル基等が挙げられる。
アリール基としては、例えば、炭素数6~14のアリール基が挙げられ、具体的には、フェニル基、ナフチル基、アントリル基、アズレニル基等が挙げられる。
脂環式炭化水素基における脂環式炭化水素としては、例えば、炭素数3~8のシクロアルカン、炭素数3~8のシクロアルケン、3~8員の環が縮合した二環または三環性の脂環式炭化水素等が挙げられる。
炭素数3~8のシクロアルカンの具体例としては、例えば、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン等が挙げられる。
炭素数3~8のシクロアルカンの具体例としては、例えば、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン等が挙げられる。
炭素数3~8のシクロアルケンの具体例としては、例えば、シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン等が挙げられる。
3~8員の環が縮合した二環または三環性の脂環式炭化水素の具体例としては、例えば、ジヒドロペンタレン、ジヒドロインデン、テトラヒドロナフタレン、ヘキサヒドロフルオレン等が挙げられる。
3~8員の環が縮合した二環または三環性の脂環式炭化水素の具体例としては、例えば、ジヒドロペンタレン、ジヒドロインデン、テトラヒドロナフタレン、ヘキサヒドロフルオレン等が挙げられる。
複素環基における複素環としては、芳香族複素環および脂環式複素環が挙げられる。
芳香族複素環としては、例えば、窒素原子、酸素原子および硫黄原子から選ばれる少なくとも1個の原子を含む5員または6員の単環性芳香族複素環、3~8員の環が縮合した二環または三環性で窒素原子、酸素原子および硫黄原子から選ばれる少なくとも1個の原子を含む縮環性芳香族複素環等が挙げられ、具体的には、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、キノリン環、イソキノリン環、フタラジン環、キナゾリン環、キノキサリン環、ナフチリジン環、シンノリン環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、トリアジン環、テトラゾール環、チオフェン環、フラン環、チアゾール環、オキサゾール環、イソオキサゾール環、インドール環、イソインドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチオフェン環、ベンゾトリアゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、プリン環、カルバゾール環、アクリジン環、フェナジン環、フェノチアジン環、フェノキサジン環等が挙げられる。
芳香族複素環としては、例えば、窒素原子、酸素原子および硫黄原子から選ばれる少なくとも1個の原子を含む5員または6員の単環性芳香族複素環、3~8員の環が縮合した二環または三環性で窒素原子、酸素原子および硫黄原子から選ばれる少なくとも1個の原子を含む縮環性芳香族複素環等が挙げられ、具体的には、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、キノリン環、イソキノリン環、フタラジン環、キナゾリン環、キノキサリン環、ナフチリジン環、シンノリン環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、トリアジン環、テトラゾール環、チオフェン環、フラン環、チアゾール環、オキサゾール環、イソオキサゾール環、インドール環、イソインドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチオフェン環、ベンゾトリアゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、プリン環、カルバゾール環、アクリジン環、フェナジン環、フェノチアジン環、フェノキサジン環等が挙げられる。
脂環式複素環としては、例えば、窒素原子、酸素原子および硫黄原子から選ばれる少なくとも1個の原子を含む5~8員の単環性脂環式複素環、3~8員の環が縮合した二環または三環性で窒素原子、酸素原子および硫黄原子から選ばれる少なくとも1個の原子を含む縮環性脂環式複素環等が挙げられ、具体的には、ピロリジン環、ピペリジン環、ピペラジン環、モルホリン環、チオモルホリン環、ホモピペリジン環、ホモピペラジン環、テトラヒドロピリジン環、テトラヒドロキノリン環、テトラヒドロイソキノリン環、テトラヒドロフラン環、テトラヒドロピラン環、ジヒドロベンゾフラン環、インドリン環、テトラヒドロカルバゾール環等が挙げられる。
芳香族複素環基における芳香族複素環としては、例えば、前記に例示した芳香族複素環と同じものが挙げられる。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
アミノ基の置換基としては、例えば、1個または2個の置換基、具体的には、アルキル基、アラルキル基、アリール基、脂環式炭化水素基、複素環基等が挙げられる。ここで、アルキル基、アラルキル基、アリール基、脂環式炭化水素基および複素環基は、それぞれ前記と同義である。該置換基が2個であるとき、置換基のそれぞれは同一または異なっていてもよい。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
アミノ基の置換基としては、例えば、1個または2個の置換基、具体的には、アルキル基、アラルキル基、アリール基、脂環式炭化水素基、複素環基等が挙げられる。ここで、アルキル基、アラルキル基、アリール基、脂環式炭化水素基および複素環基は、それぞれ前記と同義である。該置換基が2個であるとき、置換基のそれぞれは同一または異なっていてもよい。
アルキル基の置換基としては、例えば、同一または異なって1~5個の置換基、具体的には、ヒドロキシル基、カルボキシル基、ハロゲン原子、ニトロ基、シアノ基、カルバモイル基、アルコキシル基、アルコキシアルコキシル基、アルカノイル基、アルキルカルボニルオキシ基、アルコキシカルボニル基、アロイル基、アリールオキシ基、アリールカルボニルオキシ基、アリールオキシカルボニル基、複素環基等が挙げられる。ハロゲン原子および複素環基は、それぞれ前記と同義である。アルコキシル基、アルカノイル基、アルキルカルボニルオキシ基およびアルコキシカルボニル基のアルキル部分は、それぞれ前記のアルキル基と同義である。アルコキシアルコキシル基の2つのアルコキシ部分は、それぞれ前記のアルコキシル基と同義である。アロイル基、アリールオキシ基、アリールカルボニルオキシ基およびアリールオキシカルボニル基のアリール部分は、それぞれ前記のアリール基と同義である。
アラルキル基、アリール基および脂環式炭化水素基の置換基としては、例えば、同一または異なって1~5個の置換基、具体的には、ヒドロキシル基、カルボキシル基、ハロゲン原子、ニトロ基、シアノ基、カルバモイル基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、アラルキル基、アルカノイル基、アルキルカルボニルオキシ基、アルコキシカルボニル基、アリール基、アロイル基、アリールオキシ基、アリールカルボニルオキシ基、アリールオキシカルボニル基、脂環式炭化水素基、複素環基、置換基を有していてもよいアミノ基等が挙げられる。ここで、ハロゲン原子、置換基を有していてもよいアルキル基、アルコキシル基、アラルキル基、アルカノイル基、アルキルカルボニルオキシ基、アルコキシカルボニル基、アリール基、アロイル基、アリールオキシ基、アリールカルボニルオキシ基、アリールオキシカルボニル基、脂環式炭化水素基、複素環基および置換基を有していてもよいアミノ基は、それぞれ前記と同義である。アルコキシル基の置換基としては、例えば、アルキル基の置換基として前記に例示した官能基と同じものが挙げられる。
芳香族複素環基の置換基としては、例えば、同一または異なって1~5個の置換基、具体的には、ヒドロキシル基、オキソ基、カルボキシル基、ハロゲン原子、ニトロ基、シアノ基、カルバモイル基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアラルキル基、アルカノイル基、アルキルカルボニルオキシ基、アルコキシカルボニル基、置換基を有していてもよいアリール基、アロイル基、アリールオキシ基、アリールカルボニルオキシ基、アリールオキシカルボニル基、置換基を有していてもよい脂環式炭化水素基、複素環基、置換基を有していてもよいアミノ基等が挙げられる。ここで、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアラルキル基、アルカノイル基、アルキルカルボニルオキシ基、アルコキシカルボニル基、置換基を有していてもよいアリール基、アロイル基、アリールオキシ基、アリールカルボニルオキシ基、アリールオキシカルボニル基、置換基を有していてもよい脂環式炭化水素基、複素環基および置換基を有していてもよいアミノ基は、それぞれ前記と同義である。
R2、R3、R4、R5、R6、R7、R8、R9またはR10が置換基を有していてもよい複素環基であるときの複素環基の置換基としては、例えば、芳香族複素環基の置換基として前記に例示した官能基と同じものが挙げられる。
R1が置換基を有していてもよい複素環基であるときの複素環基の置換基としては、例えば、同一または異なって1~5個の置換基、具体的には、ヒドロキシル基、オキソ基、カルボキシル基、ハロゲン原子、ニトロ基、シアノ基、カルバモイル基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアラルキル基、アルカノイル基、アルキルカルボニルオキシ基、アルコキシカルボニル基、置換基を有していてもよいアリール基、アロイル基、アリールオキシ基、アリールカルボニルオキシ基、アリールオキシカルボニル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよい複素環基、置換基を有していてもよいアミノ基等が挙げられる。ここで、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアラルキル基、アルカノイル基、アルキルカルボニルオキシ基、アルコキシカルボニル基、置換基を有していてもよいアリール基、アロイル基、アリールオキシ基、アリールカルボニルオキシ基、アリールオキシカルボニル基、置換基を有していてもよい脂環式炭化水素基、および置換基を有していてもよいアミノ基は、それぞれ前記と同義である。また、置換基を有していてもよい複素環基における複素環基の置換基としては、例えば、芳香族複素環基の置換基として前記に例示した官能基と同じものが挙げられる。
R1が置換基を有していてもよい複素環基であるときの複素環基の置換基としては、例えば、同一または異なって1~5個の置換基、具体的には、ヒドロキシル基、オキソ基、カルボキシル基、ハロゲン原子、ニトロ基、シアノ基、カルバモイル基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアラルキル基、アルカノイル基、アルキルカルボニルオキシ基、アルコキシカルボニル基、置換基を有していてもよいアリール基、アロイル基、アリールオキシ基、アリールカルボニルオキシ基、アリールオキシカルボニル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよい複素環基、置換基を有していてもよいアミノ基等が挙げられる。ここで、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアラルキル基、アルカノイル基、アルキルカルボニルオキシ基、アルコキシカルボニル基、置換基を有していてもよいアリール基、アロイル基、アリールオキシ基、アリールカルボニルオキシ基、アリールオキシカルボニル基、置換基を有していてもよい脂環式炭化水素基、および置換基を有していてもよいアミノ基は、それぞれ前記と同義である。また、置換基を有していてもよい複素環基における複素環基の置換基としては、例えば、芳香族複素環基の置換基として前記に例示した官能基と同じものが挙げられる。
金属錯体における金属としては、例えば、アルミニウム、ルテニウム、オスミウム、鉄、白金、亜鉛、ベリリウム、銅、ニッケル、クロム、コバルト、マンガン、イリジウム、バナジウム、チタン等が挙げられ、中でもニッケル、コバルト、アルミニウム、銅、亜鉛および鉄が好ましい。
R1がNR4R5(式中、R4およびR5は、それぞれ前記と同義である)または置換基を有していてもよい芳香族複素環基であるのが好ましい。
R1がNR4R5(式中、R4およびR5は、それぞれ前記と同義である)または置換基を有していてもよい芳香族複素環基であるのが好ましい。
R1がNR4R5であるとき、R4およびR5が、同一または異なって、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基であるのが好ましい。R4またはR5が置換基を有していてもよいアリール基であるとき、該アリール基がフェニル基であるのが好ましく、R4またはR5が置換基を有していてもよい複素環基であるとき、該複素環基における複素環がピリジン環であるのが好ましい。
R1が置換基を有していてもよい複素環基であるとき、該複素環基における複素環が少なくとも1個の窒素原子を含有する芳香族複素環であるのが好ましい。ここで、少なくとも1個の窒素原子を含有する芳香族複素環としては、例えば、前記に例示した芳香族複素環のうち少なくとも窒素原子を含有するもの等が挙げられ、より具体的には、例えば、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、キノリン環、イソキノリン環、フタラジン環、キナゾリン環、キノキサリン環、ナフチリジン環、シンノリン環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、トリアジン環、テトラゾール環、チアゾール環、オキサゾール環、イソオキサゾール環、インドール環、イソインドール環、インダゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、プリン環、カルバゾール環、アクリジン環、フェナジン環、フェノチアジン環、フェノキサジン環等が挙げられ、中でも、ピラゾール環またはインドール環が好ましい。
R1が式(X)で表される基であるとき、R9が置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい脂環式炭化水素基または置換基を有していてもよい複素環基であるのが好ましい。
また、R1が式(X)で表される基であるとき、R10が置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい脂環式炭化水素基または置換基を有していてもよい複素環基であるのが好ましく、置換基を有していてもよいアルキル基であるのがより好ましい。
また、R1が式(X)で表される基であるとき、R10が置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい脂環式炭化水素基または置換基を有していてもよい複素環基であるのが好ましく、置換基を有していてもよいアルキル基であるのがより好ましい。
R2が置換基を有していてもよいアリール基または置換基を有していてもよい複素環基であるのが好ましい。R1が式(X)で表される基であるとき、R2が置換基を有していてもよいアリール基であるのがより好ましい。
R2がYR6(式中、R6は前記と同義である)であるとき、Yが酸素原子であるのが好ましい。
R2がYR6(式中、R6は前記と同義である)であるとき、Yが酸素原子であるのが好ましい。
また、R3が水素原子であるのが好ましい。
次に、化合物(I)の製造法について、例をあげて説明する。
化合物(I)は、例えば、反応式1~3に従って製造することができる。
反応式1
次に、化合物(I)の製造法について、例をあげて説明する。
化合物(I)は、例えば、反応式1~3に従って製造することができる。
反応式1
反応式2
反応式3
(式中、R1、R2およびR3はそれぞれ前記と同義であり、Wは塩素原子、臭素原子、炭素数1~4のアルコキシル基等を表す)
炭素数1~4のアルコキシル基としては、例えば、メトキシ基、エトキシ基、ブトキシ基等が挙げられる。
化合物(III)のうちR1がNR4R5(式中、R4およびR5はそれぞれ前記と同義である)であるものは、市販品として入手するか、公知の方法、例えば、社団法人日本化学会編,「実験化学講座(第20巻)」,第4版,丸善株式会社,1991年,p.30-46,p.112-185,p.279-290,p.338-342、社団法人日本化学会編,「実験化学講座(第13巻)」,第5版,丸善株式会社,1991年,p.374-416、社団法人日本化学会編,「実験化学講座(第14巻)」,第5版,丸善株式会社,2003年,p.289-320、Buehler&Pearson編,「Survey of Organic Synthesis(第1巻)」,Wiley-Interscience,1970年,p.411-512、Buehler&Pearson編,「Survey of Organic Synthesis(第2巻)」,Wiley-Interscience,1977年,p.812-853、Saul Patai編,「The Chemistry of the amino group」,John Wiley&Sons,1968年,p.277-347記載の方法等に準じて製造して得ることができる。
炭素数1~4のアルコキシル基としては、例えば、メトキシ基、エトキシ基、ブトキシ基等が挙げられる。
化合物(III)のうちR1がNR4R5(式中、R4およびR5はそれぞれ前記と同義である)であるものは、市販品として入手するか、公知の方法、例えば、社団法人日本化学会編,「実験化学講座(第20巻)」,第4版,丸善株式会社,1991年,p.30-46,p.112-185,p.279-290,p.338-342、社団法人日本化学会編,「実験化学講座(第13巻)」,第5版,丸善株式会社,1991年,p.374-416、社団法人日本化学会編,「実験化学講座(第14巻)」,第5版,丸善株式会社,2003年,p.289-320、Buehler&Pearson編,「Survey of Organic Synthesis(第1巻)」,Wiley-Interscience,1970年,p.411-512、Buehler&Pearson編,「Survey of Organic Synthesis(第2巻)」,Wiley-Interscience,1977年,p.812-853、Saul Patai編,「The Chemistry of the amino group」,John Wiley&Sons,1968年,p.277-347記載の方法等に準じて製造して得ることができる。
化合物(III)のうちR1が置換基を有していてもよい複素環基であるものは、市販品として入手するか、公知の方法、例えば、社団法人日本化学会編,「実験化学講座(第24巻)」,第4版,丸善株式会社,1991年,p.319-401、Katritzky編,「Handbook of Heterocyles」,Pergamon Press,1985年,p.379-506、Barton&Ollis編,「Comprehensive Organic Chemistry-Heterocylic Compounds-(第4巻)」,Pergamon Press,1979年,p.1-246,p.275-320,p.411-492,p.789-838、社団法人日本化学会編,新実験化学講座,第14巻,「有機化合物の合成と反応IV 複素環化合物」,丸善株式会社,1978年,p.2154、Chemistry,1964年,第26巻,p.333、Journal of Organic Chemistry,1957年,第22巻, p.780、Chemical & Pharmaceutical Bulletin,1981年,第29巻,第1号,p.244、Journal of Heterocyclic Chemistry,1980年,第17巻,第2号,p.389、Liebigs Annalen der Chemie,1985年,第1巻,p.78、Journal of the Chemical Society.Perkin Transactions.1,1983年,第2巻 ,p.325、Journal of the Indian Chemical Society,1980年,第57巻,p.1108、Journal of Organic Chemistry,1979年,第44巻,p.4597記載の方法等に準じて製造して得ることができる。
化合物(III)のうちR1が置換基を有していてもよいアリール基であるものは、市販品として入手するか、公知の方法、例えば、社団法人日本化学会編,「実験化学講座(第19巻)」,第4版,丸善株式会社,1991年,p.112-136、Buehler&Pearson編,「Survey of Organic Synthesis(第1巻)」,Wiley-Interscience,1970年,p.246-284、Buehler&Pearson編,「Survey of Organic Synthesis(第2巻)」,Wiley-Interscience,1977年,p.391-460記載の方法等に準じて製造して得ることができる。
化合物(V)は、市販品として入手するか、公知の方法、例えば、社団法人日本化学会編,「実験化学講座(第20巻)有機化合物の合成と反応II ジアゾ,アゾならびにアゾキシ化合物の合成」,第1版,丸善株式会社,1956年,p.347-389、社団法人日本化学会編,「新実験化学講座(第14巻) 有機化合物の合成と反応III 含窒素化合物」,第2版,丸善株式会社,1978年,p.1573-1584、Saul Patai編,「The Chemistry of the hydrazo,azo,and azoxy group(第1巻)」,John Wiley&Sons,1975年,p.69-107、Saul Patai編,「The Chemistry of the hydrazo,azo,and azoxy group(第2巻)」,John Wiley&Sons,1975年,p.599-723、Gilman編,「Organic Syntheses Collective(第1巻)」,Shriner&Shriner,1932年,p.450-453、Blatt編,「Organic Syntheses Collective(第2巻)」,Shriner&Shriner,1943年,p.85-87、Baumgarten編,「Organic Syntheses Collective(第5巻)」,Shriner&Shriner,1973年,p.166-170、Bryan Li他著,「Organic Syntheses(第81巻)」,2005年,p.1108-1111記載の方法等に準じて製造して得ることができる。
反応式1
化合物(VII)は、公知の方法、例えば、Journal of Organic Chemistry,1977年,第42巻,第7号,p.1126~1130、Dyes and Pigments,2001年,第49巻,p.161~179記載の方法等に準じて製造して得ることができる。具体的には、例えば、化合物(II)と1~2倍モルの化合物(III)とを、要すれば1~2倍モルの酸または1~2倍モルの塩基存在下で、溶媒中、0~100℃で1~20時間反応させることにより得ることができる。
化合物(VII)は、公知の方法、例えば、Journal of Organic Chemistry,1977年,第42巻,第7号,p.1126~1130、Dyes and Pigments,2001年,第49巻,p.161~179記載の方法等に準じて製造して得ることができる。具体的には、例えば、化合物(II)と1~2倍モルの化合物(III)とを、要すれば1~2倍モルの酸または1~2倍モルの塩基存在下で、溶媒中、0~100℃で1~20時間反応させることにより得ることができる。
溶媒としては、例えば、クロロホルム、ジクロロメタン、1,2-ジクロロエタン等のハロゲン化炭化水素系溶媒、ジエチルエーテル、tert-ブチルメチルエーテル等のエーテル系溶媒、トルエン、ベンゼン等の芳香族炭化水素系溶媒、メタノール、エタノール、プロパノール等のアルコール系溶媒、テトラヒドロフラン、酢酸エチル、ジメチルホルムアミド、ジメチルスルホキシド(DMSO)等が挙げられる。
酸としては、例えば、塩化アルミニウム、臭化アルミニウム等のハロゲン化アルミニウム、フッ化第二鉄、塩化第二鉄、臭化第二鉄等のハロゲン化第二鉄、酸化第二鉄等の酸化鉄、フッ化第二アンチモン、塩化第二アンチモン等のハロゲン化第二アンチモン、塩化亜鉛、硫酸第二鉄、トリフルオロメタンスルホン酸、フルオロスルホン酸等が挙げられる。
塩基としては、例えば、キノリン、トリエチルアミン、ピリジン等の有機塩基または炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、水酸化ナトリウム等が挙げられる。
塩基としては、例えば、キノリン、トリエチルアミン、ピリジン等の有機塩基または炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、水酸化ナトリウム等が挙げられる。
反応式2
化合物(VI)は、例えば、化合物(VII)を40~90容量%の酢酸水溶液中、40~120℃で0.5~7時間処理するか、または1~10重量%の炭酸カリウム水溶液中、40~120℃で0.5~20時間処理することにより得ることができる。
反応式3
化合物(I)は、例えば、化合物(VI)と1~5倍モルの化合物(V)とを、溶媒中、40~100℃で1~100時間反応させることにより得ることができる。
化合物(VI)は、例えば、化合物(VII)を40~90容量%の酢酸水溶液中、40~120℃で0.5~7時間処理するか、または1~10重量%の炭酸カリウム水溶液中、40~120℃で0.5~20時間処理することにより得ることができる。
反応式3
化合物(I)は、例えば、化合物(VI)と1~5倍モルの化合物(V)とを、溶媒中、40~100℃で1~100時間反応させることにより得ることができる。
溶媒としては、例えば、エタノール、プロパノール、2-プロパノール、ブタノール、オクタノール等のアルコール系溶媒、または該アルコール系溶媒(20容量%以上)とベンゼン、トルエンもしくはキシレンとの混合溶媒、アセトニトリル等が挙げられる。反応後、必要に応じて、化合物(I)を有機合成化学で通常用いられる方法(各種クロマトグラフィー法、再結晶法、蒸留法等)で精製してもよい。
化合物(I)のうちR1がNR4R5(式中、R4およびR5は、それぞれ前記と同義である)であるものは、例えば、化合物(VI)の代わりに化合物(IV)
(式中、R4およびR5は、それぞれ前記と同義である)を用いる以外は反応式3と同様な操作を行い、製造して得ることもできる。
化合物(IV)は、公知の方法、例えば、特開2002-131530号公報記載の方法等に準じて製造して得ることができる。具体的には、例えば、スクアリン酸と化合物(III)のうちR1がNR4R5(式中、R4およびR5は、それぞれ前記と同義である)であるものとを溶媒中、80~150℃で1~100時間反応させることにより得ることができる。ここで、溶媒としては、例えば、エタノール、プロパノール、2-プロパノール、ブタノール、オクタノール等のアルコール系溶媒、または該アルコール系溶媒(20容量%以上)とベンゼン、トルエンもしくはキシレンとの混合溶媒等が挙げられる。化合物(III)のうちR1がNR4R5(式中、R4およびR5は、それぞれ前記と同義である)であるものの使用量は、スクアリン酸に対して2~5倍モルであるのが好ましい。反応後、必要に応じて、化合物(IV)を有機合成化学で通常用いられる方法(各種クロマトグラフィー法、再結晶法、蒸留法等)で精製してもよい。
化合物(IV)は、公知の方法、例えば、特開2002-131530号公報記載の方法等に準じて製造して得ることができる。具体的には、例えば、スクアリン酸と化合物(III)のうちR1がNR4R5(式中、R4およびR5は、それぞれ前記と同義である)であるものとを溶媒中、80~150℃で1~100時間反応させることにより得ることができる。ここで、溶媒としては、例えば、エタノール、プロパノール、2-プロパノール、ブタノール、オクタノール等のアルコール系溶媒、または該アルコール系溶媒(20容量%以上)とベンゼン、トルエンもしくはキシレンとの混合溶媒等が挙げられる。化合物(III)のうちR1がNR4R5(式中、R4およびR5は、それぞれ前記と同義である)であるものの使用量は、スクアリン酸に対して2~5倍モルであるのが好ましい。反応後、必要に応じて、化合物(IV)を有機合成化学で通常用いられる方法(各種クロマトグラフィー法、再結晶法、蒸留法等)で精製してもよい。
化合物(I)の金属錯体は、公知の方法、例えば、国際公開第02/050190号パンフレット記載の方法等に準じて製造することができる。具体的には、有機金属化合物または金属塩と、化合物(I)とを、要すれば1~5倍モルの酢酸の存在下、溶媒中、25~120℃の温度で、0.1~30時間反応させることにより化合物(I)の金属錯体を製造することができる。
化合物(I)の使用量は、有機金属化合物または金属塩に対して0.5~5倍モル量であるのが好ましい。
有機金属化合物としては、例えば、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、アルミニウムイソプロポキシド、アルミニウムsec-ブトキシド、アルミニウムエトキシド、銅アセチルアセトネート、亜鉛アセチルアセトネート、鉄トリス(2,4-ペンタンジオネート)、トリス(カルボネート)コバルト(III)酸ナトリウム塩等が挙げられる。
有機金属化合物としては、例えば、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、アルミニウムイソプロポキシド、アルミニウムsec-ブトキシド、アルミニウムエトキシド、銅アセチルアセトネート、亜鉛アセチルアセトネート、鉄トリス(2,4-ペンタンジオネート)、トリス(カルボネート)コバルト(III)酸ナトリウム塩等が挙げられる。
金属塩としては、例えば、塩化アルミニウム、塩化銅、酢酸銅、酢酸ニッケル、塩化ニッケル、酢酸コバルト、塩化コバルト、これらの水和物等が挙げられる。
溶媒としては、例えば、メタノール、エタノール、プロパノール、2-プロパノール、ブタノール、イソブタノール等のアルコール系溶媒、クロロホルム、ジクロロメタン等のハロゲン系溶媒、ベンゼン、トルエン、キシレン等の芳香族系溶媒、テトラヒドロフラン、メチル-tert-ブチルエーテル等のエーテル系溶媒、酢酸エチル等のエステル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、これらの混合溶媒等が挙げられる。
溶媒としては、例えば、メタノール、エタノール、プロパノール、2-プロパノール、ブタノール、イソブタノール等のアルコール系溶媒、クロロホルム、ジクロロメタン等のハロゲン系溶媒、ベンゼン、トルエン、キシレン等の芳香族系溶媒、テトラヒドロフラン、メチル-tert-ブチルエーテル等のエーテル系溶媒、酢酸エチル等のエステル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、これらの混合溶媒等が挙げられる。
反応後、必要に応じて、有機合成化学で通常用いられる方法(各種カラムクロマトグラフィー法、再結晶法、溶媒による洗浄等)で化合物(I)の金属錯体を精製してもよい。
以下に、化合物(I)の具体例を例示する。表中、Meはメチル基を表し、Etはエチル基を表し、iPrはイソプロピル基を表し、tBuはtert-ブチル基を表し、iBuはイソブチル基を表す。
以下に、化合物(I)の具体例を例示する。表中、Meはメチル基を表し、Etはエチル基を表し、iPrはイソプロピル基を表し、tBuはtert-ブチル基を表し、iBuはイソブチル基を表す。
以下、化合物番号(1)のスクアリリウム化合物を化合物(1)という。その他の化合物番号の化合物についても同様である。
本発明の化合物(I)の金属錯体は、光記録媒体用色素、紫外線吸収剤、3次元記録材料としての二光子吸収用色素、短波長レーザー(例えば青紫色レーザー等)光対応の増感色素等として使用することができる。化合物(I)の金属錯体は優れた耐光性、優れた耐候性、優れた耐湿熱性、優れた塗膜性、優れた溶解性等を有するので、光記録媒体用の色素として適している。
本発明の化合物(I)の金属錯体は、光記録媒体用色素、紫外線吸収剤、3次元記録材料としての二光子吸収用色素、短波長レーザー(例えば青紫色レーザー等)光対応の増感色素等として使用することができる。化合物(I)の金属錯体は優れた耐光性、優れた耐候性、優れた耐湿熱性、優れた塗膜性、優れた溶解性等を有するので、光記録媒体用の色素として適している。
化合物(I)の金属錯体のうち特に優れた耐光性を有するものとしては、例えば、以下の(1)、(2)等が挙げられる。
(1)式(I)において、R1がNR4R5であり、R4およびR5が、同一または異なって、置換基を有していてもよいフェニル基であり、R2が置換基を有していてもよいピリジル基であり、R3が水素原子である化合物(I)のコバルトまたはニッケル錯体。
(2)式(I)において、R1が式(X)で表される基であり、R2が置換基を有していてもよいフェニル基であり、R3が水素原子であり、該式(X)において、R9が置換基を有していてもよいアルキル基、置換基を有していてもよいフェニル基または置換基を有していてもよいピリミジニル基であり、R10が置換基を有していてもよいアルキル基である化合物(I)のコバルトまたはニッケル錯体。
(1)式(I)において、R1がNR4R5であり、R4およびR5が、同一または異なって、置換基を有していてもよいフェニル基であり、R2が置換基を有していてもよいピリジル基であり、R3が水素原子である化合物(I)のコバルトまたはニッケル錯体。
(2)式(I)において、R1が式(X)で表される基であり、R2が置換基を有していてもよいフェニル基であり、R3が水素原子であり、該式(X)において、R9が置換基を有していてもよいアルキル基、置換基を有していてもよいフェニル基または置換基を有していてもよいピリミジニル基であり、R10が置換基を有していてもよいアルキル基である化合物(I)のコバルトまたはニッケル錯体。
前記(1)および(2)において、置換基を有していてもよいアルキル基は前記と同義である。また、フェニル基の置換基としては、例えば、アリール基の置換基として前記に例示した官能基と同じものが挙げられ、ピリジル基およびピリミジニル基の置換基としては、例えば、芳香族複素環基の置換基として前記に例示した官能基と同じものが挙げられる。
本発明の光記録媒体は化合物(I)の金属錯体を含有し、青紫色レーザー光に対する高感度な光応答性、優れた記録信号品質等を有する。
本発明の光記録媒体としては、例えば、基板、反射層、記録層、透明保護層およびカバー層を備えているもの等が挙げられ、基板上に、反射層、記録層、透明保護層およびカバー層がこの順に設けられているものが好ましい。本発明の光記録媒体としては、例えば、化合物(I)の金属錯体を含有する記録層を有するもの等が挙げられる。化合物(I)の金属錯体を用いて該記録層を形成するとき、化合物(I)の金属錯体は単独でまたは2種以上を混合して用いてもよい。
本発明の光記録媒体としては、例えば、基板、反射層、記録層、透明保護層およびカバー層を備えているもの等が挙げられ、基板上に、反射層、記録層、透明保護層およびカバー層がこの順に設けられているものが好ましい。本発明の光記録媒体としては、例えば、化合物(I)の金属錯体を含有する記録層を有するもの等が挙げられる。化合物(I)の金属錯体を用いて該記録層を形成するとき、化合物(I)の金属錯体は単独でまたは2種以上を混合して用いてもよい。
化合物(I)の金属錯体と他の色素とを併用して用いてもよい。他の色素としては、記録用のレーザー光の波長域に吸収を有するものが好ましい。また、情報記録(記録層、反射層または透明保護層、およびカバー層における熱的変形によりレーザー照射箇所に形成される記録マーク等)の形成が阻害されないようなものを他の色素として用いることが好ましい。他の色素としては、例えば、含金属アゾ系色素、フタロシアニン系色素、ナフタロシアニン系色素、シアニン系色素、アゾ系色素、化合物(I)の金属錯体以外のスクアリリウム系色素、含金属インドアニリン系色素、トリアリールメタン系色素、メロシアニン系色素、アズレニウム系色素、ナフトキノン系色素、アントラキノン系色素、インドフェノール系色素、キサンテン系色素、オキサジン系色素、ピリリウム系色素等が挙げられる。これらは単独でまたは2種以上を混合して用いてもよい。他の色素のうち770~830nmの近赤外レーザー光、620~690nmの赤色レーザー光等のレーザー光を用いた記録に適する色素と化合物(I)の金属錯体とを併用して、複数の波長域のレーザー光での記録が可能である光記録媒体を作製することもできる。
記録層は、必要に応じてバインダーを含有してもよい。バインダーとしては、例えば、ポリビニルアルコール、ポリビニルピロリドン、ケトン樹脂、ニトロセルロース、酢酸セルロース、ポリビニルブチラール、ポリカーボネート等が挙げられる。これらは単独でまたは2種以上を混合して用いてもよい。
また、記録層は、記録層の安定性や耐光性向上のために、例えば、一重項酸素クエンチャーや記録感度向上剤等を含有してもよい。
また、記録層は、記録層の安定性や耐光性向上のために、例えば、一重項酸素クエンチャーや記録感度向上剤等を含有してもよい。
一重項酸素クエンチャーとしては、遷移金属キレート化合物(例えば、アセチルアセトネート、ビスフェニルジチオール、サリチルアルデヒドオキシム、ビスジチオ-α-ジケトン等と遷移金属とのキレート化合物等)等が挙げられる。これらは単独でまたは2種以上を混合して用いてもよい。
記録感度向上剤としては、遷移金属等の金属が原子、イオン、クラスター等の形で化合物に含まれるものをいい、例えば、エチレンジアミン系錯体、アゾメチン系錯体、フェニルヒドロキシアミン系錯体、フェナントロリン系錯体、ジヒドロキシアゾベンゼン系錯体、ジオキシム系錯体、ニトロソアミノフェノール系錯体、ピリジルトリアジン系錯体、アセチルアセトネート系錯体、メタロセン系錯体、ポルフィリン系錯体等の有機金属化合物等が挙げられる。これらは単独でまたは2種以上を混合して用いてもよい。
記録感度向上剤としては、遷移金属等の金属が原子、イオン、クラスター等の形で化合物に含まれるものをいい、例えば、エチレンジアミン系錯体、アゾメチン系錯体、フェニルヒドロキシアミン系錯体、フェナントロリン系錯体、ジヒドロキシアゾベンゼン系錯体、ジオキシム系錯体、ニトロソアミノフェノール系錯体、ピリジルトリアジン系錯体、アセチルアセトネート系錯体、メタロセン系錯体、ポルフィリン系錯体等の有機金属化合物等が挙げられる。これらは単独でまたは2種以上を混合して用いてもよい。
本発明の光記録媒体の記録層の厚さは1nm~5μmであるのが好ましく、5~100nmであるのがより好ましく、さらには20~60nmであるのが好ましい。
記録層は、真空蒸着法、スパッタリング法、ドクターブレード法、キャスト法、スピンコート法、浸漬法等の公知の薄膜形成法で形成することができるが、量産性、コスト面からスピンコート法が好ましい。スピンコート法により記録層を形成する場合、適切な膜厚を得るために、化合物(I)の金属錯体の濃度を0.3~2.5重量%に調整した溶液を用いることが好ましく、回転数を500~10000rpmにするのが好ましい。スピンコート法により溶液を塗布した後、加熱、減圧乾燥、溶媒蒸気への曝露等の処理を行ってもよい。
記録層は、真空蒸着法、スパッタリング法、ドクターブレード法、キャスト法、スピンコート法、浸漬法等の公知の薄膜形成法で形成することができるが、量産性、コスト面からスピンコート法が好ましい。スピンコート法により記録層を形成する場合、適切な膜厚を得るために、化合物(I)の金属錯体の濃度を0.3~2.5重量%に調整した溶液を用いることが好ましく、回転数を500~10000rpmにするのが好ましい。スピンコート法により溶液を塗布した後、加熱、減圧乾燥、溶媒蒸気への曝露等の処理を行ってもよい。
溶液を塗布することにより記録層を形成する場合(例えば、ドクターブレード法、キャスト法、スピンコート法、浸漬法等)に用いる溶液の溶媒としては、基板および記録層を塗布する前に基板上に形成した層(例えば、反射層等)を侵さない溶媒であればよく、特に限定されない。例えば、ジアセトンアルコール、3-ヒドロキシ-3-メチル-2-ブタノン等のケトンアルコール系溶媒、メチルセロソルブ、エチルセロソルブ等のセロソルブ系溶媒、n-ヘキサン、n-オクタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ジメチルシクロヘキサン、n-ブチルシクロヘキサン、tert-ブチルシクロヘキサン、シクロオクタン等の炭化水素系溶媒、ジイソプロピルエーテル、ジブチルエーテル等のエーテル系溶媒、テトラフルオロプロパノール(TFP)、オクタフルオロペンタノール、ヘキサフルオロブタノール等のフルオロアルキルアルコール系溶媒、乳酸メチル、乳酸エチル、イソ酪酸メチル等のエステル系溶媒等が挙げられる。これらは単独でまたは2種以上を混合して用いてもよい。
本発明の光記録媒体の基板は、レーザー光による記録再生のため、表面上に螺旋状に形成される案内溝が形成されているものが好ましい。基板としては、狭トラックピッチである微細な溝を形成しやすいものが好ましく、具体的には、例えば、ガラス、プラスチック等が挙げられる。プラスチックとしては、アクリル樹脂、メタクリル樹脂、ポリカーボネート樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ニトロセルロース、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ポリスチレン樹脂、エポキシ樹脂、脂環式ポリオレフィン樹脂等が挙げられるが、高生産性、コスト、耐吸湿性等の点からポリカーボネート樹脂であるのが好ましい。
基板は前記のプラスチックを射出成形して作製するのが好ましい。射出成形により基板を作製する方法としては、案内溝が形成されたNi等の金属からなるスタンパーを用いる方法等が挙げられる。
該スタンパーを作製するための原盤は、例えば、以下のようにして作製される。円盤状のガラス基板の表面を平滑になるよう研磨する。その基板上に所望の溝深さに応じて厚さを調整したフォトレジストを塗布する。次いで青紫色レーザー光よりも短い波長のレーザー光または電子ビームを用いてフォトレジストを露光し、現像を行うことにより、案内溝が形成された原盤を作製する。
該スタンパーを作製するための原盤は、例えば、以下のようにして作製される。円盤状のガラス基板の表面を平滑になるよう研磨する。その基板上に所望の溝深さに応じて厚さを調整したフォトレジストを塗布する。次いで青紫色レーザー光よりも短い波長のレーザー光または電子ビームを用いてフォトレジストを露光し、現像を行うことにより、案内溝が形成された原盤を作製する。
次いで、この原盤表面にNi等の導電膜を真空製膜し、メッキ工程を経て、案内溝が形成されたNi等の金属からなるスタンパーを作製する。このスタンパーを用いて前記のプラスチックを射出成形することにより、表面上に案内溝が形成された基板を作製する。
該案内溝としては、凹凸の頂点面と底辺面の高低差(溝深さ)が15~80nmであるのが好ましく、25~50nmであるのがより好ましい。凸部と凹部の幅の比率としては40%:60%~60%:40%(凸部:凹部)の範囲であるのが好ましい。
該案内溝としては、凹凸の頂点面と底辺面の高低差(溝深さ)が15~80nmであるのが好ましく、25~50nmであるのがより好ましい。凸部と凹部の幅の比率としては40%:60%~60%:40%(凸部:凹部)の範囲であるのが好ましい。
反射層は金属であるのが好ましい。金属としては、例えば、金、銀、アルミニウムまたはそれらの合金等が挙げられるが、550nm以下の波長のレーザー光に対する反射率や表面の平滑性の点から、銀または銀を主成分とする合金が好ましい。該銀を主成分とする合金は銀を90%程度以上含むものが好ましく、銀以外の成分としてCu、Pd、Nd、Ni、Si、Au、Al、Ti、Zn、Zr、NbおよびMoの群から選ばれる1種類以上を含むものが好ましい。反射層は、例えば、蒸着法、スパッタリング法(例えば、DCスパッタリング法等)、イオンプレーティング法等によって基板上に形成することができる。記録再生特性を向上させるため、または反射率を調整する等の目的で、反射層と記録層との間に中間層を設けてもよい。中間層の材料としては、例えば、金属、金属酸化物、金属窒化物等が挙げられる。反射層の厚さは5~300nmであるのが好ましく、30~100nmであるのがより好ましい。
透明保護層としては、記録再生時に使用するレーザー光に対して吸収を有しないか、わずかな吸収しか有しないものが好ましく、屈折率の実数部が比較的大きく、1.5~2.0前後の値を有するものが好ましい。透明保護層の材料としては、例えば、金属酸化物、金属窒化物、金属硫化物、これらの混合物等が挙げられる。
透明保護層の厚さは、5~50nmであるのが好ましい。保護層の厚さが5nm以上の場合には、記録層に変形を生じさせて形成した記録マークがこの記録マーク間の未記録部分と明確に分離できるためより良好な信号が得られる。また、保護層の厚さが50nm以下の場合には、透明保護層の変形が生じやすいためより良好な信号が得られる。透明保護層はスパッタリング法(例えば、RFスパッタリング法等)等によって記録層の上に形成することができる。
透明保護層の厚さは、5~50nmであるのが好ましい。保護層の厚さが5nm以上の場合には、記録層に変形を生じさせて形成した記録マークがこの記録マーク間の未記録部分と明確に分離できるためより良好な信号が得られる。また、保護層の厚さが50nm以下の場合には、透明保護層の変形が生じやすいためより良好な信号が得られる。透明保護層はスパッタリング法(例えば、RFスパッタリング法等)等によって記録層の上に形成することができる。
カバー層は、例えば、表面に記録再生レーザー光に対して透明、かつ、粘着力のある接着層を有する厚さ約0.1mmのポリカーボネート製のシートを用い、接着層を介してシートを透明保護層に加圧接着することにより、透明保護層の上に形成することができる。接着層としては、情報記録の際に記録層および透明保護層の変形を阻害しないものが好ましい。カバー層は紫外線硬化樹脂を用いて形成することもでき、該紫外線硬化樹脂としては、接着層と同様に、情報記録の際に記録層および透明保護層の変形を阻害しないものが好ましい。
本発明の光記録媒体は化合物(I)の金属錯体を含有することから、記録時に使用するレーザー光の波長は350~530nmであるのが好ましい。一般的に、記録時に使用するレーザー光の波長が短いほど高密度な記録が可能となる。
レーザー光の具体例としては、例えば、中心波長が405nm、410nm等である青紫色レーザー光、中心波長が515nmである青緑色の高出力半導体レーザー光等が挙げられ、中でも中心波長が405nmである青緑色の高出力半導体レーザー光が好ましい。
レーザー光の具体例としては、例えば、中心波長が405nm、410nm等である青紫色レーザー光、中心波長が515nmである青緑色の高出力半導体レーザー光等が挙げられ、中でも中心波長が405nmである青緑色の高出力半導体レーザー光が好ましい。
基本発振波長が740~960nmである連続発振可能な半導体レーザー光、半導体レーザー光によって励起されかつ基本発振波長が740~960nmである連続発振可能な固体レーザー光等を、第二高調波発生素子(SHG)により波長変換することによって得られる光を用いてもよい。SHGとしては、反射対称性を欠くピエゾ素子であればいかなるものでもよいが、KDP(KH2PO4)、ADP(NH4H2PO4)、BNN(Ba2NaNb5O15)、KN(KNbO3)、LBO(LiB3O5)、化合物半導体等がSHGの好ましい具体例として挙げられる。
SHGにより波長変換することによって得られる光(第二高調波)の具体例としては、例えば、基本発振波長が860nmである半導体レーザー光を波長変換した430nm光、基本発振波長が860nmである半導体レーザー励起の固体レーザー光を波長変換した430nm光等が挙げられる。
本発明の光記録媒体はBDであるのが好ましい。BDは波長405nmの青紫色レーザーを使用し、対物レンズのNAを0.85とすることによりレーザースポット径を小さくして、より高密度の情報を記録する光記録媒体である。BD-Rでは基板上に反射層と、記録層と、透明保護層と、基板よりも薄いカバー層とが順次積層されている。カバー層側から青紫色レーザー光を照射して記録再生を行う。
本発明の光記録媒体はBDであるのが好ましい。BDは波長405nmの青紫色レーザーを使用し、対物レンズのNAを0.85とすることによりレーザースポット径を小さくして、より高密度の情報を記録する光記録媒体である。BD-Rでは基板上に反射層と、記録層と、透明保護層と、基板よりも薄いカバー層とが順次積層されている。カバー層側から青紫色レーザー光を照射して記録再生を行う。
以下、実施例および参考例により、本発明をさらに具体的に説明する。
スクアリリウム化合物の原料として用いた化合物(IV-1)、(IV-2)、(VI-1)、(VI-2)、(VI-3)、(VI-4)、(VI-5)、(VI-6)(VI-7)および(VI-8)を以下に示す。式中、Meはメチル基を表し、iPrはイソプロピル基を表し、tBuはtert-ブチル基を表す。
スクアリリウム化合物の原料として用いた化合物(IV-1)、(IV-2)、(VI-1)、(VI-2)、(VI-3)、(VI-4)、(VI-5)、(VI-6)(VI-7)および(VI-8)を以下に示す。式中、Meはメチル基を表し、iPrはイソプロピル基を表し、tBuはtert-ブチル基を表す。
参考例1.化合物(IV-1)
1-ブロモ-3,4-ジフルオロベンゼン8.68g、3-フルオロアニリン5.00g、ビス(ジベンジリデンアセトン)パラジウム錯体[Pd(dba)2]128mg、1,1-ビス(ジフェニルホスフィノ)フェロセン(dppf)125mg、ナトリウムtert-ブトキシド5.62gおよびトルエン30mlを混合し、110℃で2時間攪拌した。反応液を冷却後、反応液にセライトを加え、混合物を濾過し、濾液を飽和食塩水で洗浄し、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=9:1)で精製することにより3,3’,4-トリフルオロジフェニルアミン6.82g(収率68%)を得た。
1-ブロモ-3,4-ジフルオロベンゼン8.68g、3-フルオロアニリン5.00g、ビス(ジベンジリデンアセトン)パラジウム錯体[Pd(dba)2]128mg、1,1-ビス(ジフェニルホスフィノ)フェロセン(dppf)125mg、ナトリウムtert-ブトキシド5.62gおよびトルエン30mlを混合し、110℃で2時間攪拌した。反応液を冷却後、反応液にセライトを加え、混合物を濾過し、濾液を飽和食塩水で洗浄し、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=9:1)で精製することにより3,3’,4-トリフルオロジフェニルアミン6.82g(収率68%)を得た。
3,3’,4-トリフルオロジフェニルアミン3.5gおよびスクアリン酸0.72gを、トルエン1.5mlおよびブタノール1.5mlの混合溶媒中、135℃で12時間反応させた。反応液を冷却後、析出した固体を濾取してメタノール溶媒で洗浄後、乾燥することにより化合物(IV-1)2.0g(収率61%)を得た。
参考例2.化合物(IV-2)
3-フルオロアニリンの代わりに4-フルオロアニリンを用いる以外は参考例1と同様に操作し、3,4,4’- トリフルオロジフェニルアミンを得た。
参考例2.化合物(IV-2)
3-フルオロアニリンの代わりに4-フルオロアニリンを用いる以外は参考例1と同様に操作し、3,4,4’- トリフルオロジフェニルアミンを得た。
3,3’,4-トリフルオロジフェニルアミンの代わりに3,4,4’- トリフルオロジフェニルアミンを用いる以外は参考例1と同様に操作し、スクアリリウム化合物(IV-2)を得た。
参考例3.化合物(VI-1)
4-メトキシフェニルヒドラジン塩酸塩17.46g、トリエチルアミン10.12gおよびクロロホルム100mlを混合し、室温で0.5時間攪拌した。反応液を水50mlで洗浄し、溶媒を留去した。残渣にキシレン10ml、酢酸1.2gおよびトリフルオロアセト酢酸エチル18.8gを加え、混合物を90℃で8時間攪拌した。反応液を5℃に冷却し、反応液にオクタン20mlを加え、析出した固体を濾取してオクタンとキシレンとの2:1混合溶媒(体積比)で洗浄後、乾燥することにより1-(4-メトキシフェニル)-5-ヒドロキシ-3-トリフルオロメチルピラゾール16.0g(収率58%)を得た。
参考例3.化合物(VI-1)
4-メトキシフェニルヒドラジン塩酸塩17.46g、トリエチルアミン10.12gおよびクロロホルム100mlを混合し、室温で0.5時間攪拌した。反応液を水50mlで洗浄し、溶媒を留去した。残渣にキシレン10ml、酢酸1.2gおよびトリフルオロアセト酢酸エチル18.8gを加え、混合物を90℃で8時間攪拌した。反応液を5℃に冷却し、反応液にオクタン20mlを加え、析出した固体を濾取してオクタンとキシレンとの2:1混合溶媒(体積比)で洗浄後、乾燥することにより1-(4-メトキシフェニル)-5-ヒドロキシ-3-トリフルオロメチルピラゾール16.0g(収率58%)を得た。
1-(4-メトキシフェニル)-5-ヒドロキシ-3-トリフルオロメチルピラゾール12.9g、3,4-ジメトキシシクロブテン-1,2-ジオン7.11g、炭酸カリウム6.9gおよびメタノール15mlを混合し、40℃で3時間攪拌した。反応液を冷却後、析出した固体を濾取してメタノールで洗浄した。得られた固体に炭酸カリウム3.46gおよび水75mlを加え、混合物を70℃で4時間攪拌した。反応液を冷却後、反応液に3mol/lの塩酸100mlを加え、混合物を30℃に冷却し、析出した固体を濾取してジエチルエーテルで洗浄後、乾燥することにより化合物(VI-1)9.8g(収率55%)を得た。
参考例4.化合物(VI-2)
2,3,4,5-テトラフルオロベンゾイル酢酸エチル13.21g、酢酸0.6g、フェニルヒドラジン5.41gおよびキシレン10mlを混合し、90℃で8時間攪拌した。反応液を5℃に冷却後、反応液にオクタン20mlを加え、析出した固体を濾取してオクタンとキシレンとの2:1混合溶媒(体積比)で洗浄後、乾燥することにより5-ヒドロキシ-1-フェニル-3-(2,3,4,5-テトラフルオロフェニル)ピラゾール13.35g(収率87%)を得た。
参考例4.化合物(VI-2)
2,3,4,5-テトラフルオロベンゾイル酢酸エチル13.21g、酢酸0.6g、フェニルヒドラジン5.41gおよびキシレン10mlを混合し、90℃で8時間攪拌した。反応液を5℃に冷却後、反応液にオクタン20mlを加え、析出した固体を濾取してオクタンとキシレンとの2:1混合溶媒(体積比)で洗浄後、乾燥することにより5-ヒドロキシ-1-フェニル-3-(2,3,4,5-テトラフルオロフェニル)ピラゾール13.35g(収率87%)を得た。
5-ヒドロキシ-1-フェニル-3-(2,3,4,5-テトラフルオロフェニル)ピラゾール9.25g、3,4-ジメトキシシクロブテン-1,2-ジオン4.26g、炭酸カリウム4.15gおよびメタノール60mlを混合し、40℃で3時間攪拌した。反応液を冷却後、析出した固体を濾取してメタノールで洗浄した。得られた固体に炭酸カリウム2.07gおよび水90mlを加え、混合物を80℃で2時間攪拌した。反応液を冷却後、反応液に3mol/lの塩酸50mlを加え、混合物を50℃に冷却し、析出した固体を濾取して水で洗浄後、乾燥することにより化合物(VI-2)8.78g(収率72%)を得た。
参考例5.化合物(VI-3)
3,4-ジクロロシクロブテン-1,2-ジオン5.00gとトリエチルアミン3.69gとの混合物に1,2-ジメチルインドール5.29gとベンゼン160mlとの混合物を室温で滴下し、混合物を室温で1時間攪拌した。反応液を濾過し、濾液の溶媒を留去した。残渣をクロロホルムと酢酸エチルとの1:1混合溶媒(体積比)30mlで再結晶することにより褐色固体4.6gを得た。得られた固体に水と酢酸との1:1混合溶媒(体積比)40mlを加え、110℃で5時間加熱した。反応液を0℃に冷却後、析出した固体を濾取して水で洗浄後、乾燥することにより化合物(VI-3)3.99g(収率50%)を得た。
3,4-ジクロロシクロブテン-1,2-ジオン5.00gとトリエチルアミン3.69gとの混合物に1,2-ジメチルインドール5.29gとベンゼン160mlとの混合物を室温で滴下し、混合物を室温で1時間攪拌した。反応液を濾過し、濾液の溶媒を留去した。残渣をクロロホルムと酢酸エチルとの1:1混合溶媒(体積比)30mlで再結晶することにより褐色固体4.6gを得た。得られた固体に水と酢酸との1:1混合溶媒(体積比)40mlを加え、110℃で5時間加熱した。反応液を0℃に冷却後、析出した固体を濾取して水で洗浄後、乾燥することにより化合物(VI-3)3.99g(収率50%)を得た。
参考例6.化合物(1)
化合物(IV-1)0.50gおよび2-ピリジンカルボヒドラジド0.14gを、アセトニトリル10ml中、50℃で40時間反応させた。反応液を冷却後、析出した固体を濾取して乾燥することにより化合物(1)0.39g(収率88%)を得た。
1H-NMR (400MHz)δ(DMSO-d6) ppm:6.95-7.15(4H,m),7.40-7.50(3H,m),7.65-7.70(1H,m),8.01-8.07(2H,m),8.68-8.70(1H,m),11.62(1H,s).
化合物(IV-1)0.50gおよび2-ピリジンカルボヒドラジド0.14gを、アセトニトリル10ml中、50℃で40時間反応させた。反応液を冷却後、析出した固体を濾取して乾燥することにより化合物(1)0.39g(収率88%)を得た。
1H-NMR (400MHz)δ(DMSO-d6) ppm:6.95-7.15(4H,m),7.40-7.50(3H,m),7.65-7.70(1H,m),8.01-8.07(2H,m),8.68-8.70(1H,m),11.62(1H,s).
参考例7.化合物(22)
化合物(IV-2)0.50gおよびイソニコチノヒドラジド0.13gを、エタノール20ml中、70℃で10時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(22)0.37g(収率90%)を得た。
1H-NMR (400MHz)δ(DMSO-d6)ppm:6.94-7.45(7H,m),7.71(2H,d,J=6.0Hz),8.77(2H,d,J=6.0Hz),11.61(1H,bs).
化合物(IV-2)0.50gおよびイソニコチノヒドラジド0.13gを、エタノール20ml中、70℃で10時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(22)0.37g(収率90%)を得た。
1H-NMR (400MHz)δ(DMSO-d6)ppm:6.94-7.45(7H,m),7.71(2H,d,J=6.0Hz),8.77(2H,d,J=6.0Hz),11.61(1H,bs).
参考例8.化合物(64)
化合物(VI-1)2.83gおよびベンゾヒドラジド1.09gを、エタノール32ml中、70℃で40時間反応させた。反応液を冷却後、析出した固体を濾取して乾燥することにより化合物(64)1.27g(収率34%)を得た。
1H-NMR (400MHz)δ(DMSO-d6) ppm:3.81(3H,s),7.04-7.07(2H,m),7.53-7.65(5H,m),7.79-7.81(2H,m),11.06(1H,bs).
化合物(VI-1)2.83gおよびベンゾヒドラジド1.09gを、エタノール32ml中、70℃で40時間反応させた。反応液を冷却後、析出した固体を濾取して乾燥することにより化合物(64)1.27g(収率34%)を得た。
1H-NMR (400MHz)δ(DMSO-d6) ppm:3.81(3H,s),7.04-7.07(2H,m),7.53-7.65(5H,m),7.79-7.81(2H,m),11.06(1H,bs).
参考例9.化合物(65)
化合物(VI-1)1.77gおよび2-ピリジンカルボヒドラジド0.69gを、エタノール35ml中、70℃で3時間反応させた。反応液を冷却後、析出した固体を濾取して乾燥することにより化合物(65)2.15g(収率98%)を得た。
1H-NMR (400MHz)δ(DMSO-d6) ppm:3.81(3H,s),4.05(2H,bs),7.06(2H,d,J=9.0Hz),7.62-7.67(3H,m),8.02-8.12(2H,m),8.69(1H,d,J=2.2Hz).
化合物(VI-1)1.77gおよび2-ピリジンカルボヒドラジド0.69gを、エタノール35ml中、70℃で3時間反応させた。反応液を冷却後、析出した固体を濾取して乾燥することにより化合物(65)2.15g(収率98%)を得た。
1H-NMR (400MHz)δ(DMSO-d6) ppm:3.81(3H,s),4.05(2H,bs),7.06(2H,d,J=9.0Hz),7.62-7.67(3H,m),8.02-8.12(2H,m),8.69(1H,d,J=2.2Hz).
参考例10.化合物(73)
化合物(VI-2)1.61gおよびニコチノヒドラジド0.55gを、エタノール16ml中、70℃で3時間反応させた。反応液を冷却後、析出した固体を濾取して乾燥することにより化合物(73)1.71g(収率98%)を得た。
1H-NMR (400MHz)δ(CDCl3)ppm:7.34(1H,t,J=7.4Hz),7.48-7.53(3H,m),7.82(2H,d,J=7.8Hz),7.90-7.93(1H,m),8.55(1H,d,J=8.1Hz),8.92(1H,d,J=5.1Hz),9.12(1H,m).
化合物(VI-2)1.61gおよびニコチノヒドラジド0.55gを、エタノール16ml中、70℃で3時間反応させた。反応液を冷却後、析出した固体を濾取して乾燥することにより化合物(73)1.71g(収率98%)を得た。
1H-NMR (400MHz)δ(CDCl3)ppm:7.34(1H,t,J=7.4Hz),7.48-7.53(3H,m),7.82(2H,d,J=7.8Hz),7.90-7.93(1H,m),8.55(1H,d,J=8.1Hz),8.92(1H,d,J=5.1Hz),9.12(1H,m).
参考例11.化合物(119)
化合物(VI-3)0.28gおよびカルバジン酸エチル0.12gを、エタノール10ml中、70℃で2.5時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(119)を0.33g(収率85.6%)を得た。
1H-NMR (400MHz)δ(DMSO-d6)ppm:1.23(3H,t,J=6.8Hz),3.01(3H,s),3.74(3H,s),4.13(2H,q,J=6.8Hz),7.14(1H,t,J=7.2Hz),7.20(1H,t,J=7.2Hz),7.46(1H,d,J=8.0Hz),8.67(1H,d,J=7.6Hz),10.33(1H,bs).
化合物(VI-3)0.28gおよびカルバジン酸エチル0.12gを、エタノール10ml中、70℃で2.5時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(119)を0.33g(収率85.6%)を得た。
1H-NMR (400MHz)δ(DMSO-d6)ppm:1.23(3H,t,J=6.8Hz),3.01(3H,s),3.74(3H,s),4.13(2H,q,J=6.8Hz),7.14(1H,t,J=7.2Hz),7.20(1H,t,J=7.2Hz),7.46(1H,d,J=8.0Hz),8.67(1H,d,J=7.6Hz),10.33(1H,bs).
参考例12.化合物(128)
化合物(VI-3)0.50gおよびフェニルアセトヒドラジド0.31gを、エタノール15ml中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(128)を0.71g(収率92%)を得た。
1H-NMR (400MHz)δ(DMSO-d6)ppm:3.03(3H,s),3.58(3H,s),3.74(3H,s),7.13-7.35(7H,m),7.47(1H,d,J=8.0Hz),8.69(1H,d,J=7.6Hz),11.23(1H,bs).
化合物(VI-3)0.50gおよびフェニルアセトヒドラジド0.31gを、エタノール15ml中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(128)を0.71g(収率92%)を得た。
1H-NMR (400MHz)δ(DMSO-d6)ppm:3.03(3H,s),3.58(3H,s),3.74(3H,s),7.13-7.35(7H,m),7.47(1H,d,J=8.0Hz),8.69(1H,d,J=7.6Hz),11.23(1H,bs).
参考例13.化合物(VI-4)
4-メトキシフェニルヒドラジン塩酸塩8.73gおよびクロロホルム50mlの混合物にトリエチルアミン5.06gを加え、混合物を25℃で0.5時間攪拌した。反応液を水30mlで洗浄後、溶媒を留去した。残渣にキシレン5ml、酢酸0.6gおよび2,3,4,5-テトラフルオロベンゾイル酢酸エチル13.21gを加え、混合物を90℃で7時間攪拌した。反応液を5℃に冷却後、反応液にオクタン20mlを加え、析出した固体を濾取してオクタンとキシレンとの2:1混合溶媒(体積比)で洗浄後、乾燥することにより5-ヒドロキシ-1-(4-メトキシフェニル)-3-(2,3,4,5-テトラフルオロフェニル)ピラゾール10.77g(収率64%)を得た。
4-メトキシフェニルヒドラジン塩酸塩8.73gおよびクロロホルム50mlの混合物にトリエチルアミン5.06gを加え、混合物を25℃で0.5時間攪拌した。反応液を水30mlで洗浄後、溶媒を留去した。残渣にキシレン5ml、酢酸0.6gおよび2,3,4,5-テトラフルオロベンゾイル酢酸エチル13.21gを加え、混合物を90℃で7時間攪拌した。反応液を5℃に冷却後、反応液にオクタン20mlを加え、析出した固体を濾取してオクタンとキシレンとの2:1混合溶媒(体積比)で洗浄後、乾燥することにより5-ヒドロキシ-1-(4-メトキシフェニル)-3-(2,3,4,5-テトラフルオロフェニル)ピラゾール10.77g(収率64%)を得た。
5-ヒドロキシ-1-(4-メトキシフェニル)-3-(2,3,4,5-テトラフルオロフェニル)ピラゾール8.46g、3,4-ジメトキシシクロブテン-1,2-ジオン3.55g、炭酸カリウム3.46gおよびメタノール25mlを混合し、40℃で3時間攪拌した。反応液を5℃に冷却後、析出した固体を濾取して5℃に冷却したメタノールで洗浄した。得られた固体に炭酸カリウム1.73gおよび水65mlを加え、混合物を80℃で2時間攪拌した。反応液を冷却後、反応液に3mol/lの塩酸40mlを加え、析出した固体を濾取して水で洗浄後、乾燥することにより化合物(VI-4)6.66g(収率61%)を得た。
参考例14.化合物(VI-5)
2-クロロ-4,6-ジメトキシピリミジン26.19gおよびピリジン58mlの混合物にヒドラジン1水和物75.09gを5℃で滴下し、混合物を25℃で5時間攪拌した。反応液に水150mlを加え、混合物を5℃に冷却後、析出した固体を濾取して水で洗浄後、乾燥することにより2-ヒドラジノ-4,6-ジメトキシピリミジン15.78g(収率62%)を得た。
2-クロロ-4,6-ジメトキシピリミジン26.19gおよびピリジン58mlの混合物にヒドラジン1水和物75.09gを5℃で滴下し、混合物を25℃で5時間攪拌した。反応液に水150mlを加え、混合物を5℃に冷却後、析出した固体を濾取して水で洗浄後、乾燥することにより2-ヒドラジノ-4,6-ジメトキシピリミジン15.78g(収率62%)を得た。
2-ヒドラジノ-4,6-ジメトキシピリミジン13.61g、p-トルエンスルホン酸1水和物0.76gおよびトルエン80mlを混合し、50℃で0.5時間攪拌した。反応液に4,4,4-トリフルオロアセト酢酸エチル15.03gを加え、ディーン・スターク装置の付いた反応器中で混合物を7時間還流した。反応液にp-トルエンスルホン酸1水和物0.76gを加え、ディーン・スターク装置の付いた反応器中で混合物を4時間還流した。反応液を5℃に冷却後、反応液にオクタン80mlを加え、混合物を5℃で1時間攪拌した。析出した固体を濾取してオクタンとトルエンとの1:1混合溶媒(体積比)で洗浄後、乾燥することにより5-ヒドロキシ-1-(4,6-ジメトキシ-2-ピリミジニル)-3-トリフルオロメチルピラゾール21.82g(収率94%)を得た。
5-ヒドロキシ-1-(4,6-ジメトキシ-2-ピリミジニル)-3-トリフルオロメチルピラゾール20.31g、3,4-ジメトキシシクロブテン-1,2-ジオン9.95g、炭酸カリウム9.67gおよびメタノール75mlを混合し、40℃で4時間攪拌した。反応液を5℃に冷却後、析出した固体を濾取して5℃に冷却したメタノールとトルエンとの1:1混合溶媒(体積比)で洗浄した。得られた固体に炭酸カリウム4.84gおよび水140mlを加え、混合物を80℃で4時間攪拌した。反応液を冷却後、反応液に3mol/lの塩酸50mlを加え、混合物を5℃に冷却し、析出した固体を濾取して5℃に冷却した3mol/lの塩酸および5℃に冷却した水で順次洗浄後、乾燥することにより化合物(VI-5)17.06g(収率63%)を得た。
参考例15.化合物(VI-6)
tert-ブチルヒドラジン塩酸塩37.5g、アセト酢酸エチル39.95g、トリエチルアミン30.75g、キシレン110mlおよびメタノール75mlを混合し、ディーン・スターク装置の付いた反応器中で6時間還流した。反応液を室温に冷却後、水120mlで洗浄し、減圧下で濃縮し、析出した固体を濾取した。得られた固体をキシレン20mlおよびメタノール20mlで順次洗浄後、乾燥することにより5-ヒドロキシ-1-tert-ブチル-3-メチルピラゾール33.7g(収率73%)を得た。
tert-ブチルヒドラジン塩酸塩37.5g、アセト酢酸エチル39.95g、トリエチルアミン30.75g、キシレン110mlおよびメタノール75mlを混合し、ディーン・スターク装置の付いた反応器中で6時間還流した。反応液を室温に冷却後、水120mlで洗浄し、減圧下で濃縮し、析出した固体を濾取した。得られた固体をキシレン20mlおよびメタノール20mlで順次洗浄後、乾燥することにより5-ヒドロキシ-1-tert-ブチル-3-メチルピラゾール33.7g(収率73%)を得た。
5-ヒドロキシ-1-tert-ブチル-3-メチルピラゾール10.0g、3,4-ジメトキシシクロブテン-1,2-ジオン9.22g、炭酸カリウム8.96gおよびメタノール150mlを混合し、60℃で4時間攪拌した。反応液を0℃に冷却後、析出した固体を濾取した。得られた固体に炭酸カリウム2.18gおよび水75mlを加え、混合物を75℃で2時間攪拌した。反応液を冷却後、反応液に6mol/lの塩酸20mlを加え、混合物を室温に冷却し、析出した固体を濾取して水で洗浄後、乾燥することにより化合物(VI-6)11.85g(収率73%)を得た。
参考例16.化合物(VI-7)
2-ヒドラジノ-3-トリフルオロメチルピリジン12.40g、硫酸0.69g、4-メチル-3-オキソペンタン酸メチル10.09gおよびトルエン21mlを混合し、ディーン・スターク装置の付いた反応器中で5時間還流した。反応液を冷却後、溶媒を留去し、残渣を乾燥することにより5-ヒドロキシ-1-(3-トリフルオロメチル-2-ピリジル)-3-イソプロピルピラゾール19.91g(収率92%)を得た。
2-ヒドラジノ-3-トリフルオロメチルピリジン12.40g、硫酸0.69g、4-メチル-3-オキソペンタン酸メチル10.09gおよびトルエン21mlを混合し、ディーン・スターク装置の付いた反応器中で5時間還流した。反応液を冷却後、溶媒を留去し、残渣を乾燥することにより5-ヒドロキシ-1-(3-トリフルオロメチル-2-ピリジル)-3-イソプロピルピラゾール19.91g(収率92%)を得た。
5-ヒドロキシ-1-(3-トリフルオロメチル-2-ピリジル)-3-イソプロピルピラゾール19.91g、3,4-ジメトキシシクロブテン-1,2-ジオン9.12g、炭酸カリウム8.87g、メタノール46mlおよびトルエン23mlを混合し、40℃で3時間攪拌した。反応液を5℃に冷却後、析出した固体を濾取して5℃に冷却したメタノールとトルエンとの1:1混合溶媒(体積比)で洗浄した。得られた固体に炭酸カリウム4.44gおよび水96mlを加え、混合物を80℃で3時間攪拌した。反応液を冷却後、反応液に3mol/lの塩酸64mlを加え、混合物を5℃に冷却し、析出した固体を濾取して5℃に冷却した水で洗浄後、乾燥することにより化合物(VI-7)16.62g(収率71%)を得た。
参考例17.化合物(VI-8)
参考例14と同様な方法により製造して得た2-ヒドラジノ-4,6-ジメトキシピリミジン9.09g、トルエン24ml、濃硫酸0.52gおよび4-メチル-3-オキソペンタン酸エチル7.07gを混合し、ディーン・スターク装置の付いた反応器中で8時間還流した。反応液を40℃に冷却後、反応液にオクタン48mlを加え、混合物を5℃に冷却し、5℃で1時間攪拌した。析出した固体を濾取してオクタンとトルエンとの2:1混合溶媒(体積比)で洗浄後、乾燥することにより5-ヒドロキシ-1-(4,6-ジメトキシ-2-ピリミジニル)-3-イソプロピルピラゾール11.81g(収率84%)を得た。
参考例14と同様な方法により製造して得た2-ヒドラジノ-4,6-ジメトキシピリミジン9.09g、トルエン24ml、濃硫酸0.52gおよび4-メチル-3-オキソペンタン酸エチル7.07gを混合し、ディーン・スターク装置の付いた反応器中で8時間還流した。反応液を40℃に冷却後、反応液にオクタン48mlを加え、混合物を5℃に冷却し、5℃で1時間攪拌した。析出した固体を濾取してオクタンとトルエンとの2:1混合溶媒(体積比)で洗浄後、乾燥することにより5-ヒドロキシ-1-(4,6-ジメトキシ-2-ピリミジニル)-3-イソプロピルピラゾール11.81g(収率84%)を得た。
5-ヒドロキシ-1-(4,6-ジメトキシ-2-ピリミジニル)-3-イソプロピルピラゾール10.57g、3,4-ジメトキシシクロブテン-1,2-ジオン5.68g、炭酸カリウム5.53g、メタノール20mlおよびトルエン100mlを混合し、40℃で3時間攪拌した。反応液を5℃に冷却後、析出した固体を濾取して5℃に冷却したメタノールとトルエンとの1:2混合溶媒(体積比)で洗浄した。得られた固体に炭酸カリウム2.76gおよび水100mlを加え、混合物を80℃で3時間攪拌した。反応液を冷却後、反応液に3mol/lの塩酸55mlを加え、混合物を5℃に冷却し、析出した固体を濾取して5℃に冷却した水で洗浄後、乾燥することにより化合物(VI-8)15.97g(収率79%)を得た。
参考例18.化合物(81)
化合物(VI-4)0.50gおよび2-ピリジンカルボヒドラジド0.14gを、アセトニトリル10ml中、50℃で40時間反応させた。反応液を冷却後、析出した固体を濾取して乾燥することにより化合物(81)0.39g(収率88%)を得た。
1H-NMR (400MHz)δ(DMSO-d6) ppm:3.78(3H,s),6.98(2H,bd,J=9.1Hz),7.30-7.32(1H,m),7.51-7.71(1H,m),7.84(2H,bd,J=9.1Hz),8.03-8.10(2H,m),8.70(1H,bd,J=4.9Hz),11.24(1H,bs),11.37(1H,bs).
化合物(VI-4)0.50gおよび2-ピリジンカルボヒドラジド0.14gを、アセトニトリル10ml中、50℃で40時間反応させた。反応液を冷却後、析出した固体を濾取して乾燥することにより化合物(81)0.39g(収率88%)を得た。
1H-NMR (400MHz)δ(DMSO-d6) ppm:3.78(3H,s),6.98(2H,bd,J=9.1Hz),7.30-7.32(1H,m),7.51-7.71(1H,m),7.84(2H,bd,J=9.1Hz),8.03-8.10(2H,m),8.70(1H,bd,J=4.9Hz),11.24(1H,bs),11.37(1H,bs).
参考例19.化合物(148)
化合物(VI-5)0.50gおよび2,4,6-トリメチルベンゾヒドラジド0.13gを、エタノール20ml中、70℃で10時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(148)0.37g(収率90%)を得た。
1H-NMR (400MHz)δ(DMSO-d6)ppm:2.14(3H,s),2.21(3H,s),2.25(3H,s),3.94(6H,s),6.30(1H,s),6.85(1H,s),6.89(1H,s),10.18(1H,s),10.31(1H,s).
化合物(VI-5)0.50gおよび2,4,6-トリメチルベンゾヒドラジド0.13gを、エタノール20ml中、70℃で10時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(148)0.37g(収率90%)を得た。
1H-NMR (400MHz)δ(DMSO-d6)ppm:2.14(3H,s),2.21(3H,s),2.25(3H,s),3.94(6H,s),6.30(1H,s),6.85(1H,s),6.89(1H,s),10.18(1H,s),10.31(1H,s).
参考例20.化合物(149)
化合物(VI-5)2.83gおよび2,6-ジフルオロベンゾヒドラジド1.09gを、エタノール32ml中、70℃で40時間反応させた。反応液を冷却後、析出した固体を濾取して乾燥することにより化合物(149)1.27g(収率34%)を得た。
1H-NMR (400MHz)δ(DMSO-d6) ppm:3.94(6H,s),6.30(1H,s),7.19(2H,dt,J=2.4,8.1Hz),7.51-7.60(1H,m),10.57(1H,s),11.04(1H,s).
化合物(VI-5)2.83gおよび2,6-ジフルオロベンゾヒドラジド1.09gを、エタノール32ml中、70℃で40時間反応させた。反応液を冷却後、析出した固体を濾取して乾燥することにより化合物(149)1.27g(収率34%)を得た。
1H-NMR (400MHz)δ(DMSO-d6) ppm:3.94(6H,s),6.30(1H,s),7.19(2H,dt,J=2.4,8.1Hz),7.51-7.60(1H,m),10.57(1H,s),11.04(1H,s).
参考例21.化合物(150)
化合物(VI-6)0.73gおよび2,4,6-トリメチルベンゾヒドラジド0.61gを、エタノール6ml中、70℃で3時間反応させた。反応液を冷却後、反応液にジエチルエーテル10mlを加えた。析出した固体を濾取してジエチルエーテルで洗浄後、乾燥することにより化合物(150)0.49g(収率37%)を得た。
1H-NMR (400MHz)δ(DMSO-d6) ppm:1.51(9H,bs),2.26(6H,bs),2.32(3H,bs),2.51(3H,bs),6.90(2H,bs),10.15(1H,s),11.16(1H,s).
化合物(VI-6)0.73gおよび2,4,6-トリメチルベンゾヒドラジド0.61gを、エタノール6ml中、70℃で3時間反応させた。反応液を冷却後、反応液にジエチルエーテル10mlを加えた。析出した固体を濾取してジエチルエーテルで洗浄後、乾燥することにより化合物(150)0.49g(収率37%)を得た。
1H-NMR (400MHz)δ(DMSO-d6) ppm:1.51(9H,bs),2.26(6H,bs),2.32(3H,bs),2.51(3H,bs),6.90(2H,bs),10.15(1H,s),11.16(1H,s).
参考例22.化合物(151)
化合物(VI-7)1.47gおよびベンゾヒドラジド0.54gを、エタノール5ml中、70℃で4時間反応させた。反応液を冷却後、析出した固体を濾取してジエチルエーテルで洗浄後、乾燥することにより化合物(151)1.39g(収率72%)を得た。
1H-NMR (400MHz)δ(DMSO-d6) ppm:1.08(3H,d,J=6.8Hz),1.28(3H,d,J=6.8Hz),3.49-3.54(1H,m),7.50-7.62(3H,m),7.77-7.89(3H,m),8.41-8.53(1H,m),8.86-8.97(1H,m),10.46(1H,s),11.09(1H,s).
化合物(VI-7)1.47gおよびベンゾヒドラジド0.54gを、エタノール5ml中、70℃で4時間反応させた。反応液を冷却後、析出した固体を濾取してジエチルエーテルで洗浄後、乾燥することにより化合物(151)1.39g(収率72%)を得た。
1H-NMR (400MHz)δ(DMSO-d6) ppm:1.08(3H,d,J=6.8Hz),1.28(3H,d,J=6.8Hz),3.49-3.54(1H,m),7.50-7.62(3H,m),7.77-7.89(3H,m),8.41-8.53(1H,m),8.86-8.97(1H,m),10.46(1H,s),11.09(1H,s).
参考例23.化合物(152)
化合物(VI-7)1.47gおよび2,4,6-トリメチルベンゾヒドラジド0.71gを、エタノール10ml中、70℃で4時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(152)1.50g(収率71%)を得た。
1H-NMR (400MHz)δ(DMSO-d6) ppm:1.20(6H,d,J=6.8Hz),2.26(9H,bs),3.40-3.57(1H,m),6.91(2H,bs),7.80-7.85(1H,m),8.41-8.49(1H,m),8.85-8.90(1H,m),10.15(1H,s),11.25(1H,s).
化合物(VI-7)1.47gおよび2,4,6-トリメチルベンゾヒドラジド0.71gを、エタノール10ml中、70℃で4時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(152)1.50g(収率71%)を得た。
1H-NMR (400MHz)δ(DMSO-d6) ppm:1.20(6H,d,J=6.8Hz),2.26(9H,bs),3.40-3.57(1H,m),6.91(2H,bs),7.80-7.85(1H,m),8.41-8.49(1H,m),8.85-8.90(1H,m),10.15(1H,s),11.25(1H,s).
参考例24.化合物(153)
化合物(VI-8)1.44gおよび3-トリフルオロメチルベンゾヒドラジド0.82gを、エタノール16ml中、70℃で3時間攪拌させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(153)1.52g(収率70%)を得た。
1H-NMR (400MHz)δ(DMSO-d6)ppm:1.19(3H,d,J=6.8Hz),1.31(3H,d,J=7.0Hz),3.48-3.57(1H,m),3.86(3H,s),3.91(3H,s),6.16(1H,s),7.77-7.83(1H,m),7.95-8.20(3H,m),10.51(1H,s),11.27(1H,s).
化合物(VI-8)1.44gおよび3-トリフルオロメチルベンゾヒドラジド0.82gを、エタノール16ml中、70℃で3時間攪拌させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(153)1.52g(収率70%)を得た。
1H-NMR (400MHz)δ(DMSO-d6)ppm:1.19(3H,d,J=6.8Hz),1.31(3H,d,J=7.0Hz),3.48-3.57(1H,m),3.86(3H,s),3.91(3H,s),6.16(1H,s),7.77-7.83(1H,m),7.95-8.20(3H,m),10.51(1H,s),11.27(1H,s).
(スクアリリウム化合物の金属錯体の製造)
セイコ-・インスツルメント社製 TG/DTA6200を用いて熱重量分析を以下の条件で行うことにより、以下の実施例で得られたスクアリリウム化合物の金属錯体の分解開始温度を求めた。0.05重量%/℃以上の重量減少が観察されたときの温度を分解開始温度とした。分解開始温度が300℃以下である化合物は、青紫色レーザー光等に対する高感度な光応答性が期待されるので、好ましい。
セイコ-・インスツルメント社製 TG/DTA6200を用いて熱重量分析を以下の条件で行うことにより、以下の実施例で得られたスクアリリウム化合物の金属錯体の分解開始温度を求めた。0.05重量%/℃以上の重量減少が観察されたときの温度を分解開始温度とした。分解開始温度が300℃以下である化合物は、青紫色レーザー光等に対する高感度な光応答性が期待されるので、好ましい。
測定温度:40~400℃、昇温温度:10℃/分、雰囲気;窒素通気(300ml/分)、試料容器:アルミニウム製15μl(開放)、試料:1~1.5mg
化合物(1)とニッケルとの2:1錯体[化合物(1-N)]
化合物(1)150mgおよび酢酸ニッケル(II)4水和物42mgを、エタノール5ml中、70℃で7時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(1-N)142mg(収率96%)を得た。
吸収極大波長(CHCl3):415nm
モル吸光係数(CHCl3):59100(mol/l)-1・cm-1
吸収極大波長(TFP):410nm
分解開始温度:228℃
分子量:932[FAB-MS:m/z 933(M+H)+]
化合物(1)150mgおよび酢酸ニッケル(II)4水和物42mgを、エタノール5ml中、70℃で7時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(1-N)142mg(収率96%)を得た。
吸収極大波長(CHCl3):415nm
モル吸光係数(CHCl3):59100(mol/l)-1・cm-1
吸収極大波長(TFP):410nm
分解開始温度:228℃
分子量:932[FAB-MS:m/z 933(M+H)+]
化合物(1)とコバルトとの2:1錯体[化合物(1-CO)]
化合物(1)150mgおよび酢酸コバルト(II)4水和物42mgを、エタノール5ml中、70℃で7時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(1-CO)135mg(収率85%)を得た。
吸収極大波長(CHCl3):422nm
モル吸光係数(CHCl3):40400(mol/l)-1・cm-1
吸収極大波長(TFP):408nm
分子量:933[FAB-MS:m/z 934(M+H)+]
化合物(1)150mgおよび酢酸コバルト(II)4水和物42mgを、エタノール5ml中、70℃で7時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(1-CO)135mg(収率85%)を得た。
吸収極大波長(CHCl3):422nm
モル吸光係数(CHCl3):40400(mol/l)-1・cm-1
吸収極大波長(TFP):408nm
分子量:933[FAB-MS:m/z 934(M+H)+]
化合物(22)とニッケルとの2:1錯体[化合物(22-N)]
化合物(22)150mgおよび酢酸ニッケル(II)4水和物40mgを、エタノール3ml中、70℃で2時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(22-N)を0.13g(収率83.8%)を得た。
吸収極大波長(CHCl3):414.5nm
モル吸光係数(CHCl3):40500(mol/l)-1・cm-1
吸収極大波長(TFP):403.5nm
分解開始温度:265℃
化合物(22)150mgおよび酢酸ニッケル(II)4水和物40mgを、エタノール3ml中、70℃で2時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(22-N)を0.13g(収率83.8%)を得た。
吸収極大波長(CHCl3):414.5nm
モル吸光係数(CHCl3):40500(mol/l)-1・cm-1
吸収極大波長(TFP):403.5nm
分解開始温度:265℃
化合物(22)とコバルトとの2:1錯体[化合物(22-CO)]
化合物(22)150mgおよび酢酸コバルト(II)4水和物40mgを、エタノール3ml中、70℃で4.5時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(22-CO)90mg(収率56%)を得た。
吸収極大波長(CHCl3): 415.0nm
モル吸光係数(CHCl3): 44400(mol/l)-1・cm-1
吸収極大波長(TFP):403.5nm
分解開始温度:275℃
化合物(22)150mgおよび酢酸コバルト(II)4水和物40mgを、エタノール3ml中、70℃で4.5時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(22-CO)90mg(収率56%)を得た。
吸収極大波長(CHCl3): 415.0nm
モル吸光係数(CHCl3): 44400(mol/l)-1・cm-1
吸収極大波長(TFP):403.5nm
分解開始温度:275℃
化合物(64)とニッケルとの2:1錯体[化合物(64-N)]
化合物(64)470mgおよび酢酸ニッケル(II)4水和物120mgを、エタノール5ml中、70℃で4時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(64-N)490mg(収率98%)を得た。
吸収極大波長(TFP):397nm
モル吸光係数(TFP):43100(mol/l)-1・cm-1
分解開始温度:282℃
分子量:1000[FAB-MS:m/z 1001(M+H)+]
化合物(64)470mgおよび酢酸ニッケル(II)4水和物120mgを、エタノール5ml中、70℃で4時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(64-N)490mg(収率98%)を得た。
吸収極大波長(TFP):397nm
モル吸光係数(TFP):43100(mol/l)-1・cm-1
分解開始温度:282℃
分子量:1000[FAB-MS:m/z 1001(M+H)+]
化合物(64)とコバルトとの2:1錯体[化合物(64-CO)]
化合物(64)470mgおよび酢酸コバルト(II)4水和物120mgを、エタノール5ml中、70℃で4時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(64-CO)490mg(収率98%)を得た。
吸収極大波長(TFP):382nm
モル吸光係数(TFP):42400(mol/l)-1・cm-1
分解開始温度:276℃
分子量:1001[FAB-MS:m/z 1002(M+H)+]
化合物(64)470mgおよび酢酸コバルト(II)4水和物120mgを、エタノール5ml中、70℃で4時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(64-CO)490mg(収率98%)を得た。
吸収極大波長(TFP):382nm
モル吸光係数(TFP):42400(mol/l)-1・cm-1
分解開始温度:276℃
分子量:1001[FAB-MS:m/z 1002(M+H)+]
化合物(65)とニッケルとの2:1錯体[化合物(65-N)]
化合物(65)950mgおよび酢酸ニッケル(II)4水和物250mgを、エタノール15ml中、70℃で4時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(65-N)950mg(収率90%)を得た。
吸収極大波長(TFP): 372nm
分解開始温度:291℃
化合物(65)950mgおよび酢酸ニッケル(II)4水和物250mgを、エタノール15ml中、70℃で4時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(65-N)950mg(収率90%)を得た。
吸収極大波長(TFP): 372nm
分解開始温度:291℃
化合物(65)とコバルトとの2:1錯体[化合物(65-CO)]
化合物(65)950mgおよび酢酸コバルト(II)4水和物280mgを、エタノール15ml中、70℃で4時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(65-CO)970mg(収率97%)を得た。
吸収極大波長(TFP): 382nm
分解開始温度:290℃
化合物(65)950mgおよび酢酸コバルト(II)4水和物280mgを、エタノール15ml中、70℃で4時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(65-CO)970mg(収率97%)を得た。
吸収極大波長(TFP): 382nm
分解開始温度:290℃
化合物(73)とニッケルとの2:1錯体[化合物(73-N)]
化合物(73)750mgおよび酢酸ニッケル(II)4水和物170mgを、エタノール15ml中、70℃で4時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(73-N)730mg(収率92%)を得た。
吸収極大波長(TFP): 385nm
分解開始温度:257℃
化合物(73)750mgおよび酢酸ニッケル(II)4水和物170mgを、エタノール15ml中、70℃で4時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(73-N)730mg(収率92%)を得た。
吸収極大波長(TFP): 385nm
分解開始温度:257℃
化合物(73)とコバルトとの2:1錯体[化合物(73-CO)]
化合物(73)750mgおよび酢酸コバルト(II)4水和物170mgを、エタノール15ml中、70℃で4時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(73-CO)720mg(収率90%)を得た。
吸収極大波長(TFP): 380nm
分解開始温度:253℃
化合物(73)750mgおよび酢酸コバルト(II)4水和物170mgを、エタノール15ml中、70℃で4時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(73-CO)720mg(収率90%)を得た。
吸収極大波長(TFP): 380nm
分解開始温度:253℃
化合物(119)とコバルトとの2:1錯体[化合物(119-CO)]
化合物(119)200mgおよび酢酸コバルト(II)4水和物76mgを、エタノール2ml中、70℃で0.5時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(119-CO)206mg(収率93%)を得た。
吸収極大波長(CHCl3):413.5nm
モル吸光係数(CHCl3):79100(mol/l)-1・cm-1
吸収極大波長(TFP):404.5nm
分解開始温度:192℃
化合物(119)200mgおよび酢酸コバルト(II)4水和物76mgを、エタノール2ml中、70℃で0.5時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(119-CO)206mg(収率93%)を得た。
吸収極大波長(CHCl3):413.5nm
モル吸光係数(CHCl3):79100(mol/l)-1・cm-1
吸収極大波長(TFP):404.5nm
分解開始温度:192℃
化合物(128)とニッケルとの2:1錯体[化合物(128-N)]
化合物(128)200mgおよび酢酸ニッケル(II)4水和物67mgを、エタノール3ml中、70℃で4.5時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(128-N)218mg(収率100%)を得た。
吸収極大波長(CHCl3):433.0nm
モル吸光係数(CHCl3):105300(mol/l)-1・cm-1
吸収極大波長(TFP):427.5nm
分解開始温度:186℃
化合物(128)200mgおよび酢酸ニッケル(II)4水和物67mgを、エタノール3ml中、70℃で4.5時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(128-N)218mg(収率100%)を得た。
吸収極大波長(CHCl3):433.0nm
モル吸光係数(CHCl3):105300(mol/l)-1・cm-1
吸収極大波長(TFP):427.5nm
分解開始温度:186℃
化合物(128)とコバルトとの2:1錯体[化合物(128-CO)]
化合物(128)200mgおよび酢酸コバルト(II)4水和物67mgを、エタノール3ml中、70℃で4.5時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(128-CO)227mg(収率100%)を得た。
吸収極大波長(CHCl3): 432.0nm
モル吸光係数(CHCl3): 92200(mol/l)-1・cm-1
吸収極大波長(TFP): 424.5nm
分解開始温度:175℃
化合物(128)200mgおよび酢酸コバルト(II)4水和物67mgを、エタノール3ml中、70℃で4.5時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(128-CO)227mg(収率100%)を得た。
吸収極大波長(CHCl3): 432.0nm
モル吸光係数(CHCl3): 92200(mol/l)-1・cm-1
吸収極大波長(TFP): 424.5nm
分解開始温度:175℃
化合物(81)とニッケルとの2:1錯体[化合物(81-N)]
化合物(81)150mgおよび酢酸ニッケル(II)4水和物42mgを、エタノール5ml中、70℃で7時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(81-N)142mg(収率96%)を得た。
吸収極大波長(TFP):445.0nm
分解開始温度:238℃
化合物(81)150mgおよび酢酸ニッケル(II)4水和物42mgを、エタノール5ml中、70℃で7時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(81-N)142mg(収率96%)を得た。
吸収極大波長(TFP):445.0nm
分解開始温度:238℃
化合物(81)とコバルトとの2:1錯体[化合物(81-CO)]
化合物(81)150mgおよび酢酸コバルト(II)4水和物42mgを、エタノール5ml中、70℃で7時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(81-CO)135mg(収率85%)を得た。
吸収極大波長(TFP):451.0nm
分解開始温度:234℃
化合物(81)150mgおよび酢酸コバルト(II)4水和物42mgを、エタノール5ml中、70℃で7時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(81-CO)135mg(収率85%)を得た。
吸収極大波長(TFP):451.0nm
分解開始温度:234℃
化合物(148)とコバルトとの2:1錯体[化合物(148-CO)]
化合物(148)150mgおよび酢酸コバルト(II)4水和物40mgを、エタノール3ml中、70℃で4.5時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(148-CO)90mg(収率56%)を得た。
吸収極大波長(TFP):372.0nm
分解開始温度:261℃
分子量:1149[FAB-MS:m/z 1150(M+H)+]
化合物(148)150mgおよび酢酸コバルト(II)4水和物40mgを、エタノール3ml中、70℃で4.5時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(148-CO)90mg(収率56%)を得た。
吸収極大波長(TFP):372.0nm
分解開始温度:261℃
分子量:1149[FAB-MS:m/z 1150(M+H)+]
化合物(149)とコバルトとの2:1錯体[化合物(149-CO)]
化合物(149)470mgおよび酢酸コバルト(II)4水和物120mgを、エタノール5ml中、70℃で4時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(149-CO)490mg(収率98%)を得た。
吸収極大波長(TFP):380.0nm
分解開始温度:248℃
分子量:1137[FAB-MS:m/z 1138(M+H)+]
化合物(149)470mgおよび酢酸コバルト(II)4水和物120mgを、エタノール5ml中、70℃で4時間反応させた。析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(149-CO)490mg(収率98%)を得た。
吸収極大波長(TFP):380.0nm
分解開始温度:248℃
分子量:1137[FAB-MS:m/z 1138(M+H)+]
化合物(150)とコバルトとの2:1錯体[化合物(150-CO)]
化合物(150)440mgおよび酢酸コバルト(II)4水和物130mgを、エタノール3ml中、70℃で3時間反応させた。反応液を冷却後、反応液にジエチルエーテル10mlを加え、混合物を攪拌し、析出した固体を濾取してジエチルエーテルで洗浄後、乾燥することにより化合物(150-CO)320mg(収率46%)を得た。
吸収極大波長(TFP):389.0nm
分解開始温度:233℃
分子量:877[FAB-MS:m/z 878(M+H)+]
化合物(150)440mgおよび酢酸コバルト(II)4水和物130mgを、エタノール3ml中、70℃で3時間反応させた。反応液を冷却後、反応液にジエチルエーテル10mlを加え、混合物を攪拌し、析出した固体を濾取してジエチルエーテルで洗浄後、乾燥することにより化合物(150-CO)320mg(収率46%)を得た。
吸収極大波長(TFP):389.0nm
分解開始温度:233℃
分子量:877[FAB-MS:m/z 878(M+H)+]
化合物(151)とコバルトとの2:1錯体[化合物(151-CO)]
化合物(151)970mgおよび酢酸コバルト(II)4水和物250mgを、エタノール3ml中、70℃で3時間反応させた。反応液を冷却後、反応液にジエチルエーテル10mlを加え、混合物を攪拌し、析出した固体を濾取してジエチルエーテルで洗浄後、乾燥することにより化合物(151-CO)850mg(収率83%)を得た。
吸収極大波長(TFP):385.0nm
分解開始温度:244℃
分子量:1027[FAB-MS:m/z 1028(M+H)+]
化合物(151)970mgおよび酢酸コバルト(II)4水和物250mgを、エタノール3ml中、70℃で3時間反応させた。反応液を冷却後、反応液にジエチルエーテル10mlを加え、混合物を攪拌し、析出した固体を濾取してジエチルエーテルで洗浄後、乾燥することにより化合物(151-CO)850mg(収率83%)を得た。
吸収極大波長(TFP):385.0nm
分解開始温度:244℃
分子量:1027[FAB-MS:m/z 1028(M+H)+]
化合物(152)とコバルトとの2:1錯体[化合物(152-CO)]
化合物(152)1060mgおよび酢酸コバルト(II)4水和物250mgを、エタノール6ml中、70℃で3時間反応させた。反応液を冷却後、ジエチルエーテル10mlを加え、混合物を攪拌し、析出した固体を濾取してジエチルエーテルで洗浄後、乾燥することにより化合物(152-CO)970mg(収率87%)を得た。
吸収極大波長(TFP):375.0nm
分解開始温度:245℃
分子量:1111[FAB-MS:m/z 1112(M+H)+]
化合物(152)1060mgおよび酢酸コバルト(II)4水和物250mgを、エタノール6ml中、70℃で3時間反応させた。反応液を冷却後、ジエチルエーテル10mlを加え、混合物を攪拌し、析出した固体を濾取してジエチルエーテルで洗浄後、乾燥することにより化合物(152-CO)970mg(収率87%)を得た。
吸収極大波長(TFP):375.0nm
分解開始温度:245℃
分子量:1111[FAB-MS:m/z 1112(M+H)+]
化合物(153)とコバルトとの2:1錯体[化合物(153-CO)]
化合物(153)980mgおよび酢酸コバルト(II)4水和物220mgを、エタノール12ml中、70℃で3時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(153-CO)630mg(収率61%)を得た。
吸収極大波長(TFP):371.0nm
分解開始温度:257℃
分子量:1149[FAB-MS:m/z 1150(M+H)+]
化合物(153)980mgおよび酢酸コバルト(II)4水和物220mgを、エタノール12ml中、70℃で3時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄後、乾燥することにより化合物(153-CO)630mg(収率61%)を得た。
吸収極大波長(TFP):371.0nm
分解開始温度:257℃
分子量:1149[FAB-MS:m/z 1150(M+H)+]
(溶解性試験)
化合物(1-N)、(1-CO)、(22-CO)、(64-N)、(64-CO)、(148-CO)、(149-CO)、(150-CO)、(151-CO)、(152-CO)および(153-CO)について、TFPに対する溶解性を調べた。
化合物(1-N)、(1-CO)、(22-CO)、(64-N)、(64-CO)、(148-CO)、(149-CO)、(150-CO)、(151-CO)、(152-CO)および(153-CO)について、TFPに対する溶解性を調べた。
上記のそれぞれのスクアリリウム化合物の金属錯体とTFPとを混合し、室温で30分間超音波振動を加えた後、混合物を目視で観察した。結果を表1および表2に示す。表1および表2中、溶解性試験1においては、スクアリリウム化合物の金属錯体10mgとTFP990mgとを用いて前記の操作を行い、溶解性試験2においては、スクアリリウム化合物の金属錯体20mgとTFP980mgとを用いて前記の操作を行った
化合物(1-N)、(1-CO)、(22-CO)、(64-N)、(64-CO)、(148-CO)、(149-CO)、(150-CO)、(151-CO)、(152-CO)および(153-CO)は、それぞれTFPに対する優れた溶解性を有することがわかる。
化合物(1-N)、(1-CO)、(22-CO)、(64-N)、(64-CO)、(148-CO)、(149-CO)、(150-CO)、(151-CO)、(152-CO)および(153-CO)は、それぞれTFPに対する優れた溶解性を有することがわかる。
(塗膜性試験)
スクアリリウム化合物の金属錯体として、化合物(1-N)、(1-CO)、(22-CO)、(64-N)、(64-CO)、(148-CO)、(149-CO)、(150-CO)、(151-CO)、(152-CO)および(153-CO)を用いた。
上記のそれぞれのスクアリリウム化合物の金属錯体20mgをTFP980mgに溶解し、溶液をテフロン(登録商標)製フィルター(Whatman社製、孔径0.45μm)で濾過し、スクアリリウム化合物の金属錯体の溶液をそれぞれ得た。基板として、ポリカーボネート樹脂(太佑機材社製;5cm×5cm、厚さ1mm)を用いた。ミカサ社製1H-SXを用いてスピンコート法(3000rpm、30秒間、溶液の使用量;10~15滴)にて該溶液を基板上に塗布し、70℃で30分間オーブン中で乾燥して、スクアリリウム化合物の金属錯体の薄膜をそれぞれ得た。それぞれの該薄膜にはむらがなく、均質に製膜されていることを目視により確認した。
スクアリリウム化合物の金属錯体として、化合物(1-N)、(1-CO)、(22-CO)、(64-N)、(64-CO)、(148-CO)、(149-CO)、(150-CO)、(151-CO)、(152-CO)および(153-CO)を用いた。
上記のそれぞれのスクアリリウム化合物の金属錯体20mgをTFP980mgに溶解し、溶液をテフロン(登録商標)製フィルター(Whatman社製、孔径0.45μm)で濾過し、スクアリリウム化合物の金属錯体の溶液をそれぞれ得た。基板として、ポリカーボネート樹脂(太佑機材社製;5cm×5cm、厚さ1mm)を用いた。ミカサ社製1H-SXを用いてスピンコート法(3000rpm、30秒間、溶液の使用量;10~15滴)にて該溶液を基板上に塗布し、70℃で30分間オーブン中で乾燥して、スクアリリウム化合物の金属錯体の薄膜をそれぞれ得た。それぞれの該薄膜にはむらがなく、均質に製膜されていることを目視により確認した。
(耐光性試験)
基板としてポリカーボネート樹脂の代わりにガラス(太佑機材社製;2cm×2cm、厚さ2mm)を用いる以外は塗膜性試験と同様にして、化合物(1-N)、(1-CO)、(22-CO)、(64-N)、(64-CO)、(148-CO)、(149-CO)、(150-CO)、(151-CO)、(152-CO)および(153-CO)の薄膜をそれぞれ得た。紫外線蛍光燈(スガ試験機社製SUGA-FS40:ピーク波長313nm、照度分布282~373nm)を備えたスガ試験機社製デューパネル・光コントロールウェザーメーターDPWL-5R型を用いて、該薄膜に15W/m2の光量にて45℃で10時間光照射した。耐光性試験前後において、吸収極大波長における吸光度を分光光度計を用いて測定した。耐光性試験前の吸収極大波長における吸光度(I0)に対する耐光性試験後の吸収極大波長における吸光度(I)を表3に示す。I/I0が大きいものほど、優れた耐光性を有することを表す。化合物(1-N)、(1-CO)、(22-CO)、(64-N)、(64-CO)、(148-CO)、(149-CO)、(150-CO)および(153-CO)は、それぞれ優れた耐光性を有することがわかる。
基板としてポリカーボネート樹脂の代わりにガラス(太佑機材社製;2cm×2cm、厚さ2mm)を用いる以外は塗膜性試験と同様にして、化合物(1-N)、(1-CO)、(22-CO)、(64-N)、(64-CO)、(148-CO)、(149-CO)、(150-CO)、(151-CO)、(152-CO)および(153-CO)の薄膜をそれぞれ得た。紫外線蛍光燈(スガ試験機社製SUGA-FS40:ピーク波長313nm、照度分布282~373nm)を備えたスガ試験機社製デューパネル・光コントロールウェザーメーターDPWL-5R型を用いて、該薄膜に15W/m2の光量にて45℃で10時間光照射した。耐光性試験前後において、吸収極大波長における吸光度を分光光度計を用いて測定した。耐光性試験前の吸収極大波長における吸光度(I0)に対する耐光性試験後の吸収極大波長における吸光度(I)を表3に示す。I/I0が大きいものほど、優れた耐光性を有することを表す。化合物(1-N)、(1-CO)、(22-CO)、(64-N)、(64-CO)、(148-CO)、(149-CO)、(150-CO)および(153-CO)は、それぞれ優れた耐光性を有することがわかる。
(光応答性試験)
塗膜性試験と同様にして、ポリカーボネート樹脂(太佑機材社製;5cm×5cm、厚さ1mm)の基板上に化合物(1-N)、(1-CO)、(22-CO)、(64-N)、(64-CO)、(148-CO)、(149-CO)、(150-CO)、(151-CO)、(152-CO)および(153-CO)の薄膜を得た。波長405nm、開口数NA0.85のピックアップヘッドをもつナノ加工装置(パルステック工業社製NEO-1000)を記録試験に用いた。記録マークの間隔として、半径方向のドット間隔(トラックピッチ)を0.32μmに、回転方向のドット間隔を0.50μmに設定した。該ナノ加工装置に該薄膜を設置した後、線速度9.84m/秒にて出力3mWのレーザー光を前記薄膜に照射した。レーザー光を照射した後の該薄膜の表面を走査型顕微鏡(SEM)で観察したところ、該薄膜の表面に該薄膜の熱的変形による記録マークが形成されていることを確認した。
塗膜性試験と同様にして、ポリカーボネート樹脂(太佑機材社製;5cm×5cm、厚さ1mm)の基板上に化合物(1-N)、(1-CO)、(22-CO)、(64-N)、(64-CO)、(148-CO)、(149-CO)、(150-CO)、(151-CO)、(152-CO)および(153-CO)の薄膜を得た。波長405nm、開口数NA0.85のピックアップヘッドをもつナノ加工装置(パルステック工業社製NEO-1000)を記録試験に用いた。記録マークの間隔として、半径方向のドット間隔(トラックピッチ)を0.32μmに、回転方向のドット間隔を0.50μmに設定した。該ナノ加工装置に該薄膜を設置した後、線速度9.84m/秒にて出力3mWのレーザー光を前記薄膜に照射した。レーザー光を照射した後の該薄膜の表面を走査型顕微鏡(SEM)で観察したところ、該薄膜の表面に該薄膜の熱的変形による記録マークが形成されていることを確認した。
化合物(1-N)、(1-CO)、(22-CO)、(64-N)、(64-CO)、(148-CO)、(149-CO)、(150-CO)、(151-CO)、(152-CO)および(153-CO)の薄膜は、それぞれ青紫色レーザー光に対する高感度な光応答性を有することがわかる。
本発明により、青紫色レーザー光に対する高感度な光応答性等を有する光記録媒体に用いられるスクアリリウム化合物の金属錯体等を提供できる。
Claims (11)
- 式(I)
- R1が置換基を有していてもよい複素環基である請求項1記載のスクアリリウム化合物の金属錯体。
- R1が置換基を有していてもよい複素環基であり、該複素環基が置換基を有していてもよい芳香族複素環基である請求項1記載のスクアリリウム化合物の金属錯体。
- R1が置換基を有する複素環基であり、該置換基を有する複素環基が、式(X)
- R10が置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい脂環式炭化水素基または置換基を有していてもよい複素環基である請求項4記載のスクアリリウム化合物の金属錯体。
- R1がNR4R5(式中、R4およびR5は、それぞれ前記と同義である)である請求項1記載のスクアリリウム化合物の金属錯体。
- R1がNR4R5(式中、R4およびR5は、それぞれ前記と同義である)であり、R4およびR5が、同一または異なって、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基である請求項1記載のスクアリリウム化合物の金属錯体。
- R2が置換基を有していてもよいアリール基または置換基を有していてもよい複素環基である請求項1~7のいずれかに記載のスクアリリウム化合物の金属錯体。
- R3が水素原子である請求項1~8のいずれかに記載のスクアリリウム化合物の金属錯体。
- 金属がニッケル、コバルト、アルミニウム、銅、亜鉛または鉄である請求項1~9のいずれかに記載のスクアリリウム化合物の金属錯体。
- 請求項1~10のいずれかに記載のスクアリリウム化合物の金属錯体を含有する光記録媒体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010534824A JPWO2010047341A1 (ja) | 2008-10-21 | 2009-10-21 | スクアリリウム化合物の金属錯体およびそれを含有する光記録媒体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008270625 | 2008-10-21 | ||
JP2008-270625 | 2008-10-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010047341A1 true WO2010047341A1 (ja) | 2010-04-29 |
Family
ID=42119378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/068094 WO2010047341A1 (ja) | 2008-10-21 | 2009-10-21 | スクアリリウム化合物の金属錯体およびそれを含有する光記録媒体 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2010047341A1 (ja) |
WO (1) | WO2010047341A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011162190A1 (ja) * | 2010-06-24 | 2011-12-29 | 協和発酵ケミカル株式会社 | スクアリリウム化合物の金属錯体およびそれを含有する光記録媒体 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001044375A1 (fr) * | 1999-12-16 | 2001-06-21 | Kyowa Hakko Kogyo Co., Ltd. | Composes de squarylium et supports d'information optiques a base de ces composes |
WO2002050190A1 (fr) * | 2000-12-20 | 2002-06-27 | Kyowa Hakko Kogyo Co., Ltd. | Composes de squarylium de type complexes metalliques et support d'enregistrement optique produit au moyen de ces derniers |
WO2006038685A1 (ja) * | 2004-10-07 | 2006-04-13 | Kyowa Hakko Chemical Co., Ltd. | 電子ディスプレイ装置用フィルター |
JP2007131839A (ja) * | 2005-10-13 | 2007-05-31 | Japan Carlit Co Ltd:The | 非対称スクアリリウム化合物金属錯体およびそれを用いた光学記録媒体 |
JP2007321078A (ja) * | 2006-06-01 | 2007-12-13 | Mitsubishi Chemicals Corp | 光学記録媒体の記録層形成用色素、及びそれを用いた光学記録媒体、その光学記録媒体の記録方法 |
WO2008018337A1 (fr) * | 2006-08-08 | 2008-02-14 | Mitsubishi Chemical Corporation | Composé complexe chélate d'hydrazide, support d'enregistrement optique utilisant le composé et procédé d'enregistrement associé |
JP2008074922A (ja) * | 2006-09-20 | 2008-04-03 | Konica Minolta Holdings Inc | 新規なスクアリリウム金属錯体化合物、色素及びこれを含有する組成物、カラートナー、インク、光記録媒体、カラーフィルター及びディスプレイ用前面フィルター |
-
2009
- 2009-10-21 WO PCT/JP2009/068094 patent/WO2010047341A1/ja active Application Filing
- 2009-10-21 JP JP2010534824A patent/JPWO2010047341A1/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001044375A1 (fr) * | 1999-12-16 | 2001-06-21 | Kyowa Hakko Kogyo Co., Ltd. | Composes de squarylium et supports d'information optiques a base de ces composes |
WO2002050190A1 (fr) * | 2000-12-20 | 2002-06-27 | Kyowa Hakko Kogyo Co., Ltd. | Composes de squarylium de type complexes metalliques et support d'enregistrement optique produit au moyen de ces derniers |
WO2006038685A1 (ja) * | 2004-10-07 | 2006-04-13 | Kyowa Hakko Chemical Co., Ltd. | 電子ディスプレイ装置用フィルター |
JP2007131839A (ja) * | 2005-10-13 | 2007-05-31 | Japan Carlit Co Ltd:The | 非対称スクアリリウム化合物金属錯体およびそれを用いた光学記録媒体 |
JP2007321078A (ja) * | 2006-06-01 | 2007-12-13 | Mitsubishi Chemicals Corp | 光学記録媒体の記録層形成用色素、及びそれを用いた光学記録媒体、その光学記録媒体の記録方法 |
WO2008018337A1 (fr) * | 2006-08-08 | 2008-02-14 | Mitsubishi Chemical Corporation | Composé complexe chélate d'hydrazide, support d'enregistrement optique utilisant le composé et procédé d'enregistrement associé |
JP2008074922A (ja) * | 2006-09-20 | 2008-04-03 | Konica Minolta Holdings Inc | 新規なスクアリリウム金属錯体化合物、色素及びこれを含有する組成物、カラートナー、インク、光記録媒体、カラーフィルター及びディスプレイ用前面フィルター |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011162190A1 (ja) * | 2010-06-24 | 2011-12-29 | 協和発酵ケミカル株式会社 | スクアリリウム化合物の金属錯体およびそれを含有する光記録媒体 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010047341A1 (ja) | 2012-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3633279B2 (ja) | 光学記録媒体 | |
JP4065403B2 (ja) | 金属錯体型スクアリリウム化合物およびそれを用いた光記録媒体 | |
JPH11334207A (ja) | 光学記録媒体 | |
EP1967378A1 (en) | Optical recording medium and azacyanine dye | |
JP4122155B2 (ja) | スクアリリウム化合物およびそれを用いた光記録媒体 | |
JP5323993B2 (ja) | 錯化合物およびそれを含有する光記録媒体 | |
EP2050794A1 (en) | Hydrazide chelate complex compound, optical recording medium using the compound and recording method thereof | |
JP4178783B2 (ja) | 光学記録媒体 | |
WO2001044233A1 (fr) | Compose de squarylium et support d'enregistrement optique contenant ce compose | |
WO2011142329A1 (ja) | 錯化合物およびそれを含有する光記録媒体 | |
WO2010047341A1 (ja) | スクアリリウム化合物の金属錯体およびそれを含有する光記録媒体 | |
WO2010041691A1 (ja) | スクアリリウム化合物の金属錯体を含有する光記録媒体 | |
JP2011126815A (ja) | 錯化合物およびそれを含有する光記録媒体 | |
WO2011162190A1 (ja) | スクアリリウム化合物の金属錯体およびそれを含有する光記録媒体 | |
WO2006103254A1 (en) | Betaines of squaric acid for use in optical layers for optical data recording | |
US20060019198A1 (en) | Optical recording materials | |
JP5352986B2 (ja) | 金属錯体化合物、光学記録媒体及び光記録材料 | |
JP2010100669A (ja) | スクアリリウム化合物の金属錯体およびそれを用いた光記録媒体 | |
JP2015017039A (ja) | 錯化合物及びそれを含有する光記録媒体 | |
JP2002002110A (ja) | 光学記録媒体 | |
JP2007216439A (ja) | 光学記録媒体の記録層形成用色素、光学記録媒体及びその記録方法 | |
US8759534B2 (en) | Trimethine cyanine and its use | |
JP4557286B2 (ja) | スクワリリウム化合物及び該スクワリリウム化合物を含有する光学記録媒体 | |
TW200410238A (en) | Optical recording medium | |
TWI383896B (zh) | Optical recording materials, chalcone compounds and metal complexes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09822038 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010534824 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09822038 Country of ref document: EP Kind code of ref document: A1 |