WO2010044429A1 - Method and apparatus for applying droplet - Google Patents

Method and apparatus for applying droplet Download PDF

Info

Publication number
WO2010044429A1
WO2010044429A1 PCT/JP2009/067801 JP2009067801W WO2010044429A1 WO 2010044429 A1 WO2010044429 A1 WO 2010044429A1 JP 2009067801 W JP2009067801 W JP 2009067801W WO 2010044429 A1 WO2010044429 A1 WO 2010044429A1
Authority
WO
WIPO (PCT)
Prior art keywords
droplets
substrate
coating
nozzle
droplet
Prior art date
Application number
PCT/JP2009/067801
Other languages
French (fr)
Japanese (ja)
Inventor
梓 平野
保次 鶴岡
Original Assignee
芝浦メカトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芝浦メカトロニクス株式会社 filed Critical 芝浦メカトロニクス株式会社
Priority to CN200980140127.0A priority Critical patent/CN102176980B/en
Priority to JP2010533916A priority patent/JP5497654B2/en
Publication of WO2010044429A1 publication Critical patent/WO2010044429A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/0451Control methods or devices therefor, e.g. driver circuits, control circuits for detecting failure, e.g. clogging, malfunctioning actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04558Control methods or devices therefor, e.g. driver circuits, control circuits detecting presence or properties of a dot on paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/0456Control methods or devices therefor, e.g. driver circuits, control circuits detecting drop size, volume or weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04581Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on piezoelectric elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/09Ink jet technology used for manufacturing optical filters

Definitions

  • the present invention relates to a droplet coating method and apparatus.
  • Patent Document 1 As a technique for manufacturing a color filter substrate using an inkjet coating method, as described in Patent Document 1, a plurality of liquid droplets (inks) ejected from nozzles of a coating head are partitioned on the surface of the substrate. Some are applied to the recesses. The droplets applied to the recesses are dried to form a colored layer in the recesses.
  • inks liquid droplets
  • the liquid is sequentially ejected from each nozzle 1 of the coating head at a predetermined dropping timing (dropping time interval), and is applied to a predetermined coating range A of the inspection substrate KA (into the concave portion of the product substrate K).
  • the application area (projected area) of a plurality of droplets E (for example, 5 droplets E1 to E5) dropped on the corresponding range) is obtained, and the application amount of these droplets E1 to E5 is obtained based on this application area and inspected.
  • the droplets E1 to E5 dropped in sequence on the inspection substrate KA are deposited with a slight displacement in the moving direction of the inspection substrate KA (FIG. 6B), and the entire droplets E1 to E5 are accumulated. Thus, an egg-shaped image is formed (FIG. 6C).
  • the coating pitch p of the adjacent droplets E1 to E5 is caused by variations in the moving speed of the inspection substrate KA, the viscosity, concentration, etc. of the droplets even if the above-described dropping timing p is constant. It varies according to the drag of the droplet in the moving direction of the inspection substrate KA.
  • the oval images of the droplets E1 to E5 deposited on the inspection substrate KA are the moving directions of the inspection substrate KA due to variations in the movement speed of the inspection substrate KA, the viscosity, concentration, etc. of the droplets.
  • the length of the liquid droplets is changed by dragging the liquid droplets on the liquid crystal, and the entire coating area of the liquid droplets E1 to E5, and thus the inspection accuracy of the coating amount is impaired.
  • the discharge state of the droplet E (for example, E5) discharged from the nozzle 1 of the coating head is an oblique discharge abnormal state in which the discharge direction of the droplet E5 is oblique with respect to the vertical line.
  • the entire oval image length of the droplets E1 to E5 is enlarged as compared with the normal oval image in the normal ejection state.
  • the difference between the normal image and the abnormal image is simply a difference in the degree of enlargement of the length of the oval image, and it is difficult to distinguish clearly. There are difficulties.
  • An object of the present invention is to detect the entire application area of a plurality of droplets applied from a nozzle of an application head to a predetermined application range of a substrate with high accuracy and accurately adjust the discharge amount of the droplets from the nozzle. There is.
  • the present invention is a droplet coating method for applying droplets to a predetermined coating range on a substrate, A step of collectively imaging a plurality of liquid droplets ejected from a nozzle provided in an application head and applied to the application range; Based on the captured images of the plurality of droplets, obtaining a total coating area of the droplets; Having a step of adjusting the discharge amount of droplets from the nozzle based on the determined application area; When discharging the plurality of droplets from a nozzle of the coating head to a predetermined coating range on the substrate, dropping the plurality of droplets discharged from the nozzle at the same position within the predetermined coating range.
  • An object is to provide a droplet application method.
  • the present invention also provides a droplet applying apparatus for applying droplets to a predetermined application range on a substrate, Moving means for relatively moving the coating head provided with the nozzle and the substrate in a direction along the surface of the substrate; An imaging unit that collectively images a plurality of droplets ejected from the nozzle and applied to a predetermined application range on the substrate; Based on the images of the plurality of droplets imaged by the imaging unit, an inspection unit for obtaining the entire application area of the droplets; A control unit that controls the coating head, the moving unit, the imaging unit, and the inspection unit; When the control unit discharges a plurality of droplets from the nozzle of the coating head to the predetermined coating range, the control unit drops the plurality of droplets discharged from the nozzle at the same position in the predetermined coating range.
  • the present invention also provides a droplet coating apparatus that controls driving of the coating head and the moving means.
  • the total landing area of a plurality of droplets applied from a nozzle of the coating head to a predetermined coating range of the substrate is detected with high accuracy, and the ejection amount of the droplets from the nozzle is adjusted with high accuracy.
  • the coating accuracy can be improved.
  • FIG. 1 is a schematic view showing a droplet applying apparatus.
  • FIG. 2 is a schematic view showing a substrate.
  • FIG. 3 is a schematic diagram showing an inspection state by the inspection unit.
  • FIG. 4A is a schematic diagram illustrating a dropping state of droplets discharged from the nozzles of the coating head to the same position.
  • FIG. 4B is a schematic view showing a state in which a plurality of droplets dropped sequentially on the substrate are deposited on the inspection substrate.
  • FIG. 4C is a schematic diagram showing an image formed by a plurality of droplets.
  • FIG. 5 is a schematic diagram showing the dropping state of the obliquely discharged droplets.
  • FIG. 6A is a schematic diagram showing a dropping state of droplets discharged from a nozzle of a conventional coating head.
  • FIG. 6B is a schematic view of a state in which a plurality of droplets dropped in sequence on the substrate are accumulated while being slightly displaced in the moving direction of the inspection substrate.
  • FIG. 6C is a schematic diagram illustrating an image formed by a plurality of liquid droplets that are slightly displaced in the movement direction.
  • FIG. 7 is a schematic diagram showing a conventional drop state of obliquely discharged droplets.
  • FIG. 1 is a schematic diagram showing a droplet coating apparatus
  • FIG. 2 is a schematic diagram showing a substrate
  • FIG. 3 is a schematic diagram showing an inspection state by an inspection unit
  • FIGS. 4A to 4C are droplets ejected from nozzles of a coating head.
  • FIG. 5 is a schematic diagram showing a dropping state of previously ejected droplets.
  • the product substrate K that is the object to be applied is in a horizontal state (in FIG. 1, the surface of the substrate K is along the X-axis direction and the Y-axis direction orthogonal thereto).
  • An axis moving mechanism 4 a plurality of coating heads 5 that eject coating liquid such as ink as droplets E toward the substrate K on the moving table 2, an imaging unit 6 that images the droplets E on the substrate K,
  • An inspection unit 7 that performs an inspection based on the image of the droplet E imaged by the imaging unit 6, a display unit 8 that displays an image of the droplet E imaged by the imaging unit 6, and their Y-axis moving mechanism 3 , X axis moving mechanism 4, each coating head 5, imaging unit 6, inspection unit 7 and the like are controlled. It has a part 9.
  • the moving table 2 is stacked on the Y-axis moving mechanism 3 and is provided so as to be movable in the Y-axis direction.
  • the moving table 2 is moved in the Y-axis direction by the Y-axis moving mechanism 3.
  • a mechanism such as an electrostatic chuck or an adsorption chuck is provided to hold the substrate K. Also good.
  • a discharge stabilizing portion 2 a for stabilizing the discharge of each coating head 5 is provided at the end of the moving table 2.
  • the discharge stabilizing portion 2a includes a dummy discharge tray for each coating head 5, a wipe blade for wiping the discharge surface of each coating head 5, and the like.
  • the Y-axis moving mechanism 3 is a mechanism that guides and moves the moving table 2 in the Y-axis direction.
  • the Y-axis moving mechanism 3 is electrically connected to the control unit 9 and its driving is controlled by the control unit 9.
  • a linear motor moving mechanism using a linear motor as a driving source for example, a linear motor moving mechanism using a linear motor as a driving source, a feed screw moving mechanism using a motor as a driving source, or the like is used.
  • the X-axis moving mechanism 4 is a mechanism that guides and moves the Y-axis moving mechanism 3 in the X-axis direction.
  • the X-axis moving mechanism 4 is electrically connected to the control unit 9 and its driving is controlled by the control unit 9.
  • a linear motor moving mechanism using a linear motor as a driving source for example, a linear motor moving mechanism using a linear motor as a driving source, a feed screw moving mechanism using a motor as a driving source, or the like is used.
  • the coating head 5 is an inkjet head that discharges coating liquid supplied from a liquid tank (not shown) containing coating liquid such as ink as droplets E from a plurality of nozzles 11.
  • the coating head 5 includes a plurality of piezoelectric elements (not shown) corresponding to the plurality of nozzles 11 that discharge the droplets E, respectively.
  • the nozzles 11 are formed on the discharge surface in a straight line at a predetermined pitch (interval).
  • the number of nozzles 11 is about several tens to several hundreds
  • the diameter of the nozzles 11 is about several ⁇ m to several tens of ⁇ m
  • the pitch of the nozzles 11 is about several tens ⁇ m to several hundreds of ⁇ m. .
  • the coating head 5 is electrically connected to the control unit 9, and its driving is controlled by the control unit 9.
  • the coating head 5 ejects droplets (ink droplets) E from each nozzle 11 with the ejection amount controlled in accordance with the application of a driving voltage to each piezoelectric element.
  • the coating liquid has volatility.
  • This coating solution is composed of a solute that remains as a residue on the substrate K and a solvent that dissolves (disperses) the solute.
  • the ink that is the coating liquid is composed of various components such as a pigment, a solvent (ink solvent), a dispersant, and an additive.
  • the droplet applying apparatus 1 of the present embodiment targets a color filter substrate K of a liquid crystal display panel as an application target.
  • the product substrate K that is an actual product is provided with convex portions K ⁇ b> 1 that form a lattice pattern as a black matrix BM on the surface of the substrate K.
  • coloring ink any of R: red, G: green, and B: blue
  • a predetermined amount is applied to the concave portion K2 constituting the application range A.
  • the droplets applied to the concave portion K2 are dried to form a colored layer in the concave portion K2.
  • the convex portion K1 of the lattice pattern of the substrate K in FIG. 2 is provided with concave portions K2 of 15 columns horizontally and 6 rows vertically, but the lattice BM of the actual substrate K is 1000 columns horizontally or more and 1000 rows vertically.
  • the above-described recess K2 is provided.
  • the droplet applying apparatus 1 applies droplets to the concave portion K2 of the substrate K as follows.
  • the other is a coating head 5 for discharging a green ink
  • the other is a blue ink.
  • the pitch of the nozzles 11 of the coating head 5 for ejecting red ink coincides with the arrangement interval of the concave portions K2 to be colored red R
  • the pitch of the coating head 5 for ejecting blue ink is
  • the pitch of the coating head 5 for discharging the green ink coincides with the arrangement interval of the recesses K2 to be colored green G.
  • the substrate K on the moving table 2 is moved in the main scanning direction in the X-axis direction, and the Y-axis Sub-scanning movement in the direction.
  • the ink is ejected from the nozzles as a plurality of droplets in accordance with the timing at which the concave portions K2 to be colored by the nozzles 11 pass below the nozzles 11 of the coating heads 5.
  • the ink is ejected from the nozzles as a plurality of droplets in accordance with the timing at which the concave portions K2 to be colored by the nozzles 11 pass below the nozzles 11 of the coating heads 5.
  • five droplets E1 to E5 are ejected at a preset droplet timing t (dropping time interval).
  • the droplet applying apparatus 1 determines the application amount of the plurality of droplets E applied from the nozzle 11 of the application head 5 to the concave portion K2 of the product substrate K, as well as the imaging unit 6, the inspection unit 7, and the inspection substrate KA (FIG. In order to perform inspection using 3), the following configuration is provided.
  • the imaging unit 6 captures a plurality of droplets E that are ejected from the nozzle 11 and landed and integrated on the coating range A defined on the inspection substrate KA. It is a camera and functions as a detection unit that detects each droplet E.
  • the imaging unit 6 is electrically connected to the inspection unit 7 and the control unit 9, and the driving thereof is controlled by the control unit 9, and the captured image of each droplet E is transmitted to the inspection unit 7.
  • a CCD (Charge-Coupled Device) camera or the like is used as the imaging unit 6.
  • the inspection unit 7 Based on the images (detection results) of the plurality of droplets E transmitted from the imaging unit 6, the inspection unit 7 applies the entire application area (projected area) of the plurality of droplets E applied and integrated on the substrate K. ) Further, the inspection unit 7 obtains the application amount of each droplet E to the application range A based on the obtained entire application area of the plurality of droplets E.
  • the coating amount is calculated from the relational expression between the coating area of the droplet E and the coating amount (dropping amount). For example, the application area of the droplet E and the application amount are in a proportional relationship.
  • the relational expression is stored in a storage unit provided in the inspection unit 7. For example, a computer or the like is used as the inspection unit 7.
  • the application area of the entire plurality of droplets E can be obtained using a known image processing technique.
  • the unit area of the pixel is equal to the number of pixels corresponding to the image of the droplet E in the captured image.
  • the application area is calculated in accordance with the shape of the captured image of the droplet E. Therefore, the calculated application area is hardly affected by the shape of the captured image of the droplet E. This is preferable because the calculation accuracy of the non-coating area is improved.
  • the display unit 8 is a display device that displays various images such as captured images of a plurality of droplets E.
  • the display unit 8 is electrically connected to the inspection unit 7.
  • a liquid crystal display or a CRT display is used as the display unit 8.
  • the inspection result of the inspection unit 7 on the display unit 8 for example, the projected area of a plurality of droplets E dropped onto the substrate K and integrated, the coating amount calculated from the projected area, or the calculated coating amount
  • the quality information (difference from a preset application amount) or the like may be displayed.
  • the control unit 9 includes a microcomputer that intensively controls each unit, and a storage unit that stores application information related to application, various programs, and the like (none of which are shown).
  • the application information includes a predetermined application pattern such as a dot pattern, an inclination angle of the application head 5, information regarding the ejection frequency of the application head 5, and the moving speed of the substrate K.
  • application information for manufacturing application and application information for inspection application are stored in the storage unit.
  • the control unit 9 of the droplet applying apparatus 1 inspects the application amount of the plurality of droplets E applied from the nozzle 11 of the application head 5 to the concave portion K2 of the product substrate K with high accuracy. In order to adjust the discharge amount of the droplet E from each nozzle 11 so that the application amounts of the plurality of droplets discharged from the nozzle 11 to the concave portion K2 of the product substrate K are the same, the following operation is performed. .
  • Inspection board KA An inspection substrate KA prepared separately from the product substrate K is used.
  • the inspection substrate KA has the same shape as the one concave portion K2 of the product substrate K and an application range A having the same size.
  • the number of droplets to be dropped in the application range A is defined as the number of droplets (for example, five droplets) applied to one concave portion K2 of the product substrate K.
  • the surface of the inspection substrate KA is preferably water-repellent.
  • the application range A may be physically provided on the inspection substrate KA or may be provided virtually.
  • each of the droplets E1 to E5 is deposited on the same position of the inspection substrate KA and forms a circular shape in plan view as a whole.
  • the dropping timing t of the plurality of droplets E1 to E5 is set to the same timing as the dropping timing t of the plurality of droplets E1 to E5 on the product substrate K.
  • the plurality of droplets E1 to E5 are shown as if they are stacked in order for convenience, but actually the plurality of droplets E1 to E5 are dropped onto the substrate KA. Every time they are mixed and integrated.
  • Each application range A of the inspection substrate KA is positioned immediately below the imaging unit 6, and a plurality of droplets E1 to E5 that are ejected from the nozzle 11 and dropped into the application range A are integrated. An image is taken for each range A.
  • the inspection unit 7 determines whether or not the image is circular based on an image obtained by integrating the plurality of droplets E1 to E5 captured by the imaging unit 6.
  • a circle does not indicate only a perfect perfect circle, but includes a circle included in a predetermined allowable range. Whether or not the images of the integrated droplets E1 to E5 are circular is determined as follows, for example.
  • straight lines (eight straight lines) radially extending at equal angular intervals, for example, 45 ° intervals, with the center of gravity of the images of the integrated droplets E1 to E5 as the center are the outer edges of the images of the droplets E1 to E5.
  • the distances to the intersecting positions are obtained, respectively, and if the difference between the maximum value and the minimum value of the obtained eight values is within the allowable range, the distance is assumed to be circular.
  • the allowable range is arbitrary, but is preferably within 10% of the average value of the eight values.
  • the total application area (projected area) of the integrated droplets E1 to E5 is obtained, and the application amount of the droplets E1 to E5 is obtained based on this application area.
  • the inspection unit 7 includes the droplets E1 to E5 discharged from the nozzle 11 of the coating head 5 as shown in FIG. Then, it is determined that the discharge direction includes droplets discharged obliquely with respect to the vertical line. In this case, even if the amount of the integrated droplets E1 to E5 is the same as when the droplets are dropped in a circle, the projected area obtained from the captured image may be different from that of the circle. Without calculating the application amount based on the image, the droplets E1 to E5 are applied again to the other application range A, and the imaging process and the inspection process are performed again.
  • the controller 9 adjusts the discharge amount of the droplet E from each nozzle 11 so that the application amounts of the plurality of droplets E1 to E5 discharged from each nozzle 11 are the same.
  • the coating amount of droplets E1 to E5 from the central nozzle 11 (for example, N3) is used as a reference value, and other nozzles ( For example, application of piezoelectric elements corresponding to each of the other nozzles N1, N2, N4, and N5 so that the coating amount of the droplets E1 to E5 from N1, N2, N4, and N5) matches the above-described reference value.
  • the voltage is adjusted, and the discharge amount of the droplet E from these other nozzles N1, N2, N4, N5 is adjusted.
  • each of the droplets E1 to E5 dropped in sequence on the inspection substrate KA is deposited on the same position in the coating range A.
  • the droplets E1 to E5 land on the inspection substrate KA, the droplets E1 to E5 do not include the influence of variations in the moving speed of the inspection substrate KA, and the inspection substrate KA is caused by the viscosity, concentration, etc. of the droplets. Does not include the effect of droplet dragging in the direction of movement.
  • the droplets in which these droplets E1 to E5 are integrated have reduced movement speed variations and variations in the coating area caused by the dragging, so that the entire coating area of the droplets E1 to E5 is reduced.
  • the inspection accuracy of the coating amount is improved. Therefore, the coating accuracy of the droplet E on the product substrate K can be improved.
  • the coating amount is obtained from the coating area of the entire image in which the plurality of droplets E1 to E5 are integrated, the coating area is expanded and the liquid volume is increased as compared with the case where the coating area is one droplet. Since the error of the droplet discharge amount is integrated into the application amount by the number of droplets, the application amount can be easily calculated and the inspection of the application amount can be performed with high accuracy.
  • the dropping timing t (dropping time interval) of the plurality of droplets E1 to E5 discharged from the nozzle 11 of the coating head 5 to the inspection substrate KA is set to a plurality of product substrates K corresponding to the inspection substrate KA.
  • the droplets that have landed on the surface of the substrate KA are made spherical and difficult to spread regardless of the viscosity, concentration, etc.
  • By suppressing the influence of the variation in the coating area caused by the variation in the number of droplets it is possible to further improve the inspection accuracy of the entire coating area of the droplets E1 to E5 and thus the coating amount.
  • the number of droplets dropped on the application range A of the inspection substrate KA is the number of droplets applied to one recess of the product substrate K (for example, five droplets E1 to E5).
  • the inspection conditions for the entire coating area of the droplets E1 to E5, and thus the coating amount, can be brought close to the actual application conditions, and the inspection accuracy can be further improved.
  • the discharge state of the droplet E (for example, E5) discharged from the nozzle 11 of the coating head 5 is an abnormal discharge oblique state (FIG. 5) in which the discharge direction of the droplet E5 is oblique to the vertical line.
  • the droplet E5 is displaced from the droplets E1 to E4, and the entire image of the droplets E1 to E5 becomes an ellipse outside the circular range, or the droplets E1 to E4 and the droplet E5 are separated from each other.
  • the entire image of the droplets E1 to E5 at the time of abnormality is clearly different from the image of the perfect circle at normal time, and it is possible to easily determine whether the ejection state is normal or abnormal.
  • Such an entire image of the droplets E1 to E5 at the time of abnormality has a larger application area (projected area) than a circular image at the time of normality, so that the ejection amount of the droplet E can be accurately determined. It cannot be adjusted.
  • the calculation accuracy of the application amount obtained from the captured image is lowered, but the application amount is calculated based on the image of the droplet E determined to be abnormal by the above-described determination. Therefore, it is possible to prevent a poor adjustment of the discharge amount of the droplet E.
  • the embodiment of the present invention has been described in detail with reference to the drawings.
  • the specific configuration of the present invention is not limited to this embodiment, and even if there is a design change or the like without departing from the gist of the present invention. It is included in the present invention.
  • the inspection of the application area of a plurality of droplets applied to a predetermined application range of the substrate from the nozzle of the application head, and thus the application amount may be performed on the product substrate without using the inspection substrate.

Abstract

The total application area of a plurality of droplets applied onto a substrate within a predetermined application range from a nozzle of an application head is detected with high accuracy, and the quantity of droplets jetted from the nozzle is adjusted with high accuracy. In the droplet applying method, at the time of jetting a plurality of droplets (E1-E5) within a predetermined application range (A) on a substrate (KA) from a nozzle (11) of an application head (5), a plurality of droplets (E1-E5) jetted from the nozzle (11) are dropped on the same positions within the predetermined application range (A) on the substrate (KA).

Description

液滴塗布方法及び装置Droplet application method and apparatus
 本発明は液滴塗布方法及び装置に関する。 The present invention relates to a droplet coating method and apparatus.
 従来、インクジェット塗布方法を用いてカラーフィルタ用基板を製作する技術としては、特許文献1に記載の如く、塗布ヘッドのノズルから吐出される複数の液滴(インク)を、基板の表面に区画した凹部に塗布するものがある。凹部に塗布された液滴は乾燥して凹部内に着色層を形成する。 Conventionally, as a technique for manufacturing a color filter substrate using an inkjet coating method, as described in Patent Document 1, a plurality of liquid droplets (inks) ejected from nozzles of a coating head are partitioned on the surface of the substrate. Some are applied to the recesses. The droplets applied to the recesses are dried to form a colored layer in the recesses.
特開平9-230129号公報Japanese Patent Laid-Open No. 9-230129
 特許文献1に記載の如くの技術で製作されるカラーフィルタ用基板の品質の確保には、基板の各凹部に必要量の液滴を正確に滴下する必要があり、塗布ヘッドの各ノズルから吐出される液滴の量を精度良く調整する技術が要望されている。 In order to ensure the quality of the color filter substrate manufactured by the technique described in Patent Document 1, it is necessary to accurately drop a necessary amount of droplets into each recess of the substrate, and the droplets are discharged from each nozzle of the coating head. There is a demand for a technique for accurately adjusting the amount of droplets to be produced.
 従来技術では、図6Aに示す如く、塗布ヘッドの各ノズル1から一定の滴下タイミング(滴下時間間隔)で順に吐出されて検査用基板KAの定められた塗布範囲A(製品用基板Kの凹部に相当する範囲)に滴下した複数の液滴E(例えばE1~E5の5滴)の塗布面積(投影面積)を求め、この塗布面積に基づいてそれら液滴E1~E5の塗布量を求めて検査することとしている。 In the prior art, as shown in FIG. 6A, the liquid is sequentially ejected from each nozzle 1 of the coating head at a predetermined dropping timing (dropping time interval), and is applied to a predetermined coating range A of the inspection substrate KA (into the concave portion of the product substrate K). The application area (projected area) of a plurality of droplets E (for example, 5 droplets E1 to E5) dropped on the corresponding range) is obtained, and the application amount of these droplets E1 to E5 is obtained based on this application area and inspected. To do.
 しかしながら、従来技術では、塗布ヘッドのノズル1から検査用基板KAの一定の塗布範囲Aに複数の液滴E1~E5を吐出するとき、検査用基板KAをノズル1に対し一定の移動速度vで相対移動させている。 However, in the prior art, when the plurality of droplets E1 to E5 are ejected from the nozzle 1 of the coating head to the constant coating range A of the inspection substrate KA, the inspection substrate KA is moved relative to the nozzle 1 at a constant movement speed v. Relative movement.
 このため、検査用基板KAの上に順に滴下された各液滴E1~E5は検査用基板KAの移動方向に少しずつ位置ずれして堆積し(図6B)、それら液滴E1~E5の全体で卵形の画像をなすものになる(図6C)。 For this reason, the droplets E1 to E5 dropped in sequence on the inspection substrate KA are deposited with a slight displacement in the moving direction of the inspection substrate KA (FIG. 6B), and the entire droplets E1 to E5 are accumulated. Thus, an egg-shaped image is formed (FIG. 6C).
 このとき、相隣る液滴E1~E5の塗布ピッチpは、前述の滴下タイミングpが一定であっても、検査用基板KAの移動速度のばらつきや、液滴の粘度、濃度等に起因する検査用基板KAの移動方向への液滴の引き摺りに応じてばらつくものになる。 At this time, the coating pitch p of the adjacent droplets E1 to E5 is caused by variations in the moving speed of the inspection substrate KA, the viscosity, concentration, etc. of the droplets even if the above-described dropping timing p is constant. It varies according to the drag of the droplet in the moving direction of the inspection substrate KA.
 従って、検査用基板KA上に堆積した液滴E1~E5の卵形の画像は、検査用基板KAの移動速度のばらつきや、液滴の粘度、濃度等に起因する検査用基板KAの移動方向への液滴の引き摺りにより長さが変化し、液滴E1~E5の全体の塗布面積、ひいては塗布量の検査精度を損なう。 Therefore, the oval images of the droplets E1 to E5 deposited on the inspection substrate KA are the moving directions of the inspection substrate KA due to variations in the movement speed of the inspection substrate KA, the viscosity, concentration, etc. of the droplets. The length of the liquid droplets is changed by dragging the liquid droplets on the liquid crystal, and the entire coating area of the liquid droplets E1 to E5, and thus the inspection accuracy of the coating amount is impaired.
 また、塗布ヘッドのノズル1から吐出される液滴E(例えばE5)の吐出状態が、図7に示すように、該液滴E5の吐出方向を鉛直線に対し斜めとする斜め吐出の異常状態にあるときには、液滴E1~E5の全体の卵形の画像の長さが正常な吐出状態における正常な卵形の画像に比して拡大される。ところが、この正常時と異常時の画像の差異は、卵形の画像の長さの単なる拡大の程度の差であって歴然と判別し難い差異であり、吐出状態の正常と異常の判別を行なうことに困難がある。 Further, as shown in FIG. 7, the discharge state of the droplet E (for example, E5) discharged from the nozzle 1 of the coating head is an oblique discharge abnormal state in which the discharge direction of the droplet E5 is oblique with respect to the vertical line. In this case, the entire oval image length of the droplets E1 to E5 is enlarged as compared with the normal oval image in the normal ejection state. However, the difference between the normal image and the abnormal image is simply a difference in the degree of enlargement of the length of the oval image, and it is difficult to distinguish clearly. There are difficulties.
 本発明の課題は、塗布ヘッドのノズルから基板の所定の塗布範囲に塗布される複数の液滴の全体の塗布面積を高精度に検出し、ノズルからの液滴の吐出量を精度よく調整することにある。 An object of the present invention is to detect the entire application area of a plurality of droplets applied from a nozzle of an application head to a predetermined application range of a substrate with high accuracy and accurately adjust the discharge amount of the droplets from the nozzle. There is.
 上記課題を解決するためにこの発明は、基板上の所定の塗布範囲に液滴を塗布する液滴塗布方法であって、
 塗布ヘッドに設けたノズルから吐出されて前記塗布範囲に塗布された複数の液滴をまとめて撮像する工程と、
 撮像した前記複数の液滴の画像に基づいて、それら液滴の全体の塗布積面積を求める工程と、
 求められた塗布面積に基づいて前記ノズルからの液滴の吐出量を調整する工程を有し、
 前記塗布ヘッドのノズルから基板上の所定の塗布範囲に前記複数の液滴を吐出するとき、前記ノズルから吐出される前記複数の液滴を前記所定の塗布範囲内の同一位置に滴下させることを特徴とする液滴塗布方法を提供することにある。
In order to solve the above problems, the present invention is a droplet coating method for applying droplets to a predetermined coating range on a substrate,
A step of collectively imaging a plurality of liquid droplets ejected from a nozzle provided in an application head and applied to the application range;
Based on the captured images of the plurality of droplets, obtaining a total coating area of the droplets;
Having a step of adjusting the discharge amount of droplets from the nozzle based on the determined application area;
When discharging the plurality of droplets from a nozzle of the coating head to a predetermined coating range on the substrate, dropping the plurality of droplets discharged from the nozzle at the same position within the predetermined coating range. An object is to provide a droplet application method.
 また、この発明は、基板上の所定の塗布範囲に液滴を塗布する液滴塗布装置であって、
 ノズルを備えた塗布ヘッドと基板とを前記基板の表面に沿う方向で相対移動させる移動手段と、
 前記ノズルから吐出されて基板上の所定の塗布範囲に塗布された複数の液滴をまとめて撮像する撮像部と、
 撮像部で撮像した前記複数の液滴の画像に基づいて、それら液滴の全体の塗布面積を求める検査部と、
 前記塗布ヘッド、移動手段、撮像部及び検査部を制御する制御部を有し、
 前記制御部は、塗布ヘッドのノズルから前記所定の塗布範囲に複数の液滴を吐出するとき、前記ノズルから吐出される上記複数の液滴を前記所定の塗布範囲内の同一位置に滴下させるように前記塗布ヘッドと前記移動手段の駆動を制御することを特徴とする液滴塗布装置を提供することにある。
The present invention also provides a droplet applying apparatus for applying droplets to a predetermined application range on a substrate,
Moving means for relatively moving the coating head provided with the nozzle and the substrate in a direction along the surface of the substrate;
An imaging unit that collectively images a plurality of droplets ejected from the nozzle and applied to a predetermined application range on the substrate;
Based on the images of the plurality of droplets imaged by the imaging unit, an inspection unit for obtaining the entire application area of the droplets;
A control unit that controls the coating head, the moving unit, the imaging unit, and the inspection unit;
When the control unit discharges a plurality of droplets from the nozzle of the coating head to the predetermined coating range, the control unit drops the plurality of droplets discharged from the nozzle at the same position in the predetermined coating range. The present invention also provides a droplet coating apparatus that controls driving of the coating head and the moving means.
 この発明によれば、塗布ヘッドのノズルから基板の所定の塗布範囲に塗布される複数の液滴の全体の着弾面積を高精度に検出し、ノズルからの液滴の吐出量を精度よく調整することができ、ひいては、塗布精度を向上させることができる。 According to the present invention, the total landing area of a plurality of droplets applied from a nozzle of the coating head to a predetermined coating range of the substrate is detected with high accuracy, and the ejection amount of the droplets from the nozzle is adjusted with high accuracy. As a result, the coating accuracy can be improved.
図1は液滴塗布装置を示す模式図である。FIG. 1 is a schematic view showing a droplet applying apparatus. 図2は基板を示す模式図である。FIG. 2 is a schematic view showing a substrate. 図3は検査部による検査状態を示す模式図である。FIG. 3 is a schematic diagram showing an inspection state by the inspection unit. 図4Aは塗布ヘッドのノズルから同一位置に吐出される液滴の滴下状態を示す模式図である。FIG. 4A is a schematic diagram illustrating a dropping state of droplets discharged from the nozzles of the coating head to the same position. 図4Bは基板の上に順に滴下された複数の液滴が検査用基板に堆積した状態の模式図である。FIG. 4B is a schematic view showing a state in which a plurality of droplets dropped sequentially on the substrate are deposited on the inspection substrate. 図4Cは複数の液滴が成す画像を示す模式図である。FIG. 4C is a schematic diagram showing an image formed by a plurality of droplets. 図5は斜め吐出された液滴の滴下状態を示す模式図である。FIG. 5 is a schematic diagram showing the dropping state of the obliquely discharged droplets. 図6Aは従来の塗布ヘッドのノズルから吐出される液滴の滴下状態を示す模式図である。FIG. 6A is a schematic diagram showing a dropping state of droplets discharged from a nozzle of a conventional coating head. 図6Bは基板の上に順に滴下された複数の液滴が検査用基板の移動方向に少しずつ位置ずれして堆積した状態の模式図である。FIG. 6B is a schematic view of a state in which a plurality of droplets dropped in sequence on the substrate are accumulated while being slightly displaced in the moving direction of the inspection substrate. 図6Cは移動方向に少しずつ位置ずれした複数の液滴が成す画像を示す模式図である。FIG. 6C is a schematic diagram illustrating an image formed by a plurality of liquid droplets that are slightly displaced in the movement direction. 図7は従来の斜め吐出された液滴の滴下状態を示す模式図である。FIG. 7 is a schematic diagram showing a conventional drop state of obliquely discharged droplets.
  図1は液滴塗布装置を示す模式図、図2は基板を示す模式図、図3は検査部による検査状態を示す模式図、図4A~図4Cは塗布ヘッドのノズルから吐出される液滴の滴下状態を示す模式図、図5は予め吐出された液滴の滴下状態を示す模式図である。 1 is a schematic diagram showing a droplet coating apparatus, FIG. 2 is a schematic diagram showing a substrate, FIG. 3 is a schematic diagram showing an inspection state by an inspection unit, and FIGS. 4A to 4C are droplets ejected from nozzles of a coating head. FIG. 5 is a schematic diagram showing a dropping state of previously ejected droplets.
[実施例]
 液滴塗布装置1は、図1に示す如く、塗布対象物である製品用基板Kが水平状態(図1中、基板Kの表面がX軸方向とそれに直交するY軸方向に沿う状態)で載置される移動テーブル2と、その移動テーブル2を保持してY軸方向に移動させるY軸移動機構3と、そのY軸移動機構3を介して移動テーブル2をX軸方向に移動させるX軸移動機構4と、移動テーブル2上の基板Kに向けてインク等の塗布液を液滴Eとして吐出する複数の塗布ヘッド5と、基板K上の液滴Eを撮像する撮像部6と、その撮像部6により撮像された液滴Eの画像に基づく検査を行なう検査部7と、撮像部6により撮像された液滴Eの画像を表示する表示部8と、それらのY軸移動機構3、X軸移動機構4、各塗布ヘッド5、撮像部6及び検査部7等を制御する制御部9を備えている。
[Example]
As shown in FIG. 1, in the droplet applying apparatus 1, the product substrate K that is the object to be applied is in a horizontal state (in FIG. 1, the surface of the substrate K is along the X-axis direction and the Y-axis direction orthogonal thereto). The moving table 2 to be placed, the Y-axis moving mechanism 3 that holds the moving table 2 and moves it in the Y-axis direction, and the X that moves the moving table 2 in the X-axis direction via the Y-axis moving mechanism 3 An axis moving mechanism 4, a plurality of coating heads 5 that eject coating liquid such as ink as droplets E toward the substrate K on the moving table 2, an imaging unit 6 that images the droplets E on the substrate K, An inspection unit 7 that performs an inspection based on the image of the droplet E imaged by the imaging unit 6, a display unit 8 that displays an image of the droplet E imaged by the imaging unit 6, and their Y-axis moving mechanism 3 , X axis moving mechanism 4, each coating head 5, imaging unit 6, inspection unit 7 and the like are controlled. It has a part 9.
 移動テーブル2は、Y軸移動機構3上に積層され、Y軸方向に移動可能に設けられている。この移動テーブル2はY軸移動機構3によりY軸方向に移動する。尚、移動テーブル2には、基板Kが自重により載置されるが、これに限るものではなく、例えば、その基板Kを保持するため、静電チャックや吸着チャック等の機構を設けるようにしても良い。このような移動テーブル2の端部には各塗布ヘッド5の吐出を安定させるための吐出安定部2aが設けられている。この吐出安定部2aは、各塗布ヘッド5のダミー吐出用の受皿、及び各塗布ヘッド5の吐出面をワイプするワイプブレード等を有している。 The moving table 2 is stacked on the Y-axis moving mechanism 3 and is provided so as to be movable in the Y-axis direction. The moving table 2 is moved in the Y-axis direction by the Y-axis moving mechanism 3. Although the substrate K is placed on the movable table 2 by its own weight, the present invention is not limited to this. For example, a mechanism such as an electrostatic chuck or an adsorption chuck is provided to hold the substrate K. Also good. At the end of the moving table 2, a discharge stabilizing portion 2 a for stabilizing the discharge of each coating head 5 is provided. The discharge stabilizing portion 2a includes a dummy discharge tray for each coating head 5, a wipe blade for wiping the discharge surface of each coating head 5, and the like.
 Y軸移動機構3は、移動テーブル2をY軸方向に案内して移動させる機構である。このY軸移動機構3は制御部9に電気的に接続されており、その駆動が制御部9により制御される。尚、Y軸移動機構3としては、例えば、リニアモータを駆動源とするリニアモータ移動機構やモータを駆動源とする送りネジ移動機構等を用いる。 The Y-axis moving mechanism 3 is a mechanism that guides and moves the moving table 2 in the Y-axis direction. The Y-axis moving mechanism 3 is electrically connected to the control unit 9 and its driving is controlled by the control unit 9. As the Y-axis moving mechanism 3, for example, a linear motor moving mechanism using a linear motor as a driving source, a feed screw moving mechanism using a motor as a driving source, or the like is used.
 X軸移動機構4は、Y軸移動機構3をX軸方向に案内して移動させる機構である。このX軸移動機構4は制御部9に電気的に接続されており、その駆動が制御部9により制御される。尚、X軸移動機構4としては、例えば、リニアモータを駆動源とするリ二アモータ移動機構やモータを駆動源とする送りネジ移動機構等を用いる。 The X-axis moving mechanism 4 is a mechanism that guides and moves the Y-axis moving mechanism 3 in the X-axis direction. The X-axis moving mechanism 4 is electrically connected to the control unit 9 and its driving is controlled by the control unit 9. As the X-axis moving mechanism 4, for example, a linear motor moving mechanism using a linear motor as a driving source, a feed screw moving mechanism using a motor as a driving source, or the like is used.
 塗布ヘッド5は、インク等の塗布液を収容する液体タンク(図示せず)から供給される塗布液を複数のノズル11からそれぞれ液滴Eとして吐出するインクジェットヘッドである。この塗布ヘッド5は、液滴Eを吐出する複数のノズル11にそれぞれ対応する複数の圧電素子(図示せず)を内蔵している。 The coating head 5 is an inkjet head that discharges coating liquid supplied from a liquid tank (not shown) containing coating liquid such as ink as droplets E from a plurality of nozzles 11. The coating head 5 includes a plurality of piezoelectric elements (not shown) corresponding to the plurality of nozzles 11 that discharge the droplets E, respectively.
 各ノズル11は、所定のピッチ(間隔)で直線一列状に並べて吐出面に形成されている。例えば、ノズル11の数は数十個から数百個程度であり、ノズル11の直径は数μmから数十μm程度であり、更に、ノズル11のピッチは数十μmから数百μm程度である。 The nozzles 11 are formed on the discharge surface in a straight line at a predetermined pitch (interval). For example, the number of nozzles 11 is about several tens to several hundreds, the diameter of the nozzles 11 is about several μm to several tens of μm, and the pitch of the nozzles 11 is about several tens μm to several hundreds of μm. .
 この塗布ヘッド5は制御部9に電気的に接続されており、その駆動が制御部9により制御される。塗布ヘッド5は、各圧電素子に対する駆動電圧の印加に応じて各ノズル11から液滴(インク滴)Eが吐出量が制御されて吐出される。ここで、塗布液は揮発性を有している。この塗布液は、基板K上に残留物として残留する溶質と、その溶質を溶解(分散)させる溶媒とにより構成されている。例えば、塗布液であるインクは、顔料、溶剤(インク溶剤)、分散剤及び添加剤等の各種の成分により構成されている。 The coating head 5 is electrically connected to the control unit 9, and its driving is controlled by the control unit 9. The coating head 5 ejects droplets (ink droplets) E from each nozzle 11 with the ejection amount controlled in accordance with the application of a driving voltage to each piezoelectric element. Here, the coating liquid has volatility. This coating solution is composed of a solute that remains as a residue on the substrate K and a solvent that dissolves (disperses) the solute. For example, the ink that is the coating liquid is composed of various components such as a pigment, a solvent (ink solvent), a dispersant, and an additive.
 ここで、本実施例の液滴塗布装置1は、液晶表示パネルのカラーフィルタ用基板Kを塗布対象とする。実際の製品となる製品用基板Kは、図2に示す如く、基板Kの表面にブラックマトリックスBMとしての格子状のパターンをなす凸部K1を設けている。そして、液滴塗布装置1の塗布ヘッド5のノズル11から液滴として吐出される着色用のインク(R:赤色、G:緑色、B:青色のいずれかのインク)を、凸部K1により区画されて塗布範囲Aを構成する凹部K2に所定量塗布する。 Here, the droplet applying apparatus 1 of the present embodiment targets a color filter substrate K of a liquid crystal display panel as an application target. As shown in FIG. 2, the product substrate K that is an actual product is provided with convex portions K <b> 1 that form a lattice pattern as a black matrix BM on the surface of the substrate K. Then, coloring ink (any of R: red, G: green, and B: blue) ejected as droplets from the nozzles 11 of the coating head 5 of the droplet coating apparatus 1 is partitioned by the convex portion K1. Then, a predetermined amount is applied to the concave portion K2 constituting the application range A.
 前記凹部K2に塗布された液滴は乾燥して凹部K2内に着色層を形成する。図2の基板Kの格子状パターンの凸部K1は横に15列、縦に6行の凹部K2を設けているが、実際の基板Kの格子BMは横に1000列以上、縦に1000行以上の凹部K2を設けている。 The droplets applied to the concave portion K2 are dried to form a colored layer in the concave portion K2. The convex portion K1 of the lattice pattern of the substrate K in FIG. 2 is provided with concave portions K2 of 15 columns horizontally and 6 rows vertically, but the lattice BM of the actual substrate K is 1000 columns horizontally or more and 1000 rows vertically. The above-described recess K2 is provided.
 液滴塗布装置1は、基板Kの凹部K2に対して液滴を以下のようにして塗布する。 The droplet applying apparatus 1 applies droplets to the concave portion K2 of the substrate K as follows.
 すなわち、液滴塗布装置1が備える3つの塗布ヘッド5のうち、1つは赤色インク吐出用の塗布ヘッド5、他の1つは緑色インク吐出用の塗布ヘッド5、残りの1つは青色インク吐出用の塗布ヘッド5であり、赤色インク吐出用の塗布ヘッド5のノズル11のピッチは、赤色Rを着色すべき凹部K2の配置間隔に一致し、青色インク吐出用の塗布ヘッド5のピッチは、青色Bを着色すべき凹部K2の配置間隔に一致し、緑色インク吐出用の塗布ヘッド5のピッチは、緑色Gを着色すべき凹部K2の配置間隔に一致している。 That is, of the three coating heads 5 provided in the droplet coating apparatus 1, one is a coating head 5 for discharging a red ink, the other is a coating head 5 for discharging a green ink, and the other is a blue ink. The pitch of the nozzles 11 of the coating head 5 for ejecting red ink coincides with the arrangement interval of the concave portions K2 to be colored red R, and the pitch of the coating head 5 for ejecting blue ink is The pitch of the coating head 5 for discharging the green ink coincides with the arrangement interval of the recesses K2 to be colored green G.
 このような塗布ヘッド5に対して、制御部9によってY軸移動機構3、X軸移動機構4を制御することにより、移動テーブル2上の基板KをX軸方向へ主走査移動させ、Y軸方向へ副走査移動させる。 By controlling the Y-axis moving mechanism 3 and the X-axis moving mechanism 4 by the controller 9 with respect to such a coating head 5, the substrate K on the moving table 2 is moved in the main scanning direction in the X-axis direction, and the Y-axis Sub-scanning movement in the direction.
 そして、主走査移動中、各塗布ヘッド5の各ノズル11の下方を当該ノズル11で着色すべき凹部K2が通過するタイミングに合わせて当該ノズルからインクを複数の液滴として吐出させる。このとき、たとえばE1~E5の5滴の液滴を予め設定された液滴タイミングt(滴下時間間隔)で吐出させる。 Then, during the main scanning movement, the ink is ejected from the nozzles as a plurality of droplets in accordance with the timing at which the concave portions K2 to be colored by the nozzles 11 pass below the nozzles 11 of the coating heads 5. At this time, for example, five droplets E1 to E5 are ejected at a preset droplet timing t (dropping time interval).
 これにより、凹部K2内には着色すべき色のインクが所定量塗布される。このような動作の繰り返しにより、基板K上の全ての凹部K2に対応する色インクが塗布されることになる。 Thereby, a predetermined amount of color ink to be colored is applied in the recess K2. By repeating such an operation, the color ink corresponding to all the concave portions K2 on the substrate K is applied.
 しかるに、液滴塗布装置1は、塗布ヘッド5のノズル11から製品用基板Kの凹部K2に塗布される複数の液滴Eの塗布量を撮像部6及び検査部7並びに検査用基板KA(図3)を用いて検査するため、以下の構成を備える。 However, the droplet applying apparatus 1 determines the application amount of the plurality of droplets E applied from the nozzle 11 of the application head 5 to the concave portion K2 of the product substrate K, as well as the imaging unit 6, the inspection unit 7, and the inspection substrate KA (FIG. In order to perform inspection using 3), the following configuration is provided.
 尚、撮像部6は、図3に示すように、ノズル11から吐出されて検査用基板KA上に定められた塗布範囲Aに着弾して一体化した複数の液滴Eをまとめて撮像する撮像カメラであり、各液滴Eを検出する検出部として機能する。この撮像部6は検査部7及び制御部9に電気的に接続されており、その駆動は制御部9により制御され、撮像した各液滴Eの画像を検査部7に送信する。尚、撮像部6としては、例えばCCD(Charge Coupled Device)カメラ等を用いる。 As shown in FIG. 3, the imaging unit 6 captures a plurality of droplets E that are ejected from the nozzle 11 and landed and integrated on the coating range A defined on the inspection substrate KA. It is a camera and functions as a detection unit that detects each droplet E. The imaging unit 6 is electrically connected to the inspection unit 7 and the control unit 9, and the driving thereof is controlled by the control unit 9, and the captured image of each droplet E is transmitted to the inspection unit 7. For example, a CCD (Charge-Coupled Device) camera or the like is used as the imaging unit 6.
 検査部7は、撮像部6から送信された複数の液滴Eの画像(検出結果)に基づいて、基板K上に塗布されて一体化した複数の液滴Eの全体の塗布面積(投影面積)を求める。更に、検査部7は、求めた複数の液滴Eの全体の塗布面積に基づいて各液滴Eの当該塗布範囲Aへの塗布量を求める。ここで、その塗布量は、液滴Eの塗布面積と塗布量(滴下量)との関係式から算出される。例えば、液滴Eの塗布面積と塗布量とは比例関係にある。その関係式は検査部7が備える記憶部に格納されている。尚、検査部7としては、例えばコンピュータ等を用いる。 Based on the images (detection results) of the plurality of droplets E transmitted from the imaging unit 6, the inspection unit 7 applies the entire application area (projected area) of the plurality of droplets E applied and integrated on the substrate K. ) Further, the inspection unit 7 obtains the application amount of each droplet E to the application range A based on the obtained entire application area of the plurality of droplets E. Here, the coating amount is calculated from the relational expression between the coating area of the droplet E and the coating amount (dropping amount). For example, the application area of the droplet E and the application amount are in a proportional relationship. The relational expression is stored in a storage unit provided in the inspection unit 7. For example, a computer or the like is used as the inspection unit 7.
 なお、複数の液滴E全体の塗布面積は、公知の画像処理技術を用いて求めることが可能であるが、たとえば、撮像画像における液滴Eの画像に対応する画素の数に画素の単位面積を乗じた値を塗布面積として求める方法や、液滴Eの画像に対して円形パターンをフィッティングさせ、最もフィッティングした円形パターンの面積を液滴Eの塗布面積として求める方法が考えられる。 Note that the application area of the entire plurality of droplets E can be obtained using a known image processing technique. For example, the unit area of the pixel is equal to the number of pixels corresponding to the image of the droplet E in the captured image. There are a method of obtaining a value obtained by multiplying as a coating area, and a method of fitting a circular pattern to the image of the droplet E and obtaining the area of the most fitted circular pattern as the coating area of the droplet E.
 前者の画素数から塗布面積を求める方法の場合、液滴Eの撮像画像の形状に合わせて塗布面積を算出するので、算出される塗布面積が液滴Eの撮像画像の形状の影響を受け難く、塗不面積の算出精度が向上するので好ましい。 In the case of the former method of obtaining the application area from the number of pixels, the application area is calculated in accordance with the shape of the captured image of the droplet E. Therefore, the calculated application area is hardly affected by the shape of the captured image of the droplet E. This is preferable because the calculation accuracy of the non-coating area is improved.
 表示部8は、撮像した複数の液滴Eの画像等の各種画像を表示する表示装置である。この表示部8は電気的に検査部7に按続されている。尚、表示部8としては、例えば、液晶ディスブレイやCRTディスプレイ等を用いる。 The display unit 8 is a display device that displays various images such as captured images of a plurality of droplets E. The display unit 8 is electrically connected to the inspection unit 7. For example, a liquid crystal display or a CRT display is used as the display unit 8.
 なお、この表示部8に検査部7での検査結果、たとえば基板K上に滴下されて一体化した複数の液滴Eの投影面積、この投影面積から算出された塗布量、或いは算出した塗布量の良否情報(予め設定された塗布量との差)などを表示するようにしてもよい。 Note that the inspection result of the inspection unit 7 on the display unit 8, for example, the projected area of a plurality of droplets E dropped onto the substrate K and integrated, the coating amount calculated from the projected area, or the calculated coating amount The quality information (difference from a preset application amount) or the like may be displayed.
 制御部9は、各部を集中的に制御するマイクロコンピュータと、塗布に関する塗布情報や各種のプログラム等を記憶する記憶部と(いずれも図示せず)を備えている。塗布情報は、ドットパターン等の所定の塗布パターン、塗布ヘッド5の傾斜角度、塗布ヘッド5の吐出周波数及び基板Kの移動速度に関する情報等を含んでいる。この塗布情報としては、製造塗布用の塗布情報及び検査塗布用の塗布情報(検査用のパターン及び溶媒雰囲気形成用のパターンを含む)が記憶部に格納されている。 The control unit 9 includes a microcomputer that intensively controls each unit, and a storage unit that stores application information related to application, various programs, and the like (none of which are shown). The application information includes a predetermined application pattern such as a dot pattern, an inclination angle of the application head 5, information regarding the ejection frequency of the application head 5, and the moving speed of the substrate K. As the application information, application information for manufacturing application and application information for inspection application (including a pattern for inspection and a pattern for forming a solvent atmosphere) are stored in the storage unit.
 液滴塗布装置1の制御部9は、塗布ヘッド5のノズル11から製品用基板Kの凹部K2に塗布される複数の液滴Eの塗布量を高精度に検査し、ひいては塗布ヘッド5の各ノズル11から製品用基板Kの凹部K2に吐出される複数の液滴の塗布量が互いに同一になるように各ノズル11からの液滴Eの吐出量を調整するため、以下の如くに動作する。 The control unit 9 of the droplet applying apparatus 1 inspects the application amount of the plurality of droplets E applied from the nozzle 11 of the application head 5 to the concave portion K2 of the product substrate K with high accuracy. In order to adjust the discharge amount of the droplet E from each nozzle 11 so that the application amounts of the plurality of droplets discharged from the nozzle 11 to the concave portion K2 of the product substrate K are the same, the following operation is performed. .
(A)検査用基板KA
 製品用基板Kとは別に用意される検査用基板KAを用いる。検査用基板KAは、製品用基板Kの1つの凹部K2と同じ形状で同じ大きさの塗布範囲Aが定められている。この塗布範囲Aに滴下されるべき液滴数を製品用基板Kの1つの凹部K2に塗布される液滴数(例えば5滴)とする。尚、検査用基板KAの表面を撥水性とすることが好ましい。なお、塗布範囲Aは、検査用基板KA上に物理的に設けるものでも、仮想的に設けられるもので良い。
(A) Inspection board KA
An inspection substrate KA prepared separately from the product substrate K is used. The inspection substrate KA has the same shape as the one concave portion K2 of the product substrate K and an application range A having the same size. The number of droplets to be dropped in the application range A is defined as the number of droplets (for example, five droplets) applied to one concave portion K2 of the product substrate K. Note that the surface of the inspection substrate KA is preferably water-repellent. The application range A may be physically provided on the inspection substrate KA or may be provided virtually.
(B)検査調整手順
(1)吐出工程
 移動テーブル2に検査用基板KAを載置し、Y軸移動機構3、X軸移動機構4を制御して塗布ヘッド5に対して検査用基板KAをその表面に沿う方向(XY方向)で相対的に移動させ、塗布ヘッド5の直下に検査用基板KAの各塗布範囲Aを順次位置付け、塗布ヘッド5の各ノズル11から検査用基板KAの各塗布範囲Aに対して複数の液滴E(例えばE1~E5)を滴下する。
(B) Inspection Adjustment Procedure (1) Discharging Step The inspection substrate KA is placed on the moving table 2 and the Y-axis moving mechanism 3 and the X-axis moving mechanism 4 are controlled to apply the inspection substrate KA to the coating head 5. By moving relatively in the direction along the surface (XY direction), each application range A of the inspection substrate KA is positioned immediately below the coating head 5, and each application of the inspection substrate KA from each nozzle 11 of the coating head 5. A plurality of droplets E (for example, E1 to E5) are dropped on the range A.
 このとき、図4A、図4Bに示すように、塗布ヘッド5と検査用基板KAを互いに相対移動させずに、ノズル11から吐出される複数の液滴E1~E5を検査用基板KAの塗布範囲A内の同一位置に滴下させる。各液滴E1~E5は、図4Cに示すように、検査用基板KAの同一位置上に堆積して全体で平面視円形をなす。 At this time, as shown in FIGS. 4A and 4B, the coating head 5 and the inspection substrate KA are not moved relative to each other, and a plurality of droplets E1 to E5 discharged from the nozzle 11 are applied to the inspection substrate KA. Drip at the same position in A. As shown in FIG. 4C, each of the droplets E1 to E5 is deposited on the same position of the inspection substrate KA and forms a circular shape in plan view as a whole.
 尚、複数の液滴E1~E5の滴下タイミングtは、製品用基板Kに対する複数の液滴E1~E5の滴下タイミングtと同一タイミングに設定する。 The dropping timing t of the plurality of droplets E1 to E5 is set to the same timing as the dropping timing t of the plurality of droplets E1 to E5 on the product substrate K.
 なお、図4A、図4Bにおいて、複数の液滴E1~E5が、便宜上あたかも順に積層されるかのように示したが、実際には複数の液滴E1~E5は、基板KAに滴下されるたび毎に混ざり合って一体化する。 4A and 4B, the plurality of droplets E1 to E5 are shown as if they are stacked in order for convenience, but actually the plurality of droplets E1 to E5 are dropped onto the substrate KA. Every time they are mixed and integrated.
(2)撮像工程
 撮像部6の直下に検査用基板KAの各塗布範囲Aを順次位置付け、ノズル11から吐出されて各塗布範囲Aに滴下して一体化した複数の液滴E1~E5を塗布範囲A毎に撮像する。
(2) Imaging Step Each application range A of the inspection substrate KA is positioned immediately below the imaging unit 6, and a plurality of droplets E1 to E5 that are ejected from the nozzle 11 and dropped into the application range A are integrated. An image is taken for each range A.
(3)検査工程
 検査部7により、撮像部6が撮像した複数の液滴E1~E5が一体化した画像に基づいて、その画像が円形であるか否かを判別する。
(3) Inspection process The inspection unit 7 determines whether or not the image is circular based on an image obtained by integrating the plurality of droplets E1 to E5 captured by the imaging unit 6.
 尚、ここで、円形とは、完全な真円のみを指すのではなく、予め定めた許容範囲内に含まれる円形を含むものとする。そして、一体化した複数の液滴E1~E5の画像が円形であるか否かは、例えば、以下のようにして行なう。 In addition, here, a circle does not indicate only a perfect perfect circle, but includes a circle included in a predetermined allowable range. Whether or not the images of the integrated droplets E1 to E5 are circular is determined as follows, for example.
 即ち、一体化した複数の液滴E1~E5の画像の重心を中心として等角度間隔、例えば、45°間隔で放射状に伸ばした直線(8つの直線)が液滴E1~E5の画像の外縁と交差する位置までの距離をそれぞれ求め、求めた8つの値の最大値と最小値との差が許容範囲内であれば円形であるとする。許容範囲は、任意であるが、概ね8つの値の平均値の10%以内とするとよい。 That is, straight lines (eight straight lines) radially extending at equal angular intervals, for example, 45 ° intervals, with the center of gravity of the images of the integrated droplets E1 to E5 as the center are the outer edges of the images of the droplets E1 to E5. The distances to the intersecting positions are obtained, respectively, and if the difference between the maximum value and the minimum value of the obtained eight values is within the allowable range, the distance is assumed to be circular. The allowable range is arbitrary, but is preferably within 10% of the average value of the eight values.
 画像が円形である場合、それら一体化された液滴E1~E5の全体の塗布面積(投影面積)を求め、更にこの塗布面積に基づいてそれら液滴E1~E5の塗布量を求める。 When the image is circular, the total application area (projected area) of the integrated droplets E1 to E5 is obtained, and the application amount of the droplets E1 to E5 is obtained based on this application area.
 尚、検査部7は、撮像部6が撮像した複数の液滴E1~E5の画像が円形でないとき、図5に示す如く、塗布ヘッド5のノズル11から吐出された液滴E1~E5中に、吐出方向が鉛直線に対して斜めに吐出された液滴を含むものと判定する。この場合には、一体化された液滴E1~E5の量が円形で滴下された場合と同じであっても、その撮像画像から求まる投影面積が、円形のものと異なる虞があるので、この画像に基づく塗布量の算出を行なうことなく、他の塗布範囲Aに対して液滴E1~E5を再度塗布して、撮像工程、および検査工程をやり直す。 In addition, when the images of the plurality of droplets E1 to E5 picked up by the image pickup unit 6 are not circular, the inspection unit 7 includes the droplets E1 to E5 discharged from the nozzle 11 of the coating head 5 as shown in FIG. Then, it is determined that the discharge direction includes droplets discharged obliquely with respect to the vertical line. In this case, even if the amount of the integrated droplets E1 to E5 is the same as when the droplets are dropped in a circle, the projected area obtained from the captured image may be different from that of the circle. Without calculating the application amount based on the image, the droplets E1 to E5 are applied again to the other application range A, and the imaging process and the inspection process are performed again.
(4)調整工程
 制御部9により、各ノズル11から吐出される複数の液滴E1~E5の塗布量が互いに同一になるように、各ノズル11からの液滴Eの吐出量を調整する。
(4) Adjustment Step The controller 9 adjusts the discharge amount of the droplet E from each nozzle 11 so that the application amounts of the plurality of droplets E1 to E5 discharged from each nozzle 11 are the same.
 例えば、ノズル11を5つとした場合、塗布ヘッド5の一列をなす各ノズル11のうち、中央のノズル11(例えばN3)からの液滴E1~E5の塗布量を基準値とし、他のノズル(例えばN1、N2、N4、N5)からの液滴E1~E5の塗布量が上述の基準値に合致するように、それら他のノズルN1、N2、N4、N5のそれぞれに対応する圧電素子の印加電圧を調整し、それら他のノズルN1、N2、N4、N5からの液滴Eの吐出量を調整する。 For example, when the number of nozzles 11 is five, among the nozzles 11 forming one row of the coating head 5, the coating amount of droplets E1 to E5 from the central nozzle 11 (for example, N3) is used as a reference value, and other nozzles ( For example, application of piezoelectric elements corresponding to each of the other nozzles N1, N2, N4, and N5 so that the coating amount of the droplets E1 to E5 from N1, N2, N4, and N5) matches the above-described reference value. The voltage is adjusted, and the discharge amount of the droplet E from these other nozzles N1, N2, N4, N5 is adjusted.
 本実施例によれば以下の作用効果を奏する。 According to this embodiment, the following operational effects can be obtained.
(a)塗布ヘッド5のノズル11から検査用基板KAの塗布範囲Aに複数の液滴、例えばE1~E5を吐出するとき、塗布ヘッド5と基板を互いに相対移動させずに、ノズル11から吐出される複数の液滴E1~E5を検査用基板KAの塗布範囲A内の同一位置に滴下させる。 (A) When a plurality of droplets, for example, E1 to E5, are ejected from the nozzle 11 of the coating head 5 to the coating range A of the inspection substrate KA, the coating head 5 and the substrate are ejected from the nozzle 11 without moving relative to each other. The plurality of droplets E1 to E5 are dropped at the same position within the coating range A of the inspection substrate KA.
 このため、検査用基板KAの上に順に滴下された各液滴E1~E5は塗布範囲A内の同一位置上に堆積する。それらの液滴E1~E5は、検査用基板KA上に着弾する際に、検査用基板KAの移動速度のばらつきの影響を含まないし、液滴の粘度、濃度等に起因する検査用基板KAの移動方向への液滴の引き摺りの影響を含まない。 For this reason, each of the droplets E1 to E5 dropped in sequence on the inspection substrate KA is deposited on the same position in the coating range A. When the droplets E1 to E5 land on the inspection substrate KA, the droplets E1 to E5 do not include the influence of variations in the moving speed of the inspection substrate KA, and the inspection substrate KA is caused by the viscosity, concentration, etc. of the droplets. Does not include the effect of droplet dragging in the direction of movement.
 したがって、これらの液滴E1~E5が一体化した液滴は、移動速度のばらつきや前記引き摺りに起因する塗布面積のばらつきが抑制されたものとなるで、液滴E1~E5の全体の塗布面積、ひいては塗布量の検査精度が向上する。よって、製品用基板Kに対する液滴Eの塗布精度を向上させることができる。 Therefore, the droplets in which these droplets E1 to E5 are integrated have reduced movement speed variations and variations in the coating area caused by the dragging, so that the entire coating area of the droplets E1 to E5 is reduced. As a result, the inspection accuracy of the coating amount is improved. Therefore, the coating accuracy of the droplet E on the product substrate K can be improved.
 また、複数の液滴E1~E5が一体化した全体の画像の塗布面積から塗布量を求めるようにしたので、1つの液滴の塗布面積による場合に比べ、塗布面積が拡大されるとともに、液滴の吐出量の誤差が液滴の数分だけ塗布量に積算されて現われるので、塗布量の算出を容易に行えるとともに、塗布量の検査を精度良く行なうことができる。 In addition, since the coating amount is obtained from the coating area of the entire image in which the plurality of droplets E1 to E5 are integrated, the coating area is expanded and the liquid volume is increased as compared with the case where the coating area is one droplet. Since the error of the droplet discharge amount is integrated into the application amount by the number of droplets, the application amount can be easily calculated and the inspection of the application amount can be performed with high accuracy.
 尚、塗布ヘッド5のノズル11から検査用基板KAに吐出される複数の液滴E1~E5の滴下タイミングt(滴下時間間隔)を、この検査用基板KAに対応する製品用基板Kに対する複数の液滴E1~E5の滴下タイミングtと同一タイミングに設定することにより、塗布量の検査条件を実塗布条件に近づけ、その検査精度を一層向上できる。 The dropping timing t (dropping time interval) of the plurality of droplets E1 to E5 discharged from the nozzle 11 of the coating head 5 to the inspection substrate KA is set to a plurality of product substrates K corresponding to the inspection substrate KA. By setting the same timing as the dropping timing t of the droplets E1 to E5, the inspection condition of the coating amount can be brought close to the actual coating condition, and the inspection accuracy can be further improved.
 また、検査用基板KAの表面を撥水性とすることにより、液滴の粘渡、濃度等によらず、基板KAの表面に着弾した液滴を球状にして広がりにくくし、液滴の広がり具合のばらつきに起因する塗布面積のばらつきの影響を抑制することで、液滴E1~E5の全体の塗布面積、ひいては塗布量の検査精度を一層向上できる。 In addition, by making the surface of the inspection substrate KA water-repellent, the droplets that have landed on the surface of the substrate KA are made spherical and difficult to spread regardless of the viscosity, concentration, etc. By suppressing the influence of the variation in the coating area caused by the variation in the number of droplets, it is possible to further improve the inspection accuracy of the entire coating area of the droplets E1 to E5 and thus the coating amount.
(b)検査用基板KAの塗布範囲Aに滴下される液滴数が製品用基板Kの1つの凹部に塗布される液滴数(例えばE1~E5の5滴)であるものとすることにより、液滴E1~E5の全体の塗布面積、ひいては塗布量の検査条件を実塗布条件に近づけ、その検査精度を一層向上できる。 (B) By assuming that the number of droplets dropped on the application range A of the inspection substrate KA is the number of droplets applied to one recess of the product substrate K (for example, five droplets E1 to E5). The inspection conditions for the entire coating area of the droplets E1 to E5, and thus the coating amount, can be brought close to the actual application conditions, and the inspection accuracy can be further improved.
(c)検査用基板KAの塗布範囲Aに塗布された複数の液滴の画像が円形でないとき、塗布ヘッド5のノズル11から吐出される複数の液滴E1~E5の中に、液滴の吐出方向が鉛直線に対し斜めに吐出された液滴を含むものと判定する。 (C) When the images of the plurality of droplets applied to the application range A of the inspection substrate KA are not circular, droplets of the plurality of droplets E1 to E5 discharged from the nozzle 11 of the application head 5 It is determined that the discharge direction includes droplets discharged obliquely with respect to the vertical line.
 即ち、塗布ヘッド5のノズル11から吐出される液滴E(例えばE5)の吐出状態が、該液滴E5の吐出方向を鉛直線に対し斜めとする斜め吐出の異常状態(図5)にあるときには、液滴E1~E4に対し液滴E5がずれて液滴E1~E5の全体の画像が円形の範囲外である楕円になり、又は液滴E1~E4と液滴E5が離間する形態を呈する。従って、この異常時の液滴E1~E5の全体の画像は、正常時の真円の画像に比して歴然と異なるものになり、吐出状態の正常と異常を容易に判別できる。 That is, the discharge state of the droplet E (for example, E5) discharged from the nozzle 11 of the coating head 5 is an abnormal discharge oblique state (FIG. 5) in which the discharge direction of the droplet E5 is oblique to the vertical line. Sometimes, the droplet E5 is displaced from the droplets E1 to E4, and the entire image of the droplets E1 to E5 becomes an ellipse outside the circular range, or the droplets E1 to E4 and the droplet E5 are separated from each other. Present. Accordingly, the entire image of the droplets E1 to E5 at the time of abnormality is clearly different from the image of the perfect circle at normal time, and it is possible to easily determine whether the ejection state is normal or abnormal.
 このような、異常時の液滴E1~E5の全体の画像は、その塗布面積(投影面積)が正常時の円形の画像に比して大きくなることから、液滴Eの吐出量を正確に調整することができない。 Such an entire image of the droplets E1 to E5 at the time of abnormality has a larger application area (projected area) than a circular image at the time of normality, so that the ejection amount of the droplet E can be accurately determined. It cannot be adjusted.
 このように、斜め吐出状態の液滴を含む場合、撮像画像から求められる塗布量の算出精度が低下するが、上述の判別により、異常と判別された液滴Eの画像に基づく塗布量の算出を中止するので、液滴Eの吐出量の調整不良を未然に防止することができる。 As described above, when the liquid droplets in the oblique discharge state are included, the calculation accuracy of the application amount obtained from the captured image is lowered, but the application amount is calculated based on the image of the droplet E determined to be abnormal by the above-described determination. Therefore, it is possible to prevent a poor adjustment of the discharge amount of the droplet E.
(d)前述(a)~(c)により、ノズル11毎にそれらノズル11から検査用基板KAの塗布範囲Aに吐出される複数の液滴の塗布量を高精度に検査できる結果、各ノズル11から基板の各塗布範囲Aに吐出されて塗布される複数の液滴の塗布量を互いに同一になるように、各ノズル11からの液滴の吐出量を正しく調整できる。 (D) As a result of the above-described (a) to (c), the application amount of a plurality of droplets discharged from each nozzle 11 to the application range A of the inspection substrate KA can be inspected with high accuracy. The amount of droplets discharged from each nozzle 11 can be adjusted correctly so that the amount of the plurality of droplets applied by being discharged from the nozzle 11 to each coating area A of the substrate is the same.
 以上、本発明の実施例を図面により詳述したが、本発明の具体的な構成はこの実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。例えば、塗布ヘッドのノズルから基板の一定の塗布範囲に塗布される複数の液滴の塗布面積、ひいては塗布量の検査は、検査用基板を用いず、製品用基板に対して行なうものでも良い。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration of the present invention is not limited to this embodiment, and even if there is a design change or the like without departing from the gist of the present invention. It is included in the present invention. For example, the inspection of the application area of a plurality of droplets applied to a predetermined application range of the substrate from the nozzle of the application head, and thus the application amount, may be performed on the product substrate without using the inspection substrate.
 1…液滴塗布装置、5…塗布ヘッド、6…撮像部、7…検査部、9…制御部、11…ノズル。 DESCRIPTION OF SYMBOLS 1 ... Droplet application apparatus, 5 ... Application | coating head, 6 ... Imaging part, 7 ... Inspection part, 9 ... Control part, 11 ... Nozzle.

Claims (9)

  1.  基板上の所定の塗布範囲に液滴を塗布する液滴塗布方法であって、
     塗布ヘッドに設けたノズルから吐出されて前記塗布範囲に塗布された複数の液滴をまとめて撮像する工程と、
     撮像した前記複数の液滴の画像に基づいて、それら液滴の全体の塗布積面積を求める工程と、
     求められた塗布面積に基づいて前記ノズルからの液滴の吐出量を調整する工程を有し、
     前記塗布ヘッドのノズルから基板上の所定の塗布範囲に前記複数の液滴を吐出するとき、前記ノズルから吐出される前記複数の液滴を前記所定の塗布範囲内の同一位置に滴下させることを特徴とする液滴塗布方法。
    A droplet application method for applying droplets to a predetermined application range on a substrate,
    A step of collectively imaging a plurality of liquid droplets ejected from a nozzle provided in an application head and applied to the application range;
    Based on the captured images of the plurality of droplets, obtaining a total coating area of the droplets;
    Having a step of adjusting the discharge amount of droplets from the nozzle based on the determined application area;
    When discharging the plurality of droplets from a nozzle of the coating head to a predetermined coating range on the substrate, dropping the plurality of droplets discharged from the nozzle at the same position within the predetermined coating range. A method for applying a droplet.
  2.  前記基板は液滴の塗布状態を検査するための検査用基板であり、
     この検査用基板で液滴の塗布状態を検査した後、その検査に基づいて溶液が塗布される製品用基板には塗布ヘッドのノズルから吐出される複数の液滴を塗布するために区画された凹部が設けられ、
     前記検査用基板の所定の塗布範囲に滴下される液滴数が製品用基板の1つの凹部に塗布される液滴数である請求項1に記載の液滴塗布方法。
    The substrate is an inspection substrate for inspecting the application state of droplets,
    After inspecting the application state of the liquid droplets with this inspection substrate, the product substrate to which the solution is applied based on the inspection was partitioned to apply a plurality of liquid droplets discharged from the nozzles of the application head. A recess is provided,
    The droplet coating method according to claim 1, wherein the number of droplets dropped on a predetermined coating range of the inspection substrate is the number of droplets coated on one concave portion of the product substrate.
  3.  前記基板の所定の塗布範囲に塗布された複数の液滴の画像が円形でないとき、前記複数の液滴中に、塗布ヘッドのノズルから吐出される液滴に吐出方向が鉛直線に対し斜めに吐出された液滴を含むものと判定する請求項1又は2に記載の液滴塗布方法。 When the image of the plurality of droplets applied to the predetermined application range of the substrate is not circular, the discharge direction of the droplets discharged from the nozzles of the application head is oblique to the vertical line in the plurality of droplets The droplet application method according to claim 1, wherein the droplet application method is determined to include discharged droplets.
  4.  前記塗布ヘッドが複数のノズルを備え、前記調整工程では、各ノズルから吐出される複数の液滴の塗布量が互いに同一になるように各ノズルからの液滴の吐出量を調整することを特徴とする請求項3に記載の液滴塗布方法。 The coating head includes a plurality of nozzles, and in the adjusting step, the ejection amount of droplets from each nozzle is adjusted so that the coating amounts of the plurality of droplets ejected from each nozzle are the same. The droplet coating method according to claim 3.
  5.  基板上の所定の塗布範囲に液滴を塗布する液滴塗布装置であって、
     ノズルを備えた塗布ヘッドと基板とを前記基板の表面に沿う方向で相対移動させる移動手段と、
     前記ノズルから吐出されて基板上の所定の塗布範囲に塗布された複数の液滴をまとめて撮像する撮像部と、
     撮像部で撮像した前記複数の液滴の画像に基づいて、それら液滴の全体の塗布面積を求める検査部と、
     前記塗布ヘッド、移動手段、撮像部及び検査部を制御する制御部を有し、
     前記制御部は、塗布ヘッドのノズルから前記所定の塗布範囲に複数の液滴を吐出するとき、前記ノズルから吐出される上記複数の液滴を前記所定の塗布範囲内の同一位置に滴下させるように前記塗布ヘッドと前記移動手段の駆動を制御することを特徴とする液滴塗布装置。
    A droplet applying apparatus for applying droplets to a predetermined application range on a substrate,
    Moving means for relatively moving the coating head provided with the nozzle and the substrate in a direction along the surface of the substrate;
    An imaging unit that collectively images a plurality of droplets ejected from the nozzle and applied to a predetermined application range on the substrate;
    Based on the images of the plurality of droplets imaged by the imaging unit, an inspection unit for obtaining the entire application area of the droplets;
    A control unit that controls the coating head, the moving unit, the imaging unit, and the inspection unit;
    When the control unit discharges a plurality of droplets from the nozzle of the coating head to the predetermined coating range, the control unit drops the plurality of droplets discharged from the nozzle at the same position in the predetermined coating range. And a liquid droplet coating apparatus for controlling driving of the coating head and the moving means.
  6.  前記基板が検査用基板であり、
     この検査用基板とは異なる製品用基板が塗布ヘッドのノズルから吐出される複数の液滴を塗布するために区画された凹部を有し、
     検査用基板の所定の塗布範囲に滴下される液滴数が製品用基板の1つの凹部に塗布される液滴数である請求項5に記載の液滴塗布装置。
    The substrate is an inspection substrate;
    The product substrate different from the inspection substrate has a recessed section partitioned for applying a plurality of droplets discharged from the nozzle of the application head,
    6. The droplet coating apparatus according to claim 5, wherein the number of droplets dropped on a predetermined coating range of the inspection substrate is the number of droplets coated on one recess of the product substrate.
  7.  前記制御部は、前記撮像部によって撮像された前記複数の液滴の画像が円形でないとき、前記複数の液滴中に、吐出方向が鉛直線に対し斜めに吐出された液滴を含むものと判定することを特徴とする請求項5又は6に記載の液滴塗布装置。 The control unit includes, when the images of the plurality of droplets imaged by the imaging unit are not circular, the plurality of droplets include droplets ejected obliquely with respect to a vertical line. The droplet applying apparatus according to claim 5, wherein the droplet applying device is determined.
  8.  前記制御部は、前記検査部によって求められた塗布面積に基づいて前記ノズルからの液滴の吐出量を調整することを特徴とする請求項5に記載の液滴塗布装置。 6. The droplet coating apparatus according to claim 5, wherein the control unit adjusts the ejection amount of the droplets from the nozzle based on the coating area obtained by the inspection unit.
  9.  前記塗布ヘッドが複数のノズルを備え、前記制御部は、各ノズルから吐出される複数の液滴の塗布量が互いに同一になるように各ノズルからの液滴の吐出量を調整することを特徴とする請求項8に記載の液滴塗布装置。 The coating head includes a plurality of nozzles, and the control unit adjusts the ejection amount of droplets from each nozzle so that the coating amounts of the plurality of droplets ejected from each nozzle are the same. The droplet applying apparatus according to claim 8.
PCT/JP2009/067801 2008-10-15 2009-10-14 Method and apparatus for applying droplet WO2010044429A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980140127.0A CN102176980B (en) 2008-10-15 2009-10-14 Method and apparatus for applying droplet
JP2010533916A JP5497654B2 (en) 2008-10-15 2009-10-14 Droplet application method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-265837 2008-10-15
JP2008265837 2008-10-15

Publications (1)

Publication Number Publication Date
WO2010044429A1 true WO2010044429A1 (en) 2010-04-22

Family

ID=42106592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067801 WO2010044429A1 (en) 2008-10-15 2009-10-14 Method and apparatus for applying droplet

Country Status (5)

Country Link
JP (1) JP5497654B2 (en)
KR (1) KR101639459B1 (en)
CN (1) CN102176980B (en)
TW (1) TWI442979B (en)
WO (1) WO2010044429A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101288200B1 (en) * 2011-10-25 2013-07-18 삼성전기주식회사 Fluid ejection device
KR101477376B1 (en) * 2013-03-14 2014-12-29 삼성전기주식회사 Fluid ejection device
KR101328214B1 (en) * 2013-03-21 2013-11-14 삼성전기주식회사 Fluid ejection device
KR102178869B1 (en) * 2013-07-31 2020-11-13 세메스 주식회사 Apparatus and method for inspecting substrates, and apparatus for treating substrates using the same
KR101701904B1 (en) * 2015-07-30 2017-02-02 세메스 주식회사 Apparatus and Method for Inspecting Droplet, Apparatus and Method for Droplet Formation having the same
TW202110544A (en) * 2019-04-30 2021-03-16 日商迪睿合股份有限公司 Method for supplying or removing sliding treatment material to or from surface of sliding workpiece

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161925A (en) * 2001-11-24 2003-06-06 Shibaura Mechatronics Corp Method and device for bonding substrate
JP2005119139A (en) * 2003-10-16 2005-05-12 Seiko Epson Corp Method and device for measuring discharge amount of functional liquid droplet jet head, method of controlling driving of functional liquid droplet jet head, liquid droplet jet device, method of manufacturing electrooptical device, electrooptical device, and electronic device
WO2006022217A1 (en) * 2004-08-23 2006-03-02 Kabushiki Kaisha Ishiihyoki Ink jet printer discharge amount control method, ink droplet spread check method, and orientation film formation method
JP2006130383A (en) * 2004-11-02 2006-05-25 Seiko Epson Corp Method and device for detection of dot shift
JP2007256449A (en) * 2006-03-22 2007-10-04 Toshiba Corp Droplet jetting inspecting device, droplet jetting device, and manufacturing method for coating body
JP2008196972A (en) * 2007-02-13 2008-08-28 Nec Corp Application inspection apparatus and setting method for application inspection conditions

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230129A (en) 1996-02-26 1997-09-05 Asahi Glass Co Ltd Production of color filter and liquid crystal display element formed by using the same
JP4159525B2 (en) * 2004-08-23 2008-10-01 株式会社石井表記 Alignment film forming method and ink jet print head ejection inspection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161925A (en) * 2001-11-24 2003-06-06 Shibaura Mechatronics Corp Method and device for bonding substrate
JP2005119139A (en) * 2003-10-16 2005-05-12 Seiko Epson Corp Method and device for measuring discharge amount of functional liquid droplet jet head, method of controlling driving of functional liquid droplet jet head, liquid droplet jet device, method of manufacturing electrooptical device, electrooptical device, and electronic device
WO2006022217A1 (en) * 2004-08-23 2006-03-02 Kabushiki Kaisha Ishiihyoki Ink jet printer discharge amount control method, ink droplet spread check method, and orientation film formation method
JP2006130383A (en) * 2004-11-02 2006-05-25 Seiko Epson Corp Method and device for detection of dot shift
JP2007256449A (en) * 2006-03-22 2007-10-04 Toshiba Corp Droplet jetting inspecting device, droplet jetting device, and manufacturing method for coating body
JP2008196972A (en) * 2007-02-13 2008-08-28 Nec Corp Application inspection apparatus and setting method for application inspection conditions

Also Published As

Publication number Publication date
KR101639459B1 (en) 2016-07-13
JPWO2010044429A1 (en) 2012-03-15
CN102176980B (en) 2013-09-11
CN102176980A (en) 2011-09-07
TWI442979B (en) 2014-07-01
TW201026402A (en) 2010-07-16
KR20110069864A (en) 2011-06-23
JP5497654B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP2008264608A (en) Liquid droplet coating apparatus and liquid droplet coating method
JP5497654B2 (en) Droplet application method and apparatus
JP2008544333A (en) Inkjet printing system and method for flat panel display
TWI656039B (en) Inkjet printing system and method of processing wafer
JP2007256449A (en) Droplet jetting inspecting device, droplet jetting device, and manufacturing method for coating body
US20080024552A1 (en) Methods and apparatus for improved manufacturing of color filters
JP5761896B2 (en) Droplet application method and apparatus
KR20240003727A (en) Inkjet apparatus, control method, and substrate
JP2009175168A (en) Application equipment and application method
JP4876577B2 (en) Manufacturing method of color filter
JP2008221183A (en) Liquid droplet ejection/coating apparatus and method for preparing coated article
JP2010264426A (en) Droplet coating method and apparatus
JP2010015052A (en) Droplet application device and method
JP2010194465A (en) Method and apparatus for droplet application
KR101759132B1 (en) Coating machine and coating method
JP5416521B2 (en) Application method
JP2010036064A (en) Droplet application device and method
KR20220022493A (en) Apparatus for jetting ink and method for inspecting jetting stated of inkjet head
CN114683731B (en) Printing method, printing system and printing device
JP5307468B2 (en) Droplet application method and apparatus
JP2013240788A (en) Method and device for applying liquid drop
JP2006247500A (en) Pattern forming apparatus and pattern forming method
JP2010158629A (en) Droplet applying method and apparatus
JP2009109799A (en) Coating device and coating method
KR20060098304A (en) Ink jet printing system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980140127.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010533916

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117010719

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09820607

Country of ref document: EP

Kind code of ref document: A1