WO2010043748A1 - Biosíntesis de derivados de monacolina j - Google Patents

Biosíntesis de derivados de monacolina j Download PDF

Info

Publication number
WO2010043748A1
WO2010043748A1 PCT/ES2009/070436 ES2009070436W WO2010043748A1 WO 2010043748 A1 WO2010043748 A1 WO 2010043748A1 ES 2009070436 W ES2009070436 W ES 2009070436W WO 2010043748 A1 WO2010043748 A1 WO 2010043748A1
Authority
WO
WIPO (PCT)
Prior art keywords
monacolin
microorganism
formula
producing
culture
Prior art date
Application number
PCT/ES2009/070436
Other languages
English (en)
French (fr)
Inventor
Sonia Campoy García
Alberto ZAFRA GÓMEZ
José Luis Adrio Fondevila
Javier Velasco Alvarez
Original Assignee
Neuron Biopharma, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neuron Biopharma, S.A. filed Critical Neuron Biopharma, S.A.
Priority to US13/123,875 priority Critical patent/US20110189726A1/en
Priority to CN2009801504347A priority patent/CN102245178A/zh
Priority to EP09820301A priority patent/EP2380571A4/en
Publication of WO2010043748A1 publication Critical patent/WO2010043748A1/es
Priority to IL212358A priority patent/IL212358A0/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/16Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D309/28Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D309/30Oxygen atoms, e.g. delta-lactones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/145Fungal isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi

Definitions

  • the present invention relates to a process for obtaining derivatives of monacolin J, a type of statins, which are compounds with hypocholesterolemic properties.
  • Statins constitute a group of hypocholesterolemic agents that work by inhibiting the enzyme 3-hydroxy-3-methylglutahl-coenzyme A (HMG-CoA) reductase, which catalyzes the limiting step of cholesterol cell biosynthesis. These compounds are used to lower high cholesterol levels associated with low density lipoproteins (LDL) by reducing the risk of myocardial infarction and coronary death.
  • HMG-CoA 3-hydroxy-3-methylglutahl-coenzyme A reductase
  • Natural statins (monacolin J, lovastatin, mevastatin and pravastatin) and semi-synthetic ones (simvastatin) have a common polyketide structure, with a hexahydronaphthalene core to which different side chains are attached at positions C8 (R 1 ) and C6 (R 2 ), and a lactonic ring, which depending on the conditions appears cyclized in the form of lactone or open giving rise to the corresponding hydroxy acids (Formula A and Table 1).
  • lovastatin nonaquétido synthase LNS
  • This intermediate does not accumulate, but a side chain is directly incorporated by means of the activity of the lovastatin diketide synthase (LDS), encoded by the LovF gene, and an acetyl transferase (LovD).
  • LDS lovastatin diketide synthase
  • LovD acetyl transferase
  • statins lovastatin or mevastatin
  • statins such as some species of the genus Monascus, Doratomyces, Eupenicillium, Gymnoascus, Hypomyces, Paecilomyces, Phoma, Trichoderma, Pleurotus, and yeasts
  • lovastatin or mevastatin some species of the genus Monascus, Doratomyces, Eupenicillium, Gymnoascus, Hypomyces, Paecilomyces, Phoma, Trichoderma, Pleurotus, and yeasts
  • Pichia labacensis or Candida cariosilognicola US 6,943,017).
  • Monacolin J can be obtained from culture broths of lovastatin-producing species belonging to the genus Monascus (JP
  • Simvastatin is a semisynthetic analog of lovastatin more effective in the treatment of hypercholesterolemia due to the chemical replacement of the side chain of ⁇ -methylbutyrate in position C8 (Formula A, R 1 ) by one of ⁇ - dimethyl butyrate.
  • This modification includes hydrolysis, lactonization, silylation and acylation protection of monacolin J protected with ⁇ -dimethyl butyryl chloride (CA 1,199,322; Hoffman et al, J Med Chem, 1986, 29 , 849-852), although the overall yield is less than 40%. Variations on this procedure have been described in US 4,444,784, US 5,159,104 and US 4,450,171.
  • lovastatin is reacted with an amine, and the resulting amide diol is protected and acylated with methyl iodide and a base giving rise to a diol that is lactonized yielding simvastatin (US 4,820,850).
  • the protection of the hydroxyl groups of lovastatin is carried out with phenyl boronic acid (US 5,393,893).
  • simvastatin has been described by means of a chemical-biosynthetic procedure based on lovastatin (Xie et al., Chem Biol, 2006, 13, 1161-1169; Xie and Tang, Appl Environ Microbiol, 2007, 73, 2054-2060 ; WO2007139871).
  • the process is based on obtaining, chemically, monacol ina J and an acylated substrate ( ⁇ -dimethylbutyryl-S-methyl-mercaptopropionate) that are added to resting cells, or in culture, of Escher ⁇ chia coli capable of overexpressing the A. terreus LovD gene that codes for an acyltransferase.
  • the acylated substrate permeable to the cytoplasmic membrane, binds to monacolin J giving rise to simvastatin.
  • this procedure has limitations due to the high cost of the substrates and reagents necessary in the synthesis steps of monacolin J and ⁇ -dimethylbutyryl-S-methyl mercaptopropionate, as well as the partial degradation of the acylated substrate during the process.
  • the authors of the present invention have developed a new process for the production of monacolin J derivatives, such as simvastatin, etc., from a simple, economical and environmentally friendly process. Specifically, the procedure includes
  • the present invention relates to a process for obtaining a monacolin derivative J of formula (I) [defined below] which comprises the production of monacolin J by fermentation from a microorganism producing monacolin J followed by acylation of the hydroxyl group present in the C8 position of monacolin J by means of adding to the fermentation medium an appropriate acylating agent to obtain the monacolin derivative J of the desired formula (I).
  • the invention relates to a microorganism of the Neosartorya genus that has the ability to produce and accumulate monacolin J in a concentration equal to or greater than 50 mg / L.
  • said microorganism is a microorganism of the N. stramenia species.
  • said microorganism is a microorganism of the Neosartorya stramenia species, deposited in the Spanish Type Culture Collection (CECT) with access number CECT 20472, which has the ability to produce and accumulate monacolin J in a equal or equal concentration at 50 mg / L, or even a microorganism that maintains the ability to produce and accumulate monacolin J at a concentration equal to or greater than 50 mg / L.
  • CECT Spanish Type Culture Collection
  • the use of said microorganism to produce monacolin J and said monacolin J derivatives of formula (I) constitutes a further aspect of this invention.
  • the invention relates to a biologically pure culture of said microorganism.
  • the invention relates to a method for identifying a monacolin J producing microorganism.
  • the invention relates to a polynucleotide selected from the polynucleotides whose nucleotide sequences are shown in SEQ ID NO: 1 and SEQ ID NO : 2.
  • the use of said polynucleotide as a probe, or to design primers or probes to identify strains of Neosartorya stramenia or other species of the genus Neosartorya constitutes a further aspect of this invention.
  • the present invention relates to the production of monacolin derivatives J of formula (I), as defined below.
  • the meanings indicated below are understood.
  • alkyl refers even to a hydrocarbon cad, linear or branched, which consists of carbon and hydrogen atoms, which does not contain unsaturations and is linked to the rest of the molecule by a bond simple, for example, methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tere-butyl, etc.
  • the alkyl group may be optionally substituted.
  • cycloalkyl refers to a stable monocyclic or bicyclic radical, which is saturated or partially saturated, consisting of carbon and hydrogen atoms, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, adamantyl, etc.
  • the cycloalkyl group may be optionally substituted.
  • non-alkylated refers even to a hydrocarbon chain, linear or branched, which has one or more carbon-carbon double bonds and is attached to the rest of the molecule by a simple, optionally substituted bond. , for example, vinyl, allyl, etc.
  • the alkenyl group may be optionally substituted.
  • not alq u inilo refers even to a hydrocarbon chain, linear or branched, which has one or more triple carbon-carbon bonds and is attached to the rest of the molecule by a simple, optionally substituted bond. , for example, ethynyl, 1-propyl, etc.
  • the alkynyl group may be optionally substituted.
  • aryl refers to a radical of an aromatic hydrocarbon, which contains one or more rings, including multiple rings with separated or fused aryl radicals; typical aryl groups contain 1 to 3 separate or condensed rings and from 6 to about 18 atoms of carbon, for example, phenyl, naphthyl, indenyl, phenanthryl, anthracil, etc.
  • the aryl groups may be optionally substituted.
  • heterocyclyl refers to a stable radical of a 3 to 15 membered ring containing carbon atoms and one to five heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, preferably a 4 to 8 membered ring with one or more heteroatoms, more preferably a 5 or 6 member ring with one or more heteroatoms.
  • the heterocycle may be a monocyclic, bicyclic or tricyclic ring system, which may include condensed ring systems, and the nitrogen, carbon or sulfur atom in the heterocyclyl radical may be optionally oxidized, the atom of Nitrogen may be optionally quaternized, and the heterocyclyl radical may be partially or fully saturated or aromatic.
  • heterocyclyl radicals include pyridyl, pyrazinyl, pyrimidyl, furyl, pyrrolyl, thienyl, thiazolyl, thiadiazolyl, ozaxolyl, imidazolyl, indolyl, isoxazolyl, benzofuranyl, benzothiazolyl, benzimidazolyl, tetrahydropyranyl, tetrahydroxyranyl, tetrahydropyranyl, tetrahydroxyranyl, tetrahydroxyranyl, tetrahydroxyranyl, tetrahydroxyranyl, tetrahydroxyranyl, tetrahydroxyranyl, tetrahydroxyranyl, tetrahydroxyranyl, tetrahydropyl, tetrahydropyl, tetrahydropyl, tetrahydropyl, tetrahydropyl,
  • Halogen substituents that may be present in the compounds of formula (I) include F, Cl, Br and I.
  • Functional groups such as hydroxyl or amino, may be optionally protected. There is a large number of protecting groups of different functional groups, such as hydroxyl and amino, and they are well known by the person skilled in the art. As a guide, see “Protecting groups, Kocienski, 2004, 3 rd edition and Greene and Wuts” Protective Groups in Organic Synthesis ", John Wiley & Sons, Inc., New York, 1999.
  • lower alcohol refers to a compound comprising a group -OH and 1 to 8 carbon atoms.
  • the present invention relates to a process, hereinafter the method of the invention, for obtaining a monacolin derivative J of formula (I)
  • R 1 is COR 2 , where R 2 is selected from C1-C15 alkyl, C3-C15 cycloalkyl, C2-C15 alkenyl, C2-C15 alkynyl, aryl and heterocyclyl; comprising the steps of: a) production of monacolin J by fermentation from a monacolin J producing microorganism; and b) acylation of the hydroxyl group present in the C8 position of the monacolin J obtained in stage a) by adding to the fermentation medium an appropriate acylating agent to obtain the monacolin derivative J of the desired formula (I).
  • the process of the invention comprises the production of monacolin J by fermentation from a monacolin-producing microorganism J.
  • a monacolin-producing microorganism J can be used to produce the monacol derivative ina J of formula (I) according to the method of the invention, from the point of view of its specification i nd u strial, the monacolin-producing microorganism J used in stage a) is capable of producing a high amount of monacolin J; advantageously, said monacolin J producing microorganism, in addition to producing a high amount of monacolin J, should not produce monacolin J derivatives with the hydroxyl group present in the acylated C8 position, eg, lovastatin, etc., or, in case produce them, you should produce them in very small quantities.
  • monacolin-producing microorganism J produces, in addition to monacolin J, other monacolin J derivatives, for example, lovastatin, etc.
  • the production of monacolin J must advantageously be superior to the production of said monacolin derivative J;
  • the production of monacol ina J will preferably be at least 10 times higher than the production of lovastatin.
  • the monacolin-producing microorganism organism J used to produce the compound of formula (I) according to the method of the invention is a microorganism capable of producing and accumulating monacolin J in a concentration equal to or greater than 50 mg / L, advantageously equal to or greater than 100 mg / L, preferably equal to or greater than 250 mg / L, more preferably equal to or greater than 500 mg / L, even more preferably equal to or greater than 750 mg / L, and still more preferably equal to or greater than 1 000 mg / L of culture broth.
  • Illustrative, non-limiting examples of monacolin J producing microorganisms that can be used in the process of the invention include strains belonging to the genera Aspergillus, Monascus, Penicillium, and, now, Neosartorya.
  • the monacolin-producing microorganism J used to produce the monacolin derivative J of formula (I) according to the method of the invention is a filamentous fungus belonging to the genus Neosartorya, such as a fungus of the species N. stramenia .
  • said monacolin-producing microorganism J used to produce the monacol derivative ina J of formmu (I) according to the process of the invention is a strain of Neosartorya stramenia deposited in the Spanish Type Culture Collection (CECT) with access number CECT 20472, which has the ability to produce and accumulate monacolin J in a concentration equal to or greater than 50 mg / L, or a mutant of said microorganism that maintains the ability to produce and accumulate monacol ina J in an equal concentration or greater than 50 mg / L, the characteristics of which will be described later in detail, sometimes identified in this description as "microorganism of the invention".
  • CECT Spanish Type Culture Collection
  • the monacolin-producing microorganism J will be cultivated under appropriate conditions that allow the production of monacolin J.
  • said conditions such as the culture medium, the carbon source, the nitrogen source , The temperature, etc., will be chosen based on the nature of the monacolin J producing microorganism chosen.
  • Illustrative, non-limiting examples of carbon sources include glucose, maltose, sucrose, mannitol, glycerol, molasses, polyethylene glycol, starch, fatty acids, oils, etc.
  • nitrogen sources include both organic nitrogen sources such as yeast extract, peptone, corn steep liquor ("corn steep liquor”), urea, peptonized milk, sodium glutamate, etc., as inorganic nitrogen sources such as different ammonium salts, etc.
  • the cultivation of the microorganism producing monacolin J is performed for a period of time between 5 and 15 days at a temperature between 2O 0 C and 35 0 C, preferably between 28 0 C and 32 0 C, in function of the microorganism, with constant agitation, generally under aerobic conditions.
  • the monacolin J produced by the monacolin J producing microorganism can be in the form of lactone (more stable), in the form of hydroxy acid (more abundant) or in both forms as a mixture of the closed (lactone) and open (hydroxy acid) form. Then, once the desired amount of monacolin J has been reached, for example, the maximum amount of monacolin J, an appropriate acylating agent is added to the culture medium in order to acylate the hydroxyl group present in position C8 of monacolin J and obtaining the monacolin derivative J of the desired formula (I) [step b)].
  • the chemical acylation of monacolin J consists in the transformation of the hydroxyl present in position C8 of monacolin J into an ester. This transformation, which results in the formation of different side chains in the C8 position of the monacolin J, is achieved by adding the appropriate acylating agent to the culture medium.
  • the monacolin-producing microorganism J used to produce the monacolin derivative J of formula (I) according to the process of the invention encodes said acyltransferase, either natively or recombinantly.
  • acylating agents are carboxylic acids and their derivatives, such as their halides (in particular, chlorides), esters, amides, anhydrides or salts
  • any suitable compound capable of acylating can be used as acylating agent the hydroxyl group present in position C8 of monacolin J and forming an ester in said position C8 monacolin J to obtain the monacolin derivative J of formula (I) desired.
  • Said acylating agents can be easily identified by the person skilled in the art.
  • said acylating agent is a compound of formula (II)
  • the compounds of formula (II), eg, propanoic acid, 2,2-dimethylpropanoic acid, 2-methylbutanoic acid, 2,2-dimethylbutanoic acid, etc. are known compounds or can be obtained by conventional methods known to those skilled in the art.
  • the halides of the carboxylic acid of formula (II) can be obtained by conventional methods, for example, by reacting said carboxylic acid with SOCI2, PCI 5 , PBr 3 , CICOCOCI, etc.
  • esters of the carboxylic acid of formula (II) can be easily obtained by conventional methods, for example, by reaction of said carboxylic acid, or an anhydride or chloride thereof, with the corresponding alcohol, or by reaction of the sodium salt of said carboxylic acid (II) with an alkyl halide, etc.
  • the carboxylic acid amides of formula (II) can also be easily obtained by conventional methods, for example, by reaction of an ester, anhydride or halide of said carboxylic acid with ammonia or with an amine, or by hydrolysis of the corresponding nitrile, etc. .
  • the carboxylic acid anhydrides of formula (II) can be easily obtained by conventional methods, for example, by reacting a halide of said carboxylic acid with a carboxylate, etc.
  • carboxylic acid salts of formula (II) are metal salts, eg, sodium, potassium, ammonium salt, etc. , which can be easily obtained by conventional methods, for example, by reacting said carboxylic acid with the appropriate base.
  • acylating agents include acetates, propionates, such as sodium propionate, sodium 2,2-dimethylpropionate, etc., butyrates, such as 2-methylbutyrate, 2,2-dimethylbutyrate, etc.
  • the acylating agents will preferably be in the desired enantiopurate form, for example, (S) -2-methylbutyrate sodium, etc.
  • Illustrative, non-limiting examples of monacolin J derivatives of formula (I) obtained according to the process of the invention include those compounds of formula (I) in which R 1 is selected from propionyl, 2,2-dimethylpropionyl, 2-methylbutyllo (lovastatin) and 2,2-dimethylbutyryl (simvastatin).
  • the acylation reaction is carried out with stirring, for a period of time between 24 and 72 hours, at a temperature between 2O 0 C and 4O 0 C, preferably between 25 0 C and 3O 0 C
  • the monacolin J derivative of formula (I) obtained, if desired can be isolated and purified by conventional methods. For this, said compound of formula (I) can be extracted from the culture broth and, if desired, concentrated, and, optionally, recrystallized.
  • the extraction of the compound of formula (I) obtained is intended to separate it from the rest of the compounds present in the culture broth (fermentation medium).
  • Said compound of formula (I) can be extracted from the culture by conventional methods, for example, by extraction with an appropriate solvent in an acid medium.
  • the culture broth containing the compound of formula (I) is acidified by the use of an appropriate, organic or inorganic acid, typically inorganic.
  • said culture medium is acidified to a pH value between 2.5 and 5, preferably between 3 and 4.
  • said acids that can be used to acidify said culture medium include any acid capable of acidifying said culture medium to an appropriate pH value, for example, between 2.5 and 5, for example, hydrochloric, sulfuric, phosphoric acid, etc.
  • Said extraction in a particular embodiment, can be performed using an appropriate solvent, such as an organic solvent, for example, an ester, such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, etc.
  • an appropriate solvent such as an organic solvent, for example, an ester, such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, etc.
  • the amount of solvent to be added may vary within a wide range; however, in a particular embodiment, said solvent is added in an amount between 0.5 and 2 times the culture volume.
  • Extraction can be carried out, if desired, with stirring, for a period of time between 1 and 2 hours, at regulated speed.
  • the resulting phases can be separated subsequently by conventional methods, for example, by decantation or centrifugation.
  • the compound of formula (I) isolated which can be found in closed (lactone), open (hydroxy acid) or mixed form, that is, in a mixture of said closed and open forms, if desired, can be concentrated by conventional methods, for example, by simultaneous lactonization of the hydroxy acid form with vacuum and subsequent crystallization, for example, by cooling at a temperature between -2O 0 C and - 3O 0 C. Additionally, if desired, the compound of formula (I) can be subjected to a recrystallization stage in order to increase its purity.
  • the crystals of the compound of formula (I) previously obtained are filtered and dried under vacuum at a temperature between 4O 0 C and 6O 0 C, preferably between 45 0 C and 5O 0 C.
  • Said crystals can be solubilized by adding an appropriate solvent, for example, an ester, such as a lower alcohol acetate, for example, methyl acetate, ethyl acetate, propyl acetate or butyl acetate, and crystallized on cooling at a temperature between - 2O 0 C and - 3O 0 C, as previously described.
  • an ester such as a lower alcohol acetate, for example, methyl acetate, ethyl acetate, propyl acetate or butyl acetate
  • the invention relates to a microorganism, hereinafter microorganism of the invention, of the genus Neosartorya, which has the ability to produce and accumulate monacolin J in a concentration equal to or greater than 50 mg / L.
  • said microorganism is a microorganism of the N. stramenia species.
  • said microorganism of the invention is a microorganism of the Neosartorya stramenia species deposited in the Spanish Type Culture Collection (CECT) with access number CECT 20472, which has the ability to produce and accumulate monacolin J in a concentration equal to or greater than 50 mg / L, or a mutant of said microorganism that maintains the ability to produce and accumulate monacolin J in a concentration equal to or greater than 50 mg / L.
  • CECT Spanish Type Culture Collection
  • the expression "ability to produce and accumulate monacolin J in a concentration equal to or greater than 50 mg / L ", applied to a microorganism, means that said microorganism, under appropriate conditions, is capable of producing monacolin J reaching a concentration greater than 50 milligrams (mg) of monacolin J per liter (L) of culture broth. Said suitable conditions imply cultivation in an appropriate culture medium and temperature.
  • the microorganism of the invention is capable of producing and accumulating monacolin J in a concentration equal to or greater than 50 mg.
  • / L advantageously equal to or greater than 100 mg / L, preferably equal to or greater than 250 mg / L, more preferably equal to or greater than 500 mg / L, even more preferably equal to or greater than 750 mg / L, and still more preferably equal to or greater than 1,000 mg / L.
  • the ability of a microorganism to produce and accumulate monacolin J can be determined by any conventional procedure, for example, by inoculating a culture of said microorganism in an appropriate culture medium, incubating under appropriate conditions and measuring the amount of monacolin J produced, as described, for example, in Example 1 accompanying the present description.
  • the microorganism of the invention is the strain N. stramenia CECT 20472.
  • the microorganism of the invention is a mutant of said strain N. stramenia CECT 20472 that maintains the ability to produce and accumulate monacolin J in a concentration equal to or greater than 50 mg / L.
  • mutant includes any individual or organism resulting from a mutation or change in the DNA of a gene in an organism that results in a character (phenotype) that is not found in the wild ipo ( "wild-ype") as well as any individual or organism resulted from a mutation in the DNA of a gene of an organism that does not produce a deceptible phenoypic effect (silent mutation); ilus ⁇ ra ⁇ ivos examples, not lim ⁇ ivos, of said muiations or changes in the DNA include the insertion or deletion of nucleó ⁇ idos as well as the sus ⁇ i ⁇ issus of some nucleó ⁇ idos by o ⁇ ros; in a specific embodiment, said muierie is a muierie of N.
  • stramenia CECT 20472 which essentially maintains them characteristics than those of the parental strain [N. stramenia CECT 20472], and, in addition, it has the ability not to produce, or produce very small amounts of, lovastatin.
  • the mutants can be obtained by conventional techniques known to those skilled in the art, such as classical or directed mutagenesis, genetic manipulation, recombination, etc.
  • the microorganism of the invention can be used to produce monacolin J by means of a microbiological process (fermentation) and, from said compound, produce a monacolin derivative J of formula (I), e.g., simvastatin, lovastatin, etc.
  • a monacolin derivative J of formula (I) e.g., simvastatin, lovastatin, etc.
  • the monacolin-producing microorganism J is capable of producing a high amount of monacolin J, and does not produce, or produce in minor amounts, other monacolin derivatives J , eg, lovastatin.
  • the microorganism of the invention is capable of producing monacolin J in an amount equal to or greater than 10 times the amount of lovastatin produced (if said compound is produced).
  • the microorganism of the invention has been isolated from a screening of monacolin J. producing microorganisms. To do this, briefly, tacos were extracted from cultures of different microorganisms grown in plates and deposited on other plates previously inoculated with a culture of Candida albicans and, after incubation, the existence of fungicidal activity was determined by the formation of halos of inhibition of growth of C. albicans, selecting among the strains that manifested fungicidal activity those that showed halos of growth inhibition of C. albicans of smaller size than the produced by the strain Aspergillus terreus ATCC 20542 used as a control.
  • the monacolin derivatives were extracted and analyzed by UPLC-PDA-MS / MS against pure lovastatin, mevastatin and monacolin J standards, as indicated in Example 1.
  • a strain was isolated which it produced very much monacolin J and a small amount of lovastatin that was identified by sequencing the D1 / D2 region of the 28S subunit of the ribosomal DNA (rDNA) (SEQ ID NO: 1) and a fragment of the total ITS (internal transcription spacer) region of the "Internal Transcribed Spacer" English total located between the 18S and 28S subunits (SEQ ID NO: 2), such as Neosartorya stramenia and which was deposited in the Spanish Type Culture Collection (CECT ), corresponding to the access number CECT 20742.
  • rDNA ribosomal DNA
  • SEQ ID NO: 2 fragment of the total ITS (internal transcription spacer) region of the "Internal Transcribed Spacer" English total located
  • polynucleotides whose nucleotide sequences are shown in SEQ ID NO: 1 and SEQ ID NO: 2, can be used as probes, or to design primers or probes from them, to identify other strains of N. stramenia or other species of the genus Neosartorya ; Therefore, said polynucleotides, as well as their applications, constitute additional aspects of the present invention.
  • the D1 / D2 region of the 28S subunit of the rDNA (SEQ ID NO: 1) of N. stramenia CECT 20742 can be amplified by polymerase chain reaction (PCR), using the universal fungal initiating oligonucleotides whose nucleotide sequences are shown in SEQ ID NO: 3 and SEQ ID NO: 4.
  • PCR polymerase chain reaction
  • the total ITS region located between the 18S and 28S subunits (SEQ ID NO: 2) can be amplified by PCR using the universal fungal initiating igonucleotides whose nucleotide sequences are SEQ ID NO: 5 and SEQ ID NO: 6 show.
  • a biologically pure culture of a microorganism of the invention constitutes an additional aspect of the present invention.
  • the microorganism of the invention can be used to produce monacol ina J by a microbiological process (fermentation) and, from said compound, produce a monacolin derivative J of formula (I), eg, simvastatin, lovastatin, etc. Therefore, in another aspect, the invention relates to the use of said microorganism of the invention to produce monacolin J or a derivative of monacolin J of formula (I).
  • the microorganism of the invention is a fungus of the N. stramenia species; In a specific embodiment, said microorganism of the invention is strain N. stramenia CECT 20472. Procedure to identify monacolin J producing microorganisms
  • the invention in another aspect, relates to a method for identifying a monacolin J producing microorganism (as a biosynthesis product), which comprises: a) incubating a culture of a microorganism in an inoculated plate with a culture of Candida albicans under conditions that allow the growth of said strain and C.
  • albicans b) analyze the existence of antifungal activity associated with said microorganism; c) in the event that said organism does not show antifungal activity or shows low antifungal activity, collect a sample of the culture of said microorganism and analyze it to detect and / or quantify monacolin J in said sample; and d) in the event that said analysis shows the presence of monacolin J, identify said microorganism as a monacolin J producing microorganism.
  • the method comprises contacting a culture of a microorganism with a culture of C. albicans deposited on a plate under conditions that allow the growth of said strain and C. albicans. Said conditions are known to those skilled in the art; however, in a particular embodiment, a culture of the microorganism to be tested is deposited on medium plates containing malt extract, glucose, mycopeptone and agar previously inoculated with a culture of C. albicans (e.g.,
  • the existence of antifungal activity associated with said microorganism is analyzed, which can be carried out by any appropriate conventional method, in order to select those microorganisms with no or low antifungal activity; However, in a particular embodiment, the existence of antifungal activity associated with said microorganism is analyzed by the formation of growth inhibition halos of C. albicans. To evaluate if a microorganism does not manifest antifungal activity or manifests a low antifungal activity it may be convenient to compare said eventual antifungal activity with that of a positive control of antifungal activity and those microorganisms that show less antifungal activity than the control or that do not manifest antifungal activity are selected.
  • a positive control of antifungal activity is used which is inoculated on a plate inoculated with C. albicans under appropriate conditions that allow the growth of both said control microorganism and C. albicans;
  • statin-producing microorganisms eg, lovastatin
  • the strain of Aspergillus terreus ATCC 20542 is used as a control.
  • a sample of the culture of said microorganism is collected and analyzed to detect and / or quantify monacolin J in said sample.
  • any appropriate test to detect monacolin J or to quantify it can be used; nevertheless, in a particular embodiment, the detection and quantification of monacolin J is carried out by Ultra High Pressure-Mass / Mass Liquid Chromatography (UPLC-PDA-MS / MS) against pure monacolin J. Additional patterns and optionally other related compounds can be analyzed, eg, lovastatin or mevastatin (Example 1).
  • monacolin J is previously extracted by conventional methods, for example, by extraction with an appropriate solvent (eg, an ester, such as ethyl acetate, etc.) in acidic medium (eg, HCI, etc.) , as described in Example 1.
  • an appropriate solvent eg, an ester, such as ethyl acetate, etc.
  • acidic medium eg, HCI, etc.
  • the monacolin-producing microorganism J is a microorganism capable of producing and accumulating monacolin J in a concentration equal to or greater than 50 mg / L, advantageously the same or greater than 100 mg / L, preferably equal to or greater than 250 mg / L, more preferably equal to or greater than 500 mg / L, even more preferably equal to or greater than 750 mg / L, and still more preferably equal to or greater than 1.
  • said microorganism is identified as a monacolin J producing microorganism. If necessary, said monacolin J producing microorganism is characterized by appropriate methods depending on its nature. , eg, by classical methods of microbiology, analysis of genome regions specific to gender, species or strain (eg, specific regions of the 28S subunit of ribosomal DNA, specific ITS regions, etc.) by using conventional techniques, eg, polymerase chain amplification (PCR), etc.
  • PCR polymerase chain amplification
  • Illustrative, non-limiting examples of monacolin J producing microorganisms identified according to the procedure provided by this invention include strains belonging to the genera Aspergillus, Monascus, Penicillium, and, h or ra, Neosartorya.
  • r the monacol producing organism ina J identified according to said procedure is the strain N.
  • stramenia CECT 20472 which has the ability to produce and accumulate monacolin J in a concentration equal to or greater than 50 mg / L.
  • strains that showed fungicidal activity were those strains that showed inhibition halos of smaller size than that produced by the Aspergillus terreus ATCC 20542 strain (lovastatin producing strain) used as a control.
  • tacos of 0.6 cm in diameter were extracted, which were introduced into a 2 mL Eppendorf tube; then 1 mL of acidified ethyl acetate (with HCI) was added and the tube was placed in an ultrasonic bath for 10 minutes. It was then centrifuged at 12,000 rpm for 3 minutes and the supernatant was separated into a new tube and dried under a stream of nitrogen. The precipitate was resuspended in 1 mL of methanol, filtered and analyzed by UPLC-PDA-MS / MS against pure patterns of lovastatin, mevastatin and monacolin J.
  • Neosartorya stramenia was identified by sequencing the D1 / D2 region of the 28S subunit of the ribosomal DNA (rDNA) and a fragment of the total ITS (internal transcription spacer) region located between the 18S subunits and 28S, like Neosartorya stramenia, which did not show any similarity to the sequences of this species deposited in existing databases.
  • the Neosartorya stramenia strain has been deposited in the Spanish Type Culture Collection (CECT), Burjassot, Valencia (Spain), on January 16, 2008, corresponding to the CECT access number 20742.
  • the amplification of the D1 / D2 region of the 28S subunit of the rDNA of said microorganism was carried out by means of the polymerase chain reaction (PCR), using the initiating oligonucleotides whose nucleotide sequences are shown in SEQ ID NO: 3 and SEQ ID NO: 4, respectively.
  • the conditions for the PCR were the following: (i) 96 0 C for 5 minutes; (ii) 30 cycles (94 0 C, 30 seconds; 6O 0 C, 40 seconds; 72 0 C, 1 minute); and finally, (iii) a cycle of elongation at 72 0 C for 10 minutes.
  • the total ITS region located between the 18S and 28S subunits was also amplified by PCR, using the initiating oligonucleotides whose nucleotide sequences are shown in SEQ ID NO: 5 and SEQ ID NO: 6, respectively.
  • the conditions for the PCR were the same as those used for the amplification of said region D1 / D2.
  • the spores of each plate were collected in 5 mL of 20% glycerol and used to inoculate flasks containing 30 mL of M2 medium (Example 1). The flasks were incubated at 28 0 C and 200 rpm agitation for 48 hours.
  • the extraction was carried out with 3 x 300 mL of ethyl acetate in constant stirring for 30 minutes each time.
  • the combined ethyl acetate extracts were dried with anhydrous sodium sulfate and concentrated in vacuo to a volume of 100 mL.
  • the lactonization was performed by adding trifluoroacetic acid at room temperature and with constant stirring. Lactone formation was confirmed by UPLC-MS / MS. After completing the formation of the lactones, it was washed with 2 x 20 mL of 5% aqueous sodium hydrogen carbonate and then with 20 mL of water, dried with anhydrous sodium sulfate and evaporated in vacuo.
  • the obtained residue was resuspended in 40 mL of ethyl acetate and n-hexane (20:80) and passed through a silica gel column of 1.2 cm in diameter and a bed height of 20 cm. Elution was performed by mixtures of ethyl acetate and n-hexane, increasing the concentration of ethyl acetate gradually. The fractions containing the lactone of monacolin J were eluted from the column to a mixture of 45% ethyl acetate and 55% n-hexane. The fractions were combined and evaporated in vacuo. The residue obtained was dissolved in 10 mL of acetone and kept at 4 0 C overnight.
  • the precipitate was filtered, washed with 2 mL of acetone and with 2 mL of n-hexane dried under vacuum at room temperature.
  • the monacolin J obtained was resuspended in 20 mL of methanol, decolorized by adding 10 g of activated carbon and crystallized at -2O 0 C with a mixture of ethanol-ethyl acetate. Finally the crystals were dried under vacuum at room temperature.
  • a spore suspension of N. stramenia CECT 20742 prepared as indicated in Example 2 was used to inoculate flasks containing 25 mL of MEB medium (containing per liter: 15 g of malt extract, 1 g of bacteriological peptone and 20 g of glucose). The flasks were incubated at 28 0 C and 250 rpm agitation for 48 hours. These crops were used to inoculate (10% v / v) 50 ml_ flasks containing medium M2 (Example 1) and incubated at 28 0 C, 250 rpm for 48 hours. After this time, 2,2-dimethyl butyrate sodium (0.1%) (w / v) was added to the cultures, maintaining the same incubation conditions. The cultures were grown for an additional 72-96 hours.
  • Flasks containing 50 mL of M2 medium was inoculated (10% v / v) inoculum grown in medium with SEM as described in Example 3 and incubated at 28 0 C, 250 rpm for 48 hours. After this time, sodium propionate (0.1%) (w / v) was added to the cultures, maintaining the same incubation conditions. The cultures were grown for an additional 72-96 hours.
  • R 1 is 2,2-dimethylpropionyl Flasks containing 50 ml_ of medium M2 inoculated (10% v / v) inoculum grown in medium with SEM as described in Example 3 and incubated at 28 0 C, 250 rpm for 48 hours. After that time, sodium 2,2-dimethyl propionate (0.1%) (w / v) was added to the cultures, maintaining the same incubation conditions indicated in Example 3 for an additional 72-96 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mycology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Se describe un procedimiento para la obtención de derivados de monacolina J (I), donde R1 es COR2, donde R2 se selecciona entre alquilo C1- C15, cicloalquilo C3-C15, alquenilo C2-C15, alquinilo C2-C15, arilo y heterociclilo; que comprende la producción de monacolina J por fermentación a partir de un microorganismo productor de monacolina J; y la acilación del grupo hidroxilo presente en la posición C8 de la monacolina J previamente obtenida mediante la adición al medio de fermentación de un agente acilante apropiado para obtener el derivado de monacolina J (I) deseado.

Description

BIOSÍNTESIS DE DERIVADOS DE MONACOLINA J Campo de Ia Invención
La presente invención se refiere a un procedimiento para Ia obtención de derivados de monacolina J, un tipo de estatinas, que son compuestos con propiedades hipocolesterolémicas.
Antecedentes de Ia Invención
Las estatinas constituyen un grupo de agentes hipocolesterolémicos que funcionan inhibiendo Ia enzima 3-hidroxi-3-metilglutahl-coenzima A (HMG-CoA) reductasa, Ia cuál cataliza el paso limitante de Ia biosíntesis celular de colesterol. Estos compuestos son utilizados para disminuir los altos niveles de colesterol asociados a las lipoproteínas de baja densidad (LDL) reduciendo el riesgo de infarto de miocardio y de muerte coronaria.
Las estatinas naturales (monacolina J, lovastatina, mevastatina y pravastatina) y semisintéticas (simvastatina) presentan una estructura poliquétida común, con un núcleo de hexahidronaftaleno al cual se Ie unen diferentes cadenas laterales en las posiciones C8 (R1) y C6 (R2), y un anillo lactónico, que en función de las condiciones aparece ciclado en forma de lactona o abierto dando lugar a los correspondientes hidroxiácidos (Fórmula A y Tabla 1 ).
Figure imgf000003_0001
Forma Lactona Forma Hidroxiácida
Fórmula A Tabla 1
Figure imgf000004_0001
Las rutas de biosíntesis de lovastatina en Aspergillus terreus y de mevastatina en Penicillium citrinum han sido descritas tanto desde el punto de vista bioquímico (Moore y col, J Am Chem Soc, 1985, 107, 3694-3701 ; Endo y col, J Antibiot, 1985, 38, 444-448) como a nivel molecular (Hendrickson y col, Chem Biol, 1999, 6, 429-439; Kennedy y col, Science, 1999, 284, 1368-1372), y en ella intervienen dos poliquétido sintasas de tipo I y numerosas enzimas. Concretamente, en el caso de Ia lovastatina, Ia lovastatina nonaquétido sintasa (LNS) codificada por el gen LovB, Ia enoil reductasa y citocromo P450 oxigenasas dan lugar a Ia monacolina J (Fórmula A, R1=OH, R2=CH3). Este intermedio no se acumula sino que directamente se Ie incorpora una cadena lateral mediante Ia actividad de Ia lovastatina diquétido sintasa (LDS), codificada por el gen LovF, y una acetil transferasa (LovD). Además de A. terreus y P. citrinum se conocen otros microorganismos capaces de producir estatinas (lovastatina o mevastatina) tales como algunas especies de los géneros Monascus, Doratomyces, Eupenicillium, Gymnoascus, Hypomyces, Paecilomyces, Phoma, Trichoderma, Pleurotus, y levaduras tales como Pichia labacensis o Candida cariosilognicola (US 6.943.017). La monacolina J se puede obtener a partir de caldos de cultivo de especies productoras de lovastatina pertenecientes al género Monascus (JP
551 39396), o tam bién al añad i r monacol i na K a cepas de hongos pertenecientes a diferentes géneros (ej. Mortierella, Emerícella, Humicola, etc.) que hidrol izan Ia cadena lateral dando lugar a este intermed iario (JP
60176595). Otra estrategia consiste en Ia clonación y expresión, en una cepa no productora de lovastatina, de un fragmento que contenga los genes de A. terreus necesarios para sintetizar monacolina J (US 6.943.017). Sin embargo, en todos estos casos, los rendimientos de monacolina J son bajos por Io que su producción no resulta rentable.
La simvastatina es un análogo semisintético de Ia lovastatina más eficaz en el tratamiento de Ia hipercolesterolemia debido a Ia substitución, por vía química, de Ia cadena lateral de α-metilbutirato en Ia posición C8 (Fórmula A, R1) por una de α-dimetil butirato. Existen numerosos procedimientos químicos para realizar esta modificación que incluyen pasos de hidrólisis, lactonización, protección mediante sililación y acilación de Ia monacolina J protegida con cloruro de α-dimetil butirilo (CA 1.199.322; Hoffman y col, J Med Chem, 1986, 29, 849-852), aunque el rendimiento global es inferior al 40%. Se han descrito variaciones sobre este procedimiento en las patentes US 4.444.784, US 5.159.104 y US 4.450.171 . En otro procedimiento, Ia lovastatina se hace reaccionar con una amina, y el diol de Ia amida resultante se protege y acila con yoduro de metilo y una base dando lugar a un diol que se lactoniza rindiendo simvastatina (US 4.820.850). En una variación mejorada de ese procedimiento, Ia protección de los grupos hidroxilo de Ia lovastatina se realiza con ácido fenil borónico (US 5.393.893). Otros procesos se basan en Ia obtención de nuevos intermedios al reaccionar Ia lovastatina con metoxietilamina (WO05066150), con monoalquilamidas o monocicloalquil- amidas (US 5.763.646), o al realizar una hidrólisis enzimática de Ia lovastatina, su lactonización y posteriores pasos de acilación e hidrólisis qu ímica o enzimática (WO05040107).
Todos estos procesos qu ímicos requ ieren múltiples etapas, son laboriosos, las etapas de protección presentan unos rendimientos bajos, y el producto final presenta impurezas del compuesto no acilado. Todo ello contribuye a que el precio de Ia simvastatina sea unas cinco veces más elevado que el de Ia lovastatina.
Recientemente se ha descrito Ia síntesis de simvastatina mediante un procedimiento químico-biosintético a partir de lovastatina (Xie y col., Chem Biol, 2006, 13, 1161 -1169; Xie y Tang, Appl Environ Microbiol, 2007, 73, 2054-2060; WO2007139871 ). El proceso parte de Ia obtención, por vía qu ímica, de monacol ina J y de un substrato acilado (α-dimetilbutiril-S-metil-mercapto- propionato) que se añaden a células en reposo, o en cultivo, de Escheríchia coli capaces de sobreexpresar el gen LovD de A. terreus que codifica para una aciltransferasa. De esta forma, el substrato acilado, permeable a Ia membrana citoplasmática, se une a Ia monacolina J dando lugar a Ia simvastatina. Sin embargo, este procedimiento tiene limitaciones debido al elevado coste de los substratos y reactivos necesarios en las etapas de síntesis de monacolina J y α-dimetilbutiril-S-metil-mercaptopropionato, así como Ia degradación parcial del substrato acilado durante el proceso.
En base a estos antecedentes, resultaría necesario desarrollar procesos que solucionasen, desde el punto de vista económico y técnico, Ia desventaja de utilizar materias primas que implican un precio elevado, y que fuesen compatibles con el medio ambiente al prescindir o minimizar el uso de reactivos químicos o disolventes.
Compendio de Ia Invención
Los autores de Ia presente invención han desarrollado un nuevo procedimiento para Ia producción de derivados de monacolina J, tales como simvastatina, etc., a partir de un proceso sencillo, económico y favorable desde el punto de vista medioambiental. Concretamente, el procedimiento comprende
Ia obtención de monacolina J por fermentación y Ia acilación del grupo hidroxilo presente en Ia posición C8 de Ia monacolina J mediante Ia adición al medio de fermentación de agentes acilantes que actúan como precursores de Ia cadena lateral presente en dicha posición C8 en el derivado de monacolina J. Por tanto, en un aspecto, Ia presente invención se relaciona con un procedimiento para Ia obtención de un derivado de monacolina J de fórmula (I) [definido más adelante] que comprende Ia producción de monacolina J por fermentación a partir de un microorganismo productor de monacolina J seguido de acilación del grupo hidroxilo presente en Ia posición C8 de Ia monacolina J mediante Ia adición al medio de fermentación de un agente acilante apropiado para obtener el derivado de monacolina J de fórmula (I) deseado.
En otro aspecto, Ia invención se relaciona con un microorganismo del género Neosartorya que tiene Ia capacidad de producir y acumular monacolina J en una concentración igual o superior a 50 mg/L. En una realización particular, dicho microorganismo es un microorganismo de Ia especie N. stramenia. En una real ización concreta, d icho m icroorgan ismo es un microorganismo de Ia especie Neosartorya stramenia, depositado en Ia Colección Española de Cultivos Tipo (CECT) con número de acceso CECT 20472, que tiene Ia capacidad de producir y acumular monacolina J en una concentración ig ual o su perior a 50 mg/L, o u n m uíante de d icho microorganismo que mantiene Ia capacidad de producir y acumular monacolina J en una concentración igual o superior a 50 mg/L. El empleo de dicho microorganismo para producir monacolina J y dichos derivados de monacolina J de fórmula (I) constituye un aspecto adicional de esta invención.
En otro aspecto, Ia invención se relaciona con un cultivo biológicamente puro de dicho microorganismo.
En otro aspecto, Ia invención se relaciona con un procedimiento para identificar un microorganismo productor de monacolina J. En otro aspecto, Ia invención se relaciona con un polinucleótido seleccionado entre los polinucleótidos cuyas secuencias nucleotídicas se muestran en SEQ ID NO: 1 y SEQ ID NO: 2. El empleo de dicho polinucleótido como sonda, o para diseñar cebadores o sondas para identificar cepas de Neosartorya stramenia u otras especies del género Neosartorya, constituye un aspecto adicional de esta invención. Descripción detallada de Ia Invención
Definiciones
La presente invención se relaciona con Ia producción de derivados de monacolina J de fórmula (I), tal como se define más adelante. En dichos compuestos de fórmula (I), se entienden los significados que se indican a continuación.
E l térm i no "a l q u i l o" se refi ere a u n rad i ca l d e u n a cad en a hidrocarbonada, lineal o ramificada, que consiste en átomos de carbono e hidrógeno, que no contiene insaturaciones y que está unido al resto de Ia molécula por un enlace simple, por ejemplo, metilo, etilo, propilo, isopropilo, butilo, sec-butilo, tere-butilo, etc. El grupo alquilo puede estar opcionalmente sustituido.
El término "cicloalquilo" se refiere a un radical estable monocíclico o bicíclico, que está saturado o parcialmente saturado, que consiste en átomos de carbono e hidrógeno, tal como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, adamantilo, etc. El grupo cicloalquilo puede estar opcionalmente sustituido.
El térm i no "alq uen ilo" se refiere a u n rad ical de u na cadena hidrocarbonada, lineal o ramificada, que tiene uno o más dobles enlaces carbono-carbono y que está unido al resto de Ia molécula por un enlace simple, opcionalmente sustituido, por ejemplo, vinilo, alilo, etc. El grupo alquenilo puede estar opcionalmente sustituido.
El térm i no "alq u in ilo" se refiere a u n rad ica l d e u n a caden a hidrocarbonada, lineal o ramificada, que tiene uno o más triples enlaces carbono-carbono y que está unido al resto de Ia molécula por un enlace simple, opcionalmente sustituido, por ejemplo, etinilo, 1 -propinilo, etc. El grupo alquinilo puede estar opcionalmente sustituido.
El término "arilo" se refiere a un radical de un hidrocarburo aromático, que contiene uno o varios anillos, incluyendo anillos múltiples con radicales arilo separados o fusionados; los grupos arilo típicos contienen de 1 a 3 anillos separados o condensados y desde 6 hasta aproximadamente 18 átomos de carbono, por ejemplo, fenilo, naftilo, indenilo, fenantrilo, antracilo, etc. Los grupos arilo pueden estar opcionalmente sustituidos.
El término "heterociclilo" se refere a un radical estable de un anillo de 3 a 15 miembros que contiene átomos de carbono y de uno a cinco heteroátomos seleccionados del grupo que consiste en nitrógeno, oxígeno y azufre, preferiblemente un anillo de 4 a 8 miembros con uno o más heteroátomos, más preferiblemente un anillo de 5 ó 6 miembros con uno o más heteroátomos. Para los fines de esta invención, el heterociclo puede ser un sistema de anillo monocíclico, bicíclico o tricíclico, que puede incluir sistemas de anillos condensados, y el átomo de nitrógeno, carbono o azufre en el radical heterociclilo puede estar opcionalmente oxidado, el átomo de nitrógeno puede estar opcionalmente cuaternizado, y el radical heterociclilo puede estar parcial o totalmente saturado o ser aromático. Ejemplos ilustrativos, no limitativos, de tales radicales heterociclilo incluyen piridilo, pirazinilo, pirimidilo, furilo, pirrolilo, tienilo, tiazolilo, tiadiazolilo, ozaxolilo, imidazolilo, indolilo, isoxazolilo, benzofuranilo, benzotiazolilo, benzimidazolilo, isotiazolilo, piperidilo, quinolilo, tetrahidrofuranilo, tetrahidropiranilo, piperidinilo, morfolino, pirrolidinilo, etc. Los grupos heterociclilo pueden estar opcionalmente sustituidos.
Como se ha indicado, los grupos anteriormente mencionados pueden estar opcionalmente sustituidos en una o varias de sus posiciones disponibles, de forma independiente, por uno o varios sustituyentes adecuados, tales como OR', =0, SR', SOR', SO2R', NO2, NHR', N(FT)2, =N-R\ NHCOR', N(COFT)2, NHSO2R', CN, halógeno, C(=O)FT, COOR', OC(=O)FT, arilo sustituido o no sustituido y heterociclo sustituido o no sustituido, donde R' es seleccionado independientemente entre H, OH, NO2, NH2, SH, CN, halógeno, C(=O)H, C(=O)CH3, COOH, alquilo C1 -C12 sustituido o no sustituido, alquenilo C2-C12 sustituido o no sustituido, alquinilo C2-C12 sustituido o no sustituido y arilo sustituido o no sustituido. Entre los sustituyentes halógeno que pueden estar presentes en los compuestos de fórmula (I) se incluyen F, Cl, Br y I. Los grupos funcionales, tales como hidroxilo o amino, pueden hallarse opcionalmente protegidos. Existe un gran número de grupos protectores de diferentes grupos funcionales, tales como hidroxilo y amino, y son bien conocidos por el experto en Ia materia. A modo de guía, véase "Protecting groups, Kocienski, 2004, 3rd edition y Greene y Wuts "Protective Groups in Organic Synthesis", John Wiley & Sons, Inc., Nueva York, 1999.
El término "alcohol inferior" se refiere a un compuesto que comprende un grupo -OH y de 1 a 8 átomos de carbono.
Producción de derivados de monacolina J
En un aspecto, Ia presente invención se relaciona con un procedimiento, en adelante procedimiento de Ia invención, para Ia obtención de un derivado de monacolina J de fórmula (I)
Figure imgf000010_0001
(I) donde R1 es COR2, donde R2 se selecciona entre alquilo C1-C15, cicloalquilo C3-C15, alquenilo C2-C15, alquinilo C2-C15, arilo y heterociclilo; que comprende las etapas de: a) producción de monacolina J por fermentación a partir de un microorganismo productor de monacolina J; y b) acilación del grupo hidroxilo presente en Ia posición C8 de Ia monacolina J obtenida en Ia etapa a) mediante Ia adición al medio de fermentación de un agente acilante apropiado para obtener el derivado de monacolina J de fórmula (I) deseado.
En Ia primera etapa [etapa a)], el proced imiento de Ia invención comprende Ia producción de monacolina J por fermentación a partir de un microorganismo productor de monacolina J. Aunque prácticamente cualquier microorganismo productor de monacolina J puede ser utilizado para producir el derivado de monacol ina J de fórmula (I) según el proced imiento de Ia inven ción , desde el pu nto d e vista de su a pl icación i nd u strial , el microorganismo productor de monacolina J utilizado en Ia etapa a) es capaz de producir una elevada cantidad de monacolina J; ventajosamente, dicho microorganismo productor de monacolina J, además de producir una elevada cantidad de monacolina J, no debería producir derivados de monacolina J con el grupo hidroxilo presente en Ia posición C8 acilado, e.g., lovastatina, etc., o, en caso de que los produzca, debería producirlos en cantidades muy pequeñas. En este sentido, en caso de que dicho microorganismo productor de monacolina J produjese, además de monacolina J , otros derivados de monacolina J, por ejemplo, lovastatina, etc., Ia producción de monacolina J debe ser, ventajosamente, superior a Ia producción de dicho derivado de monacolina J; a modo ilustrativo, si el microorganismo productor de monacolina J produce también lovastatina, Ia producción de monacol ina J será, preferentemente, al menos 10 veces superior a Ia producción de lovastatina.
En una real ización particular, el m icroorgan ismo productor de monacolina J utilizado para producir el compuesto de fórmula (I) según el procedimiento de Ia invención, es un microorganismo capaz de producir y acumular monacolina J en una concentración igual o superior a 50 mg/L, ventajosamente igual o superior a 100 mg/L, preferentemente igual o superior a 250 mg/L, más preferentemente igual o superior a 500 mg/L, aún más preferentemente igual o superior a 750 mg/L, y todavía más preferentemente igual o superior a 1 .000 mg/L de caldo de cultivo. Ejemplos ilustrativos, no limitativos, de microorganismos productores de monacolina J susceptibles de ser util izados en el proced i m iento de Ia invención incl uyen cepas pertenecientes a los géneros Aspergillus, Monascus, Penicillium, y, ahora, Neosartorya. En una realización concreta, el microorganismo productor de monacolina J utilizado para producir el derivado de monacolina J de fórmula (I) según el procedimiento de Ia invención, es un hongo filamentoso perteneciente al género Neosartorya, tal como un hongo de Ia especie N. stramenia. En una realización preferida, dicho microorganismo productor de monacolina J utilizado para prod ucir el derivado de monacol ina J de fórmu la (I ) segú n el procedimiento de Ia invención, es una cepa de Neosartorya stramenia depositada en Ia Colección Española de Cultivos Tipo (CECT) con número de acceso CECT 20472, que tiene Ia capacidad de producir y acumular monacolina J en una concentración igual o superior a 50 mg/L, o un muíante de dicho microorganismo que mantiene Ia capacidad de producir y acumular monacol ina J en una concentración igual o superior a 50 mg/L, cuyas características se describirán más delante de forma detallada, en ocasiones identificado en esta descripción como "microorganismo de Ia invención".
Para Ia producción de monacolina J por fermentación, el microorganismo productor de monacolina J se cultivará bajo condiciones apropiadas que permitan Ia producción de monacolina J. En general, dichas condiciones, tales como el medio de cultivo, Ia fuente de carbono, Ia fuente de nitrógeno, Ia temperatura, etc., se elegirán en función de Ia naturaleza del microorganismo productor de monacolina J elegido.
Ejemplos ilustrativos, no limitativos, de fuentes de carbono incluyen glucosa, maltosa, sacarosa, manitol, glicerol, melazas, polietilenglicol, almidón, ácidos grasos, aceites, etc. Asimismo, ejemplos ilustrativos, no limitativos, de fuentes de nitrógeno incluyen tanto fuentes de nitrógeno orgánico tales como extracto de levadura, peptona, licor de macerado de maíz ("corn steep liquor'), urea, leche peptonizada, glutamato sódico, etc., como fuentes de nitrógeno inorgánico tales como diferentes sales de amonio, etc.
En una realización particular, el cultivo del microorganismo productor de monacolina J se realiza durante un periodo de tiempo comprendido entre 5 y 15 días a una temperatura comprendida entre 2O0C y 350C, preferentemente entre 280C y 320C, en función del microorganismo, con ag itación constante, generalmente bajo condiciones de aerobiosis.
La monacolina J producida por el microorganismo productor de monacolina J puede encontrarse en forma de lactona (más estable), en forma de hidroxiácido (más abundante) o en ambas formas como una mezcla de Ia forma cerrada (lactona) y abierta (hidroxiácido). A continuación, una vez alcanzada Ia cantidad de monacolina J deseada, por ejemplo, Ia máxima cantidad de monacolina J, se adiciona al medio de cultivo un agente acilante apropiado con el fin de acilar el grupo hidroxilo presente en Ia posición C8 de Ia monacolina J y obtener el derivado de monacolina J de fórmula (I) deseado [etapa b)].
De acuerdo con Ia invención, Ia acilación química de Ia monacolina J consiste en Ia transformación del hidroxilo presente en Ia posición C8 de Ia monacolina J en un éster. Esta transformación, que da lugar a Ia formación de diferentes cadenas laterales en Ia posición C8 de Ia monacolina J, se consigue mediante Ia adición al medio de cultivo del agente acilante apropiado. Aunque no se desea estar vinculado por ninguna teoría, se cree que dicha reacción de acilación se produce en el interior celular, probablemente con Ia colaboración de una enzima, tal como una aciltransferasa codificada por el gen lovD o un ortólogo del mismo, por Io que, en una realización particular, el microorganismo productor de monacolina J utilizado para producir el derivado de monacolina J de fórmula (I) según el procedimiento de Ia invención codifica dicha aciltransferasa, bien de forma nativa o bien de forma recombinante.
Aunque los agentes acilantes más habituales son los ácidos carboxílicos y sus derivados, tales como sus halogenuros (en particular, los cloruros), esteres, amidas, anhídridos o sales, en Ia presente invención se puede utilizar como agente acilante cualquier compuesto apropiado capaz de acilar el grupo hidroxilo presente en Ia posición C8 de Ia monacolina J y formar un éster en dicha posición C8 monacolina J para obtener el derivado de monacolina J de fórmula (I) deseado. Dichos agentes acilantes pueden ser fácilmente identificados por el experto en Ia materia. No obstante, en una realización particular, dicho agente acilante es un compuesto de fórmula (II)
R2COOH (II) donde R2 tiene el significado previamente indicado en relación con Ia fórmula (I); o un derivado del mismo seleccionado entre un halogenuro, un éster, una amida, un anhídrido o una sal de dicho ácido carboxílico de fórmula (II). Los compuestos de fórmula (II), e.g., ácido propanoico, 2,2- dimetilpropanoico, 2-metilbutanoico, 2,2-dimetilbutanoico, etc., son compuestos conocidos o pueden ser obtenidos por métodos convencionales conocidos por los técnicos en Ia materia. Los halogenuros del ácido carboxílico de fórmula (II) pueden ser obtenidos por métodos convencionales, por ejemplo, por reacción de dicho ácido carboxílico con SOCI2, PCI5, PBr3, CICOCOCI, etc. Los esteres del ácido carboxílico de fórmula (II) pueden ser fácilmente obtenidos por métodos convencionales, por ejemplo, por reacción de dicho ácido carboxílico, o un anhídrido o cloruro del mismo, con el alcohol correspondiente, o por reacción de Ia sal sódica de dicho ácido carboxílico (II) con un halogenuro de alquilo, etc. Las amidas del ácido carboxílico de fórmula (II) también pueden obtenerse fácilmente por métodos convencionales, por ejemplo, por reacción de un éster, anhídrido o halogenuro de dicho ácido carboxílico con amoníaco o con una amina, o mediante Ia hidrólisis del nitrilo correspondiente, etc. Los anhídridos del ácido carboxílico de fórmula (II) pueden obtenerse fácilmente por métodos convencionales, por ejemplo, por reacción de un halogenuro de dicho ácido carboxílico con un carboxilato, etc. Entre las sales del ácido carboxílico de fórmula (II) se encuentran las sales metálicas, e.g., Ia sal sódica, potásica, amón ica, etc. , las cuales pueden obtenerse fácilmente por métodos convencionales, por ejemplo, por reacción de dicho ácido carboxílico con Ia base apropiada.
Ejemplos ilustrativos, no limitativos, de dichos agentes acilantes incluyen acetatos, propionatos, tales como propionato sódico, 2,2-dimetilpropionato sódico, etc., butiratos, tales como 2-metilbutirato, 2,2-dimetilbutirato, etc. En caso de presentar centros qu irales, los agentes acilantes estarán , preferentemente, en Ia forma enantiopura deseada, por ejemplo, (S)-2- metilbutirato sódico, etc.
Ejemplos ilustrativos, no limitativos, de derivados de monacolina J de fórmula (I) obtenidos según el procedimiento de Ia invención incluyen aquellos compuestos de fórmula (I) en los que R1 se selecciona entre propionilo, 2,2- dimetilpropionilo, 2-metilbutihlo (lovastatina) y 2,2-dimetilbutirilo (simvastatina). En una realización particular, Ia reacción de acilación se lleva a cabo con agitación, durante un periodo de tiempo comprendido entre 24 y 72 horas, a una temperatura comprendida entre 2O0C y 4O0C, preferentemente entre 250C y 3O0C. El derivado de monacolina J de fórmula (I) obtenido, si se desea, puede ser aislado y purificado por métodos convencionales. Para ello, dicho compuesto de fórmula (I) puede ser extraído del caldo de cultivo y, si se desea, se concentra, y, opcionalmente, se recristaliza.
La extracción del compuesto de fórmula (I) obtenido tiene por finalidad separarlo del resto de los compuestos presentes en el caldo de cultivo (medio de fermentación). Dicho compuesto de fórmula (I) puede ser extraído del cultivo por métodos convencionales, por ejemplo, por extracción con un disolvente apropiado en medio ácido. Para ello, el caldo de cultivo que contiene el compuesto de fórmula (I) se acid ifica mediante el empleo de un ácido apropiado, orgánico o inorgánico, típicamente inorgánico. En una realización particular, dicho medio de cultivo se acidifica a un valor de pH comprendido entre 2,5 y 5, preferentemente entre 3 y 4. Ejemplos ilustrativos, no limitativos de dichos ácidos que pueden ser utilizados para acidificar dicho medio de cultivo incluyen cualquier ácido capaz de acidificar dicho medio de cultivo hasta un valor de pH apropiado, por ejemplo, entre 2,5 y 5, por ejemplo, ácido clorhídrico, sulfúrico, fosfórico, etc.
Dicha extracción, en una realización particular, puede real izarse utilizando un disolvente apropiado, tal como un disolvente orgánico, por ejemplo, un éster, tal como acetato de metilo, acetato de etilo, acetato de propilo, acetato de butilo, etc. La cantidad de disolvente a añadir puede variar dentro de un amplio intervalo; no obstante, en una realización particular, dicho disolvente se añade en una cantidad comprendida entre 0,5 y 2 veces el volumen de cultivo. La extracción puede llevarse a cabo, si se desea, con agitación, durante un periodo de tiempo comprendido entre 1 y 2 horas, a velocidad regulada. Las fases resultantes pueden ser separadas posteriormente por métodos convencionales, por ejemplo, por decantación o centrifugación.
Una vez separado, el compuesto de fórmula (I) aislado, que puede encontrarse en forma cerrada (lactona), abierta (hidroxiácido) o mixta, es decir, en una mezcla de dichas formas cerrada y abierta, si se desea, puede ser concentrado por métodos convencionales, por ejemplo, mediante lactonización simultánea de Ia forma hidroxiácida con vacío y posterior cristalización, por ejemplo, mediante enfriamiento a una temperatura comprendida entre -2O0C y - 3O0C. Adicionalmente, si se desea, el compuesto de fórmula (I) puede ser sometido a una etapa de recristalización con el fin de incrementar su pureza. En una realización particular, los cristales del compuesto de fórmula (I) previamente obtenidos se filtran y se secan bajo vacío a una temperatura comprendida entre 4O0C y 6O0C, preferentemente entre 450C y 5O0C. Dichos cristales pueden ser solubilizados añadiendo un disolvente apropiado, por ejemplo, un éster, tal como un acetato de alcohol inferior, por ejemplo, acetato de metilo, acetato de etilo, acetato de propilo o acetato de butilo, y se cristalizan por enfriamiento a una temperatura comprendida entre -2O0C y - 3O0C, tal como se ha descrito previamente.
Microorganismo de Ia invención
En un aspecto, Ia invención se relaciona con un microorganismo, en adelante microorganismo de Ia invención, del género Neosartorya, que tiene Ia capacidad de producir y acumular monacolina J en una concentración igual o superior a 50 mg/L. En una realización particular, dicho microorganismo, es un microorganismo de Ia especie N. stramenia. En una realización concreta, dicho m icroorgan ismo de Ia invención es un m icroorgan ismo de Ia especie Neosartorya stramenia depositado en Ia Colección Española de Cultivos Tipo (CECT) con número de acceso CECT 20472, que tiene Ia capacidad de producir y acumular monacolina J en una concentración igual o superior a 50 mg/L, o un muíante de dicho microorganismo que mantiene Ia capacidad de producir y acumular monacolina J en una concentración igual o superior a 50 mg/L. Tal como aquí se utiliza, Ia expresión "capacidad de producir y acumular monacolina J en una concentración igual o superior a 50 mg/L", aplicado a un microorganismo, significa que dicho microorganismo, bajo condiciones adecuadas, es capaz de producir monacolina J alcanzando una concentración superior a 50 miligramos (mg) de monacolina J por litro (L) de caldo de cultivo. Dichas condiciones adecuadas implican el cultivo en un medio de cultivo y temperatura apropiados. En una realización particular, el microorganismo de Ia invención es capaz de producir y acumular monacolina J en una concentración igual o superior a 50 mg/L, ventajosamente igual o superior a 100 mg/L, preferentemente igual o superior a 250 mg/L, más preferentemente igual o superior a 500 mg/L, aún más preferentemente igual o superior a 750 mg/L, y todavía más preferentemente igual o superior a 1.000 mg/L.
La capacidad de un microorganismo de producir y acumular monacolina J (e.g., en una concentración igual o superior a 50 mg/L) puede determinarse por cualquier procedimiento convencional, por ejemplo, inoculando un cultivo de dicho microorganismo en un medio de cultivo apropiado, incubando bajo condiciones apropiadas y midiendo Ia cantidad de monacolina J producida, tal como se describe, por ejemplo, en el Ejemplo 1 que acompaña a Ia presente descripción. En una realización particular, el microorganismo de Ia invención, es Ia cepa N. stramenia CECT 20472. En otra realización particular, el microorganismo de Ia invención, es un muíante de dicha cepa N. stramenia CECT 20472 que mantiene Ia capacidad de producir y acumular monacolina J en una concentración igual o superior a 50 mg/L. Tal como aquí se utiliza, el término "muíante" incluye a cualquier individuo u organismo resultaníe de una muíación o cambio en el ADN de un gen de un organismo que da como resulíado un carácíer (fenoíipo) que no se encueníra en el íipo salvaje ("wild-íype") así como a cualquier individuo u organismo resulíaníe de una muíación en el ADN de un gen de un organismo que no produce un efecío fenoíípico deíecíable (muíación silenciosa); ejemplos ilusíraíivos, no limiíaíivos, de dichas muíaciones o cambios en el ADN incluyen Ia inserción o deleción de nucleóíidos así como Ia susíiíución de unos nucleóíidos por oíros; en una realización concreía, dicho muíaníe es un muíaníe de N. stramenia CECT 20472 que maníiene esencialmeníe las mismas características que las de Ia cepa parental [N. stramenia CECT 20472], y, además, tiene Ia capacidad de no producir, o producir cantidades muy pequeñas de, lovastatina. Los mutantes pueden ser obtenidos mediante técnicas convencionales conocidas por los técnicos en Ia materia, tales como mutagénesis clásica o dirigida, manipulación genética, recombinación, etc.
El microorganismo de Ia invención puede ser utilizado para producir monacolina J mediante un procedimiento microbiológico (fermentación) y, a partir de dicho compuesto, producir un derivado de monacolina J de fórmula (I), e.g., simvastatina, lovastatina, etc. Desde el punto de vista de Ia aplicación industrial del procedimiento de Ia invención, se prefiere que el microorganismo productor de monacolina J sea capaz de producir una elevada cantidad de monacolina J, y no produzca, o produzca en cantidades minoritarias, otros derivados de monacolina J, e.g., lovastatina. En una realización preferida, el microorganismo de Ia invención es capaz de producir monacolina J en una cantidad igual o superior en 10 veces a Ia cantidad de lovastatina producida (en caso de que produzca dicho compuesto).
El microorganismo de Ia invención ha sido aislado a partir de un screening de microorganismos productores de monacolina J. Para ello, brevemente, se extrajeron tacos de cultivos de distintos microorganismos crecidos en placas y se depositaron sobre otras placas previamente inoculadas con un cultivo de Candida albicans y, tras incubación, se determinó Ia existencia de actividad fungicida mediante Ia formación de halos de inhibición del crecimiento de C. albicans seleccionándose entre las cepas que manifestaron actividad fungicida aquéllas que mostraron halos de inhibición de crecimiento de C. albicans de menor tamaño que el producido por Ia cepa Aspergillus terreus ATCC 20542 utilizada como control. Posteriormente, se extrajeron los derivados de monacolina y se analizaron por UPLC-PDA-MS/MS frente a patrones puros de lovastatina, mevastatina y monacolina J, tal como se indica en el Ejemplo 1. Operando de este modo, se aisló un cepa que producía de forma muy mayoritaha monacolina J y una pequeña cantidad de lovastatina que fue identificada mediante secuenciación de Ia región D1/D2 de Ia subunidad 28S del ADN ribosómico (ADNr) (SEQ ID NO: 1 ) y de un fragmento de Ia región ITS (espaciador interno de transcripción, del inglés "Internal Transcribed Spacer") total situada entre las subunidades 18S y 28S (SEQ ID NO: 2), como Neosartorya stramenia y que fue depositada en Ia Colección Española de Cultivos Tipo (CECT), correspondiéndola el número de acceso CECT 20742.
Dichos polinucleótidos cuyas secuencias nucleotídicas se muestran en SEQ ID NO: 1 y SEQ ID NO: 2, pueden utilizarse como sondas, o para diseñar cebadores o sondas a partir de ellos, para identificar otras cepas de N. stramenia u otras especies del género Neosartorya; por tanto, d ichos polinucleótidos, así como sus aplicaciones, constituyen aspectos adicionales de Ia presente invención.
La región D1/D2 de Ia subunidad 28S del ADNr (SEQ ID NO: 1 ) de N. stramenia CECT 20742 puede ser amplificada mediante reacción en cadena de Ia polimerasa (PCR), utilizando los oligonucleótidos iniciadores universales de hongos cuyas secuencias nucleotídicas se muestran en SEQ ID NO: 3 y SEQ ID NO: 4. Asimismo, Ia región ITS total situada entre las subunidades 18S y 28S (SEQ ID NO: 2) puede ser amplificada mediante PCR usando los ol igonucleótidos iniciadores universales de hongos cuyas secuencias nucleotídicas se muestran en SEQ ID NO: 5 y SEQ ID NO: 6. Un cultivo biológicamente puro de un microorganismo de Ia invención constituye un aspecto adicional de Ia presente invención.
Como se ha mencionado previamente, el microorganismo de Ia invención puede ser utilizado para producir monacol ina J mediante un procedimiento microbiológico (fermentación) y, a partir de dicho compuesto, producir un derivado de monacolina J de fórmula (I), e.g., simvastatina, lovastatina, etc. Por tanto, en otro aspecto, Ia invención se relaciona con el empleo de dicho microorganismo de Ia invención para producir monacolina J o un derivado de monacolina J de fórmula (I). En una realización particular, el microorganismo de Ia invención es un hongo de Ia especie N. stramenia; en una realización concreta, dicho microorganismo de Ia invención es Ia cepa N. stramenia CECT 20472. Procedimiento para identificar microorganismos productores de monacolina J
En otro aspecto, Ia invención se relaciona con un procedimiento para identificar un microorganismo productor de monacolina J (como producto de biosíntesis), que comprende: a) incubar un cultivo de un microorganismo en una placa inoculada con un cultivo de Candida albicans bajo cond iciones que perm iten el crecimiento de dicha cepa y de C. albicans; b) analizar Ia existencia de actividad antifúngica asociada a dicho microorganismo; c) en caso de que d icho m icroorgan ismo no man ifieste actividad antifúngica o manifieste baja actividad antifúngica, recoger una muestra del cultivo de dicho microorganismo y analizarla para detectar y/o cuantificar monacolina J en dicha muestra; y d) en caso de que dicho análisis ponga de manifiesto Ia presencia de monacolina J, identificar a dicho microorganismo como un microorganismo productor de monacolina J.
El procedimiento comprende poner en contacto un cultivo de un microorganismo con un cultivo de C. albicans depositado sobre una placa bajo condiciones que permiten el crecimiento de dicha cepa y de C. albicans. Dichas condiciones son conocidas por los técnicos en Ia materia; no obstante, en una realización particular, un cultivo del microorganismo a ensayar se deposita sobre placas de un med io que contienen extracto de malta, glucosa, micopeptona y agar previamente inoculadas con un cultivo de C. albicans (e.g.,
C. albicans CECT 1002); a continuación, se mantienen las placas a 40C durante 1 hora y posteriormente se incuban a 280C durante una noche.
A continuación, se procede a analizar Ia existencia de actividad antifúngica asociada a dicho microorganismo, Io que puede realizarse por cualquier método convencional apropiado, con el fin de seleccionar aquellos microorganismos con nula o baja actividad antifúngica; no obstante, en una realización particular, Ia existencia de actividad antifúngica asociada a dicho microorganismo se analiza mediante Ia formación de halos de inhibición de crecimiento de C. albicans. Para evaluar si un microorganismo no manifiesta actividad antifúngica o manifiesta una baja actividad antifúngica puede resultar conveniente comparar dicha eventual actividad antifúngica con Ia de un control positivo de actividad antifúngica y se seleccionan aquellos microorganismos que manifiestan menor actividad antifúngica que el control o que no manifiestan actividad antifúngica. Por tanto, en una realización particular, se utiliza un control positivo de actividad antifúngica que se inocula sobre una placa inoculada con C. albicans bajo condiciones apropiadas que permiten el crecimiento tanto de dicho microorganismo control como de C. albicans; aunque prácticamente cualquier microorganismo productor de compuestos antifúngicos puede ser utilizado, en Ia práctica resulta interesante utilizar microorganismos productores de estatinas (e.g., lovastatina), ya que Ia forma β-hidroxiácida de Ia lovastatina tiene propiedades antifúngicas, y seleccionar los microorganismos que muestran unos halos de inhibición de menor tamaño que el producido por dicho control; en una realización concreta se utiliza como control Ia cepa de Aspergillus terreus ATCC 20542 (Ejemplo 1 ).
En caso de que el m icroorgan ismo en cuestión man ifieste una prácticamente nula o baja actividad antifúngica, se recoge una muestra del cultivo de dicho microorganismo y se analiza para detectar y/o cuantificar monacolina J en dicha muestra. Prácticamente cualquier análisis apropiado para detectar monacolina J o para cuantificarla puede ser utilizado; no obstante, en una realización particular, Ia detección y cuantificación de monacolina J se lleva a cabo mediante Cromatografía Líquida de Ultra Alta Presión-Masas/Masas (UPLC-PDA-MS/MS) frente a patrones pu ros de monacolina J. Adicional y opcionalmente pueden analizarse otros compuestos relacionados, e.g., lovastatina o mevastatina (Ejemplo 1 ). Para ello, se procede previamente a extraer Ia monacolina J mediante métodos convencionales, por ejemplo, mediante extracción con un disolvente apropiado (e.g., un éster, tal como acetato de etilo, etc.) en medio ácido (e.g., HCI, etc.), tal como se describe en el Ejemplo 1. En una realización particular, el microorganismo productor de monacolina J es un microorganismo capaz de producir y acumular monacolina J en una concentración igual o superior a 50 mg/L, ventajosamente igual o superior a 100 mg/L, preferentemente igual o superior a 250 mg/L, más preferentemente igual o superior a 500 mg/L, aún más preferentemente igual o superior a 750 mg/L, y todavía más preferentemente igual o superior a 1 .000 mg/L. En caso de que dicho análisis ponga de manifiesto Ia presencia de monacolina J, se identifica a dicho microorganismo como un microorganismo productor de monacolina J. En caso necesario, se procede a caracterizar dicho microorganismo productor de monacolina J por métodos apropiados en función de su naturaleza, e.g., mediante métodos clásicos de microbiología, análisis de regiones del genoma específicas de género, especie o cepa (e.g., regiones específicas de Ia subunidad 28S del ADN ribosómico, regiones ITS específicas, etc.) mediante el empleo de técnicas convencionales, e.g., amplificación en cadena de Ia polimerasa (PCR), etc.
Ejemplos ilustrativos, no limitativos, de microorganismos productores de monacolina J identificados según el procedimiento proporcionado por esta invención incluyen cepas pertenecientes a los géneros Aspergillus, Monascus, Penicillium, y , a h o ra , Neosartorya. En u na real ización particu la r, el microorgan ismo productor de monacol ina J identificado según d icho procedimiento es Ia cepa N. stramenia CECT 20472, que tiene Ia capacidad de producir y acumular monacolina J en una concentración igual o superior a 50 mg/L.
Los siguientes ejemplos ilustran Ia invención y no deben ser considerados en sentido limitativo de Ia misma.
EJEMPL0 1
Selección de microorganismos capaces de producir v acumular monacolina J
A partir de cultivos de distintos hongos aislados a partir de muestras de tierras crecidos en placas con medio M2 (conteniendo por litro: 45 g de glucosa, 2,5 g de polietilenglicol P2000, 24 g de leche peptonizada y 2,5 g de extracto de levadura) se extrajeron tacos de 0,6 cm de d iámetro y se depositaron sobre placas de medio MA (conteniendo por litro: 20 g de extracto de malta, 20 g de glucosa, 1 g de micopeptona y 10 g de agar) previamente inoculadas con un cultivo de Candida albicans CECT 1002. Las placas se mantuvieron a 40C durante 1 hora y posteriormente se incubaron a 280C durante toda Ia noche. La existencia de actividad antifúngica se determinó mediante Ia formación de halos de inhibición del crecimiento de C. albicans. Entre las cepas que manifestaron actividad fungicida se seleccionaron aquellas cepas que mostraron halos de inhibición de menor tamaño que el producido por Ia cepa Aspergillus terreus ATCC 20542 (cepa productora de lovastatina) utilizada como control. A partir de las placas de las cepas seleccionadas se extrajeron unos tacos de 0,6 cm de diámetroque se introdujeron en un tubo Eppendorf de 2 mL; seguidamente se adicionó 1 mL de acetato de etilo acidificado (con HCI) y el tubo se colocó en un baño de ultrasonidos durante 10 minutos. A continuación se centrifugó a 12.000 rpm durante 3 minutos y el sobrenadante se separó a un tubo nuevo y se llevó a sequedad bajo corriente de nitrógeno. El precipitado se resuspendió en 1 mL de metanol, se filtró y se analizó por UPLC-PDA-MS/MS frente a patrones puros de lovastatina, mevastatina y monacolina J.
Mediante este procedimiento se aislaron 197 cepas de distintos microorganismos capaces de producir compuestos con actividad fungicida de las cuáles 186 mostraron halos de inhibición de menor tamaño que Ia cepa A. terreus ATCC 20542 (control). El análisis mediante UPLC-PDA-MS/MS permitió identificar 3 cepas que producían lovastatina, 2 cepas que producían mevastatina y 1 cepa que producía de forma muy mayoritaria monacolina J y una pequeña cantidad de lovastatina. Esta última se identificó mediante secuenciación de Ia región D1/D2 de Ia subunidad 28S del ADN ribosómico (ADNr) y de un fragmento de Ia región ITS (espaciador interno de transcripción, del inglés "Internal Transcribed Spacer") total situada entre las subunidades 18S y 28S, como Neosartorya stramenia, que no presentaba ninguna similitud frente a las secuencias de esta especie depositadas en las bases de datos existentes. La cepa Neosartorya stramenia ha sido depositada en Ia Colección Española de Cultivos Tipo (CECT), Burjassot, Valencia (España), el 16 de enero de 2008, correspondiéndola el número de acceso CECT 20742. La amplificación de Ia región D1/D2 de Ia subunidad 28S del ADNr de dicho microorganismo se llevó a cabo mediante Ia reacción en cadena de Ia polimerasa (PCR), utilizando los oligonucleótidos iniciadores cuyas secuencias nucleotídicas se muestran en SEQ ID NO: 3 y SEQ ID NO: 4, respectivamente. Las condiciones para Ia PCR fueron las siguientes: (i) 960C durante 5 minutos; (ii) 30 ciclos (940C, 30 segundos; 6O0C, 40 segundos; 720C, 1 minuto); y finalmente, (iii) un ciclo de elongación a 720C durante 10 minutos. Asimismo, Ia región ITS total situada entre las subunidades 18S y 28S también se amplificó mediante PCR, usando los oligonucleótidos iniciadores cuyas secuencias nucleotídicas se muestran en SEQ ID NO: 5 y SEQ ID NO: 6, respectivamente. Las condiciones para Ia PCR fueron las mismas que las utilizadas para Ia amplificación de dicha región D1/D2.
EJEMPLO 2 Producción de monacolina J por fermentación
A partir de una suspensión de esporas de N. stramenia CECT 20742 se inocularon placas de medio Power (conteniendo por litro: 15 g de sacarosa, 2,5 g de peptona bacteriológica, 2,5 g de lactosa, 0,5 g de licor de macerado de maíz ("corn steep liquor"), 2 g de NaCI, 1 g de NaNO3, 26,1 g de KCI, 0,25 g de K2HPO4, 0,25 g de MgSO4-7H2O, 0,03 g de KH2PO4, 0,005 g de FeSO4-7H2O, 0,0015 g de FeCI3-6H2O y 0,0005 g de CuSO4-5H2O) y se incubó a 280C durante 5 días. Las esporas de cada placa se recogieron en 5 mL de glicerol al 20% y se utilizaron para inocular matraces conteniendo 30 mL de medio M2 (Ejemplo 1 ). Los matraces se incubaron a 280C y 200 rpm de agitación durante 48 horas.
Estos cultivos se utilizaron para inocular matraces conteniendo medio M2 y se incubaron a 280C, 200 rpm durante 2-5 días. A continuación, los caldos se mezclaron obteniéndose un contenido en monacolina J de 310 mg, en una concentración de 70 mg/L, determinado mediante UPLC-PDA que se purificó de Ia manera que se indica a continuación. El caldo se centrifugó a 5.000 rpm durante 10 minutos y se separaron el sobrenadante del caldo y el micelio. Este último se resuspendió en 150 mL de agua y se sometió a fuerte agitación durante 1 hora. El proceso se repitió 2 veces. Los filtrados se mezclaron con el sobrenadante del caldo y el pH se ajustó a 3,5 con ácido sulfúrico diluido. La extracción se realizó con 3 x 300 mL de acetato de etilo en constante agitación durante 30 minutos cada vez. Los extractos de acetato de etilo combinados se secaron con sulfato sódico anhidro y se concentraron a vacío hasta obtener un volumen de 100 mL. A continuación, se realizó Ia lactonización mediante Ia adición de ácido trifluoroacético a temperatura ambiente y con agitación constante. La formación de las lactonas se confirmó mediante UPLC-MS/MS. Después de completar Ia formación de las lactonas se lavó con 2 x 20 mL de hidrógeno carbonato de sodio acuoso al 5% y después con 20 mL de agua, se secó con sulfato sódico anhidro y se evaporó a vacío. A continuación, el residuo obtenido se resuspendió en 40 mL de acetato de etilo y n-hexano (20:80) y se pasó a través de una columna de gel de sílice de 1 ,2 cm de diámetro y una altura de lecho de 20 cm . La elución se realizó mediante mezclas de acetato de etilo y n-hexano incrementándose Ia concentración de acetato de etilo de forma gradual. Las fracciones conteniendo Ia lactona de Ia monacolina J se eluyeron de Ia columna a una mezcla de acetato de etilo al 45% y n-hexano al 55%. Las fracciones se combinaron y se evaporaron al vacío. El residuo obtenido se disolvió en 10 mL de acetona y se guardó a 40C durante una noche. El precipitado se filtró, se lavó con 2 mL de acetona y con 2 mL de n-hexano secándose a vacío a temperatura ambiente. La monacolina J obtenida se resuspendió en 20 mL de metanol, se decoloró añadiendo 10 g de carbón activo y se cristalizó a -2O0C con una mezcla de etanol-acetato de etilo. Por último los cristales se secaron a vacío a temperatura ambiente.
EJEMPLO 3
Producción de simvastatina
Una suspensión de esporas de N. stramenia CECT 20742 preparada como se indica en el Ejemplo 2, se utilizó para inocular matraces conteniendo 25 mL de medio MEB (conteniendo por litro: 15 g de extracto de malta, 1 g de peptona bacteriológica y 20 g de glucosa). Los matraces se incubaron a 280C y 250 rpm de agitación durante 48 horas. Estos cultivos se utilizaron para inocular (10% v/v) matraces conteniendo 50 ml_ de medio M2 (Ejemplo 1 ) y se incubaron a 280C, 250 rpm durante 48 horas. Transcurrido ese tiempo se añadió a los cultivos 2,2-dimetil butirato sódico (0,1 %) (p/v) manteniendo las mismas condiciones de incubación. Los cultivos se crecieron durante 72-96 horas más.
La presencia de simvastatina en el caldo de cultivo se comprobó mediante Ia toma de muestras del caldo, que se extrajeron con acetato de etilo, se concentraron a vacío y se resuspendieron en metanol antes de analizarlas mediante UPLC. Finalmente, el caldo de cultivo se sometió al proceso de lavado, extracción y purificación que se indica en el Ejemplo 2.
EJEMPLO 4 Producción del compuesto de fórmula (I) en el que R1 es propionilo
Matraces conteniendo 50 mL de medio M2 se inocularon (10% v/v) con inóculos crecidos en medio MEB tal como se indica en el Ejemplo 3 y se incubaron a 280C, 250 rpm durante 48 horas. Transcurrido ese tiempo se añadió a los cultivos propionato sódico (0,1 %) (p/v) manteniendo las mismas condiciones de incubación. Los cultivos se crecieron durante 72-96 horas más. La presencia del compuesto de fórmula (I) en el que R1 es propionilo,
[(1 S,3R7R,8S,8aR)-8-[2-[(2R,4R)-4-hidroxi-6-oxo-oxan-2-il]etil]-3,7-dimetil- 1 ,2,3,7,8,8a-hexahidro-naftalen-1 -il]propionato, en los caldos de cultivo se comprobó mediante Ia toma de muestras del caldo, que se extrajeron con acetato de etilo, se concentraron a vacío y se resuspendieron en metanol antes de analizarlas mediante UPLC. Finalmente, el caldo de cultivo se sometió al proceso de lavado, extracción y purificación que se indica en el Ejemplo 2.
EJEMPLO 5
Producción del compuesto de fórmula (I) en el que R1 es 2,2- dimetilpropionilo Matraces conteniendo 50 ml_ de medio M2 se inocularon (10% v/v) con inóculos crecidos en medio MEB tal como se indica en el Ejemplo 3 y se incubaron a 280C, 250 rpm durante 48 horas. Transcurrido ese tiempo se añadió a los cultivos 2,2-dimetil propionato sódico (0,1 %) (p/v) manteniendo las mismas condiciones de incubación que se indican en el Ejemplo 3 durante 72- 96 horas más.
La presencia del compuesto de fórmula (I) en el que R1 es 2,2- dimetilpropionilo, [(1 S,3R,7R,8S,8af?)-8-[2-[(2R,4R)-4-hidroxi-6-oxo-oxan-2- il]etil]-3,7-dimetil-1 ,2,3,7,8,8a-hexahidro-naftalen-1 -il]-2,2-dimetilpropionato, en los caldos de cultivo se comprobó mediante Ia toma de muestras del caldo, que se extrajeron con acetato de etilo, se concentraron a vacío y se resuspendieron en metanol antes de analizarlas mediante UPLC. Finalmente, el caldo de cultivo se sometió al proceso de lavado, extracción y purificación que se indica en el Ejemplo 2.

Claims

REIVINDICACIONES
1. Un procedimiento para Ia obtención de un derivado de monacolina J de fórmula (I)
Figure imgf000028_0001
(I) donde R1 es COR2, donde R2 se selecciona entre alquilo C1-C15, cicloalquilo C3-C15, alquenilo C2-C15, alquinilo C2-C15, arilo y heterociclilo; que comprende las etapas de: a) producción de monacolina J por fermentación a partir de un microorganismo productor de monacolina J; y b) acilación del grupo hidroxilo presente en Ia posición C8 de Ia monacolina J obtenida en Ia etapa a) mediante Ia adición al medio de fermentación de un agente acilante apropiado para obtener el derivado de monacolina J de fórmula (I) deseado.
2. Procedimiento según Ia reivindicación 1 , en el que dicho microorganismo productor de monacolina J es un microorganismo capaz de producir y acumular monacolina J en una concentración igual o superior a 50 mg/L.
3. Procedimiento según Ia reivindicación 1 , en el que dicho microorganismo productor de monacol ina J es un microorgan ismo perteneciente a un género seleccionado entre Aspergillus, Monascus, Penicillium, y Neosartorya.
4. Proced im iento seg ú n I a re ivi nd icación 1 , en el q u e d icho microorganismo productor de monacolina J es N. stramenia.
5. Procedimiento según Ia reivindicación 1 , en el que dicho microorganismo productor de monacolina J es Ia cepa de Neosartorya stramenia CECT 20472. o un muíante de dicho microorganismo que mantiene Ia capacidad de producir y acumular monacolina J en una concentración igual o superior a 50 mg/L.
6. Procedimiento según Ia reivindicación 1 , en el que dicho agente acilante es un compuesto de fórmula (II)
R2COOH (II) donde R2 tiene el significado previamente indicado en relación con Ia fórmula (I); o un derivado del mismo seleccionado entre un halogenuro, un éster, una amida, un anhídrido o una sal de dicho ácido carboxílico de fórmula (II).
7. Procedimiento según Ia reivindicación 1 , en el que dicho agente acilante se selecciona entre propionato sódico, 2,2-dimetilpropionato sódico, 2,2-dimetil butirato sódico y 2-metil butirato sódico.
8. Procedimiento según Ia reivindicación 1 , en el que dicho derivado de monacolina J de fórmula (I) es un compuesto de fórmula (I) en el que R1 se selecciona entre propionilo, 2,2-dimetilpropionilo, 2-metilbutihlo (lovastatina) y 2,2-dimetilbutihlo (simvastatina).
9. Procedimiento según Ia reivindicación 1 , que comprende, además, el aislamiento, y, opcionalmente, purificación, del derivado de monacolina J de fórmula (I) obtenido.
10. Un microorganismo del género Neosartorya, que tiene Ia capacidad de producir y acumular monacolina J en una concentración igual o superior a 50 mg/L.
11. Microorganismo según Ia reivindicación 1 , caracterizado porque es un microorganismo de Ia especie Neosartorya stramenia depositado en Ia Colección Española de Cultivos Tipo (CECT) con número de acceso CECT 20472, que tiene Ia capacidad de producir y acumular monacolina J en una concentración ig ual o su perior a 50 mg/L, o u n m uíante de d icho microorganismo que mantiene Ia capacidad de producir y acumular monacolina J en una concentración igual o superior a 50 mg/L.
12. Un cultivo biológicamente puro de un microorganismo según Ia reivindicación 10 ú 11.
1 3. Em pl eo d e u n m icroorg a n ismo seg ú n cua l q u iera de l as reivindicaciones 10 ú 11 , para producir monacolina J o un derivado de monacolina J de fórmula (I) según Ia reivindicación 1.
14. Un procedimiento para identificar un microorganismo productor de monacolina J, que comprende: a) incubar un cultivo de un microorganismo en una placa inoculada con un cultivo de Candida albicans bajo cond iciones que perm iten el crecimiento de dicha cepa y de C. albicans; b) analizar Ia existencia de actividad antifúngica asociada a dicho microorganismo; c) en caso de que d icho m icroorgan ismo no man ifieste actividad antifúngica o manifieste una baja actividad antifúngica, recoger una muestra del cultivo de dicho microorganismo y analizarla para detectar y/o cuantificar monacolina J en dicha muestra; y d) en caso de que dicho análisis ponga de manifiesto Ia presencia de mon acol i na J , identifica r a d icho m icroorg a n ismo como u n microorganismo productor de monacolina J.
15. Procedimiento según Ia reivindicación 14, en el que Ia existencia de actividad fungicida asociada a dicho microorganismo se analiza mediante Ia formación de halos de inhibición de crecimiento de C. albicans.
16. Procedimiento según Ia reivindicación 14 ó 15, que comprende, además, utilizar un control positivo de actividad antifúngica.
1 7. Proced im iento según Ia reivind icación 1 6 , que comprende seleccionar los microorganismos que muestran unos halos de inhibición de crecimiento de C. albicans de menor tamaño que el producido por dicho control.
18. Procedimiento según cualquiera de las reivindicaciones 14 a 17, en el que el microorganismo productor de monacolina J identificado es un microorgan ismo capaz de prod ucir y acumular monacol ina J en una concentración igual o superior a 50 mg/L.
PCT/ES2009/070436 2008-10-15 2009-10-14 Biosíntesis de derivados de monacolina j WO2010043748A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/123,875 US20110189726A1 (en) 2008-10-15 2009-10-14 Biosynthesis of derivatives of monacolin j
CN2009801504347A CN102245178A (zh) 2008-10-15 2009-10-14 莫纳可林j衍生物的生物合成
EP09820301A EP2380571A4 (en) 2008-10-15 2009-10-14 BIOSYNTHESIS OF MONACOLINE J DERIVATIVES
IL212358A IL212358A0 (en) 2008-10-15 2011-04-14 Biosynthesis of derivatives of monacolin j

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200802971 2008-10-15
ES200802971A ES2343049B1 (es) 2008-10-15 2008-10-15 Biosintesis de derivados de monacolina j.

Publications (1)

Publication Number Publication Date
WO2010043748A1 true WO2010043748A1 (es) 2010-04-22

Family

ID=42106270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070436 WO2010043748A1 (es) 2008-10-15 2009-10-14 Biosíntesis de derivados de monacolina j

Country Status (6)

Country Link
US (1) US20110189726A1 (es)
EP (1) EP2380571A4 (es)
CN (1) CN102245178A (es)
ES (1) ES2343049B1 (es)
IL (1) IL212358A0 (es)
WO (1) WO2010043748A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104529971B (zh) * 2014-01-30 2017-01-25 北京蓝贝望生物医药科技股份有限公司 羟基甲基戊二酰辅酶a还原酶抑制剂
CN108118042B (zh) * 2016-11-30 2021-01-15 中国科学院青岛生物能源与过程研究所 2-甲基丁酸侧链水解酶和产莫纳可林j的曲霉菌株及其构建方法与应用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139396A (en) 1979-04-13 1980-10-31 Akira Endo Monacolin j, new type of physiologically actice substance, and its preparation
US4444784A (en) 1980-08-05 1984-04-24 Merck & Co., Inc. Antihypercholesterolemic compounds
US4450171A (en) 1980-08-05 1984-05-22 Merck & Co., Inc. Antihypercholesterolemic compounds
JPS60176595A (ja) 1984-02-21 1985-09-10 Akira Endo 生理活性物質ml−236a及びモナコリンjの製造法
JPS60196183A (ja) * 1984-03-16 1985-10-04 Kanzo Hasegawa モナコリンk、及びモナコリンjを含有する酒類の製造方法
CA1199322A (en) 1980-02-04 1986-01-14 Robert L. Smith Antihypercholesterolemic compounds
US4820850A (en) 1987-07-10 1989-04-11 Merck & Co., Inc. Process for α-C-alkylation of the 8-acyl group on mevinolin and analogs thereof
US5159104A (en) 1991-05-01 1992-10-27 Merck & Co., Inc. Process to simvastatin ester
US5393893A (en) 1993-11-08 1995-02-28 Apotex, Inc. Process for producing simvastatin and analogs thereof
US5763646A (en) 1997-03-13 1998-06-09 Ranbaxy Laboratories, Ltd. Process for manufacturing simvastatin from lovastatin or mevinolinic acid
US20040033570A1 (en) * 1998-12-18 2004-02-19 Hutchinson Charles R. Method of producing antihypercholesterolemic agents
WO2005040107A2 (en) 2003-10-21 2005-05-06 Diversa Corporation Methods for making simvastatin and intermediates
WO2005066150A1 (en) 2004-01-02 2005-07-21 Hetero Drugs Limited A novel process for the preparation of simvastatin
WO2007139871A2 (en) 2006-05-24 2007-12-06 The Regents Of The University Of California Methods and materials for making simvastatin and related compounds

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009056539A1 (en) * 2007-10-30 2009-05-07 Dsm Ip Assets B.V. Fermentative production of simvastatin

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139396A (en) 1979-04-13 1980-10-31 Akira Endo Monacolin j, new type of physiologically actice substance, and its preparation
CA1199322A (en) 1980-02-04 1986-01-14 Robert L. Smith Antihypercholesterolemic compounds
US4444784A (en) 1980-08-05 1984-04-24 Merck & Co., Inc. Antihypercholesterolemic compounds
US4450171A (en) 1980-08-05 1984-05-22 Merck & Co., Inc. Antihypercholesterolemic compounds
JPS60176595A (ja) 1984-02-21 1985-09-10 Akira Endo 生理活性物質ml−236a及びモナコリンjの製造法
JPS60196183A (ja) * 1984-03-16 1985-10-04 Kanzo Hasegawa モナコリンk、及びモナコリンjを含有する酒類の製造方法
US4820850A (en) 1987-07-10 1989-04-11 Merck & Co., Inc. Process for α-C-alkylation of the 8-acyl group on mevinolin and analogs thereof
US5159104A (en) 1991-05-01 1992-10-27 Merck & Co., Inc. Process to simvastatin ester
US5393893A (en) 1993-11-08 1995-02-28 Apotex, Inc. Process for producing simvastatin and analogs thereof
US5763646A (en) 1997-03-13 1998-06-09 Ranbaxy Laboratories, Ltd. Process for manufacturing simvastatin from lovastatin or mevinolinic acid
US20040033570A1 (en) * 1998-12-18 2004-02-19 Hutchinson Charles R. Method of producing antihypercholesterolemic agents
US6943017B2 (en) 1998-12-18 2005-09-13 Wisconsin Alumni Research Foundation Method of producing antihypercholesterolemic agents
WO2005040107A2 (en) 2003-10-21 2005-05-06 Diversa Corporation Methods for making simvastatin and intermediates
WO2005066150A1 (en) 2004-01-02 2005-07-21 Hetero Drugs Limited A novel process for the preparation of simvastatin
WO2007139871A2 (en) 2006-05-24 2007-12-06 The Regents Of The University Of California Methods and materials for making simvastatin and related compounds

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ENDO ET AL., J ANTIBIOT, vol. 38, 1985, pages 444 - 448
HENDRICKSON ET AL., CHEM BIOL, vol. 6, 1999, pages 429 - 439
HOFFMAN ET AL., J MED CHEM, vol. 29, 1986, pages 849 - 852
KENNEDY ET AL., SCIENCE, vol. 284, 1999, pages 1368 - 1372
MOORE ET AL., J AM CHEM SOC, vol. 107, 1985, pages 3694 - 3701
See also references of EP2380571A4
XIE ET AL., CHEM BIOL, vol. 13, 2006, pages 1161 - 1169
XIE, TANG, APPL ENVIRON MICROBIOL, vol. 73, 2007, pages 2054 - 2060

Also Published As

Publication number Publication date
EP2380571A1 (en) 2011-10-26
IL212358A0 (en) 2011-06-30
ES2343049A1 (es) 2010-07-21
ES2343049B1 (es) 2011-06-10
EP2380571A4 (en) 2012-07-11
CN102245178A (zh) 2011-11-16
US20110189726A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
US10793884B2 (en) Methods and materials for making simvastatin and related compounds
Xie et al. Biosynthesis of lovastatin analogs with a broadly specific acyltransferase
US20060281155A1 (en) Microbial process for preparing pravastatin
ES2240072T3 (es) Procedimiento microbiano para la preparacion de pravastatina.
ES2343049B1 (es) Biosintesis de derivados de monacolina j.
Chakraborty et al. Chemical mining of heterotrophic Shewanella algae reveals anti-infective potential of macrocyclic polyketides against multidrug-resistant pathogens
CS228517B2 (en) Method for the production of macrolide
Maruyama et al. Isolation of abikoviromycin and dihydroabikoviromycin as inhibitors of polyketide synthase involved in melanin biosynthesis by Colletotrichum lagenarium
Subhan et al. Production of statins by fungal fermentation
Feng et al. Biotransformation of bioactive (-)-mellein by a marine isolate of bacterium Stappia sp.
RU2252258C2 (ru) Микробный способ получения правастатина
Silber Characterization of new natural products from fungi of the German Wadden Sea
KR20110044613A (ko) 로바스타틴 생산균주 탐색을 위한 pcr 프라이머 및 이를 이용한 탐색방법
CA2572473A1 (en) Sodium salt of pravastatin in crystalline form

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980150434.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820301

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13123875

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 212358

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2918/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009820301

Country of ref document: EP