WO2010043436A1 - Motorsystem sowie verfahren zum betreiben eines motorsystems - Google Patents

Motorsystem sowie verfahren zum betreiben eines motorsystems Download PDF

Info

Publication number
WO2010043436A1
WO2010043436A1 PCT/EP2009/060707 EP2009060707W WO2010043436A1 WO 2010043436 A1 WO2010043436 A1 WO 2010043436A1 EP 2009060707 W EP2009060707 W EP 2009060707W WO 2010043436 A1 WO2010043436 A1 WO 2010043436A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
electric motor
circuit
drive circuit
input voltage
Prior art date
Application number
PCT/EP2009/060707
Other languages
English (en)
French (fr)
Inventor
Thomas Poetzl
Manfred Spraul
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN2009801406289A priority Critical patent/CN102187564A/zh
Priority to JP2011531416A priority patent/JP2012505632A/ja
Priority to EP09781979A priority patent/EP2347503A1/de
Priority to US13/123,904 priority patent/US20110254478A1/en
Publication of WO2010043436A1 publication Critical patent/WO2010043436A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P4/00Arrangements specially adapted for regulating or controlling the speed or torque of electric motors that can be connected to two or more different electric power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0019Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being load current fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/07DC-DC step-up or step-down converter inserted between the power supply and the inverter supplying the motor, e.g. to control voltage source fluctuations, to vary the motor speed

Definitions

  • the invention generally relates to a motor system with an electric motor, which is controlled by a power electronic drive circuit and is powered by a DC voltage source.
  • a power electronic drive circuit such. B. a B6 bridge, an H-bridge and the like, the
  • the drive circuit is generally controlled by a control unit which switches the semiconductor switches to be conductive or non-conductive.
  • the drive device on the input side of the drive circuit on a passive circuit which usually has at least one capacitance, which is generally called DC link capacitance.
  • the voltage varies over the DC link capacitance - -
  • a method for operating a drive unit for an electric motor wherein the drive unit has a drive circuit for driving the electric motor and an intermediate circuit connected upstream of the drive circuit, in particular with a DC link capacity.
  • the method comprises the following steps:
  • One idea of the above method is to minimize the overall volume of the DC link circuit, in particular a DC link capacitor arranged therein, by providing a lower load on the DC link capacitance. This is achieved by reducing the AC load on the DC link capacitance.
  • the RMS current through the DC link circuit which governs the AC load on a DC link capacitance, depends on the input current and the current received by the drive circuit, ie, on the input voltage and / or drive of the drive circuit.
  • the current in the drive circuit can be influenced by adjusting the applied DC link voltage, which depends on the input voltage.
  • the effective current through the intermediate circuit capacitance can also be set as a function of the voltage on the input side of the drive circuit, which also corresponds to the voltage across the intermediate circuit capacitance.
  • the above method can provide both to adjust the input voltage and to control the control unit such that the voltage across the DC link capacity depends on - -
  • the RMS current is set by the intermediate circuit capacitance in order to minimize the AC load of the DC link capacity as possible.
  • variable input voltage can be dependent on the manipulated variable and / or dependent on a motor state variable, in particular a rotational speed, a torque, a motor current, one or more phase voltages, and / or depending on a state variable of the drive circuit, in particular its power loss, and / or dependent be set by a state variable of the DC link circuit, in particular an intermediate circuit voltage or a current through the DC link capacitance.
  • the manipulated variable may correspond to an electrical power, a mechanical power, the desired rotational speed, the desired torque, the motor current, a motor voltage, an angular position or the phase voltage.
  • the adjustment of the input voltage and the operation of the drive circuit may be performed according to a function in which the RMS current is minimized by a capacitance of the DC link circuit.
  • the setting of the input voltage and the operation of the drive circuit is performed according to a function in which the losses in the DC / DC converter are minimized without predetermined RMS currents are exceeded by a capacity of the DC link circuit.
  • the function for adjusting the input voltage during operation or during an explicit teach-in phase can be learned by varying the input voltage and the driving of the electric motor by the drive circuit.
  • the one or more operating points of the at least one predetermined manipulated variable can be stored in a characteristic field.
  • the adjustment of the input voltage and the operation of the drive circuit can be performed by means of a gradient descent method.
  • an apparatus for operating an electric motor comprising: a drive circuit for driving the electric motor,
  • a DC link circuit which is arranged on the input side to the drive circuit and in particular has a DC link capacitance
  • Input voltage is output via the DC link circuit to the drive circuit
  • a drive system for operating an electric motor comprising:
  • a voltage converter for receiving the set-up variable to provide the variable input voltage depending on the set-up variable.
  • an engine system having an electric motor and the above drive system is provided.
  • Figure 1 is a schematic representation of an engine system with a drive device having a DC link capacitance
  • FIG. 2 shows a diagram for illustrating the dependence of an effective current normalized on the RMS current in the electric motor by the DC link capacitance of one degree of modulation.
  • Figure 1 shows a schematic representation of an engine system 1 with an electric motor 2, the z. B. may be formed in the form of a synchronous motor.
  • the electric motor can be designed to be multi-phase. In the present case, the electric motor 2 has three phases.
  • the electric motor 2 is driven by a power electronic drive circuit 3.
  • the drive circuit 3 is formed as a B6 bridge circuit having a number of inverter branches, which corresponds to the number of phases of the electric motor 2.
  • Each inverter branch has semiconductor switches 4, namely a pull-high switch and a pull-low switch.
  • one of the pull-high switches and one of the pull-low switches 4 are arranged in series between a high DC link potential V H and a low DC link potential V L.
  • V H high DC link potential
  • V L low DC link potential
  • the pull-high switch therefore pulls the tappable phase of the inverter branch to the high DC link potential V H, and the pull-low switch therefore pulls the tappable phase to the low DC link potential V L.
  • Each of the pull-high and pull-low switch 4 can be used as a power transistor, such as. B. as a field effect transistor, as a thyristor or - -
  • control unit 5 is provided by a control unit 5 by means of suitable control signals transmitted via control lines 6, e.g. a corresponding gate terminal, are supplied, driven.
  • the drive circuit 3 On the input side, the drive circuit 3 is connected to a DC link circuit which contains DC link capacitance 7.
  • the intermediate circuit may comprise further passive components, in particular a choke coil.
  • DC link capacitance 7 is connected to one connection with the high intermediate circuit potential V H and to another connection to the low DC link potential V L.
  • the DC link capacitance 7 serves the purpose of switching the semiconductor switches 4 in the drive circuit 3
  • the high and the low DC link potential V H , V L are provided by a voltage converter 8, in particular a DC-DC converter, which is connected on the input side to a vehicle electrical system of a motor vehicle or generally to an energy source.
  • the DC-DC converter 8 is the input side with a battery (not shown) of the
  • the DC-DC converter 8 is variably controllable, ie according to a
  • DC-DC converter V which is the DC-DC converter 8, e.g. as an electrical signal or as a digital or analogue quantity, via a
  • DC voltage converter 8 can be variably adjusted. - -
  • a control unit 5 is provided, which is connected both to the DC-DC converter 8 and to the drive circuit 3.
  • the control unit 5 is provided externally a manipulated variable SG as a default, which specifies an engine size with which the electric motor 2 is to be controlled.
  • the manipulated variable may correspond, for example, to electrical power, mechanical power, desired speed, desired torque, motor current, motor voltage, angular position or phase voltage. From the manipulated variable SG results in which way the electric motor 2 is to be controlled, so that the electric motor 2 has a predetermined manipulated variable SG corresponding behavior.
  • the control unit 5 can then control the DC-DC converter 8 and the drive circuit 3 in such a way that the motor variable corresponding to the manipulated variable SG is made available.
  • the alternating current load of the DC link capacitance 7 is generally calculated using the following formula:
  • lc_ ⁇ ff corresponds to the RMS current through the DC link capacitance
  • iDCDc (t) corresponds to the current provided by the DC-DC converter 8
  • ipcu (t) corresponds to the (input-side) current received by the drive circuit 3. It can be seen that by approximating the converter current iDCDc (t) and the current through the control circuit ipcu (t), the amount of the effective current lc_ ⁇ ff can be reduced by the DC link capacitance 7.
  • the mean value and effective value of the current through the drive circuit 3 can be influenced by the level of a DC link voltage Uc applied across the DC link capacitance 7. - -
  • an effective current I C e ff normalized to the RMS current in the electric motor 2 is represented by the DC link capacitance C e ff via a modulation factor M.
  • the degree of modulation M behaves inversely proportional to the intermediate circuit voltage Uc and is thus influenced via the DC-DC converter 8.
  • the parameter of the characteristic curves shown in FIG. 2 is the power factor cos ( ⁇ ), which can generally be determined by the quotient of the active power through the apparent power of the electric motor. ⁇ corresponds to the phase angle between current and voltage.
  • the control unit 5 controls the DC-DC converter 8 in a suitable manner.
  • a residual voltage U DC and the predetermined manipulated variable SG results in a corresponding control of the drive circuit 3.
  • the control unit 5 should drive the DC-DC converter 8 only in such a way that output voltages are set within a voltage range.
  • the voltage range is limited to voltages at which the requirement imposed on the electric motor 2 by the manipulated variable SG can be maintained, the drive circuit 3 does not fall into an undervoltage mode or the voltage strengths of the capacitor providing the intermediate circuit capacitance and the semiconductor switch in the drive circuit 3 are not exceeded become.
  • the drive circuit 3 may be e.g. by varying a duty cycle of a pulse width modulated drive or by varying a duty cycle of a space vector modulation the electric motor 2 different services to
  • control unit 5 thus has degrees of freedom in the choice of the controls of the DC-DC converter 8 and the drive circuit 3 to the by the
  • the output voltage u D c of the DC-DC converter 8 is set as low as possible by means of the DC link capacitance 7 in order to minimize the effective current lc_ ⁇ ff. That is, the output voltage of the DC-DC converter 8 should be selected so that the required for the electric motor 2 power can still be achieved and the drive circuit 3 can be operated, ie the drive circuit 3 does not come into an undervoltage mode.
  • control unit 5 has, for example, a map block 10 to which the externally provided manipulated variable SG is provided as an input variable and which, depending on the manipulated variable SG, supplies the DC-DC converter variable V to the DC-DC converter 8 and a control circuit manipulated variable S to a pulse generating unit 11 provides.
  • the map block 10 may have a characteristic map in which, for example, an effective current I C e ff is taken into account as a function of the voltage Uc applied across the DC link capacitance 7.
  • Other input variables of the map block 10 may be measured variables, such as the engine speed and / or the angular position of a rotor of the electric motor 2, the phase currents , the phase voltages and an output current I DCDC of the DC-DC converter 8, which can also be measured. It is also possible to determine the DC-DC converter variable V independently of the manipulated variable SG provided, that is, only on the basis of measured variables. Alternatively, instead of or in addition to the manipulated variable SG provided, the current actual value of this variable could also be used as the input variable for the characteristic diagram. As an alternative to a characteristic diagram, V could also be determined from the specified input variables by means of algorithms or formulas stored in a processor.
  • the map can be specified statically. It is also possible to generate or modify the map in operation or in a teach-in mode by using different operating points for different operating points - -
  • Manipulated variables SG of the optimal operating points of the DC-DC converter 8 and the drive circuit 3 are determined and corresponding records are stored in the map for later retrieval.
  • the optimization goal - regardless of whether working with a static map or with an optimization in operation - may be not only the simple minimization of the effective current LC_ ⁇ ff i n the intermediate circuit capacitor. 7
  • the limit values could, for example, also be dependent on the temperature and / or the length of the current load of the DC link capacitance. If the limit values are exceeded, the motor current could immediately be reduced via the pulse generation unit 11 at the expense of the motor power, ie, disregarding the predetermined manipulated variable SG. Once a "better" DC-DC converter control value V has been found / adjusted, then the pulse generating unit 11 can again control the switches 4 in such a way that the higher motor current is provided and thus the manipulated variable SG is taken into account.
  • the pulse generation unit 11 generates the drive pulses for the pull-high switch and pull-low switch 4 of the drive circuit 3 as a function of the drive control manipulated value S, for example, specifies a duty cycle of a space vector modulation to control them according to the drive control value S.
  • the adaptation of the output voltage of the DC-DC converter 8 and the control of the drive circuit 3 can be made adaptive by the RMS current through the DC link capacitance 7, for example by means of a - -
  • the output voltage of the DC-DC converter 8 is set to a specific voltage with the aid of the DC-DC converter control value V.
  • the effective current I C e ff through the DC link capacitance 7 is measured directly or estimated from the engine state variables. If the rms current I e ff becomes too large, the output voltage of the DC-DC converter 8 is modified until the rms current C e ff again falls below a certain current threshold value.
  • the control unit 5, the drive circuit 3 and the DC link capacitance 7 are usually provided in a control unit for an electric motor 2 as a unit.
  • a setting line 9 for transmitting the DC-DC converter variable V to a separate and remote from the control unit DC-DC converter 8 is provided by the control unit 5 to drive the DC-DC converter 8 to minimize the AC load of the DC link capacitance 7 variably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben einer Ansteuereinheit für einen Elektromotor, wobei die Ansteuereinheit eine Ansteuerschaltung zum Ansteuern des Elektromotors und eine der Ansteuerschaltung vorgeschalteten Zwischenkreisschaltung, insbesondere mit einer Zwischenkreiskapazität, aufweist, mit folgenden Schritten: - Bereitstellen einer Stellgröße (SG) zum Ansteuern des Elektromotors (2); - Einstellen einer variablen Eingangsspannung (UDC) und Bereitstellen der eingestellten Eingangsspannung (UDC) über die Zwischenkreisschaltung an die Ansteuereinheit (3); - Betreiben der Ansteuerschaltung (3) abhängig von einer zur Verfügung stehenden Zwischenkreisspannung (UC), die von der eingestellten Eingangsspannung (UDC) abhängt, und abhängig von der Stellgröße (SG), um den Elektromotor (2) entsprechend der Stellgröße (SG) anzusteuern.

Description

- -
Beschreibung
Titel
Motorsystem sowie Verfahren zum Betreiben eines Motorsystems
Technisches Gebiet
Die Erfindung betrifft im Allgemeinen ein Motorsystem mit einem Elektromotor, der über eine leistungselektronische Ansteuerschaltung angesteuert wird und von einer Gleichspannungsquelle versorgt wird.
Stand der Technik
In Fahrzeugen werden zunehmend Elektromotoren eingesetzt, die variabel ansteuerbar sind. Dazu wird ein solcher Elektromotor im Allgemeinen durch eine
Ansteuereinrichtung mit einer leistungselektronischen Ansteuerschaltung angesteuert, wie z. B. einer B6-Brücke, einer H-Brücke und dergleichen, die
Halbleiterschalter aufweisen. Die Ansteuerschaltung wird im Allgemeinen durch eine Steuereinheit, die die Halbleiterschalter leitend oder nicht-leitend schaltet, gesteuert.
Weiterhin weist die Ansteuereinrichtung eingangsseitig der Ansteuerschaltung eine passive Beschaltung auf, die in der Regel zumindest eine Kapazität aufweist, die im Allgemeinen Zwischenkreiskapazität genannt wird. Abhängig von der Ansteuerung der Ansteuerschaltung durch eine Steuereinheit und aufgrund parasitärer Widerstände variiert die Spannung über der Zwischenkreiskapazität - -
und es entsteht ein Spannungs- und Stromrippel, was eine entsprechende Dimensionierung der Zwischenkreiskapazität notwendig macht. Aufgrund der erheblichen Belastung der Zwischenkreiskapazität aufgrund des auftretenden Spannungsrippeis und der dadurch notwendigen Dimensionierung wird ein erheblicher Teil des Gesamtbauvolumens der Ansteuereinrichtung für den Elektromotor durch die Größe der Zwischenkreiskapazität bestimmt. Künftig wird das Bauvolumen der diskreten Bauelemente im Zwischenkreis das Bauvolumen der Steuereinheit und der Ansteuerschaltung weiter dominieren, da die Steuereinheit und die Ansteuerschaltung zunehmend miniaturisiert werden und aufgrund steigender EMV-Anforderungen mehr Bauelemente im Zwischenkreis angeordnet werden müssen.
Es ist weiterhin bekannt, Elektromotoren in Motorsystemen über einen Gleichspannungswandler anzusteuern, der aus der Versorgungsspannung eines Bordnetzes eine andere und/oder stabilisierte Zwischenkreisspannung erzeugt, um den Elektromotor mit einer gewünschten Spannung anzusteuern.
Es ist Aufgabe der vorliegenden Erfindung, eine Ansteuereinrichtung für einen Elektromotor vorzusehen, bei dem die Zwischenkreiskapazität mit einem möglichst geringem Kapazitätswert vorgesehen werden kann, so dass die Baugröße der Zwischenkreiskapazität verkleinert werden kann.
Offenbarung der Erfindung
Diese Aufgabe wird durch ein Verfahren zum Ansteuern eines Motorsystems gemäß Anspruch 1 sowie durch eine Vorrichtung, ein Ansteuersystem und ein Motorsystem gemäß den nebengeordneten Ansprüchen gelöst.
Weitere Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben. - -
Gemäß einem ersten Aspekt ist ein Verfahren zum Betreiben einer Ansteuereinheit für einen Elektromotor vorgesehen, wobei die Ansteuereinheit eine Ansteuerschaltung zum Ansteuern des Elektromotors und eine der Ansteuerschaltung vorgeschalteten Zwischenkreisschaltung, insbesondere mit einer Zwischenkreiskapazität, aufweist. Das Verfahren umfasst die folgenden Schritte:
- Bereitstellen einer Stellgröße zum Ansteuern des Elektromotors;
- Einstellen einer variablen Eingangsspannung und Bereitstellen der eingestellten Eingangsspannung über die Zwischenkreisschaltung an die Ansteuereinheit; - Betreiben der Ansteuerschaltung abhängig von einer zur Verfügung stehenden Zwischenkreisspannung, die von der eingestellten Eingangsspannung abhängt, und abhängig von der Stellgröße, um den Elektromotor entsprechend der Stellgröße anzusteuern.
Eine Idee des obigen Verfahrens besteht darin, das Bauvolumen der Zwischenkreisschaltung, insbesondere einer darin angeordneten Zwischenkreiskapazität, zu minimieren, indem eine geringere Belastung der Zwischenkreiskapazität vorgesehen wird. Dies wird dadurch erreicht, dass die Wechselstrombelastung der Zwischenkreiskapazität reduziert wird. Der Effektivstrom durch die Zwischenkreisschaltung, der für die Wechselstrombelastung einer Zwischenkreiskapazität maßgeblich ist, hängt von dem Eingangsstrom und von dem Strom, der durch die Ansteuerschaltung aufgenommen wird, ab, d.h. von der Eingangsspannung und/oder Ansteuerung der Ansteuerschaltung ab. Der Strom in die Ansteuerschaltung kann durch Anpassen der anliegenden Zwischenkreisspannung, die von der Eingangsspannung abhängt, beeinflusst werden. Dadurch kann auch der Effektivstrom durch die Zwischenkreiskapazität abhängig von der Spannung an der Eingangsseite der Ansteuerschaltung, die auch der Spannung über der Zwischenkreiskapazität entspricht, eingestellt werden. Aus diesem Grunde kann das obige Verfahren vorsehen, sowohl die Eingangsspannung einzustellen als auch die Steuereinheit so anzusteuern, dass die Spannung über der Zwischenkreiskapazität abhängig von - -
dem Effektivstrom durch die Zwischen kreiskapazität eingestellt wird, um die Wechselstrombelastung der Zwischenkreiskapazität möglichst zu minimieren.
Ferner kann die variable Eingangsspannung abhängig von der Stellgröße und/oder abhängig von einer Motorzustandsgröße, insbesondere einer Drehzahl, einem Drehmoment, einem Motorstrom, einer oder mehreren Phasenspannungen, und/oder abhängig von einer Zustandsgröße der Ansteuerschaltung, insbesondere ihrer Verlustleistung, und/oder abhängig von einer Zustandsgröße der Zwischenkreisschaltung, insbesondere einer Zwischenkreisspannung oder eines Stroms durch die Zwischenkreiskapazität eingestellt werden. Insbesondere kann die Stellgröße einer elektrischen Leistung, einer mechanischen Leistung, der gewünschten Drehzahl, dem gewünschten Drehmoment, dem Motorstrom, einer Motorspannung, einer Winkelposition oder der Phasenspannung entsprechen.
Gemäß einer Ausführungsform kann das Einstellen der Eingangsspannung und das Betreiben der Ansteuerschaltung gemäß einer Funktion durchgeführt werden, bei der der Effektivstrom durch eine Kapazität der Zwischenkreisschaltung minimiert wird.
Es kann vorgesehen sein, dass das Einstellen der Eingangsspannung und das Betreiben der Ansteuerschaltung gemäß einer Funktion durchgeführt wird, bei der die Verluste im DC-/DC Wandler minimert werden, ohne dass vorgegebene Effektivströme durch eine Kapazität der Zwischenkreisschaltung überschritten werden.
Weiterhin kann die Funktion zum Einstellen der Eingangsspannung während des Betriebs oder während einer expliziten Einlernphase durch Variieren der Eingangsspannung und der Ansteuerung des Elektromotors durch die Ansteuerschaltung gelernt werden. - -
Insbesondere können die einen oder die mehreren Betriebspunkte der mindestens einen vorgegebenen Stellgröße in einem Kennfeld gespeichert werden.
Weiterhin kann das Einstellen der Eingangsspannung und das Betreiben der Ansteuerschaltung mit Hilfe eines Gradientenabstiegsverfahrens durchgeführt werden.
Gemäß einem weiteren Aspekt ist eine Vorrichtung zum Betreiben eines Elektromotors vorgesehen, umfassend: - eine Ansteuerschaltung zum Ansteuern des Elektromotors,
- eine Zwischenkreisschaltung, die eingangsseitig an der Ansteuerschaltung angeordnet ist und die insbesondere eine Zwischenkreiskapazität aufweist;
- eine Steuereinheit, die ausgebildet ist,
- um eine Stellgröße zu empfangen; - um eine Einstellgröße auszugeben, die bewirkt, dass eine variable
Eingangsspannung über die Zwischenkreisschaltung an die Ansteuerschaltung ausgegeben wird;
- um die Ansteuerschaltung zu betreiben, so dass der Elektromotor abhängig von einer zur Verfügung stehenden Zwischenkreisspannung, die von der eingestellten Eingangsspannung abhängt, und abhängig von der Stellgröße angesteuert wird.
Gemäß einem weiteren Aspekt ist ein Ansteuersystem zum Betreiben eines Elektromotors vorgesehen, umfassend:
- die obige Vorrichtung; - einen Spannungswandler zum Empfangen der Einstellgröße, um abhängig von der Einstellgröße die variable Eingangsspannung bereitzustellen.
Gemäß einem weiteren Aspekt ist ein Motorsystem mit einem Elektromotor und mit dem obigen Ansteuersystem vorgesehen.
Kurzbeschreibung der Zeichnungen - -
Einige Ausführungsformen werden nachfolgend anhand der beigefügten Zeichnungen näher erläutert. Es zeigen:
Figur 1 eine schematische Darstellung eines Motorsystems mit einer Ansteuereinrichtung, die eine Zwischenkreiskapazität aufweist; und
Figur 2 ein Diagramm zur Darstellung der Abhängigkeit eines auf den Effektivstrom in dem Elektromotor normierten Effektivstroms durch die Zwischenkreiskapazität von einem Modulationsgrad.
Beschreibung von Ausführungsformen
Figur 1 zeigt eine schematische Darstellung eines Motorsystems 1 mit einem Elektromotor 2, der z. B. in Form eines Synchronmotors ausgebildet sein kann. Der Elektromotor kann mehrphasig ausgebildet sein. Im vorliegenden Fall weist der Elektromotor 2 drei Phasen auf.
Der Elektromotor 2 wird durch eine leistungselektronische Ansteuerschaltung 3 angesteuert. In der Ausführungsform der Fig. 1 ist die Ansteuerschaltung 3 als B6- Brückenschaltung ausgebildet, die eine Anzahl von Inverterzweigen aufweist, die der Anzahl der Phasen des Elektromotors 2 entspricht. Jeder Inverterzweig weist Halbleiterschalter 4, nämlich einen Pull-High-Schalter und einen Pull-Low-Schalter auf. Jeweils einer der Pull-High-Schalter und einer der Pull-Low-Schalter 4 sind in Reihe zwischen einem hohen Zwischenkreispotenzial VH und einem niedrigen Zwischenkreispotenzial VL angeordnet. Zwischen dem Pull-High-Schalter und Pull- Low-Schalter 4 jeder der Inverterzweige wird eine entsprechende Phase zum Bereitstellen an den Elektromotor 2 abgegriffen. Der Pull-High-Schalter zieht die abgreifbare Phase des Inverterzweigs also zu dem hohen Zwischenkreispotenzial VH und der Pull-Low-Schalter zieht die abgreifbare Phase also zu dem niedrigen Zwischenkreispotenzial VL. Jeder der Pull-High- bzw. Pull-Low-Schalter 4 kann als Leistungstransistor, wie z. B. als ein Feldeffekttransistor, als ein Thyristor oder - -
dergleichen, ausgebildet sein und wird von einer Steuereinheit 5 durch geeignete Steuersignale, die über Steuerleitungen 6 , z.B. einem entsprechenden Gate- Anschluss, zugeführt werden, angesteuert.
Anstelle der gezeigten Ansteuerschaltung 3 mit der B6-Brückenschaltung können auch andere schaltende leistungselektronische Ansteuerschaltungen verwendet werden, wie z. B. eine H-Brücke und dergleichen.
Eingangsseitig ist die Ansteuerschaltung 3 mit einer Zwischenkreisschaltung, die Zwischenkreiskapazität 7 enthält, verbunden. Die Zwischenkreisschaltung kann weitere passive Bauelemente, insbesondere eine Drosselspule, aufweisen. Die
Zwischenkreiskapazität 7 ist mit einem Anschluss mit dem hohen Zwischen kreis- potenzial VH und mit einem weiteren Anschluss mit dem niedrigen Zwischenkreis- potenzial VL verbunden. Die Zwischenkreiskapazität 7 dient dazu, die durch das Schalten der Halbleiterschalter 4 in der Ansteuerschaltung 3 auftretenden
Sprungbelastungen auf der Eingangsseite der Ansteuerschaltung 3 zu reduzieren, um eine Quelle der Leistungsversorgung weniger zu belasten.
Das hohe und das niedrige Zwischenkreispotenzial VH, VL werden von einem Spannungswandler 8, insbesondere einem Gleichspannungswandler, bereitgestellt, der eingangsseitig mit einem Bordnetz eines Kraftfahrzeuges oder allgemein mit einer Energiequelle verbunden ist. Im Fall eines Kraftfahrzeuges ist der Gleichspannungswandler 8 eingangsseitig mit einer Batterie (nicht gezeigt) des
Kraftfahrzeugs verbunden, die eine Batteriespannung Ußat zur Verfügung stellt. Der Gleichspannungswandler 8 ist variabel ansteuerbar, d. h. gemäß einem
Gleichspannungswandler-Stellwert V, der dem Gleichspannungswandler 8, z.B. als ein elektrisches Signal oder als digitale bzw. analoge Größe, über eine
Einstellleitung 9 bereitgestellt wird, kann die Ausgangsspannung UDC des
Gleichspannungswandlers 8 variabel eingestellt werden. - -
Es ist weiterhin eine Steuereinheit 5 vorgesehen, die sowohl mit dem Gleichspannungswandler 8 und mit der Ansteuerschaltung 3 verbunden ist. Der Steuereinheit 5 wird von extern eine Stellgröße SG als Vorgabe bereitgestellt, die eine Motorgröße angibt, mit der der Elektromotor 2 angesteuert werden soll. Die Stellgröße kann beispielsweise einer elektrischen Leistung, einer mechanischen Leistung, der gewünschten Drehzahl, dem gewünschten Drehmoment, dem Motorstrom, einer Motorspannung, einer Winkelposition oder der Phasenspannung entsprechen. Aus der Stellgröße SG ergibt sich, in welcher Weise der Elektromotor 2 angesteuert werden soll, damit der Elektromotor 2 ein der vorgegebenen Stellgröße SG entsprechendes Verhalten aufweist. Die Steuereinheit 5 kann dann den Gleichspannungswandler 8 und die Ansteuerschaltung 3 so ansteuern, dass die der Stellgröße SG entsprechende Motorgröße bereitgestellt wird.
Zur Verringerung der Baugröße der Zwischenkreiskapazität 7 ist es sinnvoll, deren elektrische Belastung zu reduzieren. Die Wechselstrombelastung der Zwischenkreiskapazität 7 berechnet sich allgemein mit folgender Formel:
- .-r- f ZDc 'i t ) ~ i PCi: i - ■' .-' " a"£
wobei lc_Θff dem Effektivstrom durch die Zwischenkreiskapazität, iDCDc(t) dem von dem Gleichspannungswandler 8 bereitgestellten Strom und ipcu(t) dem von der Ansteuerschaltung 3 aufgenommenen (eingangsseitigen) Strom entsprechen. Man erkennt, dass man durch Annäherung des Wandlerstromes iDCDc(t) und des Stroms durch die Steuerschaltung ipcu(t) der Betrag des Effektivstroms lc_Θff durch die Zwischenkreiskapazität 7 verringert werden kann. Mittelwert und Effektivwert des Stroms durch die Ansteuerschaltung 3 können durch die Höhe einer über der Zwischenkreiskapazität 7 anliegenden Zwischenkreisspannung Uc beeinflusst werden. - -
Dies kann man auch aus dem Diagramm der Figur 2 entnehmen. In dem Diagramm der Figur 2 ist ein auf den Effektivstrom in den Elektromotor 2 normierter Effektivstrom lC eff durch die Zwischenkreiskapazität lC eff über einen Modulationsgrad M dargestellt. Der Modulationsgrad M verhält sich umgekehrt proportional zur Zwischenkreisspannung Uc und ist damit über den Gleichspannungswandler 8 beeinflussbar. Der Parameter der in der Figur 2 gezeigten Kennlinien ist der Leistungsfaktor cos (φ), der allgemein durch den Quotienten der Wirkleistung durch die Scheinleistung des Elektromotors ermittelbar ist. φ entspricht dem Phasenwinkel zwischen Strom und Spannung.
Um den Effektivstrom lC eff durch die Zwischenkreiskapazität 7 möglichst zu minimieren, steuert die Steuereinheit 5 den Gleichspannungswandler 8 in geeigneter Weise an. Durch eine Eigenspannung UDC und die vorgegebene Stellgröße SG ergibt sich eine entsprechende Ansteuerung der Ansteuerschaltung 3. Dabei sollte die Steuereinheit 5 den Gleichspannungswandler 8 nur derart ansteuern, dass Ausgangsspannungen innerhalb eines Spannungsbereichs eingestellt werden. Der Spannungsbereich ist begrenzt auf Spannungen, bei denen die durch die Stellgröße SG vorgegebene Anforderung an den Elektromotor 2 aufrecht erhalten werden kann, die Ansteuerschaltung 3 nicht in einen Unterspannungsmodus fällt oder die Spannungsfestigkeiten des die Zwischenkreiskapazität bereitstellenden Kondensators und der Halbleiterschalter in der Ansteuerschaltung 3 nicht überschritten werden.
Die Ansteuerschaltung 3 kann z.B. durch Variieren eines Tastverhältnisses einer pulsweitenmodulierten Ansteuerung bzw. durch Variieren eines Tastverhältnisses einer Raumzeigermodulation dem Elektromotor 2 verschiedene Leistungen zur
Verfügung stellen. Auch lässt sich die Modulationsperiodendauer der
Raumzeigermodulation durch die Steuereinheit 5 vorgeben. Die Steuereinheit 5 hat also Freiheitsgrade bei der Wahl der Ansteuerungen des Gleichspannungswandlers 8 und der Ansteuerschaltung 3 um die durch die
Stellgröße SG vorgegeben Motorgröße einzustellen. - -
Beispielsweise kann vorgesehen sein, dass die Ausgangsspannung uDc des Gleichspannungswandlers 8 für eine Minimierung des Effektivstroms lc_Θff durch die Zwischenkreiskapazität 7 so gering wie möglich eingestellt wird. D.h. die Ausgangsspannung des Gleichspannungswandlers 8 sollte so gewählt werden, dass die für den Elektromotor 2 geforderte Leistung noch erreicht werden kann und die Ansteuerschaltung 3 betrieben werden kann, d. h. die Ansteuerschaltung 3 gelangt nicht in einen Unterspannungsmodus.
Die Steuereinheit 5 weist dazu beispielsweise einen Kennfeld-Block 10 auf, dem die von extern bereitgestellte Stellgröße SG als Eingangsgröße bereitgestellt wird und der abhängig von der Stellgröße SG den Gleichspannungswandler-Stellwert V an den Gleichspannungswandler 8 bereitstellt und einen Ansteuerschaltung- Stellwert S an eine Pulserzeugungseinheit 11 bereitstellt. Der Kennfeld-Block 10 kann ein Kennfeld aufweisen, in dem z.B. ein Effektivstrom lC eff als Funktion der über der Zwischenkreiskapazität 7 anliegenden Spannung Uc berücksichtigt ist. Weitere Eingangsgrößen des Kennfeld-Blocks 10 können Messgrößen sein, wie z.B. die Motordrehzahl und/oder die Winkellage eines Rotors des Elektromotors 2, die Phasenströme, die Phasenspannungen sowie ein Ausgangsstrom IDCDC des Gleichspannungswandlers 8, der ebenfalls gemessen werden kann. Es ist ebenfalls möglich, den Gleichspannungswandler-Stellwert V unabhängig von der bereitgestellten Stellgröße SG, also nur auf Basis von Messgrößen zu bestimmen. Alternativ könnte auch anstelle der oder zusätzlich zur bereitgestellten Stellgröße SG der aktuelle Ist-Wert dieser Größe als Eingangsgröße für das Kennfeld verwendet werden. Alternativ zu einem Kennfeld könnte V auch mittels in einem Prozessor hinterlegten Algorithmus bzw. Formeln aus den angegebenen Eingangsgrößen bestimmt werden.
Das Kennfeld kann statisch vorgegeben werden. Es ist ebenfalls möglich, das Kennfeld im Betrieb oder in einem Einlernmodus zu generieren bzw. zu modifizieren, indem für verschiedene Betriebspunkte mit verschiedenen - -
Stellgrößen SG der optimale Arbeitspunkte des Gleichspannungswandlers 8 und der Ansteuerschaltung 3 ermittelt werden und entsprechende Datensätze in dem Kennfeld zum späteren Abrufen gespeichert werden.
Das Optimierungsziel - unabhängig davon, ob mit einem statischen Kennfeld oder mit einer Optimierung im Betrieb gearbeitet wird - könnte nicht nur die einfache Minimierung des Effektivstroms lc_Θff in dem Zwischenkreiskondensator 7 sein. Beispielsweise ist es auch von Vorteil, den Kondensatorstrom und damit die Erwärmung der Zwischenkreiskapazität unter festgelegten Grenzwerten zu halten. Die Grenzwerte könnten beispielsweise auch abhängig von der Temperatur und/oder der Länge der Strombelastung der Zwischenkreiskapazität sein. Werden die Grenzwerte überschritten, so könnte sofort über die Pulserzeugungseinheit 11 der Motorstrom - auf Kosten der Motorleistung, d.h. unter Missachtung der vorgegebenen Stellgröße SG - reduziert werden. Sobald ein „besserer" Gleichspannungswandler-Stellwert V gefunden/eingestellt wurde, kann dann die Pulserzeugungseinheit 11 die Schalter 4 wieder so steuern, dass der höhere Motorstrom bereitgestellt wird und dass damit die Stellgröße SG beachtet wird.
Neben dem Optimierungsziel der Reduzierung des Zwischenkreisstromes könnte es weitere Optimierungsziele geben, beispielsweise die Reduzierung der Verluste im Spannungswandler 8.
Die Pulserzeugungseinheit 11 generiert die Ansteuerpulse für die Pull-High- Schalter und Pull-Low-Schalter 4 der Ansteuerschaltung 3 abhängig von dem Ansteuerschaltung-Stellwert S, der beispielsweise ein Tastverhältnis einer Raumzeigermodulation vorgibt, um diese gemäß dem Ansteuerschaltung-Stellwert S anzusteuern.
Die Anpassung der Ausgangsspannung des Gleichspannungswandlers 8 sowie der Ansteuerung der Ansteuerschaltung 3 kann adaptiv vorgenommen werden, indem der Effektivstrom durch die Zwischenkreiskapazität 7 z.B. mit Hilfe eines - -
Strommesswandlers oder eines Strommesswiderstandes erfasst und z. B. mithilfe eines Optimierungsverfahrens, wie beispielsweise dem Gradientenabstiegsverfahren, durch Variieren der vom Gleichspannungswandler 8 ausgegebenen Wandlerspannung und des Tastverhältnisses oder allgemein durch Variieren des Ansteuerschaltung-Stellwert S und des Gleichspannungswandler- Stellwerts V der Effektivstrom durch die Zwischenkreiskapazität 7 minimiert wird. Durch diese Weise kann das Kennfeld für das Motorsystem eingelernt werden und z. B. in einer geeigneten Speichereinheit (nicht gezeigt) in dem Kennfeld-Block 10 abgespeichert werden. Auch eine Adaption on-the-fly bei langsamen Änderungen der Stellgröße ist mit diesem Verfahren möglich.
Es kann weiterhin vorgesehen sein, dass die Ausgangsspannung des Gleichspannungswandlers 8 mit Hilfe des Gleichspannungswandler-Stellwert V auf eine bestimmte Spannung eingestellt wird. Der Effektivstrom lC eff durch die Zwischenkreiskapazität 7 wird direkt gemessen oder aus den Motorzustandsgrößen geschätzt. Wenn der Effektivstrom lC eff zu groß wird, wird Ausgangsspannung des Gleichspannungswandlers 8 so lange modifiziert, bis Effektivstrom lC eff wieder klein, d.h. einen bestimmten Stromschwellenwert unterschreitet.
Die Steuereinheit 5, die Ansteuerschaltung 3 und die Zwischenkreiskapazität 7 werden üblicherweise in einem Steuergerät für einen Elektromotor 2 als eine Einheit vorgesehen. Bei der Realisierung des obigen Motorsystems ist daher von der Steuereinheit 5 eine Einstellleitung 9 zum Übertragen des Gleichspannungswandler-Stellwerts V zu einem von dem Steuergerät separat und entfernt angeordneten Gleichspannungswandler 8 vorzusehen, um den Gleichspannungswandler 8 zum Minimieren der Wechselstrombelastung der Zwischenkreiskapazität 7 variabel anzusteuern.

Claims

- -Ansprüche:
1. Verfahren zum Betreiben einer Ansteuereinheit für einen Elektromotor (2), wobei die Ansteuereinheit eine Ansteuerschaltung (3) zum Ansteuern des Elektromotors (2) und eine der Ansteuerschaltung (3) vorgeschalteten Zwischenkreisschaltung, insbesondere mit einer Zwischenkreiskapazität (7), aufweist, mit folgenden Schritten:
- Bereitstellen einer Stellgröße (SG) zum Ansteuern des Elektromotors (2);
- Einstellen einer variablen Eingangsspannung (UDC) und Bereitstellen der eingestellten Eingangsspannung (UDC) über die Zwischenkreisschaltung an die Ansteuereinheit (3);
- Betreiben der Ansteuerschaltung (3) abhängig von einer zur Verfügung stehenden Zwischenkreisspannung (uc), die von der eingestellten Eingangsspannung (uDc) abhängt, und abhängig von der Stellgröße (SG), um den Elektromotor (2) entsprechend der Stellgröße (SG) anzusteuern.
2. Verfahren nach Anspruch 1 , wobei die variable Eingangsspannung (UDC) abhängig von der Stellgröße (SG) und/oder abhängig von einer Motorzustandsgröße, insbesondere einer Drehzahl, einem Drehmoment, einem Motorstrom, einer oder mehreren Phasenspannung(-en), und/oder abhängig von einer Zustandsgröße der Ansteuerschaltung (3), insbesondere ihrer Verlustleistung, und/oder abhängig von einer Zustandsgröße der Zwischenkreisschaltung (uc), insbesondere einer Zwischenkreisspannung oder eines Stroms (lc_eff) durch die Zwischenkreiskapazität (7) eingestellt wird.
3. Verfahren nach Anspruch 1 oder 2, wobei die Stellgröße einer elektrischen Leistung, einer mechanischen Leistung, der gewünschten Drehzahl, dem gewünschten Drehmoment, dem Motorstrom, einer Motorspannung, einer Winkelposition oder der Phasenspannung entspricht. - -
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei das Einstellen der Eingangsspannung (UDC) und das Betreiben der Ansteuerschaltung (3) gemäß einer Funktion durchgeführt wird, bei der der Effektivstrom (lc_Θff) durch eine Kapazität der Zwischenkreisschaltung minimiert wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei das Einstellen der Eingangsspannung (UDC) und das Betreiben der Ansteuerschaltung (3) gemäß einer Funktion durchgeführt wird, bei der die Verluste in einem Spannungswandler (8) minimert werden, ohne dass vorgegebene Effektivströme (lc_eff) durch eine Kapazität der Zwischenkreisschaltung überschritten werden.
6. Verfahren nach Anspruch 4 oder 5, wobei die Funktion zum Einstellen der Eingangsspannung (UDC) während des Betriebs oder während einer expliziten Einlernphase durch Variieren der Eingangsspannung (UDC) und der Ansteuerung des Elektromotors (2) durch die Ansteuerschaltung (3) gelernt wird.
7. Verfahren nach Anspruch 4, 5, oder 6, wobei die einen oder die mehreren Betriebspunkte der mindestens einen vorgegebenen Stellgröße (SG) in einem Kennfeld gespeichert werden.
8. Verfahren nach einem der Ansprüche 4 bis 7, wobei das Einstellen der Eingangsspannung und das Betreiben der Ansteuerschaltung mit Hilfe eines Gradientenabstiegsverfahrens durchgeführt wird.
9. Vorrichtung zum Betreiben eines Elektromotors (2), umfassend:
- eine Ansteuerschaltung zum Ansteuern des Elektromotors (2),
- eine Zwischenkreisschaltung, die eingangsseitig an der Ansteuerschaltung angeordnet ist und die insbesondere eine Zwischenkreiskapazität (7) aufweist;
- eine Steuereinheit (5), die ausgebildet ist, - um eine Stellgröße (SG) zu empfangen;
- um eine Einstellgröße (V) auszugeben, die bewirkt, dass eine variable - -
Eingangsspannung (UDC) über die Zwischenkreisschaltung an die Ansteuerschaltung (3) ausgegeben wird;
- um die Ansteuerschaltung zu betreiben, so dass der Elektromotor (2) abhängig von einer zur Verfügung stehenden Zwischenkreisspannung (Uc), die von der eingestellten Eingangsspannung (UDC) abhängt, und abhängig von der Stellgröße (SG) angesteuert wird.
10. Ansteuersystem zum Betreiben eines Elektromotors (2), umfassend:
- eine Vorrichtung nach Anspruch 9; - einen Spannungswandler zum Empfangen der Einstellgröße (V), um abhängig von der Einstellgröße (V) die variable Eingangsspannung (UDC) bereitzustellen.
11. Motorsystem mit einem Elektromotor (2) und mit einem Ansteuersystem nach Anspruch 10.
PCT/EP2009/060707 2008-10-14 2009-08-19 Motorsystem sowie verfahren zum betreiben eines motorsystems WO2010043436A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801406289A CN102187564A (zh) 2008-10-14 2009-08-19 马达系统以及用于运行马达系统的方法
JP2011531416A JP2012505632A (ja) 2008-10-14 2009-08-19 モータシステムおよびモータシステムの動作方法
EP09781979A EP2347503A1 (de) 2008-10-14 2009-08-19 Motorsystem sowie verfahren zum betreiben eines motorsystems
US13/123,904 US20110254478A1 (en) 2008-10-14 2009-08-19 Motor System and Method for Operating a Motor System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008042805A DE102008042805A1 (de) 2008-10-14 2008-10-14 Motorsystem sowie Verfahren zum Betreiben eines Motorsystems
DE102008042805.1 2008-10-14

Publications (1)

Publication Number Publication Date
WO2010043436A1 true WO2010043436A1 (de) 2010-04-22

Family

ID=41171284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/060707 WO2010043436A1 (de) 2008-10-14 2009-08-19 Motorsystem sowie verfahren zum betreiben eines motorsystems

Country Status (6)

Country Link
US (1) US20110254478A1 (de)
EP (1) EP2347503A1 (de)
JP (1) JP2012505632A (de)
CN (1) CN102187564A (de)
DE (1) DE102008042805A1 (de)
WO (1) WO2010043436A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013209187A1 (de) * 2013-05-17 2014-11-20 Robert Bosch Gmbh Verfahren und Schaltung zur verbesserten Nutzung einer Kapazität in einem Zwischenkreis
JP6776951B2 (ja) * 2017-03-06 2020-10-28 株式会社デンソー 回転電機制御装置、および、これを用いた電動パワーステアリング装置
JP6893153B2 (ja) * 2017-09-07 2021-06-23 三菱重工サーマルシステムズ株式会社 電流値判定装置、制御装置、電動圧縮機、電流値判定方法及び制御方法
JP6893152B2 (ja) * 2017-09-07 2021-06-23 三菱重工サーマルシステムズ株式会社 電流推定装置、電動圧縮機、電流推定方法及びモータ電流実効値推定方法
JP7443020B2 (ja) * 2019-10-24 2024-03-05 三菱重工サーマルシステムズ株式会社 制御装置、電動圧縮機、リップル電圧の検出方法及びプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044939A1 (en) * 2001-11-23 2003-05-30 Danfoss Drives A/S Frequency converter for different mains voltages
EP1662641A2 (de) * 2004-11-30 2006-05-31 Toyota Jidosha Kabushiki Kaisha Digital geregelter synchron getakteter Gleichspannungswandler

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005354763A (ja) * 2004-06-08 2005-12-22 Toyota Motor Corp 電圧変換装置
JP2006101675A (ja) * 2004-09-30 2006-04-13 Mitsubishi Electric Corp モータ駆動装置
CN101404449B (zh) * 2004-11-30 2011-06-22 丰田自动车株式会社 电压变换设备和执行对电压变换设备的电压变换控制的方法
JP4191715B2 (ja) * 2005-10-03 2008-12-03 三菱電機株式会社 車載用電動機制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044939A1 (en) * 2001-11-23 2003-05-30 Danfoss Drives A/S Frequency converter for different mains voltages
EP1662641A2 (de) * 2004-11-30 2006-05-31 Toyota Jidosha Kabushiki Kaisha Digital geregelter synchron getakteter Gleichspannungswandler

Also Published As

Publication number Publication date
DE102008042805A1 (de) 2010-04-15
JP2012505632A (ja) 2012-03-01
CN102187564A (zh) 2011-09-14
US20110254478A1 (en) 2011-10-20
EP2347503A1 (de) 2011-07-27

Similar Documents

Publication Publication Date Title
DE102008034109B4 (de) Schaltung zur Nachbildung einer elektrischen Last
DE60215902T2 (de) Antriebsgerät, Steuerverfahren und Programmspeichermedium für das Antriebsgerät, und Apparatur zur Erzeugung von Energie
DE102011009935B4 (de) Verfahren zum Ansteuern eines optimalen Betriebspunktes bei einer Synchronmaschine und eine umrichtergespeiste Synchronmaschine
DE102020205008A1 (de) Eine Elektromotorvorrichtung
DE10238773B4 (de) Verfahren und Vorrichtung zur Steuerung bürstenloser Motoren
DE102007040560A1 (de) Verfahren zur Ansteuerung eines Umrichters sowie zugehörige Vorrichtung
DE102011053838A1 (de) Rotierende elektrische Maschine für Fahrzeuge
DE112017007493T5 (de) Halbleiterbauelement ansteuerungsverfahren und treibervorrichtung und leistungswandlergerät
DE102014220208A1 (de) Steuervorrichtung für eine elektromaschine, fahrzeug und verfahren
DE102019127472A1 (de) Stromsteuerungssystem, Brennstoffzellensystem und Verfahren zum Steuern eines Aufwärtswandlers
DE102011053557A1 (de) Drehende elektrische Maschine für ein Fahrzeug
WO2010043436A1 (de) Motorsystem sowie verfahren zum betreiben eines motorsystems
EP2707245A2 (de) Leistungselektronische vorrichtung und steuerverfahren für eine elektrische maschine und für elektrische energiespeicher
WO2019043136A1 (de) Energiespeicheremulator und verfahren zur emulation eines energiespeichers
DE102014102566A1 (de) An einem Fahrzeug angebrachte drehende elektrische Maschine mit mehreren Gleichrichtungsmodi
DE102018203388A1 (de) Vorladen eines Zwischenkreiskondensators eines Gleichspannungszwischenkreises
DE102017203656A1 (de) Verfahren und Vorrichtung zur Regelung eines elektrischen Antriebs und elektrischer Antrieb
DE102011088242A1 (de) Verfahren zum Betrieb einer Drehfeldmaschine
DE102015118949A1 (de) Generatorerregungsregelung unter Verwendung von Pulsbreitenmodulation
DE102021203591A1 (de) Verfahren zur feldorientierten Regelung eines Elektromotors
DE102019120436A1 (de) Steuereinrichtung, Wechselrichter, Anordnung mit einem Wechselrichter und einer elektrischen Maschine, Verfahren zum Betreiben eines Wechselrichters sowie Computerprogramm
WO2016012301A1 (de) Verfahren zum betreiben einer zumindest generatorisch betreibbaren elektrischen maschine und mittel zu dessen implementierung
DE102011080442A1 (de) Verfahren zum Betrieb einer Drehfeldmaschine
EP2528217B1 (de) Zweiquadrantensteller
EP2375551B1 (de) Kommutierungsverfahren, Kommutierungsschaltung und elektrischer Energiewandler

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980140628.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09781979

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009781979

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011531416

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2991/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13123904

Country of ref document: US