WO2010041608A1 - 液体の検査方法および液体検査装置 - Google Patents

液体の検査方法および液体検査装置 Download PDF

Info

Publication number
WO2010041608A1
WO2010041608A1 PCT/JP2009/067263 JP2009067263W WO2010041608A1 WO 2010041608 A1 WO2010041608 A1 WO 2010041608A1 JP 2009067263 W JP2009067263 W JP 2009067263W WO 2010041608 A1 WO2010041608 A1 WO 2010041608A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
infrared light
absorption spectrum
container
concentration
Prior art date
Application number
PCT/JP2009/067263
Other languages
English (en)
French (fr)
Inventor
秀夫 糸▲崎▼
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to EP09819143.0A priority Critical patent/EP2348303B1/en
Priority to CN2009801389226A priority patent/CN102171550A/zh
Priority to US13/122,458 priority patent/US9377398B2/en
Publication of WO2010041608A1 publication Critical patent/WO2010041608A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9018Dirt detection in containers
    • G01N21/9027Dirt detection in containers in containers after filling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives

Definitions

  • the present invention relates to a method and an apparatus for inspecting a liquid filled in a light transmissive container, and more particularly, to contain explosives, explosive materials, or illegal drugs in a liquid filled in a light transmissive container.
  • the present invention relates to an inspection method and an inspection apparatus for inspecting a situation.
  • Non-Patent Document 1 a detection method for quickly determining whether or not the fuel is a flammable liquid such as gasoline has already been proposed.
  • Non-Patent Document 1 there is a difference in dielectric constant between water, which is the main component of a regularly filled beverage, and liquid combustibles such as gasoline, specifically, gasoline compared to the dielectric constant of water. It is determined whether or not it is a dangerous substance by utilizing the fact that the dielectric constant is small.
  • Non-Patent Document 1 is not an effective method for detecting a liquid dangerous substance having a dielectric constant close to that of water.
  • the present invention can quickly and reliably detect the content of explosives, explosive materials, or illegal drugs in a liquid filled in a light transmissive container such as a PET bottle or a glass bottle from the outside of the container. It is an object to provide an inspection method and an inspection apparatus.
  • a liquid inspection method for inspecting the content of explosives, explosive raw materials and / or illegal drugs in a liquid filled in a light transmissive container From the outside of the container, a near infrared light irradiation step of irradiating the liquid with near infrared light, A near-infrared light receiving step for receiving the near-infrared light transmitted through the liquid or the near-infrared light scattered by the liquid; An absorption spectrum analysis step of analyzing the absorption spectrum of the received near-infrared light,
  • the liquid inspection method is characterized by analyzing the absorption spectrum and inspecting the content of explosives, explosive raw materials and / or illegal drugs in the liquid filled in the container.
  • explosives, explosive raw materials and / or illegal drugs (hereinafter collectively referred to as “dangerous goods”) in a liquid filled in a light transmissive container such as a PET bottle or a glass bottle.
  • the content status can be detected quickly and reliably from outside the container without opening the container.
  • the present inventor carefully examined the properties of the dangerous goods, and further examined the properties of liquids and containers such as beverages, and as a result, irradiated near infrared light from outside the container without opening the container. By analyzing the absorption spectrum obtained in this way, it was found that the content of dangerous substances can be inspected quickly and reliably.
  • the content of the dangerous substance can be accurately determined by devising a method for analyzing the absorption spectrum of the obtained near-infrared light. Can be inspected.
  • the liquid filled in the container is different from water, tea, juice, cola, coffee, etc.
  • an appropriate analysis can be performed by analyzing using a wavelength appropriately selected from wavelengths of 650 to 1000 nm.
  • the specific wavelength selection is appropriately set in consideration of the type of container, the type of filled liquid, an assumed dangerous material, and the like.
  • the absorption spectrum can be obtained from either transmitted light or scattered light.
  • scattered light is preferable because the irradiation unit and the light receiving unit can be integrated, and the apparatus can be made more compact.
  • the near-infrared light source a white lamp can be preferably used.
  • the irradiation direction when irradiating near infrared light from the outside of the container may be irradiated from any surface as long as it has translucency, but the bottom surface of a PET bottle or the like is suitable for scattering. In many cases, it has a shape, and it is preferable to irradiate from the bottom direction.
  • the entire container is preferably shielded from external light in order to eliminate the influence of external light.
  • the invention according to claim 3 Absorbance with respect to a predetermined wavelength in the absorption spectrum analyzed by the absorption spectrum analysis step, Substituting into the concentration estimation formula created based on the absorption spectrum analyzed in advance using a plurality of liquids with known concentrations of explosives, explosive raw materials and / or illegal drugs, 3.
  • the concentration of dangerous substances is further measured, the degree of danger can be determined more specifically.
  • the absorbance for a predetermined wavelength of the analyzed absorption spectrum is simply substituted into the concentration estimation formula created based on the absorption spectrum previously analyzed using a liquid having a known concentration, so that the concentration can be quickly and easily determined. Can be measured.
  • the concentration estimation formula is a multiple regression analysis using absorbance at a plurality of wavelengths of each absorption spectrum analyzed using a plurality of liquids having a known concentration of the explosive, explosive material, and / or illegal drug.
  • the concentration estimation formula is created by performing multiple regression analysis using the absorbance at a plurality of wavelengths of each absorption spectrum analyzed using a plurality of liquids having a known concentration. Therefore, a more accurate concentration estimation formula can be obtained. Since a highly accurate concentration estimation formula is applied, subtle changes in the spectrum can be dealt with, and the concentration can be measured with higher accuracy.
  • the invention described in claim 5 5.
  • Hydrogen peroxide water is similar to water in physical, chemical, and optical properties, and is difficult to inspect in a short time with conventional inspection methods, so it is easy to be filled in a beverage container.
  • the present invention can accurately inspect such hydrogen peroxide solution, and the effects of the present invention can be remarkably exhibited.
  • the concentration of liquid explosives, explosive raw materials, illegal drugs, etc. filled in the container can be measured with higher accuracy.
  • product display symbol indicates, for example, a bar code, a QR code, or the like.
  • the invention according to claim 8 provides: A liquid inspection device for inspecting the content of explosives, explosive raw materials and / or illegal drugs in a liquid filled in a light transmissive container, Near-infrared light irradiation means for irradiating the liquid with near-infrared light from outside the container; A near infrared light receiving means for receiving the near infrared light transmitted through the liquid or the near infrared light scattered by the liquid; An absorption spectrum analyzing means for analyzing the absorption spectrum of the received near-infrared light, A liquid inspection apparatus configured to inspect the content of explosives, explosive raw materials and / or illegal drugs in the liquid filled in the container by analyzing the absorption spectrum. .
  • the invention according to claim 8 captures the invention of claim 1 as an invention of a method as an invention of a product, and by inspecting using such a liquid inspection device, such as a plastic bottle or a glass bottle
  • a liquid inspection device such as a plastic bottle or a glass bottle
  • the content of dangerous substances in the liquid filled in the light transmissive container can be detected quickly and reliably from the outside without opening the container.
  • the invention according to claim 9 is: The liquid inspection apparatus according to claim 8, wherein the near infrared light irradiation unit and the near infrared light reception unit are provided integrally.
  • the near-infrared light irradiation means and the near-infrared light reception means are provided integrally, the positions of the irradiation part and the light-receiving part are not shifted, and accurate. Can be analyzed. Moreover, a compact liquid inspection apparatus can be provided by integrating.
  • the invention according to claim 10 is: The liquid inspection apparatus according to claim 8, further comprising a product display symbol reading unit that reads a product display symbol attached to a regular product.
  • the invention according to claim 10 captures the invention of the method according to claim 7 from the viewpoint of the apparatus, and has a higher content of explosives, explosive raw materials and / or illegal drugs to be inspected.
  • a liquid inspection apparatus capable of inspecting with high accuracy can be provided.
  • a liquid filled in a light transmissive container such as a PET bottle or a glass bottle from the outside of the container.
  • Methods and inspection devices can be provided.
  • FIG. 1 schematically shows the main part of the liquid inspection apparatus according to the present embodiment, which is broadly divided into a sample placement part A and a measurement part B, both of which are an optical fiber 13, 14 is connected.
  • a sensor head 10 is disposed on the sample mounting portion A, and the sensor head 10 has an irradiation unit 11 and a light receiving unit 12 that emit and receive near-infrared light. Further, a container mounting table (not shown) is provided on the sensor head 10, and the light transmissive container 1 in which the liquid 2 is accommodated is mounted as a sample to be inspected. Note that the upper surface of the sensor head 10 may also serve as a container mounting table.
  • the measurement unit B includes a near-infrared light source 21, lenses 22, 23, and a prism 24, and a personal computer (PC) 27 that analyzes an absorption spectrum of the near-infrared light.
  • PC personal computer
  • the light-transmitting container 1 filled with the liquid 2 is placed on a mounting table as a sample to be inspected. At this time, the container 1 is shielded with a black cover or the like so that external light does not affect the inspection result.
  • the scattered near-infrared light 16 is received by the light receiving unit 12 provided in the sensor head 10, guided to the prism 24 through the optical fiber 14 and the lens 23, and dispersed.
  • An absorption spectrum 25 is obtained. Note that it is preferable to use an optical grating having a more excellent spectral function in place of the prism.
  • the near infrared light 15 may be transmitted through the liquid 2 without being scattered, and the transmitted light can be analyzed.
  • the light receiving unit is used as an irradiation unit. Similar processing can be performed by providing the two facing each other.
  • each of the above processes is recorded as a program in the PC, for example, in the case of an installation type liquid inspection apparatus, it is possible to inspect only by placing the container on the sensor head and irradiating near infrared light. .
  • the above concentration estimation formula is created for each regular product, and at the time of inspection, by reading the product display symbol attached to the container to be inspected, the regular product corresponding to the inspection target is specified, and the corresponding concentration
  • the inspection can be performed with higher accuracy.
  • concentration estimation formula showing the relationship between the concentration of the dangerous substance and the absorbance at a plurality of predetermined wavelengths of the absorption spectrum is created by multiple regression analysis.
  • a multiple regression equation expressing the relationship between the estimated value of concentration shown in the following formula (1) and the absorbance at each wavelength, which is general in the multiple regression analysis, is established.
  • the multiple regression equation (1) is evaluated by substituting the absorbance measurement result of a liquid having a known dangerous substance concentration prepared separately into the multiple regression equation (1) in which ⁇ 0 and ⁇ i are determined. Correction is performed accordingly, and a density estimation formula shown in the following formula (2) is finally created.
  • c K 0 + K 1 E 1 + K 2 E 2 + K 3 E 3 + ⁇ + K p E p (2)
  • c Concentration (estimated value)
  • FIGS. 4 Specific Example of Liquid Inspection Apparatus According to the Present Invention An example specifically showing the liquid inspection apparatus according to the present embodiment is shown in FIGS.
  • FIG. 2 (a) is an installation type inspection apparatus suitable for baggage inspection, and a plurality (three in the figure) of sensor heads are provided at different heights. For this reason, it is possible to deal with containers having different heights with a single device. Moreover, the influence by external light can be shielded by closing the upper lid.
  • FIG. 2 (b) is a portable inspection apparatus, and the apparatus is made compact by providing a sensor head outside the apparatus. Furthermore, since the sensor head is provided separately from the apparatus main body, it is possible to irradiate near-infrared light in a free direction. For example, a discarded plastic bottle or the like can be inspected at some distance.
  • Example 1 the concentration of hydrogen peroxide contained in hydrogen peroxide (H 2 O 2 ) water filled in various PET bottles having different shapes and sizes was measured.
  • the concentration is measured using a concentration estimation formula, the concentration is measured using a known analysis method for the same sample, and the measured concentration is compared to determine whether the measured concentration is correct. Verified.
  • a PET container with a different shape and size such as a tea PET container, is selected, and the concentration is 0 to 10% by mass.
  • Hydrogen was prepared by the following three methods, and a test sample filled in the PET container was prepared. (1) A different amount of water was added to a certain amount of H 2 O 2 to change the concentration of H 2 O 2 . (2) A different amount of H 2 O 2 was added to a certain amount of water to change the concentration of H 2 O 2 . (3) The total amount was kept constant, and the concentration of H 2 O 2 was changed by changing the mixing ratio of H 2 O 2 and H 2 O.
  • Fig. 4 is a graph showing the relationship between the estimated value of the dangerous substance concentration and the actual measurement value of the analysis, and also shows the container used for the inspection and the measurement conditions.
  • the vertical axis in FIG. 4 indicates the estimated value (concentration calculated using the concentration estimation formula), and the horizontal axis indicates the concentration actually measured by a known analysis method.
  • the estimated value of the concentration and the concentration actually measured in the analysis are in good agreement, and according to this embodiment, even if the shape, size, and liquid volume of the container are different, one concentration estimation formula It can be seen that the concentration of hydrogen peroxide can be measured accurately and accurately.
  • Example 2 In this embodiment, a concentration estimation formula is created for an acetone aqueous solution filled in a PET bottle.
  • FIG. 6 shows a result of comparing the estimated values calculated by the above-described concentration estimation formula with the concentrations actually measured by the analysis for the 12 samples described above.
  • the vertical axis represents the estimated value
  • the horizontal axis represents the concentration actually measured by the analysis.
  • the estimated value of each sample and the concentration actually measured by the analysis are almost on a straight line with a slope of 1, and a highly accurate concentration estimation formula is obtained also in this embodiment. I understand.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 光透過性の容器内に充填された液体における爆発物、爆発物原料および/または不正薬物の含有状況を検査する液体の検査方法であって、容器の外より、液体に対して近赤外光を照射する近赤外光照射工程と、液体を透過した近赤外光または液体により散乱された近赤外光を受光する近赤外光受光工程と、受光した近赤外光の吸収スペクトルを分析する吸収スペクトル分析工程とを有し、吸収スペクトルを解析する液体の検査方法およびこれに用いる液体検査装置を提供することによりペットボトルやガラス瓶等の光透過性容器内に充填された液体における爆発物や爆発物原料あるいは不正薬物の含有状況を、容器の外から迅速かつ確実に検知することができる。

Description

液体の検査方法および液体検査装置
 本発明は、光透過性の容器内に充填された液体の検査方法および液体検査装置に関し、詳しくは、光透過性の容器内に充填された液体における爆発物や爆発物原料あるいは不正薬物の含有状況を検査する検査方法および検査装置に関する。
 2005年にイギリスで起きた同時爆破テロ事件を初めとして、近年、公共施設や公共交通機関を狙った爆破テロ事件が多発している。最近では旅客を装ったテロリスト等が、爆発物や爆発物原料等を混入あるいは溶解させた液体を、例えばペットボトルやガラス瓶等光透過性の飲料用容器に充填して、航空機等の内に持ち込むケースが増えている。また、麻薬や覚醒剤等の不正薬物を溶解させた液体を光透過性の容器に充填して密輸を行うケースも増えている。
 前記の航空機内への爆発物や爆発物原料あるいは不正薬物の持ち込みに関しては、テロや密輸等の事件発生を防止する観点から、空港において旅客に対して手荷物検査が行われているが、多数の旅客を処理するためには迅速に検査を行う必要があり、短時間の検査で容器内に充填された液体が爆発物や爆発物原料あるいは不正薬物を含有しているか否かを判定することは容易ではない。
 このような状況の下に、容器を開栓することなく、容器の外から充填されている液体を検知する方法として、ガソリン等の可燃性液体か否かを速やかに判断する検知方法が既に提案されている(非特許文献1)。ここに示された検知方法では、正規に充填された飲料の主成分である水と、ガソリン等液体可燃物において誘電率に相違があること、具体的には、水の誘電率に比べてガソリンの誘電率が小さいことを利用して危険物であるか否かの判断をしている。
 しかしながら、最近、誘電率が水に近い危険物が用いられるケースが増えており、例えば、前記したイギリスで起きた事件の場合は、爆発物として、過酸化水素とアセトンとの混合溶液が用いられていた。このように、誘電率が水に近い液状の危険物の検知に対しては、前記非特許文献1に示された検知方法は、有効な方法とはいえない。
 これに対して、アメリカでは、ラマン分光を用いることにより、過酸化水素水を光透過性の容器の外から探知できる装置が市販されている。しかしながら、ラマン分光を用いた場合には、光透過性の容器や充填された液体の蛍光が強く出るために感度をほとんど採ることができず、実用配備がほとんどなされていないのが現状である。
東京ガス株式会社、東京ガス・エンジニアリング株式会社、"ボトル内液体物検査装置SLC-211Dの発売について"、[online]、平成16年11月1日、[平成20年9月22日検索]、インターネット、(URL:http://www.tokyo-gas.co.jp/Press/20041101.html)
 このように、短時間で種々の爆発物や爆発物原料あるいは不正薬物等を検知する適切な手法がないため、テロ対策を行う必要がある公共施設や公共交通機関の内でも特に重要な航空機等では、現在飲料水等の持ち込みが禁止されているのが実状である。
 そこで、本発明は、ペットボトルやガラス瓶等の光透過性容器内に充填された液体における爆発物や爆発物原料あるいは不正薬物の含有状況を、容器の外から迅速かつ確実に検知することができる検査方法および検査装置を提供することを課題とする。
 本発明者は、上記課題につき鋭意検討の結果、以下の各請求項に示す発明により、上記課題を解決できることを見出し、本発明を完成するに至った。
 請求項1に記載の発明は、
 光透過性の容器内に充填された液体における爆発物、爆発物原料および/または不正薬物の含有状況を検査する液体の検査方法であって、
 前記容器の外より、前記液体に対して近赤外光を照射する近赤外光照射工程と、
 前記液体を透過した前記近赤外光または前記液体により散乱された前記近赤外光を受光する近赤外光受光工程と、
 受光した前記近赤外光の吸収スペクトルを分析する吸収スペクトル分析工程とを有し、
 前記吸収スペクトルを解析して、前記容器内に充填された液体における爆発物と爆発物原料および/または不正薬物の含有状況を検査することを特徴とする液体の検査方法である。
 請求項1に記載の発明により、ペットボトルやガラス瓶等の光透過性容器に充填された液体における爆発物、爆発物原料および/または不正薬物(以下、総称して「危険物」ともいう)の含有状況を、容器を開栓することなく、容器の外から迅速かつ確実に検知することができる。以下、この点について説明する。
 本発明者は、前記危険物の性質について注意深く検討を加え、さらに飲料等の液体や容器の性質についても検討を加えた結果、容器を開栓することなく容器の外から近赤外光を照射して得られた吸収スペクトルを分析することにより、危険物の含有状況を迅速、確実に検査できることを見出した。
 即ち、水は光に対して大きな吸収を示すが、近赤外光では比較的吸収が少なくなる。このため、危険物が含有された液体に近赤外光を照射し、得られた吸収スペクトルを分析することにより、危険物の含有状況を検査することができる。また、近赤外光の場合、ラマン分光のように容器や液体の蛍光が強く出て感度がとれないような問題がなく、充分に分析可能な吸収スペクトルを得ることができる。
 また、過酸化水素水のように水と同じような特性を有する危険物であっても、得られた近赤外光の吸収スペクトルの解析方法を工夫することにより、危険物の含有状況を正確に検査することができる。
 また、例えば、容器内に充填された液体が、水、お茶、ジュース、コーラ、コーヒー等異なっていても、各々の真正な吸収スペクトルを準備することにより、危険物の含有状況を容易に検査することができる。さらに、容器についても同様であり、無色、着色を問わず、各々の真正な吸収スペクトルを準備することにより、液体における危険物の含有状況を容易に検査することができる。
 なお、本発明の吸収スペクトルの分析においては、650~1000nmの波長の中から適宜選択された波長を用いて分析することにより、適切な分析を行うことができる。具体的な波長の選択は、容器の種類や充填された液体の種類、想定される危険物等を考慮して適宜設定する。
 また、吸収スペクトルは透過光、散乱光のいずれからも得ることができるが、散乱光の場合、照射部と受光部を一体化でき、装置をよりコンパクト化することができるため好ましい。
 近赤外光の光源としては、白色ランプを好ましく用いることができる。また、近赤外光を容器の外から照射するに際しての照射方向としては、透光性を有する面であればいずれの面から照射してもよいが、ペットボトル等の底面は散乱に適した形状をしている場合が多く、底面方向から照射することが好ましい。
 なお、近赤外光の照射時は、外部光による影響を排除するために、容器全体を外部光より遮蔽することが好ましい。
 請求項2に記載の発明は、
 前記吸収スペクトルを分析することにより、前記爆発物、爆発物原料および/または不正薬物の種類を特定することを特徴とする請求項1に記載の液体の検査方法である。
 請求項2に記載の発明においては、危険物の種類を特定することにより、各々の危険物による危険性をいち早く察知して適正に対処することができる。
 請求項3に記載の発明は、
 前記吸収スペクトル分析工程により分析した吸収スペクトルにおける所定の波長に対する吸光度を、
 予め前記爆発物、爆発物原料および/または不正薬物の濃度が既知濃度の複数の液体を用いて分析された吸収スペクトルに基づいて作成された濃度推定式に代入して、
 前記爆発物、爆発物原料および/または不正薬物の濃度を測定することを特徴とする請求項1または請求項2に記載の液体の検査方法である。
 請求項3に記載の発明においては、さらに危険物の濃度を測定するため、危険性の程度をより具体的に判断することができる。また、分析された吸収スペクトルの所定の波長に対する吸光度を、予め既知濃度の液体を用いて分析された吸収スペクトルに基づいて作成された濃度推定式に代入するだけであるため、迅速かつ容易に濃度を測定することができる。
 請求項4に記載の発明は、
 前記濃度推定式が、前記爆発物、爆発物原料および/または不正薬物の濃度が既知濃度の複数の液体を用いて分析された各々の吸収スペクトルの、複数の波長における吸光度を用いて重回帰分析を行うことにより作成されていることを特徴とする請求項3に記載の液体の検査方法である。
 請求項4に記載の発明においては、複数の既知濃度の液体を用いて分析された各々の吸収スペクトルの、複数の波長における吸光度を用いて重回帰分析を行うことにより濃度推定式が作成されているため、より精度の高い濃度推定式を得ることができる。そして精度の高い濃度推定式を適用するため、スペクトルの微妙な変化にも対応することができ、より精度良く濃度を測定することができる。
 特に、水に近い性質を有する危険物が含有されている場合には、重回帰分析を行うことが、正確な検査を行う上で極めて重要であることが分かった。
 請求項5に記載の発明は、
 前記吸収スペクトルを2次微分して前記所定の波長に対する吸光度2次微分値を求め、前記吸光度として前記吸光度2次微分値を用いることを特徴とする請求項3または請求項4に記載の液体の検査方法である。
 請求項5に記載の発明においては、予め吸光スペクトルに2次微分を施して求められた吸光度2次微分値を用いるため、危険物を混入させたことによる吸収スペクトルの微妙な変化を鮮明にすることができる。このため、さらに精度の高い濃度推定式を得ることができる。
 請求項6に記載の発明は、
 前記爆発物原料が過酸化水素であることを特徴とする請求項1ないし請求項5のいずれか1項に記載の液体の検査方法である。
 過酸化水素水は水と物理的、化学的、光学的性質が似ており、従来の検査方法では短時間に検査することが難しいため、飲料用容器に充填して持ち込まれ易い。本発明は、このような過酸化水素水に対しても正確に検査することが可能であり、本発明の効果を顕著に発揮することができる。
 請求項7に記載の発明は、
 前記爆発物、爆発物原料および/または不正薬物の濃度が既知濃度の複数の液体として正規商品を用いて正規商品毎に対応する濃度推定式を予め作成し、検査対象に付された製品表示記号を読み取ることにより、前記検査対象に対応する正規商品を特定し、特定された正規商品に対応する前記濃度推定式を用いて前記検査対象の液体爆発物、爆発物原料および/または不正薬物の濃度を測定することを特徴とする請求項3ないし請求項6のいずれか1項に記載の液体の検査方法である。
 本請求項の発明によれば、より高い精度で容器内に充填された液体の爆発物、爆発物原料、不正薬物等の濃度を測定することができる。
 即ち、検査対象の容器や液体は種々雑多であり、容器にはペットボトル、ガラス瓶、色付ガラス瓶のような材質の他に、大きさや形状の異なるものがある。また液体には例えば水、緑茶、紅茶、コーヒー、コーラ、ジュース等種々の種類がある。そして、前記吸収スペクトルは、容器の材質や大きさ、形状、中に充填された液体の種類によって異なるため、種々の容器や液体に対して適用できるように一般化された濃度推定式を用いた濃度の測定では測定の精度に限界がある。これに対して請求項6の発明では、製品表示記号を読み取ることによって検査対象に対応する正規商品を特定し、特定された正規商品に固有の濃度推定式を用いるため、より高い精度で濃度を測定することができる。また、製品表示記号を読み取るという簡単な操作で迅速に容器と液体を特定することができるため、迅速に検査することができるという本発明の効果を損なうことがない。
 なお、請求項7における「製品表示記号」とは、例えばバーコード、QRコード等を指す。
 請求項8に記載の発明は、
 光透過性の容器内に充填された液体における爆発物、爆発物原料および/または不正薬物の含有状況を検査する液体検査装置であって、
 前記容器の外より、前記液体に対して近赤外光を照射する近赤外光照射手段と、
 前記液体を透過した前記近赤外光または前記液体により散乱された前記近赤外光を受光する近赤外光受光手段と、
 受光した前記近赤外光の吸収スペクトルを分析する吸収スペクトル分析手段とを有し、
 前記吸収スペクトルを解析して、前記容器内に充填された液体における爆発物、爆発物原料および/または不正薬物の含有状況を検査するように構成されていることを特徴とする液体検査装置である。
 請求項8に記載の発明は、方法の発明である請求項1の発明を物の発明として捉えたものであり、このような液体検査装置を用いて検査することにより、ペットボトルやガラス瓶等の光透過性の容器に充填された液体における危険物の含有状況を、容器を開栓することなく、容器の外から迅速かつ確実に検知することができる。
 請求項9に記載の発明は、
 前記近赤外光照射手段と前記近赤外光受光手段とが一体化して設けられていることを特徴とする請求項8に記載の液体検査装置である。
 請求項9に記載の発明においては、近赤外光照射手段と前記近赤外光受光手段とが一体化して設けられているため、照射部と受光部の位置がずれることがなく、正確な分析をすることができる。また、一体化することにより、コンパクトな液体検査装置を提供することができる。
 請求項10に記載の発明は、
 さらに、正規商品に付された製品表示記号を読み取る製品表示記号読み取り手段を有することを特徴とする請求項8または請求項9に記載の液体検査装置である。
 請求項10に記載の発明は、請求項7に記載の方法の発明を、装置の面から捉えたものであり、検査対象の爆発物、爆発物原料および/または不正薬物の含有状況をより高い精度で検査できる液体検査装置を提供することができる。
 本発明により、ペットボトルやガラス瓶等の光透過性の容器内に充填された液体における爆発物や爆発物原料あるいは不正薬物の含有状況を、容器の外から迅速かつ確実に検知することができる検査方法および検査装置を提供することができる。
本実施の形態に係る液体検査装置の主要部の模式図である。 本実施の形態に係る液体検査装置の具体例に示す図である。 本発明の実施例1の吸収スペクトルを2次微分した結果を示すグラフである。 本発明の実施例1の危険物の濃度の推定値と実測値の関係を示すグラフである。 本発明の実施例2の吸収スペクトルを2次微分した結果を示すグラフである。 本発明の実施例2の危険物の濃度の推定値と実測値の関係を示すグラフである。
 以下、本発明の実施の形態につき説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。
1.本実施の形態に係る液体検査装置の構成
 最初に、本実施の形態に係る液体検査装置の構成について、図1に基づいて説明する。図1は、本実施の形態に係る液体検査装置の主要部を模式的に示したものであり、大きく分けて試料載置部Aと計測部Bとからなっており、両者は光ファイバ13、14により接続されている。
 前記試料載置部Aにはセンサヘッド10が配置され、センサヘッド10は近赤外光を照射、受光する照射部11、受光部12を有している。また、センサヘッド10の上には、図示しない容器載置台が設けられており、液体2が収容された光透過性の容器1が検査対象の試料として載置される。なお、センサヘッド10の上面が容器載置台を兼ねていてもよい。
 一方、前記計測部Bには、近赤外光の光源21、レンズ22、23、プリズム24が配置され、さらに近赤外光の吸収スペクトルを分析するパーソナルコンピュータ(PC)27が配置されている。
2.本実施の形態に係る液体の検査方法
 上記のような構成の液体検査装置を用いて、以下の手順により、容器内に収容された液体における危険物の検査が行われる。
(1)試料の載置
 最初に、液体2が充填された光透過性の容器1を検査対象の試料として載置台に載置する。この際、外部光が検査結果に影響を及ぼすことがないように、前記容器1を黒色のカバー等を用いて遮光しておく。
(2)近赤外光の照射
 光源21を点灯することにより発せられた光はレンズ22により集光され、光ファイバ13を経由してセンサヘッド10に設けられた照射部11に導かれる。そして、照射部11より近赤外光15が容器1および液体2に照射される。照射された近赤外光15は、液体2により散乱されて散乱近赤外光16となる。
(3)散乱近赤外光の受光
 散乱近赤外光16は、センサヘッド10に設けられた受光部12において受光され、光ファイバ14、レンズ23を介してプリズム24に導かれ、分光されて吸収スペクトル25が得られる。なお、前記プリズムに替えて、より分光機能に優れた光学グレーティングを用いることが好ましい。
 なお、前記の近赤外光15には、散乱されずに液体2を透過するものもあり、この透過光を対象に分析を行うことも可能であり、この場合には受光部を照射部に対向して設けることにより、同様の処理を行うことができる。
(4)吸収スペクトルの分析
 取得された吸収スペクトル25の所定の複数の波長における吸光度26が、PC27中に予め記録された濃度推定式に代入されて、液体2における危険物の種類や濃度等の含有状況が特定される。検査結果は、PC27やその他の表示手段、あるいは音声手段により伝達される。
 上記の各処理は、PC内にプログラムとして記録されているため、例えば設置型の液体検査装置であれば容器をセンサヘッドに載置して近赤外光を照射するだけで検査することができる。
 なお、上記濃度推定式を正規商品毎に作成しておき、検査時に、検査対象の容器に付されている製品表示記号を読み取ることによって、検査対象に対応する正規商品を特定し、対応する濃度推定式を用いることにより、より高い精度で検査を行うことができる。
3.濃度推定式の作成
 以下に濃度推定式の基本的な作成手順を説明する。
(1)吸収スペクトルの取得
 近赤外光による吸収スペクトルは、危険物の種類と濃度および容器、液体の種類により異なる。また、これらの組み合わせや液量、温度によっても、得られる吸収スペクトルは異なる。そこで、想定される各危険物について各種の容器、液体と組み合わせて濃度の異なる複数のサンプルを用意し吸収スペクトルを取得する。さらには種々の液量や温度における吸収スペクトルを取得する。
(2)濃度推定式の作成
 次に、危険物の濃度と吸収スペクトルの所定の複数の波長における吸光度との関係を示す濃度推定式を重回帰分析により作成する。
 特に、過酸化水素水等のように水に近い性質を有する危険物が含有されている場合には、危険物の吸収ピークを水の吸収ピークと分離して捉えることが困難である。しかし、重回帰分析を用いた場合、スペクトルの形状の微妙な変化を捉えることが可能となり、精度良く測定することができる。
 具体的には、重回帰分析において一般的な下記の(1)式に示す濃度の推定値と各波長における吸光度の関係を表す重回帰式を立て、(1)式に、各種濃度の液体の濃度と吸収スペクトルの選定した複数の波長(λ)における吸光度を代入して方程式を複数作成し、最小二乗法を用いて(1)式の回帰定数β、偏回帰係数βを決定する。
   y=β+β+β+β+・・・+β   (1)
     x:選定した各波長λにおける吸光度(i=1~p)
     y:濃度
     β:回帰定数(液量、容器、溶液等により決まる)
     β:偏回帰係数(液量、容器、溶液等により決まる)
 次に、β、βが決定された重回帰式(1)に別途用意した危険物の濃度が既知の液体の吸光度測定結果を代入して重回帰式(1)を評価し、必要に応じて補正を行って、最終的に下記(2)式に示す濃度推定式を作成する。
   c=K+K+K+K+・・・+K   (2)
     c :濃度(推定値)
     E :所定の各波長におる吸光度
     K、K(i=1~p):定数
 なお、上記濃度推定式においてEとして、吸光度に替えて吸光度2次微分値を用いることにより、スペクトルの微妙な変化をより鮮明に捉えることができる。
4.本発明に係る液体検査装置の具体例
 本実施の形態に係る液体検査装置を具体的に示した例を、図2(a)、(b)に示す。
 図2(a)は手荷物検査に適した設置型の検査装置であって、複数(図では3個)のセンサヘッドが高さを変えて設けられている。このため、1台の装置で高さの異なる容器に対応することができる。また、上部の蓋を閉じることにより、外部光による影響を遮蔽することができる。
 また、図2(b)は可搬型の検査装置であって、センサヘッドを装置外部に設けることにより、装置のコンパクト化が図られている。さらに、センサヘッドが装置本体と切り離して設けられているため、自由な方向に近赤外光を照射することができ、例えば遺棄されたペットボトル等をある程度離れて検査することができる。
 以下、実施例に基づいて、本発明をより具体的に説明する。なお実施例にはFTIRによる設置型の液体検査装置を用いた。
 (実施例1)
 本実施例は、形状、サイズが異なる種々のペットボトルに充填された過酸化水素(H)水に含有される過酸化水素の濃度を測定した例である。なお、本実施例においては濃度推定式を用いて濃度を測定すると共に、同じサンプルについて既知の分析方法を用いて濃度を実測し、両者を対比することにより測定された濃度が正しいか否かを検証した。
イ.濃度推定式の作成
 はじめに濃度既知の過酸化水素水のサンプルを複数用意し、それぞれの過酸化水素水について近赤外光の吸収スペクトルを取得した。次に、得られた複数の吸収スペクトルを2次微分した。濃度0%、3%、6%、9%のサンプルの吸収スペクトルを2次微分した結果、およびその一部分の拡大図を図3に示す。次に、748nm、958nm、850nmの3つの波長における吸光度2次微分値を求めた。次に、過酸化水素水の濃度および求めた吸光度2次微分値を用いて、前記した濃度推定式の作成の手順に従って、下記の(3)式に示す濃度推定式を作成した。
 c=5.18+1901000E+2660E+360000E  
                             (3)
  c:濃度(推定値)
  E、E、E:それぞれ748nm、958nm、850nmにおける
          吸光度2次微分値
ロ.濃度の測定
 容器の形状やサイズ、液量に左右されることなく検査できることを確認するため、お茶のPET容器等、形状、大きさの異なるPET容器を選び、濃度0~10質量%の過酸化水素を、以下に記載する3通りの方法で調整し、前記PET容器に充填した検査用のサンプルを用意した。
(1)一定量のHに異なる量の水を加えてHの濃度を変化させた。
(2)一定量の水に異なる量のHを加えてHの濃度を変化させた。
(3)総量を一定にし、HとHOの混合比率を変えてHの濃度を変化させた。
 各サンプルについて濃度推定式を作成した時と同じ条件で吸収スペクトルを測定し、測定した吸収スペクトルを2次微分して748nm、958nm、850nmの波長における吸光度2次微分値を求めた。求めた吸光度2次微分値を上記(3)式に代入して濃度の推定値を算定した。
ハ.濃度の測定結果および検証結果
 各サンプルの濃度を既知の分析方法を用いて実測し、濃度推定式を用いて算定した推定値と分析の実測値を比較した。
 図4は危険物の濃度の推定値と分析の実測値の関係を示すグラフであり、検査に用いた容器と測定条件も示してある。図4の縦軸は推定値(濃度推定式を用いて算定した濃度)を示し、横軸は既知の分析方法により実測された濃度を示す。図4に示すように、濃度の推定値と分析で実測された濃度とが良く一致しており、本実施例によれば容器の形状やサイズ、液量が異なっていても一つの濃度推定式で過酸化水素の濃度を正しく、かつ精度良く測定できることが分かる。
 (実施例2)
 本実施例は、ペットボトルに充填されたアセトン水溶液について濃度推定式を作成した例である。
イ.濃度推定式の作成
 濃度の異なるアセトン水溶液をペットボトルに充填したサンプルを12個用意した。各サンプルについて実施例1と同様の方法により近赤外光の吸収スペクトルを測定して、得られた吸収スペクトルを2次微分した。また、各サンプルについて別途、既知の方法で分析し、濃度を実測した。濃度0%、3%、6%、9%のサンプルの吸収スペクトルを2次微分した結果を図5に示す。
 次に、波長724nm、892nm、850nmを選択し、図5よりそれぞれの波長における吸光度2次微分値を求め、実施例1と同様の方法のより下記の(4)式に示す濃度推定式を求めた。
 c=11.2+805000E-150000E-223000E  
                              (4)
  c:濃度の推定値
  E、E、E:それぞれ724nm、892nm、850nmにおける
          吸光度2次微分値
ロ.濃度推定式の評価
 前記した12個のサンプルについて上記した濃度推定式により算定された推定値と分析により実測された濃度を対比した結果を図6に示す。図6において、縦軸は推定値、横軸は分析により実測された濃度である。図6に示すように、各サンプルの推定値と分析により実測された濃度は、傾斜が1の直線上にほぼ乗っており、本実施例においても精度の高い濃度推定式が得られていることが分かる。
1      容器
2      液体
10     センサヘッド
11     照射部
12     受光部
13、14  光ファイバ
15     近赤外光
16     散乱近赤外光
21     光源
22、23  レンズ
24     プリズム
25     吸収スペクトル
26     吸光度
27     PC

Claims (10)

  1.  光透過性の容器内に充填された液体における爆発物、爆発物原料および/または不正薬物の含有状況を検査する液体の検査方法であって、
     前記容器の外より、前記液体に対して近赤外光を照射する近赤外光照射工程と、
     前記液体を透過した前記近赤外光または前記液体により散乱された前記近赤外光を受光する近赤外光受光工程と、
     受光した前記近赤外光の吸収スペクトルを分析する吸収スペクトル分析工程とを有し、
     前記吸収スペクトルを解析して、前記容器内に充填された液体における爆発物と爆発物原料および/または不正薬物の含有状況を検査することを特徴とする液体の検査方法。
  2.  前記吸収スペクトルを分析することにより、前記爆発物、爆発物原料および/または不正薬物の種類を特定することを特徴とする請求項1に記載の液体の検査方法。
  3.  前記吸収スペクトル分析工程により分析した吸収スペクトルにおける所定の波長に対する吸光度を、
     予め前記爆発物、爆発物原料および/または不正薬物の濃度が既知濃度の複数の液体を用いて分析された吸収スペクトルに基づいて作成された濃度推定式に代入して、
     前記爆発物、爆発物原料および/または不正薬物の濃度を測定することを特徴とする請求項1または請求項2に記載の液体の検査方法。
  4.  前記濃度推定式が、前記爆発物、爆発物原料および/または不正薬物の濃度が既知濃度の複数の液体を用いて分析された各々の吸収スペクトルの、複数の波長における吸光度を用いて重回帰分析を行うことにより作成されていることを特徴とする請求項3に記載の液体の検査方法。
  5.  前記吸収スペクトルを2次微分して前記所定の波長に対する吸光度2次微分値を求め、前記吸光度として前記吸光度2次微分値を用いることを特徴とする請求項3または請求項4に記載の液体の検査方法。
  6.  前記爆発物原料が過酸化水素であることを特徴とする請求項1ないし請求項5のいずれか1項に記載の液体の検査方法。
  7.  前記爆発物、爆発物原料および/または不正薬物の濃度が既知濃度の複数の液体として正規商品を用いて正規商品毎に対応する濃度推定式を予め作成し、検査対象に付された製品表示記号を読み取ることにより、前記検査対象に対応する正規商品を特定し、特定された正規商品に対応する前記濃度推定式を用いて前記検査対象の液体爆発物、爆発物原料および/または不正薬物の濃度を測定することを特徴とする請求項3ないし請求項6のいずれか1項に記載の液体の検査方法。
  8.  光透過性の容器内に充填された液体における爆発物、爆発物原料および/または不正薬物の含有状況を検査する液体検査装置であって、
     前記容器の外より、前記液体に対して近赤外光を照射する近赤外光照射手段と、
     前記液体を透過した前記近赤外光または前記液体により散乱された前記近赤外光を受光する近赤外光受光手段と、
     受光した前記近赤外光の吸収スペクトルを分析する吸収スペクトル分析手段とを有し、 前記吸収スペクトルを解析して、前記容器内に充填された液体における爆発物、爆発物原料および/または不正薬物の含有状況を検査するように構成されていることを特徴とする液体検査装置。
  9.  前記近赤外光照射手段と前記近赤外光受光手段とが一体化して設けられていることを特徴とする請求項8に記載の液体検査装置。
  10.  さらに、正規商品に付された製品表示記号を読み取る製品表示記号読み取り手段を有することを特徴とする請求項8または請求項9に記載の液体検査装置。
PCT/JP2009/067263 2008-10-06 2009-10-02 液体の検査方法および液体検査装置 WO2010041608A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09819143.0A EP2348303B1 (en) 2008-10-06 2009-10-02 Liquid inspecting method and liquid inspecting device
CN2009801389226A CN102171550A (zh) 2008-10-06 2009-10-02 液体的检查方法以及液体检查装置
US13/122,458 US9377398B2 (en) 2008-10-06 2009-10-02 Liquid inspecting method and liquid inspecting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008259789A JP5207462B2 (ja) 2008-10-06 2008-10-06 液体の検査方法および液体検査装置
JP2008-259789 2008-10-06

Publications (1)

Publication Number Publication Date
WO2010041608A1 true WO2010041608A1 (ja) 2010-04-15

Family

ID=42100559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067263 WO2010041608A1 (ja) 2008-10-06 2009-10-02 液体の検査方法および液体検査装置

Country Status (5)

Country Link
US (1) US9377398B2 (ja)
EP (1) EP2348303B1 (ja)
JP (1) JP5207462B2 (ja)
CN (1) CN102171550A (ja)
WO (1) WO2010041608A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111983179A (zh) * 2020-08-24 2020-11-24 大连理工大学 一种聚能装药水下爆炸实验装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614620B2 (ja) * 2010-04-05 2014-10-29 国立大学法人大阪大学 液体の検査方法および液体検査装置
JP5930825B2 (ja) 2011-05-06 2016-06-08 アークレイ株式会社 Egfrエクソン19多型検出試験用試薬キット及びその用途
US9354178B2 (en) 2013-03-05 2016-05-31 Smiths Detection Inc. Transmission raman sample analysis
WO2014138238A1 (en) * 2013-03-05 2014-09-12 Smiths Detection Inc. Transmission raman sample analysis
WO2015070873A1 (en) * 2013-11-13 2015-05-21 Drugster Aps Detection of substances in liquids, in particular psychoactive substances
CN104749157B (zh) 2013-12-27 2019-02-19 同方威视技术股份有限公司 对液体物品进行安全检查的方法和设备
JP2016080403A (ja) * 2014-10-10 2016-05-16 国立大学法人大阪大学 液体検査装置および液体検査方法
HK1211782A2 (en) * 2015-04-02 2016-05-27 Groking Lab Ltd Beverage container
CN105891150B (zh) * 2016-05-10 2019-01-29 广东星创众谱仪器有限公司 一种用于近红外光谱分析仪的液体检测装置及其检测方法
WO2018044972A1 (en) * 2016-08-30 2018-03-08 Sensii, Inc. A personal liquid analysis system
CN106855503B (zh) * 2016-12-30 2019-11-15 广东美的厨房电器制造有限公司 液体成分检测容器、服务器和用于服务器的方法
MX2020002063A (es) 2017-08-24 2020-10-16 Steinfurth Mess Systeme Gmbh Procedimiento para inspeccionar envases.
CN108713137B (zh) * 2018-04-26 2020-04-03 深圳达闼科技控股有限公司 一种物质检测方法、检测终端及计算机可读存储介质
CN109030409A (zh) * 2018-08-30 2018-12-18 无锡迅杰光远科技有限公司 一种智能奶瓶及奶粉溶液检测方法
CN109752365A (zh) * 2019-03-22 2019-05-14 公安部第一研究所 一种多技术融合的危爆品探测仪
DE102019215692B4 (de) 2019-10-11 2021-06-17 Gunther Krieg Vorrichtung und Verfahren zur Identifikation von Stoffen in der Fluidzusammensetzung
JP7423343B2 (ja) * 2020-02-21 2024-01-29 株式会社熊平製作所 液体検査装置および液体検査方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145881A (ja) * 1994-11-25 1996-06-07 Kdk Corp 光吸収による過酸化水素の定量方法
JPH1054761A (ja) * 1996-05-09 1998-02-24 Perstorp Analytical Inc 分光分析方法および分光分析装置
JP2000131228A (ja) * 1998-10-23 2000-05-12 Kurabo Ind Ltd 紫外線と近赤外線を使用した分光測定方法
JP2004163369A (ja) * 2002-11-15 2004-06-10 Kubota Corp 品質評価装置校正用の被計測体及びそれを用いた品質評価装置校正方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3023211A1 (de) * 1979-06-28 1981-01-22 Ti Fords Ltd Verfahren und vorrichtung zur ermittlung einer waesserigen fluessigkeit in flaschen und behaeltern
US5349188A (en) 1990-04-09 1994-09-20 Ashland Oil, Inc. Near infrared analysis of piano constituents and octane number of hydrocarbons
EP0714024B1 (en) 1994-11-25 2002-01-30 Kyoto Dai-ichi Kagaku Co., Ltd. Method of and apparatus for determining hydrogen peroxide
GB2297377B (en) * 1995-01-25 1999-03-10 Secr Defence Screening device
JPH1048129A (ja) 1996-08-06 1998-02-20 Kubota Corp 品質評価装置
JPH1151928A (ja) 1997-08-06 1999-02-26 Kubota Corp 青果物の品質計測装置
US6339222B1 (en) 1998-11-12 2002-01-15 Kvaerner Canada Inc. Determination of ionic species concentration by near infrared spectroscopy
US6507401B1 (en) * 1999-12-02 2003-01-14 Aps Technology, Inc. Apparatus and method for analyzing fluids
WO2001053803A1 (fr) * 2000-01-17 2001-07-26 Norihiro Kiuchi Procede de detection de concentrations dans un liquide et dispositif a cet effet
JP3824904B2 (ja) 2001-10-19 2006-09-20 株式会社堀場製作所 アルカリ成分と過酸化水素を含む溶液の濃度測定方法
US6771369B2 (en) * 2002-03-12 2004-08-03 Analytical Spectral Devices, Inc. System and method for pharmacy validation and inspection
SE0201970L (sv) * 2002-06-26 2003-12-27 Foss Tecator Ab Metod och anordning för spektrofotometrisk analys
JP2006266948A (ja) * 2005-03-24 2006-10-05 Hiroshi Maeda 容器入り可燃性液体の検査方法と装置
CA2690831C (en) * 2006-09-18 2012-11-27 Optosecurity Inc. Method and apparatus for assessing characteristics of liquids
FR2924807B1 (fr) 2007-12-05 2010-09-17 Alessandro Manneschi Dispositif d'analyse de la composition du contenu d'un recipient ameliore.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145881A (ja) * 1994-11-25 1996-06-07 Kdk Corp 光吸収による過酸化水素の定量方法
JPH1054761A (ja) * 1996-05-09 1998-02-24 Perstorp Analytical Inc 分光分析方法および分光分析装置
JP2000131228A (ja) * 1998-10-23 2000-05-12 Kurabo Ind Ltd 紫外線と近赤外線を使用した分光測定方法
JP2004163369A (ja) * 2002-11-15 2004-06-10 Kubota Corp 品質評価装置校正用の被計測体及びそれを用いた品質評価装置校正方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C. ELIASSON ET AL.: "Noninvasive Detection of Concealed Liquid Explosives Using Raman Spectroscopy", ANAL. CHEM., vol. 79, no. 21, 2007, pages 8185 - 8189, XP002469738 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111983179A (zh) * 2020-08-24 2020-11-24 大连理工大学 一种聚能装药水下爆炸实验装置

Also Published As

Publication number Publication date
CN102171550A (zh) 2011-08-31
US9377398B2 (en) 2016-06-28
EP2348303A1 (en) 2011-07-27
EP2348303A4 (en) 2014-04-16
JP2010091328A (ja) 2010-04-22
US20110186738A1 (en) 2011-08-04
EP2348303B1 (en) 2020-05-27
JP5207462B2 (ja) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5207462B2 (ja) 液体の検査方法および液体検査装置
US7840360B1 (en) Optical system and method for inspection and characterization of liquids in vessels
CA1305543C (en) Methods of discriminating between contaminated and uncontaminated containers
US4858768A (en) Method for discrimination between contaminated and uncontaminated containers
JP5614620B2 (ja) 液体の検査方法および液体検査装置
EP2889608B1 (en) Inspection methods and apparatuses for inspection of liquids
Kiefer et al. Analysis of single malt Scotch whisky using Raman spectroscopy
Eliasson et al. Non-invasive detection of cocaine dissolved in beverages using displaced Raman spectroscopy
Ramírez-Cedeño et al. Remote detection of hazardous liquids concealed in glass and plastic containers
WO2016056590A1 (ja) 液体検査装置および液体検査方法
KR20110006887A (ko) 참기름 진위 판별 장치
WO2015055743A1 (en) System and method for determining the level of carbon dioxide dissolved in a liquid in a sealed container
JP2006308420A (ja) 水質測定器
WO2013079806A1 (en) Method and device for determining gas concentration
CN207488183U (zh) 近红外光谱检测仪及透射平台
US9976950B2 (en) Optical detector module, measurement system and method of detecting presence of a substance in a test material
JP2021185876A (ja) 海苔の品質評価方法、および海苔の品質評価装置
Itozaki et al. Liquid explosive detection from outside of the bottle by NIR
US20230042518A1 (en) Portable Cannabidiol Testing Device
Itozaki et al. Liquid explosive detection from outside of the bottle by IR
JP7423343B2 (ja) 液体検査装置および液体検査方法
Magwaza et al. Non-destructive quality assessment of ‘Valencia’orange using FT-NIR spectroscopy
JP2002181702A (ja) 検体検査装置
Giussani et al. Measurement Strategies for the Classification of Edible Oils Using Low-Cost Miniaturised Portable NIR Instruments. Foods 2021, 10, 2856
Buckley et al. Non‐Invasive Detection of Concealed Liquid and Powder Explosives Using Spatially Offset Raman spectroscopy

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980138922.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09819143

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13122458

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009819143

Country of ref document: EP