WO2010041479A1 - Hydraulic-mechanical transmission - Google Patents

Hydraulic-mechanical transmission Download PDF

Info

Publication number
WO2010041479A1
WO2010041479A1 PCT/JP2009/052142 JP2009052142W WO2010041479A1 WO 2010041479 A1 WO2010041479 A1 WO 2010041479A1 JP 2009052142 W JP2009052142 W JP 2009052142W WO 2010041479 A1 WO2010041479 A1 WO 2010041479A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
command value
switching
ratio
mode
Prior art date
Application number
PCT/JP2009/052142
Other languages
French (fr)
Japanese (ja)
Inventor
康平 小倉
晃史 黒田
幸雄 久保田
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2010041479A1 publication Critical patent/WO2010041479A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/02Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type
    • F16H47/04Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type the mechanical gearing being of the type with members having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/088Power split variators with summing differentials, with the input of the CVT connected or connectable to the input shaft
    • F16H2037/0886Power split variators with summing differentials, with the input of the CVT connected or connectable to the input shaft with switching means, e.g. to change ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0034Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising two forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2005Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with one sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/202Transmissions using gears with orbital motion characterised by the type of Ravigneaux set
    • F16H2200/2023Transmissions using gears with orbital motion characterised by the type of Ravigneaux set using a Ravigneaux set with 4 connections

Definitions

  • the present invention relates to a technique of a hydraulic-mechanical transmission, and more particularly to a technique for controlling the operation of the hydraulic-mechanical transmission.
  • the operation timing of the clutch for switching between the low speed mode and the high speed mode is the actual transmission ratio of the hydraulic-mechanical transmission (hereinafter simply referred to as “actual transmission ratio”). Some of them are determined based on the slope of the actual gear ratio.
  • the switching gear ratio is a target value of the gear ratio at which the clutch is switched
  • the clutch boosting time is the time required from when the clutch receives the control signal until it actually operates.
  • the clutch switching timing is affected by the gradient of the actual gear ratio, so that the clutch can be switched normally when a large load is applied. It was disadvantageous in that it could not be done.
  • a hydraulic continuously variable transmission mechanism in which at least one of a hydraulic pump or a hydraulic motor is a variable displacement type using a movable swash plate;
  • a planetary gear mechanism that combines and shifts the power from the drive source and the power from the hydraulic motor;
  • a swash plate control actuator for adjusting the inclination angle of the movable swash plate by hydraulic pressure;
  • a low speed side clutch that enables connection and disconnection of power between the low speed side output of the planetary gear mechanism and the HMT output shaft;
  • a high-speed clutch that enables connection and disconnection of power between the high-speed output of the planetary gear mechanism and the HMT output shaft;
  • a low-speed solenoid valve that operates the low-speed side clutch hydraulically;
  • a high-speed solenoid valve for hydraulically actuating the high-speed side clutch;
  • Gear ratio setting means for setting a gear ratio command value which is a target value of the gear ratio;
  • Gear ratio detecting means for detecting an actual gear ratio;
  • a control device
  • the controller is In the switching control mode, it is necessary from the time when the post-FB inclination angle command value reaches the switching inclination angle until the movable swash plate actually operates after the control signal is received by the swash plate control actuator. Only when the actual gear ratio does not reach the gear ratio command value before the operation dead time elapses, the connection between the low speed side clutch and the high speed side clutch is switched.
  • the controller is When switching the connection of the low speed side clutch and the high speed side clutch in the switching control mode, the low speed side clutch and the high speed side clutch are simultaneously operated for a predetermined time.
  • the controller is In the switching control mode for switching from low speed to high speed, when the limited speed ratio command value is smaller than the switching speed ratio corresponding to the speed ratio command value and the switching inclination angle, After the limit speed ratio command value is increased to the smaller one of the speed ratio command value or the switching speed ratio, the connection between the low speed side clutch and the high speed side clutch is switched.
  • the controller is In the switching control mode for switching from high speed to low speed, when the limiting speed ratio command value is larger than the switching speed ratio corresponding to the speed ratio command value and the switching inclination angle, After the limiting speed ratio command value is reduced to the larger one of the speed ratio command value or the switching speed ratio, the connection between the low speed side clutch and the high speed side clutch is switched.
  • the present invention has an effect that the clutch switching timing can be surely performed based on the inclination angle of the movable swash plate without being affected by the inclination of the actual gear ratio.
  • side sectional drawing. The figure which shows the map which a control apparatus comprises.
  • the figure which shows the mode of the change of each parameter in acceleration 2nd transition mode similarly.
  • the figure which shows the mode of a time-dependent change of each parameter in a 2nd control aspect The flowchart which shows the process in the acceleration 2nd transition mode of a 2nd control aspect.
  • the figure which shows the mode of the change of each parameter in acceleration 2nd transition mode similarly.
  • the figure which shows the mode of a time-dependent change of each parameter in a 3rd control aspect The flowchart which shows the process in the acceleration 2nd transition mode of a 3rd control aspect.
  • the figure which shows the mode of the change of each parameter in acceleration 2nd transition mode similarly.
  • the flowchart which shows a 4th control aspect The figure which shows the mode of a time-dependent change of each parameter in a 4th control aspect.
  • the flowchart which shows the process in the high speed mode of a 4th control aspect The flowchart which similarly shows the process in the deceleration 1st transition mode.
  • HMT hydraulic-mechanical transmission
  • the work vehicle 1 performs various agricultural work and civil engineering work using a tilling device such as a rotary and a work machine such as a loader.
  • the work vehicle 1 mainly includes a body frame 2, an engine 3, an HMT 4, front wheels 5 and 5, rear wheels 6 and 6, a cabin 7, and the like.
  • the machine body frame 2 is a main structure of the work vehicle 1.
  • the machine body frame 2 is composed of a plurality of plate materials or the like with the longitudinal direction as the front-rear direction.
  • the engine 3 is a drive source that generates power for driving the work vehicle 1.
  • the engine 3 is provided in the front part of the body frame 2.
  • the HMT 4 changes the power generated by the engine 3.
  • the HMT 4 is provided at the rear part of the body frame 2.
  • the front wheels 5 and 5 are respectively provided on the left and right of the front part of the body frame 2.
  • the rear wheels 6 and 6 are provided on the left and right of the rear part (HMT 4) of the body frame 2, respectively.
  • the front wheels 5 and 5 and the rear wheels 6 and 6 are rotationally driven by the power changed by the HMT 4.
  • Cabin 7 covers the space where the operator gets on.
  • the cabin 7 is provided from the front and rear substantially central part to the rear part of the body frame 2.
  • a handle 7a, a seat 7b, a transmission lever 7c, and the like are provided.
  • the handle 7a is used to steer the work vehicle 1.
  • the handle 7 a is provided at the front part in the cabin 7.
  • the seat 7b is for an operator to sit on.
  • the seat 7b is provided behind the handle 7a.
  • the speed change lever 7c sets the traveling speed of the work vehicle 1 by setting the speed change ratio of the HMT 4.
  • the transmission lever 7c is provided on the right side of the seat 7b.
  • the transmission lever 7c is an embodiment of the transmission ratio setting means according to the present invention.
  • the HMT 4 mainly includes a hydraulic continuously variable transmission mechanism (hereinafter simply referred to as “HST”) 10, a planetary gear mechanism 20, an auxiliary transmission mechanism 40, a differential mechanism 50, a control mechanism 60, and the like.
  • HHT hydraulic continuously variable transmission mechanism
  • the HST 10 mainly includes a hydraulic pump 11, a hydraulic motor 12, and the like.
  • the hydraulic pump 11 is a variable displacement hydraulic pump configured to change its capacity.
  • the hydraulic pump 11 is driven by a drive shaft 13 that is rotationally driven by the power generated by the engine 3 and pumps hydraulic oil.
  • the hydraulic pump 11 includes a movable swash plate 11a for changing its capacity. By changing the inclination angle of the movable swash plate 11a, the flow rate of the hydraulic oil pumped from the hydraulic pump 11 can be changed.
  • the hydraulic motor 12 is a constant capacity hydraulic motor configured so that its capacity cannot be changed.
  • the hydraulic motor 12 is driven in response to the hydraulic oil fed by the hydraulic pump 11.
  • the hydraulic motor 12 includes an output shaft 12a, and the driving force of the hydraulic motor 12 is output via the output shaft 12a.
  • the power generated by the engine 3 is output from the drive shaft 13.
  • the hydraulic pump 11 is driven by the drive shaft 13 and pumps hydraulic oil in an amount corresponding to the inclination angle of the movable swash plate 11 a to the hydraulic motor 12.
  • the hydraulic motor 12 is driven by hydraulic fluid fed by the hydraulic pump 11 and outputs power from the output shaft 12a.
  • the power of the drive shaft 13 can be shifted and transmitted to the output shaft 12a, and the gear ratio of the power by the HST 10 can be changed by changing the inclination angle of the movable swash plate 11a.
  • the hydraulic pump 11 is a variable displacement type, but the present invention is not limited to this. That is, it is possible to adopt a configuration in which the hydraulic motor 12 is a variable displacement type, or a configuration in which both the hydraulic pump 11 and the hydraulic motor 12 are variable displacement types.
  • the planetary gear mechanism 20 is disposed behind the HST 10.
  • the planetary gear mechanism 20 mainly includes a planetary case 21, a first transmission shaft 22, a first transmission gear 23, a second transmission shaft 24, a sun gear 25, a second transmission gear 26, an internal gear 27, a third transmission gear 28, a carrier. 29, planetary gears 30 and 30, a mode switching clutch 31, a third transmission shaft 32, a fourth transmission gear 33, a fifth transmission gear 34, a reverse gear 35, a sixth transmission gear 36, a forward / reverse switching clutch 37, and the like. It has.
  • the planetary case 21 is a box-shaped member that includes various shafts, gears, and the like that constitute the planetary gear mechanism 20.
  • the planetary case 21 is disposed behind the HST 10.
  • the first transmission shaft 22 is a shaft-like member arranged on the same axis as the drive shaft 13.
  • the first transmission shaft 22 is provided behind the drive shaft 13 so as not to rotate relative to the drive shaft 13.
  • the rear end portion of the first transmission shaft 22 is rotatably supported by the planetary case 21.
  • the first transmission gear 23 is provided at the front end portion of the first transmission shaft 22 and the rear end portion of the drive shaft 13 so as not to rotate relative to the first transmission shaft 22 and the drive shaft 13.
  • the front end portion of the first transmission shaft 22 is supported by the planetary case 21 via the first transmission gear 23.
  • the second transmission shaft 24 is a shaft-like member arranged in parallel with the first transmission shaft 22.
  • the front end portion of the second transmission shaft 24 is rotatably supported by the planetary case 21.
  • the sun gear 25 is provided at the front end portion of the second transmission shaft 24 so as to be rotatable relative to the second transmission shaft 24.
  • the sun gear 25 includes a gear portion 25a having teeth formed on the outer periphery thereof, and a shaft portion 25b extending forward of the gear portion (see FIG. 3).
  • the second transmission gear 26 is provided on the shaft 25b of the sun gear 25 so as not to rotate relative to the sun gear 25.
  • the second transmission gear 26 meshes with the first transmission gear 23.
  • the internal gear 27 is provided on the shaft portion 25b of the sun gear 25 and behind the second transmission gear 26 so as to be rotatable relative to the sun gear 25.
  • the front end portion of the internal gear 27 is provided with a gear portion 27a having teeth formed on the outer periphery thereof.
  • the rear end portion of the internal gear 27 is provided with a gear portion 27b having teeth formed on the inner periphery thereof (see FIG. 3).
  • the third transmission gear 28 is provided on the second transmission shaft 24 and in front of the sun gear 25 so as to be rotatable relative to the second transmission shaft 24.
  • the front end portion of the third transmission gear 28 is provided with a gear portion 28a having teeth formed on the outer periphery thereof (see FIG. 3).
  • the third transmission gear 28 is an embodiment of the high speed side output of the planetary gear mechanism according to the present invention.
  • the carrier 29 is provided on the second transmission shaft 24 and in front of the third transmission gear 28 so as to be rotatable relative to the second transmission shaft 24.
  • the rear end portion of the carrier 29 is provided with a gear portion 29a having teeth formed on the outer periphery thereof (see FIG. 3).
  • the carrier 29 is one embodiment of the low speed side output of the planetary gear mechanism according to the present invention.
  • the planetary gears 30... are rotatably supported on the front end portion of the carrier 29 via the planetary shafts 30 a, 30 a.
  • a plurality of planetary gears 30, 30... are provided on a concentric circle with the second transmission shaft 24 as the center.
  • the front and rear end portions of the planetary gears 30, 30... are respectively provided with a gear portion 30 b and a gear portion 30 c having teeth formed on the outer periphery thereof (see FIG. 3).
  • the gear portion 30 b of the planetary gear 30 meshes with the gear portion 27 b of the internal gear 27 and the gear portion 25 a of the sun gear 25.
  • the gear portion 30 c of the planetary gear 30 meshes with the gear portion 28 a of the third transmission gear 28.
  • the mode switching clutch 31 is provided inside the carrier 29, and is in a state where either the third transmission gear 28 or the carrier 29 and the second transmission shaft 24 are connected so as not to be relatively rotatable, and the third transmission gear. 28, the carrier 29, and the second transmission shaft 24 are switched to a state in which the connection is released so as to be relatively rotatable.
  • the mode switching clutch 31 mainly includes a low speed side clutch 31a and a high speed side clutch 31b.
  • the low speed side clutch 31a enables connection / disconnection of power between the carrier 29 that is the low speed side output of the planetary gear mechanism 20 and the second transmission shaft 24 that is the output shaft of the HMT4.
  • the low speed side clutch 31 a is provided at the rear portion of the mode switching clutch 31.
  • the high speed side clutch 31b enables connection / disconnection of power between the third transmission gear 28 that is the high speed side output of the planetary gear mechanism 20 and the second transmission shaft 24 that is the output shaft of the HMT 4.
  • the high speed side clutch 31 b is provided at the front portion of the mode switching clutch 31.
  • the third transmission shaft 32 is a shaft-like member arranged on the same axis as the output shaft 12a of the hydraulic motor 12.
  • the third transmission shaft 32 is provided behind the output shaft 12a so as not to rotate relative to the output shaft 12a.
  • the third transmission shaft 32 is rotatably supported by the planetary case 21.
  • the fourth transmission gear 33 is provided at the rear end of the third transmission shaft 32 so as not to rotate relative to the third transmission shaft 32.
  • the fourth transmission gear 33 meshes with the gear portion 27 a of the internal gear 27.
  • the fifth transmission gear 34 is provided at the rear end portion of the first transmission shaft 22 so as to be rotatable relative to the first transmission shaft 22.
  • the front end portion and the rear end portion of the fifth transmission gear 34 are respectively provided with a gear portion 34a and a gear portion 34b having teeth formed on the outer periphery thereof (see FIG. 3).
  • the gear portion 34 a of the fifth transmission gear 34 meshes with the gear portion 29 a of the carrier 29.
  • the reverse gear 35 is provided on the second transmission shaft 24 and behind the carrier 29 so as to be rotatable relative to the second transmission shaft 24.
  • the rear end portion of the reverse gear 35 is provided with a gear portion 35a having teeth formed on the outer periphery thereof.
  • the sixth transmission gear 36 is disposed so as to mesh with the gear portion 34b of the fifth transmission gear 34 and the gear portion 35a of the reverse gear 35 (see FIG. 2).
  • the sixth transmission gear 36 is supported so as to be rotatable about a support shaft 36a.
  • the sixth transmission gear 36 and the support shaft 36a in FIG. 3 are not shown.
  • the forward / reverse switching clutch 37 is provided in front of the reverse gear 35 and is disconnected so that the reverse gear 35 and the second transmission shaft 24 are connected so as not to rotate relative to each other. The state is switched.
  • the operation mode of the planetary gear mechanism 20 configured as described above will be described.
  • the power generated by the engine 3 is transmitted to the first transmission gear 23 via the drive shaft 13.
  • the power transmitted to the first transmission gear 23 is transmitted to the planetary gears 30, 30... Via the second transmission gear 26 and the sun gear 25.
  • the power generated by the engine 3 and shifted in the HST 10 is transmitted to the third transmission shaft 32 via the output shaft 12 a of the hydraulic motor 12.
  • the power transmitted to the third transmission shaft 32 is transmitted to the planetary gears 30, 30... Via the fourth transmission gear 33 and the internal gear 27.
  • the planetary gears 30, 30 Rotate around the planetary shafts 30 a, 30 a, and the second transmission shaft 24 by the power from the two paths transmitted to the planetary gears 30, 30. Revolves as a center. Power is transmitted to the third transmission gear 28 by the rotation of the planetary gears 30. Power is transmitted to the carrier 29 by the revolution of the planetary gears 30. When the carrier 29 and the second transmission shaft 24 are connected by the low speed side clutch 31 a, the power of the carrier 29 is transmitted to the second transmission shaft 24. When the third transmission gear 28 and the second transmission shaft 24 are connected by the high-speed clutch 31b, the power of the third transmission gear 28 is transmitted to the second transmission shaft 24.
  • the power of the carrier 29 is transmitted to the reverse gear 35 through the fifth transmission gear 34 and the sixth transmission gear 36.
  • the mode switching clutch 31 releases the connection between the third transmission gear 28 and the carrier 29 and the second transmission shaft 24
  • the reverse rotation gear 35 and the second transmission shaft 24 are connected by the forward / reverse switching clutch 37.
  • the power of the reverse gear 35 is transmitted to the second transmission shaft 24.
  • the second transmission shaft 24 rotates in the direction opposite to the rotation direction when the mode switching clutch 31 connects the third transmission gear 28 or the carrier 29 and the second transmission shaft 24.
  • the power generated by the engine 3 and the power generated by the engine 3 and shifted in the HST 10 are combined in the planetary gear mechanism 20 and the combined power (hereinafter simply referred to as “combined power”). Is output from the second transmission shaft 24.
  • the subtransmission mechanism 40 shifts and outputs the combined power transmitted from the planetary gear mechanism 20.
  • the transmission gear ratio can be switched to a low speed or a high speed, or to a neutral state in which the transmission of power is cut off.
  • the power shifted in the auxiliary transmission mechanism 40 is transmitted to the differential mechanism 50 via the auxiliary transmission output shaft 42.
  • the differential mechanism 50 distributes and outputs the power transmitted from the subtransmission mechanism 40 to the left and right.
  • the distributed power is transmitted to the left and right rear wheels 6 and 6, respectively.
  • the control mechanism 60 is for controlling the HMT 4.
  • the control mechanism 60 mainly includes a swash plate control actuator 101, a low speed solenoid valve 102, a high speed solenoid valve 103, a reverse rotation solenoid valve 104, a rotation speed detecting means 105, a speed change lever 7c, a control device 100, and the like.
  • the swash plate control actuator 101 changes the gear ratio of the HST 10 by changing the inclination angle of the movable swash plate 11a of the hydraulic pump 11.
  • the swash plate control actuator 101 of this embodiment is configured using hydraulic equipment (for example, a hydraulic cylinder or the like).
  • the low speed solenoid valve 102 supplies hydraulic oil to the low speed side clutch 31a, and operates the low speed side clutch 31a so that the carrier 29 and the second transmission shaft 24 cannot be rotated relative to each other.
  • the high-speed solenoid valve 103 supplies hydraulic oil to the high-speed side clutch 31b and operates the high-speed side clutch 31b so that the third transmission gear 28 and the second transmission shaft 24 cannot be rotated relative to each other. .
  • the reverse solenoid valve 104 supplies hydraulic oil to the forward / reverse switching clutch 37, and operates the forward / reverse switching clutch 37 so that the reverse gear 35 and the second transmission shaft 24 cannot be rotated relative to each other. .
  • the rotation speed detection means 105 detects the rotation speed of the auxiliary transmission output shaft 42.
  • the rotation speed detection means 105 is an embodiment of the transmission ratio detection means according to the present invention.
  • the transmission lever 7c sets the traveling speed of the work vehicle 1 by changing the transmission ratio of the HMT 4 as described above.
  • the control device 100 controls the operations of the swash plate control actuator 101, the low speed solenoid valve 102, the high speed solenoid valve 103, and the reverse rotation solenoid valve 104.
  • the control device 100 is connected to the swash plate control actuator 101, can control the operation of the swash plate control actuator 101, and in turn can control the tilt angle of the movable swash plate 11a of the hydraulic pump 11. . Since the swash plate control actuator 101 is actuated by hydraulic pressure, the control signal from the control device 100 is transmitted to the swash plate control actuator 101 until the movable swash plate 11a is actually actuated by the swash plate control actuator 101. There is a delay of a certain time. Hereinafter, the delay time is defined as “operation dead time T H ”.
  • the control device 100 is connected to the low-speed solenoid valve 102, can control the operation of the low-speed solenoid valve 102, and thus can control the operation of the low-speed side clutch 31a.
  • the control device 100 is connected to the high-speed solenoid valve 103, can control the operation of the high-speed solenoid valve 103, and thus can control the operation of the high-speed side clutch 31b.
  • the low speed side clutch 31a and the high speed side clutch 31b are operated by hydraulic pressure. For this reason, after the control signal S from the control device 100 is transmitted to the low speed solenoid valve 102 and the high speed solenoid valve 103, the pressure P applied to the low speed side clutch 31a and the high speed side clutch 31b reaches the set pressure Ps, and actually There is a delay of a certain time before the operation.
  • the delay time until Ps decreases and the operation is released is defined as “clutch pressure reduction time T d ”.
  • the control device 100 is connected to the reverse solenoid valve 104 and can control the operation of the reverse solenoid valve 104.
  • the control device 100 is connected to the speed change lever 7c (more specifically, an operation amount detection means 7d for detecting the operation amount of the speed change lever 7c), and receives a detection signal of the operation amount of the speed change lever 7c. It is possible to detect the setting value of the transmission ratio of the HMT 4 according to 7c (hereinafter simply referred to as “transmission ratio command value R o ”).
  • transmission ratio command value R o the setting value of the transmission ratio of the HMT 4 according to 7c
  • the speed of the work vehicle 1 is set by the speed change lever 7c.
  • the present invention is not limited to this, and the speed can be set by a speed change pedal or the like.
  • the control device 100 is connected to the rotation speed detection means 105 and can receive a detection signal of the rotation speed of the auxiliary transmission output shaft 42 by the rotation speed detection means 105. As a result, the speed ratio of the HMT 4 and the work vehicle 1 It is possible to calculate the gear ratio and speed.
  • the gear ratio of the HMT 4 and the speed of the work vehicle 1 are detected from the rotation speed of the auxiliary transmission output shaft 42.
  • the present invention is not limited to this, and the front wheels 5 and 5 It is also possible to adopt a configuration in which the speed of the work vehicle 1 is detected from the number of rotations of the rear wheels 6 and 6 and the number of rotations of other shafts and gears.
  • control device 100 may be configured such that a CPU, a ROM, a RAM, an HDD, and the like are connected by a bus, or may be configured by a one-chip LSI or the like.
  • the control device 100 stores various programs and data for controlling the operation of the swash plate control actuator 101 and the like.
  • the control device 100 controls the operations of the swash plate control actuator 101, the low speed solenoid valve 102, the high speed solenoid valve 103, and the like based on the operation amount of the speed change lever 7c.
  • the map 110 shows a calculation formula for calculating the inclination angle ⁇ of the movable swash plate 11 a of the hydraulic pump 11 corresponding to the gear ratio R of the work vehicle 1.
  • the gear ratio R in the present embodiment is a ratio between the power shifted in the HMT 4 (specifically, the rotational speed of the auxiliary transmission output shaft 42) and the power of the engine 3 (engine rotational speed).
  • the relationship shown in FIG. 4 is a theoretical relationship that assumes a case where the work vehicle 1 is not loaded. Further, it is assumed that the rotational speed of the engine 3 is a constant value, and the auxiliary transmission clutch 41 is set to one of low speed and high speed.
  • the vertical axis of the map 110 indicates the inclination angle ⁇ of the movable swash plate 11 a of the hydraulic pump 11.
  • the movable swash plate 11a can change the inclination angle ⁇ from ⁇ max to ⁇ max .
  • the hydraulic motor 12 is rotated in the forward direction (forward rotation) when the inclination angle ⁇ is in the range of 0 ⁇ ⁇ ⁇ max .
  • this range is defined as “forward rotation side”.
  • the hydraulic motor 12 rotates (reverses) in the direction opposite to the forward direction in the range where the inclination angle ⁇ is in the range of ⁇ max ⁇ ⁇ ⁇ 0.
  • this range is defined as “reverse rotation side”.
  • ⁇ max is an angle at which the movable swash plate 11a of the hydraulic pump 11 can be tilted to the maximum in the forward rotation direction.
  • the horizontal axis of the map 110 indicates the gear ratio R of the work vehicle 1.
  • R 0 as a boundary
  • the right side of the drawing shows the speed ratio during forward travel
  • the left side of the drawing shows the speed ratio during reverse travel.
  • the straight line L shows the relationship between the inclination angle ⁇ and the gear ratio R when only the low-speed clutch 31a is operated. That is, the straight line L indicates a calculation formula for calculating the inclination angle ⁇ based on the transmission gear ratio R when only the low speed side clutch 31a is operated.
  • this state is simply referred to as “low speed mode ML”.
  • a straight line H shows the relationship between the inclination angle ⁇ and the gear ratio R when only the high-speed clutch 31b is operated. That is, the straight line H indicates a calculation formula for calculating the inclination angle ⁇ based on the speed ratio R when only the high-speed clutch 31b is operated. In this case, as the inclination angle ⁇ is changed from the forward rotation side to the reverse rotation side, the speed ratio R increases from the forward side. Hereinafter, this state is simply referred to as “high-speed mode MH”.
  • the straight line B shows the relationship between the inclination angle ⁇ and the gear ratio R when only the forward / reverse switching clutch 37 is operated. That is, the straight line B shows a calculation formula for calculating the inclination angle ⁇ based on the gear ratio R when only the forward / reverse switching clutch 37 is operated. In this case, as the inclination angle ⁇ is changed from the reverse rotation side to the normal rotation side, the transmission gear ratio R increases to the reverse side. This state is simply referred to as “reverse mode MB”.
  • the inclination of the straight line L and the inclination of the straight line H are set so that the absolute values thereof are equal and the signs are different from each other.
  • loads applied to the HST 10 in the low speed mode ML and the high speed mode MH are equalized.
  • the transmission gear ratio R of the work vehicle 1 is theoretically the same, and the change in the transmission gear ratio R due to the shift (switching between the low speed mode ML and the high speed mode MH). Shock) can be minimized.
  • this invention is not limited to the structure with which the said absolute value corresponds, The structure from which the said absolute value differs may be sufficient.
  • control mode of the HMT 4 by the control device 100 will be described.
  • the speed ratio command value R o is set by the shift lever 7c, it calculates a limit speed ratio command value R ol based on the gear ratio command value R o.
  • the limit speed ratio command value R ol, to actual gear ratio R t is prevented from varying to abruptly speed ratio command value R o, the time rate of change of the gear ratio command value R o at a predetermined inclination Restricted.
  • the control device 100 determines the inclination based on the limiting speed ratio command value R ol and each calculation formula shown in the map 110 (the straight line L in FIG. 4 in the low speed mode ML and the straight line H in FIG. 4 in the high speed mode MH).
  • An angle command value ⁇ o is calculated.
  • the inclination angle command value ⁇ o is a value of the inclination angle ⁇ corresponding to the limiting speed ratio command value R ol .
  • the control device 100 calculates the actual speed ratio R t based on the rotation speed of the auxiliary transmission output shaft 42 detected by the rotation speed detection means 105 and the rotation speed of the engine 3.
  • the actual speed ratio Rt is the value of the actual speed ratio R of the work vehicle 1.
  • the control device 100 calculates the actual inclination angle ⁇ t based on the actual speed ratio R t and each calculation formula (the straight line L in FIG. 4 in the low speed mode ML and the straight line H in FIG. 4 in the high speed mode MH).
  • the actual inclination angle ⁇ t is a value of the inclination angle ⁇ corresponding to the actual speed ratio R t .
  • the control device 100 calculates the post-FB tilt angle command value ⁇ of by comparing the tilt angle command value ⁇ o and the actual tilt angle ⁇ t and feeding back.
  • the post-FB tilt angle command value ⁇ of is a value obtained by adding the feedback amount F to the tilt angle command value ⁇ o .
  • PI control or the like can be used as a feedback technique in the present embodiment, but the present invention does not limit the technique.
  • the horizontal axis in FIG. 5 indicates the elapsed time ET.
  • the control device 100 controls the operation of the swash plate control actuator 101 so that the actual speed ratio Rt becomes the speed ratio command value Ro . More specifically, the control device 100 transmits a control signal to the swash plate control actuator 101 so that the actual inclination angle ⁇ t of the movable swash plate 11a becomes the post-FB inclination angle command value ⁇ of .
  • the swash plate control actuator 101 changes the actual inclination angle ⁇ t of the movable swash plate 11a according to the control signal.
  • the actual transmission ratio R t becomes the limited transmission ratio command value R ol.
  • the control unit 100 by approaching the limit speed ratio command value R ol to gradually speed ratio command value R o, can be actual gear ratio R t is controlled to be gear ratio command value R o .
  • control in the low speed mode ML and the high speed mode MH as described above is defined as “normal control” and will be described below.
  • the control device 100 performs the switching control from the low speed mode ML to the high speed mode MH (hereinafter, referred to as “speed ratio control value R o”) when the speed ratio command value Ro is larger than the switching speed ratio R c .
  • the description will simply be made as “first control mode”.
  • the low speed mode ML is switched to the high speed mode MH by the control device 100 via the switching control mode.
  • the switching control mode is divided into an acceleration first transition mode MA1, an acceleration second transition mode MA2, and an acceleration third transition mode MA3 (step S120 to step S140 in FIG. 7).
  • step S110 the control device 100 controls the HMT 4 in the low speed mode ML (see the low speed mode ML in FIG. 6). Below, the detail is demonstrated.
  • step S111 the control unit 100, the actual gear ratio R t is equal to or less than 95% of the speed change ratio command value R o.
  • the control device 100 again performs step S111. Process.
  • the control device 100 proceeds to step S112.
  • the control unit 100 determines in step S111, the actual gear ratio R t is whether the host vehicle has reached the speed ratio command value R o. That is, when the actual gear ratio R t is not less than 95% of the speed change ratio command value R o is deemed to actual gear ratio R t reaches the speed change ratio command value R o. This is to take account of errors and power transmission loss.
  • control device 100 determines whether or not post-FB inclination angle command value ⁇ of is greater than or equal to switching inclination angle ⁇ c .
  • the control device 100 performs the process of step S111 again. Do.
  • the control device 100 proceeds to step S120.
  • step S112 when it is determined in step S112 that the post-FB inclination angle command value ⁇ of has reached the switching inclination angle ⁇ c , the control apparatus 100 shifts to the switching control mode (step S120 and subsequent steps).
  • the switching timing to shift to control mode can be determined without being affected by the inclination or the like of the time variation of the actual gear ratio R t.
  • step S120 the control device 100 controls the HMT 4 in the acceleration first transition mode MA1 (see the acceleration first transition mode MA1 in FIG. 6). Below, the detail is demonstrated.
  • step S121 the control unit 100 stops the time variation of the limit speed ratio command value R ol, i.e., to fix the limits gear ratio command value R ol to a constant value (of t1 in FIG. 6 Time).
  • control device 100 also fixes post-FB inclination angle command value ⁇ of at a constant value.
  • the value of the post-FB tilt angle command value ⁇ of in this case is a value obtained by adding the tilt correction amount ⁇ to the tilt angle command value ⁇ o .
  • the feedback amount F immediately before the transition to the acceleration first transition mode MA1 is used as the inclination correction amount ⁇ .
  • the control apparatus 100 transfers to step S122 after performing the said process.
  • step S122 the control device 100 starts counting time T (at time t1 in FIG. 6). After performing the above process, the control device 100 proceeds to step S123.
  • step S123 the control device 100 transmits a control signal S for operating the high speed side clutch 31b to the high speed solenoid valve 103 (at time t1 in FIG. 6). After performing the above processing, the control device 100 proceeds to step S124.
  • step S124 the control unit 100 determines whether a time T operation dead time T H above. If not time T operation dead time T H above, i.e., if the time T is less than the dead time operation T H, the control device 100 performs the process of step S124 again. If the time T is the operation dead time T H above, the control unit 100 proceeds to step S125.
  • step S125 the controller 100, the actual gear ratio R t is equal to or less than 95% of the speed change ratio command value R o.
  • the control device 100 proceeds to step S111. (See FIGS. 8 and 9).
  • the control device 100 proceeds to step S130.
  • the control device 100 whether or not the processing of step S124 and step S125, the actual gear ratio R t without switching from the low speed mode ML fast mode MH can reach more than 95% of the speed change ratio command value R o Can be determined. That is, the control device 100, when the inclination angle command value alpha of after FB operated dead time T H has elapsed after reaching the switching angle of inclination alpha c, the actual gear ratio R t is a gear ratio command value R o 95 If it is% or more, it is determined that there is no need to switch from the low speed mode ML to the high speed mode MH. In this case, since switching between the low-speed side clutch 31a and the high-speed side clutch 31b is not performed, unnecessary clutch switching is not performed, and deterioration of ride comfort of the operator due to mode switching can be prevented.
  • step S130 the control device 100 controls the HMT 4 in the acceleration second transition mode MA2 (see the acceleration second transition mode MA2 in FIG. 6). Below, the detail is demonstrated.
  • step S131 the control device 100 changes the calculation formula for calculating the tilt angle command value ⁇ o and the actual tilt angle ⁇ t from the straight line L to the straight line H (t2 in FIG. 6). Of time). After performing the above processing, the control device 100 proceeds to step S132.
  • step S132 the control unit 100 changes the limit speed ratio command value R ol to switch speed ratio R c (time point t2 in FIG. 6).
  • the tilt angle command value ⁇ o changes on the straight line H to a value (switching inclination angle ⁇ c ) corresponding to the limited transmission gear ratio command value R ol (switching transmission gear ratio R c ).
  • the post-FB tilt angle command value ⁇ of changes on the straight line H to a value obtained by subtracting the tilt correction amount ⁇ from the tilt angle command value ⁇ o . As shown in FIG.
  • the control apparatus 100 transfers to step S140 after performing the said process.
  • step S140 the control device 100 controls the HMT 4 in the acceleration third transition mode MA3 (see the acceleration third transition mode MA3 in FIG. 6). Below, the detail is demonstrated.
  • step S141 the control device 100 stops the transmission of the control signal S for operating the low speed side clutch 31a (at time t3 in FIG. 6). After performing the said process, the control apparatus 100 transfers to step S142.
  • step S142 the control device 100 restarts the time change of the limited speed ratio command value Rol (at time t3 in FIG. 6). After performing the above processing, the control device 100 proceeds to step S150.
  • step S150 the control device 100 performs normal control in the high-speed mode MH.
  • the set time T1 (from t1 to t2) during which the control based on the acceleration first transition mode MA1 is performed is “clutch boosting time T u ⁇ (operation dead time T H ⁇ simultaneous. Insertion time T w ) ”.
  • a set time T2 (from t2 to t3) that is a time during which the control based on the acceleration second transition mode MA2 is performed is set to be “operation dead time T H ⁇ clutch pressure reduction time T d ”.
  • a set time T3 (from t3 to t4) during which the control based on the acceleration third transition mode MA3 is performed is set to be “clutch pressure reduction time T d ⁇ simultaneous insertion time T w ”.
  • the simultaneous fitting time T w is the time and the low-speed side clutch 31a and the high speed clutch 31b is activated simultaneously.
  • step S132 by changing the advance limit speed ratio command value R ol the switch speed ratio R c, when the actual gear ratio R t is increased to switch speed ratio R c in the subsequent simultaneous fitting The shift can be smoothly performed in step (b).
  • the HMT 4 of this embodiment is An HST 10 in which at least one of the hydraulic pump 11 and the hydraulic motor 12 is a variable displacement type using a movable swash plate 11a; A planetary gear mechanism 20 that combines and shifts the power from the engine 3 and the power from the hydraulic motor 12; A swash plate control actuator 101 that adjusts the inclination angle ⁇ of the movable swash plate 11a by hydraulic pressure; A low-speed side clutch 31a that enables connection and disconnection of power between the carrier 29 of the planetary gear mechanism 20 and the second transmission shaft 24; A high-speed side clutch 31b that enables connection and disconnection of power between the third transmission gear 28 and the second transmission shaft 24 of the planetary gear mechanism 20; A low-speed solenoid valve 102 for operating the low-speed clutch 31a by hydraulic pressure; A high-speed solenoid valve 103 for operating the high-speed clutch 31b by hydraulic pressure; A transmission lever 7c for setting a transmission ratio command value Ro that is a target value of the transmission ratio R; A
  • the control apparatus 100 of this embodiment is In the switching control mode, it is necessary from the time when the post-FB inclination angle command value ⁇ of reaches the switching inclination angle ⁇ c until the movable swash plate 11a actually operates after the swash plate control actuator 101 receives the control signal. by do operation dead time T H has elapsed, the actual gear ratio R t only if it does not reach the speed ratio command value R o, in which switching the connection and disconnection of the low speed side clutch 31a and the high speed clutch 31b.
  • the low-speed mode ML and the high-speed mode MH are not switched until unnecessary, so the number of times of switching is reduced as much as possible, and the occurrence of shift shocks associated with the switching is reduced. Can be made.
  • the work vehicle 1 including the HMT 4 according to the present embodiment it is possible to prevent the operator's riding comfort from being deteriorated due to the shift shock.
  • the control apparatus 100 of this embodiment is When switching the connection / disconnection of the low speed side clutch 31a and the high speed side clutch 31b in the switching control mode, the low speed side clutch 31a and the high speed side clutch 31b are operated simultaneously during the simultaneous insertion time Tw (predetermined time).
  • Tw simultaneous insertion time
  • control apparatus 100 of this embodiment is In switching control mode to switch from the low speed mode ML fast mode MH, if limited speed ratio command value R ol is smaller than switch speed ratio R c corresponding to speed ratio command value R o and switching the inclination angle alpha c, The limit speed ratio command value R ol, followed (in the first control mode, the switch speed ratio R c) smaller value among the speed change ratio command value R o or switch speed ratio R c was increased to, low-speed clutch The connection / disconnection of 31a and the high speed side clutch 31b is switched. With this configuration, when the low-speed side clutch 31a and the high speed clutch 31b is simultaneously fitted to the actual gear ratio R t is increased to switch speed ratio R c may, enabling smooth transmission (accelerating) become.
  • step S110 the control device 100 controls the HMT 4 in the low speed mode ML (see the low speed mode ML in FIG. 13).
  • the process in step S110 of the second control mode is substantially the same as the process in step S110 of the first control mode.
  • step S120 the control device 100 controls the HMT 4 in the acceleration first transition mode MA1 (see the acceleration first transition mode MA1 in FIG. 13).
  • the process in step S120 of the second control mode is substantially the same as the process in step S120 of the first control mode.
  • step S130 the control device 100 controls the HMT 4 in the acceleration second transition mode MA2 (see the acceleration second transition mode MA2 in FIG. 13). Below, the detail is demonstrated.
  • step S231 the control device 100 changes the calculation formula for calculating the tilt angle command value ⁇ o and the actual tilt angle ⁇ t from the straight line L to the straight line H (t2 in FIG. 13). Of time). After performing the above processing, the control device 100 proceeds to step S232.
  • step S232 the control unit 100 changes the limit speed ratio command value R ol the speed ratio command value R o (time point t2 in FIG. 13).
  • the tilt angle command value ⁇ o changes on the straight line H to a value corresponding to the limited transmission gear ratio command value R ol (transmission gear ratio command value R o ).
  • the post-FB tilt angle command value ⁇ of changes on the straight line H to a value obtained by subtracting the tilt correction amount ⁇ from the tilt angle command value ⁇ o .
  • the actual inclination angle ⁇ t changes to a value on the straight line H while the speed ratio R remains unchanged.
  • the control apparatus 100 transfers to step S140 after performing the said process.
  • step S140 the control device 100 controls the HMT 4 in the acceleration third transition mode MA3 (see the acceleration third transition mode MA3 in FIG. 13).
  • the process in step S140 of the second control mode is substantially the same as the process in step S140 of the first control mode.
  • step S150 the control device 100 performs normal control in the high-speed mode MH.
  • the control device 100 of the present embodiment is In switching control mode to switch from the low speed mode ML fast mode MH, if limited speed ratio command value R ol is smaller than switch speed ratio R c corresponding to speed ratio command value R o and switching the inclination angle alpha c,
  • the limit speed ratio command value R ol (in the first control mode, the speed change ratio command value R o) smaller value among the speed change ratio command value R o or switch speed ratio R c after increasing up, low-speed
  • the connection / disconnection of the clutch 31a and the high speed side clutch 31b is switched.
  • the control device 100 When the actual speed ratio Rt is larger than the limit speed ratio command value Rol ( Hereinafter, the “third control mode” will be described.
  • the case where the actual speed ratio Rt is larger than the limit speed ratio command value Rol is, for example, the case where the work vehicle 1 goes down a hill while pulling a heavy object such as a trailer. In this case, it is assumed that the work vehicle 1 is pushed from behind by the trailer.
  • step S110 the control device 100 controls the HMT 4 in the low speed mode ML (see the low speed mode ML in FIG. 16).
  • the process in step S110 of the third control mode is substantially the same as the process in step S110 of the first control mode.
  • step S120 the control device 100 controls the HMT 4 in the acceleration first transition mode MA1 (see the acceleration first transition mode MA1 in FIG. 16).
  • the process in step S120 of the third control mode is substantially the same as the process in step S120 of the first control mode.
  • step S130 the control device 100 controls the HMT 4 in the acceleration second transition mode MA2 (see the acceleration second transition mode MA2 in FIG. 16). Below, the detail is demonstrated.
  • step S331 the control device 100 changes the calculation formula for calculating the tilt angle command value ⁇ o and the actual tilt angle ⁇ t from the straight line L to the straight line H (t2 in FIG. 16). Of time).
  • the tilt angle command value ⁇ o , the post-FB tilt angle command value ⁇ of , and the actual tilt angle ⁇ t change as shown in FIG. That is, the inclination angle command value ⁇ o changes on the straight line H to a value corresponding to the limited speed ratio command value R ol .
  • the post-FB tilt angle command value ⁇ of changes on the straight line H to a value obtained by subtracting the tilt correction amount ⁇ from the tilt angle command value ⁇ o .
  • the value of the post-FB inclination angle command value ⁇ of does not substantially change.
  • the actual inclination angle ⁇ t changes to a value on the straight line H while the speed ratio R remains unchanged.
  • the control apparatus 100 transfers to step S140 after performing the said process.
  • step S140 the control device 100 controls the HMT 4 in the acceleration third transition mode MA3 (see the acceleration third transition mode MA3 in FIG. 16).
  • the process in step S140 of the third control mode is substantially the same as the process in step S140 of the first control mode.
  • step S150 the control device 100 performs normal control in the high-speed mode MH.
  • the speed change ratio command value R o is switch speed ratio R c is less than
  • aspects from the high-speed mode MH by the control device 100 of the switching control to the low-speed mode ML (hereinafter, The description will be simply made as “fourth control mode”.
  • the high speed mode MH is switched to the low speed mode ML by the control device 100 via the switching control mode.
  • the switching control mode is divided into a deceleration first transition mode MD1, a deceleration second transition mode MD2, and a deceleration third transition mode MD3 (step S420 to step S440 in FIG. 19).
  • step S410 the control device 100 controls the HMT 4 in the high speed mode MH (see the high speed mode MH in FIG. 20). Below, the detail is demonstrated.
  • step S411 the control unit 100, the actual gear ratio R t is equal to or greater than 105% of the speed change ratio command value R o. If the actual gear ratio R t is not greater than 105% of the speed change ratio command value R o, that is, when the actual gear ratio R t is less than 105% of the speed change ratio command value R o, the control device 100, Step S411 again Perform the process. If the actual gear ratio R t is larger than 105% of the speed change ratio command value R o, the controller 100 proceeds to step S412.
  • the control unit 100 determines in step S411, the actual gear ratio R t is whether the host vehicle has reached the speed ratio command value R o. That is, when the actual gear ratio R t is less than 105% of the speed change ratio command value R o is deemed to actual gear ratio R t reaches the speed change ratio command value R o. This is to take account of errors and power transmission loss.
  • step S412 control device 100 determines whether or not post-FB inclination angle command value ⁇ of is greater than or equal to switching inclination angle ⁇ c .
  • the control device 100 performs the process of step S411 again. Do.
  • the control device 100 proceeds to step S420.
  • the control device 100 shifts to the switching control mode (after step S420).
  • the switching timing to shift to control mode can be determined without being affected by the inclination or the like of the time variation of the actual gear ratio R t.
  • step S420 the control device 100 controls the HMT 4 in the deceleration first transition mode MD1 (see the deceleration first transition mode MD1 in FIG. 20). Below, the detail is demonstrated.
  • control device 100 stops the change over time of limiting speed ratio command value R ol , that is, limits limiting speed ratio command value R ol to a constant value (at t1 in FIG. 20). Time). At this time, control device 100 also fixes post-FB inclination angle command value ⁇ of at a constant value.
  • the value of the post-FB tilt angle command value ⁇ of in this case is a value obtained by adding the tilt correction amount ⁇ to the tilt angle command value ⁇ o .
  • the feedback amount F immediately before the transition to the deceleration first transition mode MD1 is used as the inclination correction amount ⁇ .
  • the control apparatus 100 transfers to step S422 after performing the said process.
  • step S422 the control device 100 starts counting time T (at time t1 in FIG. 20).
  • the control apparatus 100 transfers to step S423 after performing the said process.
  • step S423 the control device 100 transmits a control signal S for operating the low speed side clutch 31a to the low speed solenoid valve 102 (at time t1 in FIG. 20).
  • the control apparatus 100 transfers to step S424 after performing the said process.
  • step S424 the control unit 100 determines whether a time T operation dead time T H above. If not time T operation dead time T H above, i.e., if the time T is less than the dead time operation T H, the control device 100 performs the process of step S424 again. If the time T is the operation dead time T H above, the control unit 100 proceeds to step S425.
  • step S425 the control unit 100, the actual gear ratio R t is equal to or greater than 105% of the speed change ratio command value R o. If the actual gear ratio R t is not greater than 105% of the speed change ratio command value R o, that is, when the actual gear ratio R t is less than 105% of the speed change ratio command value R o, the control unit 100, to step S411 Transition (see FIG. 21 and FIG. 22). If the actual gear ratio R t is larger than 105% of the speed change ratio command value R o, the controller 100 proceeds to step S430.
  • the control device 100 whether or not the processing of step S424 and step S425, the actual gear ratio R t without switching from the high-speed mode MH to the low-speed mode ML can reach below 105% of the speed change ratio command value R o Can be determined. That is, the control device 100, when the inclination angle command value alpha of after FB operated dead time T H has elapsed after reaching the switching angle of inclination alpha c, the actual gear ratio R t is a gear ratio command value R o 105 If it is less than or equal to%, it is determined that there is no need to switch from the high speed mode MH to the low speed mode ML. In this case, since switching between the low-speed side clutch 31a and the high-speed side clutch 31b is not performed, unnecessary clutch switching is not performed, and deterioration of ride comfort of the operator due to mode switching can be prevented.
  • step S430 the control device 100 controls the HMT 4 in the deceleration second transition mode MD2 (see the deceleration second transition mode MD2 in FIG. 20). Below, the detail is demonstrated.
  • step S431 the control device 100 changes the calculation formula for calculating the tilt angle command value ⁇ o and the actual tilt angle ⁇ t from the straight line H to the straight line L (t2 in FIG. 20). Of time).
  • the control apparatus 100 transfers to step S432 after performing the said process.
  • step S432 the control unit 100 changes the limit speed ratio command value R ol to switch speed ratio R c (time point t2 in FIG. 20).
  • the tilt angle command value ⁇ o changes on the straight line L to a value (switching inclination angle ⁇ c ) corresponding to the limit transmission ratio command value R ol (switching transmission ratio R c ).
  • the post-FB tilt angle command value ⁇ of changes on the straight line L to a value obtained by subtracting the tilt correction amount ⁇ from the tilt angle command value ⁇ o . As shown in FIG.
  • the control apparatus 100 transfers to step S440 after performing the said process.
  • step S440 the control device 100 controls the HMT 4 in the deceleration third transition mode MD3 (see the deceleration third transition mode MD3 in FIG. 20). Below, the detail is demonstrated.
  • step S441 the control device 100 stops transmitting the control signal S for operating the high speed side clutch 31b (at time t3 in FIG. 20). After performing the said process, the control apparatus 100 transfers to step S442.
  • step S442 the control device 100 restarts the time change of the limited speed ratio command value Rol (at time t3 in FIG. 20). After performing the above processing, the control device 100 proceeds to step S450.
  • step S450 the control device 100 performs normal control in the low speed mode ML.
  • the set time T1 (from t1 to t2) during which the control based on the deceleration first transition mode MD1 is performed is “clutch boosting time T u ⁇ (operation dead time T H ⁇ simultaneous. Insertion time T w ) ”.
  • a set time T2 (from t2 to t3) that is a time during which the control based on the acceleration second transition mode MA2 is performed is set to be “operation dead time T H ⁇ clutch pressure reduction time T d ”.
  • a set time T3 (from t3 to t4) during which the control based on the acceleration third transition mode MA3 is performed is set to be “clutch pressure reduction time T d ⁇ simultaneous insertion time T w ”.
  • step S432 by changing the advance limit speed ratio command value R ol the switch speed ratio R c, even when the actual gear ratio Rt is lowered to switch speed ratio Rc in the subsequent simultaneous fitting Shifting can be performed smoothly.
  • the control device 100 of the present embodiment is In switching control mode to switch from the high-speed mode MH to the low-speed mode ML, limited when the gear ratio command value R ol is greater than switch speed ratio R c corresponding to speed ratio command value R o and switching the inclination angle alpha c,
  • the limit speed ratio command value R ol, followed (in the fourth control mode, the switch speed ratio R c) larger value among the speed change ratio command value R o or switch speed ratio R c was reduced to low speed side clutch
  • the connection / disconnection of 31a and the high speed side clutch 31b is switched.
  • the present invention can be used for a technique of a hydraulic-mechanical transmission, and more specifically, can be used for a technique for controlling the operation of the hydraulic-mechanical transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

Provided is a hydraulic-mechanical transmission in which switching of a clutch can be performed without being affected by the inclination of actual speed change ratio. The hydraulic-mechanical transmission comprises an HST (10) equipped with a hydraulic pump (11) and a hydraulic motor (12), a planetary gear mechanism (20), a clutch (31a) on the low speed side, a clutch (31b) on the high speed side, and a controller (100) for so controlling the actual speed change ratio (Rt) that the ratio becomes a speed change ratio command value (Ro). The controller (100) is equipped with a map (110) indicating a formula for calculating an inclination angle α corresponding to a speed change ratio (R) and is so configured as to be shifted to a control mode for switching a low speed mode (ML) and a high speed mode (MH) when an inclination angle command value αof after FB reaches a predetermined switching inclination angle αc.

Description

油圧-機械式変速装置Hydraulic-mechanical transmission
 本発明は、油圧-機械式変速装置の技術に関し、より詳細には、油圧-機械式変速装置の動作を制御するための技術に関する。 The present invention relates to a technique of a hydraulic-mechanical transmission, and more particularly to a technique for controlling the operation of the hydraulic-mechanical transmission.
 従来、エンジンにより発生される動力を分配した後、一方の動力は遊星歯車機構に伝達し、他方の動力は油圧式無段変速装置を介して前記遊星歯車機構に伝達し、当該遊星歯車機構において前記双方の動力を合成して変速する油圧-機械式変速装置の技術は公知となっている(例えば、特許文献1参照)。 Conventionally, after distributing the power generated by the engine, one power is transmitted to the planetary gear mechanism, and the other power is transmitted to the planetary gear mechanism via a hydraulic continuously variable transmission. A technique of a hydraulic-mechanical transmission that shifts by combining both powers is known (for example, see Patent Document 1).
 従来の油圧-機械式変速装置においては、低速モードと高速モードとを切り換えるクラッチの動作のタイミングを、前記油圧-機械式変速装置の実際の変速比(以下、単に「実変速比」と記す)や、実変速比の傾き等に基づいて定めるものがある。 In the conventional hydraulic-mechanical transmission, the operation timing of the clutch for switching between the low speed mode and the high speed mode is the actual transmission ratio of the hydraulic-mechanical transmission (hereinafter simply referred to as “actual transmission ratio”). Some of them are determined based on the slope of the actual gear ratio.
 例えば、実変速比が「切換変速比-(実変速比の傾き×クラッチの昇圧時間)」に到達した時点で、前記クラッチを切り換えるための制御信号を送信するものがある。ここで、切換変速比とは、クラッチの切り換えを行う変速比の目標値であり、クラッチの昇圧時間とは、クラッチが制御信号を受信してから実際に作動するまでに必要な時間である。
 このようなタイミングで前記クラッチを切り換えるための制御信号を送信することにより、実変速比が切換変速比に達したときにクラッチが作動し、低速モードと高速モードとをスムースに切り換えることができる。
For example, there is one that transmits a control signal for switching the clutch when the actual gear ratio reaches “switching gear ratio− (inclination of actual gear ratio × clutch boosting time)”. Here, the switching gear ratio is a target value of the gear ratio at which the clutch is switched, and the clutch boosting time is the time required from when the clutch receives the control signal until it actually operates.
By transmitting a control signal for switching the clutch at such timing, the clutch operates when the actual gear ratio reaches the switching gear ratio, and the low speed mode and the high speed mode can be switched smoothly.
 しかし、前記油圧-機械式変速装置に大きな負荷がかかった場合、実変速比が切換変速比に近づくに従って、実変速比の傾きが小さくなり、実変速比が「切換変速比-(実変速比の傾き×クラッチの昇圧時間)」に到達しない可能性がある。つまり、この場合、前記クラッチを切り換えるための制御信号を送信することができず、正常に前記クラッチの切り換えを行うことができない。
特開2005-114160号公報
However, when a large load is applied to the hydraulic-mechanical transmission, the gradient of the actual transmission ratio decreases as the actual transmission ratio approaches the switching transmission ratio, and the actual transmission ratio becomes “switching transmission ratio− (actual transmission ratio). The inclination of the clutch x the pressure increase time of the clutch) may not be reached. That is, in this case, a control signal for switching the clutch cannot be transmitted, and the clutch cannot be switched normally.
JP 2005-114160 A
 上述の如く、従来の油圧-機械式変速装置においては、クラッチを切り換えるタイミングが実変速比の傾きに影響されるため、大きな負荷がかかった場合等に、正常に前記クラッチの切り換えを行うことができない点で不利であった。 As described above, in the conventional hydraulic-mechanical transmission, the clutch switching timing is affected by the gradient of the actual gear ratio, so that the clutch can be switched normally when a large load is applied. It was disadvantageous in that it could not be done.
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。 The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.
 即ち、本発明においては、
 油圧ポンプまたは油圧モータのうち少なくとも一方を可動斜板による可変容量型とした油圧式無段変速機構と、
 駆動源からの動力と、前記油圧モータからの動力と、を合成して変速する遊星歯車機構と、
 前記可動斜板の傾斜角度を油圧により調節する斜板制御アクチュエータと、
 前記遊星歯車機構の低速側出力とHMT出力軸との間の動力の断接を可能とする低速側クラッチと、
 前記遊星歯車機構の高速側出力と前記HMT出力軸との間の動力の断接を可能とする高速側クラッチと、
 前記低速側クラッチを油圧により作動させる低速用電磁弁と、
 前記高速側クラッチを油圧により作動させる高速用電磁弁と、
 前記変速比の目標値である変速比指令値を設定する変速比設定手段と、
 実変速比を検出する変速比検出手段と、
 前記実変速比が前記変速比指令値となるように前記斜板制御アクチュエータ、前記低速用電磁弁、及び前記高速用電磁弁の動作を制御する制御装置と、
 を具備する油圧-機械式変速装置において、
 前記制御装置は、
 前記変速比に対応する前記傾斜角度を算出するための計算式を示すマップを具備し、
 所定の時間変化率で前記変速比指令値となるように変化する制限変速比指令値を算出し、
 前記マップに基づいて、前記制限変速比指令値に対応して所定の時間変化率で変化するFB後傾斜角度指令値を算出し、
 前記可動斜板の実傾斜角度が前記FB後傾斜角度指令値となるように前記斜板制御アクチュエータの動作を制御し、
 前記FB後傾斜角度指令値が所定の切換傾斜角度に到達した場合、前記低速側クラッチと前記高速側クラッチの断接を切り換える切換制御モードに移行するものである。
That is, in the present invention,
A hydraulic continuously variable transmission mechanism in which at least one of a hydraulic pump or a hydraulic motor is a variable displacement type using a movable swash plate;
A planetary gear mechanism that combines and shifts the power from the drive source and the power from the hydraulic motor;
A swash plate control actuator for adjusting the inclination angle of the movable swash plate by hydraulic pressure;
A low speed side clutch that enables connection and disconnection of power between the low speed side output of the planetary gear mechanism and the HMT output shaft;
A high-speed clutch that enables connection and disconnection of power between the high-speed output of the planetary gear mechanism and the HMT output shaft;
A low-speed solenoid valve that operates the low-speed side clutch hydraulically;
A high-speed solenoid valve for hydraulically actuating the high-speed side clutch;
Gear ratio setting means for setting a gear ratio command value which is a target value of the gear ratio;
Gear ratio detecting means for detecting an actual gear ratio;
A control device for controlling operations of the swash plate control actuator, the low speed solenoid valve, and the high speed solenoid valve so that the actual speed ratio becomes the speed ratio command value;
In a hydraulic-mechanical transmission comprising:
The controller is
Comprising a map showing a calculation formula for calculating the tilt angle corresponding to the gear ratio;
A limiting speed ratio command value that changes so as to become the speed ratio command value at a predetermined time change rate is calculated;
Based on the map, a post-FB inclination angle command value that changes at a predetermined rate of time change corresponding to the limited speed ratio command value is calculated,
Controlling the operation of the swash plate control actuator so that the actual tilt angle of the movable swash plate becomes the post-FB tilt angle command value;
When the post-FB tilt angle command value reaches a predetermined switching tilt angle, the mode shifts to a switching control mode for switching between connection and disconnection of the low speed side clutch and the high speed side clutch.
 また、本発明においては、
 前記制御装置は、
 前記切換制御モードにおいて、前記FB後傾斜角度指令値が前記切換傾斜角度に到達した時点から、前記斜板制御アクチュエータが制御信号を受信してから前記可動斜板が実際に動作するまでに必要な動作むだ時間が経過するまでに、前記実変速比が前記変速比指令値に到達しない場合にのみ、前記低速側クラッチと前記高速側クラッチの断接を切り換えるものである。
In the present invention,
The controller is
In the switching control mode, it is necessary from the time when the post-FB inclination angle command value reaches the switching inclination angle until the movable swash plate actually operates after the control signal is received by the swash plate control actuator. Only when the actual gear ratio does not reach the gear ratio command value before the operation dead time elapses, the connection between the low speed side clutch and the high speed side clutch is switched.
 本発明においては、
 前記制御装置は、
 前記切換制御モードにおいて前記低速側クラッチと前記高速側クラッチの断接を切り換える際、前記低速側クラッチと前記高速側クラッチとを所定時間の間同時に作動させるものである。
In the present invention,
The controller is
When switching the connection of the low speed side clutch and the high speed side clutch in the switching control mode, the low speed side clutch and the high speed side clutch are simultaneously operated for a predetermined time.
 本発明においては、
 前記制御装置は、
 低速から高速に切り換える切換制御モードにおいて、前記制限変速比指令値が前記変速比指令値及び前記切換傾斜角度に対応する切換変速比よりも小さい場合、
 前記制限変速比指令値を、前記変速比指令値又は前記切換変速比のうち小さい方の値まで増加させた後に、前記低速側クラッチと前記高速側クラッチの断接を切り換えるものである。
In the present invention,
The controller is
In the switching control mode for switching from low speed to high speed, when the limited speed ratio command value is smaller than the switching speed ratio corresponding to the speed ratio command value and the switching inclination angle,
After the limit speed ratio command value is increased to the smaller one of the speed ratio command value or the switching speed ratio, the connection between the low speed side clutch and the high speed side clutch is switched.
 本発明においては、
 前記制御装置は、
 高速から低速に切り換える切換制御モードにおいて、前記制限変速比指令値が前記変速比指令値及び前記切換傾斜角度に対応する切換変速比よりも大きい場合、
 前記制限変速比指令値を、前記変速比指令値又は前記切換変速比のうち大きい方の値まで減少させた後に、前記低速側クラッチと前記高速側クラッチの断接を切り換えるものである。
In the present invention,
The controller is
In the switching control mode for switching from high speed to low speed, when the limiting speed ratio command value is larger than the switching speed ratio corresponding to the speed ratio command value and the switching inclination angle,
After the limiting speed ratio command value is reduced to the larger one of the speed ratio command value or the switching speed ratio, the connection between the low speed side clutch and the high speed side clutch is switched.
 本発明は、クラッチを切り換えるタイミングが実変速比の傾きに影響されることがなく、可動斜板の傾斜角度に基づいて確実にクラッチの切り換えを行うことができる、という効果を奏する。 The present invention has an effect that the clutch switching timing can be surely performed based on the inclination angle of the movable swash plate without being affected by the inclination of the actual gear ratio.
HMTを具備する作業車両の全体的な構成を示した側面図。The side view which showed the whole structure of the working vehicle which comprises HMT. 同じくHMTの構成を示した模式図。The schematic diagram which similarly showed the structure of HMT. 同じく側面断面図。Similarly side sectional drawing. 制御装置が具備するマップを示す図。The figure which shows the map which a control apparatus comprises. 通常制御における各パラメータの経時変化の様子を示す図。The figure which shows the mode of a time-dependent change of each parameter in normal control. 第一制御態様における各パラメータの経時変化の様子を示す図。The figure which shows the mode of a time-dependent change of each parameter in a 1st control aspect. 第一制御態様を示すフローチャート。The flowchart which shows a 1st control aspect. 第一制御態様の低速モードにおける処理を示すフローチャート。The flowchart which shows the process in the low speed mode of a 1st control aspect. 同じく加速第一遷移モードにおける処理を示すフローチャート。The flowchart which similarly shows the process in acceleration 1st transition mode. 同じく加速第二遷移モードにおける処理を示すフローチャート。The flowchart which similarly shows the process in acceleration 2nd transition mode. 同じく加速第二遷移モードにおける各パラメータの変化の様子を示す図。The figure which shows the mode of the change of each parameter in acceleration 2nd transition mode similarly. 同じく加速第三遷移モードにおける処理を示すフローチャート。The flowchart which similarly shows the process in acceleration 3rd transition mode. 第二制御態様における各パラメータの経時変化の様子を示す図。The figure which shows the mode of a time-dependent change of each parameter in a 2nd control aspect. 第二制御態様の加速第二遷移モードにおける処理を示すフローチャート。The flowchart which shows the process in the acceleration 2nd transition mode of a 2nd control aspect. 同じく加速第二遷移モードにおける各パラメータの変化の様子を示す図。The figure which shows the mode of the change of each parameter in acceleration 2nd transition mode similarly. 第三制御態様における各パラメータの経時変化の様子を示す図。The figure which shows the mode of a time-dependent change of each parameter in a 3rd control aspect. 第三制御態様の加速第二遷移モードにおける処理を示すフローチャート。The flowchart which shows the process in the acceleration 2nd transition mode of a 3rd control aspect. 同じく加速第二遷移モードにおける各パラメータの変化の様子を示す図。The figure which shows the mode of the change of each parameter in acceleration 2nd transition mode similarly. 第四制御態様を示すフローチャート。The flowchart which shows a 4th control aspect. 第四制御態様における各パラメータの経時変化の様子を示す図。The figure which shows the mode of a time-dependent change of each parameter in a 4th control aspect. 第四制御態様の高速モードにおける処理を示すフローチャート。The flowchart which shows the process in the high speed mode of a 4th control aspect. 同じく減速第一遷移モードにおける処理を示すフローチャート。The flowchart which similarly shows the process in the deceleration 1st transition mode. 同じく減速第二遷移モードにおける処理を示すフローチャート。The flowchart which similarly shows the process in the deceleration 2nd transition mode. 同じく減速第二遷移モードにおける各パラメータの変化の様子を示す図。The figure which similarly shows the mode of a change of each parameter in deceleration 2nd transition mode. 同じく減速第三遷移モードにおける処理を示すフローチャート。The flowchart which similarly shows the process in the deceleration 3rd transition mode.
符号の説明Explanation of symbols
 1   作業車両
 3   エンジン(駆動源)
 4   油圧-機械式変速装置(HMT)
 7c  変速レバー(変速比設定手段)
 10  油圧式無段変速機構(HST)
 11  油圧ポンプ
 11a 可動斜板
 12  油圧モータ
 20  遊星歯車機構
 24  第二伝動軸(HMT出力軸)
 28  第三伝動ギヤ(高速側出力)
 29  キャリヤ(低速側出力)
 31a 低速側クラッチ
 31b 高速側クラッチ
 60  制御機構
 100 制御装置
 101 斜板制御アクチュエータ
 102 低速用電磁弁
 103 高速用電磁弁
 105 回転数検出手段(変速比検出手段)
 110 マップ
 R   変速比
 R  切換変速比
 R  変速比指令値
 Rol 制限変速比指令値
 R  実変速比
 T  動作むだ時間
 T  同時嵌入時間
 α   傾斜角度
 α  切換傾斜角度
 αof FB後傾斜角度指令値
 α  実傾斜角度
1 Working vehicle 3 Engine (drive source)
4 Hydraulic-mechanical transmission (HMT)
7c Shift lever (speed ratio setting means)
10 Hydraulic continuously variable transmission (HST)
11 Hydraulic pump 11a Movable swash plate 12 Hydraulic motor 20 Planetary gear mechanism 24 Second transmission shaft (HMT output shaft)
28 Third transmission gear (high speed side output)
29 Carrier (Low speed side output)
31a Low speed side clutch 31b High speed side clutch 60 Control mechanism 100 Control device 101 Swash plate control actuator 102 Low speed solenoid valve 103 High speed solenoid valve 105 Speed detection means (speed ratio detection means)
110 map R speed ratio R c switch speed ratio R o gear ratio command value R ol limit speed ratio command value R t actual speed ratio T H operates the dead time T w simultaneous fitting time alpha tilt angle alpha c changeover inclination angle alpha of FB post Inclination angle command value α t Actual inclination angle
 次に、図1を用いて、本発明に係る油圧-機械式変速装置の実施の一形態である油圧-機械式変速装置(以下、単に「HMT」という)4を具備する作業車両1について説明する。 Next, a work vehicle 1 equipped with a hydraulic-mechanical transmission (hereinafter simply referred to as “HMT”) 4 that is an embodiment of the hydraulic-mechanical transmission according to the present invention will be described with reference to FIG. To do.
 作業車両1は、ロータリ等の耕耘装置やローダ等の作業機を用いて種々の農作業や土木作業を行うものである。作業車両1は、主として機体フレーム2、エンジン3、HMT4、前輪5・5、後輪6・6、キャビン7等を具備する。 The work vehicle 1 performs various agricultural work and civil engineering work using a tilling device such as a rotary and a work machine such as a loader. The work vehicle 1 mainly includes a body frame 2, an engine 3, an HMT 4, front wheels 5 and 5, rear wheels 6 and 6, a cabin 7, and the like.
 機体フレーム2は、作業車両1の主たる構造体となるものである。機体フレーム2は、長手方向を前後方向として、複数の板材等により構成される。 The machine body frame 2 is a main structure of the work vehicle 1. The machine body frame 2 is composed of a plurality of plate materials or the like with the longitudinal direction as the front-rear direction.
 エンジン3は、作業車両1を駆動するための動力を発生する駆動源となるものである。エンジン3は、機体フレーム2の前部に具備される。 The engine 3 is a drive source that generates power for driving the work vehicle 1. The engine 3 is provided in the front part of the body frame 2.
 HMT4は、エンジン3により発生された動力を変速するものである。HMT4は、機体フレーム2の後部に具備される。 The HMT 4 changes the power generated by the engine 3. The HMT 4 is provided at the rear part of the body frame 2.
 前輪5・5は、機体フレーム2の前部左右にそれぞれ具備される。
 後輪6・6は、機体フレーム2の後部(HMT4)左右にそれぞれ具備される。
 前輪5・5及び後輪6・6は、HMT4により変速された動力により回転駆動される。
The front wheels 5 and 5 are respectively provided on the left and right of the front part of the body frame 2.
The rear wheels 6 and 6 are provided on the left and right of the rear part (HMT 4) of the body frame 2, respectively.
The front wheels 5 and 5 and the rear wheels 6 and 6 are rotationally driven by the power changed by the HMT 4.
 キャビン7は、オペレータが乗車する空間を覆うものである。キャビン7は、機体フレーム2の前後略中央部から後部にかけて具備される。キャビン7内には、ハンドル7a、座席7b、変速レバー7c等が具備される。 Cabin 7 covers the space where the operator gets on. The cabin 7 is provided from the front and rear substantially central part to the rear part of the body frame 2. In the cabin 7, a handle 7a, a seat 7b, a transmission lever 7c, and the like are provided.
 ハンドル7aは、作業車両1を操向操作するものである。ハンドル7aは、キャビン7内の前部に具備される。
 座席7bは、オペレータが着座するものである。座席7bは、ハンドル7aの後方に具備される。
 変速レバー7cは、HMT4の変速比を設定することにより、作業車両1の走行速度を設定するものである。変速レバー7cは、座席7bの右側方に具備される。変速レバー7cは、本発明に係る変速比設定手段の実施の一形態である。
The handle 7a is used to steer the work vehicle 1. The handle 7 a is provided at the front part in the cabin 7.
The seat 7b is for an operator to sit on. The seat 7b is provided behind the handle 7a.
The speed change lever 7c sets the traveling speed of the work vehicle 1 by setting the speed change ratio of the HMT 4. The transmission lever 7c is provided on the right side of the seat 7b. The transmission lever 7c is an embodiment of the transmission ratio setting means according to the present invention.
 以下では、図2及び図3を用いて、HMT4の構成について説明する。HMT4は、主として油圧式無段変速機構(以下、単に「HST」という)10、遊星歯車機構20、副変速機構40、デフ機構50、制御機構60等を具備する。 Hereinafter, the configuration of the HMT 4 will be described with reference to FIGS. 2 and 3. The HMT 4 mainly includes a hydraulic continuously variable transmission mechanism (hereinafter simply referred to as “HST”) 10, a planetary gear mechanism 20, an auxiliary transmission mechanism 40, a differential mechanism 50, a control mechanism 60, and the like.
 以下では、図2を用いて、HST10の構成について説明する。HST10は、主として油圧ポンプ11、油圧モータ12等を具備する。 Hereinafter, the configuration of the HST 10 will be described with reference to FIG. The HST 10 mainly includes a hydraulic pump 11, a hydraulic motor 12, and the like.
 油圧ポンプ11は、その容量を変更可能に構成された可変容量型油圧ポンプである。油圧ポンプ11は、エンジン3により発生された動力により回転駆動される駆動軸13により駆動され、作動油を圧送する。
 油圧ポンプ11は、その容量を変更するための可動斜板11aを具備する。可動斜板11aの傾斜角度を変更することにより、油圧ポンプ11から圧送される作動油の流量を変更することができる。
The hydraulic pump 11 is a variable displacement hydraulic pump configured to change its capacity. The hydraulic pump 11 is driven by a drive shaft 13 that is rotationally driven by the power generated by the engine 3 and pumps hydraulic oil.
The hydraulic pump 11 includes a movable swash plate 11a for changing its capacity. By changing the inclination angle of the movable swash plate 11a, the flow rate of the hydraulic oil pumped from the hydraulic pump 11 can be changed.
 油圧モータ12は、その容量を変更不能に構成された定容量型油圧モータである。油圧モータ12は、油圧ポンプ11により圧送される作動油を受けて駆動される。油圧モータ12は出力軸12aを具備し、油圧モータ12の駆動力は出力軸12aを介して出力される。 The hydraulic motor 12 is a constant capacity hydraulic motor configured so that its capacity cannot be changed. The hydraulic motor 12 is driven in response to the hydraulic oil fed by the hydraulic pump 11. The hydraulic motor 12 includes an output shaft 12a, and the driving force of the hydraulic motor 12 is output via the output shaft 12a.
 上述の如く構成されたHST10の動作態様について説明する。
 エンジン3により発生された動力は、駆動軸13から出力される。
 また、油圧ポンプ11は駆動軸13により駆動され、可動斜板11aの傾斜角度に応じた量の作動油を、油圧モータ12へと圧送する。油圧モータ12は、油圧ポンプ11により圧送される作動油により駆動され、出力軸12aより動力を出力する。このように、駆動軸13の動力を変速して出力軸12aに伝達することができ、また、可動斜板11aの傾斜角度を変更することにより、HST10による動力の変速比を変更することができる。
An operation mode of the HST 10 configured as described above will be described.
The power generated by the engine 3 is output from the drive shaft 13.
The hydraulic pump 11 is driven by the drive shaft 13 and pumps hydraulic oil in an amount corresponding to the inclination angle of the movable swash plate 11 a to the hydraulic motor 12. The hydraulic motor 12 is driven by hydraulic fluid fed by the hydraulic pump 11 and outputs power from the output shaft 12a. Thus, the power of the drive shaft 13 can be shifted and transmitted to the output shaft 12a, and the gear ratio of the power by the HST 10 can be changed by changing the inclination angle of the movable swash plate 11a. .
 なお、本実施形態においては、油圧ポンプ11を可変容量型としたが、本発明はこれに限るものではない。すなわち、油圧モータ12を可変容量型とする構成や、油圧ポンプ11及び油圧モータ12の双方を可変容量型とする構成とすることも可能である。 In this embodiment, the hydraulic pump 11 is a variable displacement type, but the present invention is not limited to this. That is, it is possible to adopt a configuration in which the hydraulic motor 12 is a variable displacement type, or a configuration in which both the hydraulic pump 11 and the hydraulic motor 12 are variable displacement types.
 以下では、図2及び図3を用いて、遊星歯車機構20の構成について説明する。遊星歯車機構20は、HST10の後方に配置される。遊星歯車機構20は、主として遊星ケース21、第一伝動軸22、第一伝動ギヤ23、第二伝動軸24、サンギヤ25、第二伝動ギヤ26、インターナルギヤ27、第三伝動ギヤ28、キャリヤ29、プラネタリギヤ30・30・・・、モード切換クラッチ31、第三伝動軸32、第四伝動ギヤ33、第五伝動ギヤ34、逆転ギヤ35、第六伝動ギヤ36、正逆転切換クラッチ37等を具備する。 Hereinafter, the configuration of the planetary gear mechanism 20 will be described with reference to FIGS. 2 and 3. The planetary gear mechanism 20 is disposed behind the HST 10. The planetary gear mechanism 20 mainly includes a planetary case 21, a first transmission shaft 22, a first transmission gear 23, a second transmission shaft 24, a sun gear 25, a second transmission gear 26, an internal gear 27, a third transmission gear 28, a carrier. 29, planetary gears 30 and 30, a mode switching clutch 31, a third transmission shaft 32, a fourth transmission gear 33, a fifth transmission gear 34, a reverse gear 35, a sixth transmission gear 36, a forward / reverse switching clutch 37, and the like. It has.
 遊星ケース21は、遊星歯車機構20を構成する種々の軸やギヤ等を内包する箱状の部材である。遊星ケース21は、HST10の後方に配置される。 The planetary case 21 is a box-shaped member that includes various shafts, gears, and the like that constitute the planetary gear mechanism 20. The planetary case 21 is disposed behind the HST 10.
 第一伝動軸22は、駆動軸13と同一軸線上に配置される軸状の部材である。第一伝動軸22は、駆動軸13の後方に、駆動軸13と相対回転不能となるように具備される。第一伝動軸22の後端部は、遊星ケース21に回動可能に支持される。 The first transmission shaft 22 is a shaft-like member arranged on the same axis as the drive shaft 13. The first transmission shaft 22 is provided behind the drive shaft 13 so as not to rotate relative to the drive shaft 13. The rear end portion of the first transmission shaft 22 is rotatably supported by the planetary case 21.
 第一伝動ギヤ23は、第一伝動軸22の前端部及び駆動軸13の後端部に、第一伝動軸22及び駆動軸13と相対回転不能となるように具備される。第一伝動軸22の前端部は、第一伝動ギヤ23を介して遊星ケース21に支持される。 The first transmission gear 23 is provided at the front end portion of the first transmission shaft 22 and the rear end portion of the drive shaft 13 so as not to rotate relative to the first transmission shaft 22 and the drive shaft 13. The front end portion of the first transmission shaft 22 is supported by the planetary case 21 via the first transmission gear 23.
 第二伝動軸24は、第一伝動軸22と平行に配置される軸状の部材である。第二伝動軸24の前端部は、遊星ケース21に回動可能に支持される。 The second transmission shaft 24 is a shaft-like member arranged in parallel with the first transmission shaft 22. The front end portion of the second transmission shaft 24 is rotatably supported by the planetary case 21.
 サンギヤ25は、第二伝動軸24の前端部に、第二伝動軸24と相対回転可能となるように具備される。サンギヤ25は、その外周に歯を形成された歯車部25aと、歯車部の前方へと延設された軸部25bと、を具備する(図3参照)。 The sun gear 25 is provided at the front end portion of the second transmission shaft 24 so as to be rotatable relative to the second transmission shaft 24. The sun gear 25 includes a gear portion 25a having teeth formed on the outer periphery thereof, and a shaft portion 25b extending forward of the gear portion (see FIG. 3).
 第二伝動ギヤ26は、サンギヤ25の軸部25bに、サンギヤ25と相対回転不能となるように具備される。第二伝動ギヤ26は、第一伝動ギヤ23と噛み合う。 The second transmission gear 26 is provided on the shaft 25b of the sun gear 25 so as not to rotate relative to the sun gear 25. The second transmission gear 26 meshes with the first transmission gear 23.
 インターナルギヤ27は、サンギヤ25の軸部25b上であって第二伝動ギヤ26の後方に、サンギヤ25と相対回転可能となるように具備される。インターナルギヤ27の前端部には、その外周に歯を形成された歯車部27aが具備される。また、インターナルギヤ27の後端部には、その内周に歯を形成された歯車部27bが具備される(図3参照)。 The internal gear 27 is provided on the shaft portion 25b of the sun gear 25 and behind the second transmission gear 26 so as to be rotatable relative to the sun gear 25. The front end portion of the internal gear 27 is provided with a gear portion 27a having teeth formed on the outer periphery thereof. The rear end portion of the internal gear 27 is provided with a gear portion 27b having teeth formed on the inner periphery thereof (see FIG. 3).
 第三伝動ギヤ28は、第二伝動軸24上であってサンギヤ25の前方に、第二伝動軸24と相対回転可能となるように具備される。第三伝動ギヤ28の前端部には、その外周に歯を形成された歯車部28aが具備される(図3参照)。第三伝動ギヤ28は、本発明に係る遊星歯車機構の高速側出力の実施の一形態である。 The third transmission gear 28 is provided on the second transmission shaft 24 and in front of the sun gear 25 so as to be rotatable relative to the second transmission shaft 24. The front end portion of the third transmission gear 28 is provided with a gear portion 28a having teeth formed on the outer periphery thereof (see FIG. 3). The third transmission gear 28 is an embodiment of the high speed side output of the planetary gear mechanism according to the present invention.
 キャリヤ29は、第二伝動軸24上であって第三伝動ギヤ28の前方に、第二伝動軸24と相対回転可能となるように具備される。キャリヤ29の後端部には、その外周に歯を形成された歯車部29aが具備される(図3参照)。キャリヤ29は、本発明に係る遊星歯車機構の低速側出力の実施の一形態である。 The carrier 29 is provided on the second transmission shaft 24 and in front of the third transmission gear 28 so as to be rotatable relative to the second transmission shaft 24. The rear end portion of the carrier 29 is provided with a gear portion 29a having teeth formed on the outer periphery thereof (see FIG. 3). The carrier 29 is one embodiment of the low speed side output of the planetary gear mechanism according to the present invention.
 プラネタリギヤ30・30・・・は、キャリヤ29の前端部にプラネタリ軸30a・30a・・・を介してそれぞれ回動可能に支持される。プラネタリギヤ30・30・・・は、第二伝動軸24を中心とする同心円上に複数具備される。プラネタリギヤ30・30・・・の前端部及び後端部には、その外周に歯を形成された歯車部30b及び歯車部30cがそれぞれ具備される(図3参照)。プラネタリギヤ30の歯車部30bは、インターナルギヤ27の歯車部27b及びサンギヤ25の歯車部25aと噛み合う。プラネタリギヤ30の歯車部30cは、第三伝動ギヤ28の歯車部28aと噛み合う。 The planetary gears 30... Are rotatably supported on the front end portion of the carrier 29 via the planetary shafts 30 a, 30 a. A plurality of planetary gears 30, 30... Are provided on a concentric circle with the second transmission shaft 24 as the center. The front and rear end portions of the planetary gears 30, 30... Are respectively provided with a gear portion 30 b and a gear portion 30 c having teeth formed on the outer periphery thereof (see FIG. 3). The gear portion 30 b of the planetary gear 30 meshes with the gear portion 27 b of the internal gear 27 and the gear portion 25 a of the sun gear 25. The gear portion 30 c of the planetary gear 30 meshes with the gear portion 28 a of the third transmission gear 28.
 モード切換クラッチ31は、キャリヤ29の内側に具備され、第三伝動ギヤ28またはキャリヤ29のいずれか一方と第二伝動軸24とを相対回転不能となるように接続した状態と、第三伝動ギヤ28及びキャリヤ29と第二伝動軸24とを相対回転可能となるように接続を解除した状態と、を切り換えるものである。
 モード切換クラッチ31は、主として低速側クラッチ31a及び高速側クラッチ31bを具備する。
The mode switching clutch 31 is provided inside the carrier 29, and is in a state where either the third transmission gear 28 or the carrier 29 and the second transmission shaft 24 are connected so as not to be relatively rotatable, and the third transmission gear. 28, the carrier 29, and the second transmission shaft 24 are switched to a state in which the connection is released so as to be relatively rotatable.
The mode switching clutch 31 mainly includes a low speed side clutch 31a and a high speed side clutch 31b.
 低速側クラッチ31aは、遊星歯車機構20の低速側出力となるキャリヤ29とHMT4の出力軸となる第二伝動軸24との間の動力の断接を可能とするものである。低速側クラッチ31aは、モード切換クラッチ31の後部に具備される。 The low speed side clutch 31a enables connection / disconnection of power between the carrier 29 that is the low speed side output of the planetary gear mechanism 20 and the second transmission shaft 24 that is the output shaft of the HMT4. The low speed side clutch 31 a is provided at the rear portion of the mode switching clutch 31.
 高速側クラッチ31bは、遊星歯車機構20の高速側出力となる第三伝動ギヤ28とHMT4の出力軸となる第二伝動軸24との間の動力の断接を可能とするものである。高速側クラッチ31bは、モード切換クラッチ31の前部に具備される。 The high speed side clutch 31b enables connection / disconnection of power between the third transmission gear 28 that is the high speed side output of the planetary gear mechanism 20 and the second transmission shaft 24 that is the output shaft of the HMT 4. The high speed side clutch 31 b is provided at the front portion of the mode switching clutch 31.
 第三伝動軸32は、油圧モータ12の出力軸12aと同一軸線上に配置される軸状の部材である。第三伝動軸32は、出力軸12aの後方に、出力軸12aと相対回転不能となるように具備される。第三伝動軸32は、遊星ケース21に回動可能に支持される。 The third transmission shaft 32 is a shaft-like member arranged on the same axis as the output shaft 12a of the hydraulic motor 12. The third transmission shaft 32 is provided behind the output shaft 12a so as not to rotate relative to the output shaft 12a. The third transmission shaft 32 is rotatably supported by the planetary case 21.
 第四伝動ギヤ33は、第三伝動軸32の後端部に、第三伝動軸32と相対回転不能となるように具備される。第四伝動ギヤ33は、インターナルギヤ27の歯車部27aと噛み合う。 The fourth transmission gear 33 is provided at the rear end of the third transmission shaft 32 so as not to rotate relative to the third transmission shaft 32. The fourth transmission gear 33 meshes with the gear portion 27 a of the internal gear 27.
 第五伝動ギヤ34は、第一伝動軸22の後端部に、第一伝動軸22と相対回転可能となるように具備される。第五伝動ギヤ34の前端部及び後端部には、その外周に歯を形成された歯車部34a及び歯車部34bがそれぞれ具備される(図3参照)。第五伝動ギヤ34の歯車部34aは、キャリヤ29の歯車部29aと噛み合う。 The fifth transmission gear 34 is provided at the rear end portion of the first transmission shaft 22 so as to be rotatable relative to the first transmission shaft 22. The front end portion and the rear end portion of the fifth transmission gear 34 are respectively provided with a gear portion 34a and a gear portion 34b having teeth formed on the outer periphery thereof (see FIG. 3). The gear portion 34 a of the fifth transmission gear 34 meshes with the gear portion 29 a of the carrier 29.
 逆転ギヤ35は、第二伝動軸24上であってキャリヤ29の後方に、第二伝動軸24と相対回転可能となるように具備される。逆転ギヤ35の後端部には、その外周に歯を形成された歯車部35aが具備される。 The reverse gear 35 is provided on the second transmission shaft 24 and behind the carrier 29 so as to be rotatable relative to the second transmission shaft 24. The rear end portion of the reverse gear 35 is provided with a gear portion 35a having teeth formed on the outer periphery thereof.
 第六伝動ギヤ36は、第五伝動ギヤ34の歯車部34b及び逆転ギヤ35の歯車部35aと噛み合うように配置される(図2参照)。第六伝動ギヤ36は、支持軸36aを中心として回動可能に支持される。なお、便宜上、図3における第六伝動ギヤ36及び支持軸36aは図示を省略している。 The sixth transmission gear 36 is disposed so as to mesh with the gear portion 34b of the fifth transmission gear 34 and the gear portion 35a of the reverse gear 35 (see FIG. 2). The sixth transmission gear 36 is supported so as to be rotatable about a support shaft 36a. For convenience, the sixth transmission gear 36 and the support shaft 36a in FIG. 3 are not shown.
 正逆転切換クラッチ37は、逆転ギヤ35の前方に具備され、逆転ギヤ35と第二伝動軸24とを相対回転不能となるように接続した状態と、相対回転可能となるように接続を解除した状態と、を切り換えるものである。 The forward / reverse switching clutch 37 is provided in front of the reverse gear 35 and is disconnected so that the reverse gear 35 and the second transmission shaft 24 are connected so as not to rotate relative to each other. The state is switched.
 上述の如く構成された遊星歯車機構20の動作態様について説明する。
 エンジン3により発生された動力は、駆動軸13を介して第一伝動ギヤ23へと伝達される。第一伝動ギヤ23に伝達された動力は、第二伝動ギヤ26及びサンギヤ25を介してプラネタリギヤ30・30・・・へと伝達される。
 一方、エンジン3により発生され、HST10において変速された動力は、油圧モータ12の出力軸12aを介して第三伝動軸32へと伝達される。第三伝動軸32に伝達された動力は、第四伝動ギヤ33及びインターナルギヤ27を介してプラネタリギヤ30・30・・・へと伝達される。
The operation mode of the planetary gear mechanism 20 configured as described above will be described.
The power generated by the engine 3 is transmitted to the first transmission gear 23 via the drive shaft 13. The power transmitted to the first transmission gear 23 is transmitted to the planetary gears 30, 30... Via the second transmission gear 26 and the sun gear 25.
On the other hand, the power generated by the engine 3 and shifted in the HST 10 is transmitted to the third transmission shaft 32 via the output shaft 12 a of the hydraulic motor 12. The power transmitted to the third transmission shaft 32 is transmitted to the planetary gears 30, 30... Via the fourth transmission gear 33 and the internal gear 27.
 プラネタリギヤ30・30・・・に伝達された前記2つの経路からの動力により、プラネタリギヤ30・30・・・は、プラネタリ軸30a・30a・・・を中心として自転しながら、第二伝動軸24を中心として公転する。プラネタリギヤ30・30・・・の自転により、第三伝動ギヤ28へと動力が伝達される。プラネタリギヤ30・30・・・の公転により、キャリヤ29へと動力が伝達される。
 低速側クラッチ31aにより、キャリヤ29と第二伝動軸24とが接続された場合、キャリヤ29の動力が第二伝動軸24へと伝達される。高速側クラッチ31bにより、第三伝動ギヤ28と第二伝動軸24とが接続された場合、第三伝動ギヤ28の動力が第二伝動軸24へと伝達される。
The planetary gears 30, 30... Rotate around the planetary shafts 30 a, 30 a, and the second transmission shaft 24 by the power from the two paths transmitted to the planetary gears 30, 30. Revolves as a center. Power is transmitted to the third transmission gear 28 by the rotation of the planetary gears 30. Power is transmitted to the carrier 29 by the revolution of the planetary gears 30.
When the carrier 29 and the second transmission shaft 24 are connected by the low speed side clutch 31 a, the power of the carrier 29 is transmitted to the second transmission shaft 24. When the third transmission gear 28 and the second transmission shaft 24 are connected by the high-speed clutch 31b, the power of the third transmission gear 28 is transmitted to the second transmission shaft 24.
 また、キャリヤ29の動力は、第五伝動ギヤ34及び第六伝動ギヤ36を介して逆転ギヤ35へと伝達される。モード切換クラッチ31が第三伝動ギヤ28及びキャリヤ29と第二伝動軸24との接続を解除している状態において、正逆転切換クラッチ37により逆転ギヤ35と第二伝動軸24とが接続された場合、逆転ギヤ35の動力が第二伝動軸24へと伝達される。この場合、第二伝動軸24は、モード切換クラッチ31が第三伝動ギヤ28またはキャリヤ29と第二伝動軸24とを接続した場合の回転方向と逆方向に回転する。 Further, the power of the carrier 29 is transmitted to the reverse gear 35 through the fifth transmission gear 34 and the sixth transmission gear 36. In a state where the mode switching clutch 31 releases the connection between the third transmission gear 28 and the carrier 29 and the second transmission shaft 24, the reverse rotation gear 35 and the second transmission shaft 24 are connected by the forward / reverse switching clutch 37. In this case, the power of the reverse gear 35 is transmitted to the second transmission shaft 24. In this case, the second transmission shaft 24 rotates in the direction opposite to the rotation direction when the mode switching clutch 31 connects the third transmission gear 28 or the carrier 29 and the second transmission shaft 24.
 上記の如く、エンジン3により発生された動力と、エンジン3により発生されHST10において変速された動力は、遊星歯車機構20において合成され、当該合成された動力(以下、単に「合成動力」と記す)は第二伝動軸24より出力される。 As described above, the power generated by the engine 3 and the power generated by the engine 3 and shifted in the HST 10 are combined in the planetary gear mechanism 20 and the combined power (hereinafter simply referred to as “combined power”). Is output from the second transmission shaft 24.
 図2に示すように、副変速機構40は、遊星歯車機構20から伝達される合成動力を変速して出力するものである。本実施例においては、副変速クラッチ41を切り換えることにより、変速比を低速または高速、若しくは動力の伝達を切断する中立状態に切り換えることができる。
 副変速機構40において変速された動力は、副変速出力軸42を介してデフ機構50へと伝達される。
As shown in FIG. 2, the subtransmission mechanism 40 shifts and outputs the combined power transmitted from the planetary gear mechanism 20. In the present embodiment, by switching the auxiliary transmission clutch 41, the transmission gear ratio can be switched to a low speed or a high speed, or to a neutral state in which the transmission of power is cut off.
The power shifted in the auxiliary transmission mechanism 40 is transmitted to the differential mechanism 50 via the auxiliary transmission output shaft 42.
 デフ機構50は、副変速機構40から伝達される動力を左右に分配して出力するものである。前記分配された動力は、それぞれ左右の後輪6・6へと伝達される。 The differential mechanism 50 distributes and outputs the power transmitted from the subtransmission mechanism 40 to the left and right. The distributed power is transmitted to the left and right rear wheels 6 and 6, respectively.
 なお、本実施形態に係る作業車両1における、エンジン3から前輪5・5への動力伝達のための構成については説明を省略する。 In addition, description is abbreviate | omitted about the structure for the power transmission from the engine 3 to the front wheels 5 * 5 in the work vehicle 1 which concerns on this embodiment.
 制御機構60は、HMT4の制御を行うためのものである。制御機構60は、主として、斜板制御アクチュエータ101、低速用電磁弁102、高速用電磁弁103、逆転用電磁弁104、回転数検出手段105、変速レバー7c、制御装置100等を具備する。 The control mechanism 60 is for controlling the HMT 4. The control mechanism 60 mainly includes a swash plate control actuator 101, a low speed solenoid valve 102, a high speed solenoid valve 103, a reverse rotation solenoid valve 104, a rotation speed detecting means 105, a speed change lever 7c, a control device 100, and the like.
 斜板制御アクチュエータ101は、油圧ポンプ11の可動斜板11aの傾斜角度を変更することで、HST10の変速比を変更するものである。本実施形態の斜板制御アクチュエータ101は、油圧機器(例えば、油圧シリンダ等)を用いて構成される。 The swash plate control actuator 101 changes the gear ratio of the HST 10 by changing the inclination angle of the movable swash plate 11a of the hydraulic pump 11. The swash plate control actuator 101 of this embodiment is configured using hydraulic equipment (for example, a hydraulic cylinder or the like).
 低速用電磁弁102は、低速側クラッチ31aへと作動油を供給し、キャリヤ29と第二伝動軸24とが相対回転不能となるように、低速側クラッチ31aを作動させるものである。 The low speed solenoid valve 102 supplies hydraulic oil to the low speed side clutch 31a, and operates the low speed side clutch 31a so that the carrier 29 and the second transmission shaft 24 cannot be rotated relative to each other.
 高速用電磁弁103は、高速側クラッチ31bへと作動油を供給し、第三伝動ギヤ28と第二伝動軸24とが相対回転不能となるように、高速側クラッチ31bを作動させるものである。 The high-speed solenoid valve 103 supplies hydraulic oil to the high-speed side clutch 31b and operates the high-speed side clutch 31b so that the third transmission gear 28 and the second transmission shaft 24 cannot be rotated relative to each other. .
 逆転用電磁弁104は、正逆転切換クラッチ37へと作動油を供給し、逆転ギヤ35と第二伝動軸24とが相対回転不能となるように、正逆転切換クラッチ37を作動させるものである。 The reverse solenoid valve 104 supplies hydraulic oil to the forward / reverse switching clutch 37, and operates the forward / reverse switching clutch 37 so that the reverse gear 35 and the second transmission shaft 24 cannot be rotated relative to each other. .
 回転数検出手段105は、副変速出力軸42の回転数を検出するものである。回転数検出手段105は、本発明に係る変速比検出手段の実施の一形態である。 The rotation speed detection means 105 detects the rotation speed of the auxiliary transmission output shaft 42. The rotation speed detection means 105 is an embodiment of the transmission ratio detection means according to the present invention.
 変速レバー7cは、前述の如くHMT4の変速比を変更することにより、作業車両1の走行速度を設定するものである。 The transmission lever 7c sets the traveling speed of the work vehicle 1 by changing the transmission ratio of the HMT 4 as described above.
 制御装置100は、斜板制御アクチュエータ101、低速用電磁弁102、高速用電磁弁103、及び逆転用電磁弁104の動作を制御するものである。 The control device 100 controls the operations of the swash plate control actuator 101, the low speed solenoid valve 102, the high speed solenoid valve 103, and the reverse rotation solenoid valve 104.
 制御装置100は、斜板制御アクチュエータ101に接続され、斜板制御アクチュエータ101の動作を制御することが可能であり、ひいては油圧ポンプ11の可動斜板11aの傾斜角度を制御することが可能である。
 なお、斜板制御アクチュエータ101は油圧により作動されるため、制御装置100による制御信号が斜板制御アクチュエータ101に送信されてから、実際に斜板制御アクチュエータ101により可動斜板11aが作動されるまでには一定時間の遅れが生じる。以下では、当該遅れ時間を「動作むだ時間T」と定義する。
The control device 100 is connected to the swash plate control actuator 101, can control the operation of the swash plate control actuator 101, and in turn can control the tilt angle of the movable swash plate 11a of the hydraulic pump 11. .
Since the swash plate control actuator 101 is actuated by hydraulic pressure, the control signal from the control device 100 is transmitted to the swash plate control actuator 101 until the movable swash plate 11a is actually actuated by the swash plate control actuator 101. There is a delay of a certain time. Hereinafter, the delay time is defined as “operation dead time T H ”.
 制御装置100は、低速用電磁弁102に接続され、低速用電磁弁102の動作を制御することが可能であり、ひいては低速側クラッチ31aの動作を制御することが可能である。 The control device 100 is connected to the low-speed solenoid valve 102, can control the operation of the low-speed solenoid valve 102, and thus can control the operation of the low-speed side clutch 31a.
 制御装置100は、高速用電磁弁103に接続され、高速用電磁弁103の動作を制御することが可能であり、ひいては高速側クラッチ31bの動作を制御することが可能である。
 なお、低速側クラッチ31a及び高速側クラッチ31bは油圧により作動される。このため、制御装置100による制御信号Sが低速用電磁弁102及び高速用電磁弁103に送信されてから、低速側クラッチ31a及び高速側クラッチ31bに加わる圧力Pが設定圧Psに達し、実際に作動するまでには一定時間の遅れが生じる。以下では、低速側クラッチ31a及び高速側クラッチ31bを作動させる旨の制御信号Sが送信されてから、実際に低速側クラッチ31a及び高速側クラッチ31bに設定圧Psが加わり、作動するまでの遅れ時間を「クラッチ昇圧時間T」と、低速側クラッチ31a及び高速側クラッチ31bの作動を停止させる旨の制御信号Sが送信されてから、実際に低速側クラッチ31a及び高速側クラッチ31bにかかる設定圧Psが減少し、作動が解除されるまでの遅れ時間を「クラッチ減圧時間T」と、それぞれ定義する。
The control device 100 is connected to the high-speed solenoid valve 103, can control the operation of the high-speed solenoid valve 103, and thus can control the operation of the high-speed side clutch 31b.
The low speed side clutch 31a and the high speed side clutch 31b are operated by hydraulic pressure. For this reason, after the control signal S from the control device 100 is transmitted to the low speed solenoid valve 102 and the high speed solenoid valve 103, the pressure P applied to the low speed side clutch 31a and the high speed side clutch 31b reaches the set pressure Ps, and actually There is a delay of a certain time before the operation. In the following, a delay time from when the control signal S for operating the low speed side clutch 31a and the high speed side clutch 31b is transmitted to when the set pressure Ps is actually applied to the low speed side clutch 31a and the high speed side clutch 31b and is operated the as "clutch boosting time T u", the control signal S for stopping the operation of the low speed side clutch 31a and the high speed clutch 31b is transmitted, actually according to the low speed side clutch 31a and the high speed side clutch 31b set pressure The delay time until Ps decreases and the operation is released is defined as “clutch pressure reduction time T d ”.
 制御装置100は、逆転用電磁弁104に接続され、逆転用電磁弁104の動作を制御することが可能である。 The control device 100 is connected to the reverse solenoid valve 104 and can control the operation of the reverse solenoid valve 104.
 制御装置100は、変速レバー7c(より詳細には、変速レバー7cの操作量を検出する操作量検出手段7d)に接続され、変速レバー7cの操作量の検出信号を受信することにより、変速レバー7cによるHMT4の変速比の設定値(以下、単に「変速比指令値R」と記す)を検出することが可能である。なお、本実施形態においては、変速レバー7cにより作業車両1の速度を設定するものとしたが、本発明はこれに限るものではなく、変速ペダル等により設定する構成とすることも可能である。 The control device 100 is connected to the speed change lever 7c (more specifically, an operation amount detection means 7d for detecting the operation amount of the speed change lever 7c), and receives a detection signal of the operation amount of the speed change lever 7c. It is possible to detect the setting value of the transmission ratio of the HMT 4 according to 7c (hereinafter simply referred to as “transmission ratio command value R o ”). In the present embodiment, the speed of the work vehicle 1 is set by the speed change lever 7c. However, the present invention is not limited to this, and the speed can be set by a speed change pedal or the like.
 制御装置100は、回転数検出手段105に接続され、回転数検出手段105による副変速出力軸42の回転数の検出信号を受信することが可能であり、ひいてはHMT4の変速比や作業車両1の変速比及び速度を算出することが可能である。 The control device 100 is connected to the rotation speed detection means 105 and can receive a detection signal of the rotation speed of the auxiliary transmission output shaft 42 by the rotation speed detection means 105. As a result, the speed ratio of the HMT 4 and the work vehicle 1 It is possible to calculate the gear ratio and speed.
 なお、本実施例においては、副変速出力軸42の回転数からHMT4の変速比や作業車両1の速度を検出するものとしたが、本発明はこれに限るものではなく、前輪5・5や後輪6・6の回転数や、その他の軸やギヤ等の回転数から作業車両1の速度を検出する構成とすることも可能である。 In the present embodiment, the gear ratio of the HMT 4 and the speed of the work vehicle 1 are detected from the rotation speed of the auxiliary transmission output shaft 42. However, the present invention is not limited to this, and the front wheels 5 and 5 It is also possible to adopt a configuration in which the speed of the work vehicle 1 is detected from the number of rotations of the rear wheels 6 and 6 and the number of rotations of other shafts and gears.
 制御装置100は、具体的には、CPU、ROM、RAM、HDD等がバスで接続される構成であってもよく、あるいはワンチップのLSI等からなる構成であってもよい。
 制御装置100には、斜板制御アクチュエータ101等の動作を制御するための種々のプログラム及びデータが格納される。制御装置100は、変速レバー7cの操作量に基づいて、斜板制御アクチュエータ101、低速用電磁弁102、及び高速用電磁弁103等の動作を制御する。
Specifically, the control device 100 may be configured such that a CPU, a ROM, a RAM, an HDD, and the like are connected by a bus, or may be configured by a one-chip LSI or the like.
The control device 100 stores various programs and data for controlling the operation of the swash plate control actuator 101 and the like. The control device 100 controls the operations of the swash plate control actuator 101, the low speed solenoid valve 102, the high speed solenoid valve 103, and the like based on the operation amount of the speed change lever 7c.
 以下では、図4を用いて、制御装置100が具備するマップ110について説明する。
 マップ110は、作業車両1の変速比Rに対応する、油圧ポンプ11の可動斜板11aの傾斜角度αを算出するための計算式を示すものである。
 ここで、本実施形態における変速比Rとは、HMT4において変速された動力(具体的には、副変速出力軸42の回転数)と、エンジン3の動力(エンジン回転数)との比である。
 なお、図4に示された関係は、作業車両1に負荷がかかっていない場合を想定した、理論上の関係である。また、エンジン3の回転数は一定値であるものとし、副変速クラッチ41は、低速または高速のいずれか一方に設定されているものとする。
Below, the map 110 which the control apparatus 100 comprises is demonstrated using FIG.
The map 110 shows a calculation formula for calculating the inclination angle α of the movable swash plate 11 a of the hydraulic pump 11 corresponding to the gear ratio R of the work vehicle 1.
Here, the gear ratio R in the present embodiment is a ratio between the power shifted in the HMT 4 (specifically, the rotational speed of the auxiliary transmission output shaft 42) and the power of the engine 3 (engine rotational speed). .
Note that the relationship shown in FIG. 4 is a theoretical relationship that assumes a case where the work vehicle 1 is not loaded. Further, it is assumed that the rotational speed of the engine 3 is a constant value, and the auxiliary transmission clutch 41 is set to one of low speed and high speed.
 マップ110の縦軸は、油圧ポンプ11の可動斜板11aの傾斜角度αを示している。可動斜板11aは、その傾斜角度αをαmaxから-αmaxまで変化させることができる。
 ここで、傾斜角度αが0<α≦αmaxの範囲において、油圧モータ12は、正方向に回転(正転)される。以下、この範囲を「正転側」と定義する。また、傾斜角度αが-αmax≦α<0の範囲において、油圧モータ12は、正方向とは逆方向に回転(逆転)される。以下、この範囲を「逆転側」と定義する。
 また、αmaxは、油圧ポンプ11の可動斜板11aが正転方向に最大限傾斜できる角度である。
 マップ110の横軸は、作業車両1の変速比Rを示している。マップ110は、R=0を境に、図面(図4)右側が前進時の変速比、図面(図4)左側が後進時の変速比を示している。
The vertical axis of the map 110 indicates the inclination angle α of the movable swash plate 11 a of the hydraulic pump 11. The movable swash plate 11a can change the inclination angle α from α max to −α max .
Here, the hydraulic motor 12 is rotated in the forward direction (forward rotation) when the inclination angle α is in the range of 0 <α ≦ α max . Hereinafter, this range is defined as “forward rotation side”. Further, the hydraulic motor 12 rotates (reverses) in the direction opposite to the forward direction in the range where the inclination angle α is in the range of −α max ≦ α <0. Hereinafter, this range is defined as “reverse rotation side”.
Α max is an angle at which the movable swash plate 11a of the hydraulic pump 11 can be tilted to the maximum in the forward rotation direction.
The horizontal axis of the map 110 indicates the gear ratio R of the work vehicle 1. In the map 110, with R = 0 as a boundary, the right side of the drawing (FIG. 4) shows the speed ratio during forward travel, and the left side of the drawing (FIG. 4) shows the speed ratio during reverse travel.
 直線Lは、低速側クラッチ31aのみが作動した場合における、傾斜角度αと変速比Rとの関係を示したものである。すなわち、直線Lは、低速側クラッチ31aのみが作動した場合において、変速比Rに基づいて傾斜角度αを算出するための計算式を示している。
 この場合、傾斜角度αを逆転側から正転側へと変化させるにつれて、変速比は前進側へと増加する。以下、この状態を、単に「低速モードML」と記す。
 また、α=-αの場合、HMT4において合成された合成動力は0であり、R=0となる。すなわち、作業車両1は停車する。
The straight line L shows the relationship between the inclination angle α and the gear ratio R when only the low-speed clutch 31a is operated. That is, the straight line L indicates a calculation formula for calculating the inclination angle α based on the transmission gear ratio R when only the low speed side clutch 31a is operated.
In this case, as the inclination angle α is changed from the reverse rotation side to the normal rotation side, the gear ratio increases from the forward side. Hereinafter, this state is simply referred to as “low speed mode ML”.
Also, in the case of alpha =-.alpha. A, synthesized synthesized power in HMT4 is 0 and R = 0. That is, the work vehicle 1 stops.
 直線Hは、高速側クラッチ31bのみが作動した場合における、傾斜角度αと変速比Rとの関係を示したものである。すなわち、直線Hは、高速側クラッチ31bのみが作動した場合において、変速比Rに基づいて傾斜角度αを算出するための計算式を示している。
 この場合、傾斜角度αを正転側から逆転側へと変化させるにつれて、変速比Rは前進側へと増加する。以下、この状態を、単に「高速モードMH」と記す。
A straight line H shows the relationship between the inclination angle α and the gear ratio R when only the high-speed clutch 31b is operated. That is, the straight line H indicates a calculation formula for calculating the inclination angle α based on the speed ratio R when only the high-speed clutch 31b is operated.
In this case, as the inclination angle α is changed from the forward rotation side to the reverse rotation side, the speed ratio R increases from the forward side. Hereinafter, this state is simply referred to as “high-speed mode MH”.
 直線Bは、正逆転切換クラッチ37のみが作動した場合における、傾斜角度αと変速比Rとの関係を示したものである。すなわち、直線Bは、正逆転切換クラッチ37のみが作動した場合において、変速比Rに基づいて傾斜角度αを算出するための計算式を示している。
 この場合、傾斜角度αを逆転側から正転側へと変化させるにつれて、変速比Rは後進側へと増加する。この状態を、単に「後進モードMB」と記す。
The straight line B shows the relationship between the inclination angle α and the gear ratio R when only the forward / reverse switching clutch 37 is operated. That is, the straight line B shows a calculation formula for calculating the inclination angle α based on the gear ratio R when only the forward / reverse switching clutch 37 is operated.
In this case, as the inclination angle α is changed from the reverse rotation side to the normal rotation side, the transmission gear ratio R increases to the reverse side. This state is simply referred to as “reverse mode MB”.
 直線Lと直線Hとは、α=αmaxとなる点において交差するように構成される。この点における変速比R及び傾斜角度αを、「切換変速比R」及び「切換傾斜角度α」と定義する。すなわち、α=αmaxとなる。 The straight line L and the straight line H are configured to intersect at a point where α = α max . The gear ratio R and the inclination angle α at this point are defined as “switching gear ratio R c ” and “switching inclination angle α c ”. That is, α c = α max .
 本実施形態においては、直線Lの傾きと直線Hの傾きは、その絶対値が等しく、互いに符号が異なる値となるように設定される。このように設定することにより、低速モードML時と高速モードMH時におけるHST10に加わる負荷が等しくなる。これによって、低速モードMLと高速モードMHとを切り換えても、作業車両1の変速比Rは理論上一致し、変速(低速モードMLと高速モードMHとの切り換え)による変速比Rの変動(変速ショック)を極小化することができる。
 ただし、前記絶対値が一致していない(等しくない)場合であっても、実際上は、低速モードMLと高速モードMHとの切り換え時における変速比Rの変動は十分小さい。このため、本発明は前記絶対値が一致する構成に限定するものではなく、前記絶対値が異なる構成であってもよい。
 直線Lと直線Bとは、α=-αとなる点、すなわちR=0となる点において交差する。
In the present embodiment, the inclination of the straight line L and the inclination of the straight line H are set so that the absolute values thereof are equal and the signs are different from each other. By setting in this way, loads applied to the HST 10 in the low speed mode ML and the high speed mode MH are equalized. As a result, even if the low speed mode ML and the high speed mode MH are switched, the transmission gear ratio R of the work vehicle 1 is theoretically the same, and the change in the transmission gear ratio R due to the shift (switching between the low speed mode ML and the high speed mode MH). Shock) can be minimized.
However, even if the absolute values do not match (not equal to each other), the change in the speed ratio R at the time of switching between the low speed mode ML and the high speed mode MH is practically small. For this reason, this invention is not limited to the structure with which the said absolute value corresponds, The structure from which the said absolute value differs may be sufficient.
The straight line L and the straight line B, the point to be α = -α A, i.e. intersect at a point to be R = 0.
 以下では、制御装置100によるHMT4の制御態様について説明する。 Hereinafter, the control mode of the HMT 4 by the control device 100 will be described.
 まず、図4及び図5を用いて各パラメータの関係について説明する。
 制御装置100は、変速レバー7cにより変速比指令値Rが設定されると、当該変速比指令値Rに基づいて制限変速比指令値Rolを算出する。制限変速比指令値Rolとは、実変速比Rが急激に変速比指令値Rへと変化することを防止するために、変速比指令値Rの時間変化率を所定の傾きに制限したものである。
First, the relationship between parameters will be described with reference to FIGS.
Controller 100, the speed ratio command value R o is set by the shift lever 7c, it calculates a limit speed ratio command value R ol based on the gear ratio command value R o. The limit speed ratio command value R ol, to actual gear ratio R t is prevented from varying to abruptly speed ratio command value R o, the time rate of change of the gear ratio command value R o at a predetermined inclination Restricted.
 制御装置100は、制限変速比指令値Rol及びマップ110に示された各計算式(低速モードMLにおいては図4の直線L、高速モードMHにおいては図4の直線H)に基づいて、傾斜角度指令値αを算出する。傾斜角度指令値αとは、制限変速比指令値Rolに対応する傾斜角度αの値である。 The control device 100 determines the inclination based on the limiting speed ratio command value R ol and each calculation formula shown in the map 110 (the straight line L in FIG. 4 in the low speed mode ML and the straight line H in FIG. 4 in the high speed mode MH). An angle command value α o is calculated. The inclination angle command value α o is a value of the inclination angle α corresponding to the limiting speed ratio command value R ol .
 制御装置100は、回転数検出手段105により検出される副変速出力軸42の回転数及びエンジン3の回転数に基づいて、実変速比Rを算出する。実変速比Rとは、作業車両1の実際の変速比Rの値である。 The control device 100 calculates the actual speed ratio R t based on the rotation speed of the auxiliary transmission output shaft 42 detected by the rotation speed detection means 105 and the rotation speed of the engine 3. The actual speed ratio Rt is the value of the actual speed ratio R of the work vehicle 1.
 制御装置100は、実変速比R及び各計算式(低速モードMLにおいては図4の直線L、高速モードMHにおいては図4の直線H)に基づいて、実傾斜角度αを算出する。実傾斜角度αとは、実変速比Rに対応する傾斜角度αの値である。 The control device 100 calculates the actual inclination angle α t based on the actual speed ratio R t and each calculation formula (the straight line L in FIG. 4 in the low speed mode ML and the straight line H in FIG. 4 in the high speed mode MH). The actual inclination angle α t is a value of the inclination angle α corresponding to the actual speed ratio R t .
 制御装置100は、傾斜角度指令値αと実傾斜角度αを比較してフィードバックすることにより、FB後傾斜角度指令値αofを算出する。FB後傾斜角度指令値αofとは、フィードバック量Fを傾斜角度指令値αに加えて得られる値である。なお、本実施形態におけるフィードバックの手法としては、PI制御等を用いることが可能であるが、本発明は当該手法を限定するものではない。 The control device 100 calculates the post-FB tilt angle command value α of by comparing the tilt angle command value α o and the actual tilt angle α t and feeding back. The post-FB tilt angle command value α of is a value obtained by adding the feedback amount F to the tilt angle command value α o . Note that PI control or the like can be used as a feedback technique in the present embodiment, but the present invention does not limit the technique.
 以下では、図5を用いて、制御装置100が低速モードML及び高速モードMHにおいて、上記各パラメータを用いて行うHMT4の制御について説明する。なお、図5の横軸は、経過時間ETを示している。 Hereinafter, with reference to FIG. 5, the control of the HMT 4 performed by the control device 100 using the above parameters in the low speed mode ML and the high speed mode MH will be described. The horizontal axis in FIG. 5 indicates the elapsed time ET.
 制御装置100は、実変速比Rが変速比指令値Rとなるように、斜板制御アクチュエータ101の動作を制御する。
 より詳細には、制御装置100は、可動斜板11aの実傾斜角度αがFB後傾斜角度指令値αofとなるように、斜板制御アクチュエータ101に制御信号を送信する。斜板制御アクチュエータ101は、当該制御信号に従って、可動斜板11aの実傾斜角度αを変更する。
 このようにして、可動斜板11aの実傾斜角度αがFB後傾斜角度指令値αofとなるように制御することにより、実変速比Rが制限変速比指令値Rolとなるように制御することができる。
 また、制御装置100は、制限変速比指令値Rolを徐々に変速比指令値Rへと近づけることにより、実変速比Rが変速比指令値Rとなるように制御することができる。
The control device 100 controls the operation of the swash plate control actuator 101 so that the actual speed ratio Rt becomes the speed ratio command value Ro .
More specifically, the control device 100 transmits a control signal to the swash plate control actuator 101 so that the actual inclination angle α t of the movable swash plate 11a becomes the post-FB inclination angle command value α of . The swash plate control actuator 101 changes the actual inclination angle α t of the movable swash plate 11a according to the control signal.
In this way, by controlling the actual inclination angle α t of the movable swash plate 11a to become the post-FB inclination angle command value α of , the actual transmission ratio R t becomes the limited transmission ratio command value R ol. Can be controlled.
Further, the control unit 100, by approaching the limit speed ratio command value R ol to gradually speed ratio command value R o, can be actual gear ratio R t is controlled to be gear ratio command value R o .
 上記のような、低速モードML及び高速モードMHにおける制御を「通常制御」と定義して、以下の説明を行う。 The control in the low speed mode ML and the high speed mode MH as described above is defined as “normal control” and will be described below.
 次に、図6から図12までを用いて、変速比指令値Rが切換変速比Rより大きい場合の、制御装置100による低速モードMLから高速モードMHへの切り換え制御の態様(以下、単に「第一制御態様」と記す)について説明する。
 制御装置100により、低速モードMLは、切換制御モードを経て、高速モードMHへと切り換えられる。
 また、切換制御モードは、加速第一遷移モードMA1、加速第二遷移モードMA2、及び加速第三遷移モードMA3(図7のステップS120からステップS140)に分けられる。
Next, referring to FIGS. 6 to 12, the control device 100 performs the switching control from the low speed mode ML to the high speed mode MH (hereinafter, referred to as “speed ratio control value R o”) when the speed ratio command value Ro is larger than the switching speed ratio R c . The description will simply be made as “first control mode”.
The low speed mode ML is switched to the high speed mode MH by the control device 100 via the switching control mode.
The switching control mode is divided into an acceleration first transition mode MA1, an acceleration second transition mode MA2, and an acceleration third transition mode MA3 (step S120 to step S140 in FIG. 7).
 図7に示すように、ステップS110において、制御装置100は、低速モードMLにおけるHMT4の制御を行う(図6の低速モードMLを参照)。以下では、その詳細について説明する。 As shown in FIG. 7, in step S110, the control device 100 controls the HMT 4 in the low speed mode ML (see the low speed mode ML in FIG. 6). Below, the detail is demonstrated.
 図8に示すように、ステップS111において、制御装置100は、実変速比Rが変速比指令値Rの95%未満であるか否かを判定する。
 実変速比Rが変速比指令値Rの95%未満でない場合、すなわち、実変速比Rが変速比指令値Rの95%以上である場合、制御装置100は、再度ステップS111の処理を行う。
 実変速比Rが変速比指令値Rの95%未満である場合、制御装置100は、ステップS112に移行する。
As shown in FIG. 8, in step S111, the control unit 100, the actual gear ratio R t is equal to or less than 95% of the speed change ratio command value R o.
When the actual speed ratio R t is not less than 95% of the speed ratio command value Ro , that is, when the actual speed ratio R t is greater than or equal to 95% of the speed ratio command value Ro , the control device 100 again performs step S111. Process.
When the actual gear ratio Rt is less than 95% of the gear ratio command value Ro , the control device 100 proceeds to step S112.
 上記の如く、制御装置100は、ステップS111において、実変速比Rが変速比指令値Rに到達したか否かを判定する。すなわち、実変速比Rが変速比指令値Rの95%以上である場合は、実変速比Rが変速比指令値Rに到達したものとみなす。これは、誤差や動力の伝達ロス等を考慮するためである。 As described above, the control unit 100 determines in step S111, the actual gear ratio R t is whether the host vehicle has reached the speed ratio command value R o. That is, when the actual gear ratio R t is not less than 95% of the speed change ratio command value R o is deemed to actual gear ratio R t reaches the speed change ratio command value R o. This is to take account of errors and power transmission loss.
 ステップS112において、制御装置100は、FB後傾斜角度指令値αofが切換傾斜角度α以上であるか否かを判定する。
 FB後傾斜角度指令値αofが切換傾斜角度α以上でない場合、すなわち、FB後傾斜角度指令値αofが切換傾斜角度α未満である場合、制御装置100は、再度ステップS111の処理を行う。
 FB後傾斜角度指令値αofが切換傾斜角度α以上である場合、制御装置100は、ステップS120に移行する。
In step S112, control device 100 determines whether or not post-FB inclination angle command value α of is greater than or equal to switching inclination angle α c .
When the post-FB inclination angle command value α of is not greater than or equal to the switching inclination angle α c , that is, when the post-FB inclination angle command value α of is less than the switching inclination angle α c , the control device 100 performs the process of step S111 again. Do.
When the post-FB tilt angle command value α of is greater than or equal to the switching tilt angle α c , the control device 100 proceeds to step S120.
 上記の如く、制御装置100は、ステップS112において、FB後傾斜角度指令値αofが切換傾斜角度αに到達したと判定した場合に、切換制御モード(ステップS120以降)に移行する。これによって、切換制御モードに移行するタイミングを、実変速比Rの時間変化の傾き等に影響されることなく決定することができる。 As described above, when it is determined in step S112 that the post-FB inclination angle command value α of has reached the switching inclination angle α c , the control apparatus 100 shifts to the switching control mode (step S120 and subsequent steps). Thus, the switching timing to shift to control mode can be determined without being affected by the inclination or the like of the time variation of the actual gear ratio R t.
 図7に示すように、ステップS120において、制御装置100は、加速第一遷移モードMA1におけるHMT4の制御を行う(図6の加速第一遷移モードMA1を参照)。以下では、その詳細について説明する。 As shown in FIG. 7, in step S120, the control device 100 controls the HMT 4 in the acceleration first transition mode MA1 (see the acceleration first transition mode MA1 in FIG. 6). Below, the detail is demonstrated.
 図9に示すように、ステップS121において、制御装置100は、制限変速比指令値Rolの時間変化を停止、すなわち、制限変速比指令値Rolを一定値に固定する(図6のt1の時点)。この際、制御装置100は、FB後傾斜角度指令値αofも一定値に固定する。この場合のFB後傾斜角度指令値αofの値は、傾斜補正量Δαを傾斜角度指令値αに加えて得られる値である。また、傾斜補正量Δαには、加速第一遷移モードMA1に移行する直前のフィードバック量Fを用いる。
 制御装置100は、上記処理を行った後、ステップS122に移行する。
As shown in FIG. 9, in step S121, the control unit 100 stops the time variation of the limit speed ratio command value R ol, i.e., to fix the limits gear ratio command value R ol to a constant value (of t1 in FIG. 6 Time). At this time, control device 100 also fixes post-FB inclination angle command value α of at a constant value. The value of the post-FB tilt angle command value α of in this case is a value obtained by adding the tilt correction amount Δα to the tilt angle command value α o . Further, the feedback amount F immediately before the transition to the acceleration first transition mode MA1 is used as the inclination correction amount Δα.
The control apparatus 100 transfers to step S122 after performing the said process.
 ステップS122において、制御装置100は、時間Tのカウントを開始する(図6のt1の時点)。
 制御装置100は、上記処理を行った後、ステップS123に移行する。
In step S122, the control device 100 starts counting time T (at time t1 in FIG. 6).
After performing the above process, the control device 100 proceeds to step S123.
 ステップS123において、制御装置100は、高速側クラッチ31bを作動させる旨の制御信号Sを、高速用電磁弁103へと送信する(図6のt1の時点)。
 制御装置100は、上記処理を行った後、ステップS124に移行する。
In step S123, the control device 100 transmits a control signal S for operating the high speed side clutch 31b to the high speed solenoid valve 103 (at time t1 in FIG. 6).
After performing the above processing, the control device 100 proceeds to step S124.
 ステップS124において、制御装置100は、時間Tが動作むだ時間T以上であるか否かを判定する。
 時間Tが動作むだ時間T以上でない場合、すなわち、時間Tが動作むだ時間T未満である場合、制御装置100は、ステップS124の処理を再度行う。
 時間Tが動作むだ時間T以上である場合、制御装置100は、ステップS125に移行する。
In step S124, the control unit 100 determines whether a time T operation dead time T H above.
If not time T operation dead time T H above, i.e., if the time T is less than the dead time operation T H, the control device 100 performs the process of step S124 again.
If the time T is the operation dead time T H above, the control unit 100 proceeds to step S125.
 ステップS125において、制御装置100は、実変速比Rが変速比指令値Rの95%未満であるか否かを判定する。
 実変速比Rが変速比指令値Rの95%未満でない場合、すなわち、実変速比Rが変速比指令値Rの95%以上である場合、制御装置100は、ステップS111に移行する(図8及び図9参照)。
 実変速比Rが変速比指令値Rの95%未満である場合、制御装置100は、ステップS130に移行する。
In step S125, the controller 100, the actual gear ratio R t is equal to or less than 95% of the speed change ratio command value R o.
When the actual gear ratio R t is not less than 95% of the gear ratio command value Ro , that is, when the actual gear ratio R t is 95% or more of the gear ratio command value Ro , the control device 100 proceeds to step S111. (See FIGS. 8 and 9).
When the actual gear ratio Rt is less than 95% of the gear ratio command value Ro , the control device 100 proceeds to step S130.
 上記の如く、制御装置100は、ステップS124及びステップS125の処理によって、低速モードMLから高速モードMHに切り換えることなく実変速比Rが変速比指令値Rの95%以上に到達できるか否かを判定することができる。
 すなわち、制御装置100は、FB後傾斜角度指令値αofが切換傾斜角度αに到達してから動作むだ時間T経過した時点で、実変速比Rが変速比指令値Rの95%以上であれば、低速モードMLから高速モードMHに切り換える必要はないものと判定する。この場合、低速側クラッチ31aと高速側クラッチ31bとを切り換えることがないため、無駄なクラッチの切り換えを行うことがなく、モード切り換えによるオペレータの乗り心地の悪化を防止することができる。
As described above, the control device 100 whether or not the processing of step S124 and step S125, the actual gear ratio R t without switching from the low speed mode ML fast mode MH can reach more than 95% of the speed change ratio command value R o Can be determined.
That is, the control device 100, when the inclination angle command value alpha of after FB operated dead time T H has elapsed after reaching the switching angle of inclination alpha c, the actual gear ratio R t is a gear ratio command value R o 95 If it is% or more, it is determined that there is no need to switch from the low speed mode ML to the high speed mode MH. In this case, since switching between the low-speed side clutch 31a and the high-speed side clutch 31b is not performed, unnecessary clutch switching is not performed, and deterioration of ride comfort of the operator due to mode switching can be prevented.
 図7に示すように、ステップS130において、制御装置100は、加速第二遷移モードMA2におけるHMT4の制御を行う(図6の加速第二遷移モードMA2を参照)。以下では、その詳細について説明する。 As shown in FIG. 7, in step S130, the control device 100 controls the HMT 4 in the acceleration second transition mode MA2 (see the acceleration second transition mode MA2 in FIG. 6). Below, the detail is demonstrated.
 図10に示すように、ステップS131において、制御装置100は、傾斜角度指令値α及び実傾斜角度αを算出するための計算式を直線Lから直線Hへと変更する(図6のt2の時点)。
 制御装置100は、上記処理を行った後、ステップS132に移行する。
As shown in FIG. 10, in step S131, the control device 100 changes the calculation formula for calculating the tilt angle command value α o and the actual tilt angle α t from the straight line L to the straight line H (t2 in FIG. 6). Of time).
After performing the above processing, the control device 100 proceeds to step S132.
 ステップS132において、制御装置100は、制限変速比指令値Rolを切換変速比Rに変更する(図6のt2の時点)。 In step S132, the control unit 100 changes the limit speed ratio command value R ol to switch speed ratio R c (time point t2 in FIG. 6).
 ステップS131及びステップS132の処理によって、傾斜角度指令値α、FB後傾斜角度指令値αof、及び実傾斜角度αは、図11に示す如く変化する。
 すなわち、傾斜角度指令値αは、直線H上において、制限変速比指令値Rol(切換変速比R)に対応する値(切換傾斜角度α)に変化する。
 FB後傾斜角度指令値αofは、直線H上において、傾斜角度指令値αから傾斜補正量Δαを差し引いた値に変化する。これは、図11に示す如く、低速モードMLと高速モードMHとでは変速比Rに対する傾斜角度αの傾きの符号が逆になるため、高速モードMHにおいては、低速モードMLとは逆に、傾斜角度指令値αから傾斜補正量Δαを差し引く必要があるためである。このように、傾斜補正量Δαによって補正されたFB後傾斜角度指令値αofを用いることにより、高速モードMHに切り換えた後の変速比Rの推移がスムースになる。
 実傾斜角度αは、変速比Rはそのままで、直線H上の値へと変化する。
By the processing in step S131 and step S132, the tilt angle command value α o , the post-FB tilt angle command value α of , and the actual tilt angle α t change as shown in FIG.
That is, the inclination angle command value α o changes on the straight line H to a value (switching inclination angle α c ) corresponding to the limited transmission gear ratio command value R ol (switching transmission gear ratio R c ).
The post-FB tilt angle command value α of changes on the straight line H to a value obtained by subtracting the tilt correction amount Δα from the tilt angle command value α o . As shown in FIG. 11, the sign of the inclination of the inclination angle α with respect to the gear ratio R is reversed in the low speed mode ML and the high speed mode MH. Therefore, in the high speed mode MH, the inclination is opposite to the low speed mode ML. This is because it is necessary to subtract the inclination correction amount Δα from the angle command value α o . Thus, by using the post-FB inclination angle command value α of corrected by the inclination correction amount Δα, the transition of the speed ratio R after switching to the high speed mode MH becomes smooth.
The actual inclination angle α t changes to a value on the straight line H while the speed ratio R remains unchanged.
 制御装置100は、上記処理を行った後、ステップS140に移行する。 The control apparatus 100 transfers to step S140 after performing the said process.
 図7に示すように、ステップS140において、制御装置100は、加速第三遷移モードMA3におけるHMT4の制御を行う(図6の加速第三遷移モードMA3を参照)。以下では、その詳細について説明する。 As shown in FIG. 7, in step S140, the control device 100 controls the HMT 4 in the acceleration third transition mode MA3 (see the acceleration third transition mode MA3 in FIG. 6). Below, the detail is demonstrated.
 図12に示すように、ステップS141において、制御装置100は、低速側クラッチ31aを作動させる旨の制御信号Sの送信を停止する(図6のt3の時点)。
 上記処理を行った後、制御装置100は、ステップS142に移行する。
As shown in FIG. 12, in step S141, the control device 100 stops the transmission of the control signal S for operating the low speed side clutch 31a (at time t3 in FIG. 6).
After performing the said process, the control apparatus 100 transfers to step S142.
 ステップS142において、制御装置100は、制限変速比指令値Rolの時間変化を再開させる(図6のt3の時点)。
 制御装置100は、上記処理を行った後、ステップS150に移行する。
In step S142, the control device 100 restarts the time change of the limited speed ratio command value Rol (at time t3 in FIG. 6).
After performing the above processing, the control device 100 proceeds to step S150.
 図7に示すように、ステップS150において、制御装置100は、高速モードMHにおける通常制御を行う。 As shown in FIG. 7, in step S150, the control device 100 performs normal control in the high-speed mode MH.
 また、図6に示すように、加速第一遷移モードMA1に基づく制御が行われる時間である設定時間T1(t1からt2まで)は、「クラッチ昇圧時間T-(動作むだ時間T-同時嵌入時間T)」となるように設定される。
 加速第二遷移モードMA2に基づく制御が行われる時間である設定時間T2(t2からt3まで)は、「動作むだ時間T-クラッチ減圧時間T」となるように設定される。
 加速第三遷移モードMA3に基づく制御が行われる時間である設定時間T3(t3からt4まで)は、「クラッチ減圧時間T-同時嵌入時間T」となるように設定される。
 なお、同時嵌入時間Tとは、低速側クラッチ31aと高速側クラッチ31bとが同時に作動している時間である。
Further, as shown in FIG. 6, the set time T1 (from t1 to t2) during which the control based on the acceleration first transition mode MA1 is performed is “clutch boosting time T u − (operation dead time T H −simultaneous. Insertion time T w ) ”.
A set time T2 (from t2 to t3) that is a time during which the control based on the acceleration second transition mode MA2 is performed is set to be “operation dead time T H −clutch pressure reduction time T d ”.
A set time T3 (from t3 to t4) during which the control based on the acceleration third transition mode MA3 is performed is set to be “clutch pressure reduction time T d −simultaneous insertion time T w ”.
Note that the simultaneous fitting time T w, is the time and the low-speed side clutch 31a and the high speed clutch 31b is activated simultaneously.
 上述の如く、制御装置100により低速モードMLから高速モードMHへの切り換え制御を行った場合、高速モードMHにおいて、低速側クラッチ31aと高速側クラッチ31bとが、同時嵌入時間Tの間だけ同時に作動する(以下、これを単に「同時嵌入」と記す)。これによって、クラッチの切り換えの際にHMT4において動力伝達が遮断されることを防止することができ、作業車両1に大きな負荷がかかっている場合においても、スムースなクラッチの切り換えを行うことが可能である。
 また、ステップS132(図10)において、予め制限変速比指令値Rolを切換変速比Rに変更したことによって、その後の同時嵌入において実変速比Rが切換変速比Rに上昇した際においても変速をスムースに行うことができる。
As described above, if the control apparatus 100 was switched control from the low speed mode ML to the high speed mode MH, the high-speed mode MH, and the low-speed side clutch 31a and the high speed side clutch 31b is, at the same time only during the simultaneous fitting time T w It operates (hereinafter simply referred to as “simultaneous insertion”). As a result, it is possible to prevent the power transmission from being interrupted in the HMT 4 when the clutch is switched, and it is possible to smoothly switch the clutch even when a heavy load is applied to the work vehicle 1. is there.
Further, in step S132 (FIG. 10), by changing the advance limit speed ratio command value R ol the switch speed ratio R c, when the actual gear ratio R t is increased to switch speed ratio R c in the subsequent simultaneous fitting The shift can be smoothly performed in step (b).
 以上の如く、本実施形態のHMT4は、
 油圧ポンプ11または油圧モータ12のうち少なくとも一方を可動斜板11aによる可変容量型としたHST10と、
 エンジン3からの動力と、油圧モータ12からの動力と、を合成して変速する遊星歯車機構20と、
 可動斜板11aの傾斜角度αを油圧により調節する斜板制御アクチュエータ101と、
 遊星歯車機構20のキャリヤ29と第二伝動軸24との間の動力の断接を可能とする低速側クラッチ31aと、
 遊星歯車機構20の第三伝動ギヤ28と第二伝動軸24との間の動力の断接を可能とする高速側クラッチ31bと、
 低速側クラッチ31aを油圧により作動させる低速用電磁弁102と、
 高速側クラッチ31bを油圧により作動させる高速用電磁弁103と、
 変速比Rの目標値である変速比指令値Rを設定する変速レバー7cと、
 実変速比Rを検出する回転数検出手段105と、
 実変速比Rが変速比指令値Rとなるように斜板制御アクチュエータ101、低速用電磁弁102、及び高速用電磁弁103の動作を制御する制御装置100と、
 を具備するHMT4において、
 制御装置100は、
 低速モードML及び高速モードMHにおいて、変速比Rに対応する傾斜角度αを算出するための計算式を示すマップ110を具備し、
 所定の時間変化率で変速比指令値Rとなるように変化する制限変速比指令値Rolを算出し、
 マップ110に基づいて、制限変速比指令値Rolに対応して所定の時間変化率で変化するFB後傾斜角度指令値αofを算出し、
 可動斜板11aの実傾斜角度αがFB後傾斜角度指令値αofとなるように斜板制御アクチュエータ101の動作を制御し、
 FB後傾斜角度指令値αofが所定の切換傾斜角度αに到達した場合、低速側クラッチ31aと高速側クラッチ31bの断接を切り換える切換制御モードに移行するものである。
 このように構成することにより、切換制御モードに移行するタイミングが実変速比Rの時間変化の傾きに影響されることがなく、確実に切換制御モードに移行することができる。また、本実施形態の如く、切換傾斜角度αの値をαmaxに設定することにより、HST10の能力を最大限活用することができ、HST10の小型化、ひいてはHMT4の小型化を図ることが可能となる。
As described above, the HMT 4 of this embodiment is
An HST 10 in which at least one of the hydraulic pump 11 and the hydraulic motor 12 is a variable displacement type using a movable swash plate 11a;
A planetary gear mechanism 20 that combines and shifts the power from the engine 3 and the power from the hydraulic motor 12;
A swash plate control actuator 101 that adjusts the inclination angle α of the movable swash plate 11a by hydraulic pressure;
A low-speed side clutch 31a that enables connection and disconnection of power between the carrier 29 of the planetary gear mechanism 20 and the second transmission shaft 24;
A high-speed side clutch 31b that enables connection and disconnection of power between the third transmission gear 28 and the second transmission shaft 24 of the planetary gear mechanism 20;
A low-speed solenoid valve 102 for operating the low-speed clutch 31a by hydraulic pressure;
A high-speed solenoid valve 103 for operating the high-speed clutch 31b by hydraulic pressure;
A transmission lever 7c for setting a transmission ratio command value Ro that is a target value of the transmission ratio R;
A rotation speed detecting means 105 for detecting the actual gear ratio R t,
Actual gear ratio R t is the speed ratio command value swash plate control actuator 101 such that R o, a control unit 100 for controlling the operation of the low-speed solenoid valve 102 and the high-speed solenoid valve 103,
In HMT4 comprising:
The control device 100
In the low speed mode ML and the high speed mode MH, comprising a map 110 showing a calculation formula for calculating the inclination angle α corresponding to the gear ratio R,
Calculates a limit speed ratio command value R ol which varies as a gear ratio command value R o at a predetermined time rate of change,
Based on the map 110, a post-FB inclination angle command value α of that changes at a predetermined time change rate corresponding to the limited speed ratio command value R ol is calculated,
The operation of the swash plate control actuator 101 is controlled so that the actual inclination angle α t of the movable swash plate 11a becomes the post-FB inclination angle command value α of ,
If FB after tilting angle command value alpha of reaches a predetermined switching inclination angle alpha c, it is to shift to switching control mode for switching the connection and disconnection of the low speed side clutch 31a and the high speed clutch 31b.
With this configuration, without the timing of transition to switching control mode is affected by the slope of the time variation of the actual gear ratio R t, it is possible to reliably transition to switching control mode. Further, as in the present embodiment, by setting the value of the switching inclination angle α c to α max , the ability of the HST 10 can be utilized to the maximum, so that the HST 10 can be miniaturized and consequently the HMT 4 can be miniaturized. It becomes possible.
 また、本実施形態の制御装置100は、
 切換制御モードにおいて、FB後傾斜角度指令値αofが切換傾斜角度αに到達した時点から、斜板制御アクチュエータ101が制御信号を受信してから可動斜板11aが実際に動作するまでに必要な動作むだ時間Tが経過するまでに、実変速比Rが変速比指令値Rに到達しない場合にのみ、低速側クラッチ31aと高速側クラッチ31bの断接を切り換えるものである。
 このように構成することにより、不必要な場合にまで低速モードMLと高速モードMHとを切り換えることがないため、当該切り換えの回数を可能な限り減少させ、当該切り換えに伴う変速ショックの発生を減少させることができる。また、本実施形態に係るHMT4を具備する作業車両1において、前記変速ショックによるオペレータの乗り心地の悪化を防止することができる。
Moreover, the control apparatus 100 of this embodiment is
In the switching control mode, it is necessary from the time when the post-FB inclination angle command value α of reaches the switching inclination angle α c until the movable swash plate 11a actually operates after the swash plate control actuator 101 receives the control signal. by do operation dead time T H has elapsed, the actual gear ratio R t only if it does not reach the speed ratio command value R o, in which switching the connection and disconnection of the low speed side clutch 31a and the high speed clutch 31b.
With this configuration, the low-speed mode ML and the high-speed mode MH are not switched until unnecessary, so the number of times of switching is reduced as much as possible, and the occurrence of shift shocks associated with the switching is reduced. Can be made. Moreover, in the work vehicle 1 including the HMT 4 according to the present embodiment, it is possible to prevent the operator's riding comfort from being deteriorated due to the shift shock.
 また、本実施形態の制御装置100は、
 切換制御モードにおいて低速側クラッチ31aと高速側クラッチ31bの断接を切り換える際、低速側クラッチ31aと高速側クラッチ31bとを同時嵌入時間T(所定時間)の間同時に作動させるものである。
 このように構成することにより、低速モードMLと高速モードMHとを切り換える際に、HMT4において動力伝達が遮断されることを防止することができる。これによって、HMT4に大きな負荷がかかっている場合においても、低速モードMLと高速モードMHとをスムースに切り換えることが可能である。
Moreover, the control apparatus 100 of this embodiment is
When switching the connection / disconnection of the low speed side clutch 31a and the high speed side clutch 31b in the switching control mode, the low speed side clutch 31a and the high speed side clutch 31b are operated simultaneously during the simultaneous insertion time Tw (predetermined time).
With this configuration, it is possible to prevent power transmission from being interrupted in the HMT 4 when switching between the low speed mode ML and the high speed mode MH. As a result, even when a large load is applied to the HMT 4, it is possible to smoothly switch between the low speed mode ML and the high speed mode MH.
 また、本実施形態の制御装置100は、
 低速モードMLから高速モードMHに切り換える切換制御モードにおいて、制限変速比指令値Rolが変速比指令値R及び切換傾斜角度αに対応する切換変速比Rよりも小さい場合、
 制限変速比指令値Rolを、変速比指令値R又は切換変速比Rのうち小さい方の値(第一制御態様においては、切換変速比R)まで増加させた後に、低速側クラッチ31aと高速側クラッチ31bの断接を切り換えるものである。
 このように構成することにより、低速側クラッチ31aと高速側クラッチ31bとが同時嵌入して実変速比Rが切換変速比Rに上昇した場合においても、スムースな変速(加速)が可能となる。
Moreover, the control apparatus 100 of this embodiment is
In switching control mode to switch from the low speed mode ML fast mode MH, if limited speed ratio command value R ol is smaller than switch speed ratio R c corresponding to speed ratio command value R o and switching the inclination angle alpha c,
The limit speed ratio command value R ol, followed (in the first control mode, the switch speed ratio R c) smaller value among the speed change ratio command value R o or switch speed ratio R c was increased to, low-speed clutch The connection / disconnection of 31a and the high speed side clutch 31b is switched.
With this configuration, when the low-speed side clutch 31a and the high speed clutch 31b is simultaneously fitted to the actual gear ratio R t is increased to switch speed ratio R c may, enabling smooth transmission (accelerating) Become.
 次に、図7及び図13から図15までを用いて、変速比指令値Rが切換変速比Rより小さい場合の、制御装置100による低速モードMLから高速モードMHへの切り換え制御の態様(以下、単に「第二制御態様」と記す)について説明する。 Next, with reference to up to 15 7 and 13, when the speed change ratio command value R o is switch speed ratio R c is less than, aspects from the low-speed mode ML by the control device 100 of the switching control of the high-speed mode MH (Hereinafter simply referred to as “second control mode”) will be described.
 図7に示すように、ステップS110において、制御装置100は、低速モードMLにおけるHMT4の制御を行う(図13の低速モードMLを参照)。第二制御態様のステップS110における処理は、第一制御態様のステップS110における処理と略同一である。 As shown in FIG. 7, in step S110, the control device 100 controls the HMT 4 in the low speed mode ML (see the low speed mode ML in FIG. 13). The process in step S110 of the second control mode is substantially the same as the process in step S110 of the first control mode.
 図7に示すように、ステップS120において、制御装置100は、加速第一遷移モードMA1におけるHMT4の制御を行う(図13の加速第一遷移モードMA1を参照)。第二制御態様のステップS120における処理は、第一制御態様のステップS120における処理と略同一である。 As shown in FIG. 7, in step S120, the control device 100 controls the HMT 4 in the acceleration first transition mode MA1 (see the acceleration first transition mode MA1 in FIG. 13). The process in step S120 of the second control mode is substantially the same as the process in step S120 of the first control mode.
 図7に示すように、ステップS130において、制御装置100は、加速第二遷移モードMA2におけるHMT4の制御を行う(図13の加速第二遷移モードMA2を参照)。以下では、その詳細について説明する。 As shown in FIG. 7, in step S130, the control device 100 controls the HMT 4 in the acceleration second transition mode MA2 (see the acceleration second transition mode MA2 in FIG. 13). Below, the detail is demonstrated.
 図14に示すように、ステップS231において、制御装置100は、傾斜角度指令値α及び実傾斜角度αを算出するための計算式を直線Lから直線Hへと変更する(図13のt2の時点)。
 制御装置100は、上記処理を行った後、ステップS232に移行する。
As shown in FIG. 14, in step S231, the control device 100 changes the calculation formula for calculating the tilt angle command value α o and the actual tilt angle α t from the straight line L to the straight line H (t2 in FIG. 13). Of time).
After performing the above processing, the control device 100 proceeds to step S232.
 ステップS232において、制御装置100は、制限変速比指令値Rolを変速比指令値Rに変更する(図13のt2の時点)。 In step S232, the control unit 100 changes the limit speed ratio command value R ol the speed ratio command value R o (time point t2 in FIG. 13).
 ステップS231及びステップS232の処理によって、傾斜角度指令値α、FB後傾斜角度指令値αof、及び実傾斜角度αは、図15に示す如く変化する。
 すなわち、傾斜角度指令値αは、直線H上において、制限変速比指令値Rol(変速比指令値R)に対応する値に変化する。
 FB後傾斜角度指令値αofは、直線H上において、傾斜角度指令値αから傾斜補正量Δαを差し引いた値に変化する。
 実傾斜角度αは、変速比Rはそのままで、直線H上の値へと変化する。
By the processing in steps S231 and S232, the tilt angle command value α o , the post-FB tilt angle command value α of , and the actual tilt angle α t change as shown in FIG.
That is, the inclination angle command value α o changes on the straight line H to a value corresponding to the limited transmission gear ratio command value R ol (transmission gear ratio command value R o ).
The post-FB tilt angle command value α of changes on the straight line H to a value obtained by subtracting the tilt correction amount Δα from the tilt angle command value α o .
The actual inclination angle α t changes to a value on the straight line H while the speed ratio R remains unchanged.
 制御装置100は、上記処理を行った後、ステップS140に移行する。 The control apparatus 100 transfers to step S140 after performing the said process.
 図7に示すように、ステップS140において、制御装置100は、加速第三遷移モードMA3におけるHMT4の制御を行う(図13の加速第三遷移モードMA3を参照)。第二制御態様のステップS140における処理は、第一制御態様のステップS140における処理と略同一である。 As shown in FIG. 7, in step S140, the control device 100 controls the HMT 4 in the acceleration third transition mode MA3 (see the acceleration third transition mode MA3 in FIG. 13). The process in step S140 of the second control mode is substantially the same as the process in step S140 of the first control mode.
 図7に示すように、ステップS150において、制御装置100は、高速モードMHにおける通常制御を行う。 As shown in FIG. 7, in step S150, the control device 100 performs normal control in the high-speed mode MH.
 以上の如く、本実施形態の制御装置100は、
 低速モードMLから高速モードMHに切り換える切換制御モードにおいて、制限変速比指令値Rolが変速比指令値R及び切換傾斜角度αに対応する切換変速比Rよりも小さい場合、
 制限変速比指令値Rolを、変速比指令値R又は切換変速比Rのうち小さい方の値(第一制御態様においては、変速比指令値R)まで増加させた後に、低速側クラッチ31aと高速側クラッチ31bの断接を切り換えるものである。
 このように構成することにより、低速側クラッチ31aと高速側クラッチ31bとが同時嵌入して実変速比Rが切換変速比Rに上昇した場合においても、スムースな変速(加速)が可能となる。
As described above, the control device 100 of the present embodiment is
In switching control mode to switch from the low speed mode ML fast mode MH, if limited speed ratio command value R ol is smaller than switch speed ratio R c corresponding to speed ratio command value R o and switching the inclination angle alpha c,
The limit speed ratio command value R ol, (in the first control mode, the speed change ratio command value R o) smaller value among the speed change ratio command value R o or switch speed ratio R c after increasing up, low-speed The connection / disconnection of the clutch 31a and the high speed side clutch 31b is switched.
With this configuration, when the low-speed side clutch 31a and the high speed clutch 31b is simultaneously fitted to the actual gear ratio R t is increased to switch speed ratio R c may, enabling smooth transmission (accelerating) Become.
 次に、図7及び図16から図18までを用いて、実変速比Rtが制限変速比指令値Rolより大きい場合の、制御装置100による低速モードMLから高速モードMHへの切り換え制御の態様(以下、単に「第三制御態様」と記す)について説明する。ここで、実変速比Rtが制限変速比指令値Rolより大きい場合とは、例えば、作業車両1がトレーラ等の重量が大きいものを牽引しながら坂を下る場合等である。この場合、前記トレーラによって、作業車両1が後ろから押されている状況が想定される。 Next, referring to FIG. 7 and FIGS. 16 to 18, a mode of switching control from the low speed mode ML to the high speed mode MH by the control device 100 when the actual speed ratio Rt is larger than the limit speed ratio command value Rol ( Hereinafter, the “third control mode” will be described. Here, the case where the actual speed ratio Rt is larger than the limit speed ratio command value Rol is, for example, the case where the work vehicle 1 goes down a hill while pulling a heavy object such as a trailer. In this case, it is assumed that the work vehicle 1 is pushed from behind by the trailer.
 図7に示すように、ステップS110において、制御装置100は、低速モードMLにおけるHMT4の制御を行う(図16の低速モードMLを参照)。第三制御態様のステップS110における処理は、第一制御態様のステップS110における処理と略同一である。 As shown in FIG. 7, in step S110, the control device 100 controls the HMT 4 in the low speed mode ML (see the low speed mode ML in FIG. 16). The process in step S110 of the third control mode is substantially the same as the process in step S110 of the first control mode.
 図7に示すように、ステップS120において、制御装置100は、加速第一遷移モードMA1におけるHMT4の制御を行う(図16の加速第一遷移モードMA1を参照)。第三制御態様のステップS120における処理は、第一制御態様のステップS120における処理と略同一である。 As shown in FIG. 7, in step S120, the control device 100 controls the HMT 4 in the acceleration first transition mode MA1 (see the acceleration first transition mode MA1 in FIG. 16). The process in step S120 of the third control mode is substantially the same as the process in step S120 of the first control mode.
 図7に示すように、ステップS130において、制御装置100は、加速第二遷移モードMA2におけるHMT4の制御を行う(図16の加速第二遷移モードMA2を参照)。以下では、その詳細について説明する。 As shown in FIG. 7, in step S130, the control device 100 controls the HMT 4 in the acceleration second transition mode MA2 (see the acceleration second transition mode MA2 in FIG. 16). Below, the detail is demonstrated.
 図17に示すように、ステップS331において、制御装置100は、傾斜角度指令値α及び実傾斜角度αを算出するための計算式を直線Lから直線Hへと変更する(図16のt2の時点)。 As shown in FIG. 17, in step S331, the control device 100 changes the calculation formula for calculating the tilt angle command value α o and the actual tilt angle α t from the straight line L to the straight line H (t2 in FIG. 16). Of time).
 ステップS331の処理によって、傾斜角度指令値α、FB後傾斜角度指令値αof、及び実傾斜角度αは、図18に示す如く変化する。
 すなわち、傾斜角度指令値αは、直線H上において、制限変速比指令値Rolに対応する値に変化する。
 FB後傾斜角度指令値αofは、直線H上において、傾斜角度指令値αから傾斜補正量Δαを差し引いた値に変化する。しかし、当該値はステップS331の処理の前後において同一の値であるため、FB後傾斜角度指令値αofの値は実質的には変化しない。
 実傾斜角度αは、変速比Rはそのままで、直線H上の値へと変化する。
By the processing in step S331, the tilt angle command value α o , the post-FB tilt angle command value α of , and the actual tilt angle α t change as shown in FIG.
That is, the inclination angle command value α o changes on the straight line H to a value corresponding to the limited speed ratio command value R ol .
The post-FB tilt angle command value α of changes on the straight line H to a value obtained by subtracting the tilt correction amount Δα from the tilt angle command value α o . However, since the value is the same before and after the process of step S331, the value of the post-FB inclination angle command value α of does not substantially change.
The actual inclination angle α t changes to a value on the straight line H while the speed ratio R remains unchanged.
 制御装置100は、上記処理を行った後、ステップS140に移行する。 The control apparatus 100 transfers to step S140 after performing the said process.
 図7に示すように、ステップS140において、制御装置100は、加速第三遷移モードMA3におけるHMT4の制御を行う(図16の加速第三遷移モードMA3を参照)。第三制御態様のステップS140における処理は、第一制御態様のステップS140における処理と略同一である。 As shown in FIG. 7, in step S140, the control device 100 controls the HMT 4 in the acceleration third transition mode MA3 (see the acceleration third transition mode MA3 in FIG. 16). The process in step S140 of the third control mode is substantially the same as the process in step S140 of the first control mode.
 図7に示すように、ステップS150において、制御装置100は、高速モードMHにおける通常制御を行う。 As shown in FIG. 7, in step S150, the control device 100 performs normal control in the high-speed mode MH.
 次に、図19から図25までを用いて、変速比指令値Rが切換変速比Rより小さい場合の、制御装置100による高速モードMHから低速モードMLへの切り換え制御の態様(以下、単に「第四制御態様」と記す)について説明する。
 制御装置100により、高速モードMHは、切換制御モードを経て、低速モードMLへと切り換えられる。
 また、切換制御モードは、減速第一遷移モードMD1、減速第二遷移モードMD2、及び減速第三遷移モードMD3(図19のステップS420からステップS440)に分けられる。
Next, with reference to FIGS. 19 to 25, when the speed change ratio command value R o is switch speed ratio R c is less than, aspects from the high-speed mode MH by the control device 100 of the switching control to the low-speed mode ML (hereinafter, The description will be simply made as “fourth control mode”.
The high speed mode MH is switched to the low speed mode ML by the control device 100 via the switching control mode.
The switching control mode is divided into a deceleration first transition mode MD1, a deceleration second transition mode MD2, and a deceleration third transition mode MD3 (step S420 to step S440 in FIG. 19).
 図19に示すように、ステップS410において、制御装置100は、高速モードMHにおけるHMT4の制御を行う(図20の高速モードMHを参照)。以下では、その詳細について説明する。 As shown in FIG. 19, in step S410, the control device 100 controls the HMT 4 in the high speed mode MH (see the high speed mode MH in FIG. 20). Below, the detail is demonstrated.
 図21に示すように、ステップS411において、制御装置100は、実変速比Rが変速比指令値Rの105%より大きいか否かを判定する。
 実変速比Rが変速比指令値Rの105%より大きくない場合、すなわち、実変速比Rが変速比指令値Rの105%以下である場合、制御装置100は、再度ステップS411の処理を行う。
 実変速比Rが変速比指令値Rの105%より大きい場合、制御装置100は、ステップS412に移行する。
As shown in FIG. 21, in step S411, the control unit 100, the actual gear ratio R t is equal to or greater than 105% of the speed change ratio command value R o.
If the actual gear ratio R t is not greater than 105% of the speed change ratio command value R o, that is, when the actual gear ratio R t is less than 105% of the speed change ratio command value R o, the control device 100, Step S411 again Perform the process.
If the actual gear ratio R t is larger than 105% of the speed change ratio command value R o, the controller 100 proceeds to step S412.
 上記の如く、制御装置100は、ステップS411において、実変速比Rが変速比指令値Rに到達したか否かを判定する。すなわち、実変速比Rが変速比指令値Rの105%以下である場合は、実変速比Rが変速比指令値Rに到達したものとみなす。これは、誤差や動力の伝達ロス等を考慮するためである。 As described above, the control unit 100 determines in step S411, the actual gear ratio R t is whether the host vehicle has reached the speed ratio command value R o. That is, when the actual gear ratio R t is less than 105% of the speed change ratio command value R o is deemed to actual gear ratio R t reaches the speed change ratio command value R o. This is to take account of errors and power transmission loss.
 ステップS412において、制御装置100は、FB後傾斜角度指令値αofが切換傾斜角度α以上であるか否かを判定する。
 FB後傾斜角度指令値αofが切換傾斜角度α以上でない場合、すなわち、FB後傾斜角度指令値αofが切換傾斜角度α未満である場合、制御装置100は、再度ステップS411の処理を行う。
 FB後傾斜角度指令値αofが切換傾斜角度α以上である場合、制御装置100は、ステップS420に移行する。
In step S412, control device 100 determines whether or not post-FB inclination angle command value α of is greater than or equal to switching inclination angle α c .
When the post-FB inclination angle command value α of is not greater than or equal to the switching inclination angle α c , that is, when the post-FB inclination angle command value α of is less than the switching inclination angle α c , the control device 100 performs the process of step S411 again. Do.
When the post-FB tilt angle command value α of is greater than or equal to the switching tilt angle α c , the control device 100 proceeds to step S420.
 上記の如く、制御装置100は、ステップS412において、FB後傾斜角度指令値αofが切換傾斜角度αに到達したと判定した場合に、切換制御モード(ステップS420以降)に移行する。これによって、切換制御モードに移行するタイミングを、実変速比Rの時間変化の傾き等に影響されることなく決定することができる。 As described above, when determining that the post-FB inclination angle command value α of has reached the switching inclination angle α c in step S412, the control device 100 shifts to the switching control mode (after step S420). Thus, the switching timing to shift to control mode can be determined without being affected by the inclination or the like of the time variation of the actual gear ratio R t.
 図19に示すように、ステップS420において、制御装置100は、減速第一遷移モードMD1におけるHMT4の制御を行う(図20の減速第一遷移モードMD1を参照)。以下では、その詳細について説明する。 As shown in FIG. 19, in step S420, the control device 100 controls the HMT 4 in the deceleration first transition mode MD1 (see the deceleration first transition mode MD1 in FIG. 20). Below, the detail is demonstrated.
 図22に示すように、ステップS421において、制御装置100は、制限変速比指令値Rolの時間変化を停止、すなわち、制限変速比指令値Rolを一定値に固定する(図20のt1の時点)。この際、制御装置100は、FB後傾斜角度指令値αofも一定値に固定する。この場合のFB後傾斜角度指令値αofの値は、傾斜補正量Δαを傾斜角度指令値αに加えて得られる値である。また、前記傾斜補正量Δαには、減速第一遷移モードMD1に移行する直前のフィードバック量Fを用いる。
 制御装置100は、上記処理を行った後、ステップS422に移行する。
As shown in FIG. 22, in step S421, control device 100 stops the change over time of limiting speed ratio command value R ol , that is, limits limiting speed ratio command value R ol to a constant value (at t1 in FIG. 20). Time). At this time, control device 100 also fixes post-FB inclination angle command value α of at a constant value. The value of the post-FB tilt angle command value α of in this case is a value obtained by adding the tilt correction amount Δα to the tilt angle command value α o . Further, the feedback amount F immediately before the transition to the deceleration first transition mode MD1 is used as the inclination correction amount Δα.
The control apparatus 100 transfers to step S422 after performing the said process.
 ステップS422において、制御装置100は、時間Tのカウントを開始する(図20のt1の時点)。
 制御装置100は、上記処理を行った後、ステップS423に移行する。
In step S422, the control device 100 starts counting time T (at time t1 in FIG. 20).
The control apparatus 100 transfers to step S423 after performing the said process.
 ステップS423において、制御装置100は、低速側クラッチ31aを作動させる旨の制御信号Sを、低速用電磁弁102へと送信する(図20のt1の時点)。
 制御装置100は、上記処理を行った後、ステップS424に移行する。
In step S423, the control device 100 transmits a control signal S for operating the low speed side clutch 31a to the low speed solenoid valve 102 (at time t1 in FIG. 20).
The control apparatus 100 transfers to step S424 after performing the said process.
 ステップS424において、制御装置100は、時間Tが動作むだ時間T以上であるか否かを判定する。
 時間Tが動作むだ時間T以上でない場合、すなわち、時間Tが動作むだ時間T未満である場合、制御装置100は、ステップS424の処理を再度行う。
 時間Tが動作むだ時間T以上である場合、制御装置100は、ステップS425に移行する。
In step S424, the control unit 100 determines whether a time T operation dead time T H above.
If not time T operation dead time T H above, i.e., if the time T is less than the dead time operation T H, the control device 100 performs the process of step S424 again.
If the time T is the operation dead time T H above, the control unit 100 proceeds to step S425.
 ステップS425において、制御装置100は、実変速比Rが変速比指令値Rの105%より大きいか否かを判定する。
 実変速比Rが変速比指令値Rの105%より大きくない場合、すなわち、実変速比Rが変速比指令値Rの105%以下である場合、制御装置100は、ステップS411に移行する(図21及び図22参照)。
 実変速比Rが変速比指令値Rの105%より大きい場合、制御装置100は、ステップS430に移行する。
In step S425, the control unit 100, the actual gear ratio R t is equal to or greater than 105% of the speed change ratio command value R o.
If the actual gear ratio R t is not greater than 105% of the speed change ratio command value R o, that is, when the actual gear ratio R t is less than 105% of the speed change ratio command value R o, the control unit 100, to step S411 Transition (see FIG. 21 and FIG. 22).
If the actual gear ratio R t is larger than 105% of the speed change ratio command value R o, the controller 100 proceeds to step S430.
 上記の如く、制御装置100は、ステップS424及びステップS425の処理によって、高速モードMHから低速モードMLに切り換えることなく実変速比Rが変速比指令値Rの105%以下に到達できるか否かを判定することができる。
 すなわち、制御装置100は、FB後傾斜角度指令値αofが切換傾斜角度αに到達してから動作むだ時間T経過した時点で、実変速比Rが変速比指令値Rの105%以下であれば、高速モードMHから低速モードMLに切り換える必要はないものと判定する。この場合、低速側クラッチ31aと高速側クラッチ31bとを切り換えることがないため、無駄なクラッチの切り換えを行うことがなく、モード切り換えによるオペレータの乗り心地の悪化を防止することができる。
As described above, the control device 100 whether or not the processing of step S424 and step S425, the actual gear ratio R t without switching from the high-speed mode MH to the low-speed mode ML can reach below 105% of the speed change ratio command value R o Can be determined.
That is, the control device 100, when the inclination angle command value alpha of after FB operated dead time T H has elapsed after reaching the switching angle of inclination alpha c, the actual gear ratio R t is a gear ratio command value R o 105 If it is less than or equal to%, it is determined that there is no need to switch from the high speed mode MH to the low speed mode ML. In this case, since switching between the low-speed side clutch 31a and the high-speed side clutch 31b is not performed, unnecessary clutch switching is not performed, and deterioration of ride comfort of the operator due to mode switching can be prevented.
 図19に示すように、ステップS430において、制御装置100は、減速第二遷移モードMD2におけるHMT4の制御を行う(図20の減速第二遷移モードMD2を参照)。以下では、その詳細について説明する。 As shown in FIG. 19, in step S430, the control device 100 controls the HMT 4 in the deceleration second transition mode MD2 (see the deceleration second transition mode MD2 in FIG. 20). Below, the detail is demonstrated.
 図23に示すように、ステップS431において、制御装置100は、傾斜角度指令値α及び実傾斜角度αを算出するための計算式を直線Hから直線Lへと変更する(図20のt2の時点)。
 制御装置100は、上記処理を行った後、ステップS432に移行する。
As shown in FIG. 23, in step S431, the control device 100 changes the calculation formula for calculating the tilt angle command value α o and the actual tilt angle α t from the straight line H to the straight line L (t2 in FIG. 20). Of time).
The control apparatus 100 transfers to step S432 after performing the said process.
 ステップS432において、制御装置100は、制限変速比指令値Rolを切換変速比Rに変更する(図20のt2の時点)。 In step S432, the control unit 100 changes the limit speed ratio command value R ol to switch speed ratio R c (time point t2 in FIG. 20).
 ステップS431及びステップS432の処理によって、傾斜角度指令値α、FB後傾斜角度指令値αof、及び実傾斜角度αは、図24に示す如く変化する。
 すなわち、傾斜角度指令値αは、直線L上において、制限変速比指令値Rol(切換変速比R)に対応する値(切換傾斜角度α)に変化する。
 FB後傾斜角度指令値αofは、直線L上において、傾斜角度指令値αから傾斜補正量Δαを差し引いた値に変化する。これは、図24に示す如く、低速モードMLと高速モードMHとでは変速比Rに対する傾斜角度αの傾きの符号が逆になるため、低速モードMLにおいては、高速モードMHとは逆に、傾斜角度指令値αから傾斜補正量Δαを差し引く必要があるためである。このように、傾斜補正量Δαによって補正されたFB後傾斜角度指令値αofを用いることにより、低速モードMLに切り換えた後の変速比Rの推移がスムースになる。
 実傾斜角度αは、変速比Rはそのままで、直線L上の値へと変化する。
By the processing in steps S431 and S432, the tilt angle command value α o , the post-FB tilt angle command value α of , and the actual tilt angle α t change as shown in FIG.
That is, the inclination angle command value α o changes on the straight line L to a value (switching inclination angle α c ) corresponding to the limit transmission ratio command value R ol (switching transmission ratio R c ).
The post-FB tilt angle command value α of changes on the straight line L to a value obtained by subtracting the tilt correction amount Δα from the tilt angle command value α o . As shown in FIG. 24, since the sign of the inclination of the inclination angle α with respect to the gear ratio R is reversed in the low speed mode ML and the high speed mode MH, in the low speed mode ML, the inclination is opposite to the high speed mode MH. This is because it is necessary to subtract the inclination correction amount Δα from the angle command value α o . Thus, by using the post-FB inclination angle command value α of corrected by the inclination correction amount Δα, the transition of the speed ratio R after switching to the low speed mode ML becomes smooth.
The actual inclination angle α t changes to a value on the straight line L without changing the speed ratio R.
 制御装置100は、上記処理を行った後、ステップS440に移行する。 The control apparatus 100 transfers to step S440 after performing the said process.
 図19に示すように、ステップS440において、制御装置100は、減速第三遷移モードMD3におけるHMT4の制御を行う(図20の減速第三遷移モードMD3を参照)。以下では、その詳細について説明する。 As shown in FIG. 19, in step S440, the control device 100 controls the HMT 4 in the deceleration third transition mode MD3 (see the deceleration third transition mode MD3 in FIG. 20). Below, the detail is demonstrated.
 図25に示すように、ステップS441において、制御装置100は、高速側クラッチ31bを作動させる旨の制御信号Sの送信を停止する(図20のt3の時点)。
 上記処理を行った後、制御装置100は、ステップS442に移行する。
As shown in FIG. 25, in step S441, the control device 100 stops transmitting the control signal S for operating the high speed side clutch 31b (at time t3 in FIG. 20).
After performing the said process, the control apparatus 100 transfers to step S442.
 ステップS442において、制御装置100は、制限変速比指令値Rolの時間変化を再開させる(図20のt3の時点)。
 制御装置100は、上記処理を行った後、ステップS450に移行する。
In step S442, the control device 100 restarts the time change of the limited speed ratio command value Rol (at time t3 in FIG. 20).
After performing the above processing, the control device 100 proceeds to step S450.
 図19に示すように、ステップS450において、制御装置100は、低速モードMLにおける通常制御を行う。 As shown in FIG. 19, in step S450, the control device 100 performs normal control in the low speed mode ML.
 また、図20に示すように、減速第一遷移モードMD1に基づく制御が行われる時間である設定時間T1(t1からt2まで)は、「クラッチ昇圧時間T-(動作むだ時間T-同時嵌入時間T)」となるように設定される。
 加速第二遷移モードMA2に基づく制御が行われる時間である設定時間T2(t2からt3まで)は、「動作むだ時間T-クラッチ減圧時間T」となるように設定される。
 加速第三遷移モードMA3に基づく制御が行われる時間である設定時間T3(t3からt4まで)は、「クラッチ減圧時間T-同時嵌入時間T」となるように設定される。
Further, as shown in FIG. 20, the set time T1 (from t1 to t2) during which the control based on the deceleration first transition mode MD1 is performed is “clutch boosting time T u − (operation dead time T H −simultaneous. Insertion time T w ) ”.
A set time T2 (from t2 to t3) that is a time during which the control based on the acceleration second transition mode MA2 is performed is set to be “operation dead time T H −clutch pressure reduction time T d ”.
A set time T3 (from t3 to t4) during which the control based on the acceleration third transition mode MA3 is performed is set to be “clutch pressure reduction time T d −simultaneous insertion time T w ”.
 上述の如く、制御装置100により高速モードMHから低速モードMLへの切り換え制御を行った場合、低速モードMLにおいて、低速側クラッチ31aと高速側クラッチ31bとが、同時嵌入時間Tの間だけ同時嵌入する。これによって、クラッチの切り換えの際にHMT4において動力伝達が遮断されることを防止することができ、作業車両1に大きな負荷がかかっている場合においても、スムースなクラッチの切り換えを行うことが可能である。
 また、ステップS432(図23)において、予め制限変速比指令値Rolを切換変速比Rに変更したことによって、その後の同時嵌入において実変速比Rtが切換変速比Rcに下降した際においても変速をスムースに行うことができる。
As described above, if the control apparatus 100 was switched control from the high-speed mode MH to the low speed mode ML, in the low speed mode ML, and the low-speed side clutch 31a and the high speed side clutch 31b is only during the simultaneous fitting time T w co Insert. As a result, it is possible to prevent the power transmission from being interrupted in the HMT 4 when the clutch is switched, and it is possible to smoothly switch the clutch even when a heavy load is applied to the work vehicle 1. is there.
Further, in step S432 (FIG. 23), by changing the advance limit speed ratio command value R ol the switch speed ratio R c, even when the actual gear ratio Rt is lowered to switch speed ratio Rc in the subsequent simultaneous fitting Shifting can be performed smoothly.
 以上の如く、本実施形態の制御装置100は、
 高速モードMHから低速モードMLに切り換える切換制御モードにおいて、制限変速比指令値Rolが変速比指令値R及び切換傾斜角度αに対応する切換変速比Rよりも大きい場合、
 制限変速比指令値Rolを、変速比指令値R又は切換変速比Rのうち大きい方の値(第四制御態様においては、切換変速比R)まで減少させた後に、低速側クラッチ31aと高速側クラッチ31bの断接を切り換えるものである。
 このように構成することにより、低速側クラッチ31aと高速側クラッチ31bとが同時嵌入して実変速比Rが切換変速比Rに減少した場合においても、スムースな変速(減速)が可能となる。
As described above, the control device 100 of the present embodiment is
In switching control mode to switch from the high-speed mode MH to the low-speed mode ML, limited when the gear ratio command value R ol is greater than switch speed ratio R c corresponding to speed ratio command value R o and switching the inclination angle alpha c,
The limit speed ratio command value R ol, followed (in the fourth control mode, the switch speed ratio R c) larger value among the speed change ratio command value R o or switch speed ratio R c was reduced to low speed side clutch The connection / disconnection of 31a and the high speed side clutch 31b is switched.
With this configuration, when the low-speed side clutch 31a and the high speed clutch 31b is simultaneously fitted to the actual gear ratio R t is reduced to switch speed ratio R c may, enabling smooth shift (deceleration) Become.
 なお、変速比Rに換えて、それと同視し得るもの、例えば作業車両1の速度等を用いて、上述した制御を行う構成とすることも可能である。 In addition, it can also be set as the structure which performs the control mentioned above using what can be equated with it instead of the gear ratio R, for example, the speed of the work vehicle 1, etc.
産業上の利用性Industrial availability
 本発明は、油圧-機械式変速装置の技術に利用することが可能であり、より詳細には、油圧-機械式変速装置の動作を制御するための技術に利用することが可能である。 The present invention can be used for a technique of a hydraulic-mechanical transmission, and more specifically, can be used for a technique for controlling the operation of the hydraulic-mechanical transmission.

Claims (5)

  1.  油圧ポンプまたは油圧モータのうち少なくとも一方を可動斜板による可変容量型とした油圧式無段変速機構と、
     駆動源からの動力と、前記油圧モータからの動力と、を合成して変速する遊星歯車機構と、
     前記可動斜板の傾斜角度を油圧により調節する斜板制御アクチュエータと、
     前記遊星歯車機構の低速側出力とHMT出力軸との間の動力の断接を可能とする低速側クラッチと、
     前記遊星歯車機構の高速側出力と前記HMT出力軸との間の動力の断接を可能とする高速側クラッチと、
     前記低速側クラッチを油圧により作動させる低速用電磁弁と、
     前記高速側クラッチを油圧により作動させる高速用電磁弁と、
     前記変速比の目標値である変速比指令値を設定する変速比設定手段と、
     実変速比を検出する変速比検出手段と、
     前記実変速比が前記変速比指令値となるように前記斜板制御アクチュエータ、前記低速用電磁弁、及び前記高速用電磁弁の動作を制御する制御装置と、
     を具備する油圧-機械式変速装置において、
     前記制御装置は、
     前記変速比に対応する前記傾斜角度を算出するための計算式を示すマップを具備し、
     所定の時間変化率で前記変速比指令値となるように変化する制限変速比指令値を算出し、
     前記マップに基づいて、前記制限変速比指令値に対応して所定の時間変化率で変化するFB後傾斜角度指令値を算出し、
     前記可動斜板の実傾斜角度が前記FB後傾斜角度指令値となるように前記斜板制御アクチュエータの動作を制御し、
     前記FB後傾斜角度指令値が所定の切換傾斜角度に到達した場合、前記低速側クラッチと前記高速側クラッチの断接を切り換える切換制御モードに移行する油圧-機械式変速装置。
    A hydraulic continuously variable transmission mechanism in which at least one of a hydraulic pump or a hydraulic motor is a variable displacement type using a movable swash plate;
    A planetary gear mechanism that combines and shifts the power from the drive source and the power from the hydraulic motor;
    A swash plate control actuator for adjusting the inclination angle of the movable swash plate by hydraulic pressure;
    A low speed side clutch that enables connection and disconnection of power between the low speed side output of the planetary gear mechanism and the HMT output shaft;
    A high-speed clutch that enables connection and disconnection of power between the high-speed output of the planetary gear mechanism and the HMT output shaft;
    A low-speed solenoid valve that operates the low-speed side clutch hydraulically;
    A high-speed solenoid valve for hydraulically actuating the high-speed side clutch;
    Gear ratio setting means for setting a gear ratio command value which is a target value of the gear ratio;
    Gear ratio detecting means for detecting an actual gear ratio;
    A control device for controlling operations of the swash plate control actuator, the low speed solenoid valve, and the high speed solenoid valve so that the actual speed ratio becomes the speed ratio command value;
    In a hydraulic-mechanical transmission comprising:
    The controller is
    Comprising a map showing a calculation formula for calculating the tilt angle corresponding to the gear ratio;
    A limiting speed ratio command value that changes so as to become the speed ratio command value at a predetermined time change rate is calculated;
    Based on the map, a post-FB inclination angle command value that changes at a predetermined rate of time change corresponding to the limited speed ratio command value is calculated,
    Controlling the operation of the swash plate control actuator so that the actual tilt angle of the movable swash plate becomes the post-FB tilt angle command value;
    A hydraulic-mechanical transmission that shifts to a switching control mode for switching between connection and disconnection of the low-speed side clutch and the high-speed side clutch when the post-FB inclination angle command value reaches a predetermined switching inclination angle.
  2.  前記制御装置は、
     前記切換制御モードにおいて、前記FB後傾斜角度指令値が前記切換傾斜角度に到達した時点から、前記斜板制御アクチュエータが制御信号を受信してから前記可動斜板が実際に動作するまでに必要な動作むだ時間が経過するまでに、前記実変速比が前記変速比指令値に到達しない場合にのみ、前記低速側クラッチと前記高速側クラッチの断接を切り換える請求項1に記載の油圧-機械式変速装置。
    The controller is
    In the switching control mode, it is necessary from the time when the post-FB inclination angle command value reaches the switching inclination angle until the movable swash plate actually operates after the control signal is received by the swash plate control actuator. 2. The hydraulic-mechanical type according to claim 1, wherein the connection between the low speed side clutch and the high speed side clutch is switched only when the actual speed ratio does not reach the speed ratio command value before the operation dead time elapses. Transmission device.
  3.  前記制御装置は、
     前記切換制御モードにおいて前記低速側クラッチと前記高速側クラッチの断接を切り換える際、前記低速側クラッチと前記高速側クラッチとを所定時間の間同時に作動させる請求項1又は請求項2に記載の油圧-機械式変速装置。
    The controller is
    3. The hydraulic pressure according to claim 1, wherein when the connection between the low speed side clutch and the high speed side clutch is switched in the switching control mode, the low speed side clutch and the high speed side clutch are simultaneously operated for a predetermined time. -Mechanical transmission.
  4.  前記制御装置は、
     低速から高速に切り換える切換制御モードにおいて、前記制限変速比指令値が前記変速比指令値及び前記切換傾斜角度に対応する切換変速比よりも小さい場合、
     前記制限変速比指令値を、前記変速比指令値又は前記切換変速比のうち小さい方の値まで増加させた後に、前記低速側クラッチと前記高速側クラッチの断接を切り換える請求項3に記載の油圧-機械式変速装置。
    The controller is
    In the switching control mode for switching from low speed to high speed, when the limited speed ratio command value is smaller than the switching speed ratio corresponding to the speed ratio command value and the switching inclination angle,
    4. The connection between the low speed side clutch and the high speed side clutch is switched after the limit speed ratio command value is increased to a smaller value of the speed ratio command value or the switching speed ratio. 5. Hydraulic-mechanical transmission.
  5.  前記制御装置は、
     高速から低速に切り換える切換制御モードにおいて、前記制限変速比指令値が前記変速比指令値及び前記切換傾斜角度に対応する切換変速比よりも大きい場合、
     前記制限変速比指令値を、前記変速比指令値又は前記切換変速比のうち大きい方の値まで減少させた後に、前記低速側クラッチと前記高速側クラッチの断接を切り換える請求項3に記載の油圧-機械式変速装置。
    The controller is
    In the switching control mode for switching from high speed to low speed, when the limiting speed ratio command value is larger than the switching speed ratio corresponding to the speed ratio command value and the switching inclination angle,
    4. The connection / disconnection of the low speed side clutch and the high speed side clutch is switched after the limit speed ratio command value is reduced to a larger value of the speed ratio command value or the switching speed ratio. Hydraulic-mechanical transmission.
PCT/JP2009/052142 2008-10-10 2009-02-09 Hydraulic-mechanical transmission WO2010041479A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008264352A JP5547388B2 (en) 2008-10-10 2008-10-10 Hydraulic-mechanical transmission
JP2008-264352 2008-10-10

Publications (1)

Publication Number Publication Date
WO2010041479A1 true WO2010041479A1 (en) 2010-04-15

Family

ID=42100439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052142 WO2010041479A1 (en) 2008-10-10 2009-02-09 Hydraulic-mechanical transmission

Country Status (2)

Country Link
JP (1) JP5547388B2 (en)
WO (1) WO2010041479A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040632A (en) * 2011-08-11 2013-02-28 Kubota Corp Traveling transmission device of farm working machine
DE102017219995A1 (en) * 2017-11-10 2019-05-16 Zf Friedrichshafen Ag Stepless power split transmission
US20240167550A1 (en) * 2022-11-17 2024-05-23 Kubota Corporation Continuously variable powertrain device for work vehicle and work vehicle including the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5667499B2 (en) * 2011-03-31 2015-02-12 株式会社クボタ Variable speed transmission
JP5552086B2 (en) * 2011-03-31 2014-07-16 株式会社クボタ Variable speed transmission
US9261182B2 (en) 2011-03-31 2016-02-16 Kubota Corporation Shift power transmission apparatus and travel power transmission device
KR101832852B1 (en) 2016-05-17 2018-04-13 (주)스마텍 Control method of continuously variable transmission
JP2021046904A (en) * 2019-09-18 2021-03-25 株式会社クボタ Work vehicle
EP4033124A4 (en) 2019-09-18 2023-08-23 Kubota Corporation Work vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127780A (en) * 1998-10-26 2000-05-09 Yanmar Diesel Engine Co Ltd Brake control method for hydromechanical transmission
JP2001193833A (en) * 1999-12-17 2001-07-17 Caterpillar Inc Method and device for shifting range of continuously variable transmission
JP2003130177A (en) * 2001-10-24 2003-05-08 Yanmar Agricult Equip Co Ltd Hydraulic-mechanical transmission
JP2007078160A (en) * 2005-09-16 2007-03-29 Yanmar Co Ltd Hydraulic-mechanical transmission
JP2007120753A (en) * 2005-09-30 2007-05-17 Kubota Corp Load control structure of working vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1182676A (en) * 1997-09-10 1999-03-26 Daikin Ind Ltd Speed change control device for vehicular transmission
JP2000266180A (en) * 1999-03-12 2000-09-26 Honda Motor Co Ltd Control device for hydraulic type continuously variable transmission of vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127780A (en) * 1998-10-26 2000-05-09 Yanmar Diesel Engine Co Ltd Brake control method for hydromechanical transmission
JP2001193833A (en) * 1999-12-17 2001-07-17 Caterpillar Inc Method and device for shifting range of continuously variable transmission
JP2003130177A (en) * 2001-10-24 2003-05-08 Yanmar Agricult Equip Co Ltd Hydraulic-mechanical transmission
JP2007078160A (en) * 2005-09-16 2007-03-29 Yanmar Co Ltd Hydraulic-mechanical transmission
JP2007120753A (en) * 2005-09-30 2007-05-17 Kubota Corp Load control structure of working vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040632A (en) * 2011-08-11 2013-02-28 Kubota Corp Traveling transmission device of farm working machine
DE102017219995A1 (en) * 2017-11-10 2019-05-16 Zf Friedrichshafen Ag Stepless power split transmission
US20240167550A1 (en) * 2022-11-17 2024-05-23 Kubota Corporation Continuously variable powertrain device for work vehicle and work vehicle including the same

Also Published As

Publication number Publication date
JP5547388B2 (en) 2014-07-09
JP2010091090A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
WO2010041479A1 (en) Hydraulic-mechanical transmission
JP2012052580A (en) Travel control apparatus for working vehicle
JP3868257B2 (en) Gearbox for work vehicle
JP2010043675A (en) Hydraulic-mechanical transmission
US8499657B2 (en) Transmission for work vehicle
JP4796432B2 (en) Work vehicle travel stop control device
JP4295637B2 (en) Turning device for traveling vehicle
JP4915927B2 (en) Combine
JP4933387B2 (en) Tractor
JP2009085402A (en) Transmission for working vehicle
JP2003343713A (en) Travelling speed changing mechanism of working car
CN113874266B (en) Work vehicle and control method for work vehicle
JP2011133098A (en) Working vehicle
JP5083497B2 (en) Tractor
JP3773830B2 (en) Emergency traveling mechanism for work vehicles
JP4899752B2 (en) Traveling vehicle
JP2008306972A (en) Combine harvester
JP4889600B2 (en) Transmission device for work vehicle
JPH09315337A (en) Steering device of work vehicle
JP2024073223A (en) Work vehicle
JP6368966B2 (en) Control valve mechanism for hydraulic transmission clutch
JP4604547B2 (en) Travel gear
JP4548579B2 (en) Combine
JP6228513B2 (en) Work vehicle
JP4529985B2 (en) Combine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09819018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09819018

Country of ref document: EP

Kind code of ref document: A1