WO2010040849A1 - Codeur optique - Google Patents

Codeur optique Download PDF

Info

Publication number
WO2010040849A1
WO2010040849A1 PCT/EP2009/063227 EP2009063227W WO2010040849A1 WO 2010040849 A1 WO2010040849 A1 WO 2010040849A1 EP 2009063227 W EP2009063227 W EP 2009063227W WO 2010040849 A1 WO2010040849 A1 WO 2010040849A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
mark
encoder
detection
encoder according
Prior art date
Application number
PCT/EP2009/063227
Other languages
English (en)
Inventor
Jean-Louis Bigand
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to US13/123,478 priority Critical patent/US20120126102A1/en
Priority to RU2011118369/08A priority patent/RU2507559C2/ru
Priority to EP09783920A priority patent/EP2335027A1/fr
Priority to CA2740250A priority patent/CA2740250A1/fr
Priority to CN200980144881.1A priority patent/CN102209882B/zh
Publication of WO2010040849A1 publication Critical patent/WO2010040849A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation

Definitions

  • the invention relates to optical encoders providing binary logic signals representing relative position increments of two encoder elements, the two elements being movable relative to one another.
  • optical encoders for example angular encoders
  • These optical encoders are used in the manner of potentiometers, for example for the manual control of electronic devices sensitive to an input parameter that can vary continuously or almost continuously, but they are much more reliable than the potentiometers.
  • an optical angular encoder may be used to indicate to an autopilot computer an altitude or speed setpoint that the pilot chooses by actuating a command button that rotates the encoder. The reliability of the encoder and the information it delivers is then an essential element of the encoder.
  • An optical angle encoder is typically constituted by a disk bearing regular marks, this disc being actuated in rotation by a control button (for example manual).
  • a photoelectric cell fixed in front of the disc detects the scrolling of the successive marks when the control button rotates the disc.
  • the marks are typically openings in an opaque disc, with a light emitting diode on one side of the disc and the photocell on the other side.
  • Each mark passage constitutes an increment of one unit in the count of disk rotation.
  • the angular resolution is determined by the angular pitch of the marks regularly arranged on a disk lathe.
  • two photoelectric cells physically offset by an odd number of quarter-steps between them are provided.
  • the illuminated / non-illuminated logic states of the two cells are coded on two bits which successively take the following four values: 00, 01, 1 1, 10 when the disc rotates in one direction and the following four successive values 00, 10 , 11, 01 when the disc rotates in the other, so that it is easy to determine, not only the appearance of an increment of rotation (change of state of one bits) but also the direction of rotation (by comparison between a state of the cells and the immediately previous state).
  • the invention aims at simplifying the production of an optical encoder by widening the manufacturing tolerances of certain elements of the encoder, in particular the positioning tolerances of the photocells as well as the tolerances of the dimensions and the positions of the openings of the disc.
  • the subject of the invention is an incremental optical encoder, comprising two elements that are movable relative to each other, the first element bearing at least one mark and the second element carrying a pair of detection cells.
  • mark characterized in that the dimensions of the mark are defined so as to be detectable by either of the two cells, or by a single cell or by both cells and in that a length of a zone of the second element including the pair of detection cells is less than one mark length, the lengths being measured in the direction of the relative displacement of the two elements.
  • the lengths of the zone and the mark may be a distance if the relative movement of the two elements is linear.
  • the lengths can be angular if the relative movement is rotary.
  • the minimum length of the mark is the length of the zone.
  • the maximum length of the mark is not related to the length of the zone but depends solely on the number of increments of the encoder. Successive increments of the encoder are for example defined by the detection of the mark:
  • the increments following the one defined by the detection of the mark by the two cells simultaneously are for example defined by the detection of the mark: • by the second of the cells, • then by none of the cells.
  • FIGS. 1 a to 1 d represent different relative positions of two elements, movable relative to each other, of an angular encoder according to the invention
  • FIG. 1 e shows the relative lengths of a mark of a first element with respect to a zone including detection cells of the mark
  • FIG. 2 represents the coding obtained by two detection cells of an encoder
  • Figure 3 shows in perspective an embodiment of an angular encoder.
  • the same elements will bear the same references in the different figures.
  • FIGS. 1a to 1d show four positions of an angular encoder comprising two elements 10 and 11 that are movable relative to one another.
  • the first element is a disk 10 movable in rotation around an axis 12.
  • the second element 11 forms a housing of the encoder.
  • the axis 12 is for example connected to a rotary knob that a user can maneuver to enter a binary data by means of the encoder.
  • the encoder makes it possible to determine the angular position of the disk 10 with respect to the housing 1 1 during the rotation of the disk 10 around the axis 12, in a step of increment.
  • the encoder comprises means for mechanically defining stable positions of the two elements 10 and 11, one by report to the other.
  • these means comprise for example a notched internal wheel 13 integral with the housing.
  • the ball 14 is free in translation relative to the disk 10 in a radial direction of the disk 10.
  • the ball 14 can move from one notch to the other of the wheel 13
  • the ball 14 may be urged by a spring, not shown, to hold it at the bottom of each notch.
  • the stable positions of the disc 10 relative to the housing 1 1 are defined by the positions of the ball 14 at the bottom of each notch of the wheel 13.
  • the disk 10 comprises a succession of openings 1 6 between which the disk 10 is full. Each opening 16 forms a mark on the disc 10 and the full space between each opening forms an absence of mark.
  • the disc 10 comprises an alternating succession of marks 1 6 and absence of marks.
  • the marks are arranged radially about the axis 12. It is also possible to make the disc 10 in a solid material without openings by radially alternating transparent areas forming the marks and opaque areas. Subsequently, the transparent areas will be assimilated to the openings 1 6. It is understood that the invention can be implemented from a single mark made on the disk 10.
  • the box 1 1 comprises a pair of cells 17 and 18 of detection of the mark 16.
  • the encoder further comprises an optical transmitter capable of being detected by the two detection cells 17 and 18 separately.
  • the encoder may comprise two optical emitters each capable of being detected by one of the detection cells 17 or 18.
  • the disc 10 can move between the emitter (s) on the one hand and the cells 17 and 18 on the other hand.
  • the emitter or emitters are for example light emitting diodes and the cells 17 and 18 of photodiodes sensitive to radiation emitted by the diode or diodes.
  • the encoder comprises two light-emitting diodes it is important that each cell 17 or 18 is sensitive to only one diode.
  • the 18 makes it possible to define a minimum distance separating the cells 17 and 18 on the one hand and possibly the diodes on the other hand. This distance must allow a mark 1 6 to be detected either by none or by one or by the two cells 17 and 18. In other words, an edge of one mark 16 can stop between the two cells 17 and 18 during the rotation of the disc 10. In the presence of an alternating succession of marks 16 and absence of mark 16, the pair of cells 17 and 18 is able to detect each mark 16 regardless of the next. The detection of the mark 16 is on one edge thereof. The length of the mark 16 therefore has no influence on the detection of the mark 16. It is therefore possible to widen the manufacturing tolerances of the mark 16. The maximum limit of the length of the mark 16 is solely a function of the number of marks. encoder increments.
  • FIG. 1e is an enlarged view of FIG. 1c on which is shown the angular length ⁇ of the mark 16 which must be greater than an angular length ⁇ of a zone 19 including the pair of detection cells 17 and 18
  • the area 19 is the minimum area occupied by the two detection cells 17 and 18, including the space between the cells 17 and 18.
  • the implementation of the invention does not lead to no maximum limit for the distance between cells 17 and 18. A maximum limit exists only to set the number of sufficient increments on disk 10.
  • the relative position of the two cells 17 and 18 is not a function of the number of increments. It is therefore possible to standardize a support of cells 17 and 18 for different coders that do not have the same number of increments.
  • each cell 17 and 18 receives or does not receive the radiation emitted by the associated diode as a function of the presence or absence of an opening 16 between the cell 17 or 18 and its diode associated.
  • FIG. 1a the two cells 17 and 18 are masked by the disc 10.
  • FIG. 1b the cell 17 is illuminated and the cell 18 is masked.
  • Figure 1c the two cells 17 and 18 are illuminated.
  • FIG. 1 d the cell 17 is masked and the cell 18 is illuminated.
  • the four figures 1 to 1 d represent in the order of four successive stable positions in the rotation of the disc 10 about the axis 12 in the clockwise direction.
  • the disk masks the two cells 17 and 18. This position is equivalent to that of Figure 1a. It is of course possible to make turn the disc counter clockwise. We would then obtain an inverse succession in the order of illumination and masking of the cells 17 and 18.
  • FIG. 2 shows the coding obtained by the two detection cells 17 and 18 as a function of the stable positions of the disk 10 relative to the housing 1 1.
  • Eight stable positions, numbered from 1 to 8, are represented in the upper part of FIG.
  • a broken line 20, sawtooth, represents the notches of the wheel 13.
  • a curve 27 represents the coding obtained by means of the cell 17 and
  • a curve 28 represents the coding obtained by means of the cell 18.
  • the coding from cells 17 and 18 are binary and can take two values denoted 0 and 1.
  • the coding from cell 17 takes the value 0 for positions 1, 2, 5 and 6 and the value 1 for positions 3, 4, 7 and 8.
  • the coding from cell 18 assumes the value 0 for positions 1, 4, 5 and 8 and the value 1 for positions 2, 3, 6 and 7.
  • Positions 1 and 5 correspond to those shown in Figure 1a.
  • Positions 2 and 6 correspond to those shown in Figure 1d.
  • Positions 3 and 7 correspond to those shown in Figure 1c.
  • Positions 4 and 8 correspond to those shown in Figure 1b.
  • the order of succession of the positions 1 to 8 corresponds to a rotation of the disk 10 in the trigonometric direction as defined by means of FIGS. 1a to 1d.
  • FIG. 3 represents in perspective an exemplary embodiment of an angular encoder comprising two emitters and two cells 17 and 18 integral with a U-shaped support 30.
  • the support 30 comprises two branches 31 and 32 facing each other.
  • the emitters are located on one of the branches 31 of the U and the cells 17 and 18 are located on the other branch 32 of the U.
  • the disc 10 moves between the branches of the U.
  • the openings 16 pass between the branches of the support 30 so as to be detected by the cells 17 and 18.
  • a shaft 33 extending along the axis 12 is integral with the disc 10.
  • the shaft 33 is connected to the housing 1 1 by means of bearing allowing a degree of freedom in rotation about the axis 12 to remain.
  • the shaft 33 allows an operator to maneuver the disk 10 in rotation.
  • the support 30 is integral with a printed circuit board 34 making it possible to provide the connections necessary for the operation of the emitters and the cells 17 and 18. It is also possible to have on the card 34 electronic components related to the processing of the coding coming from the cells 17 and 18.
  • the card 34 is for example located in a plane parallel to the axis 12.
  • the support 30 can be doubled.
  • the second support 30 also carries two emitters and two cells 17 and 18.
  • the second support 30 can also be arranged on a printed circuit board 34.
  • compactness of the encoder the two cards 34 can be parallel.
  • the encoder comprises two second movable elements with respect to a single first element bearing at least two marks, each of the second two elements carrying a pair of detection cells of one of the two marks so as to ensure redundancy. the detection of marks.
  • the cards 34 have a level of reliability lower than that of the disc 10.
  • This doubling can also be used to detect a failure of components of the card 34 when the coding issued by each of the pairs of cells 17 and 18 becomes different.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

L'invention concerne les codeurs optiques fournissant des signaux logiques binaires représentant les incréments de position relative de deux éléments (10, 11) du codeur, les deux éléments étant mobiles l'un par rapport à l'autre. Le premier élément (10) porte au moins une marque (16) et le second élément (11) porte une paire de cellules de détection (17, 18) de la marque (16). Selon l'invention, les dimensions de la marque (16) sont définies de façon à pouvoir être détectée soit par aucune des deux cellules (17, 18), soit par une seule cellule (17, 18) soit par les deux cellules (17, 18). L'invention est bien adaptée aux codeurs angulaires, elle permet d'élargir les tolérances de fabrication des marques (16) sur le premier élément (10) et sur la position relative des deux cellules (17, 18).

Description

codeur optique
L'invention concerne les codeurs optiques fournissant des signaux logiques binaires représentant des incréments de position relative de deux éléments du codeur, les deux éléments étant mobiles l'un par rapport à l'autre. Ces codeurs optiques, par exemple angulaires, sont utilisés à la manière de potentiomètres, par exemple pour la commande manuelle d'appareils électroniques sensibles à un paramètre d'entrée pouvant varier en continu ou presque en continu, mais ils sont beaucoup plus fiables que les potentiomètres. Typiquement, dans une application pour des équipements aéronautiques, on peut utiliser un codeur angulaire optique pour indiquer à un calculateur de pilotage automatique une consigne d'altitude ou de vitesse que le pilote choisit en actionnant un bouton de commande qui fait tourner le codeur. La fiabilité du codeur et des informations qu'il délivre est alors un élément essentiel du codeur. Un codeur angulaire optique est typiquement constitué par un disque portant des marques régulières, ce disque étant actionné en rotation par un bouton de commande (par exemple manuel). Une cellule photoélectrique fixée devant le disque détecte le défilement des marques successives lorsque le bouton de commande fait tourner le disque. Les marques sont typiquement des ouvertures dans un disque opaque, une diode luminescente étant placée d'un côté du disque et la cellule photoélectrique étant placée de l'autre côté.
Chaque passage de marque constitue un incrément d'une unité dans le comptage de la rotation du disque. La résolution angulaire est déterminée par le pas angulaire des marques régulièrement disposées sur un tour de disque. Pour détecter à la fois des incréments et des décréments d'angle de rotation lorsqu'on inverse le sens de rotation, on prévoit deux cellules photoélectriques décalées physiquement d'un nombre impair de quart de pas entre elles. Ainsi, les états logiques éclairée/non-éclairée des deux cellules sont codés sur deux bits qui prennent successivement les quatre valeurs suivantes : 00, 01 , 1 1 , 10 lorsque le disque tourne dans un sens et les quatre valeurs successives suivantes 00, 10, 11 , 01 lorsque le disque tourne dans l'autre, de sorte qu'il est facile de déterminer, non seulement l'apparition d'un incrément de rotation (changement d'état de l'un des bits) mais aussi le sens de rotation (par comparaison entre un état des cellules et l'état immédiatement antérieur).
Ces codeurs nécessitent une précision importante dans leur construction. Notamment la position relative des cellules photoélectriques doit être fonction du pas d'incrément. Il en est de même pour le disque dont les dimensions et la position de chaque ouverture doivent être en rapport celles des cellules photoélectriques.
L'invention vise à simplifier la réalisation d'un codeur optique en élargissant les tolérances de fabrication de certains éléments du codeur, notamment les tolérances de positionnement des cellules photoélectriques ainsi que les tolérances des dimensions et des positions des ouvertures du disque.
A cet effet, l'invention a pour objet un codeur optique incrémental, comprenant deux éléments mobiles l'un par rapport à l'autre, le premier élément portant au moins une marque et le second élément portant une paire de cellules de détection de la marque, caractérisé en ce que les dimensions de la marque sont définies de façon à pouvoir être détectée soit par aucune des deux cellules, soit par une seule cellule soit par les deux cellules et en ce qu'une longueur d'une zone du second élément incluant la paire de cellules de détection est inférieure à une longueur de la marque, les longueurs étant mesurées dans la direction du déplacement relatif des deux éléments.
Les longueurs de la zone et de la marque peuvent être une distance si le mouvement relatif des deux éléments est linéaire. Les longueurs peuvent être angulaires si le mouvement relatif est rotatif.
La tolérance de fabrication de la marque s'en trouve élargie. En effet, la longueur minimale de la marque est la longueur de la zone. Par contre la longueur maximale de la marque n'est pas liée à la longueur de la zone mais est uniquement fonction du nombre d'incréments du codeur. Des incréments successifs du codeur sont par exemple définis par la détection de la marque :
• par aucune des cellules,
• puis par une première des cellules,
• puis par les deux cellules simultanément. Les incréments succédant celui défini par la détection de la marque par les deux cellules simultanément sont par exemple définis par la détection de la marque : • par la seconde des cellules, • puis par aucune des cellules.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée d'un mode de réalisation donné à titre d'exemple, description illustrée par le dessin joint dans lequel : les figures 1 a à 1 d représentent différentes positions relatives de deux éléments, mobiles l'un par rapport à l'autre, d'un codeur angulaire selon l'invention ; la figure 1 e précise les longueurs relatives d'une marque d'un premier élément par rapport à une zone incluant des cellules de détection de la marque ; la figure 2 représente le codage obtenu par deux cellules de détection d'un codeur ; la figure 3 représente en perspective un exemple de réalisation d'un codeur angulaire. Par souci de clarté, les mêmes éléments porteront les mêmes repères dans les différentes figures.
La description qui suit est faite en rapport à un codeur angulaire. Il est bien entendu possible de mettre en œuvre l'invention dans un codeur linéaire.
Sur les figures 1 a à 1 d sont représentées quatre positions d'un codeur angulaire comprenant deux éléments 10 et 1 1 mobiles l'un par rapport à l'autre. Le premier élément est un disque 10 mobile en rotation autour d'un axe 12. Le second élément 1 1 forme un boitier du codeur. L'axe 12 est par exemple relié à un bouton rotatif qu'un utilisateur peut manœuvrer pour entrer une donnée binaire au moyen du codeur. Le codeur permet de déterminer la position angulaire du disque 10 par rapport au boitier 1 1 lors de la rotation du disque 10 autour de l'axe 12, suivant un pas d'incrément.
Avantageusement le codeur comprend des moyens pour définir mécaniquement des positions stables des deux éléments 10 et 1 1 l'un par rapport à l'autre. Dans le cas d'un codeur angulaire, ces moyens comprennent par exemple une roue intérieure crantée 13 solidaire du boitier
1 1 et une bille 14 reliée au disque 10. La bille 14 est libre en translation par rapport au disque 10 selon une direction 15 radiale du disque 10. La bille 14 peut se déplacer d'un cran à l'autre de la roue 13. La bille 14 peut être poussée par un ressort, non représenté, pour la maintenir au fond de chaque cran. Les positions stables du disque 10 par rapport au boitier 1 1 sont définies par les positions de la bille 14 au fond de chaque cran de la roue 13.
Le disque 10 comprend une succession d'ouvertures 1 6 entre lesquelles le disque 10 est plein. Chaque ouverture 1 6 forme une marque sur le disque 10 et l'espace plein séparant chaque ouverture forme une absence de marque. Autrement dit, le disque 10 comprend une succession alternée de marques 1 6 et d'absence de marques. Les marques sont disposées radialement autour de l'axe 12. On peut aussi réaliser le disque 10 dans un matériau plein sans ouvertures en alternant radialement des zones transparentes formant les marques et des zones opaques. Par la suite, on assimilera les zones transparentes aux ouvertures 1 6. Il est bien entendu que l'invention peut être mise en œuvre à partir d'une seule marque réalisée sur le disque 10. Le boitier 1 1 comprend une paire de cellules 17 et 18 de détection de la marque 16. Dans l'exemple considéré, le codeur comprend de plus un émetteur optique apte à être détecté par les deux cellules 17 et 18 de détection séparément. A titre de variante, le codeur peut comprendre deux émetteurs optiques aptes à être détectés chacun par une des cellules 17 ou 18 de détection. Le disque 10 peut se déplacer entre le ou les émetteurs d'une part et les cellules 17 et 18 d'autre part. Le ou les émetteurs sont par exemple des diodes électroluminescentes et les cellules 17 et 18 des photodiodes sensibles au rayonnement émis par la ou les diodes. Dans la variante où le codeur comprend deux diodes électroluminescentes il est important que chaque cellule 17 ou 18 ne soit sensible qu'à une seule diode.
La nécessité de détection distincte par chacune des cellules 17 et
18 permet de définir une distance minimale séparant les cellules 17 et 18 d'une part et éventuellement les diodes d'autre part. Cette distance doit permettre qu'une marque 1 6 puisse être détectée soit par aucune soit par une soit par les deux cellules 17 et 18. Autrement dit, il faut qu'un bord d'une marque 16 puisse s'arrêter entre les deux cellules 17 et 18 lors de la rotation du disque 10. En présence d'une succession alternée de marques 16 et d'absence de marque 16, la paire de cellules 17 et 18 est apte à détecter chaque marque 16 indépendamment de la suivante. La détection de la marque 16 se fait sur un bord de celle-ci. La longueur de la marque 16 n'a donc aucune influence sur la détection de la marque 16. On peut donc élargir les tolérances de fabrication de la marque 16. La limite maximale de la longueur de la marque 16 est uniquement fonction du nombre d'incréments du codeur. La figure 1 e est une vue agrandie de la figure 1 c sur laquelle on a représenté la longueur angulaire α de la marque 16 qui doit être supérieure à une longueur angulaire β d'une zone 19 incluant la paire de cellules de détection 17 et 18. En d'autres termes, la zone 19 est la surface minimale occupée par les deux cellules de détection 17 et 18 y compris l'espace situé entre les cellules17 et 18. Par contre, la mise en œuvre de l'invention ne conduit à aucune limite maximale pour la distance séparant les cellules 17 et 18. Une limite maximale existe seulement pour positionner le nombre d'incréments suffisants sur le disque 10.
De plus, la position relative des deux cellules 17 et 18 n'est pas fonction du nombre d'incréments. On peut donc standardiser un support des cellules 17 et 18 pour des codeurs différents ne possédant pas le même nombre d'incréments.
Lors du mouvement du disque 10 autour de son axe 12, chaque cellule 17 et 18 reçoit ou ne reçoit pas le rayonnement émis par la diode associée en fonction de la présence ou non d'une ouverture 16 entre la cellule 17 ou 18 et sa diode associée.
Sur la figure 1 a, les deux cellules 17 et 18 sont masquées par le disque 10. Sur la figure 1 b, la cellule 17 est éclairée et la cellule 18 est masquée. Sur la figure 1 c, les deux cellules 17 et 18 sont éclairées. Sur la figure 1 d, la cellule 17 est masquée et la cellule 18 est éclairée.
Les quatre figures 1 a à 1 d représentent dans l'ordre quatre positions stables successives dans la rotation du disque 10 autour de l'axe 12 dans le sens horaire. Dans la position qui suit celle représentée sur la figure 1 d, le disque masque les deux cellules 17 et 18. Cette position est équivalente à celle de la figure 1 a. Il est bien entendu possible de faire tourner le disque dans le sens trigonométrique. On obtiendrait alors une succession inverse dans l'ordre d'éclairement et de masquage des cellules 17 et 18.
La figure 2 représente le codage obtenu par les deux cellules de détection 17 et 18 en fonction des positions stables du disque 10 par rapport au boitier 1 1. Huit positions stables, numérotées de 1 à 8, sont représentées en partie haute de la figure 2. Une ligne brisée 20, en dent de scie, représente les crans de la roue 13. Une courbe 27 représente le codage obtenu au moyen de la cellule 17 et une courbe 28 représente le codage obtenu au moyen de la cellule 18. Le codage issu des cellules 17 et 18 est binaire et peut prendre deux valeurs notées 0 et 1. Le codage issu de la cellule 17 prend la valeur 0 pour les positions 1 , 2, 5 et 6 et la valeur 1 pour les positions 3, 4, 7 et 8. Le codage issu de la cellule 18 prend la valeur 0 pour les positions 1 , 4, 5 et 8 et la valeur 1 pour les positions 2, 3, 6 et 7.
Les positions 1 et 5 correspondent à celles représentées sur la figure 1 a. Les positions 2 et 6 correspondent à celles représentées sur la figure 1 d. Les positions 3 et 7 correspondent à celles représentées sur la figure 1 c. Les positions 4 et 8 correspondent à celles représentées sur la figure 1 b. L'ordre de succession des positions 1 vers 8 correspond à une rotation du disque 10 dans le sens trigonométrique tel que défini au moyen des figures 1 a à 1 d.
La figure 3 représente en perspective un exemple de réalisation d'un codeur angulaire comprenant deux émetteurs et deux cellules 17 et 18 solidaires d'un support 30 en forme de U. Le support 30 comprend deux branches 31 et 32 se faisant face. Les émetteurs sont situés sur une des branches 31 du U et les cellules 17 et 18 sont situées sur l'autre branche 32 du U. Le disque 10 se déplace entre les branches du U. Lorsque le disque 10 tourne autour de son axe 12, les ouvertures 16 passent entre les branches du support 30 de façon à pouvoir être détectées par les cellules 17 et 18. Un arbre 33 s'étendant suivant l'axe 12 est solidaire du disque 10. L'arbre 33 est lié au boitier 1 1 au moyen de palier laissant subsister un degré de liberté en rotation autour de l'axe 12. L'arbre 33 permet à un opérateur de manœuvrer le disque 10 en rotation. Avantageusement le support 30 est solidaire d'une carte de circuit imprimé 34 permettant d'assurer les raccordements nécessaires au fonctionnement des émetteurs et des cellules 17 et 18. On peut aussi disposer sur la carte 34 des composants électroniques liés au traitement du codage issu des cellules 17 et 18. La carte 34 est par exemple située dans un plan parallèle à l'axe 12.
Avantageusement, pour assurer la redondance du codage, on peut doubler le support 30. Le second support 30 porte également deux émetteurs et deux cellules 17 et 18. Le second support 30 peut également être disposé sur une carte de circuit imprimé 34. Pour améliorer la compacité du codeur, les deux cartes 34 peuvent être parallèles. Exprimé de façon plus générale, le codeur comprend deux seconds éléments mobiles par rapport à un seul premier élément portant au moins deux marques, chacun des deux seconds éléments portant une paire de cellule de détection d'une des deux marques de façon à assurer la redondance de la détection des marques. En effet, les cartes 34 ont un niveau de fiabilité inférieur à celui du disque 10. Pour améliorer la fiabilité du codeur il suffit de doubler les cartes 34 autour d'un seul disque 10. Ce doublement peut également être utilisé pour détecter une panne des composants de la carte 34 lorsque le codage délivré par chacune des paires de cellules 17 et 18 devient différent.

Claims

REVENDICATIONS
1. Codeur optique incrémental, comprenant deux éléments mobiles l'un par rapport à l'autre, le premier élément (10) portant au moins une marque (16) et le second élément (1 1 ) portant une paire de cellules de détection (17, 18) de la marque (16), caractérisé en ce que les dimensions de la marque (16) sont définies de façon à pouvoir être détectée soit par aucune des deux cellules (17, 18), soit par une seule cellule (17, 18) soit par les deux cellules (17, 18) et en ce qu'une longueur d'une zone du second élément (11) incluant la paire de cellules de détection (17, 18) est inférieure à une longueur de la marque (16), les longueurs étant mesurées dans la direction du déplacement relatif des deux éléments (10, 11 ).
2. Codeur selon la revendication 1 , caractérisé en ce que la longueur maximale de la marque est uniquement fonction du nombre d'incréments du codeur.
3. Codeur selon l'une des revendications précédentes, caractérisé en ce que des incréments successifs du codeur sont définis par la détection de la marque (1 6) :
• par aucune des cellules, • puis par une première (17) des cellules,
• puis par les deux cellules (17, 18) simultanément.
4. Codeur selon la revendication 3, caractérisé en ce que les incréments succédant celui défini par la détection de la marque (1 6) par les deux cellules (17, 18) simultanément sont définis par la détection de la marque (16) :
• par la seconde (18) des cellules,
• puis par aucune des cellules.
5. Codeur selon l'une des revendications précédentes, caractérisé en ce que le premier élément (10) comprend une succession alternée de marques (16) et d'absence de marque.
6. Codeur selon l'une des revendications précédentes, caractérisé en ce que le codeur est un codeur angulaire, en ce que le premier élément est un disque (10) mobile en rotation par rapport au second élément (1 1 ).
7. Codeur selon l'une des revendications précédentes, caractérisé en ce que la marque (16) est une ouverture dans le premier élément (10), en ce que le second élément comprend un ou deux émetteurs optiques aptes à être détectés chacun par une des cellules de détection (17, 18) et en ce que le premier élément (10) peut se déplacer entre le ou les émetteurs d'une part et les cellules (17, 18) d'autre part.
8. Codeur selon la revendication 7, caractérisé en ce que le ou les émetteurs et les cellules (17, 18) sont solidaires d'un support (30) en forme de U, le support (30) comprenant deux branches (31 , 32) se faisant face, en ce que le ou les émetteurs sont situés sur une (31 ) des branches du U et les cellules (17, 18) sont situés sur l'autre branche (32) du U et en ce que le premier élément (10) se déplace entre les branches (31 , 32) du U.
9. Codeur selon la revendication 8, caractérisé en ce que le support (30) est solidaire d'une carte (34) de circuit imprimé.
10. Codeur selon l'une des revendications précédentes, caractérisé en ce qu'il comprend deux seconds éléments (30, 34) mobiles par rapport à un seul premier élément (10) portant au moins deux marques (16), chacun des deux seconds éléments (30, 34) portant une paire de cellules de détection (17, 18) d'une des deux marques (16) de façon à assurer la redondance de la détection des marques (16).
1 1. Codeur selon l'une des revendications précédentes, caractérisé en ce qu'il comprend des moyens (13, 14) pour définir mécaniquement des positions stables des deux éléments (10, 1 1 ) l'un par rapport à l'autre et en ce que dans une première position stable aucune des deux cellules (17, 18) ne détecte la marque (16), dans une deuxième position stable, une seule cellule (17, 18) détecte la marque (16) et dans une troisième position stable, les deux cellules (17, 18) détectent la marque (16).
PCT/EP2009/063227 2008-10-10 2009-10-09 Codeur optique WO2010040849A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/123,478 US20120126102A1 (en) 2008-10-10 2009-10-09 Optical Encoder
RU2011118369/08A RU2507559C2 (ru) 2008-10-10 2009-10-09 Оптическое кодирующее устройство
EP09783920A EP2335027A1 (fr) 2008-10-10 2009-10-09 Codeur optique
CA2740250A CA2740250A1 (fr) 2008-10-10 2009-10-09 Codeur optique
CN200980144881.1A CN102209882B (zh) 2008-10-10 2009-10-09 光学编码器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0805614A FR2937129B1 (fr) 2008-10-10 2008-10-10 Codeur optique
FR0805614 2008-10-10

Publications (1)

Publication Number Publication Date
WO2010040849A1 true WO2010040849A1 (fr) 2010-04-15

Family

ID=40886787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/063227 WO2010040849A1 (fr) 2008-10-10 2009-10-09 Codeur optique

Country Status (7)

Country Link
US (1) US20120126102A1 (fr)
EP (1) EP2335027A1 (fr)
CN (1) CN102209882B (fr)
CA (1) CA2740250A1 (fr)
FR (1) FR2937129B1 (fr)
RU (1) RU2507559C2 (fr)
WO (1) WO2010040849A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2994898B1 (fr) * 2012-09-05 2014-08-22 Delphi Tech Inc Dispositif a organe de commande mobile
CN104020660B (zh) * 2014-05-26 2016-03-02 东莞劲胜精密组件股份有限公司 智能手表及其控制旋钮
CN104579291A (zh) * 2015-01-07 2015-04-29 江苏华途数控科技有限公司 一种光电波段开关
CN110658834B (zh) * 2019-09-03 2023-01-13 中国航空工业集团公司西安飞行自动控制研究所 一种电传飞行控制系统目标参数设置的实现方法及装置
FR3135791B1 (fr) 2022-05-17 2024-05-31 Thales Sa Codeur magnétique incrémental

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691101A (en) * 1985-06-19 1987-09-01 Hewlett-Packard Company Optical positional encoder comprising immediately adjacent detectors
EP0509828A2 (fr) * 1991-04-17 1992-10-21 Hewlett-Packard Company Codeur optique avec impulsion-index amélioré
EP1406157A2 (fr) * 2002-09-30 2004-04-07 Microsoft Corporation Détection de l'entrée à haute résolution
EP1439375A2 (fr) * 2003-01-15 2004-07-21 Xerox Corporation Procédé et appareil pour obtenir une onde sinusoidale d'un codeur en quadrature analogique

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0351316U (fr) * 1989-09-22 1991-05-20
RU2115885C1 (ru) * 1995-02-15 1998-07-20 Научно-производственное конструкторско-внедренческое предприятие "НП-КВП" Способ и устройство измерения углов и формирования угловых меток
US5837995A (en) * 1996-11-25 1998-11-17 Alan Y. Chow Wavelength-controllable voltage-phase photodiode optoelectronic switch ("opsistor")
US6744525B2 (en) * 1997-11-25 2004-06-01 Spectra Systems Corporation Optically-based system for processing banknotes based on security feature emissions
US6266298B1 (en) * 1998-05-22 2001-07-24 Excel Precision Corporation Apparatus and method for inscribing, optically detecting, and using a clock pattern to write a servo pattern in an information storage unit
FR2846492B1 (fr) * 2002-10-25 2005-01-14 Thales Sa Codeur angulaire optique double
WO2005095898A1 (fr) * 2004-03-31 2005-10-13 Mitsubishi Denki Kabushiki Kaisha Encodeur optique rotatif
US7710553B2 (en) * 2005-03-30 2010-05-04 Samuel Hollander Imaging optical encoder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691101A (en) * 1985-06-19 1987-09-01 Hewlett-Packard Company Optical positional encoder comprising immediately adjacent detectors
EP0509828A2 (fr) * 1991-04-17 1992-10-21 Hewlett-Packard Company Codeur optique avec impulsion-index amélioré
EP1406157A2 (fr) * 2002-09-30 2004-04-07 Microsoft Corporation Détection de l'entrée à haute résolution
EP1439375A2 (fr) * 2003-01-15 2004-07-21 Xerox Corporation Procédé et appareil pour obtenir une onde sinusoidale d'un codeur en quadrature analogique

Also Published As

Publication number Publication date
FR2937129A1 (fr) 2010-04-16
CN102209882A (zh) 2011-10-05
CA2740250A1 (fr) 2010-04-15
RU2507559C2 (ru) 2014-02-20
FR2937129B1 (fr) 2012-11-16
US20120126102A1 (en) 2012-05-24
CN102209882B (zh) 2015-01-07
EP2335027A1 (fr) 2011-06-22

Similar Documents

Publication Publication Date Title
EP0490206B1 (fr) Capteur de position pour un appareil de mesure de grandeurs linéaires ou angulaires
EP2335027A1 (fr) Codeur optique
JP6775532B2 (ja) 計数機構および多相ロータリエンコーダの回転角度を測定する装置ならびに対応するセンサ
FR2736150A1 (fr) Codeur angulaire absolu
US20090152452A1 (en) Reflective multi-turn encoder
JPS63234729A (ja) 位置検出装置
JP5260297B2 (ja) 光エレクトロニクス角度計測装置
EP2343508B1 (fr) Codeur optique
JP3743426B2 (ja) 光学式エンコーダ
CN106767962A (zh) 差分式光电编码器及位置判断方法
CH621295A5 (fr)
JPWO2007043521A1 (ja) エンコーダ及びエンコーダ用受光装置
FR2954493A1 (fr) Capteur optique de position angulaire absolue
EP2343509B1 (fr) Codeur incrémental et procédé de détermination d'une valeur de variation de positions stables du codeur
FR2492092A1 (fr) Dispositif de reperage de la position de reference d'une piece mobile en translation
WO2004038925A1 (fr) Codeur angulaire optique
FR2608756A1 (fr) Capteur de deplacement pour machines automatiques
US9354087B2 (en) Single track three-channel encoder with differential index
EP3035002A1 (fr) Codeur optique robuste
CA2303629C (fr) Capteur optique a deplacement differentiel - ii
FR2601127A1 (fr) Petit appareil pour la mesure de longueurs
JPS5952713A (ja) 回転角度測定方法
JP2000241145A (ja) 回転角度検出装置
CN114577242A (zh) 光电旋转编码器
CH676901A5 (fr)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980144881.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09783920

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009783920

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2740250

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011118369

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13123478

Country of ref document: US