WO2010038717A1 - Method for manufacturing functional device, and method for manufacturing semiconductor device provided with functional device - Google Patents

Method for manufacturing functional device, and method for manufacturing semiconductor device provided with functional device Download PDF

Info

Publication number
WO2010038717A1
WO2010038717A1 PCT/JP2009/066890 JP2009066890W WO2010038717A1 WO 2010038717 A1 WO2010038717 A1 WO 2010038717A1 JP 2009066890 W JP2009066890 W JP 2009066890W WO 2010038717 A1 WO2010038717 A1 WO 2010038717A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional
functional device
wafer
adhesive
substrate
Prior art date
Application number
PCT/JP2009/066890
Other languages
French (fr)
Japanese (ja)
Inventor
幸司 辻
洋右 萩原
直樹 牛山
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Publication of WO2010038717A1 publication Critical patent/WO2010038717A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00865Multistep processes for the separation of wafers into individual elements
    • B81C1/00873Multistep processes for the separation of wafers into individual elements characterised by special arrangements of the devices, allowing an easier separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/01Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS
    • B81B2207/012Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS the micromechanical device and the control or processing electronics being separate parts in the same package
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/05Temporary protection of devices or parts of the devices during manufacturing
    • B81C2201/053Depositing a protective layers

Definitions

  • the present invention relates to a method for manufacturing a functional device and a method for manufacturing a semiconductor device provided with the functional device.
  • functional devices such as high-frequency devices, thermal infrared sensors, and MEMS (Micro Electro Mechanical Systems) devices (for example, acceleration sensors, gyro sensors, ultrasonic sensors, micro valves) have been provided.
  • MEMS Micro Electro Mechanical Systems
  • Such a functional device includes a substrate and a functional thin film having a predetermined function and formed on the substrate.
  • a cavity for spatially separating the substrate and the functional thin film is formed in the substrate.
  • a wafer for example, a silicon wafer
  • the wafer is divided into a plurality of functional devices by dicing.
  • the above functional thin film is relatively low in strength and fragile. Therefore, the functional thin film may be damaged during dicing. In particular, the functional thin film may be damaged during vacuum suction for fixing the wafer to the dicing stage or during pure spraying during dicing.
  • a protective layer is formed on one surface of the wafer and a dicing sheet is formed on the other surface of the wafer.
  • the wafer is cut after being attached.
  • the protective layer is removed after the wafer is cut.
  • the document 1 discloses that an adhesive protective sheet is used instead of the protective layer.
  • a resist film is formed on a wafer, a protective sheet is attached using the resist film, and then the wafer is cut. It is carried out.
  • the protective sheet is removed by dissolving the resist film after cutting the wafer.
  • a resist is applied on a wafer by spin coating or the like and then thermally cured to form a resist film.
  • the resist film expands and contracts during thermal curing of the resist, and stress is applied to the functional thin film.
  • the functional thin film may be destroyed.
  • the functional device may be destroyed when the resist film is removed by wet etching, for example.
  • the present invention has been made in view of the above reasons.
  • the objective of this invention is providing the manufacturing method of the functional device which can improve a yield, and can prevent the fall of the performance of the functional device by adhesion of organic substance, and the manufacturing method of the semiconductor device using a functional device.
  • a functional device manufactured by the method for manufacturing a functional device according to the present invention includes a substrate and a functional thin film having a predetermined function formed on the substrate. A cavity for spatially separating the substrate and the functional thin film is formed in the substrate.
  • the functional device manufacturing method includes a wafer processing step, a pasting step, a dicing step, a peeling step, and a removing step.
  • the wafer processing step the functional thin film is formed on one surface of the wafer serving as the base of the substrate.
  • a protective sheet which is an adhesive sheet using an adhesive
  • a dicing sheet is attached to the other surface of the wafer.
  • the protective sheet and the wafer are cut without cutting the dicing sheet, and the wafer is divided into a plurality of functional devices.
  • the peeling step the protective sheet is peeled from each functional device after the dicing step.
  • unnecessary organic matter including the pressure-sensitive adhesive on the protective sheet attached to each functional device is removed after the peeling step.
  • the functional thin film can be prevented from being damaged during cutting, and the yield can be improved. Moreover, since unnecessary organic substances adhering to the functional device can be removed, it is possible to prevent the performance of the functional device from being deteriorated due to the adhesion of organic substances. Therefore, the performance of the functional device can be improved.
  • the pressure-sensitive adhesive adheres to the functional device after the peeling step, the pressure-sensitive adhesive can be reliably removed in the removal step. Therefore, deterioration of the performance of the functional device due to adhesion of the adhesive can be prevented.
  • the functional device has a slit that penetrates the functional thin film in the thickness direction and communicates with the cavity.
  • unnecessary organic substances attached to at least one of the inner surface of the slit and the inner surface of the cavity are removed.
  • a peeling member is attached to the surface of the protective sheet opposite to the wafer, and then the protective sheet is peeled from the functional device together with the peeling member.
  • the protective sheet is a heat-peelable pressure-sensitive adhesive sheet that uses a pressure-sensitive adhesive that decreases in adhesive strength when heated.
  • the protective sheet can be easily peeled from the functional device by heating the protective sheet. Therefore, it can suppress that the said functional thin film breaks at the time of peeling of the said protective sheet.
  • the protective sheet is uniformly heated while applying pressure uniformly to the entire surface of the protective sheet before peeling the protective sheet from the functional device.
  • a semiconductor device manufactured by the method for manufacturing a semiconductor device according to the present invention includes a functional device and a package that accommodates the functional device.
  • the functional device includes a substrate and a functional thin film having a predetermined function formed on the substrate.
  • a cavity for spatially separating the substrate and the functional thin film is formed in the substrate.
  • the package includes a base on which the functional device is mounted and a cap that surrounds the functional device with the base.
  • the semiconductor device manufacturing method includes a wafer processing step, a pasting step, a dicing step, a peeling step, a removing step, a mounting step, and a sealing step.
  • the wafer processing step the functional thin film is formed on one surface of the wafer serving as the base of the substrate.
  • a protective sheet which is an adhesive sheet using an adhesive, is directly attached to one surface of the wafer, and a dicing sheet is attached to the other surface of the wafer.
  • the protective sheet and the wafer are cut without cutting the dicing sheet, and the wafer is divided into a plurality of functional devices.
  • the protective sheet is peeled from each functional device after the dicing step.
  • the removal step unnecessary organic matter including the pressure-sensitive adhesive on the protective sheet attached to each functional device is removed after the peeling step.
  • the functional device is mounted on the base using a first adhesive.
  • the sealing step after the removing step and the mounting step, the cap is bonded to the base using a second adhesive, and the functional device is hermetically sealed with the package.
  • the present invention since unnecessary organic substances adhering to the functional device can be removed, it is possible to prevent deterioration of the performance of the functional device due to the adhesion of organic substances. Therefore, it is possible to prevent the performance of the semiconductor device from being deteriorated.
  • the cap is bonded to the base body so that the inside of the package is in a vacuum or a positive pressure.
  • the pressure in the package does not change due to degassing of the organic substances. Therefore, it is possible to prevent the performance of the semiconductor device from being deteriorated.
  • the inside of the package is evacuated, a change in the degree of vacuum in the package can be eliminated, and the reliability of the semiconductor device can be improved.
  • the inside of the package is set to a positive pressure, gas outside the package such as the atmosphere does not flow into the package. Therefore, the reliability of the semiconductor device can be improved.
  • At least one of the first adhesive and the second adhesive is made of an inorganic material.
  • organic substances attached to at least one of the base and the cap are removed.
  • the mounting step is performed before the removing step.
  • the removing step organic substances attached to the substrate are removed.
  • (Embodiment 1) 2 and 3 show a functional device 10 manufactured by the functional device manufacturing method of the present embodiment.
  • the functional device 10 is an infrared array sensor (infrared image sensor).
  • the functional device 10 includes a substrate 1 and a functional thin film 2 having a predetermined function and formed on the substrate 1.
  • the substrate 1 is a silicon substrate.
  • a functional thin film 2 is formed on the main surface (the upper surface in FIG. 1E) that is one surface in the thickness direction of the substrate 1.
  • the functional thin film 2 includes m ⁇ n (2 ⁇ 2 in the illustrated example) functional elements 30 arranged in a two-dimensional array. Note that the functional thin film 2 may include only one functional element 30.
  • the functional element 30 is a thermal infrared detecting element having a thermocouple type sensing element 20 made of a thermopile.
  • the functional element 30 functions as a photoelectric conversion element of a pixel in the infrared image sensor.
  • the sensing element 20 is illustrated as a voltage source corresponding to the thermoelectromotive force of the sensing element 20.
  • the substrate 1 has a cavity 5 for spatially separating the substrate 1 and the functional thin film 2.
  • the cavity 5 thermally separates the functional element 30 of the functional thin film 2 and the substrate 1.
  • the sensitivity of the functional element 30 which is an infrared detection element can be improved.
  • the cavity 5 is a depression formed in the substrate 1.
  • the cavity 5 may be a hole that penetrates the substrate 1 in the thickness direction.
  • Part of the functional element 30 (part of the functional thin film 2) is spatially separated from the substrate 1 by the cavity 5, as shown in FIG.
  • a portion of the functional element 30 that is spatially separated from the substrate 1 constitutes an infrared absorber 21 that absorbs infrared rays.
  • Slits (through holes) 4 that penetrate the functional element 30 in the thickness direction are formed at the four corners of the rectangular region that becomes the infrared absorber 21.
  • the slit 4 communicates with the cavity 5.
  • the infrared absorber 21 and the substrate 1 can be thermally separated. Therefore, the sensitivity of the functional element 30 that is an infrared detection element can be improved.
  • the shape of the slit 4 is not limited to a rectangle, but can be variously selected as desired, such as a triangle, an ellipse, and a circle.
  • the functional element 30 is a laminated structure including a silicon oxide film 11, a silicon nitride film 12, a sensing element 20, an interlayer insulating film 17, and a passivation film 19. It is formed by patterning.
  • the functional element 30 formed by such a laminated structure is sufficiently thinner than the substrate 1.
  • the silicon oxide film 11 is formed on the main surface of the substrate 1.
  • the silicon nitride film 12 is formed on the silicon oxide film 11.
  • the sensing element 20 is formed on the silicon nitride film 12.
  • the interlayer insulating film 17 is formed so as to cover the sensing element 20 on the surface side of the silicon nitride film 12 (upper surface side in FIG. 3B).
  • the interlayer insulating film 17 is, for example, a BPSG (Boro-PhosphoSilicate Glass) film.
  • the passivation film 19 is formed on the interlayer insulating film 17.
  • the passivation film 19 is, for example, a laminated film of a PSG (Phospho SilicateGlass) film and an NSG (Non-doped Silicate Glass) film formed on the PSG film.
  • the laminated film of the interlayer insulating film 17 and the passivation film 19 constitutes an infrared absorption film 22.
  • the thickness t of the infrared absorption film 22 is ⁇ / 4n.
  • n is the refractive index of the infrared absorption film 22
  • is the center wavelength of the infrared rays to be detected (for example, infrared rays emitted from a human body having a wavelength of 8 to 12 ⁇ m). If it does in this way, the absorption efficiency of the infrared absorption film 22 with respect to the infrared rays to be detected can be increased.
  • the thickness of the interlayer insulating film 17 may be 0.8 ⁇ m
  • the thickness of the PSG film may be 0.5 ⁇ m
  • the thickness of the NSG film may be 0.5 ⁇ m.
  • the passivation film 19 may be a silicon nitride film.
  • the sensing element 20 includes four thermocouples 200 connected in series as shown in FIG.
  • Each thermocouple 200 includes a p-type polysilicon layer 15, an n-type polysilicon layer 13, and a connection layer 23.
  • the p-type polysilicon layer 15 and the n-type polysilicon layer 13 are formed so as to straddle the infrared absorber 21 and the substrate 1.
  • the p-type polysilicon layer 15 and the n-type polysilicon layer 13 are formed so as not to contact each other.
  • the connection layer 23 has a p-type polysilicon layer 15 and an n-type polysilicon layer 13 on the infrared incident surface side (upper surface side in FIG. 3B) which is the surface opposite to the substrate 1 side in the infrared absorber 21.
  • connection layer 23 is made of a metal material such as Al—Si. Connection layer 23 is electrically connected to each of n-type polysilicon layer 13 and p-type polysilicon layer 15 through contact holes 25 formed in interlayer insulating film 17.
  • the other end of the p-type polysilicon layer 15 of the thermocouple 200 is electrically connected to the other end of the n-type polysilicon layer 13 of the adjacent thermocouple by a wiring 18 on the main surface side of the substrate 1.
  • the wiring 18 is formed of a metal material such as Al—Si, for example.
  • the four thermocouples 200 are connected in series by the wiring 18 to form a sensing element 20 made of a thermopile.
  • the sensing element 20 has a hot junction disposed on the infrared absorber 21 and a cold junction disposed on the substrate 1.
  • the hot junction is composed of one end of the n-type polysilicon layer 13, one end of the p-type polysilicon layer 15, and the connection layer 23.
  • the cold junction is composed of the other end of the p-type polysilicon layer 15, the other end of the n-type polysilicon layer 13, and the wiring 18.
  • the functional thin film 2 includes a plurality (four in the illustrated example) of output pads 24 (241 to 244) and one reference bias pad 26 as shown in FIG.
  • One end of each sensing element 20 is electrically connected to a corresponding output pad 24 via a vertical readout line 27. Further, the other end of each sensing element 20 is electrically connected to a common reference bias line 29 via a reference bias line 28.
  • the common reference bias line 29 is electrically connected to the reference bias pad 26. That is, one end of each sensing element 20 is connected to each output pad 24 separately. The other ends of the plurality of sensing elements 20 are commonly connected to the reference bias pad 26.
  • the output voltage of the functional element 30 (1.65 V + the output voltage of the sensing element 20) is extracted from each output pad 24. be able to.
  • the n-type compensating polysilicon layer 14 and the p-type compensating polysilicon layer 16 are formed on the infrared incident surface of the infrared absorber 21.
  • the n-type compensation polysilicon layer 14 and the p-type compensation polysilicon layer 16 are arranged so as not to contact each other.
  • the n-type compensation polysilicon layer 14 is formed integrally with the n-type polysilicon layer 13. That is, a portion that becomes the n-type compensation polysilicon layer 14 is left when the n-type polysilicon layer 13 is patterned.
  • the p-type compensation polysilicon layer 16 is formed integrally with the p-type polysilicon layer 15. That is, a portion that becomes the p-type compensation polysilicon layer 16 is left when the p-type polysilicon layer 15 is patterned.
  • Such n-type compensation polysilicon layer 14 and p-type compensation polysilicon layer 16 enhance the uniformity of the stress balance of the functional element 30. As a result, it is possible to prevent warping while reducing the thickness of the functional element 30. Thereby, the sensitivity of the functional element 30 which is an infrared detection element can be improved.
  • the manufacturing method of the functional device includes a wafer processing step (pre-process) and a division step (post-process) performed after the wafer processing step.
  • the functional thin film 2 is formed on one surface of the wafer 3 which is the basis of the substrate 1.
  • a wafer 3 having a substrate 1 and a functional thin film 2 is obtained as shown in FIG.
  • a plurality of functional devices 10 are formed on one surface (one surface in the thickness direction) 3 a of the wafer 3.
  • one surface 3a of the wafer 3 is a surface opposite to the substrate 1 side in the functional thin film 2 (an upper surface in FIG. 1A).
  • the other surface (the other surface in the thickness direction) 3b of the wafer 3 is the other surface in the thickness direction of the substrate 1 (the lower surface in FIG. 1A).
  • the method for manufacturing a functional device according to this embodiment is characterized by a division process. Therefore, the wafer processing process is appropriately changed according to the configuration of the functional device 10.
  • an insulating layer forming process is first performed.
  • an insulating layer (thermal insulating layer) is formed on the main surface of the substrate 1.
  • the insulating layer is a laminated film of a silicon oxide film 11 having a predetermined film thickness (for example, 3000 mm) and a silicon nitride film 12 having a predetermined film thickness (for example, 900 mm).
  • Silicon oxide film 11 is formed by thermally oxidizing the main surface of substrate 1 at a predetermined temperature (for example, 1100 ° C.).
  • the silicon nitride film 12 is formed by the LPCVD method.
  • a polysilicon layer forming step is performed.
  • a non-doped polysilicon layer having a predetermined film thickness (for example, 0.69 ⁇ m) is formed on the entire surface of the main surface of the substrate 1 by LPCVD.
  • This non-doped polysilicon layer is the basis of the n-type polysilicon layer 13, the n-type compensation polysilicon layer 14, the p-type polysilicon layer 15, and the p-type compensation polysilicon layer 16.
  • a polysilicon layer patterning step is performed.
  • the n-type polysilicon layer 13, the n-type compensation polysilicon layer 14, the p-type polysilicon layer 15, and the p-type compensation polycrystal among the non-doped polysilicon layers using the photolithography technique and the etching technique.
  • the non-doped polysilicon layer is patterned so that a portion corresponding to the silicon layer 16 remains.
  • a p-type polysilicon layer forming step is performed.
  • ions of p-type impurities for example, boron
  • boron ions of p-type impurities
  • an n-type polysilicon layer forming step is performed.
  • the n-type polysilicon forming step after ion implantation of an n-type impurity (for example, phosphorus) is performed on the portion of the non-doped polysilicon layer corresponding to the n-type polysilicon layer 13 and the n-type compensating polysilicon layer 14.
  • the n-type polysilicon layer 13 and the n-type compensation polysilicon layer 14 are formed by driving. The order of the p-type polysilicon layer forming step and the n-type polysilicon layer forming step may be reversed.
  • an interlayer insulating film forming step is performed.
  • an interlayer insulating film 17 is formed on the main surface of the substrate 1.
  • a contact hole forming step is performed.
  • a contact hole 25 is formed in the interlayer insulating film 17 by using a photolithography technique and an etching technique.
  • a metal film forming process is performed.
  • a metal film for example, an Al—Si film
  • a predetermined film thickness for example, 2 ⁇ m
  • This metal film is the basis of the connection layer 23, the wiring 18, the vertical readout line 27, the reference bias line 28, the common reference bias line 29, and the pads 24 and 26.
  • a metal film patterning process is performed.
  • the metal film is patterned using a photolithography technique and an etching technique, so that the connection layer 23, the wiring 18, the vertical readout line 27, the reference bias line 28, the common reference bias line 29, and each pad 24. , 26 are formed.
  • a passivation film forming process is performed.
  • a PSG film having a predetermined film thickness (for example, 5000 mm) and an NSG film having a predetermined film thickness (for example, 5000 mm) are formed on the main surface of the substrate 1 (that is, on the surface of the interlayer insulating film 17).
  • a passivation film 19 made of a laminated film is formed by a CVD method.
  • a laminated structure patterning step is performed.
  • the functional thin film 2 is formed by patterning the laminated structure described above. Specifically, in the laminated structure patterning step, the functional thin film 2 is obtained by forming the slits 4.
  • an opening forming step is performed.
  • openings (not shown) for exposing the pads 24 and 26 are formed by using a photolithography technique and an etching technique.
  • RIE is used.
  • a cavity forming process is performed.
  • the cavity 5 is formed in the substrate 1 by anisotropically etching the substrate 1 by introducing the etchant using the slits 4 as the etchant introduction holes.
  • the functional device 10 in which the functional elements 30 are arranged in a two-dimensional array is obtained.
  • a TMAH solution heated to a predetermined temperature for example, 85 ° C.
  • the etching solution is not limited to the TMAH solution, but may be another alkaline solution (for example, a KOH solution).
  • the dividing step includes a sticking step, a dicing step, a peeling step, a removing step, and a separating step.
  • the pasting step is first performed.
  • the dicing sheet 7 is attached to the other surface 3b of the wafer 3.
  • the dicing sheet 7 is directly attached to the other surface 3 b of the wafer 3.
  • a protective sheet 6 for protecting the functional thin film 2 is directly attached to one surface 3 a of the wafer 3.
  • the order in which the protective sheet 6 and the dicing sheet 7 are attached is not particularly limited.
  • the functional thin film 2 can be protected more quickly by attaching the protective sheet 6 to the wafer 3 before the dicing sheet 7.
  • the protective sheet (temporary fixing sheet) 6 temporarily fixes the functional thin film 2 and protects it.
  • the protective sheet 6 is a pressure-sensitive adhesive sheet (adhesive sheet) using a pressure-sensitive adhesive (adhesive).
  • a pressure-sensitive adhesive sheet is formed, for example, by applying an adhesive to the surface of a sheet-like or tape-like substrate such as plastic or polyester having a thickness of about 1 to 500 ⁇ m.
  • the protective sheet 6 it is preferable to use a pressure-sensitive adhesive sheet that can protect the functional thin film 2 from the cutting stress during dicing of the wafer 3 and the stress generated by cooling and cleaning and does not interfere with the cutting of the wafer 3.
  • the protective sheet 6 it is preferable to use an ultraviolet peelable adhesive sheet, a water-soluble peelable adhesive sheet, or a heat peelable adhesive sheet.
  • the ultraviolet peelable pressure-sensitive adhesive sheet is a pressure-sensitive adhesive sheet that uses a pressure-sensitive adhesive whose adhesive strength decreases when irradiated with ultraviolet rays.
  • the water-soluble peelable pressure-sensitive adhesive sheet is a pressure-sensitive adhesive sheet that uses a pressure-sensitive adhesive whose adhesive strength decreases when immersed in an aqueous solution.
  • the heat-peelable pressure-sensitive adhesive sheet is a pressure-sensitive adhesive sheet using a pressure-sensitive adhesive whose adhesive strength is reduced by heating.
  • the adhesive force can be reduced in a short time.
  • a heat-peelable pressure-sensitive adhesive sheet or a UV-peelable pressure-sensitive adhesive sheet rather than a water-soluble peelable pressure-sensitive adhesive sheet.
  • the residual adhesive strength of the heat-peelable pressure-sensitive adhesive sheet is lower than that of the UV-peelable pressure-sensitive adhesive sheet. Therefore, if the heat-peelable pressure-sensitive adhesive sheet is used, the protective sheet 6 can be easily peeled without damaging the functional thin film 2. In particular, the yield of the functional device 10 having the cavity 5 and the slit 4 communicating with the cavity 5 can be improved.
  • heat-peelable pressure-sensitive adhesive sheets include pressure-sensitive adhesives containing thermally expandable fine particles (for example, rubber pressure-sensitive adhesives, acrylic pressure-sensitive adhesives, vinyl alkyl ether pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, and polyester-based pressure-sensitive adhesives).
  • a pressure-sensitive adhesive sheet using a polyamide-based pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, or a fluorine-based pressure-sensitive adhesive) can be used.
  • the thermally expandable fine particles for example, a microcapsule in which a substance (for example, isobutane, propane, or pentane) that is easily gasified by heating and encapsulated in an elastic shell can be used.
  • the protective sheet 6 When affixing the protective sheet 6 to the one surface 3a of the wafer 3, the protective sheet 6 is disposed on the one surface 3a of the wafer 3, and the protective sheet 6 is attached to the wafer using an instrument such as a rubber roller, a spatula, or a press. 3 may be pressed against one surface 3a.
  • an adhesive sheet using a tape-like base material is used as the protective sheet 6, the protective sheet 6 may be attached to the wafer 3 using a roll-to-roll method. .
  • the protective sheet 6 and the wafer 3 are cut without cutting the dicing sheet 7 and the wafer 3 is divided into a plurality of functional devices 10.
  • wafer mounting for fixing the wafer 3 to a flat ring is performed.
  • the wafer 3 and the flat ring are fixed by a normal method using a dicing sheet 7. Therefore, the wafer 3 is fixed to the flat ring at the other surface 3b.
  • the flat ring on which the wafer 3 is fixed is fixed to a dicing stage (not shown) of the dicing apparatus.
  • the flat ring is fixed to the dicing stage by vacuum suction.
  • the wafer 3 is cut from the protective sheet 6 side (one surface 3a side). Specifically, the wafer 3 is cut together with the protective sheet 6 along a street on the wafer 3 using a dicing blade (not shown). Dicing is performed with a full cut instead of a half cut. As a result, the structure shown in FIG. After the dicing process, the wafer 3 is divided into a plurality of functional devices 10 by grooves (dicing grooves) 8. That is, the wafer 3 is chipped. The plurality of functional devices 10 are fixed to the dicing sheet 7. A divided protective sheet 6 is attached to the functional thin film 2 of each functional device 10.
  • a dicing blade having a thickness of several tens of ⁇ m is used.
  • the dicing blade is rotated at a high speed of about 3000 to 4000 rpm.
  • cleaning water is sprayed during dicing.
  • the flat ring is removed from the dicing apparatus.
  • what is necessary is just to select suitably by the material and structure of the functional device 10 whether full cut or half cut is carried out.
  • the protective sheet 6 is peeled from each functional device 10 after the dicing step.
  • a heat-peelable adhesive sheet is used as the protective sheet 6
  • a heat treatment is performed in which the protective sheet 6 of each functional device 10 is heated with a heater (for example, a hot air dryer, a hot plate, or a near infrared lamp).
  • the protective sheet 6 is peeled off using the peeling member 9.
  • the peeling member 9 is, for example, a heating plate having a metal plate excellent in thermal conductivity and a heater built in the metal plate and heating the metal plate.
  • the metal plate of the peeling member 9 is formed with a plurality of pores (not shown) for sucking and fixing the protective sheet 6.
  • a peeling member 9 is attached to the surface of the protective sheet 6 opposite to the wafer 3 (upper surface in FIG. 1C).
  • the protective sheet 6 is uniformly heated while uniformly applying pressure to the entire surface of the protective sheet 6 by the peeling member 9.
  • the protective sheet 6 is heated at 120 ° C. for 1 minute.
  • the thermally expandable fine particles in the adhesive of the protective sheet 6 are greatly expanded. Thereby, minute unevenness is generated on the surface of the layer made of the adhesive, and the state changes from the state in which the protective sheet 6 and the functional thin film 2 are in contact with each other to the point. As a result, the contact area between the protective sheet 6 and the functional thin film 2 is reduced, and the adhesive strength of the protective sheet 6 is greatly reduced.
  • the protective sheet 6 is peeled from the functional device 10 together with the peeling member 9 in a state in which the protective sheet 6 is heated by the peeling member 9 to reduce the adhesive force.
  • the protective sheet 6 is sucked and fixed using the pores of the peeling member 9.
  • the protective sheet 6 is lifted together with the peeling member 9.
  • the protective sheet 6 is peeled from the functional device 10 together with the peeling member 9.
  • the protective sheet 6 can be peeled relatively easily without destroying the functional device 10 (particularly the functional thin film 2).
  • an ultraviolet peeling type adhesive sheet is used for the protective sheet 6
  • an ultraviolet irradiation process for irradiating the protective sheet 6 with ultraviolet rays is performed instead of the heat treatment.
  • a water-soluble peeling type adhesive sheet is used for the protective sheet 6
  • prescribed aqueous solution is performed instead of heat processing. If it does in this way, the protection sheet 6 can be peeled easily.
  • the organic material includes the adhesive of the protective sheet 6 (the adhesive of the protective sheet 6 attached to the surface of the functional thin film 2).
  • Such unnecessary organic substances including the adhesive of the protective sheet 6 can be removed by, for example, ozone.
  • Ozone can be generated by irradiating oxygen gas with ultraviolet rays or high-frequency microwaves.
  • UV ozone cleaning method dry treatment using an ultraviolet ozone cleaning method
  • a wet process for removing organic substances (organic contaminants) using ozone water can be used.
  • the ultraviolet ozone cleaning method is a method of removing unnecessary organic substances by irradiating unnecessary organic substances with short wavelength ultraviolet rays.
  • Such an ultraviolet ozone cleaning method is a photosensitive oxidation process using ultraviolet rays having a short wavelength. Unnecessary organic matter is decomposed by absorbing short wavelength ultraviolet rays.
  • As the short wavelength ultraviolet light ultraviolet light having a wavelength of 184.9 nm and ultraviolet light having a wavelength of 253.7 nm are used.
  • oxygen molecules are irradiated with ultraviolet rays of 184.9 nm, the oxygen molecules become ozone.
  • ozone is irradiated with ultraviolet rays having a wavelength of 253.7 nm, the ozone is decomposed and simultaneously generates active oxygen.
  • UV at 253.7 nm is absorbed by hydrocarbons and ozone.
  • a product generated by decomposing organic substances by ultraviolet rays reacts with active oxygen to become volatile molecules, and is detached from the functional device 10.
  • ultraviolet rays By irradiating ultraviolet rays with both wavelengths of 184.9 nm and 253.7 nm, oxygen elements continue to be generated, oxygen molecules become ozone, and ozone is decomposed.
  • the functional device 10 is sealed in the casing of the sealing processing apparatus.
  • the casing of the hermetic treatment apparatus is provided with a low-pressure mercury lamp that emits, for example, 185 nm ultraviolet light and 254 nm ultraviolet light.
  • Oxygen (O 2 gas) is exhausted while flowing at 1 to 20 L / min (for example, 5 L / min) in the casing of the hermetic treatment apparatus.
  • the pressure in the casing of the hermetic treatment apparatus is maintained at normal pressure.
  • it is preferable to set the temperature in the housing of the hermetic treatment apparatus between room temperature and 350 ° C. (for example, 150 ° C.).
  • the treatment time for performing the ultraviolet ozone cleaning is appropriately set between 1 and 120 minutes.
  • the protective sheet 6 has already been peeled off in the peeling step before the removing step. Therefore, in the removal step, unnecessary organic substances attached to both the inner surface of the slit 4 and the inner surface of the cavity 5 are also removed together.
  • the removal step it is preferable to remove unnecessary organic substances attached to at least one of the inner surface of the slit 4 and the inner surface of the cavity 5. Further, it is more preferable to remove unnecessary organic substances attached to both the inner surface of the slit 4 and the inner surface of the cavity 5. That is, in the removal step, it is preferable to perform a process capable of removing both unnecessary organic substances that may adhere to the inner surface of the slit 4 and unnecessary organic substances that may adhere to the inner surface of the cavity 5.
  • the functional device 10 may be further subjected to an ashing process that etches the photosensitive organic resist.
  • the ashing process first, the functional device 10 is placed on a wafer holder in a chamber of an ashing apparatus (not shown). Next, oxygen is exhausted into the chamber while flowing oxygen at a standard state of 1 to 1000 cc / min (sccm) (for example, 2 cc / min (sccm)), and the pressure in the chamber is set to 13 to 266 Pa (for example, 104 Pa). . Next, the temperature of the wafer holder is stabilized at room temperature to 250 ° C. (for example, 180 ° C.). Then, ashing is performed by supplying RF power at 100 to 1 KW (for example, 450 W) for 1 to 120 minutes (for example, 60 minutes).
  • a separation step (dicing sheet peeling step) is performed.
  • the chip functional device 10
  • the separation step the chip (functional device 10) is separated from the dicing sheet 7 using, for example, a chip bonder.
  • a plurality of functional devices 10 divided individually can be obtained. Therefore, each functional device 10 can be used for the semiconductor device 100 (see FIG. 6) and the like.
  • the functional device manufacturing method described above includes a wafer processing step, a pasting step, a dicing step, a peeling step, and a removing step.
  • the wafer processing step the functional thin film 2 is formed on the one surface 3a of the wafer 3 that is the basis of the substrate 1.
  • the protective sheet 6 which is an adhesive sheet using an adhesive is directly attached to the one surface 3a of the wafer 3, and the dicing sheet 7 is attached to the other surface 3b of the wafer 3. .
  • the protective sheet 6 and the wafer 3 are cut without cutting the dicing sheet 7 and the wafer 3 is divided into a plurality of functional devices 10.
  • the peeling step the protective sheet 6 is peeled from each functional device 10 after the dicing step.
  • the adhesive of the protective sheet 6 that is an unnecessary organic substance attached to each functional device 10 is removed after the peeling step.
  • the wafer 3 is cut using the protective sheet 6 and the dicing sheet 7, so that the functional thin film 2 can be prevented from being damaged at the time of cutting, and the yield can be improved.
  • the adhesive of the protective sheet 6 which is an unnecessary organic substance adhering to the functional device 10 can be removed, the deterioration of the performance of the functional device 10 due to the adhesion of the organic substance can be prevented.
  • the functional device 10 is an infrared sensor, it is possible to prevent changes in thermal characteristics due to adhesion of the adhesive on the protective sheet 6. Therefore, it is possible to prevent a decrease in sensitivity of the infrared sensor.
  • a plurality of infrared sensors have uniform sensor characteristics.
  • the removing step unnecessary organic substances attached to at least one of the inner surface of the slit 4 and the inner surface of the cavity 5 are removed. Therefore, unnecessary organic substances attached to the inner surfaces of the slits 4 and the cavities 5 of the functional device 10 can be removed, so that the performance of the functional device 10 can be prevented from being deteriorated due to the adhesion of organic substances. Therefore, the performance of the functional device 10 can be improved.
  • the peeling member 9 is attached to the surface of the protective sheet 6 opposite to the wafer 3, and then the protective sheet 6 is peeled from the functional device 10 together with the peeling member 9. Therefore, cost reduction can be achieved.
  • the protective sheet 6 is a heat-peelable pressure-sensitive adhesive sheet that uses a pressure-sensitive adhesive whose adhesive strength decreases when heated. Therefore, the protective sheet 6 can be easily peeled from the functional device 10 by heating the protective sheet 6. Therefore, it is possible to suppress the functional thin film 2 from being damaged when the protective sheet 6 is peeled off.
  • the protective sheet 6 is uniformly heated while applying pressure uniformly to the entire surface of the protective sheet 6 before the protective sheet 6 is peeled from the functional device 10. Therefore, it can prevent that the protection sheet 6 will be parted at the time of peeling of the protection sheet 6. FIG. Therefore, the protective sheet 6 can be reliably peeled from the functional thin film 2.
  • the functional device 10 is not limited to the infrared array sensor described above.
  • the functional device 10 may be, for example, an acceleration sensor (1-axis to 3-axis acceleration sensor), a gyro sensor, a pressure sensor, a micro actuator, a microphone, or an ultrasonic sensor.
  • FIG. 6 shows a semiconductor device 100 manufactured by the semiconductor device manufacturing method of the present embodiment.
  • the semiconductor device 100 includes a functional device 10 and a signal processing device 33 made of an IC chip. Further, as shown in FIG. 5C, the semiconductor device 100 includes a package 40 that houses the functional device 10 and the signal processing device 33.
  • the signal processing device 33 is configured to cooperate with the functional device 10 which is an infrared sensor.
  • the signal processing device 33 includes a plurality (four in the illustrated example) of input pads 31 (311 to 314) and one pad 32.
  • a plurality (four in the illustrated example) of output pads 241 to 244 of the functional device 10 are electrically connected to the input pads 311 to 314 via wirings 35, respectively.
  • the pad 32 is used to apply a reference voltage to the reference bias pad 26 of the functional device 10.
  • the pad 32 is electrically connected to the reference bias pad 26 via the wiring 35.
  • the wiring 35 is, for example, a bonding wire using gold or aluminum.
  • the signal processing device 33 further includes an amplifier circuit 42 that amplifies the output voltage of the input pad 31 and a multiplexer 41 that alternatively inputs the output voltages of the plurality of input pads 31 to the amplifier circuit 42.
  • the signal processing device 33 is configured to sequentially output the output voltage from each output pad 24 of the functional device 10. If the signal processing device 33 is used, an infrared image can be obtained.
  • the signal processing apparatus 33 is formed separately from the functional device 10, but may be formed using the substrate 1 of the functional device 10. That is, the signal processing device 33 may be integrally provided in the functional device 10.
  • the package 40 includes a metal base 36 on which the functional device 10 and the signal processing device 33 are mounted, and a cap 39 that surrounds the functional device 10 and the signal processing device 33 with the base 36.
  • the base 36 is formed in a rectangular box shape having an opening on one surface (upper surface).
  • the functional device 10 and the signal processing device 33 are mounted on the inner bottom surface of the base body 36.
  • the cap 39 is formed in a rectangular plate size that can close the opening of the base 36.
  • the functional device 10 is an infrared sensor, a material (for example, silicon) that can transmit infrared rays is used as the material of the cap 39.
  • the material of the cap 39 when the functional device 10 is a visible light sensor, the material (for example, glass) which has translucency with respect to visible light is used for the material of the cap 39.
  • the functional device 10 when the functional device 10 is an acceleration sensor, a metal material can be used for the material of the cap 39.
  • the material of the cap 39 may be any material that does not hinder the characteristics of the functional device 10.
  • a reference voltage (eg, 1.65 V) is applied to the reference bias pad 26 of the functional device 10 via the pad 32 of the signal processing device 33.
  • the output voltage of the functional element 30 (1.65 V + the output voltage of the sensing element 20) is output from each output pad 24.
  • the output voltage from each output pad 24 is input to the corresponding input pad 31 of the signal processing device 33.
  • the multiplexer 41 of the signal processing device 33 alternatively inputs the output voltages of the plurality of input pads 31 to the amplifier circuit 42. As a result, an infrared image that is the output of the functional device 10 can be obtained.
  • the semiconductor device manufacturing method includes a wafer processing process, a sticking process, a dicing process, a peeling process, a removing process, a separating process, a mounting process, a cleaning process, and a sealing process.
  • a wafer processing step is performed. Since this wafer processing step has already been described in the first embodiment, a description thereof will be omitted.
  • a pasting step, a dicing step, a peeling step, a removing step, and a separating step are performed. Then, after the separation step, a mounting step is performed. Since the pasting process / dicing process / peeling process / removing process / separating process has already been described in the first embodiment, the description thereof is omitted.
  • the functional device 10 is mounted on the base 36 using the first adhesive. Specifically, the other surface in the thickness direction of the substrate 1 of the functional device 10 (the lower surface in FIG. 5A) is bonded to the inner bottom surface of the base 36 using the first adhesive.
  • the signal processing device 33 is mounted on the base body 36 using the first adhesive. Specifically, the back surface (the lower surface in FIG. 5A) of the signal processing device 33 is bonded to the inner bottom surface of the substrate 36 using the first adhesive.
  • each of the functional device 10 and the signal processing device 33 is mounted on the base body 36 by the first bonding layer (mounting adhesive layer) 37 made of the first adhesive.
  • the first adhesive is, for example, solder.
  • an inorganic material such as glass or Au—Si can be used in addition to solder.
  • organic materials such as an epoxy resin, can also be used for a 1st adhesive agent.
  • the first adhesive is preferably an inorganic material.
  • the output pads 241 to 244 of the functional device 10 are connected to the corresponding input pads 311 to 314 of the signal processing device 33 by wirings 35. Further, the reference bias pad 26 of the functional device 10 is connected to the pad 32 of the signal processing device 33 by the wiring 35.
  • the outer peripheral shape of the substrate 1 of the functional device 10 is rectangular. At the end on the first side of the outer periphery of the substrate 1, all output pads 241 to 244 for extracting output signals output from the functional element 30 and the reference bias pad 26 are provided on the first side of the substrate 1. It is juxtaposed along the side. Further, the outer peripheral shape of the signal processing device 33 is rectangular. All the input pads 311 to 314 and the pads 32 are juxtaposed along the second side of the signal processing device 33 at the end on the second side of the outer periphery of the signal processing device 33.
  • the functional device 10 is mounted on the package 40 so that the distance between the first side of the substrate 1 and the second side of the signal processing device 33 is shorter than the distance between any other sides of the signal processing device 33. It is installed. Therefore, the wiring 35 that connects the output pad 24 of the functional device 10 and the input pad 31 of the signal processing device 33 can be shortened. Further, the wiring 35 connecting the reference bias pad 26 of the functional device 10 and the pad 32 of the signal processing device 33 can be shortened. Thereby, the influence of external noise can be reduced and noise resistance is improved.
  • ashing is performed.
  • the ashing process takes into account the size of the functional device 10 and the signal processing device 33 arranged in the substrate 36, the number of the functional device 10 and the signal processing device 33, and the material used for the functional device 10 and the signal processing device 33. As appropriate.
  • a light excitation ashing process using an ozone ashing apparatus or a plasma ashing apparatus can be employed. Note that the cleaning process may be performed before the mounting process.
  • the mounting process may be performed before the removal process.
  • the removing step organic substances attached to the substrate 36 are removed.
  • the separation step is performed after the pasting step, the dicing step, and the peeling step.
  • a mounting step is performed, and then a removal step is performed.
  • unnecessary organic substances can be removed from both the functional device 10 and the mounting substrate 36 at the same time.
  • unnecessary organic substances may be removed from the cap 39 in the removing step.
  • unnecessary organic substances may be removed from at least one of the base body 36 and the cap 39.
  • the process of removing unnecessary organic substances from the signal processing device 33 may be performed together with the process of removing organic substances from the functional device 10, the substrate 36, and the cap 39 in the above-described removal process and cleaning process, or may be performed separately. Good. However, it is necessary to remove the organic substance from the signal processing device 33 before the sealing step.
  • the cap 39 is joined to the base 36 using the second adhesive, and the functional device 10 is hermetically sealed with the package 40.
  • the second adhesive is applied to the edge of the opening on the one surface of the substrate 36.
  • the cap 39 is placed on the one surface of the substrate 36 so as to cover the opening on the one surface of the substrate 36.
  • the cap 39 is joined to the base body 36 by the second joining layer (sealing adhesive layer) 38 made of the second adhesive.
  • the second adhesive is, for example, glass.
  • an inorganic material such as solder or Au—Si can be used for the second adhesive.
  • An organic material such as an epoxy resin can also be used for the second adhesive.
  • the second adhesive is preferably an inorganic material.
  • the cap 39 is joined to the base body 36 so that the inside of the package 40 is evacuated.
  • the package 40 is vacuum-sealed so that the oxygen flowed during the ashing is stopped in the vacuum processing apparatus so that the package 40 is not contaminated.
  • the cap 39 may be bonded to the base body 36 so that the inside of the package 40 is at a positive pressure.
  • a gas for example, an inert gas such as Ar gas or a nitrogen gas (N 2) that does not substantially affect exposure to each functional device 10 or the like instead of oxygen flowed during the ashing process in the removal process or the cleaning process.
  • N 2 nitrogen gas
  • the semiconductor device manufacturing method of the present embodiment includes a wafer processing step, a sticking step, a dicing step, a peeling step, a removing step, a separating step, a mounting step, a cleaning step, A sealing step.
  • the wafer processing step the functional thin film 2 is formed on the one surface 3a of the wafer 3 that is the basis of the substrate 1.
  • the sticking step after the wafer processing step, the protective sheet 6 which is an adhesive sheet using an adhesive is directly attached to the one surface 3a of the wafer 3, and the dicing sheet 7 is attached to the other surface 3b of the wafer 3. .
  • the protective sheet 6 and the wafer 3 are cut without cutting the dicing sheet 7 and the wafer 3 is divided into a plurality of functional devices 10.
  • the peeling step the protective sheet 6 is peeled from each functional device 10 after the dicing step.
  • unnecessary organic substances including the adhesive of the protective sheet 6 attached to each functional device 10 are removed after the peeling step.
  • each functional device 10 is separated from the dicing sheet 7.
  • the mounting process the functional device 10 is mounted on the base 36 using the first adhesive after the dicing process.
  • the substrate 36 and the cap 39 are cleaned to remove unnecessary organic contaminants.
  • the sealing step after the removing step and the mounting step, the cap 39 is joined to the base 36 using the second adhesive, and the functional device 10 is hermetically sealed with the package 40.
  • organic contaminants from the package 40 that is, unnecessary organic substances (adhesive of the protective sheet 6) attached to the functional device 10, the base 36 and the cap 39.
  • the attached organic matter and the organic matter attached to the signal processing device 33 can be removed. Therefore, it is possible to prevent deterioration of the performance of the functional device 10 due to unnecessary adhesion of organic matter, for example, when the functional device 10 is an infrared sensor, the deterioration of infrared transmission characteristics due to degassing from the organic matter or the like. Therefore, it is possible to prevent the performance of the semiconductor device 100 from being deteriorated.
  • the cap 39 is joined to the base body 36 so that the inside of the package 40 is in a vacuum or a positive pressure.
  • the pressure in the package 40 does not change due to degassing of the organic substances. Therefore, a decrease in performance of the semiconductor device 100 can be prevented.
  • the inside of the package 40 is evacuated, the change in the degree of vacuum in the package 40 can be eliminated and the reliability of the semiconductor device 100 can be improved.
  • the inside of the package 40 is set to a positive pressure, gas outside the package 40 such as the atmosphere does not flow into the package 40. Therefore, the reliability of the semiconductor device 100 can be improved.
  • the first adhesive and the second adhesive is made of an inorganic material, even when the package 40 is hermetically sealed, a change in internal pressure due to degassing from the first adhesive or the second adhesive. Can be eliminated.

Abstract

A method for manufacturing a functional device is provided with a wafer processing step, a bonding step, a dicing step, a peeling step and a removing step.  In the wafer processing step, a functional thin film (2) is formed on one surface (3a) of a wafer (3) to be the base of a substrate (1).  In the bonding step after the wafer processing step, a protection sheet (6), i.e., an adhesive sheet using an adhesive, is directly bonded on the surface (3a) of the wafer (3), and a dicing sheet (7) is bonded on the other surface (3b) of the wafer (3).  In the dicing step after the bonding step, the protection sheet (6) and the wafer (3) are cut without cutting the dicing sheet (7), and the wafer (3) is divided into a plurality of functional devices (10).  In the peeling step after the dicing step, the protection sheet (6) is peeled from each functional device (10).  In the removing step after the peeling step, an organic material containing the adhesive of the protection sheet (6) adhered on each functional device (10) is removed.

Description

機能デバイスの製造方法、および、機能デバイスを備えた半導体装置の製造方法Method for manufacturing functional device and method for manufacturing semiconductor device provided with functional device
 本発明は、機能デバイスの製造方法、および、機能デバイスを備えた半導体装置の製造方法に関する。 The present invention relates to a method for manufacturing a functional device and a method for manufacturing a semiconductor device provided with the functional device.
 従来から、高周波デバイス・熱型赤外線センサ・MEMS(Micro Electro Mechanical Systems)デバイス(たとえば、加速度センサ・ジャイロセンサ・超音波センサ・マイクロバルブ)などの機能デバイス(機能性デバイス)が提供されている。 Conventionally, functional devices (functional devices) such as high-frequency devices, thermal infrared sensors, and MEMS (Micro Electro Mechanical Systems) devices (for example, acceleration sensors, gyro sensors, ultrasonic sensors, micro valves) have been provided.
 このような機能デバイスは、基板と、所定の機能を有し上記基板上に形成された機能性薄膜とを備えている。上記基板には、上記基板と上記機能性薄膜とを空間的に分離する空洞が形成されている。 Such a functional device includes a substrate and a functional thin film having a predetermined function and formed on the substrate. A cavity for spatially separating the substrate and the functional thin film is formed in the substrate.
 機能デバイスを製造するにあたっては、基板の基礎となるウエハ(たとえば、シリコンウエハ)を用いることが一般的である。ウエハを用いた場合、ウエハの一表面に上記機能性薄膜を形成した後に、ダイシングによってウエハを複数の機能デバイスに分割する。 In manufacturing a functional device, it is common to use a wafer (for example, a silicon wafer) that is the basis of a substrate. When a wafer is used, after the functional thin film is formed on one surface of the wafer, the wafer is divided into a plurality of functional devices by dicing.
 上記の機能性薄膜は、比較的強度が低く、脆弱である。そのためダイシング時に機能性薄膜が破損するおそれがあった。特に、ウエハをダイシングステージに固定する真空吸引時や、ダイシング時の純粋の吹き付け時に、機能性薄膜が破損するおそれがあった。 The above functional thin film is relatively low in strength and fragile. Therefore, the functional thin film may be damaged during dicing. In particular, the functional thin film may be damaged during vacuum suction for fixing the wafer to the dicing stage or during pure spraying during dicing.
 このような点に鑑み、文献1(日本国公開特許公報2004-186255)に開示された機能デバイスの製造方法では、ウエハの一表面に保護層を形成するとともに、ウエハの他表面にダイシングシートを貼り付けてからウエハの切断を行っている。上記保護層はウエハの切断の後に除去される。上記文献1には、保護層の代わりに粘着性の保護シートを用いることが開示されている。 In view of these points, in the method for manufacturing a functional device disclosed in Document 1 (Japanese Published Patent Application No. 2004-186255), a protective layer is formed on one surface of the wafer and a dicing sheet is formed on the other surface of the wafer. The wafer is cut after being attached. The protective layer is removed after the wafer is cut. The document 1 discloses that an adhesive protective sheet is used instead of the protective layer.
 文献2(日本国公開特許公報2005-197436)に開示された機能デバイスの製造方法では、ウエハ上にレジスト膜を形成した後、このレジスト膜を利用して保護シートを貼り付けてからウエハの切断を行っている。保護シートは、ウエハの切断後にレジスト膜を溶解することにより除去される。 In the method of manufacturing a functional device disclosed in Document 2 (Japanese Patent Publication No. 2005-197436), a resist film is formed on a wafer, a protective sheet is attached using the resist film, and then the wafer is cut. It is carried out. The protective sheet is removed by dissolving the resist film after cutting the wafer.
 しかしながら、上記文献1に開示された機能デバイスの製造方法では、保護層や保護シートを除去した後も、機能デバイスの表面に保護層の一部や保護シートの粘着剤などが残るおそれがある。機能デバイスの表面に付着した保護層の一部や保護シートの粘着剤は、機能デバイスの性能を低下させる一因となる。 However, in the method for producing a functional device disclosed in Document 1, there is a possibility that a part of the protective layer or an adhesive of the protective sheet may remain on the surface of the functional device even after the protective layer and the protective sheet are removed. A part of the protective layer attached to the surface of the functional device or the adhesive of the protective sheet contributes to lowering the performance of the functional device.
 また、上記文献2に開示された機能デバイスの製造方法では、レジストをスピンコート等によりウエハ上に塗布した後、熱硬化させレジスト膜を形成する。そのため、レジストの熱硬化時にレジスト膜の膨張収縮が生じて機能性薄膜に応力がかかる。これによって、機能性薄膜が破壊される恐れがあった。また、たとえばウエットエッチングによりレジスト膜を除去する際に機能デバイスが破壊される恐れもあった。 In the functional device manufacturing method disclosed in Document 2, a resist is applied on a wafer by spin coating or the like and then thermally cured to form a resist film. For this reason, the resist film expands and contracts during thermal curing of the resist, and stress is applied to the functional thin film. As a result, the functional thin film may be destroyed. In addition, the functional device may be destroyed when the resist film is removed by wet etching, for example.
 本発明は上記事由に鑑みて為された。本発明の目的は、歩留まりを向上でき、しかも有機物の付着による機能デバイスの性能の低下を防止できる機能デバイスの製造方法、および、機能デバイスを用いた半導体装置の製造方法を提供することである。 The present invention has been made in view of the above reasons. The objective of this invention is providing the manufacturing method of the functional device which can improve a yield, and can prevent the fall of the performance of the functional device by adhesion of organic substance, and the manufacturing method of the semiconductor device using a functional device.
 本発明に係る機能デバイスの製造方法で製造される機能デバイスは、基板と、上記基板上に形成された所定の機能を有する機能性薄膜と、を備える。上記基板に、上記基板と上記機能性薄膜とを空間的に分離する空洞が形成されている。 A functional device manufactured by the method for manufacturing a functional device according to the present invention includes a substrate and a functional thin film having a predetermined function formed on the substrate. A cavity for spatially separating the substrate and the functional thin film is formed in the substrate.
 上記の本発明に係る機能デバイスの製造方法は、ウエハ処理工程と、貼付工程と、ダイシング工程と、剥離工程と、除去工程とを備える。上記ウエハ処理工程では、上記基板の基礎となるウエハの一表面に上記機能性薄膜を形成する。上記貼付工程では、上記ウエハ処理工程の後に、粘着剤を利用した粘着シートである保護シートを上記ウエハの一表面に直接的に貼り付けるとともに、ダイシングシートを上記ウエハの他表面に貼り付ける。上記ダイシング工程では、上記貼付工程の後に、上記ダイシングシートを切断せずに上記保護シートと上記ウエハとを切断して、上記ウエハを複数の上記機能デバイスに分割する。上記剥離工程では、上記ダイシング工程の後に、各上記機能デバイスから上記保護シートを剥離する。上記除去工程では、上記剥離工程の後に、各上記機能デバイスに付着した上記保護シートの上記粘着剤を含む不要な有機物を除去する。 The functional device manufacturing method according to the present invention includes a wafer processing step, a pasting step, a dicing step, a peeling step, and a removing step. In the wafer processing step, the functional thin film is formed on one surface of the wafer serving as the base of the substrate. In the sticking step, after the wafer processing step, a protective sheet, which is an adhesive sheet using an adhesive, is directly attached to one surface of the wafer, and a dicing sheet is attached to the other surface of the wafer. In the dicing step, after the attaching step, the protective sheet and the wafer are cut without cutting the dicing sheet, and the wafer is divided into a plurality of functional devices. In the peeling step, the protective sheet is peeled from each functional device after the dicing step. In the removal step, unnecessary organic matter including the pressure-sensitive adhesive on the protective sheet attached to each functional device is removed after the peeling step.
 この発明によれば、上記保護シートと上記ダイシングシートとを利用して上記ウエハを切断するので、切断時に上記機能性薄膜が破損することを防止でき、歩留まりを向上できる。また、上記機能デバイスに付着した不要な有機物を除去できるから、有機物の付着による上記機能デバイスの性能の低下を防止できる。よって、上記機能デバイスの性能を向上できる。 According to the present invention, since the wafer is cut using the protective sheet and the dicing sheet, the functional thin film can be prevented from being damaged during cutting, and the yield can be improved. Moreover, since unnecessary organic substances adhering to the functional device can be removed, it is possible to prevent the performance of the functional device from being deteriorated due to the adhesion of organic substances. Therefore, the performance of the functional device can be improved.
 特に、上記剥離工程後に上記機能デバイスに上記粘着剤が付着していても、上記除去工程で上記粘着剤を確実に除去できる。そのため、上記粘着剤の付着による上記機能デバイスの性能の悪化を防止できる。 In particular, even if the pressure-sensitive adhesive adheres to the functional device after the peeling step, the pressure-sensitive adhesive can be reliably removed in the removal step. Therefore, deterioration of the performance of the functional device due to adhesion of the adhesive can be prevented.
 好ましくは、上記機能デバイスは、上記機能性薄膜をその厚み方向に貫通し上記空洞に連通するスリットを有する。上記除去工程では、上記スリットの内面と上記空洞の内面との少なくとも一方に付着した不要な有機物を除去する。 Preferably, the functional device has a slit that penetrates the functional thin film in the thickness direction and communicates with the cavity. In the removing step, unnecessary organic substances attached to at least one of the inner surface of the slit and the inner surface of the cavity are removed.
 このようにすれば、上記機能デバイスに付着した不要な有機物を除去できるから、有機物の付着による上記機能デバイスの性能の低下を防止できる。よって、上記機能デバイスの性能を向上できる。 In this way, since unnecessary organic substances adhering to the functional device can be removed, it is possible to prevent deterioration of the performance of the functional device due to the adhesion of organic substances. Therefore, the performance of the functional device can be improved.
 好ましくは、上記剥離工程では、上記保護シートにおける上記ウエハとは反対側の面に剥離用部材を取り付けてから、上記剥離用部材と一緒に上記保護シートを上記機能デバイスから剥離する。 Preferably, in the peeling step, a peeling member is attached to the surface of the protective sheet opposite to the wafer, and then the protective sheet is peeled from the functional device together with the peeling member.
 このようにすれば、低コスト化を図ることができる。 In this way, cost can be reduced.
 好ましくは、上記保護シートは、加熱されると粘着力が低下する粘着剤を利用した加熱剥離型粘着シートである。 Preferably, the protective sheet is a heat-peelable pressure-sensitive adhesive sheet that uses a pressure-sensitive adhesive that decreases in adhesive strength when heated.
 このようにすれば、上記保護シートを加熱することで、上記保護シートを上記機能デバイスから容易に剥離できる。そのため、上記保護シートの剥離時に上記機能性薄膜が破損してしまうことを抑制できる。 In this way, the protective sheet can be easily peeled from the functional device by heating the protective sheet. Therefore, it can suppress that the said functional thin film breaks at the time of peeling of the said protective sheet.
 より好ましくは、上記剥離工程では、上記保護シートを上記機能デバイスから剥離する前に、上記保護シートの全面に均一に圧力を加えながら上記保護シートを均一に加熱する。 More preferably, in the peeling step, the protective sheet is uniformly heated while applying pressure uniformly to the entire surface of the protective sheet before peeling the protective sheet from the functional device.
 このようにすれば、上記保護シートの剥離時に上記保護シートが分断されてしまうことを防止でき、上記保護シートを確実に上記機能性薄膜から剥離することができる。 If it does in this way, it can prevent that the said protective sheet will be parted at the time of peeling of the said protective sheet, and can peel the said protective sheet from the said functional thin film reliably.
 本発明に係る半導体装置の製造方法により製造される半導体装置は、機能デバイスと、上記機能デバイスを収容するパッケージと、を備える。上記機能デバイスは、基板と、上記基板上に形成された所定の機能を有する機能性薄膜と、を備える。上記基板には、上記基板と上記機能性薄膜とを空間的に分離する空洞が形成されている。上記パッケージは、上記機能デバイスが実装される基体と、上記基体とで上記機能デバイスを囲うキャップとで構成される。 A semiconductor device manufactured by the method for manufacturing a semiconductor device according to the present invention includes a functional device and a package that accommodates the functional device. The functional device includes a substrate and a functional thin film having a predetermined function formed on the substrate. A cavity for spatially separating the substrate and the functional thin film is formed in the substrate. The package includes a base on which the functional device is mounted and a cap that surrounds the functional device with the base.
 上記の本発明に係る半導体装置の製造方法は、ウエハ処理工程と、貼付工程と、ダイシング工程と、剥離工程と、除去工程と、実装工程と、封止工程とを備える。上記ウエハ処理工程では、上記基板の基礎となるウエハの一表面に上記機能性薄膜を形成する。上記貼付工程では、上記ウエハ処理工程の後に、粘着剤を利用した粘着シートである保護シートを上記ウエハの一表面に直接的に貼り付けるとともに、ダイシングシートを上記ウエハの他表面に貼り付ける。上記ダイシング工程では、上記貼付工程の後に、上記ダイシングシートを切断せずに上記保護シートと上記ウエハとを切断して、上記ウエハを複数の上記機能デバイスに分割する。上記剥離工程では、上記ダイシング工程の後に、各上記機能デバイスから上記保護シートを剥離する。上記除去工程では、上記剥離工程の後に、各上記機能デバイスに付着した上記保護シートの上記粘着剤を含む不要な有機物を除去する。上記実装工程では、上記ダイシング工程の後に、第1接着剤を用いて上記機能デバイスを上記基体に実装する。上記封止工程では、上記除去工程及び上記実装工程の後に、第2接着剤を用いて上記キャップを上記基体に接合して上記機能デバイスを上記パッケージで気密に封止する。 The semiconductor device manufacturing method according to the present invention includes a wafer processing step, a pasting step, a dicing step, a peeling step, a removing step, a mounting step, and a sealing step. In the wafer processing step, the functional thin film is formed on one surface of the wafer serving as the base of the substrate. In the sticking step, after the wafer processing step, a protective sheet, which is an adhesive sheet using an adhesive, is directly attached to one surface of the wafer, and a dicing sheet is attached to the other surface of the wafer. In the dicing step, after the attaching step, the protective sheet and the wafer are cut without cutting the dicing sheet, and the wafer is divided into a plurality of functional devices. In the peeling step, the protective sheet is peeled from each functional device after the dicing step. In the removal step, unnecessary organic matter including the pressure-sensitive adhesive on the protective sheet attached to each functional device is removed after the peeling step. In the mounting step, after the dicing step, the functional device is mounted on the base using a first adhesive. In the sealing step, after the removing step and the mounting step, the cap is bonded to the base using a second adhesive, and the functional device is hermetically sealed with the package.
 この発明によれば、上記機能デバイスに付着した不要な有機物を除去できるから、有機物の付着による上記機能デバイスの性能の低下を防止できる。そのため、上記半導体装置の性能の低下を防止できる。 According to the present invention, since unnecessary organic substances adhering to the functional device can be removed, it is possible to prevent deterioration of the performance of the functional device due to the adhesion of organic substances. Therefore, it is possible to prevent the performance of the semiconductor device from being deteriorated.
 好ましくは、上記封止工程では、上記パッケージ内が真空または陽圧となるように上記キャップを上記基体に接合する。 Preferably, in the sealing step, the cap is bonded to the base body so that the inside of the package is in a vacuum or a positive pressure.
 このようにすれば、上記機能デバイスから不要な有機物が除去されているから、有機物の脱ガスによって上記パッケージ内の圧力が変化することがない。そのため、上記半導体装置の性能の低下を防止できる。特に、上記パッケージ内を真空とすれば、上記パッケージ内の真空度の変化をなくすことができて上記半導体装置の信頼性を高めることができる。また、上記パッケージ内を陽圧とすれば、上記パッケージ内に大気などの上記パッケージ外のガスが流入することがない。そのため、上記半導体装置の信頼性を高めることができる。 In this way, since unnecessary organic substances are removed from the functional device, the pressure in the package does not change due to degassing of the organic substances. Therefore, it is possible to prevent the performance of the semiconductor device from being deteriorated. In particular, if the inside of the package is evacuated, a change in the degree of vacuum in the package can be eliminated, and the reliability of the semiconductor device can be improved. Further, if the inside of the package is set to a positive pressure, gas outside the package such as the atmosphere does not flow into the package. Therefore, the reliability of the semiconductor device can be improved.
 より好ましくは、上記第1接着剤と上記第2接着剤との少なくとも一方は、無機材料からなる。 More preferably, at least one of the first adhesive and the second adhesive is made of an inorganic material.
 このようにすれば、上記パッケージを気密にした場合にも上記第1接着剤や上記第2接着剤からの脱ガスによる内部圧力の変化をなくすことができる。 In this way, even when the package is hermetically sealed, changes in internal pressure due to degassing from the first adhesive and the second adhesive can be eliminated.
 好ましくは、上記封止工程の前に、上記基体と上記キャップとの少なくとも一方に付着した有機物を除去する。 Preferably, before the sealing step, organic substances attached to at least one of the base and the cap are removed.
 このようにすれば、上記半導体装置の性能の低下を防止できる。 In this way, it is possible to prevent the performance of the semiconductor device from being deteriorated.
 好ましくは、上記除去工程の前に上記実装工程を行う。上記除去工程では、上記基体に付着した有機物を除去する。 Preferably, the mounting step is performed before the removing step. In the removing step, organic substances attached to the substrate are removed.
 このようにすれば、上記機能デバイスを上記基体に実装した後で、上記機能デバイスの不要な有機物と上記基体の不要な有機物とを同時に除去できる。そのため、上記半導体装置の性能の低下を防止でき、また、歩留まりを向上できる。 In this way, after the functional device is mounted on the base, unnecessary organic matter of the functional device and unnecessary organic matter of the base can be removed simultaneously. Therefore, it is possible to prevent the performance of the semiconductor device from being deteriorated and to improve the yield.
本発明の一実施形態の機能デバイスの製造方法の工程図である。It is process drawing of the manufacturing method of the functional device of one Embodiment of this invention. 同上の機能デバイスを示し、(a)は概略平面図、(b)は等価回路図である。The functional device same as the above is shown, (a) is a schematic plan view, (b) is an equivalent circuit diagram. 同上の機能デバイスを示し、(a)は拡大図、(b)は同図(a)のA-A線断面図である。The functional device is shown, in which (a) is an enlarged view and (b) is a cross-sectional view taken along the line AA in FIG. 同上の機能デバイスの製造方法の説明図である。It is explanatory drawing of the manufacturing method of a functional device same as the above. 本発明の一実施形態の半導体装置の製造方法の工程図である。It is process drawing of the manufacturing method of the semiconductor device of one Embodiment of this invention. 同上の機能デバイスを備える半導体装置の概略平面図である。It is a schematic plan view of a semiconductor device provided with a functional device same as the above. 同上の半導体装置の説明図である。It is explanatory drawing of a semiconductor device same as the above.
 (実施形態1)
 図2および図3は、本実施形態の機能デバイスの製造方法により製造される機能デバイス10を示す。
(Embodiment 1)
2 and 3 show a functional device 10 manufactured by the functional device manufacturing method of the present embodiment.
 機能デバイス10は、赤外線アレイセンサ(赤外線イメージセンサ)である。機能デバイス10は、基板1と、所定の機能を有して基板1上に形成された機能性薄膜2とを備える。 The functional device 10 is an infrared array sensor (infrared image sensor). The functional device 10 includes a substrate 1 and a functional thin film 2 having a predetermined function and formed on the substrate 1.
 基板1は、シリコン基板である。基板1の厚み方向の一面である主表面(図1(e)における上面)には、機能性薄膜2が形成されている。 The substrate 1 is a silicon substrate. A functional thin film 2 is formed on the main surface (the upper surface in FIG. 1E) that is one surface in the thickness direction of the substrate 1.
 機能性薄膜2は、図2(a)に示すように、2次元アレイ状に配置されたm×n個(図示例では、2×2個)の機能性素子30を備える。なお、機能性薄膜2は、機能性素子30を1つだけ備えていてもよい。 2, the functional thin film 2 includes m × n (2 × 2 in the illustrated example) functional elements 30 arranged in a two-dimensional array. Note that the functional thin film 2 may include only one functional element 30.
 機能性素子30は、サーモパイルよりなる熱電対型のセンシングエレメント20を有する熱型の赤外線検出素子である。機能性素子30は、赤外線イメージセンサにおける画素の光電変換素子として機能する。なお、図2(b)では、センシングエレメント20を、センシングエレメント20の熱起電力に対応する電圧源として図示している。 The functional element 30 is a thermal infrared detecting element having a thermocouple type sensing element 20 made of a thermopile. The functional element 30 functions as a photoelectric conversion element of a pixel in the infrared image sensor. In FIG. 2B, the sensing element 20 is illustrated as a voltage source corresponding to the thermoelectromotive force of the sensing element 20.
 ここで、基板1には、基板1と機能性薄膜2とを空間的に分離する空洞5が形成されている。空洞5は、機能性薄膜2の機能性素子30と基板1とを熱的に分離させる。これによって、赤外線検出素子である機能性素子30の感度を向上させることができる。図示例では、空洞5は、基板1に形成された窪みである。空洞5は、基板1をその厚み方向に貫通する孔であってもよい。 Here, the substrate 1 has a cavity 5 for spatially separating the substrate 1 and the functional thin film 2. The cavity 5 thermally separates the functional element 30 of the functional thin film 2 and the substrate 1. Thereby, the sensitivity of the functional element 30 which is an infrared detection element can be improved. In the illustrated example, the cavity 5 is a depression formed in the substrate 1. The cavity 5 may be a hole that penetrates the substrate 1 in the thickness direction.
 機能性素子30の一部(機能性薄膜2の一部)は、図3(b)に示すように、空洞5によって基板1と空間的に分離されている。機能性素子30のうち基板1から空間的に分離された部分が赤外線を吸収する赤外線吸収体21を構成している。この赤外線吸収体21となる矩形領域の四隅には、機能性素子30をその厚み方向に貫通するスリット(貫通孔)4が形成されている。スリット4は、空洞5と連通している。このようなスリット4を形成することで、赤外線吸収体21と基板1とを熱的に分離することができる。そのため、赤外線検出素子である機能性素子30の感度を向上させることができる。なお、スリット4の形状は矩形だけでなく、三角形、楕円形や円形など所望に応じて種々選択することができる。 Part of the functional element 30 (part of the functional thin film 2) is spatially separated from the substrate 1 by the cavity 5, as shown in FIG. A portion of the functional element 30 that is spatially separated from the substrate 1 constitutes an infrared absorber 21 that absorbs infrared rays. Slits (through holes) 4 that penetrate the functional element 30 in the thickness direction are formed at the four corners of the rectangular region that becomes the infrared absorber 21. The slit 4 communicates with the cavity 5. By forming such a slit 4, the infrared absorber 21 and the substrate 1 can be thermally separated. Therefore, the sensitivity of the functional element 30 that is an infrared detection element can be improved. Note that the shape of the slit 4 is not limited to a rectangle, but can be variously selected as desired, such as a triangle, an ellipse, and a circle.
 機能性素子30は、図3(b)に示すように、シリコン酸化膜11と、シリコン窒化膜12と、センシングエレメント20と、層間絶縁膜17と、パッシベーション膜19とで構成された積層構造体をパターニングすることで形成されている。このような積層構造体により形成された機能性素子30は基板1よりも十分に薄い。 As shown in FIG. 3B, the functional element 30 is a laminated structure including a silicon oxide film 11, a silicon nitride film 12, a sensing element 20, an interlayer insulating film 17, and a passivation film 19. It is formed by patterning. The functional element 30 formed by such a laminated structure is sufficiently thinner than the substrate 1.
 シリコン酸化膜11は、基板1の主表面に形成されている。シリコン窒化膜12は、シリコン酸化膜11上に形成されている。センシングエレメント20は、シリコン窒化膜12上に形成されている。層間絶縁膜17は、シリコン窒化膜12の表面側(図3(b)における上面側)でセンシングエレメント20を覆うように形成されている。層間絶縁膜17は、たとえばBPSG(Boro-PhosphoSilicate Glass)膜である。パッシベーション膜19は、層間絶縁膜17上に形成されている。パッシベーション膜19は、たとえば、PSG(Phospho SilicateGlass)膜と、PSG膜上に形成されたNSG(Non-doped Silicate Glass)膜との積層膜である。 The silicon oxide film 11 is formed on the main surface of the substrate 1. The silicon nitride film 12 is formed on the silicon oxide film 11. The sensing element 20 is formed on the silicon nitride film 12. The interlayer insulating film 17 is formed so as to cover the sensing element 20 on the surface side of the silicon nitride film 12 (upper surface side in FIG. 3B). The interlayer insulating film 17 is, for example, a BPSG (Boro-PhosphoSilicate Glass) film. The passivation film 19 is formed on the interlayer insulating film 17. The passivation film 19 is, for example, a laminated film of a PSG (Phospho SilicateGlass) film and an NSG (Non-doped Silicate Glass) film formed on the PSG film.
 機能デバイス10では、層間絶縁膜17とパッシベーション膜19との積層膜が赤外線吸収膜22を構成している。赤外線吸収膜22の厚さtは、λ/4nである。ここで、nは赤外線吸収膜22の屈折率であり、λは検出対象の赤外線(たとえば、波長が8~12μmの人体から放射される赤外線)の中心波長である。このようにすれば、検出対象の赤外線に対する赤外線吸収膜22の吸収効率を高めることができる。たとえば、n=1.4、λ=10μmである場合には、t≒1.8μmとすればよい。この場合、層間絶縁膜17の膜厚を0.8μm、PSG膜の膜厚を0.5μm、NSG膜の膜厚を0.5μmとすればよい。なお、パッシベーション膜19は、シリコン窒化膜であってもよい。 In the functional device 10, the laminated film of the interlayer insulating film 17 and the passivation film 19 constitutes an infrared absorption film 22. The thickness t of the infrared absorption film 22 is λ / 4n. Here, n is the refractive index of the infrared absorption film 22, and λ is the center wavelength of the infrared rays to be detected (for example, infrared rays emitted from a human body having a wavelength of 8 to 12 μm). If it does in this way, the absorption efficiency of the infrared absorption film 22 with respect to the infrared rays to be detected can be increased. For example, when n = 1.4 and λ = 10 μm, t≈1.8 μm may be set. In this case, the thickness of the interlayer insulating film 17 may be 0.8 μm, the thickness of the PSG film may be 0.5 μm, and the thickness of the NSG film may be 0.5 μm. Note that the passivation film 19 may be a silicon nitride film.
 センシングエレメント20は、図3(a)に示すように、直列接続された4つの熱電対200を備える。各熱電対200は、p形ポリシリコン層15と、n形ポリシリコン層13と、接続層23とで構成されている。p形ポリシリコン層15とn形ポリシリコン層13とは、赤外線吸収体21と基板1とに跨るように形成されている。p形ポリシリコン層15とn形ポリシリコン層13とは相互に接触しないように形成されている。接続層23は、赤外線吸収体21における基板1側とは反対側の面である赤外線入射面側(図3(b)における上面側)でp形ポリシリコン層15とn形ポリシリコン層13とを電気的に接続する。接続層23は、たとえばAl-Siなどの金属材料により形成されている。接続層23は、層間絶縁膜17に形成されたコンタクトホール25を通してn形ポリシリコン層13およびp形ポリシリコン層15それぞれに電気的に接続されている。 The sensing element 20 includes four thermocouples 200 connected in series as shown in FIG. Each thermocouple 200 includes a p-type polysilicon layer 15, an n-type polysilicon layer 13, and a connection layer 23. The p-type polysilicon layer 15 and the n-type polysilicon layer 13 are formed so as to straddle the infrared absorber 21 and the substrate 1. The p-type polysilicon layer 15 and the n-type polysilicon layer 13 are formed so as not to contact each other. The connection layer 23 has a p-type polysilicon layer 15 and an n-type polysilicon layer 13 on the infrared incident surface side (upper surface side in FIG. 3B) which is the surface opposite to the substrate 1 side in the infrared absorber 21. Are electrically connected. The connection layer 23 is made of a metal material such as Al—Si. Connection layer 23 is electrically connected to each of n-type polysilicon layer 13 and p-type polysilicon layer 15 through contact holes 25 formed in interlayer insulating film 17.
 熱電対200のp形ポリシリコン層15の他端は、隣の熱電対のn形ポリシリコン層13の他端に、基板1の主表面側において、配線18によって電気的に接続されている。配線18は、たとえばAl-Siなどの金属材料により形成されている。配線18によって、4つの熱電対200は、直列に接続されて、サーモパイルよりなるセンシングエレメント20を構成している。センシングエレメント20は、赤外線吸収体21上に配置される温接点と、基板1上に配置される冷接点とを有する。上記温接点は、n形ポリシリコン層13の一端とp形ポリシリコン層15の一端と接続層23とで構成されている。上記冷接点は、p形ポリシリコン層15の他端とn形ポリシリコン層13の他端と配線18とで構成されている。 The other end of the p-type polysilicon layer 15 of the thermocouple 200 is electrically connected to the other end of the n-type polysilicon layer 13 of the adjacent thermocouple by a wiring 18 on the main surface side of the substrate 1. The wiring 18 is formed of a metal material such as Al—Si, for example. The four thermocouples 200 are connected in series by the wiring 18 to form a sensing element 20 made of a thermopile. The sensing element 20 has a hot junction disposed on the infrared absorber 21 and a cold junction disposed on the substrate 1. The hot junction is composed of one end of the n-type polysilicon layer 13, one end of the p-type polysilicon layer 15, and the connection layer 23. The cold junction is composed of the other end of the p-type polysilicon layer 15, the other end of the n-type polysilicon layer 13, and the wiring 18.
 機能性薄膜2は、図2(a)に示すように、複数(図示例では4つ)の出力用パッド24(241~244)と、1つの基準バイアス用パッド26とを備える。各センシングエレメント20の一端は、垂直読み出し線27を介して対応する出力用パッド24に電気的に接続されている。また、各センシングエレメント20の他端は、基準バイアス線28を介して共通基準バイアス線29に電気的に接続されている。共通基準バイアス線29は、基準バイアス用パッド26に電気的に接続されている。つまり、各出力用パッド24には、センシングエレメント20それぞれの一端が各別に接続されている。基準バイアス用パッド26には、複数のセンシングエレメント20の他端が共通に接続されている。 The functional thin film 2 includes a plurality (four in the illustrated example) of output pads 24 (241 to 244) and one reference bias pad 26 as shown in FIG. One end of each sensing element 20 is electrically connected to a corresponding output pad 24 via a vertical readout line 27. Further, the other end of each sensing element 20 is electrically connected to a common reference bias line 29 via a reference bias line 28. The common reference bias line 29 is electrically connected to the reference bias pad 26. That is, one end of each sensing element 20 is connected to each output pad 24 separately. The other ends of the plurality of sensing elements 20 are commonly connected to the reference bias pad 26.
 この機能デバイス10では、たとえば、基準バイアス用パッド26の電位を1.65Vとすることで、各出力用パッド24から機能性素子30の出力電圧(1.65V+センシングエレメント20の出力電圧)を取り出すことができる。 In this functional device 10, for example, by setting the potential of the reference bias pad 26 to 1.65 V, the output voltage of the functional element 30 (1.65 V + the output voltage of the sensing element 20) is extracted from each output pad 24. be able to.
 赤外線吸収体21の赤外線入射面には、n形補償ポリシリコン層14と、p形補償ポリシリコン層16とが形成されている。n形補償ポリシリコン層14とp形補償ポリシリコン層16とは、互いに接触しないように配置されている。n形補償ポリシリコン層14は、n形ポリシリコン層13と一体に形成されている。つまり、n形ポリシリコン層13のパターニング時に、n形補償ポリシリコン層14となる部位を残している。p形補償ポリシリコン層16は、p形ポリシリコン層15と一体に形成されている。つまり、p形ポリシリコン層15のパターニング時にp形補償ポリシリコン層16となる部位を残している。 The n-type compensating polysilicon layer 14 and the p-type compensating polysilicon layer 16 are formed on the infrared incident surface of the infrared absorber 21. The n-type compensation polysilicon layer 14 and the p-type compensation polysilicon layer 16 are arranged so as not to contact each other. The n-type compensation polysilicon layer 14 is formed integrally with the n-type polysilicon layer 13. That is, a portion that becomes the n-type compensation polysilicon layer 14 is left when the n-type polysilicon layer 13 is patterned. The p-type compensation polysilicon layer 16 is formed integrally with the p-type polysilicon layer 15. That is, a portion that becomes the p-type compensation polysilicon layer 16 is left when the p-type polysilicon layer 15 is patterned.
 このようなn形補償ポリシリコン層14やp形補償ポリシリコン層16は、機能性素子30の応力バランスの均一性を高める。これによって、機能性素子30の薄膜化を図りながらも反りを防止することができる。これによって、赤外線検出素子である機能性素子30の感度を向上させることができる。 Such n-type compensation polysilicon layer 14 and p-type compensation polysilicon layer 16 enhance the uniformity of the stress balance of the functional element 30. As a result, it is possible to prevent warping while reducing the thickness of the functional element 30. Thereby, the sensitivity of the functional element 30 which is an infrared detection element can be improved.
 次に図1および図4を参照して本実施形態の機能デバイスの製造方法について説明する。 Next, a method for manufacturing a functional device according to this embodiment will be described with reference to FIGS.
 機能デバイスの製造方法は、ウエハ処理工程(前工程)と、ウエハ処理工程の後に行われる分割工程(後工程)とを有する。 The manufacturing method of the functional device includes a wafer processing step (pre-process) and a division step (post-process) performed after the wafer processing step.
 ウエハ処理工程では、基板1の基礎となるウエハ3の一表面に機能性薄膜2を形成する。ウエハ処理工程によって、図1(a)に示すように、基板1と機能性薄膜2とを有するウエハ3を得る。このウエハ3の一表面(厚み方向における一面)3aには、複数の機能デバイス10が形成されている。本実施形態において、ウエハ3の一表面3aは、機能性薄膜2における基板1側とは反対側の面(図1(a)における上面)である。ウエハ3の他表面(厚み方向における他面)3bは、基板1の厚み方向の他面(図1(a)における下面)である。 In the wafer processing step, the functional thin film 2 is formed on one surface of the wafer 3 which is the basis of the substrate 1. Through the wafer processing step, a wafer 3 having a substrate 1 and a functional thin film 2 is obtained as shown in FIG. A plurality of functional devices 10 are formed on one surface (one surface in the thickness direction) 3 a of the wafer 3. In the present embodiment, one surface 3a of the wafer 3 is a surface opposite to the substrate 1 side in the functional thin film 2 (an upper surface in FIG. 1A). The other surface (the other surface in the thickness direction) 3b of the wafer 3 is the other surface in the thickness direction of the substrate 1 (the lower surface in FIG. 1A).
 本実施形態の機能デバイスの製造方法は、分割工程に特徴がある。よって、ウエハ処理工程は、機能デバイス10の構成に応じて適宜変更される。 The method for manufacturing a functional device according to this embodiment is characterized by a division process. Therefore, the wafer processing process is appropriately changed according to the configuration of the functional device 10.
 以下では、機能デバイス10が赤外線センサである場合のウエハ処理工程の一例について簡単に説明する。 Hereinafter, an example of a wafer processing process when the functional device 10 is an infrared sensor will be briefly described.
 ウエハ処理工程では、最初に、絶縁層形成工程を行う。絶縁層形成工程では、基板1の上記主表面に、絶縁層(熱絶縁層)を形成する。絶縁層は、所定膜厚(たとえば、3000Å)のシリコン酸化膜11と、所定膜厚(たとえば、900Å)のシリコン窒化膜12との積層膜である。シリコン酸化膜11は、基板1の主表面を所定温度(たとえば、1100℃)で熱酸化することにより形成される。シリコン窒化膜12は、LPCVD法により形成される。 In the wafer processing process, an insulating layer forming process is first performed. In the insulating layer forming step, an insulating layer (thermal insulating layer) is formed on the main surface of the substrate 1. The insulating layer is a laminated film of a silicon oxide film 11 having a predetermined film thickness (for example, 3000 mm) and a silicon nitride film 12 having a predetermined film thickness (for example, 900 mm). Silicon oxide film 11 is formed by thermally oxidizing the main surface of substrate 1 at a predetermined temperature (for example, 1100 ° C.). The silicon nitride film 12 is formed by the LPCVD method.
 絶縁層形成工程の後、ポリシリコン層形成工程を行う。ポリシリコン層形成工程では、基板1の上記主表面の全面に所定膜厚(たとえば、0.69μm)のノンドープポリシリコン層をLPCVD法により形成する。このノンドープポリシリコン層は、n形ポリシリコン層13・n形補償ポリシリコン層14・p形ポリシリコン層15・p形補償ポリシリコン層16の基礎となる。 After the insulating layer forming step, a polysilicon layer forming step is performed. In the polysilicon layer forming step, a non-doped polysilicon layer having a predetermined film thickness (for example, 0.69 μm) is formed on the entire surface of the main surface of the substrate 1 by LPCVD. This non-doped polysilicon layer is the basis of the n-type polysilicon layer 13, the n-type compensation polysilicon layer 14, the p-type polysilicon layer 15, and the p-type compensation polysilicon layer 16.
 ポリシリコン層形成工程の後、ポリシリコン層パターニング工程を行う。ポリシリコン層パターニング工程では、フォトリソグラフィ技術およびエッチング技術を利用して上記ノンドープポリシリコン層のうちn形ポリシリコン層13・n形補償ポリシリコン層14・p形ポリシリコン層15・p形補償ポリシリコン層16に対応する部分が残るように上記ノンドープポリシリコン層をパターニングする。 After the polysilicon layer forming step, a polysilicon layer patterning step is performed. In the polysilicon layer patterning step, the n-type polysilicon layer 13, the n-type compensation polysilicon layer 14, the p-type polysilicon layer 15, and the p-type compensation polycrystal among the non-doped polysilicon layers using the photolithography technique and the etching technique. The non-doped polysilicon layer is patterned so that a portion corresponding to the silicon layer 16 remains.
 ポリシリコン層パターニング工程の後、p形ポリシリコン層形成工程を行う。p形ポリシリコン層形成工程では、上記ノンドープポリシリコン層のうちp形ポリシリコン層15およびp形補償ポリシリコン層16に対応する部分にp形不純物(たとえば、ボロンなど)のイオン注入を行ってからドライブを行うことによりp形ポリシリコン層15およびp形補償ポリシリコン層16を形成する。 After the polysilicon layer patterning step, a p-type polysilicon layer forming step is performed. In the p-type polysilicon layer forming step, ions of p-type impurities (for example, boron) are implanted into portions of the non-doped polysilicon layer corresponding to the p-type polysilicon layer 15 and the p-type compensation polysilicon layer 16. Then, the p-type polysilicon layer 15 and the p-type compensation polysilicon layer 16 are formed.
 p形ポリシリコン層形成工程の後、n形ポリシリコン層形成工程を行う。n形ポリシリコン形成工程では、上記ノンドープポリシリコン層のうちn形ポリシリコン層13・n形補償ポリシリコン層14に対応する部分にn形不純物(たとえば、リンなど)のイオン注入を行ってからドライブを行うことによりn形ポリシリコン層13・n形補償ポリシリコン層14を形成する。なお、p形ポリシリコン層形成工程とn形ポリシリコン層形成工程との順序は逆でもよい。 After the p-type polysilicon layer forming step, an n-type polysilicon layer forming step is performed. In the n-type polysilicon forming step, after ion implantation of an n-type impurity (for example, phosphorus) is performed on the portion of the non-doped polysilicon layer corresponding to the n-type polysilicon layer 13 and the n-type compensating polysilicon layer 14. The n-type polysilicon layer 13 and the n-type compensation polysilicon layer 14 are formed by driving. The order of the p-type polysilicon layer forming step and the n-type polysilicon layer forming step may be reversed.
 p形ポリシリコン層形成工程およびn形ポリシリコン層形成工程が終了した後、層間絶縁膜形成工程を行う。層間絶縁膜形成工程では、基板1の上記主表面上に層間絶縁膜17を形成する。 After completing the p-type polysilicon layer forming step and the n-type polysilicon layer forming step, an interlayer insulating film forming step is performed. In the interlayer insulating film forming step, an interlayer insulating film 17 is formed on the main surface of the substrate 1.
 層間絶縁膜形成工程の後、コンタクトホール形成工程を行う。コンタクトホール形成工程では、フォトリソグラフィ技術およびエッチング技術を利用して層間絶縁膜17にコンタクトホール25を形成する。 After the interlayer insulating film forming step, a contact hole forming step is performed. In the contact hole forming step, a contact hole 25 is formed in the interlayer insulating film 17 by using a photolithography technique and an etching technique.
 コンタクトホール形成工程の後、金属膜形成工程を行う。金属膜形成工程では、基板1の上記主表面の全面に、所定膜厚(たとえば、2μm)の金属膜(たとえば、Al-Si膜)をスパッタ法などにより形成する。この金属膜は、接続層23・配線18・垂直読み出し線27・基準バイアス線28・共通基準バイアス線29・各パッド24,26の基礎となる。 After the contact hole forming process, a metal film forming process is performed. In the metal film forming step, a metal film (for example, an Al—Si film) having a predetermined film thickness (for example, 2 μm) is formed on the entire surface of the main surface of the substrate 1 by a sputtering method or the like. This metal film is the basis of the connection layer 23, the wiring 18, the vertical readout line 27, the reference bias line 28, the common reference bias line 29, and the pads 24 and 26.
 金属膜形成工程の後、金属膜パターニング工程を行う。金属膜パターニング工程では、フォトリソグラフィ技術およびエッチング技術を利用して金属膜をパターニングすることで、接続層23・配線18・垂直読み出し線27・基準バイアス線28・共通基準バイアス線29・各パッド24,26を形成する。 After the metal film forming process, a metal film patterning process is performed. In the metal film patterning step, the metal film is patterned using a photolithography technique and an etching technique, so that the connection layer 23, the wiring 18, the vertical readout line 27, the reference bias line 28, the common reference bias line 29, and each pad 24. , 26 are formed.
 金属膜パターニング工程の後、パッシベーション膜形成工程を行う。パッシベーション膜形成工程では、基板1の上記主表面上(つまり、層間絶縁膜17の表面上)に所定膜厚(たとえば、5000Å)のPSG膜と所定膜厚(たとえば、5000Å)のNSG膜との積層膜からなるパッシベーション膜19をCVD法により形成する。 After the metal film patterning process, a passivation film forming process is performed. In the passivation film forming step, a PSG film having a predetermined film thickness (for example, 5000 mm) and an NSG film having a predetermined film thickness (for example, 5000 mm) are formed on the main surface of the substrate 1 (that is, on the surface of the interlayer insulating film 17). A passivation film 19 made of a laminated film is formed by a CVD method.
 パッシベーション膜形成工程の後、積層構造体パターニング工程を行う。積層構造体パターニング工程では、上述の積層構造体をパターニングすることにより機能性薄膜2を形成する。具体的には、積層構造体パターニング工程では、スリット4を形成することで機能性薄膜2を得る。 After the passivation film forming step, a laminated structure patterning step is performed. In the laminated structure patterning step, the functional thin film 2 is formed by patterning the laminated structure described above. Specifically, in the laminated structure patterning step, the functional thin film 2 is obtained by forming the slits 4.
 積層構造体パターニング工程の後、開口形成工程を行う。開口形成工程では、フォトリソグラフィ技術およびエッチング技術を利用して各パッド24,26を露出させる開口(図示せず)を形成する。開口形成工程では、RIEを用いる。 After the laminated structure patterning step, an opening forming step is performed. In the opening forming process, openings (not shown) for exposing the pads 24 and 26 are formed by using a photolithography technique and an etching technique. In the opening forming process, RIE is used.
 開口形成工程の後、空洞形成工程を行う。空洞形成工程では、各スリット4をエッチング液導入孔としてエッチング液を導入して基板1を異方性エッチングすることにより基板1に空洞5を形成する。これによって、図2に示すように、機能性素子30が2次元アレイ状に配列された機能デバイス10を得る。空洞形成工程では、エッチング液として所定温度(たとえば、85℃)に加熱したTMAH溶液を用いている。エッチング液はTMAH溶液に限らず、他のアルカリ系溶液(たとえば、KOH溶液など)であってもよい。 After the opening forming process, a cavity forming process is performed. In the cavity forming step, the cavity 5 is formed in the substrate 1 by anisotropically etching the substrate 1 by introducing the etchant using the slits 4 as the etchant introduction holes. As a result, as shown in FIG. 2, the functional device 10 in which the functional elements 30 are arranged in a two-dimensional array is obtained. In the cavity forming step, a TMAH solution heated to a predetermined temperature (for example, 85 ° C.) is used as an etching solution. The etching solution is not limited to the TMAH solution, but may be another alkaline solution (for example, a KOH solution).
 分割工程は、貼付工程と、ダイシング工程と、剥離工程と、除去工程と、分離工程とを含む。分割工程では、最初に貼付工程を行う。 The dividing step includes a sticking step, a dicing step, a peeling step, a removing step, and a separating step. In the dividing step, the pasting step is first performed.
 貼付工程では、ウエハ3の他表面3bにダイシングシート7を貼り付ける。本実施形態では、ダイシングシート7をウエハ3の他表面3bに直接的に貼り付けている。その後、機能性薄膜2を保護するための保護シート6をウエハ3の一表面3aに直接的に貼り付ける。これによって、図1(a)に示す構造を得る。なお、保護シート6とダイシングシート7とを貼り付ける順番は特に限定されない。保護シート6をダイシングシート7よりも先にウエハ3に貼り付けたほうが迅速に機能性薄膜2を保護できる。 In the attaching step, the dicing sheet 7 is attached to the other surface 3b of the wafer 3. In the present embodiment, the dicing sheet 7 is directly attached to the other surface 3 b of the wafer 3. Thereafter, a protective sheet 6 for protecting the functional thin film 2 is directly attached to one surface 3 a of the wafer 3. As a result, the structure shown in FIG. The order in which the protective sheet 6 and the dicing sheet 7 are attached is not particularly limited. The functional thin film 2 can be protected more quickly by attaching the protective sheet 6 to the wafer 3 before the dicing sheet 7.
 保護シート(仮固定シート)6は、機能性薄膜2を仮固定するとともに保護する。保護シート6は、粘着剤(接着剤)を利用した粘着シート(接着シート)である。このような粘着シートは、たとえば厚さが1~500μm程度のプラスティックやポリエステルなどのシート状またはテープ状の基材の表面に粘着剤を塗布することで形成されている。特に、保護シート6には、ウエハ3のダイシング時の切断応力や冷却洗浄によって生じる応力から機能性薄膜2を保護でき、かつウエハ3の切断の邪魔にならない粘着シートを用いることが好ましい。 The protective sheet (temporary fixing sheet) 6 temporarily fixes the functional thin film 2 and protects it. The protective sheet 6 is a pressure-sensitive adhesive sheet (adhesive sheet) using a pressure-sensitive adhesive (adhesive). Such an adhesive sheet is formed, for example, by applying an adhesive to the surface of a sheet-like or tape-like substrate such as plastic or polyester having a thickness of about 1 to 500 μm. In particular, as the protective sheet 6, it is preferable to use a pressure-sensitive adhesive sheet that can protect the functional thin film 2 from the cutting stress during dicing of the wafer 3 and the stress generated by cooling and cleaning and does not interfere with the cutting of the wafer 3.
 保護シート6としては、紫外線剥離型粘着シートや、水溶性剥離型粘着シート、熱剥離型粘着シートを用いることが好ましい。紫外線剥離型粘着シートは、紫外線を照射することにより粘着力が低下する粘着剤を利用した粘着シートである。水溶性剥離型粘着シートは、水溶液に浸すことで粘着力が低下する粘着剤を利用した粘着シートである。熱剥離型粘着シートは、加熱により粘着力が低下する粘着剤を利用した粘着シートである。 As the protective sheet 6, it is preferable to use an ultraviolet peelable adhesive sheet, a water-soluble peelable adhesive sheet, or a heat peelable adhesive sheet. The ultraviolet peelable pressure-sensitive adhesive sheet is a pressure-sensitive adhesive sheet that uses a pressure-sensitive adhesive whose adhesive strength decreases when irradiated with ultraviolet rays. The water-soluble peelable pressure-sensitive adhesive sheet is a pressure-sensitive adhesive sheet that uses a pressure-sensitive adhesive whose adhesive strength decreases when immersed in an aqueous solution. The heat-peelable pressure-sensitive adhesive sheet is a pressure-sensitive adhesive sheet using a pressure-sensitive adhesive whose adhesive strength is reduced by heating.
 ここで、量産性を考慮すれば、短時間で粘着力を低下させることができることが好ましい。この観点から見れば、水溶性剥離型粘着シートよりも加熱剥離型粘着シートや紫外線剥離型粘着シートを用いることが好ましい。また、水溶性剥離型粘着シートを剥離する際には、保護シート6ごと機能デバイス10を水溶液に浸す必要があり、これによって、機能デバイス10の機能性薄膜2の特性が劣化するおそれがある。 Here, considering mass productivity, it is preferable that the adhesive force can be reduced in a short time. From this viewpoint, it is preferable to use a heat-peelable pressure-sensitive adhesive sheet or a UV-peelable pressure-sensitive adhesive sheet rather than a water-soluble peelable pressure-sensitive adhesive sheet. Moreover, when peeling a water-soluble peeling type adhesive sheet, it is necessary to immerse the functional device 10 with the protective sheet 6 in aqueous solution, and there exists a possibility that the characteristic of the functional thin film 2 of the functional device 10 may deteriorate by this.
 また、処理後の粘着力を考慮すると、加熱剥離型粘着シートの残留粘着力は、紫外線剥離型粘着シートよりも低い。よって、加熱剥離型粘着シートを用いれば、機能性薄膜2に損傷を与えることなく容易に保護シート6を剥離できる。特に、空洞5及び空洞5に連通するスリット4を有する機能デバイス10の歩留まりを向上できる。 Also, considering the adhesive strength after processing, the residual adhesive strength of the heat-peelable pressure-sensitive adhesive sheet is lower than that of the UV-peelable pressure-sensitive adhesive sheet. Therefore, if the heat-peelable pressure-sensitive adhesive sheet is used, the protective sheet 6 can be easily peeled without damaging the functional thin film 2. In particular, the yield of the functional device 10 having the cavity 5 and the slit 4 communicating with the cavity 5 can be improved.
 このような加熱剥離型粘着シートとしては、熱膨張性微粒子が含有された粘着剤(たとえば、ゴム系粘着剤・アクリル系粘着剤・ビニルアルキルエーテル系粘着剤・シリコーン系粘着剤・ポリエステル系粘着剤・ポリアミド系粘着剤・ウレタン系粘着剤・フッ素系粘着剤)を利用した粘着シートを用いることができる。熱膨張性微粒子には、たとえば、加熱により容易にガス化して膨張する物質(たとえばイソブダン・プロパン・ペンタン)を弾性を有する殻に内包させたマイクロカプセルを用いることができる。 Examples of such heat-peelable pressure-sensitive adhesive sheets include pressure-sensitive adhesives containing thermally expandable fine particles (for example, rubber pressure-sensitive adhesives, acrylic pressure-sensitive adhesives, vinyl alkyl ether pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, and polyester-based pressure-sensitive adhesives). A pressure-sensitive adhesive sheet using a polyamide-based pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, or a fluorine-based pressure-sensitive adhesive) can be used. As the thermally expandable fine particles, for example, a microcapsule in which a substance (for example, isobutane, propane, or pentane) that is easily gasified by heating and encapsulated in an elastic shell can be used.
 ウエハ3の一表面3aに保護シート6を貼り付けるにあたっては、ウエハ3の一表面3a上に保護シート6を配置して、ゴムローラや、ヘラ、プレスなどの器具を利用して保護シート6をウエハ3の一表面3aに押圧すればよい。なお、保護シート6としてテープ状の基材を用いた粘着シートを利用する場合には、ロール・ツー・ロール(Roll to Roll)方式を利用して保護シート6をウエハ3に貼付してもよい。 When affixing the protective sheet 6 to the one surface 3a of the wafer 3, the protective sheet 6 is disposed on the one surface 3a of the wafer 3, and the protective sheet 6 is attached to the wafer using an instrument such as a rubber roller, a spatula, or a press. 3 may be pressed against one surface 3a. When an adhesive sheet using a tape-like base material is used as the protective sheet 6, the protective sheet 6 may be attached to the wafer 3 using a roll-to-roll method. .
 ダイシング工程では、貼付工程の後に、ダイシングシート7を切断せずに保護シート6とウエハ3とを切断して、ウエハ3を複数の機能デバイス10に分割する。 In the dicing process, after the attaching process, the protective sheet 6 and the wafer 3 are cut without cutting the dicing sheet 7 and the wafer 3 is divided into a plurality of functional devices 10.
 まず、ダイシング工程では、ウエハ3をフラットリング(図示せず)に固定するウエハマウントを行う。ウエハ3とフラットリングとの固定には、ダイシングシート7を用いた通常の方法で行う。よって、ウエハ3は、他表面3bでフラットリングに固定される。ウエハマウントの後、ウエハ3が固定されたフラットリングをダイシング装置のダイシングステージ(図示せず)に固定する。たとえば、真空吸引によって、フラットリングをダイシングステージに固定する。 First, in the dicing process, wafer mounting for fixing the wafer 3 to a flat ring (not shown) is performed. The wafer 3 and the flat ring are fixed by a normal method using a dicing sheet 7. Therefore, the wafer 3 is fixed to the flat ring at the other surface 3b. After the wafer mounting, the flat ring on which the wafer 3 is fixed is fixed to a dicing stage (not shown) of the dicing apparatus. For example, the flat ring is fixed to the dicing stage by vacuum suction.
 フラットリングをダイシングステージに固定した後、保護シート6側(一表面3a側)からウエハ3を切断する。具体的には、ダイシングブレード(図示せず)を用いて、ウエハ3上のストリートに沿って保護シート6ごとウエハ3を切断する。ダイシングは、ハーフカットではなくフルカットで行う。これによって、図1(b)に示す構造を得る。ダイシング工程後、ウエハ3は、溝(ダイシング溝)8によって、複数の機能デバイス10に分割されている。つまり、ウエハ3がチップ化される。複数の機能デバイス10は、ダイシングシート7に固定されている。各機能デバイス10の機能性薄膜2には、分割された保護シート6が貼り付けられている。 After fixing the flat ring to the dicing stage, the wafer 3 is cut from the protective sheet 6 side (one surface 3a side). Specifically, the wafer 3 is cut together with the protective sheet 6 along a street on the wafer 3 using a dicing blade (not shown). Dicing is performed with a full cut instead of a half cut. As a result, the structure shown in FIG. After the dicing process, the wafer 3 is divided into a plurality of functional devices 10 by grooves (dicing grooves) 8. That is, the wafer 3 is chipped. The plurality of functional devices 10 are fixed to the dicing sheet 7. A divided protective sheet 6 is attached to the functional thin film 2 of each functional device 10.
 ダイシング工程では、たとえば厚さ数十μmのダイシングブレードを用いる。ダイシング時には、ダイシングブレードを3000~4000rpm程度で高速回転させる。また、ダイシングブレードの冷却と切削屑の除去とを行うために、ダイシング時には洗浄用の純水の吹き付けを行う。ウエハ3の切断後、ダイシング装置からフラットリングを取り外す。なお、フルカットするかハーフカットするかは、機能デバイス10の材質や構造によって適宜選択すればよい。 In the dicing process, for example, a dicing blade having a thickness of several tens of μm is used. At the time of dicing, the dicing blade is rotated at a high speed of about 3000 to 4000 rpm. In addition, in order to cool the dicing blade and remove the cutting waste, cleaning water is sprayed during dicing. After the wafer 3 is cut, the flat ring is removed from the dicing apparatus. In addition, what is necessary is just to select suitably by the material and structure of the functional device 10 whether full cut or half cut is carried out.
 剥離工程(保護シート剥離工程)では、ダイシング工程の後に、各機能デバイス10から保護シート6を剥離する。たとえば、保護シート6に加熱剥離型粘着シートを用いた場合は、各機能デバイス10の保護シート6を、加熱器(たとえば熱風乾燥器や、ホットプレート、近赤外線ランプ)により加熱する加熱処理を行う。特に、本実施形態における剥離工程では、剥離用部材9を用いて保護シート6の剥離を行う。剥離用部材9は、たとえば、熱伝導性に優れた金属板と、当該金属板に内蔵され当該金属板を加熱するヒータとを有する加熱プレートである。また、剥離用部材9の金属板には、保護シート6を吸引して固定するための複数の細孔(図示せず)が形成されている。 In the peeling step (protective sheet peeling step), the protective sheet 6 is peeled from each functional device 10 after the dicing step. For example, when a heat-peelable adhesive sheet is used as the protective sheet 6, a heat treatment is performed in which the protective sheet 6 of each functional device 10 is heated with a heater (for example, a hot air dryer, a hot plate, or a near infrared lamp). . In particular, in the peeling process in the present embodiment, the protective sheet 6 is peeled off using the peeling member 9. The peeling member 9 is, for example, a heating plate having a metal plate excellent in thermal conductivity and a heater built in the metal plate and heating the metal plate. The metal plate of the peeling member 9 is formed with a plurality of pores (not shown) for sucking and fixing the protective sheet 6.
 本実施形態における剥離工程では、図1(c)に示すように、まず、保護シート6におけるウエハ3とは反対側の面(図1(c)における上面)に、剥離用部材9を取り付ける。次に、剥離用部材9によって保護シート6の全面に均一に圧力を加えながら保護シート6を均一に加熱する。たとえば、保護シート6を、120℃で一分間加熱する。 In the peeling step in the present embodiment, as shown in FIG. 1C, first, a peeling member 9 is attached to the surface of the protective sheet 6 opposite to the wafer 3 (upper surface in FIG. 1C). Next, the protective sheet 6 is uniformly heated while uniformly applying pressure to the entire surface of the protective sheet 6 by the peeling member 9. For example, the protective sheet 6 is heated at 120 ° C. for 1 minute.
 剥離用部材9で保護シート6を加熱すると、保護シート6の粘着剤中の熱膨張性微粒子が大きく膨らむ。これによって、粘着剤よりなる層の表面に微小な凹凸が生じて、保護シート6と機能性薄膜2とが面で接触した状態から点で接触した状態に変化する。その結果、保護シート6と機能性薄膜2との接触面積が減少して保護シート6の粘着力が大きく低下する。 When the protective sheet 6 is heated by the peeling member 9, the thermally expandable fine particles in the adhesive of the protective sheet 6 are greatly expanded. Thereby, minute unevenness is generated on the surface of the layer made of the adhesive, and the state changes from the state in which the protective sheet 6 and the functional thin film 2 are in contact with each other to the point. As a result, the contact area between the protective sheet 6 and the functional thin film 2 is reduced, and the adhesive strength of the protective sheet 6 is greatly reduced.
 このように剥離用部材9で保護シート6を加熱して粘着力を低下させた状態で、剥離用部材9と一緒に保護シート6を機能デバイス10から剥離する。たとえば、剥離用部材9の細孔を利用して保護シート6を吸引して固定する。次に、剥離用部材9と一緒に保護シート6を持ち上げる。これによって、剥離用部材9と一緒に保護シート6を機能デバイス10から剥離する。この剥離工程によって、図10(d)に示すように、機能デバイス10(特に機能性薄膜2)を破壊することなく比較的簡単に保護シート6を剥離できる。 In this manner, the protective sheet 6 is peeled from the functional device 10 together with the peeling member 9 in a state in which the protective sheet 6 is heated by the peeling member 9 to reduce the adhesive force. For example, the protective sheet 6 is sucked and fixed using the pores of the peeling member 9. Next, the protective sheet 6 is lifted together with the peeling member 9. Thus, the protective sheet 6 is peeled from the functional device 10 together with the peeling member 9. By this peeling step, as shown in FIG. 10D, the protective sheet 6 can be peeled relatively easily without destroying the functional device 10 (particularly the functional thin film 2).
 なお、保護シート6に紫外線剥離型粘着シートを用いた場合には、加熱処理の代わりに、保護シート6に紫外線を照射する紫外線照射処理を行う。また、保護シート6に水溶性剥離型粘着シートを用いた場合には、加熱処理の代わりに、保護シート6を所定の水溶液に浸漬する水溶液投入処理を行う。このようにすれば、保護シート6を容易に剥離できる。 In addition, when an ultraviolet peeling type adhesive sheet is used for the protective sheet 6, an ultraviolet irradiation process for irradiating the protective sheet 6 with ultraviolet rays is performed instead of the heat treatment. Moreover, when a water-soluble peeling type adhesive sheet is used for the protective sheet 6, the aqueous solution injection process which immerses the protective sheet 6 in predetermined | prescribed aqueous solution is performed instead of heat processing. If it does in this way, the protection sheet 6 can be peeled easily.
 除去工程では、剥離工程の後に、各機能デバイス10に付着した不要な有機物を除去する。ここで、不要な有機物は、たとえば、フォトレジストや、樹脂、シリコンオイル、フラックスなどの有機汚染物質である。特に、本実施形態の場合、有機物には、保護シート6の粘着剤(機能性薄膜2の表面に付着した保護シート6の粘着剤)が含まれる。 In the removing process, unnecessary organic substances attached to each functional device 10 are removed after the peeling process. Here, unnecessary organic substances are organic contaminants such as photoresist, resin, silicon oil, and flux. In particular, in the case of the present embodiment, the organic material includes the adhesive of the protective sheet 6 (the adhesive of the protective sheet 6 attached to the surface of the functional thin film 2).
 このような保護シート6の粘着剤を含む不要な有機物は、たとえばオゾンにより除去することができる。オゾンは、紫外線や高周波マイクロ波を酸素ガスに照射することで生成できる。 Such unnecessary organic substances including the adhesive of the protective sheet 6 can be removed by, for example, ozone. Ozone can be generated by irradiating oxygen gas with ultraviolet rays or high-frequency microwaves.
 たとえば、本実施形態における除去工程では、紫外線オゾン洗浄法(UVオゾン洗浄法)を利用したドライ処理を行う。なお、除去工程では、オゾン水を利用して有機物(有機汚染物)を除去するウェット処理を利用することもできる。 For example, in the removal step in the present embodiment, dry treatment using an ultraviolet ozone cleaning method (UV ozone cleaning method) is performed. In the removal step, a wet process for removing organic substances (organic contaminants) using ozone water can be used.
 紫外線オゾン洗浄法は、不要な有機物に短波長の紫外線を照射することで、不要な有機物を除去する方法である。このような紫外線オゾン洗浄法は、短波長の紫外線を利用した感光酸化プロセスである。不要な有機物は短波長の紫外線を吸収することにより分解される。短波長の紫外線としては、波長が184.9nmの紫外線と、波長が253.7nmの紫外線とが用いられる。酸素分子に184.9nmの紫外線を照射すると、酸素分子はオゾンになる。オゾンに253.7nmの波長の紫外線を照射すると、オゾンは分解されて、同時に活性酸素を発生する。253.7nmの紫外線のほとんどがハイドロカーボンとオゾンによって吸収される。紫外線によって有機物が分解されることで生じた生成物は活性酸素と反応して揮発性分子となって、機能デバイス10から脱離する。184.9nmと253.7nmとの両波長の紫外線を照射することで、酸素元素が発生し続け、酸素分子がオゾンとなり、オゾンが分解される。 The ultraviolet ozone cleaning method is a method of removing unnecessary organic substances by irradiating unnecessary organic substances with short wavelength ultraviolet rays. Such an ultraviolet ozone cleaning method is a photosensitive oxidation process using ultraviolet rays having a short wavelength. Unnecessary organic matter is decomposed by absorbing short wavelength ultraviolet rays. As the short wavelength ultraviolet light, ultraviolet light having a wavelength of 184.9 nm and ultraviolet light having a wavelength of 253.7 nm are used. When oxygen molecules are irradiated with ultraviolet rays of 184.9 nm, the oxygen molecules become ozone. When ozone is irradiated with ultraviolet rays having a wavelength of 253.7 nm, the ozone is decomposed and simultaneously generates active oxygen. Most of the UV at 253.7 nm is absorbed by hydrocarbons and ozone. A product generated by decomposing organic substances by ultraviolet rays reacts with active oxygen to become volatile molecules, and is detached from the functional device 10. By irradiating ultraviolet rays with both wavelengths of 184.9 nm and 253.7 nm, oxygen elements continue to be generated, oxygen molecules become ozone, and ozone is decomposed.
 このような紫外線オゾン洗浄法では、密閉処理装置の筐体内に機能デバイス10を密閉する。密閉処理装置の筐体には、たとえば185nmの紫外線と254nmの紫外線とを放射する低圧水銀ランプが設けられる。密閉処理装置の筐体内には酸素(O2ガス)を1~20L/min(たとえば、5L/min)で流しつつ排気する。これによって、密閉処理装置の筐体内の圧力を常圧に維持する。また、密閉処理装置の筐体内の温度は室温から350℃(たとえば150℃)の間に設定することが好ましい。紫外線オゾン洗浄を行う処理時間は1~120minの間で適宜設定される。 In such an ultraviolet ozone cleaning method, the functional device 10 is sealed in the casing of the sealing processing apparatus. The casing of the hermetic treatment apparatus is provided with a low-pressure mercury lamp that emits, for example, 185 nm ultraviolet light and 254 nm ultraviolet light. Oxygen (O 2 gas) is exhausted while flowing at 1 to 20 L / min (for example, 5 L / min) in the casing of the hermetic treatment apparatus. As a result, the pressure in the casing of the hermetic treatment apparatus is maintained at normal pressure. Moreover, it is preferable to set the temperature in the housing of the hermetic treatment apparatus between room temperature and 350 ° C. (for example, 150 ° C.). The treatment time for performing the ultraviolet ozone cleaning is appropriately set between 1 and 120 minutes.
 ところで、除去工程では、除去工程の前の剥離工程において既に保護シート6が剥離されている。そのため、除去工程では、スリット4の内面と空洞5の内面との両方に付着した不要な有機物も一緒に除去される。このように、除去工程では、スリット4の内面と空洞5の内面との少なくとも一方に付着した不要な有機物を除去することが好ましい。また、スリット4の内面と空洞5の内面との両方に付着した不要な有機物を除去することがより好ましい。すなわち、除去工程では、スリット4の内面に付着するおそれがある不要な有機物と、空洞5の内面に付着するおそれがある不要な有機物との両方を除去可能な処理を行うことが好ましい。 Incidentally, in the removing step, the protective sheet 6 has already been peeled off in the peeling step before the removing step. Therefore, in the removal step, unnecessary organic substances attached to both the inner surface of the slit 4 and the inner surface of the cavity 5 are also removed together. Thus, in the removal step, it is preferable to remove unnecessary organic substances attached to at least one of the inner surface of the slit 4 and the inner surface of the cavity 5. Further, it is more preferable to remove unnecessary organic substances attached to both the inner surface of the slit 4 and the inner surface of the cavity 5. That is, in the removal step, it is preferable to perform a process capable of removing both unnecessary organic substances that may adhere to the inner surface of the slit 4 and unnecessary organic substances that may adhere to the inner surface of the cavity 5.
 除去工程では、さらに、感光性有機レジストをエッチングするアッシング(灰化)処理を機能デバイス10に行ってもよい。アッシング処理を行うにあたっては、まず、図示しないアッシング装置のチャンバ内のウエハホルダに機能デバイス10を配置する。次に、チャンバ内に、酸素を標準状態で1~1000cc/min(sccm)(たとえば2cc/min(sccm))で流しつつ排気し、チャンバ内の圧力を13~266Pa(たとえば、104Pa)にする。次に、ウエハホルダの温度を室温~250℃(たとえば180℃)に安定させる。そして、RFパワーを、100~1KW(たとえば、450W)で1~120分(たとえば、60分)供給することでアッシング処理を行う。 In the removing step, the functional device 10 may be further subjected to an ashing process that etches the photosensitive organic resist. In performing the ashing process, first, the functional device 10 is placed on a wafer holder in a chamber of an ashing apparatus (not shown). Next, oxygen is exhausted into the chamber while flowing oxygen at a standard state of 1 to 1000 cc / min (sccm) (for example, 2 cc / min (sccm)), and the pressure in the chamber is set to 13 to 266 Pa (for example, 104 Pa). . Next, the temperature of the wafer holder is stabilized at room temperature to 250 ° C. (for example, 180 ° C.). Then, ashing is performed by supplying RF power at 100 to 1 KW (for example, 450 W) for 1 to 120 minutes (for example, 60 minutes).
 剥離工程の後には、分離工程(ダイシングシート剥離工程)を行う。分離工程では、たとえばチップボンダを用いてチップ(機能デバイス10)をダイシングシート7から分離する。これによって、図1(e)に示すように、個々に分割された複数の機能デバイス10を得ることができる。したがって、各機能デバイス10を半導体装置100(図6参照)などに利用することが可能になる。 After the peeling step, a separation step (dicing sheet peeling step) is performed. In the separation step, the chip (functional device 10) is separated from the dicing sheet 7 using, for example, a chip bonder. As a result, as shown in FIG. 1E, a plurality of functional devices 10 divided individually can be obtained. Therefore, each functional device 10 can be used for the semiconductor device 100 (see FIG. 6) and the like.
 以上述べた機能デバイスの製造方法は、ウエハ処理工程と、貼付工程と、ダイシング工程と、剥離工程と、除去工程とを備える。ウエハ処理工程では、基板1の基礎となるウエハ3の一表面3aに機能性薄膜2を形成する。貼付工程では、ウエハ処理工程の後に、粘着剤を利用した粘着シートである保護シート6をウエハ3の一表面3aに直接的に貼り付けるとともに、ダイシングシート7をウエハ3の他表面3bに貼り付ける。ダイシング工程では、貼付工程の後に、ダイシングシート7を切断せずに保護シート6とウエハ3とを切断して、ウエハ3を複数の機能デバイス10に分割する。剥離工程では、ダイシング工程の後に、各機能デバイス10から保護シート6を剥離する。除去工程では、剥離工程の後に、各機能デバイス10に付着した不要な有機物である保護シート6の粘着剤を除去する。 The functional device manufacturing method described above includes a wafer processing step, a pasting step, a dicing step, a peeling step, and a removing step. In the wafer processing step, the functional thin film 2 is formed on the one surface 3a of the wafer 3 that is the basis of the substrate 1. In the sticking step, after the wafer processing step, the protective sheet 6 which is an adhesive sheet using an adhesive is directly attached to the one surface 3a of the wafer 3, and the dicing sheet 7 is attached to the other surface 3b of the wafer 3. . In the dicing process, after the attaching process, the protective sheet 6 and the wafer 3 are cut without cutting the dicing sheet 7 and the wafer 3 is divided into a plurality of functional devices 10. In the peeling step, the protective sheet 6 is peeled from each functional device 10 after the dicing step. In the removing step, the adhesive of the protective sheet 6 that is an unnecessary organic substance attached to each functional device 10 is removed after the peeling step.
 この機能デバイスの製造方法によれば、保護シート6とダイシングシート7とを利用してウエハ3を切断するので、切断時に機能性薄膜2が破損することを防止でき、歩留まりを向上できる。また、機能デバイス10に付着した不要な有機物である保護シート6の粘着剤を除去できるから、このような有機物の付着による機能デバイス10の性能の低下を防止できる。特に、機能デバイス10が赤外線センサである場合、保護シート6の粘着剤の付着による熱特性の変化を防止できる。よって、赤外線センサの感度の低下を防止できる。さらに、複数の赤外線センサが均一なセンサ特性を有するようになる。 According to this method of manufacturing a functional device, the wafer 3 is cut using the protective sheet 6 and the dicing sheet 7, so that the functional thin film 2 can be prevented from being damaged at the time of cutting, and the yield can be improved. Moreover, since the adhesive of the protective sheet 6 which is an unnecessary organic substance adhering to the functional device 10 can be removed, the deterioration of the performance of the functional device 10 due to the adhesion of the organic substance can be prevented. In particular, when the functional device 10 is an infrared sensor, it is possible to prevent changes in thermal characteristics due to adhesion of the adhesive on the protective sheet 6. Therefore, it is possible to prevent a decrease in sensitivity of the infrared sensor. Furthermore, a plurality of infrared sensors have uniform sensor characteristics.
 また、除去工程では、スリット4の内面と空洞5の内面との少なくとも一方に付着した不要な有機物を除去する。そのため、機能デバイス10のスリット4や空洞5の内面に付着した不要な有機物を除去できるから、有機物の付着による機能デバイス10の性能の低下を防止できる。よって、機能デバイス10の性能を向上できる。 In the removing step, unnecessary organic substances attached to at least one of the inner surface of the slit 4 and the inner surface of the cavity 5 are removed. Therefore, unnecessary organic substances attached to the inner surfaces of the slits 4 and the cavities 5 of the functional device 10 can be removed, so that the performance of the functional device 10 can be prevented from being deteriorated due to the adhesion of organic substances. Therefore, the performance of the functional device 10 can be improved.
 また、剥離工程では、保護シート6におけるウエハ3とは反対側の面に剥離用部材9を取り付けてから、剥離用部材9と一緒に保護シート6を機能デバイス10から剥離する。そのため、低コスト化を図ることができる。 In the peeling step, the peeling member 9 is attached to the surface of the protective sheet 6 opposite to the wafer 3, and then the protective sheet 6 is peeled from the functional device 10 together with the peeling member 9. Therefore, cost reduction can be achieved.
 また、保護シート6には、加熱されると粘着力が低下する粘着剤を利用した加熱剥離型粘着シートを利用している。そのため、保護シート6を加熱することで、保護シート6を機能デバイス10から容易に剥離できる。よって、保護シート6の剥離時に機能性薄膜2が破損してしまうことを抑制できる。 The protective sheet 6 is a heat-peelable pressure-sensitive adhesive sheet that uses a pressure-sensitive adhesive whose adhesive strength decreases when heated. Therefore, the protective sheet 6 can be easily peeled from the functional device 10 by heating the protective sheet 6. Therefore, it is possible to suppress the functional thin film 2 from being damaged when the protective sheet 6 is peeled off.
 さらに、剥離工程では、保護シート6を機能デバイス10から剥離する前に、保護シート6の全面に均一に圧力を加えながら保護シート6を均一に加熱する。そのため、保護シート6の剥離時に保護シート6が分断されてしまうことを防止できる。よって、保護シート6を確実に機能性薄膜2から剥離できる。 Furthermore, in the peeling step, the protective sheet 6 is uniformly heated while applying pressure uniformly to the entire surface of the protective sheet 6 before the protective sheet 6 is peeled from the functional device 10. Therefore, it can prevent that the protection sheet 6 will be parted at the time of peeling of the protection sheet 6. FIG. Therefore, the protective sheet 6 can be reliably peeled from the functional thin film 2.
 なお、機能デバイス10は、上述の赤外線アレイセンサに限定されない。機能デバイス10は、たとえば、加速度センサ(1軸~3軸の加速度センサ)や、ジャイロセンサ、圧力センサ、マイクロアクチュエータ、マイクロホン、超音波センサであってもよい。 The functional device 10 is not limited to the infrared array sensor described above. The functional device 10 may be, for example, an acceleration sensor (1-axis to 3-axis acceleration sensor), a gyro sensor, a pressure sensor, a micro actuator, a microphone, or an ultrasonic sensor.
 (実施形態2)
 図6は、本実施形態の半導体装置の製造方法により製造される半導体装置100を示す。半導体装置100は、機能デバイス10と、ICチップよりなる信号処理装置33とを備える。また、半導体装置100は、図5(c)に示すように、機能デバイス10および信号処理装置33を収容するパッケージ40を備えている。
(Embodiment 2)
FIG. 6 shows a semiconductor device 100 manufactured by the semiconductor device manufacturing method of the present embodiment. The semiconductor device 100 includes a functional device 10 and a signal processing device 33 made of an IC chip. Further, as shown in FIG. 5C, the semiconductor device 100 includes a package 40 that houses the functional device 10 and the signal processing device 33.
 信号処理装置33は、赤外線センサである機能デバイス10と協働するように構成されている。信号処理装置33は、複数(図示例では4つ)の入力用パッド31(311~314)と、1つのパッド32とを有する。各入力用パッド311~314には、機能デバイス10の複数(図示例では、4つ)の出力用パッド241~244それぞれが配線35を介して電気的に接続される。パッド32は、機能デバイス10の基準バイアス用パッド26に基準電圧を与えるために用いられる。パッド32は、基準バイアス用パッド26に配線35を介して電気的に接続される。配線35は、たとえば、金やアルミニウムを用いたボンディングワイヤである。 The signal processing device 33 is configured to cooperate with the functional device 10 which is an infrared sensor. The signal processing device 33 includes a plurality (four in the illustrated example) of input pads 31 (311 to 314) and one pad 32. A plurality (four in the illustrated example) of output pads 241 to 244 of the functional device 10 are electrically connected to the input pads 311 to 314 via wirings 35, respectively. The pad 32 is used to apply a reference voltage to the reference bias pad 26 of the functional device 10. The pad 32 is electrically connected to the reference bias pad 26 via the wiring 35. The wiring 35 is, for example, a bonding wire using gold or aluminum.
 さらに、信号処理装置33は、入力用パッド31の出力電圧を増幅する増幅回路42と、複数の入力用パッド31の出力電圧を択一的に増幅回路42に入力するマルチプレクサ41とを有する。 The signal processing device 33 further includes an amplifier circuit 42 that amplifies the output voltage of the input pad 31 and a multiplexer 41 that alternatively inputs the output voltages of the plurality of input pads 31 to the amplifier circuit 42.
 信号処理装置33は、機能デバイス10の各出力用パッド24からの出力電圧を順次出力できるように構成されている。信号処理装置33を用いれば、赤外線画像を得ることができる。信号処理装置33は、機能デバイス10とは別体に形成されているが、機能デバイス10の基板1を利用して形成してもよい。つまり、機能デバイス10に信号処理装置33を一体に設けてもよい。 The signal processing device 33 is configured to sequentially output the output voltage from each output pad 24 of the functional device 10. If the signal processing device 33 is used, an infrared image can be obtained. The signal processing apparatus 33 is formed separately from the functional device 10, but may be formed using the substrate 1 of the functional device 10. That is, the signal processing device 33 may be integrally provided in the functional device 10.
 パッケージ40は、機能デバイス10及び信号処理装置33が実装される金属製の基体36と、基体36とで機能デバイス10及び信号処理装置33を囲うキャップ39とで構成されている。基体36は、一面(上面)に開口を有する矩形箱状に形成されている。基体36の内底面に、機能デバイス10及び信号処理装置33が搭載される。キャップ39は、基体36の上記開口を閉塞可能な大きさの矩形板状に形成されている。機能デバイス10が赤外線センサである場合、キャップ39の材料には、赤外線を透過可能な材料(たとえばシリコン)が用いられる。なお、機能デバイス10が可視光センサである場合、キャップ39の材料には、可視光に対して透光性を有する材料(たとえばガラス)が用いられる。また、機能デバイス10が加速度センサである場合、キャップ39の材料には、金属材料を用いることができる。このように、キャップ39の材料は、機能デバイス10の特性を阻害しない材料であればよい。 The package 40 includes a metal base 36 on which the functional device 10 and the signal processing device 33 are mounted, and a cap 39 that surrounds the functional device 10 and the signal processing device 33 with the base 36. The base 36 is formed in a rectangular box shape having an opening on one surface (upper surface). The functional device 10 and the signal processing device 33 are mounted on the inner bottom surface of the base body 36. The cap 39 is formed in a rectangular plate size that can close the opening of the base 36. When the functional device 10 is an infrared sensor, a material (for example, silicon) that can transmit infrared rays is used as the material of the cap 39. In addition, when the functional device 10 is a visible light sensor, the material (for example, glass) which has translucency with respect to visible light is used for the material of the cap 39. FIG. Further, when the functional device 10 is an acceleration sensor, a metal material can be used for the material of the cap 39. Thus, the material of the cap 39 may be any material that does not hinder the characteristics of the functional device 10.
 半導体装置100を駆動する場合、たとえば、信号処理装置33のパッド32を介して機能デバイス10の基準バイアス用パッド26に基準電圧(たとえば1.65V)を与える。このようにすれば、各出力用パッド24から機能性素子30の出力電圧(1.65V+センシングエレメント20の出力電圧)が出力される。各出力用パッド24からの出力電圧は、信号処理装置33の対応する入力用パッド31に入力される。信号処理装置33のマルチプレクサ41は、複数の入力用パッド31の出力電圧を択一的に増幅回路42に入力する。これによって、機能デバイス10の出力である赤外線画像を得ることができる。 When driving the semiconductor device 100, for example, a reference voltage (eg, 1.65 V) is applied to the reference bias pad 26 of the functional device 10 via the pad 32 of the signal processing device 33. In this way, the output voltage of the functional element 30 (1.65 V + the output voltage of the sensing element 20) is output from each output pad 24. The output voltage from each output pad 24 is input to the corresponding input pad 31 of the signal processing device 33. The multiplexer 41 of the signal processing device 33 alternatively inputs the output voltages of the plurality of input pads 31 to the amplifier circuit 42. As a result, an infrared image that is the output of the functional device 10 can be obtained.
 次に図5を参照して本実施形態の半導体装置の製造方法について説明する。 Next, a method for manufacturing the semiconductor device of this embodiment will be described with reference to FIG.
 半導体装置の製造方法は、ウエハ処理工程と、貼付工程と、ダイシング工程と、剥離工程と、除去工程と、分離工程と、実装工程と、洗浄工程と、封止工程とを有する。 The semiconductor device manufacturing method includes a wafer processing process, a sticking process, a dicing process, a peeling process, a removing process, a separating process, a mounting process, a cleaning process, and a sealing process.
 本実施形態の半導体装置の製造方法では、まず、ウエハ処理工程を行う。このウエハ処理工程については実施形態1で既に説明したから、説明を省略する。 In the semiconductor device manufacturing method of this embodiment, first, a wafer processing step is performed. Since this wafer processing step has already been described in the first embodiment, a description thereof will be omitted.
 ウエハ処理工程の後に、実施形態1と同様に、貼付工程と、ダイシング工程と、剥離工程と、除去工程と、分離工程とを行う。そして、分離工程の後に、実装工程を行う。なお、貼付工程・ダイシング工程・剥離工程・除去工程・分離工程については実施形態1で既に説明したから、説明を省略する。 After the wafer processing step, as in the first embodiment, a pasting step, a dicing step, a peeling step, a removing step, and a separating step are performed. Then, after the separation step, a mounting step is performed. Since the pasting process / dicing process / peeling process / removing process / separating process has already been described in the first embodiment, the description thereof is omitted.
 実装工程では、第1接着剤を用いて機能デバイス10を基体36に実装する。具体的には、第1接着剤を利用して機能デバイス10の基板1の厚み方向の他面(図5(a)における下面)を基体36の内底面に接合する。また、実装工程では、第1接着剤を用いて信号処理装置33を基体36に実装する。具体的には、第1接着剤を利用して信号処理装置33の裏面(図5(a)における下面)を基体36の内底面に接合する。これによって、図5(a)に示すように、機能デバイス10及び信号処理装置33それぞれは、第1接着剤よりなる第1接合層(実装接着層)37により基体36に実装される。 In the mounting process, the functional device 10 is mounted on the base 36 using the first adhesive. Specifically, the other surface in the thickness direction of the substrate 1 of the functional device 10 (the lower surface in FIG. 5A) is bonded to the inner bottom surface of the base 36 using the first adhesive. In the mounting process, the signal processing device 33 is mounted on the base body 36 using the first adhesive. Specifically, the back surface (the lower surface in FIG. 5A) of the signal processing device 33 is bonded to the inner bottom surface of the substrate 36 using the first adhesive. As a result, as shown in FIG. 5A, each of the functional device 10 and the signal processing device 33 is mounted on the base body 36 by the first bonding layer (mounting adhesive layer) 37 made of the first adhesive.
 第1接着剤は、たとえば半田である。第1接着剤には、半田の他にガラスやAu-Siなどの無機材料を用いることができる。なお、第1接着剤には、エポキシ樹脂などの有機材料を用いることもできる。しかしながら、脱ガスを考慮すれば、第1接着剤は、無機材料であることが好ましい。 The first adhesive is, for example, solder. For the first adhesive, an inorganic material such as glass or Au—Si can be used in addition to solder. In addition, organic materials, such as an epoxy resin, can also be used for a 1st adhesive agent. However, considering degassing, the first adhesive is preferably an inorganic material.
 機能デバイス10及び信号処理装置33を基体36に実装した後、機能デバイス10の各出力用パッド241~244を信号処理装置33の対応する入力用パッド311~314に、配線35で接続する。また、機能デバイス10の基準バイアス用パッド26を信号処理装置33のパッド32に、配線35で接続する。 After the functional device 10 and the signal processing device 33 are mounted on the substrate 36, the output pads 241 to 244 of the functional device 10 are connected to the corresponding input pads 311 to 314 of the signal processing device 33 by wirings 35. Further, the reference bias pad 26 of the functional device 10 is connected to the pad 32 of the signal processing device 33 by the wiring 35.
 なお、半導体装置100では、機能デバイス10の基板1の外周形状は矩形状である。基板1の外周の第1の辺側の端には、機能性素子30から出力される出力信号を取り出すための全ての出力用パッド241~244及び基準バイアス用パッド26が基板1の上記第1の辺に沿って並設されている。また、信号処理装置33の外周形状は矩形状である。信号処理装置33の外周の第2の辺側の端には、全ての入力用パッド311~314及びパッド32が信号処理装置33の上記第2の辺に沿って並設されている。機能デバイス10は、基板1の上記第1の辺と信号処理装置33の上記第2の辺との距離が信号処理装置33の他のいずれの辺との距離よりも近くなるようにパッケージ40に搭載されている。そのため、機能デバイス10の出力用パッド24と信号処理装置33の入力用パッド31とを接続する配線35を短くできる。また、機能デバイス10の基準バイアス用パッド26と信号処理装置33のパッド32とを接続する配線35を短くできる。これによって、外来ノイズの影響を低減でき、耐ノイズ性が向上する。 In the semiconductor device 100, the outer peripheral shape of the substrate 1 of the functional device 10 is rectangular. At the end on the first side of the outer periphery of the substrate 1, all output pads 241 to 244 for extracting output signals output from the functional element 30 and the reference bias pad 26 are provided on the first side of the substrate 1. It is juxtaposed along the side. Further, the outer peripheral shape of the signal processing device 33 is rectangular. All the input pads 311 to 314 and the pads 32 are juxtaposed along the second side of the signal processing device 33 at the end on the second side of the outer periphery of the signal processing device 33. The functional device 10 is mounted on the package 40 so that the distance between the first side of the substrate 1 and the second side of the signal processing device 33 is shorter than the distance between any other sides of the signal processing device 33. It is installed. Therefore, the wiring 35 that connects the output pad 24 of the functional device 10 and the input pad 31 of the signal processing device 33 can be shortened. Further, the wiring 35 connecting the reference bias pad 26 of the functional device 10 and the pad 32 of the signal processing device 33 can be shortened. Thereby, the influence of external noise can be reduced and noise resistance is improved.
 ここで、封止工程の前に、基体36及びキャップ39から有機汚染物を除去することが好ましい。そこで、実装工程の後、封止工程の前に、洗浄工程を行う。 Here, it is preferable to remove organic contaminants from the base body 36 and the cap 39 before the sealing step. Therefore, a cleaning process is performed after the mounting process and before the sealing process.
 洗浄工程では、基体36及びキャップ39から不要な有機物を除去する。洗浄工程では、アッシング処理を行う。アッシング処理は、基体36内に配置された機能デバイス10や信号処理装置33の大きさ・機能デバイス10や信号処理装置33の数・機能デバイス10や信号処理装置33に使用された材料を考慮して、適宜行われる。アッシング処理としては、たとえば、オゾンアッシング装置やプラズマアッシング装置を用いた光励起アッシング処理を採用することができる。なお、洗浄工程は、実装工程の前に行ってもよい。 In the cleaning process, unnecessary organic substances are removed from the substrate 36 and the cap 39. In the cleaning process, ashing is performed. The ashing process takes into account the size of the functional device 10 and the signal processing device 33 arranged in the substrate 36, the number of the functional device 10 and the signal processing device 33, and the material used for the functional device 10 and the signal processing device 33. As appropriate. As the ashing process, for example, a light excitation ashing process using an ozone ashing apparatus or a plasma ashing apparatus can be employed. Note that the cleaning process may be performed before the mounting process.
 また、実装工程を除去工程の前に行ってもよい。この場合、除去工程では、基体36に付着した有機物を除去する。具体的には、ウエハ処理工程の後に、貼付工程と、ダイシング工程と、剥離工程とを行ってから分離工程を行う。そして、分離工程の後に、実装工程を行い、その後に除去工程を行う。このように工程の順番を変更することで、機能デバイス10及び実装基体36の両方から同時に不要な有機物を除去できる。この場合、除去工程において、キャップ39からも不要な有機物を除去するようにしてもよい。また、除去工程では、基体36及びキャップ39の少なくとも一方から不要な有機物を除去してもよい。 Also, the mounting process may be performed before the removal process. In this case, in the removing step, organic substances attached to the substrate 36 are removed. Specifically, after the wafer processing step, the separation step is performed after the pasting step, the dicing step, and the peeling step. Then, after the separation step, a mounting step is performed, and then a removal step is performed. By changing the order of the processes in this way, unnecessary organic substances can be removed from both the functional device 10 and the mounting substrate 36 at the same time. In this case, unnecessary organic substances may be removed from the cap 39 in the removing step. In the removing step, unnecessary organic substances may be removed from at least one of the base body 36 and the cap 39.
 なお、信号処理装置33からも不要な有機物を除去することが好ましい。信号処理装置33から不要な有機物を除去する処理は、上述の除去工程や洗浄工程において機能デバイス10や基体36、キャップ39から有機物を除去する処理と一緒に行ってもよいし、別に行ってもよい。ただし、信号処理装置33からの有機物の除去は、封止工程の前に行う必要がある。 It should be noted that it is preferable to remove unnecessary organic substances from the signal processing device 33. The process of removing unnecessary organic substances from the signal processing device 33 may be performed together with the process of removing organic substances from the functional device 10, the substrate 36, and the cap 39 in the above-described removal process and cleaning process, or may be performed separately. Good. However, it is necessary to remove the organic substance from the signal processing device 33 before the sealing step.
 封止工程では、除去工程及び実装工程の後に、第2接着剤を用いてキャップ39を基体36に接合して機能デバイス10をパッケージ40で気密に封止する。具体的には、基体36の上記一面の開口の縁に第2接着剤を塗布する。その後に、基体36の上記一面の開口を覆うようにしてキャップ39を基体36の上記一面に載置する。これによって、図5(c)に示すように、キャップ39が、第2接着剤よりなる第2接合層(封止接着層)38によって基体36に接合される。 In the sealing step, after the removing step and the mounting step, the cap 39 is joined to the base 36 using the second adhesive, and the functional device 10 is hermetically sealed with the package 40. Specifically, the second adhesive is applied to the edge of the opening on the one surface of the substrate 36. Thereafter, the cap 39 is placed on the one surface of the substrate 36 so as to cover the opening on the one surface of the substrate 36. As a result, as shown in FIG. 5C, the cap 39 is joined to the base body 36 by the second joining layer (sealing adhesive layer) 38 made of the second adhesive.
 第2接着剤は、たとえばガラスである。第2接着剤には、ガラスの他に半田やAu-Siなどの無機材料を用いることができる。なお、第2接着剤には、エポキシ樹脂などの有機材料を用いることもできる。しかしながら、脱ガスを考慮すれば、第2接着剤は、無機材料であることが好ましい。 The second adhesive is, for example, glass. In addition to glass, an inorganic material such as solder or Au—Si can be used for the second adhesive. An organic material such as an epoxy resin can also be used for the second adhesive. However, considering degassing, the second adhesive is preferably an inorganic material.
 ところで、封止工程では、パッケージ40内が真空となるようにキャップ39を基体36に接合する。たとえば、除去工程や洗浄工程でのアッシング処理後に、真空処理装置内でアッシング時に流した酸素を止めることで、パッケージ40内が汚染されないように、パッケージ40を真空密封する。 Incidentally, in the sealing step, the cap 39 is joined to the base body 36 so that the inside of the package 40 is evacuated. For example, after the ashing process in the removal process or the cleaning process, the package 40 is vacuum-sealed so that the oxygen flowed during the ashing is stopped in the vacuum processing apparatus so that the package 40 is not contaminated.
 あるいは、封止工程では、パッケージ40内が陽圧となるようにキャップ39を基体36に接合するようにしてもよい。たとえば、除去工程や洗浄工程でのアッシング処理時に流した酸素の代わりに各機能デバイス10などに曝しても実質的に影響のないガス(たとえば、Arガスなどの不活性ガスや窒素ガス(N2))を加圧状態でパッケージ40内に封入する。これによって、パッケージ40内を陽圧とする。 Alternatively, in the sealing step, the cap 39 may be bonded to the base body 36 so that the inside of the package 40 is at a positive pressure. For example, a gas (for example, an inert gas such as Ar gas or a nitrogen gas (N 2) that does not substantially affect exposure to each functional device 10 or the like instead of oxygen flowed during the ashing process in the removal process or the cleaning process. )) Is sealed in the package 40 under pressure. As a result, the inside of the package 40 is set to a positive pressure.
 以上述べたように、本実施形態の半導体装置の製造方法は、ウエハ処理工程と、貼付工程と、ダイシング工程と、剥離工程と、除去工程と、分離工程と、実装工程と、洗浄工程と、封止工程とを備える。ウエハ処理工程では、基板1の基礎となるウエハ3の一表面3aに機能性薄膜2を形成する。貼付工程では、ウエハ処理工程の後に、粘着剤を利用した粘着シートである保護シート6をウエハ3の一表面3aに直接的に貼り付けるとともに、ダイシングシート7をウエハ3の他表面3bに貼り付ける。ダイシング工程では、貼付工程の後に、ダイシングシート7を切断せずに保護シート6とウエハ3とを切断して、ウエハ3を複数の機能デバイス10に分割する。剥離工程では、ダイシング工程の後に、各機能デバイス10から保護シート6を剥離する。除去工程では、剥離工程の後に、各機能デバイス10に付着した保護シート6の粘着剤を含む不要な有機物を除去する。分離工程では、ダイシングシート7から各機能デバイス10を分離する。実装工程では、ダイシング工程の後に、第1接着剤を用いて機能デバイス10を基体36に実装する。洗浄工程では、封止工程の前に、基体36及びキャップ39を洗浄して不要な有機汚染物を除去する。封止工程では、除去工程及び実装工程の後に、第2接着剤を用いてキャップ39を基体36に接合して機能デバイス10をパッケージ40で気密に封止する。 As described above, the semiconductor device manufacturing method of the present embodiment includes a wafer processing step, a sticking step, a dicing step, a peeling step, a removing step, a separating step, a mounting step, a cleaning step, A sealing step. In the wafer processing step, the functional thin film 2 is formed on the one surface 3a of the wafer 3 that is the basis of the substrate 1. In the sticking step, after the wafer processing step, the protective sheet 6 which is an adhesive sheet using an adhesive is directly attached to the one surface 3a of the wafer 3, and the dicing sheet 7 is attached to the other surface 3b of the wafer 3. . In the dicing process, after the attaching process, the protective sheet 6 and the wafer 3 are cut without cutting the dicing sheet 7 and the wafer 3 is divided into a plurality of functional devices 10. In the peeling step, the protective sheet 6 is peeled from each functional device 10 after the dicing step. In the removing step, unnecessary organic substances including the adhesive of the protective sheet 6 attached to each functional device 10 are removed after the peeling step. In the separation step, each functional device 10 is separated from the dicing sheet 7. In the mounting process, the functional device 10 is mounted on the base 36 using the first adhesive after the dicing process. In the cleaning process, before the sealing process, the substrate 36 and the cap 39 are cleaned to remove unnecessary organic contaminants. In the sealing step, after the removing step and the mounting step, the cap 39 is joined to the base 36 using the second adhesive, and the functional device 10 is hermetically sealed with the package 40.
 このような本実施形態の半導体装置の製造方法によれば、パッケージ40内から有機汚染物、すなわち機能デバイス10に付着した不要な有機物(保護シート6の粘着剤)や、基体36及びキャップ39に付着した有機物、信号処理装置33に付着した有機物を除去できる。よって、不要な有機物の付着による機能デバイス10の性能の低下、たとえば、機能デバイス10が赤外線センサである場合、有機物等からの脱ガスによって赤外線透過特性が悪化してしまうことを防止できる。したがって、半導体装置100の性能の低下を防止できる。 According to the manufacturing method of the semiconductor device of this embodiment, organic contaminants from the package 40, that is, unnecessary organic substances (adhesive of the protective sheet 6) attached to the functional device 10, the base 36 and the cap 39. The attached organic matter and the organic matter attached to the signal processing device 33 can be removed. Therefore, it is possible to prevent deterioration of the performance of the functional device 10 due to unnecessary adhesion of organic matter, for example, when the functional device 10 is an infrared sensor, the deterioration of infrared transmission characteristics due to degassing from the organic matter or the like. Therefore, it is possible to prevent the performance of the semiconductor device 100 from being deteriorated.
 また、封止工程では、パッケージ40内が真空または陽圧となるようにキャップ39を基体36に接合する。この場合、機能デバイス10から不要な有機物が除去されているから、有機物の脱ガスによってパッケージ40内の圧力が変化することがない。そのため、半導体装置100の性能の低下を防止できる。特に、パッケージ40内を真空とすれば、パッケージ40内の真空度の変化をなくすことができて半導体装置100の信頼性を高めることができる。一方、パッケージ40内を陽圧とすれば、パッケージ40内に大気などのパッケージ40外のガスが流入することがない。そのため、半導体装置100の信頼性を高めることができる。 In the sealing process, the cap 39 is joined to the base body 36 so that the inside of the package 40 is in a vacuum or a positive pressure. In this case, since unnecessary organic substances are removed from the functional device 10, the pressure in the package 40 does not change due to degassing of the organic substances. Therefore, a decrease in performance of the semiconductor device 100 can be prevented. In particular, if the inside of the package 40 is evacuated, the change in the degree of vacuum in the package 40 can be eliminated and the reliability of the semiconductor device 100 can be improved. On the other hand, if the inside of the package 40 is set to a positive pressure, gas outside the package 40 such as the atmosphere does not flow into the package 40. Therefore, the reliability of the semiconductor device 100 can be improved.
 また、第1接着剤と第2接着剤との少なくとも一方は、無機材料からなるため、パッケージ40を気密にした場合にも第1接着剤や第2接着剤からの脱ガスによる内部圧力の変化をなくすことができる。 Further, since at least one of the first adhesive and the second adhesive is made of an inorganic material, even when the package 40 is hermetically sealed, a change in internal pressure due to degassing from the first adhesive or the second adhesive. Can be eliminated.
 また、封止工程の前に、基体36とキャップ39との少なくとも一方に付着した有機物を除去するから、半導体装置100の性能の低下を防止できる。 Moreover, since the organic matter adhering to at least one of the base body 36 and the cap 39 is removed before the sealing step, it is possible to prevent the performance of the semiconductor device 100 from being deteriorated.
 この場合、実装工程を除去工程の前に行うことで、除去工程において基体36に付着した有機物を除去することが好ましい。このようにすれば、機能デバイス10を基体36に実装した後で、機能デバイス10の不要な有機物と基体36の不要な有機物とを同時に除去できる。そのため、半導体装置100の性能の低下を防止でき、また、歩留まりを向上できる。 In this case, it is preferable to remove the organic matter adhering to the substrate 36 in the removing step by performing the mounting step before the removing step. In this way, after mounting the functional device 10 on the base 36, unnecessary organic matter of the functional device 10 and unnecessary organic matter of the base 36 can be removed simultaneously. Therefore, it is possible to prevent the performance of the semiconductor device 100 from being deteriorated and to improve the yield.

Claims (10)

  1.  基板と、
     上記基板上に形成された所定の機能を有する機能性薄膜と、を備え、
     上記基板に、上記基板と上記機能性薄膜とを空間的に分離する空洞が形成された機能デバイスの製造方法であって、
     上記基板の基礎となるウエハの一表面に上記機能性薄膜を形成するウエハ処理工程と、
     上記ウエハ処理工程の後に、粘着剤を利用した粘着シートである保護シートを上記ウエハの一表面に直接的に貼り付けるとともに、ダイシングシートを上記ウエハの他表面に貼り付ける貼付工程と、
     上記貼付工程の後に、上記ダイシングシートを切断せずに上記保護シートと上記ウエハとを切断して、上記ウエハを複数の上記機能デバイスに分割するダイシング工程と、
     上記ダイシング工程の後に、各上記機能デバイスから上記保護シートを剥離する剥離工程と、
     上記剥離工程の後に、各上記機能デバイスに付着した上記保護シートの上記粘着剤を含む不要な有機物を除去する除去工程と、を備えることを特徴とする機能デバイスの製造方法。
    A substrate,
    A functional thin film having a predetermined function formed on the substrate,
    A method of manufacturing a functional device in which a cavity for spatially separating the substrate and the functional thin film is formed on the substrate,
    A wafer processing step of forming the functional thin film on one surface of the wafer serving as a base of the substrate;
    Affixing a protective sheet, which is an adhesive sheet using an adhesive, directly on one surface of the wafer after the wafer processing step, and attaching a dicing sheet to the other surface of the wafer;
    After the attaching step, the dicing step of cutting the protective sheet and the wafer without cutting the dicing sheet and dividing the wafer into a plurality of the functional devices;
    After the dicing step, a peeling step of peeling the protective sheet from each functional device,
    After the said peeling process, the removal process of removing the unnecessary organic substance containing the said adhesive of the said protective sheet adhering to each said functional device is provided, The manufacturing method of the functional device characterized by the above-mentioned.
  2.  上記機能デバイスは、上記機能性薄膜をその厚み方向に貫通し上記空洞に連通するスリットを有し、
     上記除去工程では、上記スリットの内面と上記空洞の内面との少なくとも一方に付着した不要な有機物を除去することを特徴とする請求項1記載の機能デバイスの製造方法。
    The functional device has a slit that penetrates the functional thin film in the thickness direction and communicates with the cavity.
    2. The method of manufacturing a functional device according to claim 1, wherein, in the removing step, unnecessary organic substances attached to at least one of the inner surface of the slit and the inner surface of the cavity are removed.
  3.  上記剥離工程では、上記保護シートにおける上記ウエハとは反対側の面に剥離用部材を取り付けてから、上記剥離用部材と一緒に上記保護シートを上記機能デバイスから剥離することを特徴とする請求項1記載の機能デバイスの製造方法。 The said peeling process WHEREIN: After attaching the peeling member to the surface on the opposite side to the said wafer in the said protection sheet, the said protection sheet is peeled from the said functional device together with the said peeling member. 2. A method for producing a functional device according to 1.
  4.  上記保護シートは、加熱されると粘着力が低下する粘着剤を利用した加熱剥離型粘着シートであることを特徴とする請求項1記載の機能デバイスの製造方法。 The method for producing a functional device according to claim 1, wherein the protective sheet is a heat-peelable pressure-sensitive adhesive sheet that uses a pressure-sensitive adhesive whose adhesive strength decreases when heated.
  5.  上記剥離工程では、上記保護シートを上記機能デバイスから剥離する前に、上記保護シートの全面に均一に圧力を加えながら上記保護シートを均一に加熱することを特徴とする請求項4記載の機能デバイスの製造方法。 5. The functional device according to claim 4, wherein, in the peeling step, the protective sheet is uniformly heated while pressure is uniformly applied to the entire surface of the protective sheet before peeling the protective sheet from the functional device. Manufacturing method.
  6.  機能デバイスと、
     上記機能デバイスを収容するパッケージと、を備え、
     上記機能デバイスは、基板と、上記基板上に形成された所定の機能を有する機能性薄膜と、を備え、
     上記基板には、上記基板と上記機能性薄膜とを空間的に分離する空洞が形成され、
     上記パッケージは、上記機能デバイスが実装される基体と、上記基体とで上記機能デバイスを囲うキャップとで構成される半導体装置の製造方法であって、
     上記基板の基礎となるウエハの一表面に上記機能性薄膜を形成するウエハ処理工程と、
     上記ウエハ処理工程の後に、粘着剤を利用した粘着シートである保護シートを上記ウエハの一表面に直接的に貼り付けるとともに、ダイシングシートを上記ウエハの他表面に貼り付ける貼付工程と、
     上記貼付工程の後に、上記ダイシングシートを切断せずに上記保護シートと上記ウエハとを切断して、上記ウエハを複数の上記機能デバイスに分割するダイシング工程と、
     上記ダイシング工程の後に、各上記機能デバイスから上記保護シートを剥離する剥離工程と、
     上記剥離工程の後に、各上記機能デバイスに付着した上記保護シートの上記粘着剤を含む不要な有機物を除去する除去工程と、
     上記ダイシング工程の後に、第1接着剤を用いて上記機能デバイスを上記基体に実装する実装工程と、
     上記除去工程及び上記実装工程の後に、第2接着剤を用いて上記キャップを上記基体に接合して上記機能デバイスを上記パッケージで気密に封止する封止工程と、を備えることを特徴とする半導体装置の製造方法。
    A functional device;
    A package containing the functional device,
    The functional device includes a substrate and a functional thin film having a predetermined function formed on the substrate,
    In the substrate, a cavity for spatially separating the substrate and the functional thin film is formed,
    The package is a method of manufacturing a semiconductor device including a base on which the functional device is mounted and a cap that surrounds the functional device with the base.
    A wafer processing step of forming the functional thin film on one surface of the wafer serving as a base of the substrate;
    Affixing a protective sheet, which is an adhesive sheet using an adhesive, directly on one surface of the wafer after the wafer processing step, and attaching a dicing sheet to the other surface of the wafer;
    After the attaching step, the dicing step of cutting the protective sheet and the wafer without cutting the dicing sheet and dividing the wafer into a plurality of the functional devices;
    After the dicing step, a peeling step of peeling the protective sheet from each functional device,
    After the peeling step, a removing step of removing unnecessary organic matter including the adhesive of the protective sheet attached to each functional device;
    A mounting step of mounting the functional device on the substrate using the first adhesive after the dicing step;
    A sealing step of sealing the functional device with the package by bonding the cap to the substrate using a second adhesive after the removing step and the mounting step. A method for manufacturing a semiconductor device.
  7.  上記封止工程では、上記パッケージ内が真空または陽圧となるように上記キャップを上記基体に接合することを特徴とする請求項6記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 6, wherein, in the sealing step, the cap is joined to the base body so that the inside of the package is in a vacuum or a positive pressure.
  8.  上記第1接着剤と上記第2接着剤との少なくとも一方は、無機材料からなることを特徴とする請求項7記載の半導体装置の製造方法。 8. The method of manufacturing a semiconductor device according to claim 7, wherein at least one of the first adhesive and the second adhesive is made of an inorganic material.
  9.  上記封止工程の前に、上記基体と上記キャップとの少なくとも一方に付着した有機物を除去することを特徴とする請求項6記載の半導体装置の製造方法。 7. The method of manufacturing a semiconductor device according to claim 6, wherein an organic substance adhering to at least one of the base and the cap is removed before the sealing step.
  10.  上記除去工程の前に上記実装工程を行い、
     上記除去工程では、上記基体に付着した有機物を除去することを特徴とする請求項6記載の半導体装置の製造方法。
    Perform the mounting process before the removal process,
    7. The method of manufacturing a semiconductor device according to claim 6, wherein in the removing step, organic substances adhering to the substrate are removed.
PCT/JP2009/066890 2008-09-30 2009-09-29 Method for manufacturing functional device, and method for manufacturing semiconductor device provided with functional device WO2010038717A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008255413A JP2010087280A (en) 2008-09-30 2008-09-30 Manufacturing method of functional device and manufacturing method of semiconductor device, which uses functional device manufactured by the same
JP2008-255413 2008-09-30

Publications (1)

Publication Number Publication Date
WO2010038717A1 true WO2010038717A1 (en) 2010-04-08

Family

ID=42073478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066890 WO2010038717A1 (en) 2008-09-30 2009-09-29 Method for manufacturing functional device, and method for manufacturing semiconductor device provided with functional device

Country Status (3)

Country Link
JP (1) JP2010087280A (en)
TW (1) TW201017744A (en)
WO (1) WO2010038717A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014652A (en) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd Method of manufacturing functional device, and method of manufacturing semiconductor device using functional device manufactured by the method
JP6211884B2 (en) * 2013-10-10 2017-10-11 株式会社ディスコ Wafer processing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151648A (en) * 1992-11-06 1994-05-31 Hitachi Ltd Semiconductor device
JPH0722358A (en) * 1993-06-15 1995-01-24 Sharp Corp Manufacture of semiconductor device
JPH08161959A (en) * 1994-12-01 1996-06-21 Fujitsu Ltd Switch and its manufacture
JP2003197567A (en) * 2001-12-27 2003-07-11 Sony Corp Method of manufacturing semiconductor device
JP2004022784A (en) * 2002-06-17 2004-01-22 Nitto Denko Corp Adhesive sheet for processing wafer
JP2004335583A (en) * 2003-05-01 2004-11-25 Nippon Hoso Kyokai <Nhk> Wafer dicing method
JP2008211570A (en) * 2007-02-27 2008-09-11 Citizen Holdings Co Ltd Manufacturing method of oscillator sealing body and physical quantity sensor of oscillator sealing body
JP2008218599A (en) * 2007-03-02 2008-09-18 Disco Abrasive Syst Ltd Method and apparatus for processing wafer
JP2008227433A (en) * 2007-03-16 2008-09-25 Mems Core Co Ltd Mounting body and its manufacturing method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179532A (en) * 1987-01-20 1988-07-23 Nec Corp Semiconductor device
JPH08302293A (en) * 1995-05-10 1996-11-19 Lintec Corp Heat-shrinkable type surface protective sheet
JP3496347B2 (en) * 1995-07-13 2004-02-09 株式会社デンソー Semiconductor device and manufacturing method thereof
JP2000138255A (en) * 1998-10-29 2000-05-16 Nec Corp Method and system for manufacturing semiconductor device
JP4292622B2 (en) * 1999-04-15 2009-07-08 株式会社デンソー Manufacturing method of semiconductor device
JP3753421B2 (en) * 2002-01-17 2006-03-08 リンテック株式会社 Semiconductor wafer processing method
JP2004349416A (en) * 2003-05-21 2004-12-09 Nikon Corp Method of manufacturing mems
TWI420579B (en) * 2005-07-12 2013-12-21 Creative Tech Corp And a foreign matter removing method for a substrate
DE102005053765B4 (en) * 2005-11-10 2016-04-14 Epcos Ag MEMS package and method of manufacture
JP2008217433A (en) * 2007-03-05 2008-09-18 Canon Inc Information processor, information processing method, program, and storage medium
JP2009027279A (en) * 2007-07-17 2009-02-05 Nec Saitama Ltd Foldable portable telephone and led control method of foldable portable telephone

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151648A (en) * 1992-11-06 1994-05-31 Hitachi Ltd Semiconductor device
JPH0722358A (en) * 1993-06-15 1995-01-24 Sharp Corp Manufacture of semiconductor device
JPH08161959A (en) * 1994-12-01 1996-06-21 Fujitsu Ltd Switch and its manufacture
JP2003197567A (en) * 2001-12-27 2003-07-11 Sony Corp Method of manufacturing semiconductor device
JP2004022784A (en) * 2002-06-17 2004-01-22 Nitto Denko Corp Adhesive sheet for processing wafer
JP2004335583A (en) * 2003-05-01 2004-11-25 Nippon Hoso Kyokai <Nhk> Wafer dicing method
JP2008211570A (en) * 2007-02-27 2008-09-11 Citizen Holdings Co Ltd Manufacturing method of oscillator sealing body and physical quantity sensor of oscillator sealing body
JP2008218599A (en) * 2007-03-02 2008-09-18 Disco Abrasive Syst Ltd Method and apparatus for processing wafer
JP2008227433A (en) * 2007-03-16 2008-09-25 Mems Core Co Ltd Mounting body and its manufacturing method

Also Published As

Publication number Publication date
JP2010087280A (en) 2010-04-15
TW201017744A (en) 2010-05-01

Similar Documents

Publication Publication Date Title
US8497149B2 (en) MEMS device
US7001797B2 (en) Optical device and method of manufacturing the same, optical module, circuit board, and electronic instrument
JP4591378B2 (en) Manufacturing method of semiconductor device
US8772070B2 (en) Method for manufacturing solid-state imaging device
US6514789B2 (en) Component and method for manufacture
US20130328147A1 (en) Chip package and method for forming the same
JP2001326367A (en) Sensor and method for manufacturing the same
US20130307137A1 (en) Chip package and method for forming the same
US9064950B2 (en) Fabrication method for a chip package
WO2010086936A1 (en) Semiconductor device, electronic apparatus using semiconductor device and method for manufacturing semiconductor device
TWI295081B (en) Method for wafer level package and fabricating cap structures
WO2010038717A1 (en) Method for manufacturing functional device, and method for manufacturing semiconductor device provided with functional device
JP5155802B2 (en) Method for manufacturing functional device
US7323355B2 (en) Method of forming a microelectronic device
JP2012033718A (en) Semiconductor device and manufacturing method of the same
US20190300362A1 (en) Deposition of protective material at wafer level in front end for early stage particle and moisture protection
US20120012988A1 (en) Chip package and method for forming the same
JP5226348B2 (en) Solid-state imaging device and manufacturing method thereof
JP2011014652A (en) Method of manufacturing functional device, and method of manufacturing semiconductor device using functional device manufactured by the method
JP2010245347A (en) Method of manufacturing functional device
JP4178575B2 (en) Manufacturing method of semiconductor device
JP2012058084A (en) Method of manufacturing infrared sensor device, and the infrared sensor device manufactured by the method
JP5160119B2 (en) Manufacturing method of semiconductor device
JP2008283150A (en) Semiconductor device and method of manufacturing same
GB2455214A (en) MEMS microphone array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09817749

Country of ref document: EP

Kind code of ref document: A1