JP2008227433A - Mounting body and its manufacturing method - Google Patents

Mounting body and its manufacturing method Download PDF

Info

Publication number
JP2008227433A
JP2008227433A JP2007067910A JP2007067910A JP2008227433A JP 2008227433 A JP2008227433 A JP 2008227433A JP 2007067910 A JP2007067910 A JP 2007067910A JP 2007067910 A JP2007067910 A JP 2007067910A JP 2008227433 A JP2008227433 A JP 2008227433A
Authority
JP
Japan
Prior art keywords
hole
substrate
mounting
mounting substrate
functional element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007067910A
Other languages
Japanese (ja)
Inventor
Fumitoshi Sakurai
史敏 桜井
Masaru Miyazaki
勝 宮崎
Koji Honma
孝治 本間
Shigeki Koo
茂樹 小尾
Isao Naito
績 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
River Eletec Corp
Mems Core Co Ltd
Original Assignee
River Eletec Corp
Mems Core Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by River Eletec Corp, Mems Core Co Ltd filed Critical River Eletec Corp
Priority to JP2007067910A priority Critical patent/JP2008227433A/en
Publication of JP2008227433A publication Critical patent/JP2008227433A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mounting body improved in yield and productivity by preventing a crack of a mounting board. <P>SOLUTION: The mounting body has a through hole 30 having a side wall with a taper shape in which an opening cross section becomes larger gradually as it goes from the front face side to the rear face side. The mounting body includes at least a mounting board 10 in which at least its front face side is formed of glass; an electrode pad 11 for covering the through hole 30 on the front face side; a function element 20 connected to the electrode pad 11; and a through electrode conductor which is connected to the electrode pad 11 extending to the rear face through the side wall, and thinner than one half of the thickness of the mounting board. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、機能部品のパッケージ技術に関し、特に、貫通電極を有するガラス基板を用いる実装体及びその製造方法に関する。   The present invention relates to a packaging technology for functional components, and more particularly to a mounting body using a glass substrate having a through electrode and a manufacturing method thereof.

近年、携帯電話等の電子機器の小型化、高機能化が進められている。電子機器の小型化、高機能化に応じて、電子機器に使用される機能部品の高密度、高信頼性の実装技術が開発されている。しかしながら、電子機器の小型化により、実装の設計寸法の更なる縮小にも限界がある。特に、二次元的な実装技術の開発は、設計寸法から限界に達しつつある。そのため、必然的に三次元的な実装技術やチップサイズパッケージ(CSP)の開発が急務となっている。   In recent years, electronic devices such as mobile phones have been reduced in size and functionality. In accordance with the miniaturization and high functionality of electronic devices, high-density, high-reliability mounting technology for functional components used in electronic devices has been developed. However, due to the miniaturization of electronic devices, there is a limit to further reduction in mounting design dimensions. In particular, the development of two-dimensional mounting technology is reaching its limits from the design dimensions. For this reason, there is an urgent need to develop a three-dimensional mounting technology and a chip size package (CSP).

三次元実装技術の一つとして、半導体製造技術を応用した立体的微細加工技術であるマイクロ電気機械システム(MEMS)技術が注目されている。例えば、シリコン(Si)基板とガラス製の実装基板を接合するMEMSパッケージ技術を応用した機能部品のパッケージングの研究開発が進められている。   As one of the three-dimensional mounting technologies, a micro electro mechanical system (MEMS) technology, which is a three-dimensional microfabrication technology applying semiconductor manufacturing technology, has attracted attention. For example, research and development of packaging of functional components applying MEMS packaging technology for bonding a silicon (Si) substrate and a glass mounting substrate is underway.

このような三次元実装に用いられる実装基板表面に封止された機能部品に配線するため、実装基板に貫通電極が設けられる。貫通電極のための貫通孔の断面形状は、貫通孔加工技術に対応して逆メサ形状、矩形状、あるいはテーパ形状となる。通常、電解メッキ法等により、加工された貫通孔に銅(Cu)やニッケル(Ni)等の金属が埋め込まれて貫通電極が形成される(例えば、特許文献1参照。)。   In order to perform wiring to a functional component sealed on the surface of the mounting substrate used for such three-dimensional mounting, a through electrode is provided on the mounting substrate. The cross-sectional shape of the through hole for the through electrode is an inverted mesa shape, a rectangular shape, or a tapered shape corresponding to the through hole processing technique. Usually, a through electrode is formed by embedding a metal such as copper (Cu) or nickel (Ni) in a processed through hole by an electrolytic plating method or the like (see, for example, Patent Document 1).

電解メッキでは、厚い金属膜を形成することができ、電気的な接続だけでなく高い気密性を確保することが可能である。しかし、実装基板は、貫通孔加工によりダメージや熱歪を受ける。ダメージや熱歪を除去せずに貫通孔に厚い金属膜を埋め込むと、実装基板に亀裂が生じやすい。また、実装基板と埋め込まれた金属の熱膨張係数の違いにより、実装基板に応力がかかり亀裂が生じる。その結果、貫通電極形成工程の歩留まりが低下する。   In electrolytic plating, a thick metal film can be formed, and it is possible to ensure not only electrical connection but also high airtightness. However, the mounting substrate is damaged or thermally strained by the through hole processing. If a thick metal film is embedded in the through hole without removing damage or thermal strain, the mounting substrate is likely to crack. In addition, due to the difference in thermal expansion coefficient between the mounting substrate and the embedded metal, stress is applied to the mounting substrate, causing cracks. As a result, the yield of the through electrode forming process is reduced.

また、電解メッキの堆積速度が遅く貫通孔に厚い金属膜を埋め込むのに長時間を要する。そのため、貫通電極形成工程の生産性に乏しい。
特開2006−184184号公報
Also, the deposition rate of electrolytic plating is slow, and it takes a long time to embed a thick metal film in the through hole. Therefore, the productivity of the through electrode forming process is poor.
JP 2006-184184 A

本発明の目的は、実装基板の亀裂を防止し、歩留まり及び生産性の向上が可能な実装体及びその製造方法を提供することにある。   An object of the present invention is to provide a mounting body capable of preventing cracks in a mounting substrate and improving yield and productivity, and a manufacturing method thereof.

本発明の第1の態様によれば、(イ)表面側から裏面側に向かう貫通孔を備え、少なくとも表面側がガラスからなる実装基板と、(ロ)表面側で貫通孔を覆う電極パッドと、(ハ)電極パッドに接続された機能素子と、(ニ) 電極パッドに接続され、貫通孔の側壁を介して裏面に延在し、裏面側での貫通孔の開口幅の1/2よりも薄い貫通電極配線とを備える実装体が提供される。   According to the first aspect of the present invention, (a) a mounting substrate that includes a through hole from the front surface side to the back surface side, at least the front surface side is made of glass, and (b) an electrode pad that covers the through hole on the front surface side; (C) a functional element connected to the electrode pad; and (d) connected to the electrode pad, extending to the back surface through the side wall of the through hole, and more than half the opening width of the through hole on the back surface side. A mounting body including a thin through electrode wiring is provided.

本発明の第2の態様によれば、(イ)少なくとも表面側がガラスからなる実装基板に、表面側から裏面側に向かって貫通孔を形成する工程と、(ロ)表面側で貫通孔を塞ぐように実装基板に金属箔を接合して電極パッドを形成する工程と、(ハ)電極パッドに接続され、貫通孔の側壁を介して裏面に延在し、裏面側での貫通孔の開口幅の1/2よりも薄い貫通電極配線を形成する工程と、(ニ)電極パッドに機能素子を接続する工程と、(ホ)表面上で機能素子を封止するように機能素子を収納する凹部を有する封止基板を実装基板上に形成する工程とを含む実装体の製造方法が提供される。   According to the second aspect of the present invention, (b) a step of forming a through hole from the front surface side to the back surface side in the mounting substrate made of glass at least on the front surface side, and (b) closing the through hole on the front surface side. And (c) connecting to the electrode pad, extending to the back surface through the side wall of the through hole, and opening the through hole on the back surface side A step of forming a through electrode wiring thinner than 1/2 of the above, (d) a step of connecting the functional element to the electrode pad, and (e) a recess for housing the functional element so as to seal the functional element on the surface And a step of forming a sealing substrate having a mounting substrate on the mounting substrate.

本発明によれば、実装基板の亀裂を防止し、歩留まり及び生産性の向上が可能な実装体及びその製造方法を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the mounting body which prevents the crack of a mounting board | substrate, and can improve a yield and productivity, and its manufacturing method.

以下図面を参照して、本発明の形態について説明する。以下の図面の記載において、同一または類似の部分には同一または類似の符号が付してある。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

本発明の実施の形態に係る実装体は、図1〜図3に示すように、実装基板10と、電極パッド11と、貫通電極配線15と、機能素子20と、封止基板22を備える。実装基板10は、表面(第1主面)側に比べ、表面に対向する裏面(第2主面)側で開口幅が広くなるテーパ形状の側壁を有する貫通孔30を備える。図3では、図3に示した実装基板10の上面を表面、実装基板10の下面を裏面と定義しているが、表面側に封止基板22が配置されるようなトポロジーであれば、どちらの面を表面と定義するかは任意である。機能素子20は、電極パッド11上に配置される。封止基板22は、実装基板10の表面上で封止基板22に設けられた凹部を空隙32として、封止基板22の内側に機能素子20を封止する。   As shown in FIGS. 1 to 3, the mounting body according to the embodiment of the present invention includes a mounting substrate 10, an electrode pad 11, a through electrode wiring 15, a functional element 20, and a sealing substrate 22. The mounting substrate 10 includes a through hole 30 having a tapered side wall whose opening width is wider on the back surface (second main surface) side facing the front surface than on the front surface (first main surface) side. In FIG. 3, the upper surface of the mounting substrate 10 shown in FIG. 3 is defined as the front surface, and the lower surface of the mounting substrate 10 is defined as the back surface, but if the topology is such that the sealing substrate 22 is disposed on the front surface side, It is arbitrary whether to define the surface as a surface. The functional element 20 is disposed on the electrode pad 11. The sealing substrate 22 seals the functional element 20 on the inner side of the sealing substrate 22 with the concave portion provided in the sealing substrate 22 on the surface of the mounting substrate 10 as a gap 32.

電極パッド11は、第1金属膜12及び第2金属膜14を含む。第1金属膜12は、実装基板10の表面側で貫通孔30の開口部を塞ぐように貫通孔30上に設けられる。第2金属膜14は、第1金属膜12上に設けられる。   The electrode pad 11 includes a first metal film 12 and a second metal film 14. The first metal film 12 is provided on the through hole 30 so as to close the opening of the through hole 30 on the surface side of the mounting substrate 10. The second metal film 14 is provided on the first metal film 12.

貫通電極配線15は、第1導電膜16及び第2導電膜18を含む。第1導電膜16は、貫通孔30内に露出した電極パッド11に電気的に接続される。第2導電膜18は、第1導電膜16上に設けられる。貫通電極配線15は、貫通孔30の側壁を介して実装基板10の裏面に延在する。また、図3に示すように、実装基板10の表面に対して垂直に切った断面において、一対の貫通電極配線15の互いに対向する端部は、実装基板10の裏面側で互いに離間して設けられる。   The through electrode wiring 15 includes a first conductive film 16 and a second conductive film 18. The first conductive film 16 is electrically connected to the electrode pad 11 exposed in the through hole 30. The second conductive film 18 is provided on the first conductive film 16. The through electrode wiring 15 extends to the back surface of the mounting substrate 10 through the side wall of the through hole 30. Further, as shown in FIG. 3, in the cross section cut perpendicularly to the surface of the mounting substrate 10, the opposing end portions of the pair of through electrode wirings 15 are provided apart from each other on the back surface side of the mounting substrate 10. It is done.

実装基板10には、アルカリガラス等のガラス基板や、少なくとも表面側がガラスからなるセラミック基板等が用いられる。第1金属膜12には、アルミニウム(Al)箔、Ni箔、コバール箔等の金属箔が用いられる。第2金属膜14には、金(Au)等の金属膜や、チタン(Ti)−白金(Pt)−Au等の積層金属膜等が用いられる。   As the mounting substrate 10, a glass substrate such as alkali glass, a ceramic substrate at least on the surface side made of glass, or the like is used. For the first metal film 12, a metal foil such as an aluminum (Al) foil, a Ni foil, or a kovar foil is used. For the second metal film 14, a metal film such as gold (Au) or a laminated metal film such as titanium (Ti) -platinum (Pt) -Au is used.

封止基板22には、Si基板等が用いられる。機能素子20として、水晶共振素子、薄膜圧電共振素子(FBAR)、弾性表面波(SAW)素子、ジャイロスコープ素子、加速度センサ素子等が用いられる。   As the sealing substrate 22, a Si substrate or the like is used. As the functional element 20, a crystal resonance element, a thin film piezoelectric resonance element (FBAR), a surface acoustic wave (SAW) element, a gyroscope element, an acceleration sensor element, or the like is used.

実装基板10表面側の貫通孔30の直径(開口幅)Waは、機能素子20に対して望ましい接触抵抗を確保できる最小径以上であればよい。例えば、開口幅Waは、約1μm〜約100μm、望ましくは約5μm〜約50μmの範囲である。なお、図1及び図2では円形の貫通孔30を示しているが、矩形であれば短辺を開口幅Waと定義し、開口幅Waを約1μm〜約100μm、望ましくは約5μm〜約50μmの範囲とすればよい。また、楕円形であれば短径を開口幅Waと定義し、開口幅Waを約1μm〜約100μm、望ましくは約5μ〜約50μmの範囲とすればよい。   The diameter (opening width) Wa of the through hole 30 on the surface side of the mounting substrate 10 may be equal to or larger than the minimum diameter that can ensure a desired contact resistance with respect to the functional element 20. For example, the opening width Wa ranges from about 1 μm to about 100 μm, desirably from about 5 μm to about 50 μm. 1 and 2, the circular through hole 30 is shown, but if it is rectangular, the short side is defined as the opening width Wa, and the opening width Wa is about 1 μm to about 100 μm, preferably about 5 μm to about 50 μm. It may be in the range. In the case of an ellipse, the minor axis is defined as the opening width Wa, and the opening width Wa may be in the range of about 1 μm to about 100 μm, preferably about 5 μm to about 50 μm.

開口幅Waが1μmより小さいと、貫通電極配線15と電極パッド11との間の接触抵抗が高くなる。開口幅Waが100μmを越えると、第1金属膜12による気密性の確保が困難となる。例えば、機能素子20を不活性ガス中に封止する場合は、開口幅Waは、約50μm以下が望ましい。機能素子20を約0.1Pa以下の真空中に封止する場合は更に気密性が要求されるため、開口幅Waは、約20μm以下が望ましい。   When the opening width Wa is smaller than 1 μm, the contact resistance between the through electrode wiring 15 and the electrode pad 11 is increased. If the opening width Wa exceeds 100 μm, it becomes difficult to ensure airtightness by the first metal film 12. For example, when the functional element 20 is sealed in an inert gas, the opening width Wa is desirably about 50 μm or less. When the functional element 20 is sealed in a vacuum of about 0.1 Pa or less, further airtightness is required. Therefore, the opening width Wa is preferably about 20 μm or less.

また、実装基板10裏面側の貫通孔30の開口幅Wbは、実装基板10の厚さt1に対してt1/2〜t1の範囲である。矩形の貫通孔30であれば、短辺を開口幅Wbと定義し、開口幅Wbを実装基板10の厚さt1に対してt1/2〜t1の範囲にすればよい。楕円形の貫通孔30であれば、短径を開口幅Wbと定義し、開口幅Wbを実装基板10の厚さt1に対してt1/2〜t1の範囲にすればよい。   Further, the opening width Wb of the through hole 30 on the back surface side of the mounting substrate 10 is in the range of t1 / 2 to t1 with respect to the thickness t1 of the mounting substrate 10. In the case of the rectangular through hole 30, the short side is defined as the opening width Wb, and the opening width Wb may be in the range of t1 / 2 to t1 with respect to the thickness t1 of the mounting substrate 10. In the case of the elliptical through-hole 30, the minor axis may be defined as the opening width Wb, and the opening width Wb may be in the range of t1 / 2 to t1 with respect to the thickness t1 of the mounting substrate 10.

第1導電膜16には、窒化チタン(TiN)−Cu等の積層膜が用いられる。第2導電膜18には、Au等の金属が用いられる。第1及び第2導電膜16、18の総厚、即ち貫通電極配線15の厚さt2は、実装基板10の裏面側での貫通孔30の開口幅Wbの1/2よりも薄く選定される。好ましくは開口幅Wbの1/3よりも薄く、更に好ましくは開口幅Wbの1/4より薄くすればよい。実用的には、実装基板10の厚さt1を約200μm〜約1000μmとすれば、貫通孔30の開口幅Wbを約100μm〜1000μmとし、貫通電極配線15の厚さt2を約1μm〜約100μmとすればよい。   For the first conductive film 16, a laminated film of titanium nitride (TiN) -Cu or the like is used. A metal such as Au is used for the second conductive film 18. The total thickness of the first and second conductive films 16, 18, that is, the thickness t 2 of the through electrode wiring 15 is selected to be thinner than ½ of the opening width Wb of the through hole 30 on the back surface side of the mounting substrate 10. . It is preferably thinner than 1 / of the opening width Wb, more preferably thinner than ¼ of the opening width Wb. Practically, if the thickness t1 of the mounting substrate 10 is about 200 μm to about 1000 μm, the opening width Wb of the through hole 30 is about 100 μm to 1000 μm, and the thickness t2 of the through electrode wiring 15 is about 1 μm to about 100 μm. And it is sufficient.

例えば、貫通孔に対する気密性を確保するため、通常は電解メッキ法等により貫通孔に金属を埋め込んで貫通電極が形成される。実装基板10としてガラス基板を用いる場合、通常、サンドブラスト法によりガラス基板の裏面側から貫通孔の加工が行われる。サンドブラストの加工特性上、ガラス基板の裏面側の開口幅はガラス基板の厚さと同程度になる。このため、加工性を考慮して厚いガラス基板を用いると、貫通孔が大きくなる。したがって、ガラス基板を厚くするほど、メッキにより埋め込まれた貫通電極による貫通孔側壁への応力が増大する。その結果、ガラス基板に亀裂が生じ、気密性を確保することが困難となる。   For example, in order to ensure airtightness with respect to the through hole, the through electrode is usually formed by embedding metal in the through hole by an electrolytic plating method or the like. When a glass substrate is used as the mounting substrate 10, the through hole is usually processed from the back surface side of the glass substrate by a sandblast method. Due to the processing characteristics of sandblasting, the opening width on the back side of the glass substrate is approximately the same as the thickness of the glass substrate. For this reason, when a thick glass substrate is used in consideration of workability, the through hole becomes large. Therefore, the thicker the glass substrate, the greater the stress on the side wall of the through hole due to the through electrode embedded by plating. As a result, the glass substrate is cracked and it is difficult to ensure airtightness.

図1〜図3に示した実装体では、貫通孔30の側壁に第1導電膜16及び第2導電膜18を堆積して貫通電極配線15を設けている。図3に示すように、貫通電極配線15は、貫通孔30の開口幅Wbの1/2よりも薄いので貫通孔30の内部は完全に埋め込まれず、空隙部を有する。このため、貫通電極配線15に起因する応力も小さい。したがって、実装基板10としてガラス基板を用いても、実装基板10の亀裂を防止することができる。その結果、貫通電極配線15形成の歩留まりを向上させることが可能となる。   In the mounting body shown in FIGS. 1 to 3, the first conductive film 16 and the second conductive film 18 are deposited on the side wall of the through hole 30 to provide the through electrode wiring 15. As shown in FIG. 3, the through electrode wiring 15 is thinner than ½ of the opening width Wb of the through hole 30, so that the inside of the through hole 30 is not completely embedded and has a gap. For this reason, the stress resulting from the through electrode wiring 15 is also small. Therefore, even if a glass substrate is used as the mounting substrate 10, the mounting substrate 10 can be prevented from cracking. As a result, it is possible to improve the yield of the through electrode wiring 15 formation.

また、実装基板10の表面側の貫通孔30の開口部は、陽極接合により実装基板10に接合された第1金属膜12により塞がれる。ここで、「陽極接合」とは、可動イオンを含むガラス材とSi基板や金属箔とを重ね合わせ、常温又は加熱してSi基板や金属箔を陽極として電圧を付加することにより接合させる方法である。貫通孔30の開口幅Wbは約100μm以下と小さくしてあるため、接合された第1金属膜12により気密性が確保される。更に、貫通孔30の中に露出した第1金属膜12面を補強するように、第1導電膜16及び第2導電膜18が堆積される。したがって、貫通孔30に対する気密性を更に向上させることができる。   Further, the opening of the through hole 30 on the surface side of the mounting substrate 10 is closed by the first metal film 12 bonded to the mounting substrate 10 by anodic bonding. Here, the “anodic bonding” is a method in which a glass material containing movable ions and a Si substrate or a metal foil are overlapped and bonded by applying a voltage using the Si substrate or the metal foil as an anode by heating at room temperature or heating. is there. Since the opening width Wb of the through hole 30 is as small as about 100 μm or less, the airtightness is ensured by the bonded first metal film 12. Further, the first conductive film 16 and the second conductive film 18 are deposited so as to reinforce the surface of the first metal film 12 exposed in the through hole 30. Therefore, the airtightness with respect to the through hole 30 can be further improved.

封止基板22としては、例えばSi基板が用いられる。Si基板を用いた場合は、封止基板22をガラス基板である実装基板10に陽極接合により接合することができる。したがって、機能素子20を気密性よく空隙32に保持することが可能となる。   For example, a Si substrate is used as the sealing substrate 22. When the Si substrate is used, the sealing substrate 22 can be bonded to the mounting substrate 10 which is a glass substrate by anodic bonding. Therefore, the functional element 20 can be held in the gap 32 with good airtightness.

このように、図1〜図3に示した実装体によれば、実装基板10の亀裂を防止して、機能素子20を気密性よく封止することができる。その結果、実装体の製造歩留まりを向上させることが可能となる。   As described above, according to the mounting body illustrated in FIGS. 1 to 3, the mounting substrate 10 can be prevented from cracking, and the functional element 20 can be hermetically sealed. As a result, it is possible to improve the manufacturing yield of the mounted body.

次に、図1〜図3に示した実装体の製造方法を、図4〜図9に示す断面図を用いて説明する。ここで、説明に使用する断面図には、図1に示したA−A線に相当する断面が示されている。   Next, the manufacturing method of the mounting body shown in FIGS. 1 to 3 will be described using the cross-sectional views shown in FIGS. Here, the cross section corresponding to the AA line shown in FIG. 1 is shown in the cross sectional view used for the description.

(イ)図4に示すように、フォトリソグラフィ等によりガラス基板等の実装基板10の裏面(図4において実装基板10の下面)に直径が約150μmの開口部を有するレジスト膜50を形成する。レジスト膜50をマスクとして、サンドブラスト等により裏面側の開口幅が約150μmで、表面側の開口幅が約10μmのテーパ形状の側壁を有する貫通孔30を形成する。テーパ角度θは、10度〜30度程度、好ましくは15度〜25度程度にするとよい。その後、レジスト膜50を、剥離液等により除去する。   (A) As shown in FIG. 4, a resist film 50 having an opening with a diameter of about 150 μm is formed on the back surface of the mounting substrate 10 such as a glass substrate (the lower surface of the mounting substrate 10 in FIG. 4) by photolithography or the like. Using the resist film 50 as a mask, a through-hole 30 having a tapered side wall having an opening width of about 150 μm on the back surface side and an opening width of about 10 μm on the front surface side is formed by sandblasting or the like. The taper angle θ is about 10 to 30 degrees, preferably about 15 to 25 degrees. Thereafter, the resist film 50 is removed with a stripping solution or the like.

(ロ)図5に示すように、陽極接合等により実装基板10の表面にAl箔等の第1金属膜12を接合する。陽極接合は、例えば、実装基板10を約300℃〜約400℃に加熱して、第1金属膜12に約400V〜1000Vの電圧を印加しながら真空中で実施される。   (B) As shown in FIG. 5, a first metal film 12 such as an Al foil is bonded to the surface of the mounting substrate 10 by anodic bonding or the like. The anodic bonding is performed, for example, in a vacuum while heating the mounting substrate 10 to about 300 ° C. to about 400 ° C. and applying a voltage of about 400V to 1000V to the first metal film 12.

(ハ)図6に示すように、スパッタリングや化学気相成長(CVD)等により、実装基板10の裏面側から、例えばTiN膜及びCu膜を順次堆積して第1導電膜16を形成する。TiN膜は、実装基板10への密着性を向上させるために約10nm〜約20nmの厚さで堆積される。Cu膜は、アンモニア(NH)ガスをキャリアガスとして用いるCVDにより、約200nm〜約300nmの厚さで堆積される。 (C) As shown in FIG. 6, for example, a TiN film and a Cu film are sequentially deposited from the back side of the mounting substrate 10 by sputtering, chemical vapor deposition (CVD), or the like to form the first conductive film 16. The TiN film is deposited with a thickness of about 10 nm to about 20 nm in order to improve adhesion to the mounting substrate 10. The Cu film is deposited with a thickness of about 200 nm to about 300 nm by CVD using ammonia (NH 3 ) gas as a carrier gas.

(ニ)図7に示すように、スパッタリング等により実装基板10表面の第1金属膜12上に、Ti、Pt、及びAuを順次堆積する。フォトリソグラフィ及び電解メッキ等により、第1金属膜12上に堆積されたAu膜及び第1導電膜16それぞれの貫通孔30を含む領域に、選択的にAuをメッキして第2金属膜14及び第2導電膜18を形成する。その後、フォトリソグラフィ及びエッチング等により第1金属膜12及び第1導電膜16を選択的に除去して、電極パッド11及び貫通電極配線15を形成する。   (D) As shown in FIG. 7, Ti, Pt, and Au are sequentially deposited on the first metal film 12 on the surface of the mounting substrate 10 by sputtering or the like. The region including the through hole 30 of each of the Au film and the first conductive film 16 deposited on the first metal film 12 by photolithography, electrolytic plating, or the like is selectively plated with Au to form the second metal film 14 and A second conductive film 18 is formed. Thereafter, the first metal film 12 and the first conductive film 16 are selectively removed by photolithography, etching or the like, and the electrode pad 11 and the through electrode wiring 15 are formed.

(ホ)図8に示すように、銀ペースト等の導電接着剤等により機能素子20を第2金属膜14上に実装する。なお、第2金属膜14上に金バンプを設けて、機能素子20を超音波を併用した熱圧着により、第2金属膜14上に実装してもよい。   (E) As shown in FIG. 8, the functional element 20 is mounted on the second metal film 14 with a conductive adhesive such as silver paste. Alternatively, gold bumps may be provided on the second metal film 14 and the functional element 20 may be mounted on the second metal film 14 by thermocompression bonding using ultrasonic waves.

(ヘ)図9に示すように、凹部が設けられたSi基板からなる封止基板22を、真空中の陽極接合等により実装基板10の表面に接合する。陽極接合の際に、封止基板22の凹部を機能素子20の位置にアライメントする。その結果、機能素子20は、封止基板22に設けられた凹部を空隙32として、封止基板22の内側に封止される。このようにして、図1〜図3に示した実装体が製造される。   (F) As shown in FIG. 9, a sealing substrate 22 made of a Si substrate provided with a recess is bonded to the surface of the mounting substrate 10 by anodic bonding or the like in a vacuum. At the time of anodic bonding, the concave portion of the sealing substrate 22 is aligned with the position of the functional element 20. As a result, the functional element 20 is sealed inside the sealing substrate 22 with the recess provided in the sealing substrate 22 as the gap 32. In this way, the mounting body shown in FIGS. 1 to 3 is manufactured.

上記の実装体の製造方法では、CVD及びメッキ等により、貫通孔30の側壁に総厚が貫通孔30の裏面側の開口幅の1/2よりも薄い第1導電膜16及び第2導電膜18を堆積して貫通電極配線15が形成される。貫通孔30は埋め込まれていないので、貫通電極配線15に起因する応力も小さい。したがって、実装基板10としてガラス基板を用いても、実装基板10の亀裂を防止することができる。また、貫通孔への埋め込みメッキに比べ、貫通電極配線15の形成に要する時間を大幅に短縮することができる。その結果、貫通電極配線15形成の歩留まり及び生産性を向上させることが可能となる。   In the mounting body manufacturing method described above, the first conductive film 16 and the second conductive film whose total thickness is thinner than ½ of the opening width on the back surface side of the through hole 30 on the side wall of the through hole 30 by CVD, plating, or the like. Through-electrode wiring 15 is formed by depositing 18. Since the through hole 30 is not embedded, the stress caused by the through electrode wiring 15 is also small. Therefore, even if a glass substrate is used as the mounting substrate 10, the mounting substrate 10 can be prevented from cracking. In addition, the time required for forming the through-electrode wiring 15 can be greatly reduced as compared with the embedded plating in the through-hole. As a result, it is possible to improve the yield and productivity of forming the through electrode wiring 15.

また、実装基板10の表面側の貫通孔30の開口部は、陽極接合により実装基板10に接合された第1金属膜12により塞がれる。また、封止基板22が、実装基板10に陽極接合により接合される。したがって、機能素子20を気密性よく空隙32に封止することが可能となる。   Further, the opening of the through hole 30 on the surface side of the mounting substrate 10 is closed by the first metal film 12 bonded to the mounting substrate 10 by anodic bonding. Further, the sealing substrate 22 is bonded to the mounting substrate 10 by anodic bonding. Therefore, the functional element 20 can be sealed in the gap 32 with good airtightness.

このように、本発明の実施の形態に係る製造方法によれば、実装基板10の亀裂を防止して、機能素子20を気密性よく封止することができる。その結果、実装体の製造歩留まり及び生産性を向上させることが可能となる。   Thus, according to the manufacturing method according to the embodiment of the present invention, it is possible to prevent the mounting substrate 10 from cracking and to seal the functional element 20 with good airtightness. As a result, it is possible to improve the manufacturing yield and productivity of the mounted body.

なお、封止基板22としてSi基板を用いて実装基板10に陽極接合している。しかし、封止基板として、ガラス基板、セラミック基板等を用いてもよい。この場合、実装基板、あるいは封止基板のいずれかの接合面に、予めAl等の金属膜を設けて陽極接合すればよい。   The sealing substrate 22 is anodically bonded to the mounting substrate 10 using a Si substrate. However, a glass substrate, a ceramic substrate, or the like may be used as the sealing substrate. In this case, a metal film such as Al may be provided in advance on the bonding surface of either the mounting substrate or the sealing substrate, and anodic bonding may be performed.

(その他の実施の形態)
上記のように、本発明の実施の形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者にはさまざまな代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
Although the embodiments of the present invention have been described as described above, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

本発明の実施の形態においては、貫通孔30として、表面側から裏面側に向かい開口断面面積が次第に広くなるようなテーパ形状の側壁を有する貫通孔を用いている。しかし、貫通孔30として、実装基板10の表面に垂直な断面において、任意の形状を有する貫通孔を用いてもよい。   In the embodiment of the present invention, a through hole having a tapered side wall whose opening cross-sectional area gradually increases from the front surface side to the back surface side is used as the through hole 30. However, as the through hole 30, a through hole having an arbitrary shape in a cross section perpendicular to the surface of the mounting substrate 10 may be used.

例えば、図10に示すように、表面側から裏面側に向かって垂直形状の側壁を有する貫通孔30aであってもよい。また、図11に示すように、表面側から裏面側に向かって開口断面面積が狭くなるような逆テーパ形状の側壁を有する貫通孔30bであってもよい。実装基板10表面側の貫通孔30の開口幅Waは、垂直形状及び逆テーパ形状のいずれも、約1μm〜約100μm、望ましくは約5μm〜約50μmの範囲が望ましい。   For example, as shown in FIG. 10, it may be a through hole 30a having a vertical side wall from the front surface side to the back surface side. Moreover, as shown in FIG. 11, it may be a through-hole 30b having an inversely tapered side wall whose opening cross-sectional area becomes narrower from the front side to the back side. The opening width Wa of the through-hole 30 on the surface side of the mounting substrate 10 is in the range of about 1 μm to about 100 μm, desirably about 5 μm to about 50 μm, both in the vertical shape and the reverse tapered shape.

また、封止基板22は、陽極接合により実装基板10としてのガラス基板に接合される。しかし、封止基板にAu等の金属接着層を設けて、熱圧着により実装基板に圧着してもよい。この場合、封止基板としてSi基板に限定されず、Si以外の半導体基板、セラミック等の絶縁基板等を用いてもよい。   Further, the sealing substrate 22 is bonded to a glass substrate as the mounting substrate 10 by anodic bonding. However, a metal adhesive layer such as Au may be provided on the sealing substrate and may be crimped to the mounting substrate by thermocompression bonding. In this case, the sealing substrate is not limited to the Si substrate, and a semiconductor substrate other than Si, an insulating substrate such as ceramic, or the like may be used.

また、本発明の実施の形態において、機能素子20は、真空封止されているとして例示的に説明した。しかし、機能素子20を不活性ガス等で封止してもよい。不活性ガスで封止する場合は、封止基板22を不活性ガス中で陽極接合、あるいは熱圧着等により実装基板10に接着すればよい。また、封止基板として樹脂基板や永久厚膜レジスト等を用いてもよい。   Further, in the embodiment of the present invention, the functional element 20 has been described as being exemplified by being vacuum-sealed. However, the functional element 20 may be sealed with an inert gas or the like. In the case of sealing with an inert gas, the sealing substrate 22 may be bonded to the mounting substrate 10 by anodic bonding or thermocompression bonding in an inert gas. Further, a resin substrate, a permanent thick film resist, or the like may be used as the sealing substrate.

このように、本発明はここでは記載していないさまざまな実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係わる発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments that are not described herein. Accordingly, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

本発明の実施の形態に係る実装体の一例を示す上面概略図である。It is the upper surface schematic diagram which shows an example of the mounting body which concerns on embodiment of this invention. 本発明の実施の形態に係る実装体の一例を示す底面概略図である。It is a bottom face schematic diagram showing an example of a mounting object concerning an embodiment of the invention. 図1に示した実装体のA−A断面を示す概略図である。It is the schematic which shows the AA cross section of the mounting body shown in FIG. 本発明の実施の形態に係る実装体の製造方法の一例を示す断面図(その1)である。It is sectional drawing (the 1) which shows an example of the manufacturing method of the mounting body which concerns on embodiment of this invention. 本発明の実施の形態に係る実装体の製造方法の一例を示す断面図(その2)である。It is sectional drawing (the 2) which shows an example of the manufacturing method of the mounting body which concerns on embodiment of this invention. 本発明の実施の形態に係る実装体の製造方法の一例を示す断面図(その3)である。It is sectional drawing (the 3) which shows an example of the manufacturing method of the mounting body which concerns on embodiment of this invention. 本発明の実施の形態に係る実装体の製造方法の一例を示す断面図(その4)である。It is sectional drawing (the 4) which shows an example of the manufacturing method of the mounting body which concerns on embodiment of this invention. 本発明の実施の形態に係る実装体の製造方法の一例を示す断面図(その5)である。It is sectional drawing (the 5) which shows an example of the manufacturing method of the mounting body which concerns on embodiment of this invention. 本発明の実施の形態に係る実装体の製造方法の一例を示す断面図(その6)である。It is sectional drawing (the 6) which shows an example of the manufacturing method of the mounting body which concerns on embodiment of this invention. 本発明のその他の実施の形態に係る実装体の一例を示す断面概略図である。It is a cross-sectional schematic diagram which shows an example of the mounting body which concerns on other embodiment of this invention. 本発明のその他の実施の形態に係る実装体の他の例を示す断面概略図である。It is a cross-sectional schematic diagram which shows the other example of the mounting body which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

10 実装基板
11 電極パッド
12 金属箔
14 第1金属膜
15 貫通電極
16 導電膜
18 第2金属膜
20 機能素子
22 封止基板
30 貫通孔
DESCRIPTION OF SYMBOLS 10 Mounting substrate 11 Electrode pad 12 Metal foil 14 1st metal film 15 Through electrode 16 Conductive film 18 2nd metal film 20 Functional element 22 Sealing substrate 30 Through-hole

Claims (7)

表面側から裏面側に向かう貫通孔を備え、少なくとも前記表面側がガラスからなる実装基板と、
前記表面側で前記貫通孔上を覆う電極パッドと、
前記電極パッドに接続された機能素子と、
前記電極パッドに接続され、前記貫通孔の側壁を介して前記裏面に延在し、前記裏面側での前記貫通孔の開口幅の1/2よりも薄い貫通電極配線
とを備えることを特徴とする実装体。
A through-hole provided with a through hole from the front side toward the back side, at least the front side being made of glass,
An electrode pad covering the through hole on the surface side;
A functional element connected to the electrode pad;
A through-electrode wiring connected to the electrode pad, extending to the back surface through a side wall of the through-hole, and thinner than ½ of the opening width of the through-hole on the back surface side; To implement.
前記貫通電極配線が、前記表面に対して垂直に切った断面において、前記貫通孔の互いに対向する側壁上を対称に延在し、且つ前記裏面において互いに逆方向に延在することを特徴とする請求項1に記載の実装体。   The through electrode wiring extends symmetrically on opposite side walls of the through hole in a cross section cut perpendicularly to the surface, and extends in opposite directions on the back surface. The mounting body according to claim 1. 前記貫通電極配線が、前記裏面において前記貫通孔の開口部を囲み、且つ前記側壁の全面を覆うことを特徴とする請求項1又は2に記載の実装体。   The mounting body according to claim 1, wherein the through-electrode wiring surrounds the opening of the through-hole on the back surface and covers the entire side wall. 前記表面上で前記機能素子を封止するように前記機能素子を収納する凹部を有する封止基板を更に備えることを特徴とする請求項1〜3のいずれか1項に記載の実装体。   The mounting body according to any one of claims 1 to 3, further comprising a sealing substrate having a recess for housing the functional element so as to seal the functional element on the surface. 前記実装基板が、ガラス基板であることを特徴とする請求項1〜4のいずれか1項に記載の実装体。   The mounting body according to any one of claims 1 to 4, wherein the mounting substrate is a glass substrate. 少なくとも表面側がガラスからなる実装基板に、前記表面側から裏面側に向かって貫通孔を形成する工程と、
前記表面側で前記貫通孔を塞ぐように前記実装基板に金属箔を接合して電極パッドを形成する工程と、
前記電極パッドに接続され、前記貫通孔の側壁を介して前記裏面に延在し、前記裏面側での前記貫通孔の開口幅の1/2よりも薄い貫通電極配線を形成する工程と、
前記電極パッドに機能素子を接続する工程と、
前記表面上で前記機能素子を封止するように前記機能素子を収納する凹部を有する封止基板を前記実装基板上に形成する工程
とを含むことを特徴とする実装体の製造方法。
A step of forming a through hole from the front surface side toward the back surface side on the mounting substrate made of glass at least on the front surface side;
Forming an electrode pad by bonding a metal foil to the mounting substrate so as to close the through hole on the surface side;
Forming a through electrode wiring connected to the electrode pad, extending to the back surface through the side wall of the through hole, and thinner than ½ of the opening width of the through hole on the back surface side;
Connecting a functional element to the electrode pad;
Forming a sealing substrate having a recess for housing the functional element on the surface so as to seal the functional element on the surface.
前記金属箔が、陽極接合により実装基板に接合されることを特徴とする請求項6に記載の実装体の製造方法。   The method for manufacturing a mounting body according to claim 6, wherein the metal foil is bonded to the mounting substrate by anodic bonding.
JP2007067910A 2007-03-16 2007-03-16 Mounting body and its manufacturing method Withdrawn JP2008227433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007067910A JP2008227433A (en) 2007-03-16 2007-03-16 Mounting body and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007067910A JP2008227433A (en) 2007-03-16 2007-03-16 Mounting body and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008227433A true JP2008227433A (en) 2008-09-25

Family

ID=39845643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007067910A Withdrawn JP2008227433A (en) 2007-03-16 2007-03-16 Mounting body and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008227433A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038717A1 (en) * 2008-09-30 2010-04-08 パナソニック電工株式会社 Method for manufacturing functional device, and method for manufacturing semiconductor device provided with functional device
WO2014002923A1 (en) * 2012-06-26 2014-01-03 株式会社村田製作所 Mounting board and light-emitting device
JP6323768B1 (en) * 2016-06-03 2018-05-16 大日本印刷株式会社 Penetration electrode substrate, manufacturing method thereof, and mounting substrate
KR20210151907A (en) 2019-04-15 2021-12-14 다이니폰 인사츠 가부시키가이샤 Through-electrode substrate, electronic unit, method for manufacturing through-electrode substrate, and method for manufacturing electronic unit
WO2023096780A1 (en) * 2021-11-29 2023-06-01 Corning Incorporated Vias including an electroplated layer and methods for fabricating the vias
JP7485209B2 (en) 2021-08-19 2024-05-16 富士電機株式会社 Sensor device and method for manufacturing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038717A1 (en) * 2008-09-30 2010-04-08 パナソニック電工株式会社 Method for manufacturing functional device, and method for manufacturing semiconductor device provided with functional device
JP2010087280A (en) * 2008-09-30 2010-04-15 Panasonic Electric Works Co Ltd Manufacturing method of functional device and manufacturing method of semiconductor device, which uses functional device manufactured by the same
WO2014002923A1 (en) * 2012-06-26 2014-01-03 株式会社村田製作所 Mounting board and light-emitting device
CN104428912A (en) * 2012-06-26 2015-03-18 株式会社村田制作所 Mounting board and light-emitting device
US9236357B2 (en) 2012-06-26 2016-01-12 Murata Manufacturing Co., Ltd. Mounting substrate and light emitting device
US11195768B2 (en) 2016-06-03 2021-12-07 Dai Nippon Printing Co., Ltd. Through electrode substrate, manufacturing method thereof and mounting substrate
JP2018139302A (en) * 2016-06-03 2018-09-06 大日本印刷株式会社 Through electrode substrate and manufacturing method of the same, and mounting substrate
TWI698963B (en) * 2016-06-03 2020-07-11 日商大日本印刷股份有限公司 Through electrode substrate, manufacturing method thereof, and mounting substrate
JP6323768B1 (en) * 2016-06-03 2018-05-16 大日本印刷株式会社 Penetration electrode substrate, manufacturing method thereof, and mounting substrate
JP7091801B2 (en) 2016-06-03 2022-06-28 大日本印刷株式会社 Through Silicon Via and its manufacturing method, and mounting board
JP2022133310A (en) * 2016-06-03 2022-09-13 大日本印刷株式会社 Through electrode substrate and manufacturing method of the same, and mounting substrate
JP7363972B2 (en) 2016-06-03 2023-10-18 大日本印刷株式会社 Through electrode board, method for manufacturing the same, and mounting board
KR20210151907A (en) 2019-04-15 2021-12-14 다이니폰 인사츠 가부시키가이샤 Through-electrode substrate, electronic unit, method for manufacturing through-electrode substrate, and method for manufacturing electronic unit
KR20230172626A (en) 2019-04-15 2023-12-22 다이니폰 인사츠 가부시키가이샤 Via substrate, electronic unit, method for manufacture of via substrate, and method for manufacture of electronic unit
JP7485209B2 (en) 2021-08-19 2024-05-16 富士電機株式会社 Sensor device and method for manufacturing the same
WO2023096780A1 (en) * 2021-11-29 2023-06-01 Corning Incorporated Vias including an electroplated layer and methods for fabricating the vias

Similar Documents

Publication Publication Date Title
JP4588753B2 (en) Electronic device package manufacturing method and electronic device package
JP5621155B2 (en) Method for vertically interconnecting 3D electronic modules by vias
JP5605258B2 (en) Wafer level package, chip size package device, and method for manufacturing wafer level package
US20090034760A1 (en) Electronic component, fabrication method for the same and electronic device having the same
TWI506737B (en) A manufacturing method of an electronic device package, an electronic device package, and an oscillator
TWI517310B (en) Manufacturing method of electronic device package
WO2006106831A1 (en) Surface acoustic wave device and method for manufacturing same
JP2008227433A (en) Mounting body and its manufacturing method
JP4539155B2 (en) Manufacturing method of sensor system
JP4825111B2 (en) Method for manufacturing piezoelectric thin film device
JP2006186357A (en) Sensor device and its manufacturing method
JP2015084386A (en) Electronic device
JP2006201158A (en) Sensor
JP2008098831A (en) Thin-film piezoelectric-resonator
JP2008252805A (en) Crystal oscillator and method of producing crystal oscillator
US9526172B2 (en) Wiring substrate
JP2015167222A (en) Electronic part
JP6712136B2 (en) Electronic component manufacturing method
JP2006203112A (en) Substrate for electronic element and manufacturing method thereof
JP2006313790A (en) Through-hole structure of substrate
JP2019175962A (en) Package and package manufacturing method
JP6267068B2 (en) Wiring board, electronic device and electronic module
JP2015153834A (en) Electronic component
JP2007078444A (en) Pressure sensor and manufacturing method for pressure sensor
JP2006126212A (en) Sensor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601