WO2010037963A1 - Procede de fabrication d'un materiau poreux en sic - Google Patents

Procede de fabrication d'un materiau poreux en sic Download PDF

Info

Publication number
WO2010037963A1
WO2010037963A1 PCT/FR2009/051845 FR2009051845W WO2010037963A1 WO 2010037963 A1 WO2010037963 A1 WO 2010037963A1 FR 2009051845 W FR2009051845 W FR 2009051845W WO 2010037963 A1 WO2010037963 A1 WO 2010037963A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic
microns
powder
median diameter
particle powder
Prior art date
Application number
PCT/FR2009/051845
Other languages
English (en)
Inventor
Christophe Augier
Ana-Maria Popa
Jostein Mosby
Original Assignee
Saint-Gobain Centre De Recherches Et D'etudes Europeen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Centre De Recherches Et D'etudes Europeen filed Critical Saint-Gobain Centre De Recherches Et D'etudes Europeen
Priority to CN200980138587XA priority Critical patent/CN102171163A/zh
Priority to EP09752427A priority patent/EP2334617A1/fr
Priority to MX2011002827A priority patent/MX2011002827A/es
Priority to JP2011528406A priority patent/JP2012504092A/ja
Priority to US13/063,766 priority patent/US20110171099A1/en
Publication of WO2010037963A1 publication Critical patent/WO2010037963A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2072Other inorganic materials, e.g. ceramics the material being particulate or granular
    • B01D39/2075Other inorganic materials, e.g. ceramics the material being particulate or granular sintered or bonded by inorganic agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63452Polyepoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6346Polyesters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63468Polyamides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/383Alpha silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs

Definitions

  • the present invention relates to the field of porous materials based on recrystallized silicon carbide. More particularly, the invention relates to a method of manufacturing a body or an element made of such a porous material and whose mechanical strength characteristics are improved. Such a body or element may in particular be used in the field of filtration or in the field of cooking supports or ceramic igniters.
  • Porous ceramic or porous refractory materials based on silicon carbide (SiC) obtained by very high temperature sintering are increasingly used in applications where their high chemical inertness and high refractoriness enable them to withstand heavy mechanical stresses, in particular thermomechanical.
  • Important but not limiting examples are typically applications such as the particulate filter in motor vehicle exhaust lines.
  • the deposition of the coating catalytic within the porous material can be made possible by the fact that the material still has, after said deposition, sufficient porosity to allow the passage of gases without excessive pressure drop.
  • the material is highly porous, that is to say when its open porosity is greater than 40%, even 45% or even 50%, and even more pronounced beyond 50%, the element achieved with such materials has too low mechanical strength and therefore thermomechanical, this weakness can be the cause of rapid deterioration of the material in use.
  • the most conventional known means is to use additives in the starting composition to obtain the desired part or body.
  • porogens of organic origin are used which decompose during an intermediate heating step or during the baking of the material. Such a process is described, for example, in application EP 1 403 231.
  • the use of porogens or other organic materials nevertheless leads to the release of toxic gases and may also cause defects in the material such as microorganisms.
  • EP 1 686 107 discloses for example a method of manufacturing a sintered ceramic body made from a mixture of at least two powders, a coarse grain powder and a fine grain SiC powder, in which the ratio between the average size of the coarse powder and the average size of the fine powder is between 8 and 250.
  • EP 1 652 831 discloses sintered ceramic bodies obtained from a mixture of two powders of SiC particles having an average diameter respectively between 5 to 100 ⁇ m and between 0.1 to 10 ⁇ m.
  • EP 1 839 720 discloses a method for preparing SiC filters with low dispersion around a target average pore diameter value.
  • the two SiC powders initially used according to this teaching have a median diameter of 15 to 40 microns for the powder consisting of the largest particles and 0.5 microns for the powder consisting of the finest particles.
  • the object of the present invention is to provide a process for preparing and synthesizing a porous silicon recrystallized ceramic material body having the best compromise between its porosity characteristics (open porosity volume, median pore diameter ) and its characteristics of mechanical and thermomechanical strength. More particularly, the object of the present invention is a process for producing a porous ceramic or refractory product based on SiC, sintered at a temperature greater than 1600 ° C., making it possible to obtain a material having an improved compromise. , compared to the methods known to date, between its porosity properties, in particular its open porosity and / or its median pore diameter and its mechanical and thermomechanical strength properties.
  • the invention is based on the discovery made by the applicant, who found that at substantially equivalent porosity of the porous SiC material, some of the parameters of the process for obtaining said material could have a very significant effect on the mechanical strength characteristics of said material. .
  • the experiments conducted by the applicant some of which are reported later in the present description, have shown that a very significant improvement in the mechanical properties of the material, with equivalent porosity, can be obtained by the strict and joint control: on the one hand, the size and distribution of the SiC grains present in the mixture of powders initially used in the process,
  • the invention relates to a process for obtaining a porous material made of recrystallized SiC, in particular in the form of a filtering structure of a particulate-laden gas, comprising the following steps: a) preparation of a composition comprising at least two powders of SiC particles, a first powder of particles having a median diameter d 5 o less than 5 microns and a second powder of particles having a median diameter d 5 o of between 5 and 100 microns, the difference between the median diameter d 5 o of the second powder and the median diameter d 5 o of the first powder being greater than 5 microns, b) mixing of said composition with an organic material comprising an organic pore-forming agent and / or a binder, in proportions adapted and in the presence of a sufficient amount of a solvent such as water to allow the shaping of said mixture and shaping of the mixture obtained to obtain a green body, c) pr preferably drying and removal of the organic material, in particular by an intermediate heat treatment and / or by
  • the difference between the percentile dgo of the second particle powder and the diole percentile of the first particulate powder multiplied by the volume of organic material in the initial mixture, in percent relative to the total volume of the SiC grains is between about 250 and about 1500, preferably between about 300 and about 1200.
  • volume of organic material is meant in the sense of the present description the total volume of all organic materials incorporated in mixture with the grains of SiC, constituting the "mineral" part of the mixture. This total volume of organic matter is related to the total volume occupied by said grains of SiC in the mixture.
  • the organic materials incorporated in the mixture include porogenic type functional agents, shaping agents such as binders, plasticizers, dispersants, lubricants, without this list being however exhaustive.
  • the volume of organic material is between 5 and 150%, or even 20 to 110%, or even 30 to 100%, as a percentage of the total volume of the grains.
  • SiC Preferably, the volume of porogen is between 0 and 120%, or even 10 to 95%, or even 15 to 80%, as a percentage relative to the total volume of SiC grains.
  • binder is meant classically in the sense of the present invention a set of grains or particles characterized by a grain diameter distribution (also called grain size in the present description) generally centered and distributed around a median diameter.
  • grain or “particle” is meant a solid product individualized in a powder or a mixture of powders.
  • percentages such that a percentage of p% represents the fraction of the powder, by volume, comprising the p% of the grains having the largest diameters or sizes, and
  • Such granulometric curve may in particular be conventionally carried out using a laser granulometer.
  • D p is called in the sense of the present invention and conventionally, the grain diameter (abscissa on the abovementioned curve) corresponding to the percentage p% by volume.
  • dio of a powder corresponds to a grain size for which 10% by volume of the grains of the powder have a size greater than or equal to dio (and consequently for which 90% of the grains, by volume, have a strictly smaller size to dio)
  • Dgo of a powder is the size of grains for which 90% by volume of the grains of the powder have a size greater than or equal to dgo (and consequently for which 10% of the grains, in volume, have a size strictly less than dgo).
  • the 5 o percentile is often called the median diameter of a powder.
  • the process according to the invention consists, for example, in mixing powders of SiC particles to obtain the mixture of grains of size selected according to the invention and then to shape this mixture, and advantageously makes it possible to obtain, after firing and sintering at high temperature, a porous refractory ceramic product based on SiC whose combined characteristics of porosity and mechanical strength are improved and can be more easily controlled.
  • the process according to the invention makes it possible to obtain a porous sintered body whose optimum mechanical strength is guaranteed.
  • the difference between the dgo percentile of the second SiC particle powder and the dio percentile of the first SiC particle powder is greater than 1 micron, even more preferably greater than 3 micron. This difference reflects, according to the invention, the degree of particle size recovery between the two powders.
  • the difference between the dgo percentile of the second SiC particle powder and the dio percentile of the first SiC particle powder is less than 20 microns, for example less than or equal to 15 microns or even less than or equal to 10 microns.
  • the median diameter of the particles of the first SiC grain powder is less than 3 microns and preferably less than or equal to 1 micron.
  • the median diameter of the particles of the first SiC powder could be of the order of a few tens of nanometers, or even of the order of a few nanometers.
  • the median diameter of the particles constituting the second powder of SiC particles may be between 5 and 60 microns, preferably between 5 and 30 microns or even between 5 and 20 microns. Below 5 microns, no difference was observed significant compared to porous materials obtained by conventional methods. Above 60 microns, the mechanical strength of the porous body drops very strongly.
  • the median diameter of the SiC particles of the second powder is at least five times greater than the median diameter of the SiC particles of the first powder and preferably at least ten times greater.
  • the difference between the median diameter of the second powder and that of the first powder is between 8 and 30 microns.
  • the ratio Ri between the difference of the di and dgo percentiles, and the median diameter d 5 o of the first powder: R 1 dso is between 0.1 and 10, preferably between 0.3 and 5 and very preferably between 0.5 and 5.
  • the porous body has an open porosity of between 35 and 65%, and even more preferably between 40% and 60%.
  • too low porosity leads to a too high pressure drop. Too high a porosity leads to a level of mechanical resistance that is too low.
  • the median diameter dso, by volume, pores constituting the porosity of the material is between 5 and 30 microns, and preferably between 10 and 25 microns.
  • too small pore diameter results in excessive pressure loss, whereas a median pore diameter too important causes poor filtration efficiency.
  • the SiC powder may be SiC doped with a metal such as aluminum.
  • the SiC powders used in the process according to the invention are preferably SiC in substantially alpha crystallographic form, preferably black SiC or green SiC according to the chemical purity of the powders used.
  • porogens and / or binders and optionally plasticizers may be added.
  • binding agents or plasticizers are for example chosen from the range of polysaccharides and cellulose derivatives, PVA, PEG, or even lignin derivatives or chemical setting agents such as phosphoric acid or sodium silicate as long as they are compatible with the cooking process. The applicant has observed that the rheology of the plastic mixture thus obtained can be easily controlled by routine experiments, including for substantial water additions.
  • the grains of the first powder may be agglomerated with at least a part of the second powder or even without the latter, by means of a known method of agglomeration or formation of granules such as conventional methods of granulation or atomization.
  • the binder for producing these granules may be, for example, a thermosetting resin chosen from epoxy resins, silicone resins, polyimide resins, polyester resins or, preferably, phenolic resins, a PVA optionally combined with inorganic or organo-mineral type binders, or acrylic resin preferably chosen for reasons of respect for the environment.
  • the nature of the binder and its quantity are generally chosen as a function of the particle size of the starting SiC fine particle powders and the desired size of SiC granules obtained after agglomeration.
  • the binder must make it possible to ensure sufficient mechanical strength so that the granules are not degraded before the possible debinding heat treatment (step c)) and especially during the shaping (step b)).
  • the shaping of the porous product is preferably carried out so as to produce pieces of various shapes according to any known technique, for example by pressing, extrusion, vibration and / or molding, by casting under pressure or not by example in porous mold plaster or resin.
  • the sizes of the granules resulting from the agglomeration of the fine particles of the first SiC powder and / or of the SiC particles constituting the second powder are adapted, according to the techniques in force, to the thickness of the part to achieve so as to ensure the properties of porosity, mechanical strength and appearance necessary for the desired application.
  • the reduction of the fines content, agglomerated in the form of granules according to the invention made it possible to avoid clogging of the molds during casting or to reduce the delamination effects in the case of pressing.
  • the removal of the solvent in step c) can be obtained by heat treatment or alternatively by the use of microwaves, for a time sufficient to bring the water content not chemically bound to less than 1%. mass.
  • the removal of the binder or debinding (step c) is preferably carried out in air and at a temperature preferably below 700 ° C., so as to ensure sufficient mechanical strength before sintering and avoid uncontrolled oxidation of SiC.
  • the cooking is carried out at high temperature, that is to say at a temperature above 1600 0 C, or even greater than 1800 0 C, preferably greater than 2000 0 C, more preferably greater than 2100 0 C but lower at 2400 ° C.
  • said cooking is conducted under a non-oxidizing atmosphere, for example Argon.
  • the invention furthermore relates to a porous SiC body recrystallized, preferably in essentially CC form, obtained by a process as previously described and to its use as a structure of a particulate filter in an exhaust line of a diesel engine or gasoline or as a ceramic firing support or igniter.
  • the porous body produced according to FIG. method of the invention has a characteristic value of the mechanical strength, in particular
  • the mixtures of Examples 1 to 3 according to the invention were carried out according to the mass compositions specified in Table 2 below from two SiC powders of different particle size, called fine and coarse, with reference to the respective size of the grains. the components.
  • a binder is added methylcellulose type plasticizer, and a polyethylene type organic pore form in powder form with a median diameter of 15 microns.
  • the mixtures were kneaded for 10 minutes in the presence of water in a kneader until a homogeneous paste was obtained.
  • the dough is stretched for 30 minutes to make it plastic and allow the deaeration of the mixture.
  • the open porosity is measured on the extruded honeycomb-like extruded monoliths according to ISO 5017.
  • the median pore diameter is measured by mercury porometry.
  • the breaking force is measured at room temperature for each example on 10 test pieces corresponding to unit elements (monoliths) of the same production batch of dimensions 25.4 cm in length and 36 mm in width.
  • the 3-point flexural mounting according to standard NFB41-104 is carried out with a distance of 220 mm between the two lower supports and the speed of descent of the punch is constant and of the order of 5mm / min.
  • Table 2 The main characteristics and results obtained for the filters according to Examples 1 to 3 are summarized in Table 2.
  • Table 2 shows that the recrystallized SiC materials constituting the monoliths made according to Examples 1 to 3 and Comparative Example Ic have substantially the same porosity characteristics. (total pore volume and median pore diameter).
  • the structures according to the invention of Examples 1 to 3, however, are characterized by a substantially higher mechanical strength than that of Comparative Example Ic, as indicated by the respective resistance values MOR obtained.
  • Comparative Example 2c differs from that of the present invention in that the parameter Y is too low, mainly because of the proximity between the dgo of the larger diameter grain powder and the dio of the grain powder of smaller diameter.
  • the negative value of the process parameter Y for Example 2c is thus explained by a partial overlap between the two particle size curves of the powders.
  • Another mixture is made using the same steps and the same experimental protocol as previously described, for obtaining monoliths having the same dimensions (see Table 1).
  • the composition of the mixtures of large and fine SiC powders, as well as the level of organic material added to the initial mixture have been adjusted so as to further increase the porosity characteristics of the target porous material and in particular the diameter of the pores of the porous structure.
  • Table 4 for details of the preparation of the mixture, its composition and the porous characteristics of the material finally obtained after cooking.
  • Comparative Example 3c another mixture (Comparative Example 3c) was produced using the same steps and the same experimental protocol as that previously described, but so as to obtain porosity characteristics substantially equivalent to those of Example 7 according to US Pat. 'invention.
  • the method according to Comparative Example 3c differs from that subject of the present invention in that the parameter Y is too important, due in part to the great difference between the dgo of the grain powder of more large diameter and the dio of the powder of grains of smaller diameter and secondly the very important addition of porogenic agent necessary to obtain the porosity target parameters (see Table 4).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Products (AREA)
  • Filtering Materials (AREA)
  • Catalysts (AREA)
  • Spark Plugs (AREA)

Abstract

L'invention se rapporte à un procédé d'obtention d'un matériau poreux en SiC recristallisé, notamment sous la forme d'une structure filtrante d'un gaz chargé en particules, à partir de deux poudres de particules de SiC fine et grosse, en mélange avec une matière organique comprenant un porogène organique et/ou un liant, dans des proportions adaptées et en présence d'une quantité suffisante d'un solvant tel que l'eau pour permettre la mise en forme dudit mélange et sa cuisson entre 16000C et 24000C, ledit procédé se caractérisant en ce que la différence entre le percentile dgo de la poudre de particules grosse et le percentile dio de la poudre de particules fine multipliée par le volume de matière organique dans le mélange initial, en pourcentage par rapport au volume total des grains de SiC, est compris entre 250 et 1500. L' invention se rapporte également au matériau poreux en SiC recristallisé susceptible d'être obtenu par ledit procédé.

Description

PROCEDE DE FABRICATION D'UN MATERIAU POREUX EN SIC
La présente invention se rapporte au domaine des matériaux poreux à base de carbure de silicium recristallisé. Plus particulièrement, l'invention se rapporte à un procédé de fabrication d'un corps ou un élément constitué d'un tel matériau poreux et dont les caractéristiques de résistance mécanique sont améliorées. Un tel corps ou élément peut notamment être utilisé dans le domaine de la filtration ou encore dans le domaine des supports de cuisson ou des allumeurs céramiques.
Les matériaux céramiques ou réfractaires poreux à base de carbure de silicium (SiC) obtenus par frittage à très haute température sont de plus en plus utilisés dans des applications où leur forte inertie chimique et leur réfractarité élevée leur permettent de résister à des sollicitations mécaniques importantes, en particulier thermo-mécaniques. Des exemples importants mais non limitatifs sont typiquement des applications comme le filtre à particules dans des lignes d'échappement de véhicules automobiles. Notamment, l'augmentation de la porosité, afin d'obtenir une surface d'échange la plus élevée possible, ou l'augmentation de la taille moyenne des pores, afin de limiter les effets de perte de pression
(aussi appelé perte de charge) , sont en général recherchées pour les applications de traitement de filtration catalytique des gaz. En particulier, le dépôt du revêtement catalytique au sein du matériau poreux peut être rendu possible par le fait que le matériau présente encore, après ledit dépôt, une porosité suffisante pour permettre la traversée des gaz sans perte de charge excessive. Cependant, lorsque le matériau est fortement poreux, c'est-à-dire quand sa porosité ouverte est supérieure à 40%, voire 45% ou même 50%, et de façon encore plus prononcée au delà de 50%, l'élément réalisé avec de tels matériaux présente une trop faible résistance mécanique et par conséquent thermomécanique, cette faiblesse pouvant être à l'origine d'une détérioration rapide du matériau en service .
De façon identique pour un matériau destiné par exemple à être utilisé comme support de cuisson, il est utile d'augmenter la porosité tout en préservant la résistance mécanique, afin de diminuer la masse thermique du support et surtout réduire la consommation énergétique nécessaire à la cuisson des pièces reposant sur lesdits supports . Dans le but d'augmenter la porosité d'un matériau, le moyen le plus classique connu consiste à utiliser des additifs dans la composition de départ pour l'obtention de la pièce ou du corps recherché. Notamment, on utilise des porogènes d'origine organique, qui se décomposent lors d'une étape de chauffage intermédiaire ou lors de la cuisson du matériau. Un tel procédé est par exemple décrit dans la demande EP 1 403 231. De façon connue, l'utilisation de porogènes ou autres matières organiques conduit cependant à dégager des gaz toxiques et peut en outre provoquer des défauts dans le matériau tels que des micro-fissurations si l'élimination des porogènes ou des autres matières organiques n'est pas parfaitement contrôlée. De tels défauts peuvent être très dommageables ensuite pour les propriétés et la résistance des corps poreux lors de leur utilisation, tout particulièrement pour des filtres à particules dans une ligne d'échappement, soumis à des phases successives de filtration et de régénération ou pour un support de cuisson qui devra subir plusieurs cycles thermiques importants.
D'un autre côté, il est aussi connu, pour contrôler et le plus souvent accroître le diamètre moyen de pores du produit final, d'augmenter la taille des particules de SiC présentes dans le mélange de départ. L'utilisation de particules de grande taille, c'est-à-dire typiquement dont le diamètre médian est supérieur à 20 microns, conduit cependant à une diminution inacceptable de la résistance mécanique .
De nombreuses publications récentes traitent du problème de l'obtention des structures en carbure de silicium de porosité contrôlée à partir de différentes poudres de particules de SiC dans le mélange initial :
EP 1 686 107 dévoile par exemple un procédé de fabrication d'un corps céramique fritte réalisé à partir d'un mélange d'au moins deux poudres, une poudre de gros grains et une poudre de grains fins de SiC, dans lequel le ratio entre la taille moyenne de la poudre grossière et la taille moyenne de la poudre fine est compris entre 8 et 250. EP 1 652 831 décrit des corps céramiques frittes obtenus à partir d'un mélange de deux poudres de particules de SiC ayant un diamètre moyen respectivement compris entre 5 à 100 μm et entre 0,1 à 10 μm.
EP 1 839 720 dévoile une méthode de préparation de filtres en SiC présentant une faible dispersion autour d'une valeur moyenne cible du diamètre des pores. Les deux poudres de SiC initialement utilisées selon cet enseignement présentent un diamètre médian de 15 à 40 microns pour la poudre constituée des plus grosses particules et de 0,5 microns pour la poudre constituée des plus fines particules.
Le but de la présente invention est de fournir un procédé de préparation et de synthèse d'un corps en matériau céramique recristallisé de carbure de silicium, poreux et présentant le meilleur compromis entre ses caractéristiques de porosité (volume de porosité ouverte, diamètre médian des pores) et ses caractéristiques de résistance mécanique et thermo-mécanique. Plus particulièrement, l'objet de la présente invention est un procédé de fabrication d'un produit céramique ou réfractaire poreux à base de SiC, fritte à une température supérieure à 16000C, permettant l'obtention d'un matériau présentant un compromis amélioré, par rapport aux procédés connus à ce jour, entre ses propriétés de porosité, en particulier sa porosité ouverte et/ou son diamètre médian de pores et ses propriétés de résistance mécanique et thermo-mécanique.
L' invention repose sur la découverte faite par le déposant, qui a trouvé qu'à porosité sensiblement équivalente du matériau poreux en SiC, certains des paramètres du procédé d'obtention dudit matériau pouvaient influer de façon très sensible les caractéristiques de résistance mécanique dudit matériau. Tout particulièrement, les expériences menées par le demandeur, dont certaines sont reportées dans la suite de la présente description, ont prouvé qu'une amélioration très sensible des propriétés mécaniques du matériau, à porosité équivalente, pouvait être obtenue par le contrôle strict et conjoint : - d'une part de la taille et la répartition des grains de SiC présents dans le mélange des poudres initialement utilisé dans le procédé,
- d' autre part de la quantité de matière organique présente dans le mélange initial avant la cuisson. Selon un aspect particulier avantageux, par application de la présente invention, il devient possible, par rapport à des valeurs attendues des caractéristiques de porosité du matériau cible, de modifier les étapes critiques du procédé, en vue d'obtenir les caractéristiques mécaniques les plus élevées pour un tel matériau .
Plus précisément, l'invention concerne un procédé d'obtention d'un matériau poreux en SiC recristallisé, notamment sous la forme d'une structure filtrante d'un gaz chargé en particules, comprenant les étapes suivantes : a) préparation d'une composition comprenant au moins deux poudres de particules de SiC, une première poudre de particules ayant un diamètre médian d5o inférieur à 5 microns, et un deuxième poudre de particules ayant un diamètre médian d5o compris entre 5 et 100 microns, la différence entre le diamètre médian d5o de la deuxième poudre et le diamètre médian d5o de la première poudre étant supérieure à 5 microns, b) mélange de ladite composition avec une matière organique comprenant un porogène organique et/ou un liant, dans des proportions adaptées et en présence d'une quantité suffisante d'un solvant tel que l'eau pour permettre la mise en forme dudit mélange et mise en forme du mélange obtenu pour obtenir un corps cru, c) de préférence séchage et élimination de la matière organique, notamment par un traitement thermique intermédiaire et/ou par utilisation de micro-ondes, d) cuisson du corps à une température de frittage comprise entre 16000C et 24000C, de préférence supérieure à 18000C, voire supérieure à 20000C, pour obtenir un corps poreux fritte.
Selon le procédé selon l'invention, la différence entre le percentile dgo de la deuxième poudre de particules et le percentile dio de la première poudre de particules multipliée par le volume de matière organique dans le mélange initial, en pourcentage par rapport au volume total des grains de SiC, est compris entre environ 250 et environ 1500, de préférence compris entre environ 300 et environ 1200.
Par volume de matière organique, on entend au sens de la présente description le volume total de l'ensemble des matières organiques incorporées en mélange avec les grains de SiC, constituant la partie «minérale» du mélange. Ce volume total de la matière organique est rapporté au volume total occupé par lesdits grains de SiC dans le mélange.
Les matières organiques incorporées au mélange sont notamment les agents à fonctionnalité du type porogènes, agents de mise en forme tels que les liants, plastifiants, dispersants, lubrifiants, sans que cette liste soit cependant exhaustive.
De préférence, le volume de matière organique (porogène éventuel, agents liants, plastifiants, lubrifiants etc.) est compris entre 5 et 150%, voire 20 à 110%, voire 30 à 100%, en pourcentage par rapport au volume total des grains de SiC. De préférence, le volume de porogène est compris entre 0 et 120%, voire 10 à 95% , voire 15 à 80%, en pourcentage par rapport au volume total des grains de SiC.
Par le terme «poudre» on entend classiquement au sens de la présente invention un ensemble de grains ou particules se caractérisant par une distribution de diamètre de grains (également appelé taille de grains dans la présente description) en général centrée et répartie autour d'un diamètre médian.
Par les termes «grain» ou «particule», on entend un produit solide individualisé dans une poudre ou un mélange de poudres. On entend par «courbe de distribution granulométrique cumulée des tailles de grains d'une poudre ou d'un mélange de poudres», au sens de la présente invention et conformément à la pratique courante dans le domaine, la courbe de distribution granulométrique donnant :
- en ordonnées, des pourcentages tels qu'un pourcentage de p% représente la fraction de la poudre, en volume, regroupant les p% des grains présentant les diamètres ou tailles les plus grands, et
- en abscisses, les tailles ou diamètres de grain dp, exprimés en général en μm, dp étant la plus petite taille de grains possible dans la fraction volumique de la poudre représentée par le pourcentage p% en abscisses.
Une telle courbe granulométrique peut notamment être classiquement réalisée à l'aide d'un granulomètre laser.
On appelle dp, au sens de la présente invention et classiquement, le diamètre de grain (en abscisses sur la courbe susmentionnée) correspondant au pourcentage p%, en volume .
Ainsi dio d'une poudre correspond à une taille de grains pour laquelle 10% en volume des grains de la poudre ont une taille supérieure ou égale à dio (et par conséquent pour laquelle 90 % des grains, en volume, ont une taille strictement inférieure à dio) • On appelle dgo d'une poudre la taille de grains pour laquelle, 90 % en volume des grains de la poudre ont une taille supérieure ou égale à dgo (et par conséquent pour laquelle 10 % des grains, en volume, ont une taille strictement inférieure à dgo) .
Avec une définition identique, le percentile d5o est souvent appelé le diamètre médian d'une poudre.
Le procédé selon l'invention consiste par exemple à mélanger des poudres de particules de SiC pour obtenir le mélange de grains de taille sélectionnée selon l'invention puis à mettre en forme ce mélange, et permet avantageusement d'obtenir, après cuisson et frittage à haute température, un produit céramique réfractaire poreux à base de SiC dont les caractéristiques combinées de porosité et de résistance mécanique sont améliorées et peuvent être plus facilement contrôlées. Ainsi, le procédé selon l'invention permet l'obtention d'un corps fritte poreux dont la résistance mécanique optimale est garantie. De préférence, selon l'invention, la différence entre le percentile dgo de la deuxième poudre de particules de SiC et le percentile dio de la première poudre de particules de SiC est supérieure à 1 microns, de manière encore plus préférée supérieure à 3 microns. Cette différence traduit selon l'invention le taux de recouvrement de granulométrique entre les deux poudres.
De préférence, selon l'invention, la différence entre le percentile dgo de la deuxième poudre de particules de SiC et le percentile dio de la première poudre de particules de SiC est inférieure à 20 microns, par exemple inférieure ou égale à 15 microns ou même inférieure ou égale à 10 microns.
Avantageusement, le diamètre médian des particules de la première poudre de grains de SiC est inférieur à 3 microns et de préférence inférieur ou égal à 1 micron. Sans sortir du cadre de l'invention, le diamètre médian des particules de la première poudre de SiC pourrait être de l'ordre de quelques dizaines de nanomètres, voire de l'ordre de quelques nanomètres. De préférence, le diamètre médian des particules constituant la deuxième poudre de particules de SiC peut être compris entre 5 et 60 microns, de préférence compris entre 5 et 30 microns voire entre 5 et 20 microns. En dessous de 5 microns, il n'a été observé de différence significative par rapport à des matériaux poreux obtenus selon les procédés classiques. Au dessus de 60 microns, la résistance mécanique du corps poreux chute très fortement.
De préférence, le diamètre médian des particules de SiC de la deuxième poudre est au moins cinq fois supérieur au diamètre médian des particules de SiC de la première poudre et de préférence au moins dix fois supérieur.
De préférence, la différence entre le diamètre médian de la deuxième poudre et celui de la première poudre est comprise entre 8 et 30 microns.
Typiquement, selon l'invention, le rapport Ri entre la différence des percentiles dio et dgo, et le diamètre médian d5o de la première poudre :
Figure imgf000010_0001
R1= dso est compris entre 0,1 et 10, de préférence compris entre 0,3 et 5 et de manière très préférée compris entre 0,5 et 5. De même selon l'invention le rapport R2 entre la différence des percentiles dio et dgo, et le diamètre médian d5o de la deuxième poudre :
Figure imgf000010_0002
R2= — d ^so
est typiquement compris entre 0,1 et 10, de préférence compris entre 0,3 et 5 et de manière très préférée compris entre 0,5 et 5.
De préférence le corps poreux présente une porosité ouverte comprise entre 35 et 65%, et de manière encore plus préférée entre 40% et 60%. Notamment dans l'application filtre à particules, une porosité trop faible conduit à une perte de charge trop élevée. Une porosité trop élevée conduit à un niveau de résistance mécanique trop faible. Selon l'invention le diamètre médian dso, en volume, des pores constituant la porosité du matériau est compris entre 5 et 30 microns, et de préférence entre 10 et 25 microns . De manière générale, dans l'application du matériau comme constituant des parois filtrantes d'un filtre à particules, il est généralement admis qu'un trop faible diamètre des pores entraîne une trop forte perte de charge, tandis qu'un diamètre médian de pores trop important entraîne une mauvaise efficacité de filtration.
Notamment afin d' augmenter les propriétés de conductivité électrique du corps poreux ou renforcer la résistance mécanique du corps poreux la poudre de SiC peut être du SiC dopé par un métal tel que l'Aluminium. Par ailleurs les poudres de SiC utilisées dans le procédé selon l'invention sont de préférence du SiC sous forme cristallographique essentiellement alpha, de préférence du SiC noir ou SiC vert selon la pureté chimique des poudres utilisées. Afin de ne pas alourdir inutilement la présente description, toutes les combinaisons possibles selon l'invention entre les différentes modes préférés selon l'invention, tels qu'ils viennent d'être décrits, ne sont pas reportées, notamment toutes les combinaisons possibles issues des caractéristiques des poudres selon l'invention données précédemment. Il est cependant bien entendu que toutes les combinaisons possibles des domaines et valeurs initiaux et/ou préférés précédemment décrits sont envisagées et doivent être considérées comme décrites par le demandeur dans le cadre de la présente description (notamment de deux, trois combinaisons ou plus) .
Typiquement, lors de l'étape b) , des porogènes et/ou des agents liants et éventuellement des plastifiants peuvent être ajoutés. Ces agents liants ou plastifiants sont par exemple choisis parmi la gamme des polysaccharides et dérivés de celluloses, les PVA, les PEG, voire des dérivés de lignones ou des agents de prise chimique tels que l'acide phosphorique ou le silicate de soude dès lors que ceux-ci sont compatibles avec le procédé de cuisson. Le demandeur a observé que la rhéologie du mélange plastique ainsi obtenu pouvait être facilement contrôlée par des expérimentations de routine, y compris pour des ajouts d'eau conséquents. Avantageusement, dans une étape préalable, les grains de la première poudre peuvent être agglomérés avec au moins une partie de la deuxième poudre ou même sans cette dernière, à l'aide d'un procédé connu d'agglomération ou de formation de granulés tels que les procédés classiques de granulation ou d' atomisation . Le liant pour la réalisation de ces granulés peut être par exemple une résine thermodurcissable choisie parmi les résines époxyde, silicone, polyimide, polyester ou de préférence la résine phénolique, un PVA éventuellement associé à des liants du type minéral ou organo-minéral, ou une résine acrylique de préférence choisi pour des raisons liées au respect de l'environnement. La nature du liant et sa quantité sont en général choisies en fonction de la granulométrie des poudres de particules fines de SiC de départ et de la taille souhaitée de granulés de SiC obtenus après agglomération. Le liant doit permettre d'assurer une tenue mécanique suffisante pour que les granulés ne soient pas dégradés avant l'éventuel traitement thermique de déliantage (étape c) ) et surtout lors de la mise en forme (étape b) ) .
De façon connue, afin d'obtenir des niveaux de porosité des parois de la structure compatibles avec une utilisation comme filtre à particules, c'est-à-dire compris entre typiquement 35 et 65%, il est en général nécessaire d' introduire en plus dans le mélange des agents porogènes organiques. Ces agents porogènes organiques sont vaporisés à plus ou moins haute température lors de la cuisson. Des agents porogènes tels que le polyéthylène, le polystyrène, l'amidon ou le graphite sont décrits dans les demandes JP 08-281036 ou EP 1 541 538.
La mise en forme du produit poreux (étape b) ) est réalisée de préférence de manière à réaliser des pièces de forme variées selon toute technique connue, par exemple par pressage, extrusion, vibration et/ou moulage, par coulage sous pression ou non par exemple en moule poreux plâtre ou résine. Selon un mode possible, les tailles des granulés issus de l'agglomération des particules fines de la première poudre de SiC et/ou des particules de SiC constituant la deuxième poudre sont adaptées, selon les techniques en vigueur, à l'épaisseur de la pièce à réaliser de manière à assurer les propriétés de porosité, de résistance mécanique et d'aspect nécessaires pour l'application recherchée. En outre, il a été observé que la réduction du taux de fines, agglomérées sous forme de granulés selon l'invention, permettait d'éviter le bouchage des moules lors d'un coulage ou réduisait les effets de délamination dans le cas des mélanges de pressage.
L'élimination du solvant au cours de l'étape c) peut être obtenu par un traitement thermique ou alternativement par l'utilisation de micro-ondes, pendant un temps suffisant pour amener la teneur en eau non liée chimiquement à moins de 1 % en masse. Bien entendu, d'autres moyens équivalents connus peuvent être envisagés sans sortir du cadre de la présente invention. L'élimination du liant ou déliantage (étape c) est effectuée de préférence sous air et à une température de préférence inférieure à 7000C, de manière à assurer une tenue mécanique suffisante avant le frittage et éviter une oxydation incontrôlée du SiC. La cuisson est réalisée à haute température, c'est-à- dire à une température supérieure à 16000C, voire supérieure à 18000C, de préférence supérieure à 20000C, de manière plus préférée supérieure à 21000C mais inférieure à 24000C. De préférence, ladite cuisson est menée sous atmosphère non oxydante, par exemple d'Argon.
L' invention se rapporte en outre à un corps poreux en SiC recristallisé, de préférence sous forme essentiellement CC, obtenu par un procédé tel que précédemment exposé et à son utilisation comme structure d'un filtre à particules dans une ligne d'échappement d'un moteur diesel ou essence ou comme support de cuisson ou allumeur céramique.
Par comparaison avec un corps poreux de même forme et dont les caractéristiques de porosité sont comparables, mais obtenu selon un procédé antérieur dans lequel la distribution granulométrique des poudres de SiC et le taux de matière organique ne sont pas corrélés, le corps poreux réalisé selon le procédé de l'invention présente une valeur caractéristique de la résistance mécanique, en particulier
MOR, plus élevée.
Les avantages décrits précédemment sont illustrés par les exemples non limitatifs qui suivent, illustrant certains modes de réalisation de l'invention. Les exemples qui suivent permettent une comparaison avec les produits obtenus selon les procédés antérieurs.
Exemples 1 à 3 :
Les mélanges des exemples 1 à 3 selon l'invention ont été réalisés selon les compositions massiques précisées dans le tableau 2 ci-dessous à partir de deux poudres de SiC de granulométrie différente, appelées fine et grosse, en référence à la taille respective des grains les composant. Au mélange des poudres de SiC on ajoute un liant plastifiant de type méthylcellulose, et un porogène organique de type polyéthylène sous forme de poudre de diamètre médian 15 microns. Les mélanges ont été malaxés pendant 10 minutes en présence d'eau dans un malaxeur jusqu'à l'obtention d'une pâte homogène. La pâte est étirée pendant 30 minutes afin de la rendre plastique et permettre la désaération du mélange.
Les ajouts d'eau, de porogène et de liant-plastifiant sont exprimés dans le tableau 2 en pourcentage poids par rapport à la masse de mélange sec. Les volumes de porogène et de liant sont exprimés dans l'équation Y du tableau 2 en pourcentage volumique par rapport au volume total des grains de SiC présents.
Des monolithes en forme de nid d'abeille ont été extrudés au moyen d'une filière de forme adaptée permettant d'obtenir les caractéristiques dimensionnelles de la structure après extrusion selon le tableau 1 suivant :
Figure imgf000015_0001
Tableau 1
Selon les techniques de l'art, par exemple décrites dans les brevets EP 1 403 231, EP 816 065, EP 1 142 619,
EP 1 455 923 ou encore WO 2004/090294, ces produits extrudés ont été séchés à 1100C, déliantes à 6000C sous air et cuits sous Argon à 22000C selon un palier de 6h. Des caractéristiques de porosité et de résistance mécanique ont été déterminées sur des monolithes et sont exprimées dans le tableau 2.
La porosité ouverte est mesurée sur les monolithes extrudés en forme de nid d'abeille par immersion et vide selon la norme ISO 5017. Le diamètre médian de pores est mesuré par porométrie au mercure. La force à la rupture est mesurée à température ambiante pour chaque exemple sur 10 éprouvettes correspondant à des éléments unitaires (monolithes) d'un même lot de fabrication de dimensions 25,4 cm de longueur et 36 mm de largeur. Le montage en flexion 3 points selon la norme NFB41-104 est réalisé avec une distance de 220 mm entre les deux appuis inférieurs et la vitesse de descente du poinçon est constante et de l'ordre de 5mm/min. Les principales caractéristiques et résultats obtenus pour les filtres selon les exemples 1 à 3 sont regroupés dans le tableau 2.
A titre comparatif, un autre mélange (exemple comparatif Ic) a été réalisé en utilisant les mêmes étapes et le même protocole expérimental que précédemment décrit et de manière à obtenir des caractéristiques de porosité sensiblement équivalentes à celles des exemples 1 à 3 selon l'invention, mais cette fois à partir d'une poudre de α-SiC actuellement commercialisée par la société Saint-Gobain Materials sous la référence SIKA TECH DPF-C. Le procédé selon l'exemple Ic comparatif se distingue de celui faisant l'objet de la présente invention en ce que le paramètre caractérisant Y est trop faible, en raison d'une trop faible différence entre le dgo de la poudre de grains de plus gros diamètre et le dio de la poudre de grains de plus petit diamètre. Les principales caractéristiques et résultats obtenus pour le filtre selon cet exemple comparatif sont également reportés dans le tableau 2. Le tableau 2 montre que les matériaux en SiC recristallisé constituant les monolithes réalisés selon les exemples 1 à 3 et l'exemple comparatif Ic présentent sensiblement les mêmes caractéristiques de porosité (volume poreux total et diamètre médian de pores) . Les structures selon l'invention des exemples 1 à 3 se caractérisent cependant par une résistance mécanique sensiblement plus élevée que celle de l'exemple comparatif Ic, comme l'indique les valeurs respectives de résistance MOR obtenues.
Figure imgf000018_0002
Figure imgf000018_0001
Figure imgf000018_0003
caractéristiques du mélange
Figure imgf000018_0004
caractéristiques du matériau SiC obtenu après cuisson 2200°C/Ar/6h
Figure imgf000018_0005
paramétrage procédé
Figure imgf000018_0006
Tableau 2
Exemples 4 à 6 :
D'autres mélanges sont réalisés en utilisant les mêmes étapes et le même protocole expérimental que précédemment décrit, pour l'obtention de monolithes présentant les mêmes dimensions (cf. tableau 1) . Selon ces exemples, la composition des mélanges de poudres de SiC grosse et fine, ainsi que le taux de matière organique ajouté dans le mélange initial, ont été ajustés de manière à augmenter les caractéristiques de porosité du matériau poreux cible. On se reportera au tableau 3 pour le détail de la préparation du mélange, de sa composition et des caractéristiques poreuses du matériau finalement obtenu après cuisson. A titre comparatif, un autre mélange (exemple comparatif 2c) a été réalisé en utilisant les mêmes étapes et le même protocole expérimental que précédemment décrit, et de manière à obtenir des caractéristiques de porosité sensiblement équivalentes à celles des exemples 4 à 6 selon l'invention. Le procédé selon l'exemple 2c comparatif se distingue de celui faisant l'objet de la présente invention en ce que le paramètre Y est trop faible, principalement en raison de la proximité entre le dgo de la poudre de grains de plus gros diamètre et le dio de la poudre de grains de plus petit diamètre. La valeur négative du paramètre de procédé Y pour l'exemple 2c s'explique ainsi par un recouvrement partiel entre les deux courbes de granulométrie des poudres.
Figure imgf000020_0001
préparation du mélange
Figure imgf000020_0002
caractéristiques du mélange
Figure imgf000020_0003
caractéristiques du matériau SiC obtenu après cuisson 2200°C/Ar/6h
Figure imgf000020_0004
paramétrage procédé
Figure imgf000020_0005
Tableau 3
Les données expérimentales reportées dans le tableau 3 montrent que les matériaux en SiC recristallisé constituant les monolithes réalisés selon les exemples 4 à 6 et l'exemple comparatif 2c présentent sensiblement les mêmes caractéristiques de porosité (volume poreux total et diamètre médian de pores) . Comme précédemment, les structures selon l'invention des exemples 4 à 6 se caractérisent par une résistance mécanique sensiblement plus élevée que celle de l'exemple comparatif 2c, comme l'indique les valeurs respectives de résistance MOR obtenues.
Exemple 7 :
Un autre mélange est réalisé en utilisant les mêmes étapes et le même protocole expérimental que précédemment décrit, pour l'obtention de monolithes présentant les mêmes dimensions (cf. tableau 1) . Selon cet exemple, la composition des mélanges de poudres de SiC grosse et fine, ainsi que le taux de matière organique ajouté dans le mélange initial, ont été ajustés de manière à augmenter encore les caractéristiques de porosité du matériau poreux cible et notamment le diamètre des pores de la structure poreuse. On se reportera au tableau 4 pour le détail de la préparation du mélange, de sa composition et des caractéristiques poreuses du matériau finalement obtenu après cuisson.
A titre comparatif, un autre mélange (exemple comparatif 3c) a été réalisé en utilisant les mêmes étapes et le même protocole expérimental que celui précédemment décrit, mais de manière à obtenir des caractéristiques de porosité sensiblement équivalentes à celles de l'exemple 7 selon l'invention. Le procédé selon l'exemple 3c comparatif se distingue de celui faisant l'objet de la présente invention en ce que le paramètre Y est trop important, en raison d'une part de la grande différence entre le dgo de la poudre de grains de plus gros diamètre et le dio de la poudre de grains de plus petit diamètre et d' autre part de l'ajout très important d'agent porogène nécessaire pour obtenir les paramètres cibles de porosité (cf. tableau 4) .
Figure imgf000022_0001
préparation du mélange
Figure imgf000022_0002
caractéristiques du mélange
Figure imgf000022_0003
caractéristiques du matériau SiC obtenu après cuisson 2200°C/Ar/6h
Figure imgf000022_0004
paramétrage procédé
Figure imgf000022_0005
Tableau 4
Les données expérimentales reportées dans le tableau 4 montrent que les matériaux en SiC recristallisé constituant les monolithes réalisés selon l'exemple 7 et l'exemple comparatif 3c présentent sensiblement les mêmes caractéristiques de porosité (volume poreux total et diamètre médian de pores) . La structure selon l'invention 7 se caractérise cependant par une résistance mécanique sensiblement plus élevée que celle de l'exemple comparatif 3c, comme l'indique les valeurs respectives de résistance
MOR obtenues.
Les exemples qui précèdent montrent la supériorité des structures poreuses obtenues par l'application du procédé selon l'invention, dont les performances mécaniques sont très sensiblement améliorées.

Claims

REVENDICATIONS
1. Procédé d'obtention d'un matériau poreux en SiC recristallisé, notamment sous la forme d'une structure filtrante d'un gaz chargé en particules, comprenant les étapes suivantes : a) préparation d'une composition comprenant deux poudres de particules de SiC, une première poudre de particules ayant un diamètre médian dso inférieur à 5 microns, et un deuxième poudre de particules ayant un diamètre médian dso compris entre 5 et 100 microns, la différence entre le diamètre médian d5o de la deuxième poudre et le diamètre médian d5o de la première poudre étant supérieure à 5 microns, b) mélange de ladite composition avec une matière organique comprenant un porogène organique et/ou un liant, dans des proportions adaptées et en présence d'une quantité suffisante d'un solvant tel que l'eau pour permettre la mise en forme dudit mélange et mise en forme du mélange obtenu pour obtenir un corps cru, c) de préférence séchage et élimination de la matière organique, notamment par un traitement thermique intermédiaire et/ou par utilisation de micro-ondes, d) cuisson du corps à une température de frittage comprise entre 16000C et 24000C, de préférence supérieure à 18000C, voire supérieure à 20000C, pour obtenir un corps poreux fritte, ledit procédé se caractérisant en ce que la différence entre le percentile dgo de la deuxième poudre de particules et le percentile dio de la première poudre de particules multipliée par le volume de matière organique dans le mélange initial, en pourcentage par rapport au volume total des grains de SiC, est compris entre 250 et 1500, de préférence entre 300 et 1200.
2. Procédé selon la revendication 1, dans lequel la différence entre le percentile dgo de la deuxième poudre de particules de SiC et le percentile dio de la première poudre de particules de SiC est supérieure à 1 microns, de manière encore plus préférée supérieure 3 à microns .
3. Procédé selon la revendication 1 ou 2 dans lequel la différence entre le percentile dgo de la deuxième poudre de particules de SiC et le percentile dio de la première poudre de particules de SiC est inférieure à 20 microns, par exemple inférieure ou égale à 15 microns ou même inférieure ou égale à 10 microns.
4. Procédé selon l'une des revendications 1 à 3, dans lequel le diamètre médian d5o de la première poudre de particules de SiC est inférieur à 3 microns et de préférence inférieur à 1 micron.
5. Procédé selon l'une des revendications 1 à 4 dans lequel le diamètre médian des particules de la deuxième poudre de particules de SiC est compris entre 5 microns et 60 microns et de préférence est compris entre 5 microns et 20 microns.
6. Procédé selon l'une des revendications 1 à 5, dans lequel le diamètre médian de la deuxième poudre de particules de SiC est au moins cinq fois supérieur au diamètre médian de la première poudre de particules de SiC, de préférence au moins dix fois supérieur au diamètre médian de la première poudre de particules de SiC.
7. Procédé selon l'une des revendications 1 à 6, dans lequel la différence entre le diamètre médian d5o de la deuxième poudre de particules et le diamètre médian d5o de la première poudre de particules est comprise entre 8 microns et 30 microns.
8. Procédé selon l'une des revendications 1 à 7, dans lequel le rapport Ri entre la différence des percentiles dio et dgo, et le diamètre médian d5o de la première poudre :
Figure imgf000026_0001
Rl= —d^50 est compris entre 0,1 et 10, de préférence est compris entre 0,3 et 5 et de manière très préféré est compris entre 0,5 et 5.
9. Procédé selon l'une des revendications 1 à 8, dans lequel le rapport R2 entre la différence des percentiles dio et dgo, et le diamètre médian d5o de la deuxième poudre :
Figure imgf000026_0002
R2= d50
est compris entre 0,1 et 10, de préférence est compris entre 0,3 et 5 et de manière très préféré est compris entre 0,5 et 5.
10. Procédé selon l'une des revendications 1 à 9, dans lequel le liant utilisé lors de l'étape b) est choisi dans le groupe constitué par les résines thermodurcissables, en particulier les résines époxyde, silicone, polyimide, polyester ou de préférence la résine phénolique et les PVA éventuellement associés à des liants du type minéral ou organo-minéral .
11. Procédé selon l'une des revendications 1 à 10, dans lequel les particules de SiC sont sous forme alpha.
12. Procédé selon l'une des revendications 1 à 11, dans lequel la mise en forme du corps cru lors de l'étape b) est obtenue par pressage, extrusion, vibration ou par moulage, coulage sous pression ou non par exemple en moule poreux plâtre ou résine.
13. Matériau poreux en SiC recristallisé dont le volume de porosité total est compris entre 35% et 65%, susceptible d'être obtenu par un procédé selon l'une des revendications précédentes.
14. Utilisation d'un matériau poreux en SiC recristallisé obtenu selon la revendication 13 pour la fabrication d'une structure d'un filtre à particules utilisable dans une ligne d'échappement d'un moteur diesel ou essence .
15. Utilisation d'un matériau poreux en SiC recristallisé obtenu selon la revendication 13 pour la fabrication d'un support de cuisson ou d'un allumeur céramique.
PCT/FR2009/051845 2008-09-30 2009-09-29 Procede de fabrication d'un materiau poreux en sic WO2010037963A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980138587XA CN102171163A (zh) 2008-09-30 2009-09-29 制造SiC多孔材料的方法
EP09752427A EP2334617A1 (fr) 2008-09-30 2009-09-29 Procede de fabrication d'un materiau poreux en sic
MX2011002827A MX2011002827A (es) 2008-09-30 2009-09-29 Proceso para elaborar un material sic poroso.
JP2011528406A JP2012504092A (ja) 2008-09-30 2009-09-29 多孔質SiC材料の製造方法
US13/063,766 US20110171099A1 (en) 2008-09-30 2009-09-29 Process for manufacturing a porous sic material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0856563 2008-09-30
FR0856563A FR2936512B1 (fr) 2008-09-30 2008-09-30 Procede de fabrication d'un materiau poreux en sic.

Publications (1)

Publication Number Publication Date
WO2010037963A1 true WO2010037963A1 (fr) 2010-04-08

Family

ID=40478459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/051845 WO2010037963A1 (fr) 2008-09-30 2009-09-29 Procede de fabrication d'un materiau poreux en sic

Country Status (7)

Country Link
US (1) US20110171099A1 (fr)
EP (1) EP2334617A1 (fr)
JP (1) JP2012504092A (fr)
CN (1) CN102171163A (fr)
FR (1) FR2936512B1 (fr)
MX (1) MX2011002827A (fr)
WO (1) WO2010037963A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101854731B1 (ko) * 2011-07-28 2018-05-04 엘지이노텍 주식회사 잉곳 제조 방법
JP6046989B2 (ja) * 2012-11-20 2016-12-21 東京窯業株式会社 炭化ケイ素焼結体の製造方法
US10093587B2 (en) * 2013-06-18 2018-10-09 Robin Crawford Processes for the manufacture of lightweight ceramic materials and articles produced thereby
CN105523765B (zh) * 2014-11-27 2017-06-06 比亚迪股份有限公司 多孔SiC预制体及其制备方法和陶瓷金属复合材料
RU2605257C1 (ru) * 2015-09-11 2016-12-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский технологический университет" Полимерная композиция для получения карбида кремния
CN108017409B (zh) * 2016-11-04 2020-09-15 云南菲尔特环保科技股份有限公司 一种低温烧结的碳化硅蜂窝陶瓷材料及制备方法
CN111533572B (zh) * 2020-05-08 2022-03-15 武汉工程大学 一种多孔碳化硅陶瓷支撑体的制备方法
CN117682865B (zh) * 2024-01-30 2024-04-12 山东奥福环保科技股份有限公司 一种碳化硅蜂窝陶瓷及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081054A1 (fr) * 2001-04-09 2002-10-17 Corning Incorporated Corps de filtre poreux et procede
US20050161849A1 (en) * 2004-01-13 2005-07-28 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
US20060051556A1 (en) * 2003-09-12 2006-03-09 Ibiden Co., Ltd. Sintered ceramic compact and ceramic filter
EP1652831A1 (fr) * 2004-06-25 2006-05-03 Ibiden Co., Ltd. Procédé de production de corps poreux, corps poreux, et corps structurel alvéolaire
EP1808228A1 (fr) * 2004-09-02 2007-07-18 Ibiden Co., Ltd. Structure en nid d abeilles, procédé de production et dispositif de purification de gaz d échappement
EP1839720A1 (fr) * 2006-03-31 2007-10-03 Ibiden Co., Ltd. Corps structurel en nid d'abeille et procédé pour la fabrication d'un corps structurel en nid d'abeille
EP1900709A1 (fr) * 2006-09-14 2008-03-19 Ibiden Co., Ltd. Procédé pour la préparation de structures en nid d'abeille et composition pour structures en nid d'abeille frittées

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100899952B1 (ko) * 2004-05-28 2009-05-28 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 점화기 시스템
US20080142149A1 (en) * 2004-09-27 2008-06-19 Ngk Insulators, Ltd. Setter Used in Firing and Method for Firing of Formed Honeycomb Body Using the Setter
WO2006082938A1 (fr) * 2005-02-04 2006-08-10 Ibiden Co., Ltd. Structure en nid d’abeille ceramique et procede de fabrication de celle-ci

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081054A1 (fr) * 2001-04-09 2002-10-17 Corning Incorporated Corps de filtre poreux et procede
US20060051556A1 (en) * 2003-09-12 2006-03-09 Ibiden Co., Ltd. Sintered ceramic compact and ceramic filter
US20050161849A1 (en) * 2004-01-13 2005-07-28 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
EP1652831A1 (fr) * 2004-06-25 2006-05-03 Ibiden Co., Ltd. Procédé de production de corps poreux, corps poreux, et corps structurel alvéolaire
EP1808228A1 (fr) * 2004-09-02 2007-07-18 Ibiden Co., Ltd. Structure en nid d abeilles, procédé de production et dispositif de purification de gaz d échappement
EP1839720A1 (fr) * 2006-03-31 2007-10-03 Ibiden Co., Ltd. Corps structurel en nid d'abeille et procédé pour la fabrication d'un corps structurel en nid d'abeille
EP1900709A1 (fr) * 2006-09-14 2008-03-19 Ibiden Co., Ltd. Procédé pour la préparation de structures en nid d'abeille et composition pour structures en nid d'abeille frittées

Also Published As

Publication number Publication date
FR2936512B1 (fr) 2010-09-17
CN102171163A (zh) 2011-08-31
EP2334617A1 (fr) 2011-06-22
JP2012504092A (ja) 2012-02-16
US20110171099A1 (en) 2011-07-14
MX2011002827A (es) 2011-04-05
FR2936512A1 (fr) 2010-04-02

Similar Documents

Publication Publication Date Title
WO2010037963A1 (fr) Procede de fabrication d'un materiau poreux en sic
EP2114841B1 (fr) Procédé de fabrication d'un corps poreux céramique à base de sic
BE1018254A3 (fr) Corps de structure poreuse en nid d'abeille, son utilisation et son procede de fabrication.
EP1778601A1 (fr) Mousse ceramique cuite poreuse
EP2029501A2 (fr) Ciment de jointoiement a spheres creuses pour filtre a particules
EP3233252B1 (fr) Filtres comprenant des membranes en sic incorporant de l'azote
WO2010049909A1 (fr) Corps assemblé avec un ciment durci macroporeux
WO2010001064A2 (fr) GRAINS FONDUS D'OXYDES COMPRENANT AL, TI et MG ET PRODUITS CERAMIQUES COMPORTANT DE TELS GRAINS
EP2091890B1 (fr) Procede d'obtention d'une structure poreuse a base de carbure de silicium et structure poreuse obtenue
FR2933399A1 (fr) Melange de grains pour la synthese d'une structure poreuse du type titanate d'alumine
EP3233253A1 (fr) Filtres comprenant des membranes a base de sic appauvri en oxygene
EP1910249B1 (fr) Procede de preparation d'une structure poreuse utilisant des agents porogenes a base de silice
WO2009156638A1 (fr) Filtre ou support catalytique à base de carbure de silicium et de titanate d'aluminium
WO2010112778A2 (fr) Structure filtrante a base de sic a proprietes thermomecaniques ameliorees
FR2873687A1 (fr) Mousse ceramique cuite poreuse
EP2307123A1 (fr) Filtre a particules texture pour applications catalytiques
EP4188594A1 (fr) Produit a base de mof et procede de fabrication de produits a base de mof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980138587.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09752427

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009752427

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 977/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13063766

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/002827

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2011528406

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE