WO2010037581A1 - Verfahren zur optimierung der verkehrssteuerung an einem lichtsignalgesteuerten knoten in einem strassenverkehrsnetz - Google Patents

Verfahren zur optimierung der verkehrssteuerung an einem lichtsignalgesteuerten knoten in einem strassenverkehrsnetz Download PDF

Info

Publication number
WO2010037581A1
WO2010037581A1 PCT/EP2009/059647 EP2009059647W WO2010037581A1 WO 2010037581 A1 WO2010037581 A1 WO 2010037581A1 EP 2009059647 W EP2009059647 W EP 2009059647W WO 2010037581 A1 WO2010037581 A1 WO 2010037581A1
Authority
WO
WIPO (PCT)
Prior art keywords
traffic
signal
weighted
vehicle
relevance
Prior art date
Application number
PCT/EP2009/059647
Other languages
English (en)
French (fr)
Inventor
Andreas Poschinger
Martin Bunz
Jürgen Mück
Reinhold Tannert
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PL09781111T priority Critical patent/PL2329476T3/pl
Priority to CN200980138156.3A priority patent/CN102165501B/zh
Priority to US13/121,841 priority patent/US8698650B2/en
Priority to EP09781111.1A priority patent/EP2329476B1/de
Priority to DK09781111.1T priority patent/DK2329476T3/da
Publication of WO2010037581A1 publication Critical patent/WO2010037581A1/de

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/081Plural intersections under common control

Definitions

  • the invention relates to a method for optimizing the traffic control at a traffic-signal-controlled node in a road traffic network, wherein the vehicle traffic in accesses to the node is controlled by signal groups of a Lichtsig- nalstrom after allocated signal times, wherein for the signal group approaching vehicles from traffic data using a Traffic parameters are determined in dependence of the signal times traffic characteristics, and wherein the traffic characteristics are weighted and summed to determine optimum signal times and the thus formed
  • Target function is optimized by varying signal times.
  • a traffic signal system comprises signal generators grouped for signal groups for different traffic flows, which are designed to emit light signals to the road users.
  • a main traffic direction and a secondary traffic direction intersect at a node, which are controlled by their own signal groups.
  • the traffic signal system further comprises a control device in which a signal program runs to switch on the signal groups according to specific signal times.
  • the signal times include green times for each signal group, defined by the times green start and end green within a round trip time, as well as a phase sequence of the vehicle traffic blocking red phases and these releasing green phases.
  • the signal Prescribed program as a frame signal plan
  • the phase transitions are immutable while maintaining intermediate times, the duration of which, however, if necessary, can be stretched or compressed within predefinable permission areas.
  • the signal programs of adjacent nodes are coordinated to control the traffic flow through traffic lights over several nodes. In this case, the green times are matched to one another by a temporal offset of the signal programs such that, for example, the majority of the vehicles can pass several nodes without stopping while maintaining a certain speed.
  • phase sequence selection The selection of the phase sequence, the choice of the orbital period, the distribution of green times and the assessment of offsets should be made optimally for the nodes in the road network. This applies both to the planning optimization with previously determined traffic data, as well as to methods for optimizing the traffic flow, which are based on currently measured traffic data.
  • Known optimization methods vary the phase sequence selection, the round trip time selection, the green time distribution and the offset times such that an optimum value of a target function results, which is formed as a weighted sum of traffic parameters.
  • the invention is therefore based on the object of providing an optimization method of the type mentioned at the outset, which makes better possible implementation of predefined traffic strategies possible.
  • the object is achieved by a generic optimization method with the features of the characterizing part of claim 1.
  • traffic characteristics such as the number of stops and the waiting times for each vehicle determined individually and according to their strategic relevance for the implementation of a given traffic strategy individually weighted
  • a differentiated assessment of the traffic parameters possibly vehicle-fine, and thus a favoring or obstructing certain routes of the vehicles is possible.
  • predetermined traffic strategies such as the concentration of traffic on main traffic axes, can be implemented with significantly better quality.
  • traffic parameters can vary Depending on their current route, vehicles may have different strategic relevance.
  • traffic strategy specifications are accessible to mathematical modeling and can be explicitly taken into account by the optimization.
  • an evaluation period is subdivided into discrete time intervals and for each time interval the traffic parameters of vehicles with the same strategic relevance are summarized and weighted collectively.
  • An evaluation period can extend from the duration of a signal circulation of the signal group up to a multiplicity of signal cycles, depending on which time horizon is expedient for the simulation. This allows a separate weighting for vehicle groups of a time interval with the same strategic relevance.
  • an evaluation period is subdivided into discrete time intervals and, depending on the strategic relevance of the traffic parameters, a strategy relevance profile is modeled with which the traffic parameters of vehicles of this strategic relevance are individually weighted in this time interval.
  • the strategy relevance profiles indicate, in a time-dependent manner, the weights with which the traffic parameters of vehicles of a specific strategic relevance enter the target function in a time interval.
  • a collective strategy relevance profile is modeled, with which the traffic parameters of vehicles of all strategic relevances of each time interval are weighted together.
  • a collective strategy relevance profile indicates, in a time-dependent manner, the weights with which the traffic parameters of all vehicles enter the target function in a specific time interval.
  • the loss of vehicle refinement Weighting of the traffic parameters is offset here by the saving of calculation time for the simulation or optimization by the simplification in the modeling with a smaller number of variables.
  • the driving history of the vehicle is taken into account as the strategic relevance of the traffic parameter of a vehicle.
  • the consideration of the driving history of a vehicle makes it possible to deliberately promote or discriminate against certain routes of travel by incorporating the fate of the vehicle on pre-grades on the completed route or their access roads into the evaluation of the traffic parameters for the destination function.
  • the origin of the vehicle from a main direction or a secondary direction access is taken into account as the strategic relevance of the traffic parameter of a vehicle.
  • the different weighting of the traffic characteristics of vehicles of different sources supports the different strategic relevance of waiting times and keeping the vehicles approaching the pre-grade on main directional and side-entry approaches. If, for example, a concentration of vehicle movements on main traffic axes is to be implemented as a traffic strategy, then the traffic parameters of the vehicles coming from a main direction access are to be weighted more heavily than those whose vehicles come from a secondary direction access.
  • the strategic relevance of the traffic parameter of a vehicle takes into account the waiting times and / or numbers of stops suffered by the vehicle on at least one preliminary node.
  • the stops and waiting times of vehicles that have been driving on a major traffic axis for a long time or of vehicles that have already been subjected to one or more stops on the main traffic artery can were weighted more heavily than other vehicles.
  • the quality of a green wave perceived by a road user should be good - this too can be a traffic strategy to be implemented.
  • traffic characteristics of vehicles already moving on the main axis are to be heavily weighted, while infiltrators from secondary direction accesses on the main axle may also frequently hold.
  • invaders in the main direction must hold at most once before they are co-coordinated in the main directional force. In that case, the weights of the stops and waiting times of these vehicles are increased once they have had to stop.
  • the objective function is formed from two weighted partial sums, in whose one subset the traffic parameters are added separately weighted by a method according to one of claims 1 to 7 and in whose other partial sum the traffic parameters for all a signal - group approaching vehicles are weighted equal weighted. While the first partial sum calculates a system optimum for all vehicles, the second partial sum aims for a strategic optimum for a single or a selection of vehicles. By weighting the partial sums, it can be specified to what extent or whether the system optimum should at all be taken into account as a second optimization criterion in addition to the strategic optimum.
  • the distances between each two nodes K and VK of a road network N which represent the access roads to the respective node K, are numbered by a counting index 1.
  • An evaluation period which in the case of systems in the steady state is the duration of a signal circulation [0; tij-1] of the signal groups s is subdivided into discrete time intervals t of 1 sec.
  • An intensity profile ii (t) which corresponds to the current traffic volume of the traffic flowing on the driveway 1
  • a collective strategy relevance profile ki (t) are stored, giving a weighting of waiting times w s (t) and Holding h s (t) corresponds to vehicles approaching the signal group s in the time interval t on the approach 1.
  • the collective strategy relevance profile ki (t) weights the mean strategic relevance of the traffic parameters w s (t) and h s (t) of all vehicles of a time interval t in only one variable, which has the advantage of a considerable saving in computation time.
  • the collective strategy relevance profile ki (t) is assigned the constant value 50 if this approach is a main-direction approach with non-disappearing traffic intensity ii (t)> 0 , otherwise the value 0 is assigned.
  • the values of the policy relevance profile ki (t) for the remaining access roads 1 are determined by weighting from the values of the strategy relevance profile k v ( u (t) for the predecessor accesses v (l) of the approach 1.
  • access 1 has a total of V predecessor accesses. The weighting takes place on the basis of the intensity profiles i V (u (t) sent by the predecessor access v (l) and on the basis of the turning rates a V (i), i (t), which indicates the proportion of traffic intensity i v ( i) (t) which moves from the predecessor access v (l) into the driveway 1 or turns:
  • tr (v (l)) means the average travel time required for the previous approach v (l).
  • a model for the steady state can be used.
  • collective strategy relevance profile k s (t) the waiting times and stops can also be weighted separately according to their respective strategic relevance with individual strategy relevance profiles.
  • the weights ⁇ s and ⁇ s are the conventional weights of the system optimum. If only a strategic optimum with regard to a traffic strategy specification is to be calculated, these can be set to 0.
  • the strategy relevance profile k s (t) is both location-dependent, ie at least at the location of the signal group s, as well as time-dependent.
  • the weights ⁇ s and ⁇ s specify how much the strategy relevance profile is to be weighted on a signal group s.
  • traffic strategy may include both a higher-level requirement for inner-city traffic handling, for example "green waves in main traffic directions", as well as one or more subordinate sub-goals for achieving a higher-level specification, for example Strategic relevance is the implementation of the sub-goals in mathematically modelable boundary conditions understood, for example, "vehicles of the main direction should not hold, vehicles of the secondary direction a maximum - times".
  • a strategy relevance profile is a temporal Ver ⁇ run for a measure to which the strategic relevance is he ⁇ fills, such as "n times kept too often."
  • the road The cargo relevance profile is used as the weighting with which a traffic parameter in the target function is taken into account in order to be able to calculate optimum signal times with regard to the traffic strategy.

Abstract

Die Erfindung bezieht sich auf ein Verfahren zur Optimierung der Verkehrssteuerung an einem lichtsignalgesteuerten Knoten (K) in einem Straßenverkehrsnetz (N), wobei der Fahrzeugverkehr in Zufahrten (1) zu dem Knoten (K) durch Signalgruppen (s) einer Lichtsignalanlage nach zugeordneten Signalzeiten gesteuert wird, wobei für sich der Signalgruppe (s) nähernde Fahrzeuge aus Verkehrsdaten anhand eines Verkehrsmodells in Abhängigkeit der Signalzeiten Verkehrskenngrößen (ws (t), hs (t)) bestimmt werden, und wobei zur Ermittlung optimaler Signalzeiten die Verkehrskenngrößen (ws (t), hs (t)) gewichtet und aufsummiert werden und die derart gebildete Zielfunktion (PI) durch Variation von Signalzeiten optimiert wird. Indem die Verkehrskenngrößen (ws (t), hs (t)) für jedes Fahrzeug einzeln bestimmt und entsprechend ihrer strategischen Relevanz für die Umsetzung einer vorgegebenen Verkehrsstrategie einzeln gewichtet werden, wird eine verbesserte Umsetzung der vorgegebenen Verkehrsstrategie ermöglicht.

Description

Beschreibung
Verfahren zur Optimierung der Verkehrssteuerung an einem lichtsignalgesteuerten Knoten in einem Straßenverkehrsnetz
Die Erfindung bezieht sich auf ein Verfahren zur Optimierung der Verkehrssteuerung an einem lichtsignalgesteuerten Knoten in einem Straßenverkehrsnetz, wobei der Fahrzeugverkehr in Zufahrten zu dem Knoten durch Signalgruppen einer Lichtsig- nalanlage nach zugeordneten Signalzeiten gesteuert wird, wobei für sich der Signalgruppe nähernde Fahrzeuge aus Verkehrsdaten anhand eines Verkehrsmodells in Abhängigkeit der Signalzeiten Verkehrskenngrößen bestimmt werden, und wobei zur Ermittlung optimaler Signalzeiten die Verkehrskenngrößen gewichtet und aufsummiert werden und die derart gebildete
Zielfunktion durch Variation von Signalzeiten optimiert wird.
In innerstädtischen Straßenverkehrsnetzen wird der Fahrzeugverkehr in Zufahrten zu Knotenpunkten durch Lichtsignalanla- gen gesteuert. Eine Lichtsignalanlage umfasst zu Signalgruppen für unterschiedliche Verkehrsströme gruppierte Signalgeber, welche zur Abgabe von Lichtsignalen an die Verkehrsteilnehmer ausgebildet sind. Typischerweise kreuzen sich an einem Knotenpunkt eine Hauptverkehrsrichtung und eine Nebenver- kehrsrichtung, die durch eigene Signalgruppen gesteuert werden. Die Lichtsignalanlage umfasst ferner ein Steuergerät, in welchem ein Signalprogramm abläuft, um die Signalgruppen gemäß bestimmter Signalzeiten anzuschalten. Die Signalzeiten umfassen für jede Signalgruppe Grünzeiten, definiert durch die Zeitpunkte Grünbeginn und Grünende innerhalb einer Umlaufzeit, sowie eine Phasenfolge von den Fahrzeugverkehr sperrenden Rotphasen und diesen freigebenden Grünphasen. Grundsätzlich unterscheidet man Festzeit-Signalsteuerungen mit festgelegten, beispielsweise tageszeitabhängigen, Signal- zeiten ohne Einwirkungsmöglichkeiten durch Verkehrsteilnehmer und verkehrsabhängige Signalsteuerungen, bei welchen der Verkehrsteilnehmer das Signalprogramm beeinflussen kann. Bei teil- oder vollverkehrsabhängigen Steuerungen ist das Signal- Programm als Rahmensignalplan vorgegeben, dessen Phasenübergänge unter Einhaltung von Zwischenzeiten unveränderlich sind, dessen Dauern jedoch bedarfsweise innerhalb vorgebbarer Erlaubnisbereiche gedehnt oder gestaucht werden können. Für die Steuerung des Verkehrsablaufs durch Lichtsignalanlagen über mehrere Knoten hinweg werden die Signalprogramme benachbarter Knoten koordiniert. Dabei werden die Grünzeiten durch zeitlichen Versatz der Signalprogramme derart aufeinander abgestimmt, dass beispielsweise die Mehrzahl der Fahrzeuge un- ter Einhaltung einer bestimmten Geschwindigkeit mehrere Knoten ohne Halt passieren kann.
Die Auswahl der Phasenfolge, die Wahl der Umlaufzeit, die Verteilung von Grünzeiten und die Bemessung von Versatzzeiten sollen für die Knotenpunkte im Straßennetz optimal erfolgen. Dies gilt sowohl für die planerische Optimierung mit vorab ermittelten Verkehrsdaten, als auch für Verfahren zur Optimierung des Verkehrsablaufs, die auf aktuell gemessenen Verkehrsdaten beruhen. Bekannte Optimierungsverfahren variieren die Phasenfolgenwahl, die Umlaufzeitwahl, die Grünzeitverteilung und die Versatzzeiten so, dass sich ein optimaler Wert einer Zielfunktion ergibt, welche als gewichtete Summe von Verkehrskenngrößen gebildet wird.
Aus der Broschüre „Versatzoptimierung im Straßennetz: VERO", herausgegeben 11/1994 von Siemens AG, Bestell-Nr. A24705-X- A367-*-04, ist ein Verfahren zur Optimierung der Koordinierung von Lichtsignalanlagen in einem Straßennetz bekannt, das von den Intensitätsverteilungen der einzelnen Zuflüsse an ei- ner Lichtsignalanlage, also der Aufteilung der jeweils am Ende der Zufahrt ankommenden Verkehrsintensität, ausgeht. Zwischen den Signalprogrammen des aktuell zu koordinierenden Knotens und dem oder den bereits koordinierten benachbarten Knoten werden optimale Versatzzeiten ermittelt. Hierzu wird eine Zielfunktion in Form einer gewichteten Summe aus Wartezeiten und Anzahlen von Halten von Fahrzeugen sich zwischen dem letzten Knoten und dem aktuell zu koordinierenden Knoten bewegender Fahrzeugpulks minimiert. Die Wartezeiten und An- zahlen von Halten hängen dabei von den Phasenfolgen der Signalprogramme dieser Knoten, von der Versatzzeit zwischen den Signalprogrammen sowie von die Fahrzeugpulks modellierenden Intensitätsverteilungen ab.
Bei diesem bekannten Verfahren ist es möglich, eine Gewichtung der Verkehrskenngrößen je Knoten und je Signalgruppe vorzunehmen. Hierdurch können Wartezeiten und Halte von Fahrzeugen, die den Knoten in Hauptrichtung passieren, anders ge- wichtet werden, als von Fahrzeugen, die diesen in einer Nebenrichtung überqueren. Die Gewichtung gilt jedoch für alle sich den Signalgruppen eines Knotens nähernden Fahrzeuge. Es ist mit dem bekannten Verfahren daher nur sehr begrenzt möglich, verkehrsstrategische Vorgaben - wie zum Beispiel be- stimmte Fahrbeziehungen zu fördern oder partielle, aber vom
Nutzer positiv empfundene Grüne Wellen zu schalten - umzusetzen .
Der Erfindung liegt daher die Aufgabe zugrunde, ein Optimie- rungsverfahren der eingangs genannten Art bereitzustellen, welches eine verbesserte Umsetzung vorgegebener Verkehrsstrategien besser ermöglicht.
Die Aufgabe wird erfindungsgemäß gelöst durch ein gattungsge- mäßes Optimierungsverfahren mit den Merkmalen des kennzeichnenden Teils des Patentanspruches 1. Indem die Verkehrskenngrößen, also beispielsweise die Anzahl von Halten und die Wartezeiten für jedes Fahrzeug einzeln bestimmt und entsprechend ihrer strategischen Relevanz für die Umsetzung einer vorgegebenen Verkehrsstrategie einzeln gewichtet werden, ist eine differenzierte Bewertung der Verkehrskenngrößen, gegebenenfalls fahrzeugfein, und damit eine Begünstigung oder eine Behinderung bestimmter Fahrtverläufe der Fahrzeuge möglich. Durch gezielte Modellierung der Gewichte können auf diese Weise vorgegebene Verkehrsstrategien, etwa die Konzentration des Verkehrs auf Hauptverkehrsachsen, mit wesentlich besserer Qualität umgesetzt werden. Bezüglich einer umzusetzenden Verkehrsstrategie können Verkehrskenngrößen unterschiedlicher Fahrzeuge, etwa abhängig von ihrer bisherigen Fahrtroute, eine unterschiedliche strategische Relevanz haben. Mit den spezifischen Gewichtungen können sowohl räumlich-zeitliche Zusammenhänge als auch das qualitative Empfinden der Verkehrs- teilnehmer modelliert werden. Damit sind verkehrsstrategische Vorgaben einer mathematischen Modellierung zugänglich und können von der Optimierung explizit berücksichtigt werden.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden ein Bewertungszeitraum in diskrete Zeitintervalle unterteilt und für jedes Zeitintervall die Verkehrskenngrößen von Fahrzeugen mit gleicher strategischer Relevanz zusammengefasst und kollektiv gewichtet. Ein Bewertungszeitraum kann sich dabei von der Dauer eines Signalumlaufs der Signalgruppe bis hin zu einer Vielzahl von Signalumläufen erstrecken, je nachdem welcher Zeithorizont für die Simulation zweckmäßig ist. Hierdurch ist eine getrennte Gewichtung für Fahrzeugkollektive eines Zeitintervalls mit gleicher strategischer Relevanz möglich.
In einer alternativen bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden ein Bewertungszeitraum in diskrete Zeitintervalle unterteilt und je strategischer Relevanz der Verkehrskenngrößen ein Strategierelevanzprofil model- liert, mit dem die Verkehrskenngrößen von Fahrzeugen dieser strategischen Relevanz in diesem Zeitintervall einzeln gewichtet werden. Die Strategierelevanzprofile geben zeitabhängig die Gewichte an, mit welchen die Verkehrskenngrößen von Fahrzeugen einer bestimmten strategischen Relevanz in einem Zeitintervall in die Zielfunktion eingehen.
Vorzugsweise wird ein kollektives Strategierelevanzprofil modelliert, mit dem die Verkehrskenngrößen von Fahrzeugen aller strategischen Relevanzen je eines Zeitintervalls gemeinsam gewichtet werden. Ein kollektives Strategierelevanzprofil gibt zeitabhängig die Gewichte an, mit welchen die Verkehrskenngrößen aller Fahrzeuge in einem bestimmten Zeitintervall in die Zielfunktion eingehen. Der Verlust an fahrzeugfeiner Gewichtung der Verkehrskenngrößen wird hier durch die Einsparung an Rechenzeit für die Simulation bzw. Optimierung durch die Vereinfachung in der Modellierung mit einer geringeren Zahl an Variablen aufgewogen.
In einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird als strategische Relevanz der Verkehrskenngröße eines Fahrzeugs dessen Fahrthistorie berücksichtigt. Die Berücksichtigung der Fahrthistorie eines Fahrzeugs ge- stattet es, gezielt bestimmte Fahrtverläufe zu fördern oder zu benachteiligen, indem das Schicksal des Fahrzeugs an auf der absolvierten Fahrtroute liegenden Vorknoten bzw. deren Zufahrten in die Bewertung der Verkehrskenngrößen für die Zielfunktion einbezogen wird.
In einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens wird als strategische Relevanz der Verkehrskenngröße eines Fahrzeugs die Herkunft des Fahrzeugs aus einer Haupt- richtungs- oder einer Nebenrichtungs-Zufahrt berücksichtigt. Die unterschiedliche Gewichtung der Verkehrskenngrößen von Fahrzeugen unterschiedlicher Quellen unterstützt beispielsweise die unterschiedlichen strategischen Relevanzen von Wartezeiten und Halten der sich auf Hauptrichtungs- und Nebenrichtungs-Zufahrten dem Vorknoten nähernden Fahrzeuge. Soll als Verkehrsstrategie beispielsweise eine Konzentration der Fahrzeugbewegungen auf Hauptverkehrsachsen umgesetzt werden, so sind die Verkehrskenngrößen der von einer Hauptrichtungs- Zufahrt kommenden Fahrzeuge stärker zu gewichten als diejenigen, deren Fahrzeuge von einer Nebenrichtungs-Zufahrt kommen.
In einer vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens werden als strategische Relevanz der Verkehrskenngröße eines Fahrzeugs die vom Fahrzeug an wenigstens einem Vorknoten erlittenen Wartezeiten und/oder Anzahlen von Halten berücksichtigt. So können beispielsweise die Halte und Wartezeiten von Fahrzeugen, die seit längerem auf einer Hauptverkehrsachse fahren, oder von solchen Fahrzeugen, die auf der Hauptverkehrsachse schon einem oder mehreren Halten unterwor- fen waren, stärker gewichtet werden als von anderen Fahrzeugen. Die von einem Verkehrsteilnehmer gefühlte Qualität einer Grüne Welle soll gut sein - auch dies kann eine umzusetzende Verkehrsstrategie sein. Hierbei sind Verkehrskenngrößen von sich bereits auf der Hauptachse bewegenden Fahrzeugen stark zu gewichten, während Einbieger aus Nebenrichtungs-Zufahrten auf der Hauptachse auch öfters Halten dürfen. Ist dies nicht gewünscht, kann eine weitere strategische Vorgabe lauten, dass Einbieger in Hauptrichtung maximal einmal halten müssen, bevor sie im Hauptrichtungspulk mitkoordiniert werden. In dem Fall werden die Gewichte der Halte und Wartezeiten dieser Fahrzeuge erhöht, sobald sie einmal halten mussten.
In einer weiteren bevorzugten Ausführungsform des erfindungs- gemäßen Verfahrens wird die Zielfunktion aus zwei gewichteten Teilsummen gebildet, in deren einer Teilsumme die Verkehrskenngrößen nach einem Verfahren gemäß einem der Ansprüche 1 bis 7 getrennt gewichtet aufsummiert und in deren anderer Teilsumme die Verkehrskenngrößen für alle sich einer Signal- gruppe nähernden Fahrzeuge gleich gewichtet aufsummiert werden. Während mit der ersten Teilsumme ein Systemoptimum für alle Fahrzeuge berechnet wird, zielt die zweite Teilsumme auf ein strategisches Optimum für einzelne oder eine Auswahl an Fahrzeugen ab. Über die Gewichtung der Teilsummen kann vorge- geben werden, inwieweit oder ob überhaupt das Systemoptimum als zweites Optimierungskriterium neben dem strategischen Optimum berücksichtigt werden soll.
Weitere Eigenschaften und Vorteile des erfindungsgemäßen Op- timierungsverfahrens werden nachfolgend anhand eines in der
Zeichnung dargestellten Ausführungsbeispiels näher erläutert, in deren einziger Figur ein Ausschnitt eines Straßennetzes schematisch dargestellt ist.
Gemäß der Figur werden die Strecken zwischen je zwei Knoten K bzw. VK eines Straßenverkehrsnetzes N, welche die Zufahrten zum jeweiligen Knotenpunkt K darstellen, mit einem Zählindex 1 durchnummeriert . Der Knoten K und dessen Vorknoten VK lie- gen auf einer Hauptverkehrsachse, auf der nach einer verkehrsstrategischen Vorgabe der Fahrzeugverkehr zu konzentrieren ist. Am Knoten K wird der Verkehr durch eine Lichtsignalanlage gesteuert, die eine Hauptrichtungs-Signalgruppe s = 1 und eine Nebenrichtung-Signalgruppe s = 2 aufweist, ebenso am Vorknoten VK jedoch in der Figur nicht dargestellt, deren Signalzeiten mittels des erfindungsgemäßen Verfahrens zu optimieren sind.
Der Zustand des Systems wird nun anhand eines Verkehrsflussmodells wie folgt modelliert. Ein Bewertungszeitraum, der sich bei Systemen im eingeschwungenen Zustand auf die Dauer eines Signalumlaufs [0; tij-1] der Signalgruppen s beschränkt, wird in diskrete Zeitintervalle t von 1 sec unterteilt. Für jede Zufahrt 1 und jedes Zeitintervall t wird ein Intensitätsprofil ii(t), was der momentanen Verkehrsstärke des auf der Zufahrt 1 fließenden Verkehrs entspricht, und ein kollektives Strategierelevanzprofil ki(t) gespeichert, was einer Gewichtung von Wartezeiten ws (t) und Halten hs (t) von Fahr- zeugen entspricht, die sich im Zeitintervall t auf der Zufahrt 1 der Signalgruppe s nähern. Das kollektive Strategierelevanzprofil ki(t) gewichtet die mittlere strategische Relevanz der Verkehrskenngrößen ws (t) bzw. hs (t) aller Fahrzeuge eines Zeitintervalls t in nur einer Variablen, was den Vorteil einer erheblichen Rechenzeiteinsparung mit sich bringt .
Am Rand des Netzes N, beispielsweise der Zufahrt v(l) = 2 wird dem kollektiven Strategierelevanzprofil ki(t) der kon- stante Wert 50 zugewiesen, wenn diese Zufahrt eine Hauptrich- tungs-Zufahrt mit nichtverschwindender Verkehrsintensität ii(t) > 0 ist, ansonsten wird der Wert 0 zugewiesen. Die Werte des Strategierelevanzprofils ki(t) für die übrigen Zufahrten 1 werden durch Gewichtung aus den Werten des Strategiere- levanzprofils kv(u (t) für die Vorgängerzufahrten v(l) der Zufahrt 1 ermittelt. In der Figur besitzt die Zufahrt 1 zum Knoten K drei am Vorknoten VK endende Vorgängerzufahrten v(l) = 1, 2, 3, nämlich eine Hauptrichtungs-Zufahrt v(l) = 2 und zwei Nebenrichtungs-Zufahrten v(l) = 1 und v(l) = 3. Im Allgemeinen habe die Zufahrt 1 insgesamt V Vorgängerzufahrten. Die Gewichtung erfolgt anhand der von den Vorgängerzufahrten v(l) gesendeten Intensitätsprofile iV(u (t) sowie anhand der Abbiegeraten aV(i),i(t), die den Anteil der Verkehrsintensität iv(i) (t) angibt, der von der Vorgängerzufahrt v(l) in die Zufahrt 1 fährt bzw. abbiegt:
V
∑ av(1)#1(t) • iv(1)(t - tr(v(l) ) ) • kv(1)(t) kx(t) = ^^
∑av(1)#1(t) iv(1)(t - tr(v(l)))
V(I) = I
Hierbei bedeutet tr(v(l)) die mittlere Reisezeit, die für die Vorgängerzufahrt v(l) benötigt wird.
Nun entstehen an den Signalgruppen s Warteschlangen, an wel- chen die Werte des kollektiven Strategierelevanzprofils ks (t) nach folgender Gleichung ermittelt wird:
ks(t - 1) • ws(t - 1) + kx(t) • J1 (t) kq(t) = ws(t - 1) • I1 (t)
Es handelt sich hierbei also um ein mittleres Gewicht für die Fahrzeuge in der Warteschlange, in welches das mittlere Gewicht und die Wartezeiten des vorangehenden Zeitintervalls t-1 eingehen.
Prinzipiell ist es auch möglich, die Warteschlangen so zu modellieren, dass nur Fahrzeuge mit identischen Wert des Strategierelevanzprofils aufsummiert werden; in der Warteschlange gibt es dann mehrere zeitlich sortierte Fahrzeugkollektive mit jeweils identischen Strategierelevanzprofilwert. Dieser verbesserten Abbildung der strategischen Relevanzen steht eine erhöhte Rechenzeit gegenüber. Der Ansatz hat allerdings keinen Nutzen, falls alle Fahrzeuge, deren Wert des Strategierelevanzprofils größer als Null ist, nicht in der Warteschlange zum Halt kommen. Nun wird die Zielfunktion PI wird über den Bewertungszeitraum nach folgender Gleichung ermittelt:
t„-i s
PI = Σ Σ [(αs • Ws(t) + ßs • hs(t)) + ks(t) (8S • Ws(t) + £s • hs(t))]
In einer einfachen Ausführung kann ein Modell für den eingeschwungenen Zustand verwendet werden. Hierdurch kann der Bewertungszeitraum auf einen Signalumlauf [0; tij-1] begrenzt werden. Es werden alle Signalgruppen s = 1, ..., S betrach- tet. Statt dem gemittelten, kollektiven Strategierelevanzpro¬ fil ks (t) können die Wartezeiten und Halte auch getrennt nach ihrer jeweiligen strategischen Relevanz mit einzelnen Strategierelevanzprofilen gewichtet werden. Die Gewichte αs und ßs sind die herkömmlichen Gewichte des Systemoptimums. Soll aus- schließlich ein strategisches Optimum hinsichtlich einer verkehrsstrategischen Vorgabe berechnet werden, so können diese zu 0 gesetzt werden. Das Strategierelevanzprofil ks (t) ist sowohl ortsabhängig, also mindestens am Ort der Signalgruppe s, als auch zeitabhängig. Die Gewichte δs und εs geben vor, wie stark das Strategierelevanzprofil an einer Signalgruppe s gewichtet werden soll.
Im Zusammenhang mit der vorliegenden Erfindung kann unter dem Begriff Verkehrsstrategie sowohl eine übergeordnete, etwa von verkehrspolitischer Seite geforderte Vorgabe für die innerstädtische Verkehrsabwicklung, zum Beispiel „Grüne Wellen in Hauptverkehrsrichtungen", als auch ein oder mehrere untergeordnete Teilziele zur Erreichung einer übergeordneten Vorgabe, zum Beispiel „Vorfahrt für die Hauptrichtung" und „keine zu starke Beeinträchtigung der Nebenrichtung", verstanden werden. Unter der strategischen Relevanz wird die Umsetzung der Teilziele in mathematisch modellierbare Randbedingungen verstanden, zum Beispiel „Fahrzeuge der Hauptrichtung sollen nicht halten müssen, Fahrzeuge der Nebenrichtung maximal ein- mal". Ein Strategierelevanzprofil gibt einen zeitlichen Ver¬ lauf für ein Maß an, mit dem die strategische Relevanz er¬ füllt ist, beispielsweise „n mal zu oft gehalten". Das Stra- tegierelevanzprofil wird als Gewichtung verwendet, mit der eine Verkehrskenngröße in der Zielfunktion berücksichtigt wird, um hinsichtlich der Verkehrsstrategie optimale Signalzeiten berechnen zu können.

Claims

Patentansprüche
1. Verfahren zur Optimierung der Verkehrssteuerung an einem lichtsignalgesteuerten Knoten (K) in einem Straßenverkehrs- netz (N) , wobei der Fahrzeugverkehr in Zufahrten (1) zu dem Knoten (K) durch Signalgruppen (s) einer Lichtsignalanlage nach zugeordneten Signalzeiten gesteuert wird, wobei für sich der Signalgruppe (s) nähernde Fahrzeuge aus Verkehrsdaten anhand eines Verkehrsmodells in Abhängigkeit der Signalzeiten Verkehrskenngrößen (w, h) bestimmt werden, und wobei zur Ermittlung optimaler Signalzeiten die Verkehrskenngrößen (w, h) gewichtet und aufsummiert werden und die derart gebildete Zielfunktion (PI) durch Variation von Signalzeiten optimiert wird, d a d u r c h g e k e n n z e i c h n e t, dass die Verkehrskenngrößen (w, h) für jedes Fahrzeug einzeln bestimmt und entsprechend ihrer strategischen Relevanz für die Umsetzung einer vorgegebenen Verkehrsstrategie einzeln gewichtet werden .
2. Optimierungsverfahren nach Anspruch 1, wobei ein Bewertungszeitraum ([0; tu~l]) in diskrete Zeitintervalle (t) unterteilt und für jedes Zeitintervall (t) die Verkehrskenngrößen (w(t), h(t)) von Fahrzeugen mit gleicher strategischer Relevanz zusammengefasst und kollektiv gewichtet werden.
3. Optimierungsverfahren nach Anspruch 1, wobei ein Bewertungszeitraum ([0; tij-1]) in diskrete Zeitin- tervalle (t) unterteilt und je strategischer Relevanz der
Verkehrskenngrößen (w(t), h(t)) ein Strategierelevanzprofil modelliert wird, mit dem die Verkehrskenngrößen (w(t), h(t)) von Fahrzeugen dieser strategischen Relevanz in diesem Zeitintervall (t) einzeln gewichtet werden.
4. Optimierungsverfahren nach Anspruch 3, wobei ein kollektives Strategierelevanzprofil (k(t)) modelliert wird, mit dem die Verkehrskenngrößen (w(t), h(t)) von Fahrzeugen aller strategischen Relevanzen je eines Zeitintervalls (t) gemeinsam gewichtet werden.
5. Optimierungsverfahren nach Anspruch 4, wobei als strategische Relevanz der Verkehrskenngrößen (w(t), h(t)) eines Fahrzeugs dessen Fahrthistorie berücksichtigt wird.
6. Optimierungsverfahren nach Anspruch 4 oder 5, wobei als strategische Relevanz der Verkehrskenngrößen (w(t), h(t)) eines Fahrzeugs die Herkunft des Fahrzeugs aus einer Hauptrichtungs- oder einer Nebenrichtungs-Zufahrt berücksichtigt wird.
7. Optimierungsverfahren nach einem der Ansprüche 1 bis 6, wobei als strategische Relevanz der Verkehrskenngröße (w(t), h(t)) eines Fahrzeugs die vom Fahrzeug an wenigstens einem Vorknoten (VK) erlittenen Wartezeiten und/oder Anzahlen von Halten berücksichtigt werden.
8. Optimierungsverfahren nach einem der Ansprüche 1 bis 7, wobei die Zielfunktion aus zwei gewichteten Teilsummen gebildet wird, in deren einer Teilsumme die Verkehrskenngrößen (ws (t) , hs (t) ) nach einem Verfahren gemäß einem der Ansprüche 1 bis 7 getrennt gewichtet aufsummiert und in deren anderer Teilsumme die Verkehrskenngrößen (ws (t) , hs (t) ) für alle sich einer Signalgruppe (s) nähernden Fahrzeuge gleich gewichtet aufsummiert werden.
PCT/EP2009/059647 2008-09-30 2009-07-27 Verfahren zur optimierung der verkehrssteuerung an einem lichtsignalgesteuerten knoten in einem strassenverkehrsnetz WO2010037581A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL09781111T PL2329476T3 (pl) 2008-09-30 2009-07-27 Sposób optymalizacji sterowania ruchem przy węźle sterowanym sygnałami świetlnymi w sieci ruchu drogowego
CN200980138156.3A CN102165501B (zh) 2008-09-30 2009-07-27 用于优化道路交通网络内灯控交叉点上的交通控制的方法
US13/121,841 US8698650B2 (en) 2008-09-30 2009-07-27 Method for optimizing the traffic control at a traffic signal controlled intersection in a road traffic network
EP09781111.1A EP2329476B1 (de) 2008-09-30 2009-07-27 Verfahren zur optimierung der verkehrssteuerung an einem lichtsignalgesteuerten knoten in einem strassenverkehrsnetz
DK09781111.1T DK2329476T3 (da) 2008-09-30 2009-07-27 Fremgangsmåde til optimering af trafikstyringen ved et lyssignalstyret knudepunkt i et trafiknet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008049568.9 2008-09-30
DE102008049568A DE102008049568A1 (de) 2008-09-30 2008-09-30 Verfahren zur Optimierung der Verkehrssteuerung an einem lichtsignalgesteuerten Knoten in einem Straßenverkehrsnetz

Publications (1)

Publication Number Publication Date
WO2010037581A1 true WO2010037581A1 (de) 2010-04-08

Family

ID=41581013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/059647 WO2010037581A1 (de) 2008-09-30 2009-07-27 Verfahren zur optimierung der verkehrssteuerung an einem lichtsignalgesteuerten knoten in einem strassenverkehrsnetz

Country Status (7)

Country Link
US (1) US8698650B2 (de)
EP (1) EP2329476B1 (de)
CN (1) CN102165501B (de)
DE (1) DE102008049568A1 (de)
DK (1) DK2329476T3 (de)
PL (1) PL2329476T3 (de)
WO (1) WO2010037581A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980318A (zh) * 2010-10-27 2011-02-23 公安部交通管理科学研究所 交通信号多控制目标复合优化方法
CN102722986A (zh) * 2012-06-28 2012-10-10 吉林大学 城市路网交通控制子区动态划分方法
CN111223310A (zh) * 2020-01-09 2020-06-02 阿里巴巴集团控股有限公司 一种信息处理方法、装置及电子设备
US11915308B2 (en) 2018-05-10 2024-02-27 Miovision Technologies Incorporated Blockchain data exchange network and methods and systems for submitting data to and transacting data on such a network

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426791B (zh) * 2011-09-13 2013-08-07 华南理工大学 一种交通信号协调配时方案的n周期加权调节过渡方法
WO2013086629A1 (en) 2011-12-16 2013-06-20 El-Tantawy Samah Multi-agent reinforcement learning for integrated and networked adaptive traffic signal control
CN103489318B (zh) * 2013-09-04 2015-05-20 河海大学 一种交叉口机动车信号灯设置需求判定方法
US10954638B2 (en) * 2013-09-16 2021-03-23 Phillip Jon Brown Flow boulevard; continuous flowing traffic on interrupted urban streets
US9978270B2 (en) 2014-07-28 2018-05-22 Econolite Group, Inc. Self-configuring traffic signal controller
EP3151214A1 (de) 2015-09-30 2017-04-05 Siemens Aktiengesellschaft System zur priorisierung eines verkehrsteilnehmers, insbesondere eines radfahrers, an einem lichtsignalgesteuerten knotenpunkt
US10431079B2 (en) * 2016-03-17 2019-10-01 Shenzhen Yijie Innovative Technology Co., Ltd. Driving control apparatus for intersection traffic light array
CN105825690B (zh) * 2016-06-15 2018-04-13 北京航空航天大学 一种面向可协调控制的干线交叉口关联性分析及划分方法
CN106023591B (zh) * 2016-06-20 2018-05-29 北方工业大学 一种城市干线绿波控制评估方法及装置
CN106097734B (zh) * 2016-08-22 2019-03-12 安徽科力信息产业有限责任公司 一种用于路口交通信号控制的平面感知检测方法及系统
CN108573608A (zh) * 2017-03-09 2018-09-25 孟卫平 交通信号的弦超模控制方法
CN108694839A (zh) * 2017-04-07 2018-10-23 孟卫平 交通信号泛绿波控制方法
US20230108068A1 (en) * 2020-03-02 2023-04-06 Weiping Meng Traffic Signal Polarized Green-Wave Control Method
CN111785039B (zh) * 2020-07-02 2022-12-06 北京易控智驾科技有限公司 双向单车道智能驾驶车辆的管制方法、装置、设备及介质
CN111861290A (zh) * 2020-09-22 2020-10-30 北京全路通信信号研究设计院集团有限公司 一种区域多制式轨道交通开行方案的约束方法及系统
CN112614343B (zh) * 2020-12-11 2022-08-19 多伦科技股份有限公司 基于随机策略梯度的交通信号控制方法、系统及电子设备
CN113192318B (zh) * 2021-01-29 2022-09-02 安徽科力信息产业有限责任公司 一种数据驱动控制的区域交通信号动态优化方法及系统
CN113034899B (zh) * 2021-03-03 2022-11-08 山东大学 一种信控交叉口协调优化控制方法及系统
CN113205695B (zh) * 2021-04-13 2022-02-18 东南大学 多周期长度双向干线绿波控制方法
TWI782792B (zh) * 2021-11-16 2022-11-01 中華電信股份有限公司 一種動態交通控制設備、方法及其電腦可讀媒介
CN114360265B (zh) * 2022-01-19 2022-12-06 合肥工业大学 一种基于电子地图api的自适应交通信号灯控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034274A1 (de) * 1996-03-12 1997-09-18 Siemens Aktiengesellschaft Verkehrsabhängige steuerung von verkehrs-lichtsignalanlagen mit hilfe von fuzzy-logik
DE102005023742A1 (de) * 2005-05-17 2006-11-23 Technische Universität Dresden Verfahren zur Koordination konkurrierender Prozesse oder zur Steuerung des Transports von mobilen Einheiten innerhalb eines Netzwerkes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100492435C (zh) * 2007-03-09 2009-05-27 吉林大学 单个交叉口混合交通信号的控制方法
CN100444210C (zh) 2007-04-20 2008-12-17 东南大学 单点信号控制交叉口的混合控制方法
CN101251953A (zh) * 2008-04-03 2008-08-27 同济大学 一种可用于环形交叉口的不对称时空优化控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034274A1 (de) * 1996-03-12 1997-09-18 Siemens Aktiengesellschaft Verkehrsabhängige steuerung von verkehrs-lichtsignalanlagen mit hilfe von fuzzy-logik
DE102005023742A1 (de) * 2005-05-17 2006-11-23 Technische Universität Dresden Verfahren zur Koordination konkurrierender Prozesse oder zur Steuerung des Transports von mobilen Einheiten innerhalb eines Netzwerkes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIA WU ET AL: "Discrete Intersection Signal Control", SERVICE OPERATIONS AND LOGISTICS, AND INFORMATICS, 2007. SOLI 2007. IEEE INTERNATIONAL CONFERENCE, 1 August 2007 (2007-08-01), pages 1 - 6, XP031161379, ISBN: 978-1-4244-1117-7 *
SIEMENS AG ET AL: "Versatzoptimierung im Strassennetz VERO", STRASSENVERKEHRSTECHNIK, MÜNCHEN, vol. 1994, no. 11, 30 November 1994 (1994-11-30), pages 1 - 50, XP002558034 *
YAN F ET AL: "Control of traffic lights in intersection: A new branch and bound approach", SERVICE SYSTEMS AND SERVICE MANAGEMENT, 2008 INTERNATIONAL CONFERENCE ON, IEEE, PISCATAWAY, NJ, USA, 30 June 2008 (2008-06-30), pages 1 - 6, XP031306178, ISBN: 978-1-4244-1671-4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980318A (zh) * 2010-10-27 2011-02-23 公安部交通管理科学研究所 交通信号多控制目标复合优化方法
CN102722986A (zh) * 2012-06-28 2012-10-10 吉林大学 城市路网交通控制子区动态划分方法
US11915308B2 (en) 2018-05-10 2024-02-27 Miovision Technologies Incorporated Blockchain data exchange network and methods and systems for submitting data to and transacting data on such a network
CN111223310A (zh) * 2020-01-09 2020-06-02 阿里巴巴集团控股有限公司 一种信息处理方法、装置及电子设备

Also Published As

Publication number Publication date
DE102008049568A1 (de) 2010-04-08
PL2329476T3 (pl) 2013-12-31
CN102165501B (zh) 2015-07-15
CN102165501A (zh) 2011-08-24
EP2329476A1 (de) 2011-06-08
EP2329476B1 (de) 2013-07-17
US8698650B2 (en) 2014-04-15
DK2329476T3 (da) 2013-10-14
US20110181440A1 (en) 2011-07-28

Similar Documents

Publication Publication Date Title
WO2010037581A1 (de) Verfahren zur optimierung der verkehrssteuerung an einem lichtsignalgesteuerten knoten in einem strassenverkehrsnetz
EP1298620B1 (de) System zum Steuern von Lichtsignalgebern an Kreuzungen
EP1110195B1 (de) Verfahren zur verkehrszustandsüberwachung und fahrzeugzuflusssteuerung in einem strassenverkehrsnetz
EP2280383B1 (de) Verfahren zur Ermittlung von Verkehrsinformationen für eine Straßenstrecke eines Straßennetzes sowie Verkehrsrechner zur Durchführung des Verfahrens
EP1883873A2 (de) Verfahren zur koordination konkurrierender prozesse oder zur steuerung des transports von mobilen einheiten innerhalb eines netzwerkes
EP2989421B1 (de) Verfahren zum bestimmen eines fahrspurverlaufes einer fahrspur
EP1831853B1 (de) Verfahren und vorrichtung zur steuerung von lichtsignalanlagen für den aufbau einer grünen welle
EP3611709A1 (de) Verkehrsflusssimulator
DE102011107663B4 (de) Verfahren und Vorrichtung zur dynamischen Steuerung einer Signalanlage
DE69631629T2 (de) Erfassung und Vorhersage von Verkehrsbehinderungen
EP2161698B1 (de) Verfahren zur Koordinierung von lichtsignalgesteuerten Knoten in einem Straßennetz
DE102015202434B4 (de) Verfahren und Vorrichtung zur dynamischen Steuerung einer Signalanlage
DE10108611A1 (de) Verfahren zur Simulation und Prognose der Bewegung von Einzelfahrzeugen auf einem Verkehrswegenetz
DE102012214164B3 (de) Verfahren und Vorrichtung zur dynamischen Steuerung mindestens einer Lichtsignalanlage
DE19940957C2 (de) Verkehrsprognoseverfahren für ein Verkehrsnetz mit verkehrsgeregelten Netzknoten
DE19521927C2 (de) Verfahren und Vorrichtung zur verkehrsabhängigen Grünzeitanpassung in einer Verkehrssignalanlage
DE102005040350A1 (de) Verfahren zur Prognose eines Verkehrszustandes in einem Straßennetz und Verkehrsmanagementzentrale
EP2261876B1 (de) Verfahren und Vorrichtung zum Umschalten von Signalprogrammen
DE4106024C1 (de)
DE102008007152A1 (de) Verfahren zur Parametrisierung des Augenöffnungsgrades eines Fahrers eines Kraftfahrzeugs
WO2003007268A1 (de) Verfahren zur bestimmung einer staukennzahl und zur ermittlung von rückstaulängen
EP3084746B1 (de) Verfahren zur steuerung einer lichtsignalanlage und lichtsignalanlagen-steuerungssystem
DE19841457B4 (de) Verfahren zur Ermittlung eines verkehrsabhängigen Signalprogrammes für Signalgruppen von Lichtsignalanlagen
WO2019166431A1 (de) Verfahren und vorrichtung zur steuerung einer lichtsignalanlage
EP2887332A1 (de) Verfahren und System zum Ermitteln einer Verkehrssituation auf einer Straßenstrecke

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980138156.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09781111

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009781111

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13121841

Country of ref document: US