WO2010035632A1 - 有機光電変換素子 - Google Patents

有機光電変換素子 Download PDF

Info

Publication number
WO2010035632A1
WO2010035632A1 PCT/JP2009/065636 JP2009065636W WO2010035632A1 WO 2010035632 A1 WO2010035632 A1 WO 2010035632A1 JP 2009065636 W JP2009065636 W JP 2009065636W WO 2010035632 A1 WO2010035632 A1 WO 2010035632A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
conjugated polymer
photoelectric conversion
polymer compound
Prior art date
Application number
PCT/JP2009/065636
Other languages
English (en)
French (fr)
Inventor
上谷 保則
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to EP09816048A priority Critical patent/EP2343751A1/en
Priority to US13/120,314 priority patent/US20120043529A1/en
Priority to CN2009801376226A priority patent/CN102165620A/zh
Publication of WO2010035632A1 publication Critical patent/WO2010035632A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic photoelectric conversion element.
  • the organic photoelectric conversion element has a problem that the photoelectric conversion efficiency is not always sufficient.
  • an object of the present invention is to provide an organic photoelectric conversion element that exhibits high photoelectric conversion efficiency.
  • the present invention has a pair of electrodes, at least one of which is transparent or translucent, and an organic layer provided between the pair of electrodes, wherein the organic layer is represented by the following formula (1).
  • An organic material comprising at least one compound selected from the group consisting of a low-molecular aromatic compound having two hydrogen atoms removed and a hydroxyl group, an estrogen and a non-conjugated polymer compound having a hydroxyl group, and a conjugated polymer compound
  • a photoelectric conversion element is provided.
  • R 1 and R 2 are the same or different and each represents a hydrogen atom, an alkyl group or an aryl group, and the carbon atom in R 1 and the carbon atom in R 2 are bonded to form a ring. It may be formed.
  • R 3 and R 4 are the same or different and each represents an alkyl group or an aryl group, and m and n are the same or different and each represents an integer of 0 to 4. When there are a plurality of R 3 , they may be the same or different, and when there are a plurality of R 4 , they may be the same or different. ]
  • the low molecular weight aromatic compound is preferably a compound having a hydroxyphenyl group, and more preferably a compound represented by the following formula (2).
  • the content of one or more compounds selected from the group consisting of a low-molecular aromatic compound, an estrogen and a non-conjugated polymer compound having a hydroxyl group is 0. 0 parts by weight with respect to 100 parts by weight of the conjugated polymer compound.
  • the amount is preferably 1 to 10,000 parts by weight.
  • the organic photoelectric conversion device of the present invention can further contain an electron accepting compound in the organic layer.
  • the electron accepting compound is preferably a fullerene derivative.
  • the organic photoelectric conversion device of the present invention can further contain an electron donating compound in the organic layer.
  • the organic photoelectric conversion element of the present invention exhibits high photoelectric conversion efficiency, the present invention is extremely useful industrially.
  • the organic photoelectric conversion element of the present invention has a pair of electrodes, at least one of which is transparent or translucent, and an organic layer provided between the pair of electrodes, and the organic layer is represented by the above formula (1).
  • a low-molecular aromatic compound having a group obtained by removing two hydrogen atoms from the structure represented and a hydroxyl group hereinafter sometimes abbreviated as “low-molecular aromatic compound”
  • an estrogen and a non-conjugated polymer compound having a hydroxyl group One or more compounds selected from the group consisting of and a conjugated polymer compound are included.
  • the low molecular weight aromatic compound that can be used in the present invention has a group obtained by removing two hydrogen atoms from the structure represented by the above formula (1) and a hydroxyl group.
  • the molecular weight of the low molecular weight aromatic compound is preferably 94 to 1,000.
  • the alkyl groups represented by R 1 and R 2 may be linear or branched, and may be cycloalkyl groups.
  • the carbon number is usually about 1 to 20, and specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, s-butyl group, 3-methylbutyl group, n-pentyl group, n-hexyl group, 2-ethylhexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, 3,7-dimethyl Examples include an octyl group and an n-lauryl group.
  • a hydrogen atom in the alkyl group may be substituted with a fluorine atom.
  • substituents include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
  • the aryl group represented by R 1 and R 2 is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon, having a benzene ring, having a condensed ring, Those in which two or more independent benzene rings or condensed rings are bonded directly or via a group such as vinylene are also included.
  • the aryl group usually has about 6 to 60 carbon atoms, preferably 6 to 48 carbon atoms.
  • the aryl group may have a substituent.
  • Examples of the substituent include a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a linear or branched alkyl group having 1 to 20 carbon atoms, or a carbon number.
  • Examples thereof include an alkoxy group having 3 to 20 cycloalkyl groups in its structure, a group represented by the following formula (5), and a hydroxyl group.
  • aryl group examples include a phenyl group, a C 1 -C 12 alkoxyphenyl group (C 1 -C 12 represents 1 to 12 carbon atoms, and the same shall apply hereinafter), C 1 -C 12 alkylphenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, pentafluorophenyl group, and the like.
  • C 1 -C 12 alkoxyphenyl group, C 1 ⁇ C 12 alkylphenyl group are preferred.
  • C 1 to C 12 alkoxyphenyl group examples include a methoxyphenyl group, an ethoxyphenyl group, an n-propyloxyphenyl group, an isopropyloxyphenyl group, an n-butoxyphenyl group, an isobutoxyphenyl group, and an s-butoxyphenyl group.
  • T-butoxyphenyl group n-pentyloxyphenyl group, n-hexyloxyphenyl group, cyclohexyloxyphenyl group, n-heptyloxyphenyl group, n-octyloxyphenyl group, 2-ethylhexyloxyphenyl group, n-nonyl
  • examples thereof include an oxyphenyl group, an n-decyloxyphenyl group, a 3,7-dimethyloctyloxyphenyl group, and an n-lauryloxyphenyl group.
  • C 1 to C 12 alkylphenyl group examples include a methylphenyl group, an ethylphenyl group, a dimethylphenyl group, an n-propylphenyl group, a mesityl group, a methylethylphenyl group, an isopropylphenyl group, an n-butylphenyl group, Isobutylphenyl group, s-butylphenyl group, t-butylphenyl group, n-pentylphenyl group, isoamylphenyl group, hexylphenyl group, n-heptylphenyl group, n-octylphenyl group, n-nonylphenyl group, n- A decylphenyl group, n-dodecylphenyl group, etc. are mentioned.
  • a hydrogen atom in the aryl group may be substituted with a fluor
  • low molecular weight aromatic compounds low molecular weight compounds having a hydroxyphenyl group are preferable.
  • the low molecular weight aromatic compound having a hydroxyphenyl group include compounds represented by the following formulas (2) and (2a) to (2f).
  • the carbon atom in R 1 and the carbon atom in R 2 may be bonded to form a ring.
  • Examples of the low molecular weight aromatic compound forming a ring include compounds represented by the following formulas (2g) to (2i).
  • the ring may be condensed with an aromatic hydrocarbon ring or a heterocyclic ring.
  • the low molecular aromatic compound is preferably a compound represented by the following formula (2).
  • Estradiol represented by the following formula (3) is preferable.
  • Non-conjugated polymer compound that can be used in the present invention has a hydroxyl group.
  • the non-conjugated polymer compound preferably has a polystyrene-equivalent weight average molecular weight of 1 ⁇ 10 3 to 1 ⁇ 10 7 .
  • non-conjugated polymer compound examples include a polymer compound having a repeating unit represented by the following formula (4).
  • the organic photoelectric conversion element of the present invention preferably has an organic layer containing the low-molecular aromatic compound and the conjugated polymer compound.
  • the conjugated polymer compound used in the present invention comprises (i) a polymer consisting essentially of a structure in which double bonds and single bonds are arranged alternately, and (ii) the double bond and single bond are connected via a nitrogen atom. (Iii) a structure consisting of alternating double and single bonds and a structure consisting of double and single bonds arranged through nitrogen atoms. Means polymer.
  • the conjugated polymer compound specifically includes an unsubstituted or substituted fluorenediyl group, an unsubstituted or substituted benzofluorenediyl group, an unsubstituted or substituted dibenzofurandiyl group, an unsubstituted or Substituted dibenzothiophene diyl group, unsubstituted or substituted carbazole diyl group, unsubstituted or substituted thiophene diyl group, unsubstituted or substituted frangyl group, unsubstituted or substituted pyrroldiyl group, unsubstituted or substituted benzothiadiazole diyl A repeating unit of one or more selected from the group consisting of a group, an unsubstituted or substituted phenylene vinylene diyl group, an unsubstituted or substituted thienylene vinylene diyl group, and an unsubstituted or substituted tripheny
  • examples of the linking group include phenylene, biphenylene, naphthalenediyl, anthracenediyl, and the like.
  • the conjugated polymer compound used in the present invention preferably has one or more repeating units selected from the group consisting of the following formula (6) and the following formula (7) from the viewpoint of charge transportability.
  • R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are the same or different and are a hydrogen atom, alkyl group, alkoxy group, alkylthio Represents a group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group or an arylalkylthio group.
  • R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are the same or different and are a hydrogen atom, alkyl group, alkoxy group, alkylthio Represents a group, an aryl group, an aryl
  • the alkoxy group represented by R 6 to R 15 may be linear or branched, and may be a cycloalkyloxy group.
  • the number of carbon atoms is usually about 1 to 20, and specific examples of the alkoxy group include methoxy group, ethoxy group, n-propyloxy group, i-propyloxy group, n-butoxy group, i-butoxy group, s-butoxy group.
  • a hydrogen atom in the alkoxy group may be substituted with a fluorine atom.
  • substituents examples include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyl group, and a perfluorooctyl group.
  • the alkylthio group represented by R 6 to R 15 may be linear or branched, and may be a cycloalkylthio group.
  • the number of carbon atoms is usually about 1 to 20, and specific examples of the alkylthio group include methylthio group, ethylthio group, n-propylthio group, isopropylthio group, n-butylthio group, isobutylthio group, s-butylthio group, t- Butylthio group, n-pentylthio group, n-hexylthio group, cyclohexylthio group, n-heptylthio group, n-octylthio group, 2-ethylhexylthio group, n-nonylthio group, n-decylthio group, 3,7-dimethyloctylthio Group, n-lau
  • the aryloxy group represented by R 6 to R 15 usually has about 6 to 60 carbon atoms, preferably 6 to 48 carbon atoms.
  • Specific examples of the aryloxy group include a phenoxy group, a C 1 to C 12 alkoxyphenoxy group, a C 1 to C 12 alkylphenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, and a pentafluorophenyloxy group.
  • a C 1 -C 12 alkoxyphenoxy group and a C 1 -C 12 alkylphenoxy group are preferred.
  • C 1 -C 12 alkoxy examples include methoxy, ethoxy, n-propyloxy, isopropyloxy, n-butoxy, isobutoxy, s-butoxy, t-butoxy, n-pentyloxy, n-hexyloxy, cyclohexyloxy N-heptyloxy, n-octyloxy, 2-ethylhexyloxy, n-nonyloxy, n-decyloxy, 3,7-dimethyloctyloxy, n-lauryloxy and the like.
  • C 1 to C 12 alkylphenoxy group examples include a methylphenoxy group, an ethylphenoxy group, a dimethylphenoxy group, an n-propylphenoxy group, a 1,3,5-trimethylphenoxy group, a methylethylphenoxy group, and an isopropylphenoxy group.
  • N-butylphenoxy group isobutylphenoxy group, s-butylphenoxy group, t-butylphenoxy group, n-pentylphenoxy group, isoamylphenoxy group, n-hexylphenoxy group, n-heptylphenoxy group, n-octylphenoxy group N-nonylphenoxy group, n-decylphenoxy group, n-dodecylphenoxy group and the like.
  • the arylthio group represented by R 6 to R 15 may have a substituent on the aromatic ring, and usually has about 6 to 60 carbon atoms.
  • Specific examples of the arylthio group include a phenylthio group, a C 1 -C 12 alkoxyphenylthio group, a C 1 -C 12 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, a pentafluorophenylthio group, a pyridylthio group, Examples include a pyridazinylthio group, a pyrimidylthio group, a pyrazylthio group, and a triazylthio group.
  • the arylalkyl group represented by R 6 to R 15 may have a substituent, and usually has about 7 to 60 carbon atoms.
  • Specific examples of the arylalkyl group include a phenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl group, and a C 1 -C 12 alkylphenyl-C 1 -C 12 alkyl group.
  • the arylalkoxy group represented by R 6 to R 15 may have a substituent, and usually has about 7 to 60 carbon atoms.
  • Specific examples of the arylalkoxy group include a phenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkoxy group, and a C 1 -C 12 alkylphenyl-C 1 -C 12 alkoxy group.
  • the arylalkylthio group represented by R 6 to R 15 may have a substituent and usually has about 7 to 60 carbon atoms.
  • Specific examples of the arylalkylthio group include a phenyl-C 1 -C 12 alkylthio group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkylthio group, and a C 1 -C 12 alkylphenyl-C 1 -C 12 alkylthio group.
  • the conjugated polymer compound preferably has a polystyrene-equivalent weight average molecular weight of 1 ⁇ 10 3 to 1 ⁇ 10 7 from the viewpoint of film forming ability and solubility in a solvent, and preferably 1 ⁇ 10 3 to 1 ⁇ 10 7. 6 is more preferable.
  • the conjugated polymer compound contained in the organic layer of the organic photoelectric conversion element of the present invention may be one type or two or more types.
  • the conjugated polymer is prepared by synthesizing a monomer having a functional group suitable for the polymerization reaction to be used, and then dissolved in an organic solvent as necessary.
  • an alkali an appropriate catalyst, or a ligand is used. It can be synthesized by polymerization by a known polymerization method such as aryl coupling.
  • Organic layer of the organic photoelectric conversion device of the present invention one or more compounds selected from the group consisting of the above low-molecular aromatic compounds, estrogens and non-conjugated polymer compounds having a hydroxyl group, and a conjugated polymer compound are contained. included.
  • the content of one or more compounds selected from the group consisting of the low molecular weight aromatic compound, estrogen and non-conjugated polymer compound having a hydroxyl group in the organic layer is preferably 100 parts by weight of the conjugated polymer compound.
  • the amount is 0.1 to 10000 parts by weight, more preferably 1 to 1000 parts by weight, and still more preferably 5 to 500 parts by weight.
  • the organic layer of the organic photoelectric conversion element of the present invention may further contain an electron accepting compound.
  • the electron-accepting compound include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, 8-hydroxyquinoline and metal complexes of derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, fullerenes and derivatives thereof such as C 60, carbon nanotube And phenanthroline derivatives such as 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline. From the viewpoint of obtaining high photoelectric conversion efficiency, fullerenes and derivatives thereof are prefer
  • the content of the electron-accepting compound in the organic layer is one or more compounds selected from the group consisting of the above low-molecular aromatic compounds, estrogens and non-conjugated polymer compounds having a hydroxyl group
  • the total content of the conjugated polymer compound and the conjugated polymer compound is 100 parts by weight, preferably 1 to 10,000 parts by weight, more preferably 10 to 2000 parts by weight, and 10 to 1000 parts by weight. More preferred is 50 to 500 parts by weight.
  • fullerenes examples include C 60 , C 70 , C 84 and derivatives thereof.
  • Specific examples of the C 60 fullerene derivative include compounds represented by the following formulas (8a) to (8g).
  • the organic layer of the organic photoelectric conversion element of the present invention may further contain an electron donating compound.
  • the electron donating compound include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, and aromatic amines in side chains or main chains.
  • the content of the electron donating compound in the organic layer is at least one compound selected from the group consisting of the above low-molecular aromatic compounds, estrogens and non-conjugated polymer compounds having a hydroxyl group.
  • the total content of the conjugated polymer compound and the conjugated polymer compound is 100 parts by weight, preferably 1 to 100,000 parts by weight, more preferably 10 to 1000 parts by weight, and 50 to 500 parts by weight. More preferably it is.
  • the organic layer of the organic photoelectric conversion device of the present invention has the above-described low molecular weight aromatic compound, estrogen, non-conjugated polymer compound, conjugated polymer compound, electron donating property within the range not impairing the charge transport property and charge injection property. Components other than the compound and the electron-accepting compound may be included.
  • the organic photoelectric conversion device of the present invention is selected from the group consisting of a pair of electrodes, at least one of which is transparent or translucent, and the low-molecular aromatic compound, estrogen and non-conjugated polymer compound having a hydroxyl group between the electrodes. And an organic layer containing the conjugated polymer compound.
  • One or more compounds selected from the group consisting of the above low-molecular aromatic compounds, estrogen and a non-conjugated polymer compound having a hydroxyl group, and conjugated polymer compounds are both used as electron-accepting compounds, and both are electrons. It can also be used as a donating compound.
  • One of the low molecular weight aromatic compound, the estrogen, and the non-conjugated polymer compound having a hydroxyl group selected from the group consisting of one or more compounds and the conjugated polymer compound is an electron donating compound, and the other is an electron.
  • the composition may have both functions of an electron donor and an electron acceptor.
  • one or more compounds selected from the group consisting of the above low-molecular aromatic compounds, estrogens and non-conjugated polymer compounds having a hydroxyl group and conjugated polymer compounds are all used as electron-donating compounds. It is preferred that
  • a first organic material comprising a pair of electrodes, one or more compounds selected from the group consisting of the low-molecular aromatic compound, estrogen and a non-conjugated polymer compound having a hydroxyl group between the electrodes and a conjugated polymer compound
  • An organic photoelectric conversion element having a layer and a second organic layer containing an electron-donating compound provided adjacent to the first organic layer; 2.
  • a pair of electrodes, and at least one compound selected from the group consisting of the low-molecular aromatic compound, estrogen and a non-conjugated polymer compound having a hydroxyl group, a conjugated polymer compound, and an electron-donating compound between the electrodes An organic photoelectric conversion element having at least one organic layer to be removed; 4).
  • the content of the fullerene derivative in the organic layer is a content of one or more compounds selected from the group consisting of the low-molecular aromatic compound, the estrogen and the non-conjugated polymer compound having a hydroxyl group.
  • the total content of the conjugated polymer compound is 100 parts by weight, it is preferably 10 to 1000 parts by weight, and more preferably 50 to 500 parts by weight.
  • the organic photoelectric conversion element of the present invention includes the above-mentioned 3, and 4. Or 5. From the viewpoint of including many heterojunction interfaces, 5. Is more preferable.
  • an additional layer may be provided between at least one electrode and the organic layer in the element. Examples of the additional layer include a charge transport layer that transports holes or electrons.
  • the organic photoelectric conversion element When the composition of one or more compounds selected from the group consisting of the above low-molecular aromatic compounds, estrogens and non-conjugated polymer compounds having a hydroxyl group and a conjugated polymer compound is used as an electron donor, the organic photoelectric conversion element
  • the electron acceptor has a HOMO energy of the conjugated polymer compound, a HOMO energy of the low-molecular aromatic compound, a HOMO energy of the estrogen, and a HOMO energy of the non-conjugated polymer compound.
  • the LUMO energy of the electron acceptor is the LUMO energy of the conjugated polymer compound, the LUMO energy of the low molecular weight aromatic compound, the LUMO energy of the estrogen, and the non-conjugated polymer compound.
  • LUMO energy It is higher than the deviation of the LUMO energy.
  • the electron donor preferably used for the organic photoelectric conversion element is such that the HOMO energy of the electron donor is the HOMO energy of the conjugated polymer compound,
  • the HOMO energy of the low molecular weight aromatic compound, the HOMO energy of the estrogen and the HOMO energy of the non-conjugated polymer compound are lower than the HOMO energy of the non-conjugated polymer compound, and the LUMO energy of the electron donor is the LUMO energy of the conjugated polymer compound , LUMO energy of the low molecular weight aromatic compound, of the estrogen Lower than UMO energy and any LUMO energy of the LUMO energy of the nonconjugated poly
  • the organic photoelectric conversion element of the present invention is usually formed on a substrate.
  • This substrate may be any substrate that does not change when an electrode is formed and an organic layer is formed.
  • the material for the substrate include glass, plastic, polymer film, and silicon.
  • the opposite electrode that is, the electrode far from the substrate
  • the transparent or translucent electrode material examples include a conductive metal oxide film and a translucent metal thin film. Specifically, indium oxide, zinc oxide, tin oxide, and a composite film thereof (NESA) manufactured using a conductive material made of indium tin oxide (ITO), indium zinc oxide, or the like Etc.), gold, platinum, silver, copper and the like are used, and ITO, indium / zinc / oxide, and tin oxide are preferable.
  • the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like.
  • organic transparent conductive films such as polyaniline and its derivative (s), polythiophene, and its derivative (s)
  • an electrode material a metal, a conductive polymer, or the like can be used.
  • one of the pair of electrodes is preferably a material having a small work function.
  • One or more alloys, or one or more of them and an alloy of one or more of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin, graphite, or a graphite intercalation compound are used. It is done.
  • Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, calcium-aluminum alloy and the like.
  • the charge transport layer as the additional layer that is, the material used for the hole transport layer and the electron transport layer, an electron donating compound and an electron accepting compound described later can be used, respectively.
  • a material used as a buffer layer as an additional layer an alkali metal such as lithium fluoride, a halide of an alkaline earth metal, an oxide, or the like can be used.
  • fine particles of an inorganic semiconductor such as titanium oxide can be used.
  • Examples of the organic layer in the organic photoelectric conversion device of the present invention include one or more compounds selected from the group consisting of the above low-molecular aromatic compounds, estrogens and non-conjugated polymer compounds having a hydroxyl group, and conjugated polymer compounds.
  • An organic thin film containing can be used.
  • the film thickness of the organic thin film is usually 1 nm to 100 ⁇ m, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 20 nm to 200 nm.
  • an electron donating compound and / or an electron accepting compound other than the low molecular weight aromatic compound, estrogen, non-conjugated polymer compound, and conjugated polymer compound are included in the organic thin film. It is also possible to use a mixture of components.
  • the organic layer contained in the organic photoelectric conversion device of the present invention comprises at least one compound selected from the group consisting of the above low-molecular aromatic compound, estrogen and a non-conjugated polymer compound having a hydroxyl group, and the conjugated polymer compound, It can manufacture using the composition of this.
  • the organic layer further contains an electron-accepting compound, one or more compounds selected from the group consisting of the above low-molecular aromatic compounds, estrogens and non-conjugated polymer compounds having a hydroxyl group, a conjugated polymer compound, and an electron It can be produced using a composition with a receptive compound.
  • the organic layer further contains an electron-donating compound, one or more compounds selected from the group consisting of the above low-molecular aromatic compound, estrogen and non-conjugated polymer compound having a hydroxyl group and a conjugated polymer compound And an electron donating compound.
  • the content of the one or more compounds selected from the group consisting of the low molecular weight aromatic compound, estrogen and non-conjugated polymer compound having a hydroxyl group in the composition is preferably based on 100 parts by weight of the conjugated polymer compound. Is 0.1 to 10000 parts by weight, more preferably 1 to 1000 parts by weight.
  • the content of the electron-accepting compound in the composition is selected from the group consisting of the above low-molecular aromatic compound, estrogen and a non-conjugated polymer compound having a hydroxyl group.
  • the total of the content of the compound or more of the species and the content of the conjugated polymer compound is 100 parts by weight, it is preferably 1 to 10,000 parts by weight, and more preferably 10 to 2000 parts by weight.
  • the content of the electron donating compound in the composition is selected from the group consisting of the low molecular weight aromatic compound, the estrogen and the nonconjugated polymer compound having a hydroxyl group.
  • the total of the content of the compound or more of the species and the content of the conjugated polymer compound is 100 parts by weight, it is preferably 1 to 100,000 parts by weight, and more preferably 10 to 1000 parts by weight.
  • the method for producing the organic thin film is not particularly limited, and examples thereof include a method by film formation from a solution containing the composition and a solvent, but the thin film may be formed by a vacuum deposition method.
  • the solvent used for film formation from a solution dissolves one or more compounds selected from the group consisting of the above low-molecular aromatic compounds, estrogens and non-conjugated polymer compounds having a hydroxyl group, and conjugated polymer compounds. If there is no particular limitation.
  • the solvent examples include unsaturated hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbezen, and t-butylbenzene; carbon tetrachloride, chloroform, dichloromethane, dichloroethane Halogenated saturated hydrocarbon solvents such as chlorobutane, bromobutane, chlorosulfur pentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane and bromocyclohexane; halogenated unsaturated hydrocarbon solvents such as chlorobenzene, dichlorobenzene and trichlorobenzene; tetrahydrofuran And ether solvents such as tetrahydropyran.
  • unsaturated hydrocarbon solvents such as toluene, xy
  • composition of one or more compounds and a conjugated polymer compound can usually be dissolved in the solvent in an amount of 0.1% by weight or more.
  • spin coating method For film formation from solution, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic method Coating methods such as a printing method, an offset printing method, an ink jet printing method, a dispenser printing method, a nozzle coating method, a capillary coating method can be used, and a spin coating method, a flexographic printing method, an ink jet printing method, and a dispenser printing method are preferable.
  • the organic photoelectric conversion element By irradiating light such as sunlight from a transparent or translucent electrode, the organic photoelectric conversion element generates a photovoltaic force between the electrodes and can be operated as an organic thin film solar cell. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
  • a photocurrent flows and it can be operated as an organic photosensor. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
  • the molecular weight of the conjugated polymer compound was determined by GPC (PL-GPC2000) manufactured by GPC Laboratory.
  • the conjugated polymer compound was dissolved in o-dichlorobenzene to a concentration of about 1% by weight.
  • As the mobile phase of GPC o-dichlorobenzene was used and allowed to flow at a measurement temperature of 140 ° C. at a flow rate of 1 mL / min.
  • the column three PLGEL 10 ⁇ m MIXED-B (manufactured by PL Laboratory) were connected in series.
  • Synthesis example 1 (Synthesis of Conjugated Polymer Compound 1) Compound (C) (7.928 g, 16.72 mmol), compound (D) (13.00 g, 17.60 mmol), methyl trioctyl ammonium chloride (trade name “aliquat 336” (registered) in a 2 L four-necked flask substituted with argon Trademark), manufactured by Aldrich, CH 3 N [(CH 2 ) 7 CH 3 ] 3 Cl, density 0.884 g / mL, 25 ° C.) (4.979 g), and 405 mL of toluene are added, and the system is stirred for 30 times. Argon bubbling was performed for a minute.
  • Dichlorobis (triphenylphosphine) palladium (II) (0.02 g) was added, and 42.2 mL of a 2 mol / L sodium carbonate aqueous solution was added dropwise while heating to 105 ° C. and stirring. After completion of the dropwise addition, the mixture was reacted for 5 hours, phenylboronic acid (2.6 g) and 1.8 mL of toluene were added, and the mixture was stirred at 105 ° C. for 16 hours. 700 mL of toluene and 200 mL of 7.5% sodium diethyldithiocarbamate trihydrate aqueous solution were added and stirred at 85 ° C. for 3 hours.
  • washing was performed twice with 300 mL of ion exchange water at 60 ° C., once with 300 mL of 3% acetic acid at 60 ° C., and further three times with 300 mL of ion exchange water at 60 ° C.
  • the organic layer was passed through a column filled with celite, alumina, and silica, and the column was washed with 800 mL of hot toluene.
  • the solution was concentrated to 700 mL, poured into 2 L of methanol, and reprecipitated.
  • the polymer was collected by filtration and washed with 500 mL of methanol, acetone, and methanol.
  • conjugated polymer compound 1 a pentathienyl-fluorene copolymer represented by the following formula (10) was obtained.
  • the number average molecular weight in terms of polystyrene of the conjugated polymer compound 1 was 5.4 ⁇ 10 4
  • the weight average molecular weight was 1.1 ⁇ 10 5 .
  • Example 1 (Production and evaluation of organic thin-film solar cells) “Conjugated polymer compound 1” was dissolved in o-dichlorobenzene at a concentration of 0.5 wt%. Thereafter, 20 parts by weight of compound (E) (trade name “Trisphenol PA”, manufactured by Honshu Chemical Co., Ltd.), which is the above low molecular weight aromatic compound, is added to 100 parts by weight of “conjugated polymer compound 1”, and an electron acceptor.
  • E trade name “Trisphenol PA”, manufactured by Honshu Chemical Co., Ltd.
  • C60PCBM phenyl C61-butyric acid methyl ester, manufactured by Frontier Carbon Co., Ltd., trade name “E100”, lot number: 8A0125-A
  • conjuggated polymer compound 1 100 parts by weight of “conjugated polymer compound 1”.
  • the solution was filtered through a Teflon (registered trademark) filter having a pore size of 1.0 ⁇ m to prepare a coating solution.
  • a glass substrate provided with an ITO film with a thickness of 150 nm by a sputtering method was subjected to surface treatment by ozone UV treatment.
  • the coating liquid was applied onto the ITO film by spin coating to obtain an active layer (film thickness of about 100 nm) of the organic thin film solar cell.
  • lithium fluoride was vapor-deposited with a thickness of 4 nm by a vacuum vapor deposition machine, and then Al was vapor-deposited with a thickness of 100 nm.
  • the degree of vacuum during the deposition was 1 to 9 ⁇ 10 ⁇ 3 Pa in all cases.
  • the shape of the obtained organic thin-film solar cell was a regular square of 2 mm ⁇ 2 mm.
  • the photoelectric conversion efficiency of the obtained organic thin film solar cell was irradiated with constant light using a solar simulator (trade name “OTENTO-SUNII” manufactured by Spectrometer Co., Ltd .: AM1.5G filter, irradiance 100 mW / cm 2 ). It was determined by measuring the generated current and voltage. The results are shown in Table 1.
  • Example 2 (Production and evaluation of organic thin-film solar cells) “Conjugated polymer compound 1” was dissolved in o-dichlorobenzene at a concentration of 0.5 wt%. Thereafter, 20 parts by weight of the low molecular weight aromatic compound (E) is added to 100 parts by weight of the “conjugated polymer compound 1”, and further 100 parts by weight of the “conjugated polymer compound 1” as an electron acceptor. 500 parts by weight of C70PCBM (Phenyl C71-butyric acid methyl ester, manufactured by American Dice Source, trade name “ADS71BFA”, lot number: 08C059E) was mixed with the solution.
  • C70PCBM Phhenyl C71-butyric acid methyl ester, manufactured by American Dice Source, trade name “ADS71BFA”, lot number: 08C059E
  • Example 3 (Production and evaluation of organic thin-film solar cells) “Conjugated polymer compound 1” was dissolved in o-dichlorobenzene at a concentration of 0.5 wt%. Thereafter, 50 parts by weight of the compound (F) (estradiol) (manufactured by Sigma-Aldrich) as an estrogen with respect to 100 parts by weight of “conjugated polymer compound 1”, and “conjugated polymer compound 1” as an electron acceptor. 300 parts by weight of C60PCBM (phenyl C61-butyric acid methyl ester, manufactured by Frontier Carbon Co., Ltd., trade name “E100”, lot number: 8A0125-A) was mixed with 100 parts by weight of the solution.
  • C60PCBM phenyl C61-butyric acid methyl ester, manufactured by Frontier Carbon Co., Ltd., trade name “E100”, lot number: 8A0125-A
  • Example 4 (Production and evaluation of organic thin-film solar cells) “Conjugated polymer compound 1” was dissolved in o-dichlorobenzene at a concentration of 0.5 wt%. Thereafter, 50 parts by weight of compound (G) (1,1,1-tris (4-hydroxyphenyl) ethane, manufactured by Tokyo Chemical Industry Co., Ltd.), which is the above low molecular weight aromatic compound, is added to 100 parts by weight of “conjugated polymer compound 1”.
  • compound (G) (1,1,1-tris (4-hydroxyphenyl) ethane, manufactured by Tokyo Chemical Industry Co., Ltd.
  • Comparative Example 1 (Production and evaluation of organic thin-film solar cells) An organic thin film solar cell was produced in the same manner as in Example 1 except that the compound (E) was not used, and the photoelectric conversion efficiency of the organic thin film solar cell was determined. The measurement results are shown in Table 1.
  • Comparative Example 2 (Production and evaluation of organic thin-film solar cells) An organic thin film solar cell was produced in the same manner as in Example 2 except that the compound (E) was not used, and the photoelectric conversion efficiency of the organic thin film solar cell was determined. The measurement results are shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

 少なくとも一方が透明又は半透明である一対の電極と、当該一対の電極間に設けられた有機層とを有し、有機層が、下記式(1)で表される構造から水素原子を2個除いた基と水酸基とを有する低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と、共役高分子化合物とを含む、有機光電変換素子。[式中、R及びRは、同一又は相異なり、水素原子、アルキル基又はアリール基を表し、R中の炭素原子とR中の炭素原子とが結合し、環を形成してもよい。R及びRは、同一又は相異なり、アルキル基又はアリール基を表し、m及びnは、同一又は相異なり、0~4の整数を表す。]

Description

有機光電変換素子
 本発明は、有機光電変換素子に関する。
 近年、有機半導体材料を有機光電変換素子(有機太陽電池、光センサー等)の活性層に用いる検討が活発に行われている。中でも、有機半導体材料として高分子化合物を含む組成物を用いれば、安価な塗布法で活性層を作製することができるため、様々な高分子化合物を含有する組成物を含む有機光電変換素子が検討されている。例えば、共役高分子化合物であるポリ3-ヘキシルチオフェンとフラーレン誘導体であるC60PCBMとを含む有機層を有する有機太陽電池が記載されている(非特許文献1)。
Advanced Functional Materials Vol.13 (2003) p85
 しかし、前記有機光電変換素子は、光電変換効率が必ずしも十分ではないという問題がある。
 そこで、本発明は、高い光電変換効率を示す有機光電変換素子を提供することを目的とする。
 本発明は、少なくとも一方が透明又は半透明である一対の電極と、当該一対の電極間に設けられた有機層と、を有し、有機層が、下記式(1)で表される構造から水素原子を2個除いた基と水酸基とを有する低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と、共役高分子化合物とを含む有機光電変換素子を提供する。
Figure JPOXMLDOC01-appb-C000003
[式(1)中、R及びRは、同一又は相異なり、水素原子、アルキル基又はアリール基を表し、R中の炭素原子とR中の炭素原子とが結合し、環を形成してもよい。R及びRは、同一又は相異なり、アルキル基又はアリール基を表し、m及びnは、同一又は相異なり、0~4の整数を表す。Rが複数個ある場合、それらは同一でも相異なっていてもよく、Rが複数個ある場合、それらは同一でも相異なっていてもよい。]
 上記有機光電変換素子において、低分子芳香族化合物は、ヒドロキシフェニル基を有する化合物であることが好ましく、下記式(2)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000004
 上記有機層中、低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物の含有量は、共役高分子化合物100重量部に対して、0.1~10000重量部であることが好ましい。
 本発明の有機光電変換素子は、有機層中に、電子受容性化合物を更に含むことができ、この場合、電子受容性化合物が、フラーレン誘導体であることが好ましい。また、本発明の有機光電変換素子は、有機層中に、電子供与性化合物を更に含むことが可能である。
 本発明の有機光電変換素子は、高い光電変換効率を示すので、本発明は工業的に極めて有用である。
 以下、本発明を詳細に説明する。
 本発明の有機光電変換素子は、少なくとも一方が透明又は半透明である一対の電極と、当該一対の電極間に設けられた有機層と、を有し、有機層が、上記式(1)で表される構造から水素原子を2個除いた基と水酸基とを有する低分子芳香族化合物(以下、場合により「低分子芳香族化合物」と略記する)、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と、共役高分子化合物とを含むものである。
<低分子芳香族化合物>
 本発明に用いることができる低分子芳香族化合物は、上記式(1)で表される構造から水素原子を2個除いた基と水酸基とを有する。該低分子芳香族化合物の分子量は、94~1000であることが好ましい。
 式(1)中、R、Rで表されるアルキル基は、直鎖状でも分岐状でもよく、シクロアルキル基でもよい。炭素数は通常1~20程度であり、アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、s-ブチル基、3-メチルブチル基、n-ペンチル基、n-ヘキシル基、2-エチルヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、3,7-ジメチルオクチル基、n-ラウリル基等が挙げられる。前記アルキル基中の水素原子はフッ素原子で置換されていてもよい。該当する置換基としては、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基等が挙げられる。
 式(1)中、R、Rで表されるアリール基としては、芳香族炭化水素から、水素原子1個を除いた原子団であり、ベンゼン環を持つもの、縮合環を持つもの、独立したベンゼン環又は縮合環2個以上が直接又はビニレン等の基を介して結合したものも含まれる。アリール基は、炭素数が通常6~60程度であり、好ましくは6~48である。前記アリール基は、置換基を有していてもよい。この置換基としては、炭素数1~20の直鎖状、分岐状のアルキル基又は炭素数3~20のシクロアルキル基、炭素数1~20の直鎖状、分岐状のアルキル基又は炭素数3~20のシクロアルキル基をその構造中に含むアルコキシ基、下記式(5)で表される基、ヒドロキシル基が挙げられる。アリール基の具体例としては、フェニル基、C~C12アルコキシフェニル基(C~C12は、炭素数1~12であることを示す。以下も同様である。)、C~C12アルキルフェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、ペンタフルオロフェニル基等が挙げられ、C~C12アルコキシフェニル基、C~C12アルキルフェニル基が好ましい。C~C12アルコキシフェニル基として具体的には、メトキシフェニル基、エトキシフェニル基、n-プロピルオキシフェニル基、イソプロピルオキシフェニル基、n-ブトキシフェニル基、イソブトキシフェニル基、s-ブトキシフェニル基、t-ブトキシフェニル基、n-ペンチルオキシフェニル基、n-ヘキシルオキシフェニル基、シクロヘキシルオキシフェニル基、n-ヘプチルオキシフェニル基、n-オクチルオキシフェニル基、2-エチルヘキシルオキシフェニル基、n-ノニルオキシフェニル基、n-デシルオキシフェニル基、3,7-ジメチルオクチルオキシフェニル基、n-ラウリルオキシフェニル基等が挙げられる。C~C12アルキルフェニル基として具体的には、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、n-プロピルフェニル基、メシチル基、メチルエチルフェニル基、イソプロピルフェニル基、n-ブチルフェニル基、イソブチルフェニル基、s-ブチルフェニル基、t-ブチルフェニル基、n-ペンチルフェニル基、イソアミルフェニル基、ヘキシルフェニル基、n-ヘプチルフェニル基、n-オクチルフェニル基、n-ノニルフェニル基、n-デシルフェニル基、n-ドデシルフェニル基等が挙げられる。前記アリール基中の水素原子はフッ素原子で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000005
[式(5)中、gは1~6の整数を表し、hは0~5の整数を表す。]
 式(1)中、R、Rで表されるアルキル基、アリール基の定義、具体例等は、前記R及びRにおけるそれらの定義、具体例等と同じである。
 前記低分子芳香族化合物の中では、ヒドロキシフェニル基を有する低分子化合物が好ましい。ヒドロキシフェニル基を有する低分子芳香族化合物としては、下記式(2)、(2a)~(2f)でそれぞれ示される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 式(1)中、R中の炭素原子とR中の炭素原子とが結合し、環を形成してもよい。環を形成している低分子芳香族化合物としては、下記式(2g)~(2i)でそれぞれ示される化合物等が挙げられる。該環には、芳香族炭化水素環又は複素環が縮合していてもよい。
Figure JPOXMLDOC01-appb-C000007
 高い光電変換効率を得る観点から、前記低分子芳香族化合物としては、下記式(2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000008
<エストロゲン>
 本発明に用いることができるエストロゲンとしては、エストロン、エストラジオール、エストリオールが挙げられる。中でも、下記式(3)で表されるエストラジオールが好ましい。
Figure JPOXMLDOC01-appb-C000009
<非共役高分子化合物>
 本発明に用いることができる非共役高分子化合物は水酸基を有する。該非共役高分子化合物としては、ポリスチレン換算の重量平均分子量が1×10~1×10であることが好ましい。
 非共役高分子化合物としては、下記式(4)で表される繰り返し単位を有する高分子化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 高い光電変換効率を得る観点から、本発明の有機光電変換素子は、上記低分子芳香族化合物と、共役高分子化合物とを含む有機層を有することが好ましい。
<共役高分子化合物>
 本発明に用いられる共役高分子化合物は、(i)二重結合と単結合とが交互に並んだ構造から実質的になる高分子、(ii)二重結合と単結合とが窒素原子を介して並んだ構造から実質的になる高分子、(iii)二重結合と単結合とが交互に並んだ構造及び二重結合と単結合とが窒素原子を介して並んだ構造から実質的になる高分子等を意味する。本明細書において、共役高分子化合物とは、具体的には、非置換又は置換のフルオレンジイル基、非置換又は置換のベンゾフルオレンジイル基、非置換又は置換のジベンゾフランジイル基、非置換又は置換のジベンゾチオフェンジイル基、非置換又は置換のカルバゾールジイル基、非置換又は置換のチオフェンジイル基、非置換又は置換のフランジイル基、非置換又は置換のピロールジイル基、非置換又は置換のベンゾチアジアゾールジイル基、非置換又は置換のフェニレンビニレンジイル基、非置換又は置換のチエニレンビニレンジイル基、及び非置換又は置換のトリフェニルアミンジイル基からなる群から選ばれる一種又は二種以上を繰り返し単位とし、該繰り返し単位同士が直接又は連結基を介して結合した高分子である。
 前記共役高分子化合物において、前記繰り返し単位同士が連結基を介して結合している場合、該連結基としては、例えば、フェニレン、ビフェニレン、ナフタレンジイル、アントラセンジイル等が挙げられる。
 本発明に用いられる共役高分子化合物は、電荷輸送性の観点からは、下記式(6)及び下記式(7)からなる群から選ばれる1種以上の繰り返し単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000011
[式中、R、R、R、R、R10、R11、R12、R13、R14及びR15は、同一又は相異なり、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基又はアリールアルキルチオ基を表す。]
 式(6)及び式(7)中、R~R15で表されるアルキル基、アリール基の具体例等は、前記R及びRにおけるそれらの定義、具体例等と同じである。
 式(6)及び式(7)中、R~R15で表されるアルコキシ基は、直鎖状でも分岐状でもよく、シクロアルキルオキシ基であってもよい。炭素数は通常1~20程度であり、アルコキシ基の具体例としては、メトキシ基、エトキシ基、n-プロピルオキシ基、i-プロピルオキシ基、n-ブトキシ基、i-ブトキシ基、s-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、2-エチルヘキシルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、3,7-ジメチルオクチルオキシ基、n-ラウリルオキシ基等が挙げられる。前記アルコキシ基中の水素原子はフッ素原子で置換されていてもよい。該当する置換基としては、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシル基、パーフルオロオクチル基等が挙げられる。
 式(6)及び式(7)中、R~R15で表されるアルキルチオ基は、直鎖状でも分岐状でもよく、シクロアルキルチオ基であってもよい。炭素数は通常1~20程度であり、アルキルチオ基の具体的としては、メチルチオ基、エチルチオ基、n-プロピルチオ基、イソプロピルチオ基、n-ブチルチオ基、イソブチルチオ基、s-ブチルチオ基、t-ブチルチオ基、n-ペンチルチオ基、n-ヘキシルチオ基、シクロヘキシルチオ基、n-ヘプチルチオ基、n-オクチルチオ基、2-エチルヘキシルチオ基、n-ノニルチオ基、n-デシルチオ基、3,7-ジメチルオクチルチオ基、n-ラウリルチオ基等が挙げられる。前記アルキルチオ基中の水素原子はフッ素原子で置換されていてもよい。該当する置換基としては、トリフルオロメチルチオ基等が挙げられる。
 式(6)及び式(7)中、R~R15で表されるアリールオキシ基は、炭素数が通常6~60程度であり、好ましくは6~48である。アリールオキシ基の具体例としては、フェノキシ基、C~C12アルコキシフェノキシ基、C~C12アルキルフェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、ペンタフルオロフェニルオキシ基等が挙げられ、C~C12アルコキシフェノキシ基、C~C12アルキルフェノキシ基が好ましい。C~C12アルコキシとして具体的には、メトキシ、エトキシ、n-プロピルオキシ、イソプロピルオキシ、n-ブトキシ、イソブトキシ、s-ブトキシ、t-ブトキシ、n-ペンチルオキシ、n-ヘキシルオキシ、シクロヘキシルオキシ、n-ヘプチルオキシ、n-オクチルオキシ、2-エチルヘキシルオキシ、n-ノニルオキシ、n-デシルオキシ、3,7-ジメチルオクチルオキシ、n-ラウリルオキシ等が挙げられる。C~C12アルキルフェノキシ基として具体的には、メチルフェノキシ基、エチルフェノキシ基、ジメチルフェノキシ基、n-プロピルフェノキシ基、1,3,5-トリメチルフェノキシ基、メチルエチルフェノキシ基、イソプロピルフェノキシ基、n-ブチルフェノキシ基、イソブチルフェノキシ基、s-ブチルフェノキシ基、t-ブチルフェノキシ基、n-ペンチルフェノキシ基、イソアミルフェノキシ基、n-ヘキシルフェノキシ基、n-ヘプチルフェノキシ基、n-オクチルフェノキシ基、n-ノニルフェノキシ基、n-デシルフェノキシ基、n-ドデシルフェノキシ基等が挙げられる。
 式(6)及び式(7)中、R~R15で表されるアリールチオ基は、芳香環上に置換基を有していてもよく、炭素数は通常6~60程度である。アリールチオ基の具体的としては、フェニルチオ基、C~C12アルコキシフェニルチオ基、C~C12アルキルフェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基、ペンタフルオロフェニルチオ基、ピリジルチオ基、ピリダジニルチオ基、ピリミジルチオ基、ピラジルチオ基、トリアジルチオ基等が挙げられる。
 式(6)及び式(7)中、R~R15で表されるアリールアルキル基は、置換基を有していてもよく、炭素数は通常7~60程度である。アリールアルキル基の具体的としては、フェニル-C~C12アルキル基、C~C12アルコキシフェニル-C~C12アルキル基、C~C12アルキルフェニル-C~C12アルキル基、1-ナフチル-C~C12アルキル基、2-ナフチル-C~C12アルキル基等が挙げられる。
 式(6)及び式(7)中、R~R15で表されるアリールアルコキシ基は、置換基を有していてもよく、炭素数は通常7~60程度である。アリールアルコキシ基の具体的としては、フェニル-C~C12アルコキシ基、C~C12アルコキシフェニル-C~C12アルコキシ基、C~C12アルキルフェニル-C~C12アルコキシ基、1-ナフチル-C~C12アルコキシ基、2-ナフチル-C~C12アルコキシ基等が挙げられる。
 式(6)及び式(7)中、R~R15で表されるアリールアルキルチオ基としては、置換基を有していてもよく、炭素数は通常7~60程度である。アリールアルキルチオ基の具体的としては、フェニル-C~C12アルキルチオ基、C~C12アルコキシフェニル-C~C12アルキルチオ基、C~C12アルキルフェニル-C~C12アルキルチオ基、1-ナフチル-C~C12アルキルチオ基、2-ナフチル-C~C12アルキルチオ基等が挙げられる。
 前記共役高分子化合物は、膜形成能、溶剤への溶解性の観点から、ポリスチレン換算の重量平均分子量が1×10~1×10であることが好ましく、1×10~1×10であることがより好ましい。
 本発明の有機光電変換素子が有する有機層中に含まれる共役高分子化合物は、一種類であっても二種類以上であってもよい。
 前記共役系高分子は、用いる重合反応に適した官能基を有する単量体を合成した後に、必要に応じて、有機溶媒に溶解し、例えば、アルカリや適当な触媒、配位子を用いた公知のアリールカップリング等の重合方法により重合することにより合成することができる。
<有機層>
 本発明の有機光電変換素子が有する有機層には、上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と、共役高分子化合物とが含まれる。有機層中の上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物の含有量は、共役高分子化合物100重量部に対して、好ましくは0.1~10000重量部であり、より好ましくは1~1000重量部であり、更に好ましくは5~500重量部である。
 本発明の有機光電変換素子が有する有機層には、さらに電子受容性化合物が含まれていてもよい。電子受容性化合物としては、例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアンスラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン類及びその誘導体、カーボンナノチューブ、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン等のフェナントロリン誘導体等が挙げられる。高い光電変換効率を得る観点から、電子受容性化合物として、フラーレン類及びその誘導体が好ましい。
 電子受容性化合物が含まれる場合、有機層中の電子受容性化合物の含有量は、上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物の含有量と共役高分子化合物の含有量との合計を100重量部とすると、1~10000重量部であることが好ましく、10~2000重量部であることがより好ましく、10~1000重量部であることが更に好ましく、50~500重量部であることが特に好ましい。
 フラーレン類としては、C60、C70、C84及びその誘導体が挙げられる。C60フラーレンの誘導体の具体的構造としては、下記式(8a)~(8g)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 本発明の有機光電変換素子が有する有機層には、さらに電子供与性化合物が含まれていてもよい。電子供与性化合物としては、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体等が挙げられる。
 電子供与性化合物が含まれる場合、有機層中の電子供与性化合物の含有量は、上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物の含有量と共役高分子化合物の含有量との合計を100重量部とすると、1~100000重量部であることが好ましく、10~1000重量部であることがより好ましく、50~500重量部であることが更に好ましい。
 本発明の有機光電変換素子が有する有機層には、電荷輸送性、電荷注入性を損なわない範囲で、前記低分子芳香族化合物、エストロゲン、非共役高分子化合物、共役高分子化合物、電子供与性化合物、電子受容性化合物以外の成分を含んでいてもよい。
 <有機光電変換素子>
 本発明の有機光電変換素子は、少なくとも一方が透明又は半透明である一対の電極と、該電極間に、上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と前記共役高分子化合物とを含む有機層とを有する。上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と、共役高分子化合物は、いずれも電子受容性化合物として用いることも、いずれも電子供与性化合物として用いることもできる。また、上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と共役高分子化合物の一方が電子供与性化合物であり、他の一方が電子受容性化合物である場合は、組成物が電子供与性体と電子受容体の両方の機能を有する場合がある。これらの態様の中では、上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と共役高分子化合物が、いずれも電子供与性化合物として用いられることが好ましい。
 次に、有機光電変換素子の動作機構を説明する。透明又は半透明の電極から入射した光エネルギーが電子受容性化合物及び/又は電子供与性化合物で吸収され、電子とホールの結合した励起子を生成する。生成した励起子が移動して、電子受容性化合物と電子供与性化合物が隣接しているヘテロ接合界面に達すると界面でのそれぞれのHOMOエネルギー及びLUMOエネルギーの違いにより電子とホールが分離し、独立に動くことができる電荷(電子とホール)が発生する。発生した電荷は、それぞれ電極へ移動することにより外部へ電気エネルギー(電流)として取り出すことができる。
 本発明の有機光電変換素子の具体的としては、
1.一対の電極と、該電極間に上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と共役高分子化合物とを含有する第一の有機層と、該第一の有機層に隣接して設けられた電子供与性化合物を含有する第二の有機層とを有する有機光電変換素子;
2.一対の電極と、該電極間に電子受容性化合物を含有する第一の有機層と、該第一の有機層に隣接して設けられた上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と共役高分子化合物とを含有する第二の有機層とを有する有機光電変換素子;
3.一対の電極と、該電極間に上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と共役高分子化合物と電子供与性化合物とを含有する有機層を少なくとも一層有する有機光電変換素子;
4.一対の電極と、該電極間に上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と共役高分子化合物と電子受容性化合物とを含有する有機層を有する有機光電変換素子;
5.一対の電極と、該電極間に上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と共役高分子化合物と電子受容性化合物とを含有する有機層を少なくとも一層有する有機光電変換素子であって、該電子受容性化合物がフラーレン誘導体である有機光電変換素子;が挙げられる。
 また、前記5.の有機光電変換素子では、有機層中におけるフラーレン誘導体の含有量が、上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物の含有量と共役高分子化合物の含有量との合計を100重量部とすると、10~1000重量部であることが好ましく、50~500重量部であることがより好ましい。
 このような観点から、本発明の有機光電変換素子としては、前記3、前記4.又は前記5.が好ましく、ヘテロ接合界面を多く含むという観点からは、前記5.がより好ましい。また、本発明の有機光電変換素子には、少なくとも一方の電極と該素子中の有機層との間に付加的な層を設けてもよい。付加的な層としては、例えば、ホール又は電子を輸送する電荷輸送層が挙げられる。
 上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と共役高分子化合物との組成物を電子供与体として用いる場合、有機光電変換素子に好適に用いられる電子受容体は、電子受容体のHOMOエネルギーが前記共役高分子化合物のHOMOエネルギー、前記低分子芳香族化合物のHOMOエネルギー、前記エストロゲンのHOMOエネルギー及び前記非共役高分子化合物のHOMOエネルギーのいずれのHOMOエネルギーよりも高く、かつ、電子受容体のLUMOエネルギーが前記共役高分子化合物のLUMOエネルギー、前記低分子芳香族化合物のLUMOエネルギー、前記エストロゲンのLUMOエネルギー及び前記非共役高分子化合物のLUMOエネルギーのいずれのLUMOエネルギーよりも高くなる。また、式(1)で表される構造から水素原子を2個除いた基と水酸基とを有する低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と共役高分子化合物との組成物を電子受容体として用いる場合、有機光電変換素子に好適に用いられる電子供与体は、電子供与体のHOMOエネルギーが前記共役高分子化合物のHOMOエネルギー、前記低分子芳香族化合物のHOMOエネルギー、前記エストロゲンのHOMOエネルギー及び前記非共役高分子化合物のHOMOエネルギーのいずれのHOMOエネルギーよりも低く、かつ、電子供与体のLUMOエネルギーが前記共役高分子化合物のLUMOエネルギー、前記低分子芳香族化合物のLUMOエネルギー、前記エストロゲンのLUMOエネルギー及び前記非共役高分子化合物のLUMOエネルギーのいずれのLUMOエネルギーよりも低くなる。
 本発明の有機光電変換素子は、通常、基板上に形成される。この基板は、電極を形成し、有機物の層を形成する際に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコン等が挙げられる。不透明な基板の場合には、反対の電極(即ち、基板から遠い方の電極)が透明又は半透明であることが好ましい。
 前記の透明又は半透明の電極材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性材料を用いて作製された膜(NESA等)や、金、白金、銀、銅等が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。電極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。さらに電極材料としては、金属、導電性高分子等を用いることができ、好ましくは一対の電極のうち一方の電極は仕事関数の小さい材料が好ましい。例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらのうち2つ以上の合金、又はそれらのうち1つ以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1つ以上との合金、グラファイト又はグラファイト層間化合物等が用いられる。
 合金の例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等が挙げられる。
 前記付加的な層としての電荷輸送層、即ち、ホール輸送層、電子輸送層に用いられる材料として、それぞれ後述の電子供与性化合物、電子受容性化合物を用いることができる。付加的な層としてのバッファ層として用いられる材料としては、フッ化リチウム等のアルカリ金属、アルカリ土類金属のハロゲン化物、酸化物等を用いることができる。また、酸化チタン等無機半導体の微粒子を用いることもできる。
 本発明の有機光電変換素子における前記有機層としては、例えば、上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と、共役高分子化合物とを含有する有機薄膜を用いることができる。
 前記有機薄膜は、膜厚が、通常、1nm~100μmであり、好ましくは2nm~1000nmであり、より好ましくは5nm~500nmであり、さらに好ましくは20nm~200nmである。
 前記有機薄膜のホール輸送性を高めるため、前記有機薄膜中に電子供与性化合物及び/又は電子受容性化合物として、前記低分子芳香族化合物、エストロゲン、非共役高分子化合物、共役高分子化合物以外の成分を混合して用いることもできる。
<有機薄膜の製造方法>
 本発明の有機光電変換素子に含まれる有機層は、上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と、前記共役高分子化合物との組成物を用いて製造することができる。有機層中に、さらに電子受容性化合物を含む場合は、上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と共役高分子化合物と電子受容性化合物との組成物を用いて製造することができる。また、有機層中に、さらに電子供与性化合物を含む場合は、上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と共役高分子化合物と電子供与性化合物との組成物を用いて製造することができる。
 前記組成物中の上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物の含有量は、共役高分子化合物100重量部に対して、好ましくは0.1~10000重量部であり、より好ましくは1~1000重量部である。組成物中に電子受容性化合物が含まれる場合、組成物中の電子受容性化合物の含有量は、上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物の含有量と共役高分子化合物の含有量との合計を100重量部とすると、1~10000重量部であることが好ましく、10~2000重量部であることがより好ましい。組成物中に電子供与性化合物が含まれる場合、組成物中の電子供与性化合物の含有量は、上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物の含有量と共役高分子化合物の含有量との合計を100重量部とすると、1~100000重量部であることが好ましく、10~1000重量部であることがより好ましい。
 前記有機薄膜の製造方法は、特に制限されず、例えば、前記組成物と溶媒とを含む溶液からの成膜による方法が挙げられるが、真空蒸着法により薄膜を形成してもよい。
 溶液からの成膜に用いる溶媒は、上記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と、共役高分子化合物とを溶解させるものであれば特に制限はない。この溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n-ブチルベンゼン、sec-ブチルベゼン、t-ブチルベンゼン等の不飽和炭化水素溶媒;四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロ硫黄ペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素溶媒;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素溶媒;テトラヒドロフラン、テトラヒドロピラン等のエーテル類溶媒等が挙げられる。本発明に用いられる式(1)で表される構造から水素原子を2個除いた基と水酸基とを有する低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と、共役高分子化合物との組成物は、通常、前記溶媒に0.1重量%以上溶解させることができる。
 溶液からの成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができ、スピンコート法、フレキソ印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。
<素子の用途>
 有機光電変換素子は、透明又は半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
 また、電極間に電圧を印加した状態で、透明又は半透明の電極から光を照射することにより、光電流が流れ、有機光センサーとして動作させることができる。有機光センサーを複数集積することにより有機イメージセンサーとして用いることもできる。
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
(分子量の測定方法)
 以下の実施例において、共役高分子化合物の分子量は、GPCラボラトリー製GPC(PL-GPC2000)により、求めた。共役高分子化合物を約1重量%の濃度となるようにo-ジクロロベンゼンに溶解させた。GPCの移動相はo-ジクロロベンゼンを用い、測定温度140℃で、1mL/分の流速で流した。カラムは、PLGEL 10μm MIXED-B(PLラボラトリー製)を3本直列で繋げた。
合成例1
(共役高分子化合物1の合成)
Figure JPOXMLDOC01-appb-C000013
 アルゴン置換した2L四つ口フラスコに化合物(C)(7.928g、16.72mmol)、化合物(D)(13.00g、17.60mmol)、メチルトリオクチルアンモニウムクロライド(商品名「aliquat336」(登録商標)、Aldrich製、CHN[(CHCHCl、density 0.884g/mL,25℃)(4.979g)、及びトルエン405mLを入れ、撹拌しながら系内を30分間アルゴンバブリングした。ジクロロビス(トリフェニルホスフィン)パラジウム(II)(0.02g)を加え、105℃に昇温、撹拌しながら2mol/Lの炭酸ナトリウム水溶液42.2mLを滴下した。滴下終了後5時間反応させ、フェニルボロン酸(2.6g)とトルエン1.8mLを加えて105℃で16時間撹拌した。トルエン700mL及び7.5%ジエチルジチオカルバミン酸ナトリウム三水和物水溶液200mLを加えて85℃で3時間撹拌した。水層を除去後、60℃のイオン交換水300mLで2回、60℃の3%酢酸300mLで1回、さらに60℃のイオン交換水300mLで3回洗浄した。次いで、有機層をセライト、アルミナ、シリカを充填したカラムに通し、熱トルエン800mLでカラムを洗浄した。溶液を700mLまで濃縮した後、2Lのメタノールに注加、再沈殿させた。重合体をろ過して回収し、500mLのメタノール、アセトン、メタノールで洗浄した。50℃で一晩真空乾燥することにより、下記式(10)で表されるペンタチエニル-フルオレンコポリマー(以下、「共役高分子化合物1」という)12.21gを得た。共役高分子化合物1のポリスチレン換算の数平均分子量は5.4×10、重量平均分子量は1.1×10であった。
Figure JPOXMLDOC01-appb-C000014
 実施例1
(有機薄膜太陽電池の作製、評価)
 「共役高分子化合物1」を0.5重量%の濃度でo-ジクロロベンゼンに溶解させた。その後、「共役高分子化合物1」100重量部に対して上記低分子芳香族化合物である化合物(E)(本州化学製、商品名「トリスフェノールPA」)を20重量部、さらに、電子受容体として「共役高分子化合物1」100重量部に対して300重量部のC60PCBM(Phenyl C61-butyric acid methyl ester、フロンティアカーボン社製、商品名「E100」、ロット番号:8A0125-A)を溶液に混合した。ついで、該溶液を孔径1.0μmのテフロン(登録商標)フィルターで濾過し、塗布溶液を作製した。
Figure JPOXMLDOC01-appb-C000015
 スパッタ法により150nmの厚みでITO膜を付けたガラス基板をオゾンUV処理して表面処理を行った。次に、前記塗布液を用い、スピンコートによりITO膜上に塗布し、有機薄膜太陽電池の活性層(膜厚約100nm)を得た。その後、真空蒸着機によりフッ化リチウムを4nmの厚さで蒸着し、次いでAlを100nmの厚さで蒸着した。蒸着のときの真空度は、すべて1~9×10-3Paであった。また、得られた有機薄膜太陽電池の形状は、2mm×2mmの正四角形であった。得られた有機薄膜太陽電池の光電変換効率は、ソーラシミュレーター(分光計器製、商品名「OTENTO-SUNII」:AM1.5Gフィルター、放射照度100mW/cm)を用いて一定の光を照射し、発生する電流と電圧を測定して求めた。結果を表1に示す。
実施例2
(有機薄膜太陽電池の作製、評価)
 「共役高分子化合物1」を0.5重量%の濃度でo-ジクロロベンゼンに溶解させた。その後、「共役高分子化合物1」100重量部に対して低分子芳香族化合物である化合物(E)を20重量部、さらに、電子受容体として「共役高分子化合物1」100重量部に対して500重量部のC70PCBM(Phenyl C71-butyric acid methyl ester、アメリカンダイソース社製、商品名「ADS71BFA」、ロット番号:08C059E)を溶液に混合した。ついで、該溶液を孔径1.0μmのテフロン(登録商標)フィルターで濾過し、塗布溶液を作製した。該塗布溶液を用い、実施例1と同様の方法で有機薄膜太陽電池を作製し、有機薄膜太陽電池の光電変換効率を求めた。測定結果を表1に示す。
実施例3
(有機薄膜太陽電池の作製、評価)
 「共役高分子化合物1」を0.5重量%の濃度でo-ジクロロベンゼンに溶解させた。その後、「共役高分子化合物1」100重量部に対してエストロゲンである化合物(F)(エストラジオール)(シグマ・アルドリッチ社製)を50重量部、さらに、電子受容体として「共役高分子化合物1」100重量部に対して300重量部のC60PCBM(Phenyl C61-butyric acid methyl ester、フロンティアカーボン社製、商品名「E100」、ロット番号:8A0125-A)を溶液に混合した。ついで、該溶液を孔径1.0μmのテフロン(登録商標)フィルターで濾過し、塗布溶液を作製した。該塗布溶液を用い、実施例1と同様の方法で有機薄膜太陽電池を作製し、有機薄膜太陽電池の光電変換効率を求めた。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-C000016
実施例4
(有機薄膜太陽電池の作製、評価)
 「共役高分子化合物1」を0.5重量%の濃度でo-ジクロロベンゼンに溶解させた。その後、「共役高分子化合物1」100重量部に対して上記低分子芳香族化合物である化合物(G)(1,1,1-トリス(4-ヒドロキシフェニル)エタン、東京化成製)を50重量部、さらに、電子受容体として「共役高分子化合物1」100重量部に対して300重量部のC60PCBM(Phenyl C61-butyric acid methyl ester、フロンティアカーボン社製、商品名「E100」、ロット番号:8A0125-A)を溶液に混合した。ついで、該溶液を孔径1.0μmのテフロン(登録商標)フィルターで濾過し、塗布溶液を作製した。該塗布溶液を用い、実施例1と同様の方法で有機薄膜太陽電池を作製し、有機薄膜太陽電池の光電変換効率を求めた。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-C000017
比較例1
(有機薄膜太陽電池の作製、評価)
 化合物(E)を用いない以外は実施例1と同様の方法で有機薄膜太陽電池を作製し、有機薄膜太陽電池の光電変換効率を求めた。測定結果を表1に示す。
比較例2
(有機薄膜太陽電池の作製、評価)
 化合物(E)を用いない以外は実施例2と同様の方法で有機薄膜太陽電池を作製し、有機薄膜太陽電池の光電変換効率を求めた。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000018
[評価]
 表1から分かるように、共役高分子化合物と式(1)で表される構造から水素原子を2個除いた基と水酸基とを有する低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と、共役高分子化合物とを含む有機層を有する有機光電変換素子は、共役高分子化合物のみを含む有機層を有する有機光電変換素子と比較して高い光電変換効率を示した。

Claims (7)

  1.  少なくとも一方が透明又は半透明である一対の電極と、当該一対の電極間に設けられた有機層と、を有し、
     前記有機層が、下記式(1)で表される構造から水素原子を2個除いた基と水酸基とを有する低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物と、共役高分子化合物と、を含む、有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R及びRは、同一又は相異なり、水素原子、アルキル基又はアリール基を表し、R中の炭素原子とR中の炭素原子とが結合し、環を形成してもよい。R及びRは、同一又は相異なり、アルキル基又はアリール基を表し、m及びnは、同一又は相異なり、0~4の整数を表す。Rが複数個ある場合、それらは同一でも相異なっていてもよく、Rが複数個ある場合、それらは同一でも相異なっていてもよい。]
  2.  前記低分子芳香族化合物が、ヒドロキシフェニル基を有する化合物である、請求項1に記載の有機光電変換素子。
  3.  前記低分子芳香族化合物が、下記式(2)で表される化合物である、請求項1に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000002
  4.  前記低分子芳香族化合物、エストロゲン及び水酸基を有する非共役高分子化合物からなる群から選ばれる1種以上の化合物の含有量が、前記共役高分子化合物100重量部に対して、0.1~10000重量部である、請求項1に記載の有機光電変換素子。
  5.  前記有機層が、電子受容性化合物を更に含む、請求項1~4のいずれか一項に記載の有機光電変換素子。
  6.  前記電子受容性化合物が、フラーレン誘導体である、請求項5に記載の有機光電変換素子。
  7.  前記有機層が、電子供与性化合物を更に含む、請求項1~4のいずれか一項に記載の有機光電変換素子。
PCT/JP2009/065636 2008-09-24 2009-09-08 有機光電変換素子 WO2010035632A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09816048A EP2343751A1 (en) 2008-09-24 2009-09-08 Organic photoelectric conversion element
US13/120,314 US20120043529A1 (en) 2008-09-24 2009-09-08 Organic photoelectric conversion element
CN2009801376226A CN102165620A (zh) 2008-09-24 2009-09-08 有机光电转换元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008243843A JP5434027B2 (ja) 2008-09-24 2008-09-24 有機光電変換素子
JP2008-243843 2008-09-24

Publications (1)

Publication Number Publication Date
WO2010035632A1 true WO2010035632A1 (ja) 2010-04-01

Family

ID=42059634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065636 WO2010035632A1 (ja) 2008-09-24 2009-09-08 有機光電変換素子

Country Status (6)

Country Link
US (1) US20120043529A1 (ja)
EP (1) EP2343751A1 (ja)
JP (1) JP5434027B2 (ja)
KR (1) KR20110079644A (ja)
CN (1) CN102165620A (ja)
WO (1) WO2010035632A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011138888A1 (ja) * 2010-05-07 2011-11-10 住友化学株式会社 有機光電変換素子
WO2011138935A1 (ja) * 2010-05-07 2011-11-10 住友化学株式会社 有機光電変換素子
JP5928469B2 (ja) * 2011-08-09 2016-06-01 コニカミノルタ株式会社 有機光電変換素子、およびそれを用いた有機太陽電池
JP5981399B2 (ja) * 2012-10-04 2016-08-31 富士フイルム株式会社 成膜用有機材料及びそれを用いて得られた有機光電変換素子、撮像素子、受光層形成方法、有機光電変換素子の製造方法
FR3022692B1 (fr) * 2014-06-24 2016-07-15 Armor Procede de realisation d'un film organique semi-conducteur
US10879314B2 (en) * 2015-08-27 2020-12-29 Sony Semiconductor Solutions Corporation Photoelectric conversion element, imaging device, and electronic apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0883943A (ja) * 1994-09-13 1996-03-26 Kanebo Ltd 有機半導体
WO2007012844A2 (en) * 2005-07-29 2007-02-01 Isis Innovation Limited Charge separation polymers
WO2007028036A2 (en) * 2005-09-01 2007-03-08 Konarka Technologies, Inc. Photovoltaic cells integrated with bypass diode
WO2008018931A2 (en) * 2006-06-13 2008-02-14 Plextronics, Inc. Organic photovoltaic devices comprising fullerenes and derivatives thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020046316A (ko) * 2000-12-12 2002-06-21 엘지전자 주식회사 유기전계발광 소자
EP1440959A1 (en) * 2001-10-31 2004-07-28 Idemitsu Kosan Co., Ltd. Novel soluble compound and organic electroluminescent devices
JP4333219B2 (ja) * 2002-05-29 2009-09-16 東レ株式会社 感光性樹脂組成物および耐熱性樹脂膜の製造方法
KR101428718B1 (ko) * 2007-02-02 2014-09-24 삼성디스플레이 주식회사 감광성 유기물, 이의 도포 방법, 이를 이용한 유기막 패턴형성 방법, 이로써 제조되는 표시 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0883943A (ja) * 1994-09-13 1996-03-26 Kanebo Ltd 有機半導体
WO2007012844A2 (en) * 2005-07-29 2007-02-01 Isis Innovation Limited Charge separation polymers
WO2007028036A2 (en) * 2005-09-01 2007-03-08 Konarka Technologies, Inc. Photovoltaic cells integrated with bypass diode
WO2008018931A2 (en) * 2006-06-13 2008-02-14 Plextronics, Inc. Organic photovoltaic devices comprising fullerenes and derivatives thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ADVANCED FUNCTIONAL MATERIALS, vol. 13, 2003, pages 85

Also Published As

Publication number Publication date
JP5434027B2 (ja) 2014-03-05
JP2010080478A (ja) 2010-04-08
EP2343751A1 (en) 2011-07-13
KR20110079644A (ko) 2011-07-07
US20120043529A1 (en) 2012-02-23
CN102165620A (zh) 2011-08-24

Similar Documents

Publication Publication Date Title
JP5375218B2 (ja) 有機光電変換素子
JP5375161B2 (ja) 組成物およびそれを用いた有機光電変換素子
JP5303896B2 (ja) 高分子化合物およびそれを用いた有機光電変換素子
JP5462998B2 (ja) 組成物及び有機光電変換素子
JP5682108B2 (ja) フラーレン誘導体
JP6024785B2 (ja) 有機光電変換素子
JP5332934B2 (ja) 有機光電変換素子
JP5434027B2 (ja) 有機光電変換素子
JP5834682B2 (ja) 高分子化合物及びそれを用いた電子素子
JP2009215349A (ja) 高分子化合物およびそれを用いた有機光電変換素子
JP5673333B2 (ja) 有機光電変換素子
JP5104074B2 (ja) 重合体及びそれを用いた有機光電変換素子
JP5601276B2 (ja) 有機光電変換素子
JP2012191026A (ja) 有機光電変換素子
WO2011138902A1 (ja) 有機光電変換素子
JP2012023324A (ja) フラーレン構造を有する高分子化合物を含む組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980137622.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09816048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117008256

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13120314

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009816048

Country of ref document: EP