WO2010034846A1 - Procedimiento rápido de detección de microorganismos con partículas magnéticas - Google Patents

Procedimiento rápido de detección de microorganismos con partículas magnéticas Download PDF

Info

Publication number
WO2010034846A1
WO2010034846A1 PCT/ES2008/000613 ES2008000613W WO2010034846A1 WO 2010034846 A1 WO2010034846 A1 WO 2010034846A1 ES 2008000613 W ES2008000613 W ES 2008000613W WO 2010034846 A1 WO2010034846 A1 WO 2010034846A1
Authority
WO
WIPO (PCT)
Prior art keywords
microorganism
quantifying
concentration
antibody
particles
Prior art date
Application number
PCT/ES2008/000613
Other languages
English (en)
French (fr)
Inventor
Guillermo RODRÍGUEZ ALBALAT
María Luisa JIMÉNEZ BONO
Daniel CANÓS MARTÍ
Original Assignee
Biótica, Bioquímica Analítica, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biótica, Bioquímica Analítica, S.L. filed Critical Biótica, Bioquímica Analítica, S.L.
Priority to PCT/ES2008/000613 priority Critical patent/WO2010034846A1/es
Priority to DK08877043.3T priority patent/DK2336349T3/en
Priority to SI200831595A priority patent/SI2336349T1/sl
Priority to EP08877043.3A priority patent/EP2336349B1/en
Priority to ES08877043.3T priority patent/ES2566478T3/es
Priority to JP2011528373A priority patent/JP5675022B2/ja
Publication of WO2010034846A1 publication Critical patent/WO2010034846A1/es
Priority to US13/295,937 priority patent/US9201066B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • G01N33/54333Modification of conditions of immunological binding reaction, e.g. use of more than one type of particle, use of chemical agents to improve binding, choice of incubation time or application of magnetic field during binding reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/005Pretreatment specially adapted for magnetic separation
    • B03C1/01Pretreatment specially adapted for magnetic separation by addition of magnetic adjuvants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/04Magnetic separation acting directly on the substance being separated with the material carriers in the form of trays or with tables
    • B03C1/06Magnetic separation acting directly on the substance being separated with the material carriers in the form of trays or with tables with magnets moving during operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1095Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers
    • G01N35/1097Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers characterised by the valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/26Details of magnetic or electrostatic separation for use in medical applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0098Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation

Definitions

  • the present invention relates to methods for the detection, semi-quantification and rapid quantification of live microorganisms in solutions or suspensions using immunomagnetic particles, without the need for pre-enrichment by culture of the microorganism.
  • the invention also relates to the kits for carrying out said procedures and the quantification of the microorganisms detected by means of an automated biosensor device.
  • Microbial contamination has severe consequences for human and environmental health, not only for its effect on prevention and health care, but also for its long-term economic impact (Hutton G, Bartram J, "Global costs of attaining the Millennium Development Goal for water supply and sanitation ", Bulletin of the World Health Organization, 86 (1): 13-9, 2008).
  • Bacteria, viruses, yeasts and protozoa are causative agents of an extraordinary number of diseases.
  • These infectious microorganisms are biological agents that reach their hosts through supports that serve as a vehicle, establish themselves in the body of their host and cause damage.
  • a microorganism is a prokaryotic or eukaryotic microscopic organism, not including viruses.
  • Bacteria mainly include those known as pathogens, such as, for example, Enterobacteriaceae, Vihr ⁇ onaceae, Bacillus, Escherichia, Streptococcus, Pseudomonas, Salmonella, Legionella, Enterobacter, etc.
  • pathogens such as, for example, Enterobacteriaceae, Vihr ⁇ onaceae, Bacillus, Escherichia, Streptococcus, Pseudomonas, Salmonella, Legionella, Enterobacter, etc.
  • Bacteria can spread to vertebrates by different methods, specifically through food (for example, Salmonella), contaminated drinks (for example, Escherichia col! Or in airborne droplets (by example, Legionella). Thus, its absence should be checked regularly in places such as cooling towers, water pipes in hospitals and hotels, public buildings such as schools, swimming pools, gyms, spas, spas, and the like. In general, the process of the present invention will be applied to pathogenic bacteria. These supports can contain the infectious microorganism, causing the damage or disease, for a sufficient time to allow even its proliferation, so that in only a few hours or days they can reach an infective concentration, above which it is highly likely that they will arrive to the host and cause damage.
  • the standard method includes the isolation and counting of the colonies of the bacteria grown under certain conditions in culture. It also presents serious limitations to perform a correct prevention of the risk associated with the microorganism, among others, the following: 1) the concentration of the microorganism that is to be determined in the samples can be low, and it can also be accompanied by other different microorganisms (microbiota). Consequently, it may be necessary to separate the microbiota before inoculating the culture media.
  • said microbiota can compete favorably in the culture medium, and proliferate until masking or preventing the growth of the microorganism to be determined; and 2) generally the time required from the sampling until the count is obtained, is greater than the time necessary for the microorganism to double, in several hours, and in some cases even in several days or weeks. This time is even significantly longer than the time that the microorganism may require to reach an infective concentration. Therefore, it is necessary to be able to detect the microorganism in the sample in a short time, for example approximately in 1 hour.
  • recognition biomolecules such as antibodies, antigens and nucleic acids
  • solid phase a wide variety of supports
  • immunoassays including those of type of ELISA type (enzyme-linked immunosorbent assay) requires a minimum concentration of 10 5 -10 6 cells for the detection of the microorganism, in a limited test volume generally between 0.1 and 1.0 ml. This limit is very conditioned because these methods do not allow the use of large volumes of sample since many commercially available immunoassays require a minimum concentration of microorganism cells for detection, which makes a pre-enrichment of the sample necessary and consequently a significant increase in the test time, necessary to achieve a sufficient cellular concentration of the microorganism to be determined. 2) In addition, the method does not differentiate between live or dead bacteria, because the free antigen is also detected, and because after the application of biocidal treatments, false positives could be obtained due to the presence of dead bacteria or the free antigen.
  • the limit of detection of the test depends to a large extent on the composition of the sample, both microbiological and chemical, because the presence of certain chemical compounds or enzymatic activities of other microorganisms or even of the microorganism that is to be analyzed, may interfere in the detection and quantification of the latter.
  • PCR PCR-based on the amplification of a specific fragment of the genome of the microorganism. It involves extracting and purifying the nucleic acids from a sample, and then proceeding to their enzymatic amplification (by means of the enzyme polymerase) by cycles, and revealed by electrophoresis or dizzying with fluorescent probes.
  • the main limitations of these methods are the high variability that the results show depending on the matrix analyzed (Yaradou DF, Hallier-Soulier S, Moreau S, Poty F, Hillion Y,
  • a representative patent document for analysis of bacteria in liquid samples by PCR is WO 01/40505 A1.
  • Said document describes an analysis procedure for the presence of Legionella with an immunocapture stage, and mentions that the main advantage of detecting Legionella by PCR is that it needs 24 to 48 hours if the analysis is carried out by this method, comparatively to the traditional method of cultivation that needs 10 to 15 days to get the results.
  • the bacteria can be captured by means activated with antibodies, and the possibility of using magnetic balls is mentioned, to then break the cells and extract the DNA, in order to perform a PCR. It is therefore a method that requires the breakage of the integrity of the microorganism and that is subject to the known drawbacks of the PCR.
  • the invention also relates to a kit for carrying out the method.
  • US patent document 2006/0246535 A1 describes the detection of microorganisms in solution or dispersion, without pre-enrichment, using latex microspheres coated with antibodies, subsequently detecting the microorganism by means of agglutination measurement.
  • Document ES 2 237 272 A1 describes a procedure to detect and quantify specific Legionella pneumophila antibodies in sexological samples, by agglutination-sedimentation of latex particles sensitized with an L. pneumophila antigen. The method of obtaining the sensitized latex particles and the reaction buffer where the immunoreaction is developed is also described.
  • patent documents US 5,834,197 and 6,159,689 both of the same authors, describe methods of capturing and marking a species, which consist of the attraction of particles that have an affinity for the species sought.
  • the method comprises the magnetic attraction of said particles on a solid support by magnetic forces, and being immobilized, thus forcing the sample to circulate and pass it through the support.
  • the detection of microorganisms in a sample describes a method comprising adhering specific antibodies to a marker of the microorganisms, from capture to a solid support; followed by the addition of a few second antibodies that may be conjugated to a molecule that denotes the presence of microorganisms, preferably by means of light that can be detected.
  • Document ES 2 208 121 A1 also refers to a method for the identification and quantification of analytes in which antibodies and antigens they are immobilized, but instead of on a solid support as in WO 02/101354 A2, US 5,834,197 and 6,159,689, on silica magnetic particles that are used as biosensors.
  • the magnetic particles of the invention are iron oxide nanoparticles obtained by the method of Massart, with a size of 5 to 30 nm, covered by a layer of silica 30 to 100 nm thick.
  • WO 2006/123781 A1 also refers to the use of silica magnetic particles in methods to recover a myco-organism from a sample, for which the sample is contacted with the particles that absorb it.
  • the particles are characterized in that they have a diameter of 6 ⁇ m or less and their specific surface area is 50 m 2 / g or less.
  • US 2006/0211061 A1 refers to methods for the rapid detection of pathogenic microorganisms in a fluid by means of immunoassays.
  • the method consists of joining a magnetic microparticle with a first epitope of the microorganism in a fluid by means of an antibody; use a magnetic field to separate the magnetic microparticle attached to the microorganism; by binding a glucose molecule through a second antibody to the second epitope of the microorganism in question; and detect the glucose in the sample to determine the presence and concentration of the microorganism.
  • the microparticles comprise microspheres of a superparamagnetic material coated with a polymer or protein, for example, albumin or avidin.
  • the immobilization of the antibodies on the surface of the magnetic particles requires the presence on said surface of reactive groups, for example hydroxyl, amino or carboxylic groups. Once the antibodies are bound to the surface by means of said reactive groups, free groups can be left that represent active sites to which other compounds present in the sample can also bind that may interfere with the antigen-antibody interaction, or in the composition of the reagents development, or even the immobilized antibodies themselves whose orientation to the external environment is altered, making interaction with the antigen less likely and consequently the capture and recovery of the microorganism.
  • reactive groups for example hydroxyl, amino or carboxylic groups.
  • the immunomagnetic particles collide with each other so that they can interact through weak bonds that can favor the formation of aggregates before mixing with the sample, or after mixing with the sample, an effect that depends on the concentration of the particle and contact time. This limits the possibility of reducing the detection limit by increasing the amount of particle, and limits the useful life of the method based on the use of the particles.
  • the magnetic particles mixed with the complex sample can interact with some components that can favor the formation of aggregates, so that the interaction of the particle with the microorganism is less likely, and so that the efficiency of the magnetic retention is Minor; consequently it makes the capture and recovery of the microorganism of interest less likely and its efficiency decreases.
  • composition and concentration of different antigens that microorganisms expose on their surface can change in response to changes in environmental conditions (Albers U, Tiaden A, Spirig T, Al Alam D, Goyert SM, Gangloff SC, Hilbi H., "Expression of Legionella pneumophila paralogous lipid A biosynthesis genes under different growth conditions", Microbiology, 153 (Pt 11): 3817-29, 2007), and consequently the sensitivity and reproducibility of the determination of the The microorganism may depend on the origin of the sample and its environmental conditions.
  • the microorganisms of interest that are captured by the immunomagnetic particles can present endogenous enzymes that interfere with the reading of the complexes that form with said particles, and that cannot be separated and eliminated without altering the structural integrity of the captured microorganism. These interferences are dependent on the concentration of the captured microorganism, so that for high concentrations of the microorganism, said interferences can cause an underestimation of the amount of the microorganism in a quantitative or semi-quantitative determination, or cause a false negative in a qualitative determination.
  • strict non-anaerobic pathogenic microorganisms such as, among others, Escherichia coli, Staphylococcus, Legionella, Klebsiella, Bacillus, Salmonella, Campilobacter or Listeria, have an endogenous enzyme, , which competes for the hydrogen peroxide added as a substrate of the enzyme peroxidase, usually conjugated to the reading antibody.
  • the apparatus comprises a series of operating modules, in which the samples are handled, processed and analyzed, and a series of control modules, which monitor the operation of said operating modules.
  • the method for analyzing the sample comprises reacting said sample with a biosensor, washing the excess of unreacted sample and detecting the sample retained in the biosensor.
  • WO 93/25909 A1 refers to an apparatus for detecting the presence of analytes of interest in a sample, particularly biosensors, as well as the method for detecting the presence of an analyte
  • US 7,220,596 B2 refers to Ia detection of antigens that can be captured and detected from samples such as food, in approximately 30 minutes using an apparatus and method that includes the passage of the sample through a module containing antibodies bound to particles. The flow of the sample through the modified particles is 0.2 to 1.2 L / minute. The antigens are thus captured by the antibodies and then the detection of the antibodies is carried out by fluorescence, chemiluminescence, or spectrometry techniques.
  • a method that can be carried out in situ is still necessary, for example, by means of a kit, which allows to detect and semi-quantify a specific pathogenic microorganism in a minimum time, such as 1 hour, to be able to Take the necessary measures immediately.
  • kits and procedures are proposed for the rapid and sensitive determination of the presence of microorganisms in a wide range of samples of environmental or food origin, as well as in biological fluids, by means of suspended immunomagnetic particles, which saves the previous inconveniences, allowing to obtain the result of the analysis in situ, in a time less than or equal to one hour, without limiting the volume of the sample, and for concentrations of the microorganism of interest of the order of 1 cell per milliliter, and makes its industrial application possible.
  • the present invention provides a method for detecting and semi-quantifying live microorganisms in situ in a sample. In another embodiment, the present invention provides a method for quantifying live microorganisms from a sample in the laboratory. And in another embodiment, the present invention provides a method for detecting and quantifying live microorganisms by means of an automated biosensor device.
  • the process of the present invention reduces the weak interactions that can occur between the particles thanks to the fact that said particles are protected at all times of the analysis, by blocking their constant surface, obtained by displacing the sorption-desorption balance of a molecule of block towards the adsorbed molecule.
  • Said blocking allows a dynamic inertization or coating, which conceals the reactive groups of the surface of the particle, and prevents such interactions, so that the aggregation of particles is reduced, as well as their adhesion to the container surfaces.
  • the concentration of the blocking agent which determines the amount of blocking molecule in a position to be adsorbed
  • the buffers which determines the ionic strength to allow the approximation of the blocking molecule to the surface of the particle
  • they allow maintaining at all times the necessary amount of adsorbed blocking molecules and an adequate ionic strength so that said molecules they can be quickly replaced by others close to the surface of the support, and so that the reading molecules approach the captured microorganism; and also, because combined chelating agents and surfactants are used to reduce interference of the sample due to the formation of insoluble complexes that damage the magnetic retention of the particles, and an inhibitor of potentially interfering microbial activities that can compete with the molecule of reading by the substrates that said molecule uses for the development of the signal that is measured.
  • all this makes possible a quantitative recovery of the particles that allows handling large volumes and improving the sensitivity of the method since it increases the absolute amount of cells of the microorganism of interest as well as the probability of collision, capture and
  • the present invention also relates to a kit for detecting the presence or absence of an antigen produced by a specific bacterium of the sample, which contains the magnetic particles bound to specific antibodies directed against the corresponding antigens of the determined bacterium, as well as molecules. blockers, a second labeled antibody and all the reagents necessary to carry out the procedure.
  • the present invention also relates to an automated biosensor equipment for the detection and / or semi-quantification and / or quantification of live microorganisms in the laboratory from a sample.
  • microorganism means any microscopic prokaryotic organism (including bacteria) or eukaryotic (including protozoa, algae, yeasts and fungi), not including viruses.
  • Bacteria mainly include those known as pathogens, such as Enterobacteriaceae, Vibr ⁇ onaceae, Bacillus, Escherichia, Streptococcus, Pseudomonas, Salmonella, Legionella, Enterobacter, etc.
  • pathogens such as Enterobacteriaceae, Vibr ⁇ onaceae, Bacillus, Escherichia, Streptococcus, Pseudomonas, Salmonella, Legionella, Enterobacter, etc.
  • Support means a solid consisting of a polymeric material that has a high number of chemical groups on the surface necessary for the fixation of molecules of interest.
  • To quantify means to determine exactly the concentration or quantity of the microorganism of interest in the sample. By semiquantifying it is understood to determine approximately the concentration of the microorganism of interest in the sample.
  • sample is considered the one that is suspected of containing the microorganism.
  • the sample will generally be of environmental or food origin, and in certain cases it will be of biological fluids, such as sputum, respiratory secretions or lung tissue.
  • antibody is meant a molecule capable of specifically recognizing and binding to certain molecules exposed in the microorganism of interest, called antigens.
  • antigens a molecule capable of specifically recognizing and binding to certain molecules exposed in the microorganism of interest.
  • Such antibodies can be capture or read, and can be monoclonal or polyclonal.
  • polyclonal antibody is meant a homogeneous antibody derived from a single hybridoma clone, whereby all carry identical antigen binding sites.
  • polyclonal antibody is meant a heterogeneous set of antibodies directed against different sites of the same antigen.
  • antibody that interacts with its corresponding antigen exposed on the surface of the cell of the microorganism, conjugated with a molecule capable of producing a detectable signal, for example an enzyme that catalyzes a reaction that produces a color or a change of absorbance, or for example a molecule capable of producing a fluorescent emission.
  • a molecule capable of producing a detectable signal for example an enzyme that catalyzes a reaction that produces a color or a change of absorbance, or for example a molecule capable of producing a fluorescent emission.
  • capture antibody is meant: an antibody that is immobilized on the surface of the support and interacts with its corresponding antigen exposed on the surface of the cell of the microorganism to form a support-microorganism complex.
  • Oxidizing substrate refers to the chemical compound that gains electrons in a redox reaction.
  • Oxidizable substrate refers to the chemical compound that yields electrons in a redox reaction. Also called reducing substrate. Strong acid is that acid that in aqueous solution completely dissociates into its constituent ions, providing hydrogen ions to the medium (H + ).
  • Strong base refers to the base that in aqueous solution completely dissociates into its constituent ions, providing hydroxyl ions (OH " )
  • weak salt is understood that salt that in aqueous solution dissociates into its constituent ions only in a small part, as opposed to the strong salt that is 100% dissociated.
  • Chelating agent refers to the compound that forms a soluble complex with metal ions called chelate.
  • Surfactant refers to the agent that decreases the surface tension on the contact surface between two phases.
  • bacteriostatic agent is understood that chemical substance that inhibits the growth and reproduction of the microorganism without killing it.
  • Biocidal agent refers to that chemical substance that destroys the microorganism.
  • a first object of the present invention is constituted by a method for detecting and / or semi-quantifying and / or quantifying microorganisms in a solution or suspension, which does not contain pre-cultured microorganisms, comprising the steps of: a) mixing the sample suspected of containing the microorganism with i) a pH buffer suspension, comprising at least one type of paramagnetic particles having an antibody specifically directed against the microorganism to be determined attached to its surface; and ii) at least one type of excess blocking agent molecule on the surface of said magnetic particles not occupied by the antibody; b) incubating the mixture for a certain time under suitable conditions to form the microorganism-magnetic particle complexes; c) apply a magnetic field for the separation and concentration of the microorganism-magnetic particle formed complexes; and subsequent evacuation of the supernatant; d) resuspend the microorganism-magnetic particle complexes in a pH buffer solution, comprising at least one
  • the sample is of environmental, alimentary origin or obtained from biological fluids,
  • the microorganism is a prokaryotic microscopic organism, preferably bacteria and more preferably or eukaryotic, preferably protozoa, algae, yeasts and fungi, pathogenic bacteria, as species of Enterobacteriaceae, Vibrionaceae, Bacillus, Escher ⁇ chia, Streptococcus, Pseudomonas, Salmonella, Legionella, Enterobacter, etc., or a eukaryotic organism, preferably protozoa, algae, yeasts and fungi
  • the antibody for reading and / or capturing the microorganism of interest is monoclonal or polyclonal.
  • the magnetic particles are spherical and the diameter range is 0.5 ⁇ m to 2 ⁇ m, preferably 0.7 ⁇ m to 1.5 ⁇ m, and more preferably 0.8 ⁇ m to 1.0 ⁇ m, said particles being chemically functionalized especially with groups - NH2, -COOH U -OH - during all stages an excess concentration of at least one type of blocking molecule is maintained, so that the adsorption-desorption equilibrium is displaced towards the adsorbed molecule, to prevent non-specific adsorption on magnetic particles, avoiding false positives and false negatives.
  • the blocking molecule is a protein, preferably bovine serum albumin, milk casein, cold-water fish skin jelly, skin jelly, skim milk, or a carbohydrate, preferably polydextrans.
  • the detection of the presence of a microorganism is detected visually in the solution or suspension, the production of coloration indicative of the presence of the microorganism.
  • Another object of the invention relates to the procedure in which the time in the immunocapture stage is increased by increasing the sensitivity of the method thanks to the fact that the sustained protection of the surface of the particle prevents the increase of non-specific adsorption during the entire analysis.
  • Another object of the invention relates to the kit for carrying out the procedure described above, characterized in that it comprises: a reusable portable device for manual use for in situ analysis and a set of compositions or reactive means for carrying out the analysis, all arranged in a container that incorporates a cooling plate.
  • Said kit comprises a support with at least two cuvettes and a magnet, and a color chart for a correct interpretation of the results being the compositions or reactive media: a) composition for the capture of the microorganism of interest, which comprises a suspension of particles immunomagnetic (with the capture antibody immobilized on its surface by covalent binding, and a blocking agent bound to the surface not occupied by the antibody, by non-covalent binding), in a liquid medium containing in solution ⁇ ) the same agent blocking, ii) a chelating agent, iii) a surfactant agentjv) a biocidal agent, and v) a bacteriostatic agent, and which has a high ionic strength, corresponding to a solution of a phosphate buffer with a concentration between 90 and 500 mm, preferably between 100 and 200 mM, and more preferably 150 mM.
  • a composition for the capture of the microorganism of interest which comprises a suspension of particles immunomagnetic (with the capture antibody im
  • composition of the microorganism of interest comprising a reading antibody, conjugated with a reading molecule or a fluorescent substance, in a solution containing i) a blocking agent and ii) an enzyme activity inhibiting agent present in the microorganism that can compete in the reading molecule, and which has average ionic strength corresponding to a solution of a phosphate buffer of concentration between 30 and 90 mm, preferably 50 mM citrate phosphate buffer and pH 6.0.
  • reading composition of the microorganism of interest which comprises an oxidizing substrate, necessary for the development of the reading reaction, in a solution of a phosphate-citrate buffer, preferably of pH 6.0 and 50 mM concentration.
  • a stop composition of the reading reaction which comprises a strong acid or a strong base.
  • composition for washing the immunomagnetic particles comprising a blocking agent, a surfactant and a bacteriostatic agent, with a low ionic strength corresponding to a solution of a phosphate buffer of concentration between 5 and 30 mm, preferably phosphate of sodium at pH 7.0 and concentration between 20 and 30 mM, preferably 25 mM.
  • the blocking agent is a carbohydrate or protein, preferably. protein, and more preferably a protein selected from the serum albumin group, powdered milk casein, milk casein in solution, cold water fish skin jelly, swine skin jelly, skimmed milk powder, polydextrans; etc
  • the competence of the microbial enzymatic activity with the reading molecule is eliminated either using a specific inhibitor of said activity, such as sodium azide or triazole, preferably triazole, or using as an oxidizing substrate for the reading enzyme, preferably peroxidase, a substituted peroxide, preferably urea peroxide, which the microbial enzyme activity does not recognize.
  • a specific inhibitor of said activity such as sodium azide or triazole, preferably triazole
  • an oxidizing substrate for the reading enzyme preferably peroxidase, a substituted peroxide, preferably urea peroxide, which the microbial enzyme activity does not recognize.
  • the oxidizing substrate is selected from hydrogen peroxide and urea peroxide, preferably 0.05% urea peroxide
  • the oxidizable substrate is selected from 5-aminosalicylic acid, orthophenylenediamine, 2,2'-azino-bis (3-ethylbenzothiazolin-6- sulfonic acid), preferably 0.1% 5-aminosalicylic acid
  • the strong acid is selected from hydrochloric acid, nitric acid and sulfuric acid, preferably 5M hydrochloric acid and 1M sulfuric acid.
  • the strong base is selected from potassium hydroxide and sodium hydroxide, preferably 3M sodium hydroxide.
  • the weak salt is dipotassium phosphate and disodium phosphate, preferably 0.1 M disodium phosphate.
  • the chelating agent is selected from 2,2'-Bipyridyl, dimercaptopropanol, ethylenediaminetetraacetic acid (EDTA), ethylenedioxy-diethylene-dinitrile-tetraacetic acid, ethylene glycol-bis (2-aminoethyl) -N, N, N ', N '-tetraacetic acid (EGTA) 1 nitrilotriacetic acid
  • NTA ortho-phenanthroline
  • salicylic acid and triethanolamine (TEA), preferably EDTA.
  • TEA triethanolamine
  • the surfactant is selected from non-ionic detergents, preferably alkyl polyethoxylated phenols, polyethoxylated fatty alcohols, polyethoxylated fatty acids, alkanolamines or condensates, and more preferably sorbitan monolaurate (Tween 20).
  • non-ionic detergents preferably alkyl polyethoxylated phenols, polyethoxylated fatty alcohols, polyethoxylated fatty acids, alkanolamines or condensates, and more preferably sorbitan monolaurate (Tween 20).
  • the bacteriostatic agent is selected from p-nitrophenyl-di-chloroacetamido propanediol (chloramphenicol), sulfanilamide, 2,4-diamino-5- (3,4,5-trimethoxybenzyl) pimidine (trimethoprim), preferably sodium salt of 2 - Benzoic (ethylmercuriomercapto) (thimerosal).
  • the biocidal agent is selected from streptomycin, neomycin, gentamicin, kanamycin, and sodium azide, preferably sodium azide.
  • Another object of the invention constitutes the kit described above characterized in that: a) in the composition for the capture of the microorganism of interest, in the suspension, the immunomagnetic particles are spherical and of an average diameter between 0.8 and 1.1 ⁇ m,
  • the capture antibody is a polyclonal or monoclonal anti-Legionella antibody, covalently bound to the surface of the particles
  • the blocking agent is bovine serum albumin (BSA) in a 10% concentration
  • the chelating agent is ethylenediaminetetraacetic acid (EDTA) at 0.1%
  • the surfactant is 1% sorbitan monolaurate
  • the biocidal agent is sodium azide in 0.1% concentration
  • the bacteriostatic agent is thimerosal in concentration 0.01%, all in a buffer solution 150 mM concentration phosphate at pH 7.0.
  • the reading antibody is an anti-Legionella antibody conjugated with peroxidase, being in the solution containing them i) the bovine serum serum albumin blocking agent (BSA) at 0.1% and ii) the agent that inhibits the activity of enzymes present in the microorganism that can compete in the 0.01% triazole reading molecule, in a 50 mM phosphate and citrate buffer solution at pH 6.0.
  • BSA bovine serum serum albumin blocking agent
  • the oxidizable substrate necessary for the development of the reading reaction is 0.1% 5-aminosalicylic acid, and a weak salt of disodium phosphate in a concentration of 0.1 M , at pH between 7.5 and 8.0, to reduce the autooxidation of said substrate
  • the oxidizing substrate in the reading composition of the microorganism of interest, is hydrogen peroxide or urea peroxide, preferably 0.05% urea peroxide, in a solution of a 50 mM concentration phosphate citrate buffer at pH 6.0.
  • the strong acid is 5M hydrochloric acid or 1M sulfuric acid and the strong base is 3M sodium hydroxide.
  • the blocking agent is 0.1 bovine serum albumin
  • the surfactant is 0.02% sorbitan monolaurate
  • the bacteriostatic agent is 0.01% thimerosal ⁇ in a solution of a phosphate buffer of a concentration of 25 mM at pH 7.0.
  • Another object of the invention relates to the reusable manual analysis device for the detection or quantification of microorganisms in a solution or suspension following the method of the invention, which comprises a support (1) containing a base (2) and two lateral inclined planes (3); a movable axis (4) that supports a magnet (5) and allows its displacement with respect to the support; at least one clamp-shaped clamp (7), and at least one cuvette (6) that rests on the base and is fixed in position by the clamp-shaped clamp (7) according to Figure 2.
  • Another object of the invention relates to the use of said manual device for carrying out in situ analysis.
  • Another object of the invention relates to the automated biosensor for carrying out the procedure described above, in an automated manner, characterized by consisting of an integrated system comprising
  • an optical transducer that in the case of Legionella consists of a spectrophotometer or spectrofluorimeter.
  • each measurement cycle comprises the analysis of a blank and the analysis of a sample, the resulting absorbance value being a consequence of subtracting the blank signal from the sample signal.
  • Another object of the invention relates to the use of the biosensor described above for the online monitoring of the concentration of a microorganism in water, based on the use of disposable aliquots of immunomagnetic particles for the capture of said microorganism.
  • said Microorganisms are Legionella, and / or Salmonella, and / or Escherichia coli, and / or Listeria, and / or Staphylococcus, and / or Streptococcus, and / or Brettanomyces.
  • FIG. 1 Scheme of the device used in the invention for manual analysis.
  • this device comprises a support (1) containing a base (2) and two lateral inclined planes (3); a movable axis (4) that supports a magnet (5) and allows its displacement with respect to the support; at least one clamp-shaped clamp (7), and at least one cuvette (6) that rests on the base and is fixed in position by the clamp-shaped clamp (7).
  • the biosensor comprises two compartments A and B, B being contained in A.
  • the compartment A comprises a set of peristaltic and reservoir pumps. From a reservoir (22) a standard or white substance is transferred to the reaction cell (11) by a peristaltic pump (1); The sample is transferred from the sampling point by means of a peristaltic pump (6) to the reaction cell (11); a composition containing the suspension of immunomagnetic particles is homogenized by means of a stirring device (16) and transferred from the corresponding reservoir (15) by a peristaltic pump (3) to the reaction cell (11); a stirring device (17), allows homogenizing the mixtures in the reaction cell (11); a magnetic retention device (12) allows activating or deactivating a magnetic field on the reaction cell (11); a peristaltic pump (8) allows to evacuate the content of the reaction cell (11) to waste; A composition containing an antibody directed against the microorganism of interest, called the reading antibody, is transferred
  • FIG.3 Record obtained in the automated biosensensor of the signal of a target (Without Legionella) and the signal of a sample (With Legionella).
  • Figure 3 shows the continuous recording of absorbance readings at 550 nm as a function of time, corresponding to a measurement cycle of the automated biosensor, comprising the signal obtained for a blank (1) and a sample containing Legionella pneumophila (2 ) at a concentration of 2 x 10 6 cfu / l, said concentration determined in parallel by the culture method.
  • the resulting value of subtracting the maximum absorbance value of the blank from the maximum absorbance value of the sample corresponds to the concentration of Legionella in the sample.
  • FIG. 4 Correlation between absorbance and Legionella concentration in sanitary water.
  • Figure 4 shows the correlation obtained between the concentration of Legionella and the measured absorbance, both magnitudes expressed in logarithmic form, in sanitary water samples.
  • FIG. 5 Results obtained with the automated biosensor for sanitary water samples and their correspondence with the cultivation method.
  • Figure 5 presents the values obtained for different sanitary water samples using the automated biosensor, and its parallelism with the corresponding values obtained by the cultivation method, in a wide range of concentrations between 10 3 and 10 8 cfu / l.
  • FIG.6 Effect of the endogenous activity of the captured microorganism on the sensitivity of its determination.
  • Figure 6 shows the variation of the absorbance at 405 nm as a function of time, in the kinetic reading of two samples of the same concentration of the microorganism (Escherichia coli), with respect to a blank, without the microorganism (symbolized by a triangle) .
  • FIGURE 7 Semi-quantitative determination of Legionella Spp. According to the table of Figure 7, the order of magnitude of the concentration of Legionella in the sample, expressed as colony forming units in a liter (cfu / l), can be estimated according to the color developed by the kit. The different absorbance intervals correspond to different intensities of the color produced, visually distinguishable without the need for optical reading.
  • FIGURE 8 Quantitative determination of Legionella.
  • the table of figure ⁇ shows the correspondence for the concentration of Legionella between the values obtained by culture (1), and the values obtained by the process of the present invention, both in its quantitative realization (2), and in its qualitative realization (3). It can be seen that the present invention allows a reliable determination of the presence or quantity of the microorganism of interest in the sample.
  • FIGURE 9. Comparison of the protective effect against non-specific adsorption of a static coating against a dynamic coating of the particle.
  • the table of Figure 9 shows the absorbance readings at 405 nm obtained by testing different concentrations of Escherichia coli, for two different types of coating of the immunomagnetic particles.
  • the static coating refers to the covalent bonding of a polymer on the surface of the particle (A)
  • the dynamic coating refers to the noncovalent bonding of a protein sustained over time by forced displacement of the adsorption-desorption equilibrium of Ia protein towards the adsorbed molecule (B), the latter being the method carried out by the present invention.
  • the discrimination of Escherichia coli concentrations in the samples and the proportionality of the readings obtained with said concentration are better with the dynamic coating (B) carried out by the present invention.
  • FIGURE 10 Protective effect with respect to the non-specific adsorption of the sustained pressure over time of the blocking agent on the surface of the immunomagnetic particle.
  • the table of Figure 10 shows the dependence of the signal corresponding to the non-specific adsorption of the antibody. of reading on the surface of the immunomagnetic particles anti E. coli. , depending on whether the adsorption-desorption equilibrium of the blocking molecule is maintained (b) or not (a) shifted towards adsorption.
  • the permanent blocking strategy based on maintaining the blocking pressure throughout the analysis allows to reduce the non-specific adsorption significantly, thus obtaining a better sensitivity because the difference in signal between the blank and the sample is significantly greater.
  • FIGURE 11 Improvement of the determination by successive captures.
  • the table of Figure 11 presents a comparison between two particular embodiments of the present invention for the measurement of Legionella concentration in the same water sample.
  • the analysis comprises a single capture event
  • the analysis comprises three successive capture events. The results show that through B it is possible to increase the signal of the sample without increasing the blank signal, making the detection more sensitive, although the test time is increased.
  • FIGURE 12 Improvement of the determination by increasing the immunocapture time.
  • the table of Figure 12 presents a comparison between two particular embodiments of the present invention for the measurement of Legionella concentration in water.
  • the analysis comprises a 15-minute capture event
  • the analysis comprises a 16-hour capture event (ovemigth).
  • the results demonstrate that by b it is possible to increase the signal of the sample without increasing the blank signal, making the detection more sensitive, although the test time is increased.
  • the two particular embodiments proposed by the present invention results in reliable results.
  • FIGURE 13 Discrimination between dead bacteria and live bacteria in the detection of Legionella pneumophila .
  • the table of Figure 13 presents the results obtained with the kit when analyzing samples with live Legionella pneumophila cells and dead Legionella pneumophila cells, in different concentrations .
  • the figure shows how thanks to the present invention dead cells that have been inactivated, and are not detected for any concentration tested, while living cells are detected proportionally to their concentration.
  • FIGURE 14 Comparison of quantitative results of analysis of industrial water samples by PCR and by the present invention.
  • the table of Figure 14 shows the comparison of the Legionella concentration determination analysis of two types of water samples (from cooling towers and wastewater), by plating, by means of the polymerase chain reaction (PCR) and by the method of the present invention.
  • the results show a high degree of agreement
  • the present invention provides a method for the detection and / or semi-quantification in situ of microorganisms in a sample, comprising the steps of: a) mixing the sample to be tested, with a suspension of superparamagnetic particles that have attached to its surface is an antibody directed specifically against the microorganism to be determined; the active surface of the particle not occupied by antibody, being occupied by at least one blocking agent, adsorbed on said surface, under conditions of pH, ionic strength and concentration such that when diluting the suspension with the sample, said conditions allow maintaining a pressure constant of molecules of the blocking agent on the surface of said particles not occupied by the antibody; in consequently, the balance between bound and free blocker molecules remains at all times shifted towards bound blocker molecules.
  • - Said suspension also contains at least one non-ionic detergent and at least one chelating agent, to minimize the aggregation of the particles, without affecting the antigen-antibody interaction.
  • the present invention increases the sensitivity through a technical creation that does not imply the necessary use of nanoparticles, but with microparticles achieves sensitivities of 1 cell / mL (1000 cells / L), an order of magnitude greater than the best sensitivity achieved through the use of nanoparticles in the state of the art.
  • sample is considered the one that is suspected of containing the microorganism.
  • the sample will generally be of environmental or food origin, and in certain cases it will be of biological fluids, such as sputum, respiratory secretions or lung tissue.
  • the present invention uses that in general they are prepared by the following steps: a) preparation of a suspension of magnetic particles with carboxyl groups on their surface in a concentration of 1%; b) chemical treatment of the suspension of carboxylated magnetic particles so that the particles are activated, so that they are capable of covalently binding an antibody; c) mixing the activated magnetic particles with the antibody to obtain immunomagnetic particles, that is, with the antibody bound to its surface; d) treatment of the immunomagnetic particles obtained in step c) to block the surface not occupied by the antibody; e) treatment of blocked immunomagnetic particles obtained in step d) to obtain a stable suspension.
  • the magnetic particles of the present invention are formed on the basis of a polymer, generally of polystyrene with 45-48% magnetic pigment, preferably magnetite inclusions. They are spherical and the diameter range is 0.5 ⁇ m to 2 ⁇ m, preferably 0.7 ⁇ m to 1.5 ⁇ m, and more preferably 0.8 ⁇ m to 1.0 ⁇ m. They are chemically functionalized, especially with -NH2, -COOH or -OH groups, preferably with 70-85 ⁇ eq / g of -COOH groups, on their surface.
  • Other supports can be activated in the same way, for example ferrofluids, which comprise magnetic particles of the order of 200-400 nm in diameter (nanoparticles), for example manufactured by Chemicell.
  • the treatment of stage b) is carried out with ethylenedicarbodiimide (EDC) and sodium salt of N-hydroxysulfosuccinimide (sulfo-NHS).
  • EDC ethylenedicarbodiimide
  • sulfo-NHS sodium salt of N-hydroxysulfosuccinimide
  • the water soluble EDC forms an active ester functional group with the carboxylic groups of the magnetic particle, using water soluble sulfo-NHS.
  • Sulfo-NHS esters are active hydrophilic groups that react rapidly with the amino groups of the antibodies.
  • the present invention provides a reusable analysis device for the detection or quantification of a microorganism of interest in an environmental or food sample, comprising a support (1) containing a base (2) and two lateral inclined planes (3); a movable axis (4) that supports a magnet (5) and allows its displacement with respect to the support; at least one clamp-shaped clamp (7), and at least one cuvette (6) that rests on the base and is fixed in position by the clamp-shaped clamp (7).
  • a sample is applied that contains or potentially contains the microorganism of interest and in which all the stages of the detection or quantification take place, comprising: (a) forming a test mixture to selectively capture and separate the microorganism from interest present or potentially present in the sample with a suspension of superparamagnetic particles sensitized with a recognition biomolecule that selectively targets the microorganism to be detected or quantified, said test mixture incorporating a capture medium whose composition protects the particle from the non-specific adsorption and of the aggregation between particles; (b) incubating said test mixture under conditions sufficient to allow the recognition biomolecule to be attached to the microorganism of interest, thus forming a particle-microorganism complex; (c) separating all the particles, including the particle-microorganism complexes, by applying a magnetic field; (d) wash all particles in a washing medium that eliminates potentially interfering components in the following stages of the analysis, and protects the particle from non-specific adsorption and aggregation
  • the antibody is not limited to a particular type and any type of antibody or fragment known in the state of the art that is specific to the microorganism to be determined can be used, including polyclonal, monoclonal, recombinant antibodies, etc.
  • the antibodies may be specific for a species of microorganism or even a genotype of a given species, this case being useful for determining a specific contaminant, such as E.coli 0157: 1-17 in food.
  • the antibodies can be reactive with the whole genus, the family or even the order of the microorganisms, this case being useful when it is desired to determine if there is a general contamination, and not of a specific organism.
  • the method of the present invention is used to detect at least one microorganism in an aqueous solution or suspension.
  • the method comprises mixing the solution or suspension with the microspheres covered with the antibodies.
  • antibodies are those that are commercially available, such as those of Bionova Cient ⁇ fica, SL
  • polyclonal antibodies are used because a polyclonal antibody is actually a population of different antibodies, so that the variation of the expression of the antigens on the surface of a cell can be cushioned with said variation live bacterial
  • antibodies obtained in rabbit could be used using as an immunogen a whole cell preparation of the Legionella pneumophila strain ATCC # 33152, in the corresponding case.
  • the appropriate amount of each antibody that is used with microspheres Ia can easily determine an expert in the field, using routine experiments.
  • the treatment of stage e) is carried out by mixing the blocked immunomagnetic particles with a solution containing an excess amount of the blocking agent used in stage d), a biocidal agent, a bacteriostatic agent, a surfactant and a chelating agent.
  • the blocking agents may be, among others, bovine serum albumin (BSA), bovine milk casein powder, bovine milk casein in solution, cold water fish skin jelly, swine skin jelly, skimmed milk powder cattle, polydextrans, etc.
  • BSA bovine serum albumin
  • bovine milk casein powder bovine milk casein in solution
  • cold water fish skin jelly cold water fish skin jelly
  • swine skin jelly skimmed milk powder cattle
  • polydextrans polydextrans
  • the biocidal agents may be, among others, streptomycin, neomycin, gentamicin, kanamycin, preferably sodium azide.
  • Bacteriostatic agents can be, among others, p-nitrophenyl di-chloroacetamido propanediol (chloramphenicol), sulafanilamide, 2,4-diamino-5- (3,4,5-trimethoxybenzyl) pyrimidine (trimethoprim), preferably sodium salt 2- (ethylmercuriomercapto) benzoic (thimerosal).
  • the surfactants are essentially non-ionic detergents, such as, for example, alkyl polyethoxylated phenols, polyethoxylated fatty alcohols, polyethoxylated fatty acids, alkanolamines or condensates, etc., preferably sorbitan monolaurate (Tween 20).
  • Chelating agents may be, inter alia, 2,2'-Bipyridyl, dimercaptopropanol, ethylenediaminetetraacetic acid (EDTA) 1 ethylenedioxy-diethylene dinitrile-tetraacetic acid, ethylene glycol-bis (2-aminoethyl) -N, N, N ' , N ' -tetraacetic acid (EGTA), nitrilotriacetic acid (NTA), ortho-phenanthroline, salicylic acid and triethanolamine (TEA), preferably EDTA.
  • EDTA ethylenediaminetetraacetic acid
  • EGTA ethylene glycol-bis (2-aminoethyl) -N, N, N ' , N ' -tetraacetic acid
  • NTA nitrilotriacetic acid
  • TAA triethanolamine
  • the blocking agent is bovine serum albumin (BSA)
  • the bacteriostatic agent is thimerosal
  • the biocidal agent is sodium azide
  • the agent surfactant is sorbitan monolaurate
  • the chelating agent is ethylenediaminetetraacetic acid (EDTA).
  • preservatives are added, such as thimerosal to stabilize the peroxidase-conjugated antibody.
  • a weak salt of disodium phosphate is used to delay the self-oxidation of the co-substrate used in the reaction with the peroxidase.
  • the pH for which the peroxidase activity is optimal is restored, so that the degree of self-oxidation of the substrates has been negligible, and its concentration available for Ia peroxidase is maximum, starting from a negligible level of autoxidation. It is also considered possible that the mixture of co-substrates with the weak salt is already stable, so that in the end it is mixed with a citrate-phosphate buffer when it comes into contact with the peroxidase, thus ensuring that the reaction occurs with a minimum initial level of autooxidation and at the optimum pH for peroxidase.
  • step h) inhibitors of the competitive endogenous peroxidase enzymes are added, such as, for example, 3-amino-1, 2,4-triazole, which selectively inactivates the microbial catalase that could compete with The peroxidase by the developing substrate (hydrogen peroxide), but does not inhibit the peroxidase.
  • Another possibility is to use a substituted peroxide that is not recognizable by catalase, but by peroxidase, for example urea peroxide.
  • adsorption on the particles of other molecules present in the sample is avoided on the one hand, that is, non-specific adsorption that can hinder the capture of the microorganism of interest (favoring false negatives), and on the other hand the adsorption on the particles of the molecules that are used in the reading of the captured microorganisms (favoring false positives) is also avoided.
  • the adsorption of the immobilized antibody in the magnetic particle is also avoided, because the blocking molecule prevents the immobilized antibody from leaning on the surface and can remain adsorbed without exposing its region of recognition to the outside environment.
  • the aggregation of the particles between them is reduced and their adhesion to other surfaces is avoided, such as the walls of the container that contains them or in which they are handled.
  • the immunomagnetic particles thus obtained are stable in suspension for a long period of time and are rapidly concentrated in suitable fractions by means of the application of a magnetic field, easily redispersing upon removal of the magnetic field with gentle agitation.
  • the quantitative manipulation of the particles is achieved, by means of the stabilization of the suspension of particles applied to the determination, and also, during the entire determination process, from contact with the sample until obtaining the analytical result, said Conditions are sustained over time.
  • This stabilization means that the particles are not adhered to the container surfaces at any time, so that their number is not reduced during the analysis process, and that they cannot interact with other microorganisms or molecules other than the microorganism to be determined and with whose determination may interfere.
  • This characteristic requires blocking the surface of the particle that is not occupied by antibody (the ligand that we use to capture the specific microorganism).
  • the unblocked surface has a certain reactivity, so that other molecules or microorganisms present in the sample could interact and interfere in the interaction with the microorganism to be determined.
  • blocking agents such as polymers, for example dextran, by covalently binding to the surface of the particle. But these techniques do not allow reproducible control of the degree of coating achieved, and it is even quite easy to cover part of the surface antibodies, so that the results can be very variable or even compromise the application of the particles.
  • blocking agents at specific stages of the determination in immunoassays, to protect the surface in fixed supports, such as ELISA plates, is known.
  • the blocking stage is performed by incubating the plate for a while in a buffer containing a blocker. Part of the blocking molecules remain adsorbed, and the non-adsorbed molecules are subsequently washed, then proceeding to the development of the determination.
  • wash buffers the presence of phosphate salts and sodium chloride is common.
  • these compounds especially sodium chloride
  • these compounds can in a short time desorb blockers such as certain proteins, the reactive surfaces of the particles being protected, which can favor non-specific interactions that may occur during the analysis.
  • the washing steps can also affect the degree of protection of the surfaces, either by the effect of the composition of the washing buffers, either by simple dilution and consequent displacement of the adsorption equilibrium of the blocking agent, so that it is not true that during all the time of the determination said surfaces are protected in the same degree.
  • the surfaces to be protected are those of said suspended particles, with free movement.
  • This problem has been addressed in the literature by means of the application of synthesized polymers of the poly-alcohol type. These polymeric compounds are added only once as a stage within the manufacture of the particles, and are directly attached to the surface.
  • the adsorption of the blocking agent molecules is favored at all times. For this, the adsorption-desorption equilibrium is maintained at all times shifted towards the adsorption of the blocking molecule.
  • this blocking agent is a protein.
  • the present invention solves the problem and achieves inertization by means of a procedure based on the maintenance of a constant pressure of blocking agent during the entire process of the determination, both in the incubations, washes and separations. In this way, the number of blocker molecules that leave the surface at any given time is always compensated by an equivalent number of blocker molecules that enter to occupy their site.
  • the present invention provides a robust determination procedure, characterized in that the following effects are sustained over time:
  • An aspect of great interest is that due to the sustained protection of the surface of the particle against non-specific adsorption, it is possible to increase the amount of reading antibody under conditions of low ionic strength, to increase the probability of collision between the microorganism captured on the particles and said reading antibody. This is possible because in conditions of low ionic strength the electrostatic repulsions, between the reading antibody and the antigen exposed on the surface of the captured microorganism, are reduced. Consequently, the reading antibody may be closer to the antigen, and a greater number of favorable collisions may occur in less time. At the same time, the interaction of the blocking molecule with the surface of the particle not occupied by the capture antibody is favored.
  • the "empty" particle population decreases in favor of the particle population that has captured the microorganism; the free microorganisms also decrease in number in the sample, and each time the particles become less efficient in the capture, because they already carry together cells of the microorganism, which hinder the entry of another cell more, and because there is less free microorganism in the sample and favorable collisions are less likely. This is why, incubation times in immunoassays are usually long, between 30 min and three hours, for example.
  • the present invention provides a method to improve the capture performance without altering the incubation time, or even reducing it, which consists in dividing the sample into equivalent and homogeneous aliquots (charges), and subjecting a first charge to the contact with the magnetic particles activated with the antibody, for a shorter time t1; then retain the particles, remove the sample and replace it with a fresh sample load, so that the same particles (depleted in the sense that they are now able to capture less cells because part of their surface is already occupied), are in a new environment with the same concentration of free bacteria, favoring new interactions, for a time t2 that may be greater than t1; and so how many charges are required.
  • T t1 + t2 + ... + tn, T being the total immunocapture time (Figure 11).
  • the present invention provides a method for increasing the sensitivity of the determination of the microorganism of interest, by increasing the time of the single immunocapture stage, because the non-specific adsorption is not increased due to the sustained protection of the surface of the particle (Figure 13).
  • the present invention provides methods to increase the sensitivity in a very significant way, because it allows to use larger sample volumes, and / or successive loads of the same concentration of microorganism, using supports that are constantly protected against undesirable adsorption, throughout the process.
  • the present invention provides a kit for the determination of microorganisms.
  • the scope of such determination may be semiquantitative or quantitative;
  • Semi-quantitative determination is understood as the one whose result is an estimate of the order of magnitude of the concentration of the microorganism of interest in the sample.
  • the kit allows the selective capture of the microorganism of interest, in water or food samples, its concentration and separation of the rest of the components of the sample, and its colorimetric detection, in a simple and fast way, being possible in situ determination.
  • the kit uses superparamagnetic particles with antibodies directed against the microorganism of interest, immobilized on its surface, which in the reaction media supplied, specifically bind to the microorganism of interest, present or potentially present in the sample.
  • the kit comprises a portable device for manual use for in situ analysis and a set of compositions or reactive means for carrying out the analysis, all arranged in a container incorporating a cooling plate. All the stages of the analysis take place in said apparatus, which comprises a support with two cuvettes and a magnet, and a color chart for a correct interpretation of the results.
  • Said compositions or reactive media are as follows:
  • composition for the capture of the microorganism of interest comprising a suspension of immunomagnetic particles (with the capture antibody immobilized on its surface by covalent binding, and a blocking agent attached to the surface not occupied by the antibody, by binding non-covalent), in a liquid medium containing in solution the same blocking agent, a chelating agent, a surfactant, a biocidal agent, and a bacteriostatic agent.
  • Said composition has high ionic strength corresponding to a sodium phosphate buffer of 150 mM concentration.
  • composition of the microorganism of interest which comprises a reading antibody, conjugated with a reading molecule, for example peroxidase or a fluorescent substance, in a solution containing a blocking agent and an enzyme activity inhibiting agent present in the microorganism that can compete in the reading molecule.
  • Said composition has an average ionic strength corresponding to a 50 mM phosphate citrate buffer and pH 6.0.
  • d) reading composition of the microorganism of interest which comprises an oxidizing substrate, necessary for the development of the reading reaction, in a solution of a phosphate-citrate buffer of pH 6.0 and 50 mM concentration.
  • a stop composition of the reading reaction which comprises a strong acid or a strong base, in a concentration between 1M and 5M, preferably 3M.
  • a composition for washing the immunomagnetic particles comprising a blocking agent, a surfactant and a bacteriostatic agent, with a low ionic strength corresponding to a solution of a sodium phosphate buffer at pH 7.0 and concentration 25 mWI
  • the present invention provides an automated biosensor equipment for on-line monitoring of the concentration of Legionella in water, based on the use of disposable aliquots of anti-Legionella immunomagnetic particles.
  • the configuration of the biosensor for the continuous monitoring of the concentration of Legionella in waters is described below.
  • the biosensor is an integrated system that includes:
  • an optical transducer (a spectrophotometer or spectrofluorimeter in the case of Legionella).
  • FIG 2 shows the biosensor configuration.
  • the hydraulic circuit is composed of peristaltic pumps that allow liquid handling.
  • a magnetic retention device allows the manipulation of the immunomagnetic particles in a reaction cell, in which the capture and marking of the microorganism of interest takes place, and the reading of the signal takes place in flow in another different cell, integrated in the transducer component
  • the reaction cell and the magnetic retention device are located in a thermostated compartment (B) to maintain the favorable temperature for the antigen-antibody interaction and the optimum temperature for the activity of the reading molecule.
  • Said compartment is in turn inside another larger compartment (A) thermostated at a favorable temperature for the preservation of the reagents and solutions involved in the analysis.
  • each measurement cycle the capture, separation and concentration of the microorganism of interest present in the sample takes place, and subsequently its reading.
  • the measurement of a blank takes place comprising a free solution of the microorganism of interest
  • the measurement of the microorganism of interest in the sample takes place.
  • the apparatus registers the reading of the blank and the reading of the sample (FIG. 3), and calculates the difference between the two, whose value is correlated with the concentration of the microorganism in the sample (FIG. 4).
  • the blank is analyzed in the same way as the sample, and prior to it; for this, the target is transferred from its reservoir (22) to the reaction cell (11) by means of the peristaltic pump (1).
  • the reading obtained for the blank is compared with the reading obtained for the sample. Said comparison consists in subtracting the maximum absorbance value recorded for the blank from the maximum absorbance value registered for the sample.
  • the biosensor hydraulic circuit is washed by passing a cleaning solution from its reservoir (19) to the reaction cell (11) by means of a peristaltic pump (10).
  • the cleaning solution contained in the reaction cell (11) is stirred by means of a stirring device (17) for a certain time, and is passed through the reading cell (18) to waste by means of a peristaltic pump (9).
  • Example 1 Detection of Legionella in a sample of sanitary water.
  • Super-paramagnetic polystyrene particles are used (average diameter of 0.9 ⁇ m, 45.7% magnetic pigment-Stack by Merck France) that have carboxylic groups on their surface. A polyclonal anti Legionella antibody is immobilized on these particles.
  • the immunomagnetic particles were incubated in a solution of a 25 mM phosphate buffer at pH 7.0 with 1% BSA for 12 hours, under gentle agitation.
  • the resulting immunomagnetic particles were suspended in a 1/40 ratio in a solution of a 150 mM phosphate buffer containing 10% BSA, 1.0% tween 20, 0.01% thimerosal, and 0.1% azide Sodium
  • the final suspension of immunomagnetic particles is deposited in a portable device for in situ analysis, similar to that presented in FIG. 1 and described above.
  • a volume of 1.0 ml of the suspension of immunomagnetic particles is deposited inside the cuvette, and then a volume of 10.0 ml of water sample coming directly from a cooling tower it is added on the immunomagnetic particles, forming a mixture that is homogenized by gentle agitation of the apparatus and incubated at room temperature for 15 minutes.
  • the magnet approaches until it contacts the outer wall of the cuvette and the immunomagnetic particles are attracted and retained in the area adjacent to the magnet, in the inner wall of the cuvette. The supernatant is evacuated from the cuvette, without dragging the immunomagnetic particles retained by the magnetic field.
  • the immunomagnetic particles retained in the cuvette are resuspended in a volume of 1.0 ml of a solution of a phosphate-citrate buffer
  • the immunomagnetic particles are washed by resuspension, with the magnet away from the cuvette, in a volume of 4.0 ml of a solution of a 25 mM phosphate buffer at pH 7.0 containing 1% BSA, 0.1 % of tween 20, and 0.1% of thimerosal, and then retaining said washed immunomagnetic particles, again by approximation and contact of the magnet with the cuvette, to evacuate the supernatant. This washing stage runs two more times.
  • the magnetic field is eliminated, that is, the magnet moves away from the tray;
  • the immunomagnetic particles are resuspended in a volume of 1.0 ml of a solution of a 50 mM phosphate-citrate buffer at pH 5.0, containing 0.5% urea peroxide and 0.1% amino salicylic acid.
  • This mixture is homogenized by gentle agitation of the apparatus, and is incubated at room temperature for 2 minutes.
  • the peroxidase conjugated to the polyclonal anti-Legionella antibody in turn linked to the complexes formed by the immunomagnetic particles and the captured Legionella cells, catalyze the oxidation of the aminosalicylic acid by urea peroxide. This reaction results in a coloration of the mixture in the apparatus.
  • the detection of Legionella, and the absence of coloration as a negative result makes it possible to visually estimate the order of magnitude of the Legionella concentration (expressed as colony forming units per liter, cfu / l) ( Figure 7).
  • the supernatant can be evacuated to perform its absorbency reading at a wavelength of 550 nm. With respect to the absorbance reading of a blank, said absorbance saves one. correlation with the concentration of Legionella in the sample (FIG. 2). This absorbance is proportional to the amount of Legionella captured by the immunomagnetic particles, which in turn is proportional to the amount of Legionella present in the sample.
  • Example 2 Quantitative analysis of industrial waters (cooling towers and wastewater).
  • Example 1 In accordance with the procedure provided in the present invention in Example 1, two types of water samples were analyzed: samples from cooling towers and samples from wastewater. For each type of sample, the Legionella concentration is determined by plating, by means of the polymerase chain reaction (PCR) and the analysis is carried out by the method of the present invention, obtaining the absorbance reading at 550 nm. The volume of each samples tested with the method of the invention is 10.0 ml and the samples have not been pretreated.
  • PCR polymerase chain reaction
  • the method provided by the present invention allows obtaining a reliable estimate of the concentration of Legionella in different types of water, with significant advantages over the other techniques used, and in particular, the time to obtain the result, less than one hour, the possibility of executing the analysis in situ, and without the need for professional supervision in a controlled laboratory environment.
  • Example 3 Quantification of Legionella using an automated biosensor.
  • the results obtained for sanitary water samples with different concentrations of Legionella are presented, with 7 replicates per sample, through the use of the automated biosensor equipment described (FIG. 3), for the online monitoring of the Legionella concentration in waters, based on the use of disposable aliquots of immunomagnetic particles anti Legionella.
  • Each measurement cycle includes the analysis of a blank and the analysis of a sample, and the corresponding signals are recorded by the automated biosensor (FIG 4).
  • the results obtained by the culture method and the method provided in the present invention for the automated biosensor are comparable.
  • the measurement cycle has a duration of 1 hour per sample analyzed.
  • the biosensor can be used for the monitoring and surveillance of the concentration of Legionella in waters, mainly in risk facilities, and even to apply in a timely and proportionate manner the dosage of biocides or other corrective measures.
  • the biosensor can be used to prevent risk facilities from reaching infectious concentrations of Legionella sustained over time, reducing the probability of the associated risk.
  • concentrations for cooling towers and similar devices have been reported, establishing as such those concentrations that reach or exceed 10 4 -10 5 cfu / L (World Health Organization, "Legionella and the prevention of legionellosis", 2007). These concentrations have been determined by culture, in a time of 12-15 days.
  • biosensor presented by the present invention can be incorporated into the risk facilities for an online monitoring of the Legionella concentration, without the need for professional supervision, making possible an efficient strategy for the prevention of the biological risk associated with
  • Example 4 Comparison of the protective effect against non-specific adsorption of a static coating against a dynamic coating of the particle.
  • a comparison of the protective effect of two different types of inertization of the surface of the immunomagnetic particle has been made.
  • DAA dextran-aspartic-aldehyde
  • BSA bovine serum albumin
  • the protocol specified below was applied separately to the two types of anti-E. coli immunomagnetic particle. In one of them these particles were blocked with BSA, and in the other case they were blocked with DAA. In all cases, an excess of BSA is maintained throughout the analysis. For each type of particle the protocol was applied with four samples of 0, 10, 10 2 , and 10 3 cfu / ml of E. coli.
  • the immunomagnetic particles blocked with BSA and subjected to a constant BSA pressure throughout the analysis as proposed by the present invention allow discriminating all the concentrations of E. coli tested.
  • immunomagnetic particles blocked with DAA do not allow discriminating the concentrations of E. coli tested.
  • the DAA protects the particle from non-specific adsorption but said polymer also covers the recognition regions of the immobilized antibodies, so as to prevent the antigen-antibody interaction and consequently the capture of E. coli cells.
  • Example 5 Effect of the continued protection of the immunomagnetic particle against non-specific adsorption of the reading molecule. Said protocol was applied separately to two 25 ⁇ l aliquots of immunomagnetic particle, both initially blocked with BSA, but in a case with a 1 % of BSA in the buffers used in the different stages of the protocol, and in another case without BSA.
  • Fig. 6 shows the dependence on the speed of the reading reaction (colorimetry) with the inhibition of the catalase activity of the Escher ⁇ chia coli cells captured on the magnetic particles, from a suspension containing 1.1 x 10 6 cfu / mL
  • two samples are prepared, each containing a volume of 1.5 ml_ of an E. coli suspension containing 1.1 x 10 7 cfu / mL, on a volume of 15.0 ml_ of a phosphate buffer solution 20 , 0 mM at pH 7.0 with 1% bovine serum albumin (BSA), so that the final concentration is 1.1 x 10 6 cfu / mL in all samples.
  • a volume of 25.0 ⁇ L of magnetic particles is added with a polyclonal antibody against E. coli.
  • the mixture is incubated with gentle stirring for 90 minutes and at room temperature.
  • a control is prepared whose only difference with the samples is that it does not contain E. coli.
  • the control and the samples are washed three times with a volume of 5.0 ml each time of a 150 mM phosphate buffer solution containing 2% BSA.
  • the pellets containing free magnetic particles and also the immune complexes formed between the Escherichia coli cells and the magnetic particles are resuspended in a volume of 1.0 ml of a solution 1/200 of a polyclonal antibody against Escherichia coli obtained in rabbit.
  • the mixtures are incubated in gentle stirring and at room temperature for 15 minutes.
  • the pellets are washed three times with a volume of 5.0 ml each time of a 150 mM phosphate buffer solution containing 2% BSA. Then, in one of the two samples, the pellet is resuspended in a solution of 1.0 ml of 3.2 mg / ml of sodium azide in 150 mM phosphate buffer with BSA and at pH 7.0. After incubation, the pellets are thoroughly washed with a volume of 5.0 ml each time of a 150 mM phosphate buffer solution containing 2% BSA (six or more washes).
  • each pellet is resuspended in a volume of 1.0 mL of a solution of a polyclonal anti-rabbit antibody conjugated with peroxidase.
  • the mixtures are incubated with gentle stirring and at room temperature for 15 minutes. After incubation, the pellets are washed three times with a volume of 5.0 ml each time of a 150 mM phosphate buffer solution containing 2% BSA.
  • each pellet is collected in a volume of 1.0 ml of a 5 mM solution of ABTS and 50 mM phosphate buffer at pH 7.0, and 15 ⁇ l of H 2 O 2 are added at 0.035%. All reactions were monitored for 4 minutes, taking a reading of the absorbance at 405 nm every minute.
  • Sodium azide inhibits the catalase activity present inside the Escherichia coli cells captured on the magnetic particles. But the sodium azide can also inhibit the peroxidase conjugated with the polyclonal anti-rabbit antibody in turn bound to the polyclonal anti-Escherichia coli antibody obtained in rabbit attached to the surface of the captured cells, and consequently it is very important to thoroughly wash the pellet containing the Escherichia coli cells immunocaptured and incubated with the sodium azide, before adding the solution of the antibody conjugated with the peroxidase.
  • the sample in which the catalase is not inhibited is represented in Figure 5 by the square symbol, and has the same concentration of bacteria as the sample in which the catalase activity is inhibited, and which is represented by the circle symbol.
  • Example 7 Improvement of the sensitivity of legionella determination in waters by means of successive captures.
  • a solution for the first point is to increase the concentration of magnetic particle and therefore of capture antibody, which would offer a greater number of anchor points for the microorganism. However, it would also increase the active surface of the particle for a non-specific adsorption.
  • a solution for the second point is to increase the time of the immunocapture stage and thus compensate for the decrease in the capture rate; If during this prolonged time the surface of the immunomagnetic particle is not unprotected, an increase in the signal of the sample can be expected without increasing the nonspecific signal.
  • the immunocapture stage has a duration of one ovemigth (16 hours).
  • Figure 12 presents the results obtained by increasing the time of the immunocapture stage from 15 minutes to 16 hours. The signal of the sample is significantly increased but not the blank signal; this suggests that during this period time, the capture of the microorganism continues to occur without the immunomagnetic particles losing their protection against non-specific adsorption.
  • the determination of Legionella is carried out by repetitions of the immunocapture stage so that at each stage a change of the sample by fresh sample occurs.
  • This procedure consists in keeping constant the amount of immunomagnetic particle (and therefore of antibody and potential anchor points), subjected at each stage to the same volume of fresh sample.
  • the first capture is made with a volume of 9.0 ml; the supernatant is removed and the capture is repeated with a new aliquot of fresh sample of 9.0 ml.
  • This process is repeated up to three times (27.0 ml of total sample). In this way, when comparing the results we can verify the influence of the concentration of Legionella in the medium during the capture process.
  • Figure 11 presents a comparison between two possible embodiments of the present invention for the determination of Legionella in waters, according to which said determination comprises a single capture (A) or several successive captures (B). This procedure increases the test time by approximately 40 minutes, from 60 to 110 minutes, but as shown in Figure 11 increases the signal of the sample by approximately 50%, without changing the target signal.
  • Example 8 Discrimination between dead bacteria and live bacteria in the detection of legionella pneumophila.
  • Samples of different concentrations of Legionella pneumophila were analyzed by means of the quantitative procedure provided by the present invention.
  • two types of sample are distinguished; samples in which the bacterium has been thermally inactivated, and samples in which such inactivation does not take place, so that the cells of the microorganism remain viable. This viability is verified by culture, obtaining the corresponding counts.
  • the present invention provides different advantages over the existing methods, which can be summarized as follows: a) The present invention increases the sensitivity through a technical creation that does not imply the necessary use of nanoparticles, but even microparticles , achieving sensitivities of 1 cell / mL, an order of magnitude greater than the best sensitivity achieved through the use of nanoparticles.
  • This procedure is based on obtaining and using superparamagnetic particles, mainly microparticles, in which an antibody has been immobilized directly and covalently, preferably polyclonal, against the microorganism to be determined, suspended in a liquid medium whose composition It allows simultaneously minimizing the aggregation of the microspheres, minimizing non-specific adsorption and minimizing the interference of the analyzed sample, and whose concentration allows maintaining these effects against dilution with the sample to be analyzed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

La presente invención se refiere a procedimientos para la detección, semicuantificación y cuantificación rápida de microorganismos vivos en soluciones o suspensiones utilizando partículas inmunomagnéticas, sin necesidad de un pre-enriquecimiento por cultivo del microorganismo. La invención también se refiere a los kits para llevar a cabo dichos procedimientos y a la cuantificación de los microorganismos detectados mediante un equipo biosensor automatizado.

Description

PROCEDIMIENTO RÁPIDO DE DETECCIÓN DE MICROORGANISMOS CON PARTÍCULAS MAGNÉTICAS
SECTOR TÉCNICO DE LA INVENCIÓN La presente invención se refiere a procedimientos para Ia detección, semicuantificación y cuantificación rápida de microorganismos vivos en soluciones o suspensiones utilizando partículas inmunomagnéticas, sin necesidad de un pre- enriquecimiento por cultivo del microorganismo. La invención también se refiere a los kits para llevar a cabo dichos procedimientos y a Ia cuantificación de los microorganismos detectados mediante un equipo biosensor automatizado.
ANTECEDENTES DE LA INVENCIÓN
La contaminación microbiana tiene severas consecuencias para Ia sanidad humana y ambiental, no sólo por su efecto sobre Ia prevención y el cuidado de Ia salud, sino también por su impacto económico de largo alcance (Hutton G, Bartram J, "Global costs of attaining the Millennium Development Goal for water supply and sanitation", Bulletin of the World Health Organization, 86(1): 13-9, 2008). Bacterias, virus, levaduras y protozoos son agentes causales de un extraordinario número de enfermedades. Estos microorganismos infecciosos son agentes biológicos que llegan a sus hospedadores a través de soportes que sirven de vehículo, se establecen en el cuerpo de su hospedador y causan un daño. De acuerdo con Ia presente invención, un microorganismo es un organismo microscópico procariótico o eucariótico, no incluyendo los virus. Las bacterias fundamentalmente incluyen las conocidas como patógenas, como por ejemplo, especies de Enterobacteriaceae, Vihríonaceae, Bacillus, Escherichia, Streptococcus, Pseudomonas, Salmonella, Legionella, Enterobacter, etc.
Las bacterias pueden propagarse a los vertebrados por distintos métodos, concretamente a través de los alimentos (por ejemplo, Salmonella), bebidas contaminadas (por ejemplo, Escherichia col!) o en gotitas transmisibles por el aire (por ejemplo, Legionella). Así, se debe comprobar de forma regular su ausencia en sitios tales como torres de refrigeración, conducciones de agua en hospitales y hoteles, edificios públicos como colegios, piscinas, gimnasios, balnearios, spas, y similares. En general, el procedimiento de Ia presente invención se aplicará a bacterias patógenas. Estos soportes pueden contener el microorganismo infeccioso, causante del daño o enfermedad, durante un tiempo suficiente como para permitir incluso su proliferación, de modo que en sólo unas horas o días pueden alcanzar una concentración infectiva, por encima de Ia cuál es altamente probable que lleguen al hospedador y produzcan un daño. Es obvio que resulta necesaria Ia detección de Ia presencia y concentración del agente biológico causal en estos soportes, que Ie sirven de vehículo para llegar al hospedador, de cara a establecer una correcta prevención de los riesgos ambientales y sanitarios asociados. En particular, Ia obtención rápida de resultados y simplicidad del procedimiento para determinar su presencia y concentración, hace posible dos cuestiones fundamentales para definir una estrategia eficiente de prevención y control: 1) incrementar Ia frecuencia de análisis con un coste bajo y asequible, que facilite su aplicación industrial; y 2) realizar el análisis in situ en tiempo corto, para evitar concentraciones infectivas sostenidas en el tiempo y minimizar Ia probabilidad de Ia enfermedad, permitiendo aplicar de forma oportuna medidas correctoras. Esto posibilita Ia integración del análisis en las operaciones rutinarias de vigilancia y control de los entornos de riesgo.
Los métodos tradicionales para Ia detección y enumeración de microorganismos son lentos y complejos por Io que requieren de personal cualificado para ejecutar varias etapas de manipulación (Noble RT, Weisberg SB. "A review of technologies for rapid detection of bacteria in recreational waters". Journal of Water and Health, 3(4):381-92, 2005 ; Gracias KS., McKϊllip JL., "A review of conventional detection and enumeration methods for pathogenic bacteria in food", Canadian Journal of Microbiology, 50(11):883-90, 2004; Rompré A., Serváis P., Baudarts J., de-Roubin MR., Laurent P., "Detection and enumeration of coliforms in drinking water: current methods and emerging approaches", Journal of Microbiological Methods, 49(1):31-54, 2002). El método estándar comprende el aislamiento y recuento de las colonias de Ia bacteria crecidas en determinadas condiciones en cultivo. También presenta serias limitaciones para realizar una correcta prevención del riesgo asociado al microorganismo, entre otras, las siguientes: 1) Ia concentración del microorganismo que se quiere determinar en las muestras puede ser baja, y además puede ir acompañado de otros microorganismos distintos (microbiota). En consecuencia puede ser necesario separar Ia microbiota antes de inocular los medios de cultivo. De Io contrario, dicha microbiota puede competir favorablemente en el medio de cultivo, y proliferar hasta enmascarar o impedir el crecimiento del microorganismo que se quiere determinar; y 2) generalmente el tiempo requerido desde Ia toma de muestra hasta Ia obtención del recuento, es superior al tiempo necesario para que el microorganismo se duplique, en varias horas, y en algunos casos incluso en varios días o semanas. Este tiempo es incluso significativamente mayor que el tiempo que el microorganismo puede requerir para alcanzar una concentración infectiva. Por Io tanto, es necesario poder detectar el microorganismo en Ia muestra en un tiempo breve, por ejemplo aproximadamente en 1 hora. Estas limitaciones han impulsado el desarrollo de otros métodos alternativos.
En particular, el uso de biomoléculas de reconocimiento, tales como anticuerpos, antígenos y ácidos nucleicos, inmovilizados sobre una amplia diversidad de soportes (fase sólida), tiene un gran interés para el desarrollo de inmunoensayos en el campo ambiental, alimentario, biomédico, industrial y de Ia química analítica. Se han desarrollado algunos métodos para sustituir a las técnicas tradicionales, como por ejemplo, los inmunoensayos y técnicas PCR (polymerase chain reaction), los cuales además de ser algo más rápidos, son bastante específicos y sensibles.
Recientemente se han desarrollado inmunoensayos, basados en Ia reacción antígeno-anticuerpo, que se utilizan comúnmente para detectar microorganismos patógenos, productores de enfermedades (Meer RR, Park DL., "Immunochemical detection methods for Salmonella spp., Escherichia coli O157:H7, and Listeria monocytogenes in foods", Reviews of environmental contamination and toxicology, 142:1-12, 1995). Sin embargo, estos métodos presentan serios inconvenientes. Entre ellos, se destacan los siguientes: 1) Un resultado negativo no descarta Ia presencia del microorganismo en Ia muestra analizada, ya que el microorganismo podría encontrarse en concentraciones inferiores al límite de detección del método. Por eso, en los inmunoensayos, incluyendo los de tipo de tipo ELISA (enzyme-linked immunosorbent assay) se requiere de una concentración mínima de 105-106 células para Ia detección del microorganismo, en un volumen de ensayo limitado generalmente de entre 0.1 y 1.0 mi. Este límite está muy condicionado porque estos métodos no permiten el uso de grandes volúmenes de muestra ya que muchos inmunoensayos disponibles comercialmente requieren de una concentración mínima de células del microorganismo para Ia detección, Io que hace necesario un pre-enriquecimiento de Ia muestra y en consecuencia un incremento significativo del tiempo de ensayo, necesario para alcanzar una concentración celular suficiente del microorganismo que se quiere determinar. 2) Además, el método no diferencia entre bacterias vivas o muertas, porque también es detectado el antígeno libre, y porque después de Ia aplicación de tratamientos biocidas se podrían obtener falsos positivos debido a Ia presencia de bacterias muertas o del antígeno libre.
3) El limite de detección del ensayo depende en gran medida de Ia composición de Ia muestra, tanto microbiológica como química, porque Ia presencia de ciertos compuestos químicos o de actividades enzimáticas de otros microorganismos o incluso del propio microorganismo que se quiere analizar, pueden interferir en Ia detección y cuantificación de éste último.
Otro conjunto de técnicas, las mencionadas PCR, se basan en Ia amplificación de un fragmento específico del genoma del microorganismo. Se trata de extraer y purificar los ácidos nucleicos de una muestra, para luego proceder a su amplificación enzimática (mediante Ia enzima polimerasa) por ciclos, y revelado mediante electroforesis o mareaje con sondas fluorescentes. Las limitaciones principales de éstos métodos son Ia variabilidad elevada que muestran los resultados dependiendo de Ia matriz analizada (Yaradou DF, Hallier-Soulier S, Moreau S, Poty F, Hillion Y,
Reyrolle M, André J, Festoc G, Delabre K, Vandenesch F, Etienne J, Jarraud S.
"Integrated real-time PCR for detection and monitoring of Legionella pneumophila in water systems", Applied Environmental Microbiology, 73(5): 1452-6, 2007; JoIy P,
Falconnet PA, André J, Weill N, Reyrolle M, Vandenesch F, Maurin M, Etienne J, Jarraud S., "Quantitative real-time Legionella PCR for environmental water samples: data interpretation", Applied Environmental Microbiology, 72(4):2801-8, 2006), y del procedimiento de preparación de Ia muestra antes de Ia extracción de los ácidos nucleicos, y por otro lado, de Ia gran variedad de inhibidores de Ia enzima polimerasa, que pueden encontrarse presentes en las muestras.
Un documento de patente representativo de análisis de bacterias en muestras líquidas mediante PCR es el WO 01/40505 A1. Dicho documento describe un procedimiento de análisis para Ia presencia de Legionella con una etapa de inmunocaptura, y menciona que Ia ventaja principal de detectar Ia Legionella por PCR es que necesita de 24 a 48 h si el análisis se lleva a cabo por este método, comparativamente al método tradicional de cultivo que necesita de 10 a 15 días para obtener los resultados. En dicho documento, las bacterias pueden ser capturadas mediante soportes activados con anticuerpos, y se menciona Ia posibilidad de utilizar bolas magnéticas, para luego romper las células y extraer el DNA, con el objetivo de realizar una PCR. Es un método por tanto que requiere Ia rotura de Ia integridad del microorganismo y que está sujeta a los inconvenientes conocidos de Ia PCR. La invención también se refiere a un kit para llevar a cabo el método. Actualmente no existe un método universalmente aceptado para Ia preparación de Ia muestra, que permita obtener resultados reproducibles en todo tipo de muestras mediante Ia técnica de PCR, por Io que resulta necesario seguir desarrollando nuevos métodos de eliminación de inhibidores de Ia reacción y que simultáneamente permitan una recuperación eficiente del microorganismo. Otra opción es Ia inmunocaptura del microorganismo que se quiere determinar, mediante el uso de partículas o esferas paramagnéticas, recubiertas con anticuerpos dirigidos contra antígenos del microorganismo en cuestión. Estas partículas inmunomagnéticas son mezcladas con Ia muestra, forman inmunocomplejos con el microorganismo específico, y permiten separar y concentrar los microorganismos capturados, mediante Ia aplicación de un campo magnético, eliminando otros componentes de Ia muestra que puedan interferir con Ia determinación.
Por ejemplo, se ha descrito el uso de una separación inmunomagnética mediante partículas o esferas superparamagnéticas recubiertas con anticuerpos dirigidos contra antígenos del microorganismo de interés, en combinación con Ia técnica de PCR en tiempo real (Yáñez MA, Carrasco-Serrano C, Barbera VM, Catalán
V. "Quantitative detection of Legionella pneumophila ¡n water samples by immunomagnetic purification and real-time PCR amplification of the dotA gene", Applied Environmental Microbiology, 71 (7):3433-41 , 2005), pero Ia tasa de recuperación del microorganismo y Ia reproducibilidad de su captura disminuyen con el aumento de Ia complejidad del agua analizada. Las técnicas para incrementar Ia sensibilidad de los ensayos de inmunosorción se han centrado en aumentar Ia eficiencia de Ia transducción de Ia señal, mediante el uso de moléculas de lectura más eficientes y de mejores detectores (LJ. Kricka, "Selected strategies for improving sensitivity and reliability of immunoassays", Clinical Chemistry, VoI 40, 347-357, 1994). Estas técnicas han supuesto Ia reducción del tiempo de pre-enriquecimiento de Ia muestra, aunque no por debajo de las 8 horas, y el límite de detección se sitúa en 106 ufc/l. Por ejemplo, para incrementar Ia sensibilidad del método de inmunocaptura de los microorganismos se aplican varios métodos, como por ejemplo, el documento US 2005/0202518 A1 que aplica microsferas inmunomagnéticas en Ia etapa de inmunocaptura, pero después de una etapa de pre-enriquecimiento del cultivo durante 8-15 horas.
El documento de patente US 2006/0246535 A1 describe Ia detección de microorganismos en solución o dispersión, sin pre-enriquecimiento, utilizando microsferas de látex recubiertas de anticuerpos, detectando posteriormente el microorganismo por medio de Ia medición de Ia aglutinación. En el documento ES 2 237 272 A1 se describe un procedimiento para detectar y cuantificar anticuerpos específicos de Legionella pneumophila en muestras sexológicas, mediante aglutinación-sedimentación de partículas de látex sensibilizadas con un antígeno de L. pneumophila. Asimismo se describe el método de obtención de las partículas de látex sensibilizadas y el tampón de reacción donde se desarrolla Ia inmunoreacción.
En algunas patentes se pretende incrementar Ia sensibilidad de Ia detección de microorganismos mediante el uso de nanopartículas magnéticas frente a micropartículas magnéticas (1 μm = 1000 nm). Por ejemplo, Ia patente US 2006/292555 A1 indica que "no hay ensayos satisfactorios para detectar concentraciones de bacterias del orden de 100 células/mL, a no ser que comprendan una etapa de pre-enriquecimiento mediante un proceso de cultivo". Explícitamente, Ia mencionada patente expresa que Ia sensibilidad conseguida, del orden de 10-100 bacter¡as/ml_, no puede ser conseguida mediante micropartículas, entendiendo como tales aquellas cuyo diámetro está en el orden de Ia miera, no del nanómetro. Así, dicho documento de patente describe un método para detectar patógenos, que comprende Ia utilización de nanoparículas magnéticas formadas por un antibiótico, Ia vancomicina unido a Ia superficie de nanopartículas de FePt (hierro-platino).
Existen varios documentos cuyo método comprende Ia atracción magnética de las partículas sobre un soporte sólido. Por ejemplo, los documentos de patente US 5,834,197 y 6,159,689, ambos de los mismos autores, describen métodos de captura y marcado de una especie, que consisten en Ia atracción de partículas que tienen afinidad por Ia especie buscada. El método comprende Ia atracción magnética de dichas partículas sobre un soporte sólido por fuerzas magnéticas, y estando inmovilizadas, obligando así a circular Ia muestra y hacerla pasar por el soporte. Por una lado es evidente que el número de colisiones favorables para una interacción antígeno-anticuerpo será menor por cuanto las partículas están fijas en un soporte, y parte de Ia superficie tapizada con anticuerpos no está accesible, y por otro lado, el área expuesta es siempre Ia misma y sólo una fracción del área está realmente disponible, de modo que el impedimento estérico debido a las bacterias inicialmente capturadas limita muy pronto Ia eficiencia de nuevas colisiones. Esta pérdida de área eficaz no se debe sólo al contacto permanente con el soporte, sino también a Ia agregación de las partículas, favorecida cuando son retenidas sobre el soporte y se encuentran muy próximas entre sí, Io que incrementa aún más esa merma de eficiencia. Además, Ia misma muestra es recirculada repetidas veces por el soporte con las partículas retenidas; por Io que no hay posibilidad de refrescar Ia muestra por cargas, sino que se agota una única carga de muestra por recirculación. También el documento WO 02/101354 A2 que se refiere a kits y métodos para
Ia detección de microorganismos en una muestra describe un método que comprende adherir anticuerpos específicos a un marcador de los microorganismos, de captura a un soporte sólido; seguido por Ia adición de unos segundos anticuerpos que pueden estar conjugados a una molécula que denota Ia presencia de los microorganismos, preferiblemente por medio de luz que se puede detectar.
El documento ES 2 208 121 A1 también se refiere a un método para Ia identificación y cuantificación de analitos en el que los anticuerpos y los antígenos están inmovilizados, pero en lugar de sobre un soporte sólido como en WO 02/101354 A2, US 5,834,197 y 6,159,689, sobre partículas magnéticas de sílice que se utilizan como biosensores. Las partículas magnéticas de Ia invención son nanopartículas de óxido de hierro obtenidas por el método de Massart, con una tamaño de 5 a 30 nm, recubiertas por una capa de sílice de 30 a 100 nm de espesor.
El resumen del documento WO 2006/123781 A1 también se refiere a Ia utilización de partículas magnéticas de sílice en métodos para recuperar un micoorganismo a partir de una muestra, para Io cual Ia muestra se pone en contacto con las partículas que Io absorben. Las partículas se caracterizan porque tienen un diámetro de 6 μm o menor y su superficie específica es de 50 m2/g o menor.
El documento US 2006/0211061 A1 se refiere a métodos para Ia detección rápida de microorganismos patógenos en un fluido por medio de inmunoensayos. El método consiste en unir una micropartícula magnética con un primer epitopo del microorganismo en un fluido por medio de un anticuerpo; utilizar un campo magnético para separar Ia micropartícula magnética unida al microorganismo; uniendo una molécula de glucosa a través de un segundo anticuerpo al segundo epitopo del microorganismo en cuestión; y detectar Ia glucosa en Ia muestra para determinar Ia presencia y Ia concentración del microorganismo. Las micropartículas comprenden microsferas de un material superparamagnético recubierto con un polímero o proteína, por ejemplo, albúmina o avidina.
Sin embargo estos métodos presentan inconvenientes que dificultan su aplicación industrial. Entre otros, los siguientes:
1) La inmovilización de los anticuerpos sobre Ia superficie de las partículas magnéticas requiere de Ia presencia en dicha superficie de grupos reactivos, por ejemplo de grupos hidroxilo, amino o carboxílicos. Una vez unidos los anticuerpos a Ia superficie mediante dichos grupos reactivos, pueden quedar grupos libres que representan sitios activos a los que puede unirse también otros compuestos presentes en Ia muestra que puedan interferir Ia interacción antígeno-anticuerpo, o bien en Ia composición de los reactivos de revelado, o incluso los propios anticuerpos inmovilizados cuya orientación al medio exterior queda alterada, haciendo menos probable Ia interacción con el antígeno y en consecuencia Ia captura y recuperación del microorganismo. 2) Las partículas inmunomagnéticas colisionan entre sí de modo que pueden interaccionar mediante enlaces débiles que pueden favorecer Ia formación de agregados antes de Ia mezcla con Ia muestra, o bien después de Ia mezcla con Ia muestra, efecto que depende de Ia concentración de Ia partícula y del tiempo de contacto. Esto limita Ia posibilidad de reducir el límite de detección incrementando Ia cantidad de partícula, y limita Ia vida útil del método basado en el uso de las partículas.
3) Las partículas magnéticas mezcladas con Ia muestra compleja, pueden interaccionar con algunos componentes que puede favorecer Ia formación de agregados, de forma que Ia interacción de Ia partícula con el microorganismo es menos probable, y de forma que Ia eficiencia de Ia retención magnética es menor; en consecuencia hace menos probable Ia captura y recuperación del microorganismo de interés y su eficiencia disminuye.
4) No es posible Ia manipulación y recuperación cuantitativa de las partículas inmunomagnéticas, debido fundamentalmente al inconveniente anterior, y principalmente en volúmenes grandes de muestra; en consecuencia no es posible reducir el límite de detección mediante el uso de volúmenes grandes de muestra porque se producen pérdidas variables de partículas inmunomagnéticas y de complejos entre las partículas inmunomagnéticas y los microorganismos.
5) Algunos componentes presentes en Ia muestra compleja o en las disoluciones que entran en contacto con las partículas en alguna o varias de las etapas de Ia separación, pueden alterar su recubrimiento favoreciendo Ia desorción de Ia molécula de bloqueo, quedando expuestos grupos reactivos en los que se pueden adsorber otras moléculas que perjudiquen Ia interacción del microorganismo con el anticuerpo inmovilizado (anticuerpo de captura), o dicho anticuerpo inmovilizado, o el anticuerpo de lectura.
6) La composición y concentración de distintos antígenos que los microorganismos exponen en su superficie puede cambiar en respuesta a cambios en las condiciones ambientales (Albers U, Tiaden A, Spirig T, Al Alam D, Goyert SM, Gangloff SC, Hilbi H., "Expression of Legionella pneumophila paralogous lipid A biosynthesis genes under different growth conditions", Microbiology, 153(Pt 11):3817-29, 2007), y en consecuencia Ia sensibilidad y reproducibilidad de Ia determinación del microorganismo puede depender del origen de Ia muestra y sus condiciones ambientales.
7) Los - microorganismos de interés que son capturados mediante las partículas inmunomagnéticas, pueden presentar enzimas endógenas que interfieren con Ia lectura de los complejos que forman con dichas partículas, y que no pueden ser separados y eliminados sin alterar Ia integridad estructural del microorganismo capturado. Estas interferencias son dependientes de Ia concentración del microorganismo capturado, de forma que para concentraciones elevadas del microorganismo, dichas interferencias pueden causar una subestimación de Ia cantidad del microorganismo en una determinación cuantitativa o semicuantitativa, o causar un falso negativo en una determinación cualitativa. En particular, los microorganismos patógenos no anaerobios estrictos (aerobios, anaerobios facultativos, aerotolerantes y microaerófilos), tales como, entre otros, Escherichia coli, Staphylococcus, Legionella, Klebsiella, Bacillus, Salmonella, Campilobacter o Listería, presentan una enzima endógena, Ia catalasa, que compite por el peróxido de hidrógeno adicionado como substrato de Ia enzima peroxidasa, habitualmente conjugada al anticuerpo de lectura.
En los últimos años existe una demanda creciente de información relacionada con Ia determinación de analitos de variada naturaleza en muestras complejas, y en áreas cada vez más diversas, de una forma rápida, simple y sensible. Para salvar las dificultades de los métodos convencionales que impiden satisfacer esta demanda, un gran esfuerzo en el campo de Ia instrumentación analítica ha sido dirigido hacia Ia obtención de dispositivos cuya utilización no requiera de Ia supervisión profesional, cuyo manejo sea sencillo y cuyo coste sea menor, capaces de proporcionar una información analítica de forma rápida, selectiva, sensible, fiable y descentralizada.
Esta demanda ha favorecido el desarrollo de biosensores como alternativas de análisis a Ia instrumentación analítica convencional, con el objetivo de separar el analito de Ia matriz compleja en Ia que se encuentra y medir su presencia o su concentración. La preparación de biosensores basados en Ia utilización de partículas magnéticas ha abierto nuevas perspectivas de aplicaciones a cualquier análisis con soportes sólidos, especialmente en sistemas automáticos. Existen varios documentos de patente que se refieren a aparatos que funcionan como biosensores y sirven para Ia detección de microorganismos. Así, el documento ES 2 220 227 A1 se refiere a un método y aparato para Ia detección de sustancias o analitos a partir del análisis de una o varias muestras. La invención se refiere a un aparato robotizado susceptible de manejo por control remoto y a un método que permite el análisis de múltiples muestras naturales. Dicha invención se beneficia de Ia tecnología de microarrays de DNA y proteínas. El aparato comprende una serie de módulos operativos, en los cuales se manipulan, tratan y analizan las muestras, y una serie de módulos de control, que supervisan el funcionamiento de dichos módulos operativos. El método para analizar Ia muestra comprende hacer reaccionar dicha muestra con un biosensor, lavar el exceso de muestra no reaccionada y detectar Ia muestra retenida en el biosensor. El documento WO 93/25909 A1 se refiere a un aparato para Ia detección de Ia presencia de analitos de interés en una muestra, particularmente biosensores, así como al método para detectar Ia presencia de un analito, y el documento US 7,220,596 B2 se refiere a Ia detección de antígenos que pueden capturarse y detectarse a partir de muestras como por ejemplo alimentos, en aproximadamente 30 minutos utilizando un aparato y método que incluye el paso de Ia muestra a través de un módulo que contiene anticuerpos unidos a partículas. El flujo de Ia muestra a través de las partículas modificadas es de 0.2 a 1.2 L/minuto. Los antígenos son capturados así por los anticuerpos y entonces se lleva a cabo Ia detección de los anticuerpos por fluorescencia, quimioluminiscencia, o técnicas de espectrometría.
Por Io tanto, todavía es necesario un método que se pueda llevar a cabo in situ, por ejemplo, por medio de un kit, que permita detectar y semicuantificar un microorganismo patógeno determinado en un tiempo mínimo, como por ejemplo de 1 hora, para poder tomar inmediatamente las medidas necesarias.
Por Io tanto, en Ia presente invención se proponen kits y procedimientos simples para Ia determinación rápida y sensible de Ia presencia de microorganismos en un amplio rango de muestras de origen ambiental o alimentario, así como en fluidos biológicos, mediante partículas inmunomagnéticas en suspensión, que salva los inconvenientes anteriores, permitiendo obtener el resultado del análisis in situ, en un tiempo inferior o igual a una hora, sin limitación de volumen de Ia muestra, y para concentraciones del microorganismo de interés del orden de 1 célula por mililitro, y hace posible su aplicación industrial.
OBJETO DE LA INVENCIÓN
En una realización, Ia presente invención proporciona un método para detectar y semicuantificar in situ microorganismos vivos en una muestra. En otra realización, Ia presente invención proporciona un método para cuantificar microorganismos vivos a partir de una muestra en laboratorio. Y en otra realización, Ia presente invención proporciona un método para detectar y cuantificar microorganismos vivos mediante un equipo biosensor automatizado.
Se ha encontrado sorprendentemente que es posible detectar Ia presencia o ausencia de una bacteria patógena, como por ejemplo, Legionella, Salmonella o E.coli, en una muestra biológica empleando métodos que utilizan un biosensor altamente específico y de gran sensibilidad. Son unas partículas paramagnéticas que poseen en su superficie anticuerpos específicos del microorganismo a detectar y un agente bloqueante que previene Ia unión de moléculas contaminantes presentes en Ia muestra biológica.
El procedimiento de Ia presente invención reduce las interacciones débiles que pueden darse entre las partículas gracias a que dichas partículas están protegidas en todo momento del análisis, mediante el bloqueo de su superficie constante, obtenido al desplazar el equilibrio de sorción-desorción de una molécula de bloqueo hacia Ia molécula adsorbida. Dicho bloqueo permite una inertización o recubrimiento dinámico, que oculta los grupos reactivos de Ia superficie de Ia partícula, e impide tales interacciones, de modo que Ia agregación de partículas es reducida, así como su adherencia a las superficies contenedoras. Al mismo tiempo esto es posible gracias a que Ia concentración del agente de bloqueo, que determina Ia cantidad de molécula de bloqueo en disposición de ser adsorbida, y Ia de los tampones, que determina Ia fuerza iónica para permitir Ia aproximación de Ia molécula de bloqueo a Ia superficie de Ia partícula, permiten mantener en todo momento Ia cantidad necesaria de moléculas de bloqueo adsorbidas y una fuerza iónica adecuada para que dichas moléculas puedan ser rápidamente reemplazadas por otras próximas a Ia superficie del soporte, y para que las moléculas de lectura se aproximen al microorganismo capturado; y además, porque se utilizan agentes quelantes y surfactantes combinados para reducir las interferencias de Ia muestra debidas a Ia formación de complejos insolubles que perjudican Ia retención magnética de las partículas, y un inhibidor de las actividades microbianas potencialmente interferentes que pueden competir con Ia molécula de lectura por los substratos que dicha molécula utiliza para el desarrollo de Ia señal que se mide. Así, todo ello hace posible una recuperación cuantitativa de las partículas que permite manejar volúmenes grandes y mejorar Ia sensibilidad del método dado que aumenta Ia cantidad absoluta de células del microorganismo de interés así como Ia probabilidad de colisión, captura y retención del dicho microorganismo.
La presente invención también se refiere a un kit de detección de Ia presencia o ausencia de un antígeno producido por una bacteria determinada de Ia muestra, que contiene las partículas magnéticas unidas a anticuerpos específicos dirigidos contra los correspondientes antígenos de Ia bacteria determinada, así como moléculas bloqueantes, un segundo anticuerpo marcado y todos los reactivos necesarios para llevar a cabo el procedimiento.
Además, Ia presente invención también se refiere a un equipo biosensor automatizado para Ia detección y/o semicuantificación y/o cuantificación de microorganismos vivos en el laboratorio a partir de una muestra.
Según Ia presente invención por microorganismo se entiende cualquier organismo microscópico procariótico (incluyendo bacterias) o eucariótico ( incluyendo protozoos, algas, levaduras y hongos) , no incluyendo los virus.
Las bacterias fundamentalmente incluyen las conocidas como patógenas, como por ejemplo, especies de Enterobacteriaceae, Vibríonaceae, Bacillus, Escherichia, Streptococcus, Pseudomonas, Salmonella, Legionella, Enterobacter, etc.
Por soporte se entiende un sólido constituido por un material polimérico que en superficie presenta un alto número de grupos químicos necesarios para Ia fijación de moléculas de interés. Por cuantificar se entiende determinar de forma exacta Ia concentración o cantidad del microorganismo de interés en Ia muestra. Por semicuantificar se entiende determinar de forma aproximada Ia concentración del microorganismo de interés en Ia muestra.
Por detectar se entiende determinar Ia presencia-ausencia del microorganismo de interés en Ia muestra. En Ia presente invención "muestra" se considera Ia que es sospechosa de contener al microorganismo. La muestra generalmente será de origen ambiental o alimentario, y en determinados casos será de fluidos biológicos, como por ejemplo, esputos, secreciones respiratorias o tejido pulmonar.
Por anticuerpo se entiende una molécula capaz de reconocer y unirse específicamente a determinadas moléculas expuestas en el microorganismo de interés, denominadas antígenos. Dichos anticuerpos pueden ser de captura o de lectura, y pueden ser monoclonales o policlonales.
Por anticuerpo monoclonal se entiende un anticuerpo homogéneo derivado de un solo clon de hibridoma, por Io que todos portan idénticos sitios de fijación del antígeno. Por anticuerpo policlonal se entiende un conjunto heterogéneo de anticuerpos dirigidos contra diferentes sitios del mismo antígeno.
Por anticuerpo de lectura se entiende: un anticuerpo que interacciona con su correspondiente antígeno expuesto en Ia superficie de Ia célula del microorganismo, conjugado con una molécula capaz de producir una señal detectable, por ejemplo una enzima que cataliza una reacción que produce un color o un cambio de absorbancia, o por ejemplo una molécula capaz de producir una emisión fluorescente.
Por anticuerpo de captura se entiende: un anticuerpo que es inmovilizado sobre Ia superficie del soporte e interacciona con su correspondiente antígeno expuesto en Ia superficie de Ia célula del microorganismo para formar un complejo soporte- microorganismo. Sustrato oxidante se refiere al compuesto químico que gana electrones en una reacción redox.
Sustrato oxidable se refiere al compuesto químico que cede electrones en una reacción redox. También denominado sustrato reductor. Acido fuerte es aquel ácido que en disolución acuosa se disocia completamente en sus iones constituyentes proporcionado iones de hidrógeno al medio (H+).
Base fuerte se refiere a Ia base que en disolución acuosa se disocia completamente en sus iones constituyentes, proporcionando iones hidroxilo (OH")
Por sal débil se entiente aquella sal que en disolución acuosa se disocia en sus iones constituyentes sólo en una pequeña parte, en contraposición a Ia sal fuerte que se disocia en un 100 %.
Agente quelante se refiere al compuesto que forma un complejo soluble con los iones metálicos denominado quelato.
Surfactante se refiere al agente que disminuye al tensión superficial en Ia superficie de contacto entre dos fases.
Por agente bacteriostático se entiente aquella sustancia química que inhibe el crecimiento y Ia reproducción del microorganismo sin matarlo.
Agente biocida se refiere a aquella sustancia química que destruye el microorganismo.
Así, un primer objeto de Ia presente invención está constituido por un procedimiento para detectar y/o semicuantificar y/o cuantificar microorganismos en una solución o suspensión, que no contiene microorganismos pre-cultivados, que comprende las etapas de: a) mezclar Ia muestra sospechosa de contener el microorganismo con i) una suspensión amortiguadora del pH, que comprende al menos un tipo de partículas paramagnéticas que tienen unido a su superficie un anticuerpo dirigido específicamente contra el microorganismo que se quiere determinar; y ii) al menos un tipo de molécula de agente bloqueante en exceso sobre Ia superficie de dichas partículas magnéticas no ocupada por el anticuerpo; b) incubar Ia mezcla durante un tiempo determinado en condiciones adecuadas para formar los complejos microorganismo-partícula magnética; c) aplicar un campo magnético para Ia separación y concentración de los complejos formados microorganismo-partícula magnética; y posterior evacuación del sobrenadante; d) resuspender los complejos microorganismo-partícula magnética en una disolución amortiguadora del pH, que comprende al menos un tipo de molécula bloqueante en exceso y un segundo anticuerpo marcado con un marcador (una enzima o un fluoróforo); e) incubar Ia mezcla durante un tiempo determinado para formar los complejos anticuerpo marcado-microorganismo-partícula magnética; f) aplicar un campo magnético para Ia separación y concentración de los complejos formados anticuerpo marcado-microorganismo-partícula magnética; y posterior evacuación del sobrenadante; g) lavar las partículas para eliminar el exceso del segundo anticuerpo, y evacuación posterior del sobrenadante; h) resuspender los complejos formados anticuerpo marcado-microorganismo-partícula magnética, en un medio líquido que contiene simultáneamente los substratos necesarios para el revelado mediante Ia enzima que actúa como marcador, un agente bloqueante en una concentración que permite mantener el equilibrio de adsorción desplazado hacia las moléculas de bloqueante unidas, y un inhibidor específico de las enzimas intrínsecas que compiten por uno o varios de dichos substratos; h) incubar Ia mezcla durante un tiempo determinado para desarrollar Ia señal; i) detectar y cuantificar Ia señal que resulta de Ia formación de los complejos anticuerpo marcado-microorganismo-partícula magnética, relacionando dicha señal con Ia presencia y cuantificación del microorganismo buscado. En dicho procedimiento:
- Ia muestra es de origen ambiental, alimentario u obtenida de fluidos biológicos,
- el microorganismo es un organismo microscópico procariótico, preferentemente bacterias y más preferentemente o eucariótico, preferentemente protozoos, algas, levaduras y hongos, bacterias patógenas, como especies de Enterobacteríaceae, Vibrionaceae, Bacillus, Escheríchia, Streptococcus, Pseudomonas, Salmonella, Legionella, Enterobacter, etc., o un organismo eucariótico,preferentemente protozoos, algas, levaduras y hongos
- el anticuerpo de lectura y/o captura del microorganismo de interés es monoclonal o policlonal.
- las partículas magnéticas son esféricas y el rango del diámetro es de 0,5 μm a 2 μm, preferiblemente de 0,7 μm a 1 ,5 μm, y más preferiblemente de 0,8 μm a 1 ,0 μm, estando dichas partículas funcionarizadas químicamente especialmente con grupos - NH2, -COOH U -OH - durante todas las etapas se mantiene un exceso de concentración de al menos un tipo de molécula bloqueante, de manera que el equilibrio adsorción- desorción se encuentra desplazado hacia Ia molécula adsorbida, para prevenir Ia adsorción no específica sobre las partículas magnéticas, evitando falsos positivos y falsos negativos. - Ia molécula bloqueante es una proteína, preferentemente, albúmina de suero bovino, caseína de leche, gelatina de piel de peces de agua fría, gelatina de piel, leche desnatada, o un carbohidrato, preferentemente polidextranos.
-Ia detección de Ia presencia de un microorganismo se detecta visualmente en Ia solución o suspensión, siendo Ia producción de coloración indicativo de Ia presencia del microorganismo.
- permite el empleo de grandes volúmenes y/o cargas sucesivas de Ia misma muestra sobre los mismos soportes constantemente protegidos frente adsorciones no deseables, aumentando Ia sensibilidad del método.
-presenta una sensibilidad de detección de 1 célula/mL - el resultado es obtenido en un tiempo inferior o igual a una hora
Otro objeto de invención se refiere al procedimiento en que el tiempo en Ia etapa de inmunocaptura se ve incrementado aumentando Ia sensibilidad del método gracias a que Ia protección sostenida de Ia superficie de Ia partícula impide el incremento de Ia adsorción no específica durante todo el análisis. Otro objeto de invención se refiere al kit para llevar a cabo el procedimiento anteriormente descrito, caracterizado porque comprende: un aparato portátil reutilizable de uso manual para el análisis in situ y un conjunto de composiciones o medios reactivos para Ia realización del análisis, todo ello dispuesto en un contenedor que incorpora una placa refrigerante. Dicho kit comprende un soporte con al menos dos cubetas y un imán, y una carta de colores para una correcta interpretación de los resultados siendo las composiciones o medios reactivos: a) composición para Ia captura del microorganismo de interés, que comprende una suspensión de partículas inmunomagnéticas (con el anticuerpo de captura inmovilizado en su superficie mediante unión covalente, y un agente de bloqueo unido a Ia superficie no ocupada por el anticuerpo, mediante unión no covalente), en un medio líquido que contiene en disolución ¡)el mismo agente de bloqueo, ii)un agente quelante, iii)un agente surfactantejv) un agente biocida, y v)un agente bacteriostático, y que presenta fuerza iónica elevada, correspondiente a una disolución de un tampón fosfato de concentración entre 90 y 500 mm, preferentemente entre 100 y 200 mM, y más preferentemente 150 mM.
b) composición de mareaje del microorganismo de interés, que comprende un anticuerpo de lectura, conjugado con una molécula de lectura o una sustancia fluorescente, en una disolución que contiene i)un agente de bloqueo y ii)un agente inhibidor de Ia actividad de enzimas presentes en el microorganismo que puedan competir en Ia molécula de lectura, y que presenta fuerza iónica media correspondiente a una disolución de un tampón fosfato de concentración entre 30 y 90 mm, preferentemente tampón fosfato citrato 50 mM y pH 6,0.
c) composición de lectura del microorganismo de interés, que comprende un sustrato oxidable necesario para el desarrollo de Ia reacción de lectura, en una disolución que contiene una sal débil de fosfato monosódico para reducir Ia autooxidación de dicho sustrato.
d) composición de lectura del microorganismo de interés, que comprende un sustrato oxidante, necesario para el desarrollo de Ia reacción de lectura, en una disolución de un tampón fosfato-citrato, preferentemente de pH 6,0 y concentración 50 mM. e) una composición de parada de Ia reacción de lectura, que comprende un ácido fuerte o una base fuerte.
f) una composición para el lavado de las partículas inmunomagnéticas que comprende un agente de bloqueo, un agente surfactante y un agente bacteriostático, con una fuerza iónica baja correspondiente a una disolución de un tampón fosfato de concentración entre 5 y 30 mm, preferentemente fosfato de sodio a pH 7,0 y concentración entre 20 y 30 mM, preferiblemente 25 mM.
En dicho kit
- el agente de bloqueo es un carbohidrato o proteína, preferentemente. proteína, y más preferentemente una proteína seleccionada del grupo albúmina de suero, caseína de leche en polvo, caseína de leche en solución, gelatina de piel de peces de agua fría, gelatina de piel porcina, leche desnatada en polvo, polidextranos; etc
- Ia competencia de Ia actividad enzimática microbiana con Ia molécula de lectura se elimina bien utilizando un inhibidor específico de dicha actividad, como azida sódica o triazol, preferentemente el triazol, o bien utilizando como susbstrato oxidante para Ia enzima de lectura, preferentemente peroxidasa, un peróxido substituido, preferentemente peróxido de urea, que Ia actividad enzimática microbiana no reconoce.
- el sustrato oxidante se selecciona entre peróxido de hidrógeno y peróxido de urea, preferentemente peróxido de urea al 0,05%
- el sustrato oxidable se selecciona entre el ácido 5-aminosalicílico, ortofenilendiamina, ácido 2,2'- azino-bis(3-etilbenzotiazolin-6- sulfónico), preferentemente ácido 5-aminosalicílico al 0,1 % %
- el ácido fuerte se selecciona entre ácido clorhídrico, ácido nítrico y ácido sulfúrico, preferentemente ácido clorhídrico 5M y ácido sulfúrico 1 M.
- Ia base fuerte se selecciona entre hidróxido de potasio e hidróxido de sodio, preferentemente hidróxido de sodio 3M. -, Ia sal débil es fosfato dipotásico y fosfato disódico, preferentemente fosfato disódico 0,1 M.
-el agente quelante se selecciona entre 2,2'-Bipiridilo, dimercaptopropanol, ácido etilendiaminotetraacético (EDTA), ácido etilendioxi-dietilen-dinitrilo-tetraacético, ácido etilen glicol-bis(2-aminoetil)-N,N,N',N'-tetraacético (EGTA)1 ácido nitrilotriacético
(NTA), orto-fenantrolina, ácido salicílico y trietanolamina (TEA), preferiblemente EDTA.
- el surfactante se selecciona entre detergentes no iónicos, preferentemente alquil fenoles polietoxilados, alcoholes grasos polietoxilados, ácidos grasos polietoxilados, alcanolaminas o condensados, y más preferentemente el monolaurato de sorbitán (Tween 20).
- el agente bacteriostático se selecciona entre p-nitrofenil-di-cloroacetamido propanodiol (cloranfenicol), sulfanilamida, 2,4-diamino-5-(3,4,5- trimetoxibencil)p¡rimidina (trimetoprim), preferiblemente sal sódica del 2- (etilmercuriomercapto) benzoico (timerosal).
- el agente biocida se selecciona entre estreptomicina, neomicina, gentamicina, kanamicina, y azida sódica, preferiblemente azida sódica.
Otro objeto de invención Io constituye el kit anteriormente descrito caracterizado porque: a) en Ia composición para Ia captura del microorganismo de interés, en Ia suspensión, las partículas inmunomagnéticas son esféricas y de un diámetro medio entre 0,8 y 1 ,1 μm, el anticuerpo de captura es un anticuerpo policlonal o monoclonal antiLegionella, unido covalentemente a Ia superficie de las partículas, y el agente de bloqueo es albúmina de suero bovino (BSA) en una concentración al 10%, el agente quelante es ácido etilendiaminotetraacético (EDTA) al 0,1 %, el agente surfactante es monolaurato de sorbitán al 1 %, el agente biocida es azida sódica en concentración 0,1 %, y el agente bacteriostático es timerosal en concentración 0,01%, todo ello en una disolución de tampón fosfato de concentración 150 mM a pH 7,0. Dicha composición es añadida a Ia muestra en una proporción 1/10. b) en Ia composición de mareaje del microorganismo de interés, el anticuerpo de lectura es un anticuerpo antiLegionella conjugado con peroxidasa, siendo en Ia disolución que los contiene i)el agente de bloqueo seroalbúmina de suero bovino (BSA) al 0,1 % y ii) el agente inhibidor de Ia actividad de enzimas presentes en el microorganismo que puedan competir en Ia molécula de lectura triazol al 0,01 %, en una disolución tampón de fosfato y citrato de concentración 50 mM a pH 6,0.
c) en Ia composición de lectura del microorganismo de interés, el sustrato oxidable necesario para el desarrollo de Ia reacción de lectura es ácido 5-aminosalicílico al 0,1 % , y una sal débil de fosfato disódico en una concentración de 0,1 M, a pH entre 7,5 y 8,0, para reducir Ia autooxidación de dicho sustrato
d) en Ia composición de lectura del microorganismo de interés, el sustrato oxidante, necesario para el desarrollo de Ia reacción de lectura, es peróxido de hidrógeno o peróxido de urea, preferentemente peróxido de urea al 0,05 %, en una disolución de un tampón fosfato-citrato de concentración 50 mM a pH 6,0.
e) en Ia composición de parada de Ia reacción de lectura, el ácido fuerte es ácido clorhídrico 5 M o ácido sulfúrico 1M y Ia base fuerte es hidróxido de sodio 3M..
f) en Ia composición para el lavado de las partículas inmunomagnéticas el agente de bloqueo es albúmina de suero bovino al 0,1 , el agente surfactante es monolaurato de sorbitán al 0,02 % y el agente bacteriostático es timerosal al 0,01 %τ en una disolución de un tampón fosfato de una concentración 25 mM a pH 7,0.
Otro objeto de invención se refiere al dispositivo de análisis manual reutilizable para Ia detección o cuantificación de microorganismos en una solución o suspensión siguiendo el procedimiento de Ia invención, que comprende un soporte (1) que contiene una base (2) y dos planos inclinados laterales (3); un eje móvil (4) que soporta un imán (5) y permite su desplazamiento con respecto al soporte; al menos una sujeción en forma de pinza (7), y al menos una cubeta (6) que descansa sobre Ia base y está fijada en su posición por Ia sujeción en forma de pinza (7) según Ia figura 2.
Otro objeto de invención se refiere al uso de dicho dispositivo manual para Ia realización de análisis in situ. Otro objeto de invención se refiere al biosensor automatizado para llevar a cabo el procedimiento anteriormente descrito, de forma automatizada, caracterizado por consistir en un sistema integrado que comprende
i) celdas para Ia reacción de captura y mareaje del microorganismo de interés.
ii) celdas para Ia lectura de Ia absorbancia a Ia longitud de onda seleccionada o Ia fluorescencia a Ia longitud de emisión seleccionada.
iii) un transductor óptico que en el caso de Ia Legionella consiste en un espectrofotómetro o espectrofluorímetro .
iv) un circuito hidráulico para Ia manipulación de los diferentes líquidos,
v) un microprocesador para el control secuencial del análisis y Ia adquisición de Ia señal
vi) un ordenador para el tratamiento de los datos y su comunicación con el microprocesador.
vii) dispositivos de agitación.
viii) dispositivos de retención magnética,
ix) dispositivos de termostatización.
Según se representa en Ia figura 2. En dicho biosensor cada ciclo de medida comprende el análisis de un blanco y el análisis de una muestra siendo el valor de absorbancia resultante consecuencia de substraer Ia señal del blanco de Ia señal de Ia muestra.
Otro objeto de invención se refiere al uso del biosensor anteriormente descrito para Ia monitorización on-line de Ia concentración de un microorganismo en aguas, basado en Ia utilización de alícuotas desechables de partículas inmunomagnéticas para Ia captura de dicho microorganismo. En una realización particular, dichos microorganismos son Legionella, y/o Salmonella, y/o Escherichia coli, y/o Listeria, y/o Staphylococcus, y/o Streptococcus, y/o Brettanomyces.
DESCRIPCÍÓN DE LAS FIGURAS
FIG.1. Esquema del dispositivo utilizado en Ia invención para Ia realización manual del análisis. Según se indica en Ia figura, este dispositivo comprende un soporte (1) que contiene una base (2) y dos planos inclinados laterales (3); un eje móvil (4) que soporta un imán (5) y permite su desplazamiento con respecto al soporte; al menos una sujeción en forma de pinza (7), y al menos una cubeta (6) que descansa sobre Ia base y está fijada en su posición por Ia sujeción en forma de pinza (7).
FIG.2. Esquema del biosensor automatizado utilizado en Ia invención para Ia realización automática del análisis. Según se indica en Ia figura, el biosensor comprende dos compartimientos A y B, estando B contenido en A. El compartimiento A comprende un conjunto de bombas peristálticas y reservónos. Desde un reservorio (22) una sustancia patrón o blanco es tranferida a Ia celda de reacción (11) mediante una bomba peristáltica (1); Ia muestra es transferida desde el punto de toma de muestra mediante una bomba peristáltica (6) hasta Ia celda de reacción (11); una composición que contiene Ia suspensión de partículas inmunomagnéticas es homogenizada mediante un dispositivo de agitación (16) y transferida desde el reservorio correspondiente (15) mediante una bomba peristáltica (3) hasta Ia celda de reacción (11); un dispositivo de agitación (17), permite homogenizar las mezclas en Ia celda de reacción (11); un dispositivo de retención magnética (12) permite activar o desactivar un campo magnético sobre Ia celda de reacción (11); una bomba peristáltica (8) permite evacuar el contenido de Ia celda de reacción (11) a residuo; una composición que contiene un anticuerpo dirigido contra el microorganismo de interés, denominado anticuerpo de lectura es transferido desde su reservorio (14) hasta Ia celda de reacción (11), mediante una bomba peristáltica (2); una composición que permite el lavado de las partículas ¡nmunomagnéticas es transferida desde su reservorio (20) hasta Ia celda de reacción (11) mediante una bomba peristáltica (7); una composición que contiene los substratos de Ia enzima peroxidasa (composición de lectura) es transferida desde su reservorio (13) hasta Ia celda de reacción (11) mediante una bomba peristáltica (4); una composición que contiene un reactivo de parada es transferida desde su reservorio (21) hasta Ia celda de reacción (11) mediante una bomba peristáltica (5); desde Ia celda de reacción (11), una bomba peristáltica (18) transfiere su contenido a Ia celda de lectura (18) mediante una bomba peristáltica (9), haciendo pasar un flujo que es evacuado a residuo; una composición de limpieza del circuito hidráulico es transferida desde su reservorio (19) hasta Ia celda de reacción (11) mediante una bomba peristáltica (10); Ia celda de lectura acoplada en un transductor (18) está ubicada fuera del compartimento A, Ia celda de reacción (11) y el dispositivo de retención magnética (12) se encuentran en el compartimento B, a su vez dentro de A, y todos los demás elementos se encuentran en el compartimento A. El compartimento A está termostatizado a una temperatura de 4-8 0C, y el compartimento B está termostatizado a una temperatura de 24-26 0C. La celda de lectura (18) se encuentra a temperatura ambiente.
FIG.3 Registro obtenido en el biosensensor automatizado de Ia señal de un blanco (Sin Legionella) y Ia señal de una muestra (Con Legionella). La figura 3 presenta el registro continuo de las lecturas de absorbancia a 550 nm en función del tiempo, correspondiente a un ciclo de medida del biosensor automatizado, que comprende Ia señal obtenida para un blanco (1) y una muestra que contiene Legionella pneumophila (2) en una concentración de 2 x 106 ufc/l, dicha concentración determinada en paralelo por el método de cultivo. El valor resultante de substraer el valor máximo de absorbancia del blanco del valor máximo de absorbancia de Ia muestra, se corresponde con Ia concentración de Legionella en Ia muestra.
FIG.4Correlación entre Ia absorbancia y Ia concentración de Legionella en agua sanitaria. La figura 4 presenta Ia correlación obtenida entre Ia concentración de Legionella y Ia absorbancia medida, expresadas ambas magnitudes en forma logarítmica, en muestras de agua sanitaria. El coeficiente de correlación es elevado (r = +0,99), Io que implica que existe un alto grado de concordancia entre Ia señal medida y el valor de Ia concentración del microorganismo de interés en Ia muestra.
FIG 5. Resultados obtenidos con el biosensor automatizado para muestras de agua sanitaria y su corrspondencia cone I método de cultivo.. La figura 5 presenta los valores obtenidos para distintas muestras de agua sanitaria mediante el biosensor automatizado, y su paralelismo con los valores correspondientes obtenidos mediante el método de cultivo, en un rango amplio de concentraciones de entre 103 y 108 ufc/l. FIG.6 Efecto de Ia actividad endógena del microorganismo capturado sobre Ia sensibilidad de su determinación. La figura 6 presenta Ia variación de Ia absorbancia a 405 nm en función del tiempo, en Ia lectura cinética de dos muestras de una misma concentración del microorganismo (Escherichia coli), con respecto de un blanco, sin el microorganismo (simbolizado por un triángulo). En una de las muestras (simbolizada por un cuadrado) no se ha inhibido dicha actividad endógena (catalasa) y en Ia otra muestra (simbolizada por un círculo) dicha actividad ha sido inhibida. La figura demuestra que Ia sensibilidad del análisis (expresada como Ia variación de Ia absorbancia en función del tiempo) aumenta considerablemente cuando Ia actividad endógena del microorganismo capturado es inhibida (tal y como se realiza en Ia presente invención), porque compite con Ia molécula de lectura (peroxidasa) por uno de los substratos (el peróxido de hidrógeno).
FIGURA 7. Determinación sem ¡cuantitativa de Legionella Spp. Según Ia tabla de Ia figura 7, el orden de magnitud de la concentración de Legionella en Ia muestra, expresado como unidades formadoras de colonia en un litro (ufc/l), puede ser estimado de acuerdo con el color desarrollado por el kit. Los diferentes intervalos de absorbancia se corresponden con diferentes intensidades del color producido, distinguibles visualmente sin necesidad de Ia lectura óptica.
FIGURA 8. Determinación cuantitativa de Legionella. La tabla de Ia figura δ muestra Ia correspondencia para Ia concentración de Legionella entre los valores obtenidos por cultivo(1), y los valores obtenidos por el procedimiento de Ia presente invención, tanto en su realización cuantitativa (2), como en su realización cualitativa (3)., pudiendo observarse que Ia presente invención permite una determinación fiable de Ia presencia o cantidad del microorganismo de interés en Ia muestra. FIGURA 9. Comparación del efecto protector frente a Ia adsorción no específica de un recubrimiento estático frente a un recubrimiento dinámico de Ia partícula.
La tabla de Ia figura 9 muestra las lecturas de absorbancia a 405 nm obtenidas al ensayar distintas concentraciones de Escherichia coli, para dos tipos distintos de recubrimiento de las partículas inmunomagnéticas. El recubrimiento estático se refiere a Ia unión covalente de un polímero en Ia superficie de Ia partícula (A), y el recubrimiento dinámico se refiere a Ia unión no covalente de una proteína sostenida en el tiempo mediante el desplazamiento forzado del equilibrio adsorción-desorción de Ia proteína hacia Ia molécula adsorbida (B), siendo este último el método llevado a cabo por Ia presente invención. La discriminación de las concentraciones de Escherichia coli en las muestras y Ia proporcionalidad de las lecturas obtenidas con dicha concentración, son mejores con el recubrimiento dinámico (B) llevado a cabo por Ia presente invención.
FIGURA 10. Efecto protector respecto de Ia adsorción no específica de Ia presión sostenida en el tiempo del agente bloqueante sobre Ia superficie de Ia partícula inmunomagnética.. La tabla de Ia figura 10 presenta Ia dependencia de Ia señal correspondiente a Ia adsorción no específica del anticuerpo de lectura sobre Ia superficie de las partículas inmunomagnéticas anti E. coli. , según que el equilibrio de adsorción-desorción de Ia molécula bloqueante se mantenga (b) o no (a) desplazado hacia Ia adsorción. La estrategia de bloqueo permanente basado en mantener Ia presión de bloqueo durante todo el análisis permite reducir Ia adsorción no específica significativamente, obteniéndose por Io tanto una mejor sensibilidad porque Ia diferencia de señal entre el blanco y Ia muestra es significativamente mayor.
FIGURA 11. Mejora de Ia determinación mediante capturas sucesivas. La tabla de Ia figura 11 presenta una comparación entre dos realizaciones particulares de Ia presente invención para Ia medición de Ia concentración de Legionella en Ia misma muestra de agua . En una realización (A) el análisis comprende un solo evento de captura, y en Ia otra realización (B) el análisis comprende tres eventos de captura sucesivos. Los resultados demuestran que mediante B es posible incrementar Ia señal de Ia muestra sin incrementar Ia señal del blanco, haciendo más sensible Ia detección, aunque el tiempo del ensayo se incrementa.
FIGURA 12. Mejora de Ia determinación mediante el aumento del teimpo de inmunocaptura. La tabla de Ia figura 12 presenta una comparación entre dos realizaciones particulares de Ia presente invención para Ia medición de Ia concentración de Legionella en aguas. En una realización (a) el análisis comprende un evento de captura de 15 minutos, y en Ia otra realización (b) el análisis comprende un evento de captura de 16 horas (ovemigth). Los resultados demuestran que mediante b es posible incrementar Ia señal de Ia muestra sin incrementar Ia señal del blanco, haciendo más sensible Ia detección, aunque el tiempo del ensayo se incrementa. En cualquier caso cualquiera de las dos realizaciones particulares propuestas por Ia presente invención da lugar a resultados fiables
FIGURA 13. Discriminación entre bacterias muertas y bacterias vivas en Ia detección de Legionella pneumophila.. La tabla de Ia figura 13 presenta los resultados obtenidos con el kit al analizar muestras con células vivas de Legionella pneumophila y células muertas de Legionella pneumophila, en diferentes concentraciones. La figura muestra como gracias a Ia presente invención las células muertas que han sido inactivadas, y no son detectadas para ninguna concentración ensayada, mientras que las células vivas son detectadas proporcionalmente a su concentración.
FIGURA 14. Comparación de resultados cuantitativos de análisis de muestras de aguas industriales mediante PCR y mediante Ia presente invención.
La tabla de Ia figura 14 muestra Ia comparación de los análisis de determinación de concentración de Legionella de dos tipos de muestras de aguas (de torres de refrigeración y de aguas residuales), mediante el cultivo en placa, mediante Ia reacción en cadena de Ia polimerasa (PCR) y mediante el método de Ia presente invención. Los resultados muestran un alto grado de concordancia
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN La presente invención proporciona un procedimiento para Ia detección y/o semicuantificación in situ de microorganismos en una muestra, que comprende las etapas de: a) mezclar Ia muestra a ensayar, con una suspensión de partículas superparamagnéticas que tienen unido a su superficie un anticuerpo dirigido específicamente contra el microorganismo que se quiere determinar; estando Ia superficie activa de Ia partícula no ocupada por anticuerpo, ocupada por al menos un agente bloqueante, adsorbido sobre dicha superficie, en condiciones de pH, fuerza iónica y concentración tal que al diluir Ia suspensión con Ia muestra, dichas condiciones permitan mantener una presión constante de moléculas del agente bloqueante sobre Ia superficie de dichas partículas no ocupadas por el anticuerpo; en consecuencia, el equilibrio entre las moléculas de bloqueante unidas y libres se mantiene en todo momento desplazado hacia las moléculas bloqueantes unidas.
- Dicha suspensión contiene también al menos un detergente no iónico y al menos un agente quelante, para minimizar Ia agregación de las partículas, sin que afecte Ia interacción antígeno-anticuerpo. b) incubar dicha mezcla durante un tiempo determinado en condiciones adecuadas para permitir formar los complejos microorganismo-partícula magnética; c) aplicar un campo magnético para Ia separación y concentración de los complejos formados microorganismo-partícula magnética; y evacuación del sobrenadante; d) resuspender los complejos microorganismo-partícula magnética lavados en una disolución amortiguadora del pH, que comprende al menos un tipo de molécula bloqueante en exceso y un segundo anticuerpo marcado con un marcador (una enzima o un fluoróforo); e) incubar Ia mezcla durante un tiempo determinado para formar los complejos anticuerpo marcado-microorganismo-partícula magnética; f) aplicar un campo magnético para Ia separación y concentración de los complejos formados anticuerpo marcado-microorganismo-partícula magnética; g) lavar las partículas para eliminar el exceso del segundo anticuerpo, y evacuación del sobrenadante; h) resuspender los complejos formados anticuerpo marcado-microorganismo-partícula magnética, en un medio líquido que contiene simultáneamente los substratos necesarios para el revelado mediante Ia enzima que actúa como marcador, un agente bloqueante en una concentración que permite mantener el equilibrio de adsorción desplazado. hacia las moléculas de bloqueante unidas, y un inhibidor específico de las enzimas intrínsecas que compiten por uno o varios de dichos substratos; i) incubar Ia mezcla durante un tiempo determinado para desarrollar Ia señal; j) detectar y cuantificar Ia señal que resulta de Ia formación de los complejos anticuerpo marcado-microorganismo-partícula magnética, que a continuación se relaciona con Ia presencia y cuantificación del microorganismo buscado. La presente invención aumenta Ia sensibilidad mediante una creación técnica que no implica el uso necesario de nanopartículas, sino que con micropartículas consigue sensibilidades de 1 célula/mL (1000 células/L), un orden de magnitud superior a Ia mejor sensibilidad conseguida mediante el uso de nanopartículas en el estado de Ia técnica.
En Ia presente invención "muestra" se considera Ia que es sospechosa de contener al microorganismo. La muestra generalmente será de origen ambiental o alimentario, y en determinados casos será de fluidos biológicos, como por ejemplo, esputos, secreciones respiratorias o tejido pulmonar. La presente invención utiliza que en general se preparan mediante las siguientes etapas: a) preparación de una suspensión de partículas magnéticas con grupos carboxilos en su superficie en una concentración del 1%; b) tratamiento químico de Ia suspensión de partículas magnéticas carboxiladas para que las partículas queden activadas, de forma que sean capaces de unir covalentemente un anticuerpo; c) mezcla de las partículas magnéticas activadas con el anticuerpo para obtener partículas inmunomagnéticas, es decir, con el anticuerpo unido a su superficie; d) tratamiento de las partículas inmunomagnéticas obtenidas en Ia etapa c) para bloquear Ia superficie no ocupada por el anticuerpo; e) tratamiento de las partículas inmunomagnéticas bloqueadas obtenidas en Ia etapa d) para obtener una suspensión estable.
Las partículas magnéticas de Ia presente invención, están formadas a base de un polímero, generalmente de poliestireno con un 45 - 48 % de pigmento magnético, preferiblemente inclusiones de magnetita. Son de tipo esférico y el rango del diámetro es de 0,5 μm a 2 μm, preferiblemente de 0,7 μm a 1 ,5 μm, y más preferiblemente de 0,8 μm a 1 ,0 μm. Se funcionalizan químicamente, especialmente con grupos -NH2, - COOH o -OH, preferiblemente con un 70- 85 μeq/g de grupos -COOH, en su superficie. Otros soportes pueden ser activados del mismo modo, por ejemplo ferrofluidos, que comprenden partículas magnéticas del orden de los 200-400 nm de diámetro (nanopartículas), por ejemplo fabricadas por Chemicell.
En una realización del método mencionado, el tratamiento de Ia etapa b) se lleva a cabo con etilendicarbodiimida (EDC) y sal sódica de N-hidroxisulfosuccinimida (sulfo-NHS). La EDC soluble en agua forma un grupo funcional éster activo con los grupos carboxílicos de Ia partícula magnética, utilizando sulfo-NHS soluble en agua. Los esteres de sulfo-NHS son grupos hidrofílicos activos que reaccionan rápidamente con los grupos amino de los anticuerpos.
La presente invención proporciona un dispositivo de análisis reutilizable para Ia detección o cuantificación de un microorganismo de interés en una muestra ambiental o alimentaria, que comprende un soporte (1) que contiene una base (2) y dos planos inclinados laterales (3); un eje móvil (4) que soporta un imán (5) y permite su desplazamiento con respecto al soporte; al menos una sujeción en forma de pinza (7), y al menos una cubeta (6) que descansa sobre Ia base y está fijada en su posición por Ia sujeción en forma de pinza (7). Sobre Ia cubeta se aplica una muestra que contiene o potencialmente contiene el microorganismo de interés y en Ia que tiene lugar todas las etapas de Ia detección o cuantificación, que comprende: (a) formar una mezcla de ensayo para capturar selectivamente y separar el microorganismo de interés presente o potencialmente presente en Ia muestra con una suspensión de partículas superparamagnéticas sensibilizadas con una biomolécula de reconocimiento que se dirige selectivamente al microorganismo a detectar o cuantificar, incorporando dicha mezcla de ensayo un medio de captura cuya composición protege Ia partícula de Ia adsorción no específica y de Ia agregación entre partículas; (b) incubar dicha mezcla de ensayo en condiciones suficientes para permitir Ia unión de Ia biomolécula de reconocimiento al microorganismo de interés, formándose así un complejo partícula- microorganismo; (c) separar todas las partículas, incluidos los complejos partícula- microorganismo, mediante Ia aplicación de un campo magnético; (d) lavar todas las partículas en un medio de lavado que elimina los componentes potencialmente interferentes en las siguientes etapas del análisis, y protege Ia partícula de Ia adsorción no específica y de Ia agregación entre partículas; (e) formar una mezcla de ensayo por resuspensión de todas las partículas lavadas, que comprende, (i) una biomolécula de lectura que se dirige selectivamente al microorganismo a detectar o cuantificar y (ii) un medio de mareaje cuya composición protege Ia partícula de Ia adsorción no específica y Ia de Ia agregación entre partículas; (d) incubar dicha mezcla de ensayo en condiciones suficientes para permitir Ia unión de dicha biomolécula de lectura, formándose así un complejo partícula-microorganismo -biomolécula de lectura; (e) separar todas las partículas, incluidos los complejos partícula-microorganismo - biomolécula de lectura, mediante Ia aplicación de un campo magnético; (f) lavar todas las partículas en condiciones suficientes para eliminar Ia biomolécula de lectura no unida a los complejos partícula-microorganismo, en un medio que protege Ia partícula de Ia adsorción no específica y de Ia agregación entre partículas y (e) determinar Ia presencia o cantidad de dichos complejos partícula-microorganismo -biomolécula de lectura, en un medio de lectura cuya composición elimina las interferencia debidas al tipo celular objeto de Ia determinación en Ia muestra.
En Ia presente invención el anticuerpo no está limitado a un tipo particular y se pueden utilizar cualquier tipo de anticuerpo o fragmento conocido en el estado de Ia técnica que sea específico del microorganismo a determinar, incluyendo anticuerpos policlonales, monoclonales, recombinantes, etc. Los anticuerpos pueden ser específicos para una especie de microorganismo o incluso un genotipo de una especie determinada, siendo este caso útil para determinar un contaminante concreto, como por ejemplo, E.coli 0157:1-17 en alimentos. Alternativamente, los anticuerpos pueden ser reactivos con todo el género, Ia familia o incluso el orden de los microorganismos, siendo este caso útil cuando se quiere determinar si existe una contaminación general, y no de un organismo concreto.
Métodos para Ia producción de anticuerpos, tanto de mucha o de poca especificidad, son conocidos por Ia persona experta en Ia materia. Generalmente, el método de Ia presente invención se utiliza para detectar al menos un microorganismo en una solución acuosa o suspensión. Así, el método comprende mezclar Ia solución o suspensión con las microsferas cubiertas con los anticuerpos. Ejemplos de anticuerpos son los que existen disponibles en el comercio, como por ejemplo, los de Bionova Científica, S. L. Generalmente en el método de Ia presente invención se utilizan anticuerpos policlonales porque un anticuerpo policlonal es en realidad una población de anticuerpos distintos, de modo que se puede amortiguar con dicha variación Ia variación de Ia expresión de los antígenos en Ia superficie de una célula bacteriana viva. Por ejemplo, en el caso de detección de Legionella, se podrían utilizar anticuerpos obtenidos en conejo utilizando como inmunógeno una preparación de células enteras de Ia cepa de Legionella pneumophila ATCC#33152, en el caso correspondiente. La cantidad adecuada de cada anticuerpo que se utiliza con las microsferas Ia puede determinar fácilmente un experto en Ia materia, utilizando experimentos de rutina.
En un aspecto de Ia invención, el tratamiento de Ia etapa e) se lleva a cabo mediante Ia mezcla de las partículas inmunomagnéticas bloqueadas con una disolución que contiene una cantidad en exceso del agente bloqueante empleado en Ia etapa d), un agente biocida, un agente bacteriostático, un agente surfactante y un agente quelante.
Los agentes bloqueantes pueden ser, entre otros, albúmina de suero bovino (BSA), caseína de leche bovina en polvo, caseína de leche bovina en solución, gelatina de piel de peces de agua fría, gelatina de piel porcina, leche desnatada en polvo de bovino, polidextranos, etc.
Los agentes biocidas pueden ser, entre otros, estreptomicina, neomicina, gentamicina, kanamicina, preferiblemente azida sódica.
Los agentes bacteriostáticos pueden ser, entre otros, p-nitrofenil-di- cloroacetamido propanodiol (cloramfenicol), sulafanilamida, 2,4-diamino-5-(3,4,5- tr¡metoxibencil)pirimidina (trimetoprim), preferiblement sal sódica del 2- (etilmercuriomercapto) benzoico (timerosal).
Los agentes surfactantes son fundamentalmente detergentes no iónicos, como por ejemplo, alquil fenoles polietoxilados, alcoholes grasos polietoxilados, ácidos grasos polietoxilados, alcanolaminas o condensados, etc, preferentemente el monolaurato de sorbitán (Tween 20).
Los agentes quelantes pueden ser, entre otros, 2,2'-Bipiridilo, dimercaptopropanol, ácido etilendiaminotetraacético (EDTA)1 ácido etilendioxi-dietilen- dinitrilo-tetraacético, ácido etilen glicol-bis(2-aminoetil)-N,N,N',N'-tetraacético (EGTA), ácido nitrilotriacético (NTA), orto-fenantrolina, ácido salicílico y trietanolamina (TEA), preferiblemente EDTA. En una realización particular, el agente bloqueante es albúmina de suero bovino (BSA), el agente bacteriostático es timerosal, el agente biocida es azida sódica, el agente, surfactante es monolaurato de sorbitán, y. el agente quelante es ácido etilendiaminotetraacético (EDTA). En una realización del método mencionado, en Ia etapa g) se añaden conservantes, como por ejemplo, el timerosal para estabilizar el anticuerpo conjugado con peroxidasa. Se utiliza una sal débil de fosfato disódico para retrasar Ia autooxidación del co-substrato utilizado en Ia reacción con Ia peroxidasa. Al mezclarlo con el otro co-substrato, disuelto en un tampón fosfato-citrato, se restaura el pH para el que Ia actividad peroxidasa es óptima, de forma que el grado de autooxidación de los sustratos haya sido despreciable, y su concentración disponible para Ia peroxidasa sea máxima, partiendo de un nivel negligible de autooxidación. También se considera posible que Ia mezcla de cosusbtratos con Ia sal débil sea ya estable, de modo que al final se mezcle con un tampón citrato-fosfato cuando entra en contacto con Ia peroxidasa, asegurando así que Ia reacción se produce con un mínimo nivel inicial de autooxidación y en el pH óptimo para Ia peroxidasa.
En una realización del método mencionado, en Ia etapa h) se añaden inhibidores de los enzimas endógenos competitivos de Ia peroxidasa, como por ejemplo, 3-amino-1 ,2,4-triazol, que inactiva selectivamente Ia catalasa microbiana que podría competir con Ia peroxidasa por el susbstrato de revelado (peróxido de hidrógeno), pero no inhibe Ia peroxidasa. Otra posibilidad es utilizar un peróxido sustituido que no sea reconocible por Ia catalasa, pero sí por Ia peroxidasa, por ejemplo el peróxido de urea.
Mediante el bloqueo de Ia superficie de Ia partícula no ocupada por el anticuerpo se evita por un lado Ia adsorción sobre las partículas de otras moléculas presentes en Ia muestra, es decir, Ia adsorción no específica que puede entorpecer Ia captura del microorganismo de interés (favoreciendo falsos negativos), y por otro lado se evita también Ia adsorción sobre las partículas de las moléculas que se utilicen en Ia lectura de los microorganismos capturados (favoreciendo falsos positivos). También se evita Ia adsorción del anticuerpo inmovilizado en Ia partícula magnética, porque Ia molécula de bloqueo impide que el anticuerpo inmovilizado se incline sobre Ia superficie y pueda quedar adsorbido sin exponer su región de reconocimiento al medio exterior. Se reduce Ia agregación de las partículas entre sí y se evita su adherencia a otras superficies, como las paredes del recipiente que las contiene o en que se manipulan.
Las partículas inmunomagnéticas así obtenidas son estables en suspensión durante un largo período de tiempo y se concentran rápidamente en fracciones adecuadas mediante Ia aplicación de un campo magnético, redispersándose fácilmente al retirar el campo magnético con una suave agitación.
En Ia presente invención se consigue Ia manipulación cuantitativa de las partículas, mediante Ia estabilización de Ia suspensión de partículas aplicada a Ia determinación, y además, durante todo el proceso de determinación, desde el contacto con Ia muestra hasta Ia obtención del resultado analítico, dichas condiciones son sostenidas en el tiempo.
Esta estabilización supone que las partículas en ningún momento queden adheridas a las superficies contenedoras, de forma que su número no sea disminuido durante el proceso de análisis, y de que no puedan interaccionar con otros microorganismos o moléculas distintas del microorganismo que se quiere determinar y con cuya determinación puedan interferir.
Esta característica requiere bloquear Ia superficie de Ia partícula que no esté ocupada por anticuerpo (el ligando que usamos para capturar el microorganismo específico). La superficie no bloqueada presenta una cierta reactividad, de modo que otras moléculas o microorganismos presentes en Ia muestra podrían interaccionar e interferir en Ia interacción con el microorganismo que se quiere determinar. Existen métodos para recubrir las partículas u otros soportes mediante agentes bloqueantes como polímeros, por ejemplo de dextrano, mediante su unión covalente a Ia superficie de Ia partícula. Pero estas técnicas no permiten un control reproducible del grado de recubrimiento conseguido, e incluso es bastante fácil llegar a recubrir parte de los anticuerpos de superficie, de modo que los resultados pueden ser muy variables o incluso comprometer Ia aplicación de las partículas.
El uso de agentes bloqueantes en etapas concretas de Ia determinación en inmunoensayos, para proteger Ia superficie en soportes fijos, como las placas ELISA, es conocida. La etapa de bloqueo se realiza incubando un tiempo Ia placa en un tampón que contenga un bloqueante. Parte de las moléculas bloqueantes se quedan adsorbidas, y las moléculas no adsorbidas son lavadas posteriormente, procediendo entonces al desarrollo de Ia determinación. En Ia composición de los tampones de lavado es habitual Ia presencia de sales de fosfato y de cloruro sódico. Sin embargo, estos compuestos (especialmente el cloruro sódico) pueden en poco tiempo desorber bloqueantes tales como ciertas proteínas, quedando desprotegidas las superficies reactivas de las partículas, Io que puede favorecer interacciones no específicas que pueden darse durante el análisis.
Es obvio que el uso de soportes libres, como las partículas magnéticas activadas con anticuerpos, permitirán un incremento de colisiones entre el anticuerpo y el antígeno (presente en el microorganismo), de modo que una parte, no todas, de estas colisiones supondrán interacción antígeno-anticuerpo, y Ia captura más eficiente del microorganismo en un tiempo dado. Pero del mismo modo pueden verse favorecidas interacciones no específicas de otras moléculas presentes en Ia muestra con grupos reactivos de Ia superficie de las partículas. Estas interacciones no deseadas podrían interferir sobre Ia interacción deseada antígeno-anticuerpo.
Por otro lado, tanto en los soportes fijos (por ejemplo placas ELISA) como libres (partículas o esferas), las etapas de lavado pueden afectar también el grado de protección de las superficies, bien por efecto de Ia composición de los tampones de lavado, bien por simple dilución y consecuente desplazamiento del equilibrio de adsorción del agente bloqueante, de modo que no es cierto que durante todo el tiempo de Ia determinación dichas superficies estén protegidas en el mismo grado.
En soportes libres, como las partículas en suspensión, las superficies a proteger son las de dichas partículas en suspensión, con movimiento libre. Este problema se ha abordado en Ia literatura mediante Ia aplicación de polímeros sintetizados del tipo poli-alcohol. Estos compuestos poliméricos se adicionan en una sola vez como etapa dentro de Ia fabricación de las partículas, y quedan directamente unidos a Ia superficie. En Ia presente invención se favorece Ia adsorción de las moléculas del agente bloqueante en todo momento. Para ello, el equilibrio de adsorción-desorción se mantiene en todo momento desplazado hacia Ia adsorción de Ia molécula de bloqueo. Preferentemente, este agente bloqueante es una proteína. Puesto que el control de las reacciones implicadas en Ia deposición y unión covalente de polímeros sintéticos en Ia superficie del soporte no es reproducible, el grado de recubrimiento conseguido es muy variable, y de hecho es muy frecuente que una parte, y no siempre Ia misma, de anticuerpos inmovilizados en Ia superficie de Ia partícula, puedan quedar también recubiertos, perdiendo su capacidad para interaccionar con el antígeno.
Esto es así, porque Ia química utilizada afecta siempre a algunos de los muy diversos grupos reactivos que presentan los anticuerpos, siendo inevitable que los polímeros interaccionen con algunos de ellos, o bien porque el polímero queda depositado total o parcialmente sobre algunos anticuerpos, causando un impedimento estérico a Ia interacción con el antígeno.
Resulta por tanto necesario conseguir una inertización de Ia partícula que sea reproducible y que no dependa de las condiciones cambiantes del entorno durante el proceso de Ia determinación del microorganismo. La presente invención resuelve el problema y consigue Ia inertización mediante un procedimiento basado en el mantenimiento de una presión constante de agente bloqueante durante todo el proceso de Ia determinación, tanto en las incubaciones, lavados y separaciones. De este modo, el número de moléculas de bloqueante que abandonan Ia superficie en un momento dado, sea siempre compensado por un número equivalente de moléculas del bloqueante que entren a ocupar su sitio. Esto implica considerar los siguientes aspectos: a) Ia adición del bloqueante como etapa final del proceso de fabricación del inmunoreactivo (Ia partícula con los anticuerpos inmovilizados), en una concentración tal que, al adicionar Ia cantidad prevista de suspensión a una muestra para realizar un análisis, Ia dilución obtenida permita mantener una concentración óptima del bloqueante; b) Ia introducción del bloqueante en todas las disoluciones intervinientes en el análisis, de modo que Ia concentración óptima de bloqueante sea mantenida durante todas las etapas del análisis; c) que Ia interacción del bloqueante con Ia superficie no requiere unión covalente, sino que se basa en interacciones débiles multipuntuales, estableciendo una adsorción al soporte, cuyo equilibrio es desplazado hacia Ia unión con el soporte. Es un sistema "dinámico" de protección de las partículas activadas con los anticuerpos, que obvia Ia necesidad de un polímero de síntesis y Ia introducción de enlaces covalentes.
De este modo, Ia presente invención proporciona un procedimiento de determinación robusto, caracterizado porque los siguientes efectos son sostenidos en el tiempo:
1) Ia superficie de Ia partícula no queda desprotegida, y en consecuencia se minimizan las adsorciones no específicas;
2) los anticuerpos no puedan aproximarse al soporte en su movimiento de balanceo alrededor de su punto de anclaje, y adsorberse en el propio soporte, y en consecuencia no hay pérdida de actividad biológica;
3) Ia manipulación de las partículas, las partículas con los anticuerpos, las partículas con los inmunocomplejos, y las partículas con los inmunocomplejos marcados (para medir), es en todo momento cuantitativa, eliminando su influencia en Ia variabilidad de Ia medida, a diferencia de Io que ocurre con un ELISA o incluso con partículas magnéticas convencionales, con independencia de su composición.
Un aspecto de gran interés es que debido a Ia protección sostenida de Ia superficie de Ia partícula frente a Ia adsorción no específica, es posible incrementar Ia cantidad de anticuerpo de lectura en condiciones de fuerza iónica baja, para incrementar Ia probabilidad de colisión entre el microorganismo capturado sobre las partículas y dicho anticuerpo de lectura. Esto es posible porque en condiciones de baja fuerza iónica las repulsiones electrostáticas, entre el anticuerpo de lectura y el antígeno expuesto en Ia superficie del microorganismo capturado, son reducidas. En consecuencia el anticuerpo de lectura puede aproximarse mejor al antígeno, y un mayor número de colisiones favorables pueden darse en menor tiempo. Al mismo tiempo, se encuentra favorecida Ia interacción de Ia molécula de bloqueo con Ia superficie de Ia partícula no ocupada por el anticuerpo de captura. Por tanto, ocurren a Ia vez una eficiente protección de Ia superficie de Ia partícula frente a Ia adsorción no específica, y una eficiente interacción antígeno-anticuerpo .En consecuencia aumenta Ia sensibilidad de Ia determinación, manteniendo una relación señal/ruido elevada. Otro aspecto del mayor interés es que Ia manipulación cuantitativa de las partículas en este entorno controlado y constante, permite manejar volúmenes grandes de muestra, e. incrementar Ia sensibilidad de Ia determinación. Es posible incrementar Ia sensibilidad, mediante el incremento del volumen de muestra, que es una limitación muy importante en otras técnicas de inmunoensayo, como Ia técnica ELISA.
En Ia presente invención, también es posible aumentar Ia sensibilidad, mediante Ia aplicación de varias cargas (cantidades equivalentes en volumen) de Ia misma muestra sobre las mismas partículas. Cuando Ia captura se realiza sobre una carga determinada de muestra, en los momentos iniciales sabemos que hay un número muy grande de células del microorganismo, de modo que el encuentro entre partícula y microorganismo es muy favorable, produciéndose Ia captura del mismo mediante Ia interacción antígeno-anticuerpo.
En general, a medida que transcurre el tiempo, Ia población de partícula "vacía" (sin microorganismo unido) disminuye en favor de Ia población de partícula que ha capturado el microorganismo; los microorganismos libres también decrecen en número en Ia muestra, y cada vez las partículas se hacen menos eficientes en Ia captura, porque ya llevan unidas células del microorganismo, que dificultan Ia entrada de otra célula más, y porque queda menos microorganismo libre en Ia muestra y las colisiones favorables son menos probables. Es por esto que, los tiempos de incubación en los inmunoensayos suelen ser largos, de entre 30 min y tres horas, por ejemplo.
En una realización particular, Ia presente invención proporciona un procedimiento para mejorar el rendimiento de captura sin alterar el tiempo de incubación, o incluso reduciéndolo, que consiste en dividir Ia muestra en alícuotas equivalentes y homogéneas (cargas), y someter una primera carga al contacto con las partículas magnéticas activadas con el anticuerpo, durante un tiempo menor t1 ; luego retener las partículas, eliminar Ia muestra y sustituirla por una carga fresca de muestra, de modo que las mismas partículas (empobrecidas en el sentido de que ahora son capaces de captar menos células porque parte de su superficie ya está ocupada), se encuentran en un entorno de nuevo con Ia misma concentración de bacteria libre, favoreciendo nuevas interacciones, durante un tiempo t2 que puede ser mayor que t1 ; y así cuantas cargas se precisen. Así, T = t1 + t2 + ...+ tn, siendo T el tiempo total de inmunocaptura (Figura 11).
En otra realización particular, Ia presente invención proporciona un procedimiento para incrementar Ia sensibilidad de Ia determinación del microorganismo de interés, mediante el incremento del tiempo de Ia etapa única de inmunocaptura, porque no se incrementa Ia adsorción no específica debido a Ia protección sostenida de Ia superficie de Ia partícula (Figura 13).
Así, Ia presente invención proporciona procedimientos para incrementar Ia sensibilidad de manera muy significativa, porque permite usar volúmenes de muestra mayores, y/o cargas sucesivas de una misma concentración de microorganismo, utilizando soportes que son constantemente protegidos frente a adsorciones no deseables, durante todo el proceso.
La presente invención proporciona un kit para Ia determinación de microorganismos. El alcance de dicha determinación puede ser semicuantitativo o cuantitativo; se entiende por determinación semicuantitativa aquella cuyo resultado es una estimación del orden de magnitud de Ia concentración del microorganismo de interés en Ia muestra. El kit permite Ia captura selectiva del microorganismo de interés, en muestras de agua o alimentarias, su concentración y separación del resto de componentes de Ia muestra, y su detección colorimétrica, de un modo simple y rápido, siendo posible Ia determinación in situ. El kit utiliza partículas superparamagnéticas con anticuerpos dirigidos contra el microorganismo de interés, inmovilizados en su superficie, que en los medios de reacción suministrados, se unen específicamente al microorganismo de interés, presente o potencialmente presente en Ia muestra. Un aparato portátil de sencillo manejo permite acercar y alejar un imán a Ia cubeta de reacción. Esto hace posible Ia retención y resuspensión de las partículas durante el análisis, para Ia captura, separación y concentración inmunomagnética del microorganismo de interés. Finalmente, el medio reactivo en Ia cubeta desarrolla un color que se compara con una carta de colores, para determinar visualmente Ia presencia del microorganismo de interés, y estimar su orden de magnitud, en un tiempo aproximado de 60 minutos entre Ia toma de muestra y Ia obtención del resultado. En una realización particular, el kit comprende un aparato portátil de uso manual para análisis in situ y un conjunto de composiciones o medios reactivos para Ia realización del análisis, todo ello dispuesto en un contenedor que incorpora una placa refrigerante. Todas las etapas del análisis tienen lugar en dicho aparato, que comprende un soporte con dos cubetas y un imán, y una carta de colores para una correcta interpretación de los resultados. Dichas composiciones o medios reactivos son las siguientes:
a) composición para Ia captura del microorganismo de interés, que comprende una suspensión de partículas ¡nmunomagnéticas (con el anticuerpo de captura inmovilizado en su superficie mediante unión covalente, y un agente de bloqueo unido a Ia superficie no ocupada por el anticuerpo, mediante unión no covalente), en un medio líquido que contiene en disolución el mismo agente de bloqueo, un agente quelante, un agente surfactante, un agente biocida, y un agente bacteriostático. Dicha composición presenta fuerza iónica elevada correspondiente a un tampón de fosfato sódico de concentración 150 mM.
b) composición de mareaje del microorganismo de interés, que comprende un anticuerpo de lectura, conjugado con una molécula de lectura, por ejemplo peroxidasa o una sustancia fluorescente, en una disolución que contiene un agente de bloqueo y un agente inhibidor de Ia actividad de enzimas presentes en el microorganismo que puedan competir en Ia molécula de lectura. Dicha composición presenta una fuerza iónica media correspondiente a un tampón de fosfato-citrato 50 mM y pH 6,0.
c) composición de lectura del microorganismo de interés, que comprende un sustrato oxidable necesario para el desarrollo de Ia reacción de lectura, en una disolución que contiene una sal débil de fosfato disódico para reducir Ia autooxidación de dicho sustrato.
d) composición de lectura del microorganismo de interés, que comprende un sustrato oxidante, necesario para el desarrollo de Ia reacción de lectura, en una disolución de un tampón fosfato-citrato de pH 6,0 y concentración 50 mM.
e) una composición de parada de Ia reacción de lectura, que comprende un ácido fuerte o una base fuerte, en una concentración entre 1M y 5 M, preferentemente 3M. f) una composición para el lavado de las partículas ¡nmunomagnéticas que comprende un agente de bloqueo, un agente surfactante y un agente bacteriostático, con una fuerza iónica baja correspondiente a una disolución de un tampón de fosfato de sodio a pH 7,0 y concentración 25 mWI.
En una realización particular, Ia presente invención proporciona un equipo biosensor automatizado para Ia monitorización on-line de Ia concentración de Legionella en aguas, basado en Ia utilización de alícuotas desechables de partículas inmunomagnéticas anti Legionella.
Se describe a continuación Ia configuración del biosensor para Ia monitorización continua de Ia concentración de Legionella en aguas. El biosensor es un sistema integrado que incluye:
i) celdas para Ia reacción de captura y mareaje del microorganismo de interés, en este ejemplo Legionella.
ii) celdas para Ia lectura de Ia absorbancia a Ia longitud de onda seleccionada o Ia fluorescencia a Ia longitud de emisión seleccionada.
iii) un transductor óptico (un espectrofotómetro o espectrofluorímetro en el caso de Ia Legionella).
iv) un circuito hidráulico para Ia manipulación de los diferentes líquidos,
v) un microprocesador para el control secuencial del análisis y Ia adquisición de Ia señal
vi) un ordenador para el tratamiento de los datos y su comunicación con el microprocesador.
vii) dispositivos de agitación,
viii) dispositivos de retención magnética.
ix) dispositivos de termostatización. La FIG 2 muestra la configuración del biosensor. La captura y mareaje del microorganismo de interés, por un lado, y Ia lectura de señal obtenida, por otro, tienen lugar en celdas diferentes. El circuito hidráulico está compuesto de bombas peristálticas que permiten Ia manipulación de los líquidos. Un dispositivo de retención magnética permite Ia manipulación de las partículas inmunomagnéticas en una celda de reacción, en Ia que tiene lugar Ia captura y mareaje del microorganismo de interés, y Ia lectura de Ia señal tiene lugar en flujo en otra celda distinta, integrada en el componente transductor. La celda de reacción y el dispositivo de retención magnética se encuentran ubicados en un compartimiento termostatizado (B) para mantener Ia temperatura favorable para Ia interacción antígeno- anticuerpo y Ia temperatura óptima para Ia actividad de Ia molécula de lectura. Dicho compartimiento se encuentra a su vez dentro de otro compartimiento mayor (A) termostatizado a una temperatura favorable para Ia conservación de los reactivos y disoluciones que intervienen en el análisis.
En cada ciclo de medida tiene lugar Ia captura, separación y concentración del microorganismo de interés presente en Ia muestra, y posteriormente su lectura. En una primera etapa del ciclo tiene lugar Ia medición de un blanco que comprende una disolución libre del microorganismo de interés, y en una segunda etapa tiene lugar Ia medición del microorganismo de interés en Ia muestra. El aparato registra Ia lectura del blanco y Ia lectura de Ia muestra (FIG.3), y calcula Ia diferencia entre ambas, cuyo valor esta correlacionado con Ia concentración del microorganismo en Ia muestra (FIG. 4). Para ello, empleando el dispositivo automatizado representado en Ia figura 2 (cuyas distintas partes integrantes están identificadas entre paréntesis a continuación) se añaden en cada caso, tanto para el blanco como para Ia muestra, cantidades predeterminadas de las siguientes composiciones en el siguiente orden: (a) un volumen predeterminado de muestra es transferido desde el punto de toma de muestra mediante una bomba peristáltica (6) hasta Ia celda de reacción (11), ubicada en un compartimiento termostatizado (B); (b) una alícuota de una composición que contiene Ia suspensión de partículas inmunomagnéticas, previa homogenización mediante un dispositivo de agitación (16), es transferida desde el reservorio correspondiente (15) mediante una bomba peristáltica (3) hasta Ia celda de reacción (11); c) Ia mezcla de Ia muestra y las partículas inmunomagnéticas se homogeniza mediante un dispositivo de agitación (17), a intervalos regulares de tiempo, durante un período predeterminado, para que el microorganismo de interés pueda ser capturado por las partículas inmunomagnéticas mediante Ia interacción antígeno-anticuerpo, formando complejos partícula-microorganismo; d) aplicación de un campo magnético mediante Ia activación del dispositivo de retención magnética (12), de forma que las partículas inmunomagnéticas, tanto libres como las que han formado complejos con el microorganismo de interés, son retenidas en una zona de Ia celda de reacción (11); e) evacuación del líquido sobrenadante a residuo mediante una bomba peristáltica (8); f) eliminación del campo magnético aplicado mediante Ia desactivación del dispositivo de retención magnética (12); g) un volumen predeterminado de una composición que contiene un anticuerpo dirigido contra el microorganismo de interés, denominado anticuerpo de lectura porque está conjugado con una molécula de lectura, por ejemplo peroxidasa, es transferido desde su reservorio (14) hasta Ia celda de reacción (11), mediante una bomba peristáltica (2); h) Ia mezcla de las partículas inmunomagnéticas con Ia composición anterior en Ia celda de reacción(11) es homogenizada mediante agitación con un dispositivo de agitación (17), a intervalos regulares de tiempo, durante un período predeterminado, para que dicho anticuerpo de lectura pueda unirse al microorganismo capturado sobre las partículas inmunomagnéticas; i) aplicación de un campo magnético mediante Ia activación del dispositivo de retención magnética (12), de forma que las partículas inmunomagnéticas, tanto libres como las que han formado complejos con el microorganismo de interés y el anticuerpo de lectura, son retenidas en una zona de Ia celda de reacción (11); j) evacuación del líquido sobrenadante a residuo mediante una bomba peristáltica (8); k) eliminación del campo magnético aplicado mediante Ia desactivación del dispositivo de retención magnética (12); I) un volumen predeterminado de una composición que permite el lavado de las partículas inmunomagnéticas es transferido desde su reservorio (20) hasta Ia celda de reacción (11) mediante una bomba peristáltica (7); II) Ia mezcla de las partículas inmunomagnéticas y Ia composición de lavado se homogeniza con un dispositivo de agitación (17); m) aplicación de un campo magnético mediante Ia activación del dispositivo de retención magnética (12), de forma que las partículas inmunomagnéticas lavadas, son retenidas en una zona de Ia celda de reacción (11); n) el líquido sobrenadante es evacuado desde Ia celda de reacción (11) a residuo mediante una bomba peristáltica (8); o) eliminación del campo magnético aplicado mediante la desactivación del dispositivo de retención magnética (12); p) un volumen predeterminado de una composición que contiene los substratos de Ia enzima peroxidasa (composición de lectura) es transferido desde su reservorio (13) hasta Ia celda de reacción (11) mediante una bomba peristáltica (4); q) Ia mezcla de las partículas inmunomagnéticas y Ia composición anterior se homogeniza con un dispositivo de agitación (17), durante un período determinado, en el cuál Ia peroxidasa cataliza Ia obtención de un producto coloreado soluble; r) un volumen predeterminado de un reactivo de parada es transferido desde su reservorio (21) hasta Ia celda de reacción (11) mediante una bomba peristáltica (5), para detener Ia reacción producida por Ia molécula de lectura; rr) aplicación de un campo magnético mediante Ia activación del dispositivo de retención magnética (12), de forma que las partículas inmunomagnéticas son retenidas en una zona de Ia celda de reacción (11); s) el sobrenadante es transferido desde Ia celda de reacción (11) a residuo, haciéndolo pasar en flujo a través de Ia celda de lectura (18) mediante una bomba peristáltica (9); dicha celda alojada en un transductor óptico que permite el registro de las lecturas de absorbancia al paso de dicho sobrenadante para determinar Ia presencia o cantidad del microorganismo de interés.
El blanco se analiza del mismo modo que Ia muestra, y previamente a ésta; para ello el blanco es transferido desde su reservorio (22) a Ia celda de reacción (11) mediante Ia bomba peristáltica (1).
Finalmente, se compara Ia lectura obtenida para el blanco con Ia lectura obtenida para Ia muestra. Dicha comparación consiste en substraer el valor máximo de absorbancia registrado para el blanco del valor máximo de absorbancia registrado para Ia muestra.
Concluido el ciclo de medida, el circuito hidráulico del biosensor es lavado haciendo pasar una disolución de limpieza desde su reservorio (19) hasta Ia celda de reacción (11) mediante una bomba peristáltica (10). La disolución de limpieza contenida en Ia celda de reacción (11) se agita mediante un dispositivo de agitación (17) durante un tiempo determinado, y se hace pasar por Ia celda de lectura (18) hacia residuo mediante una bomba peristáltica (9). A continuación se describen algunos ejemplos aunque muchos otros están comprendidos dentro del alcance de Ia invención, de manera evidente para el experto en Ia materia.
EJEMPLOS
Ejemplo 1 : Detección de Legionella en una muestra de agua sanitaria.
Se utilizan partículas super-paramagnéticas de poliestireno (diámetro medio de 0,9 μm, 45,7% de pigmento magnético-Estapor Merck Francia) que presentan grupos carboxílicos en su superficie. Sobre estas partículas se inmoviliza un anticuerpo policlonal anti Legionella. Las partículas inmunomagnéticas se incubaron en una disolución de un tampón fosfato 25 mM a pH 7,0 con BSA 1% durante 12 horas, en agitación suave. Las partículas inmunomagnéticas resultantes fueron suspendidas en una proporción 1/40 en una disolución de un tampón fosfato 150 mM que contiene 10% de BSA, 1 ,0 % de tween 20, 0,01% de timerosal, y 0,1 % de azida sódica. La suspensión final de partículas inmunomagnéticas es depositada en un aparato portátil para análisis ¡n situ, similar al que es presentado en Ia FIG.1 y descrito anteriormente
Con el imán alejado de Ia cubeta, un volumen de 1 ,0 mi de Ia suspensión de partículas inmunomagnéticas se deposita en el interior de Ia cubeta, y a continuación un volumen de 10,0 mi de muestra de agua procedente directamente de una torre de refrigeración se añade sobre las partículas inmunomagnéticas, formando una mezcla que se homogeniza mediante agitación suave del aparato y se incuba a temperatura ambiente durante 15 minutos. Transcurrido este tiempo de incubación, el imán se aproxima hasta contactar con Ia pared exterior de Ia cubeta y las partículas inmunomagnéticas son atraídas y retenidas en Ia zona adyacente al imán, en Ia pared interna de Ia cubeta. El sobrenadante es evacuado de Ia cubeta, sin arrastrar las partículas inmunomagnéticas retenidas por el campo magnético.
A continuación, las partículas inmunomagnéticas retenidas en Ia cubeta son resuspendidas en un volumen de 1 ,0 mi de una disolución de un tampón fosfato-citrato
50 mM a pH 5,0, que contiene 0,1 % de BSA, 0,01 % de timerosal, y 4,0 μg/ml de un anticuerpo policlonal anti Legionella spp. conjugado con peroxidasa. Esta mezcla es homogeneizada mediante agitación suave del aparato, e incubada a temperatura ambiente durante 10 minutos. Después de Ia incubación, el imán se aproxima hasta contactar con Ia pared exterior de Ia cubeta y las partículas inmunomagnéticas son atraídas y retenidas en Ia zona adyacente al imán, en Ia pared interna de Ia cubeta. El sobrenadante es evacuado de Ia cubeta, sin arrastrar las partículas inmunomagnéticas retenidas por el campo magnético.
Las partículas inmunomagnéticas son lavadas mediante su resuspensión, con el imán alejado de Ia cubeta, en un volumen de 4,0 mi de una disolución de un tampón fosfato 25 mM a pH 7,0 que contiene un 1% de BSA, 0,1 % de tween 20, y 0,1 % de timerosal, y reteniendo a continuación dichas partículas inmunomagnéticas lavadas, de nuevo mediante Ia aproximación y contacto del imán con Ia cubeta, para evacuar el sobrenadante. Esta etapa de lavado se ejecuta dos veces más.
Siguiendo al último lavado, el campo magnético es eliminado, es decir, el imán se aleja de Ia cubeta; las partículas inmunomagnéticas son resuspendidas en un volumen de 1,0 mi de una disolución de un tampón fosfato-citrato 50 mM a pH 5,0, que contiene peróxido de urea 0,5% y ácido amino salicílico al 0,1 %. Esta mezcla se homogeniza mediante agitación suave del aparato, y es incubada a temperatura ambiente durante 2 minutos. Durante este tiempo, Ia peroxidasa conjugada al anticuerpo policlonal anti Legionella, a su vez unido a los complejos formados por las partículas inmunomagnéticas y las células de Legionella capturadas, catalizan Ia oxidación del ácido aminosalicílico por el peróxido de urea. Esta reacción da lugar a una coloración de Ia mezcla en el aparato.
Transcurrida Ia incubación, se añade sobre Ia mezcla 0,15 mi de una disolución de hidróxido de sodio (NaOH) 3 M, para detener Ia reacción catalizada por Ia peroxidasa. Transcurrido 1 minuto, después de Ia incubación, el imán se aproxima hasta contactar con Ia pared exterior de Ia cubeta y las partículas inmunomagnéticas son atraídas y retenidas en Ia zona adyacente al imán, en Ia pared interna de Ia cubeta.
La producción de una coloración es interpretada como un resultado positivo en
Ia detección de Legionella, y Ia ausencia de coloración como un resultado negativo. La intensidad de Ia coloración final obtenida permite estimar visualmente el orden de magnitud de Ia concentración de Legionella (expresada como unidades formadoras de colonia por litro, ufc/l)(Figura 7). El sobrenadante puede ser evacuado para realizar Ia lectura de su absorbencia a una longitud de onda de 550 nm. Con respecto a Ia lectura de absorbancia de un blanco, dicha absorbancia guarda una. correlación con Ia concentración de Legionella en Ia muestra (FIG.2). Esta absorbancia es proporcional a Ia cantidad de Legionella capturada por las partículas inmunomagnéticas, que a su vez es proporcional a Ia cantidad de Legionella presente en Ia muestra.
Los resultados obtenidos para muestras distintas concentraciones de Legionella, con 15 réplicas por muestra, son coherentes entre el método de cultivo y el método proporcionado en Ia presente invención, tanto cualitativa como cuantitativamente (Fig.8).
Estos resultados confirman Ia validez de los procedimientos que proporciona Ia presente invención para Ia detección y/o semicuantificación o cuantificación de microorganismos vivos a partir de una muestra. Ejemplo 2: Análisis cuantitativo de aguas industriales ( torres de refrigeración y aguas residuales).
De acuerdo con el procedimiento proporcionado en Ia presente invención en el ejemplo 1 , se analizaron dos tipos de muestras de aguas: muestras procedentes de torres de refrigeración y muestras procedentes de aguas residuales. Para cada tipo de muestra se determina Ia concentración de Legionella mediante el cultivo en placa, mediante Ia reacción en cadena de Ia polimerasa (PCR) y se realiza el análisis por el método déla presente invención, obteniendo Ia lectura de Ia absorbancia a 550 nm . El volumen de cada muestras ensayado con el método de Ia invención es de 10,0 mi y las muestras no han sido pretratadas.
Como puede observarse en Ia figura 14, los resultados obtenidos indican un alto grado de concordancia entre Ia concentración de Legionella en Ia muestra y Ia lectura de absorbancia a 550 nm, para los dos tipos de muestra ensayados.
En consecuencia, el método proporcionado por Ia presente invención permite obtener una estimación fiable de Ia concentración de Legionella en distintos tipos de aguas, con ventajas significativas respecto de las otras técnica utilizadas, y en particular, el tiempo de obtención del resultado, inferior a una hora, Ia posibilidad de ejecutar el análisis in situ, y sin Ia necesidad de supervisión profesional en un entorno controlado de laboratorio.
Ejemplo 3: Cuantificación de Legionella mediante un biosensor automatizado. En este ejemplo se presenta los resultados obtenidos para muestras de agua sanitaria con distintas concentraciones de Legionella, con 7 réplicas por muestra, mediante el uso del equipo biosensor automatizado descrito (FIG.3), para Ia monitorización on-line de Ia concentración de Legionella en aguas, basado en Ia utilización de alícuotas desechables de partículas inmunomagnéticas anti Legionella.
Cada ciclo de medida comprende el análisis de un blanco y el análisis de una muestra, y las señales correspondientes son registradas por el biosensor automatizado (FIG 4). El valor de absorbancia resultante de substraer Ia señal del blanco de Ia señal de Ia muestra tiene una correlación elevada con Ia concentración de Legionella en Ia muestra de agua sanitaria (coeficiente de correlación r = +0,99) (FIG.2).
Según muestra Ia figura 5, los resultados obtenidos mediante el método de cultivo y el método proporcionado en Ia presente invención para el biosensor automatizado son comparables . El ciclo de medida tiene una duración de 1 hora por muestra analizada.
Esto sugiere que el biosensor puede ser utilizado para Ia monitorización y vigilancia de Ia concentración de Legionella en aguas, principalmente en las instalaciones de riesgo, e incluso para aplicar de una forma oportuna y proporcionada Ia dosificación de biocidas u otras medidas correctoras. De forma particular, el biosensor puede ser utilizado para prevenir que las instalaciones de riesgo alcancen concentraciones infectivas de Legionella sostenidas en el tiempo, reduciendo Ia probabilidad del riesgo asociado. Estas concentraciones para torres de refrigeración y dispositivos análogos han sido reportadas, estableciendo como tales aquellas concentraciones que alcanzan o superan 104-105 ufc/L (World Health Organization, "Legionella and the prevention of legionellosis", 2007). Estas concentraciones han sido determinadas por cultivo, en un tiempo de 12-15 días. Teniendo en cuenta que Ia concentración de Legionella puede multiplicarse en un factor de 10 o 100 en unos minutos en una instalación de riesgo (Bentham & Broadbent, "The Influence of the Sessile Population in the Legionella Colonization of Cooling Towers. In: Legionella - Current Status and Emerging Perspectives, Eds. Barbaree, J. M., Breiman, R.F. and Dufour, A.P., ASM Press. Washington, DC, 1993), el método de cultivo no puede utilizarse con Ia finalidad de prevención sino únicamente como herramienta de verificación.
Sin embargo el biosensor presentado por Ia presente invención puede ser incorporado en las instalaciones de riesgo para una monitorización on-line de Ia concentración de Legionella, sin necesidad de supervisión profesional, haciendo posible una estrategia eficiente de prevención del riesgo biológico asociado a
Legionella.
Ejemplo 4: Comparación del efecto protector frente a Ia adsorción no específica de un recubrimiento estático frente a un recubrimiento dinámico de Ia partícula. Se ha realizado una comparación del efecto protector de dos tipos distintos de inertización de Ia superficie de Ia partícula inmunomagnética. Por un lado, mediante Ia unión covalente de un polímero de dextrano-aspártico-aldehído (DAA), y por otro lado, siguiendo Io descrito por Ia presente invención, mediante Ia unión no covalente de una proteína, albúmina de suero bovino (BSA) y el mantenimiento de su concentración en exceso en el microambiente de las partículas inmunomagnéticas, dichas partículas bloqueadas previamente con dicho agente de bloqueo.
Se aplicó el protocolo especificado a continuación por separado a los dos tipos de partícula inmunomagnética anti E. coli. En uno de ellas dichas partículas estaban bloqueadas con BSA, y en el otro caso estaban bloqueadas con DAA. En todos los casos se mantiene un exceso de BSA durante todo el análisis. Para cada tipo de partícula se aplicó el protocolo con cuatro muestras de 0, 10, 102, y 103 ufc/ml de E. coli.
Esta comparación se realiza de acuerdo con el siguiente protocolo: i) adición de
25 μl de una suspensión de partícula inmunomagnética anti E. coli sobre 4,0 mi de Ia muestra (todas las muestras con 2% de BSA en fosfato 150 mM a pH 7,0); ii) agitación suave durante 15 minutos a temperatura ambiente; i¡¡) retención de las partículas inmunomagnéticas y evacuación del sobrenadante; iv) Tres lavados consecutivos con una disolución de un tampón fosfato 150 mM a pH 7,0 y 2% de BSA, y un últimolavado con una disolución de un tampón fosfato 25 mM a pH 7,0 y 2% de BSA; v) resuspensión de Ia partícula ¡nmunomagnética en 1 ,0 mi de una disolución de un tampón fosfato 25 mM a pH 7,0 y 2% de BSA, que contiene un anticuerpo anti E. coli obtenido en conejo (dilución 1/200); vi) agitación suave durante 15 minutos a temperatura ambiente; vii) tres lavados consecutivos con una disolución de un tampón fosfato 150 mM a pH 7,0 y 2% de BSA1 y un último lavado con una disolución de un tampón fosfato 25 mM a pH 7,0 y 2% de BSA; viii) resuspensión de Ia partícula ¡nmunomagnética en 1 ,0 mi en una disolución de un tampón fosfato 25 mM a pH 7,0 y 2% de BSA, que contiene un anticuerpo anti conejo conjugado con peroxidasa (dilución 1/1000); ix) agitación suave durante 15 minutos a temperatura ambiente; x) tres lavados consecutivos con una disolución de un tampón fosfato 150 mM a pH 7,0 y 2% de BSA, y un último lavado con una disolución de un tampón fosfato 25 mM a pH 7,0 y 2% de BSA; xi) resuspensión de Ia partícula inmunomagnética en 1 ,0 mi de una disolución de ABTS 5mM, en un tampón fosfato 50 mM a pH 6,0, y H2O2 al 0,03%; y xii) lectura de Ia absorbancia a 405 nm en función del tiempo.
Tal y como muestra Ia tabla de Ia figura 9, las partículas inmunomagnéticas bloqueadas con BSA y sometidas a una presión de BSA constante durante todo el análisis según propone Ia presente invención, permiten discriminar todas las concentraciones de E. coli ensayadas. Sin embargo, las partículas inmunomagnéticas bloqueadas con DAA no permiten discriminar las concentraciones de E. coli ensayadas
Esto sugiere que el DAA protege Ia partícula de Ia adsorción no específica pero dicho polímero recubre también las regiones de reconocimiento de los anticuerpos inmovilizados, de forma que impide Ia interacción antígeno-anticuerpo y en consecuencia Ia captura de las células de E. coli.
Ejemplo 5: Efecto de Ia protección continuada de Ia partícula inmunomagnética frente a Ia adsorción no específica de Ia molécula de lectura. Se aplicó dicho protocolo por separado a dos alícuotas de 25 μl de partícula inmunomagnética, ambas inicialmente bloqueadas con BSA, pero en un caso con un 1 % de BSA en los tampones utilizados en las distintas etapas del protocolo, y en otro caso sin BSA.
Se ha determinado el efecto de Ia presencia de un agente bloqueante, albúmina de suero bovino (BSA), sobre Ia adsorción no específica de Ia molécula de lectura en Ia partícula inmunomagnética, manteniendo un exceso de concentración alrededor de Ia partícula inmunomagnética, durante todas las etapas del análisis. Dicho análisis se realiza de acuerdo con el siguiente protocolo: i) suspensión de 25 μL de partícula inmunomagnética con un anticuerpo anti E.coli obtenido en cabra, inmovilizado en su superficie, en un volumen de 1 ,0 mi de un tampón fosfato 150 mM, pH 7,0; i¡) agitación suave durante 15 min a temperatura ambiente; iii) retención de las partículas inmunomagnéticas y evacuación del sobrenadante; iv) resuspensión de las partículas inmunomagnéticas en 1,0 mi de un disolución 1/200 de un anticuerpo anti E. coli obtenido en conejo, en un tampón fosfato 150 mM, pH7,0 ; v) agitación suave durante 30 min a temperatura ambiente; vi) Cinco lavados consecutivos con una disolución de un tampón fosfato 25 mM, pH 7,0; retención de las partículas inmunomagnéticas y evacuación del sobrenadante; vii) resuspensión de las partículas inmunomagnéticas en 1 ,0 mi de un disolución 1/200 de un anticuerpo de lectura anti conejo, conjugado con peroxidasa; viii) agitación suave durante 15 min a temperatura ambiente; ix) Tres lavados consecutivos con una disolución de un tampón fosfato 25 mM, pH 7,0; retención de las partículas inmunomagnéticas y evacuación del sobrenadante; x) resuspensión de las partículas inmunomagnéticas en 1 ,0 mi de un disolución de ABTS 1 mM y H2O2 al 0.03 %.
Las partículas ¡nmunomagnéticas bloqueadas que fueron procesadas mediante el protocolo que incluye una presión constante del agente bloqueante durante todo el análisis, mostraron una reducción de Ia adsorción no específica de Ia molécula de lectura, sostenida en el tiempo, con respecto de las partículas inmunomagnéticas bloqueadas procesadas mediante el protocolo equivalente pero que no incluye el agente bloqueante (Figura 10).
Esto sugiere que algunas moléculas bloqueantes inicialmente adsorbidas en Ia superficie de las partículas, se liberan al medio en las etapas de lavado con los tampones libres de bloqueante y en Ia dilución con Ia muestra. En consecuencia, pueden quedar expuestos grupos reactivos sobre los que se adsorbe de forma inespecífica el anticuerpo conjugado con Ia molécula de lectura. En esas condiciones, una parte importante de Ia lectura final del análisis se deberá a dicha adsorción no específica y Ia relación señal/ruido será reducida significativamente.
Por tanto, para generar partículas inmunomagnéticas que no adsorban de forma inespecífica Ia molécula de lectura, no es suficiente bloquear dicha interacción con pre-adsorción del bloqueante sobre las partículas; será necesario mantener una concentración suficiente de dicho bloqueante en el microambiente de Ia partícula durante todo el análisis, para obtener Ia máxima carga de bloqueante en Ia superficie, que permita mantener su efecto protector frente al lavado y Ia dilución. Ejemplo 6: Dependencia de Ia lectura con Ia presencia de catalasa endógena activa en las células de Escheríchia coli capturadas sobre las partículas magnéticas.
La Fig. 6 muestra Ia dependencia de Ia velocidad de Ia reacción de lectura (colorimetría) con Ia inhibición de Ia actividad catalasa de las células de Escheríchia coli capturadas sobre las partículas magnéticas, a partir de una suspensión que contiene 1.1 x 106 ufc/mL .
Así, se preparan dos muestras, cada una de las cuáles conteniendo un volumen de 1 ,5 ml_ de una suspensión de E. coli conteniendo 1.1 x 107 ufc/mL, sobre un volumen de 15,0 ml_ de una disolución tampón fosfato 20,0 mM a pH 7,0 con 1% de seroalbúmina bovina (BSA), de modo que Ia concentración final es de 1.1 x 106 ufc/mL en todas las muestras. En cada muestra se añade un volumen de 25,0 μL de partículas magnéticas con un anticuerpo policlonal anti E. coli. La mezcla se incuba en agitación suave durante 90 minutos y a temperatura ambiente. Del mismo modo se prepara un control cuya única diferencia con las muestras es que no contiene E. coli. Después de Ia incubación, el control y las muestras se lavan tres veces con un volumen de 5,0 mi cada vez de una disolución de tampón fosfato 150 mM conteniendo un 2% de BSA. Después del tercer lavado, tanto en el control como en las muestras, los pellets que contienen partículas magnéticas libres y también los inmunocomplejos formados entre las células de Escherichia coli y las partículas magnéticas, se resuspenden en un volumen de 1,0 mi de una disolución 1/ 200 de un anticuerpo policlonal anti Escherichia coli obtenido en conejo. Las mezclas se incuban en agitación suave y a temperatura ambiente durante 15 minutos. Después de Ia incubación, los pellets se lavan tres veces con un volumen de 5,0 mi cada vez de una disolución de tampón fosfato 150 mM conteniendo un 2% de BSA.. A continuación, en una de las dos muestras, el pellet es resuspendido en una disolución de 1 ,0 mi de 3,2 mg/ml de azida sódica en tampón fosfato 150 mM con BSA y a pH 7,0. Después de Ia incubación, los pellets se lavan exhaustivamente con un volumen de 5,0 mi cada vez de una disolución de tampón fosfato 150 mM conteniendo un 2% de BSA (seis o más lavados). Finalmente, cada pellet se resuspende en un volumen de 1 ,0 mL de una disolución de un anticuerpo policlonal anti-conejo conjugado con peroxidasa. Las mezclas se incuban en agitación suave y a temperatura ambiente durante 15 minutos. Después de Ia incubación, los pellets se lavan tres veces con un volumen de 5,0 mi cada vez de una disolución de tampón fosfato 150 mM conteniendo un 2% de BSA.
Para realizar el ensayo de Ia actividad peroxidasa, cada pellet se recoge en un volumen de 1 ,0 mi de una disolución 5 mM de ABTS y 50 mM de tampón fosfato a pH 7,0, y se añaden 15 μl de H2O2 al 0.035 %. Todas las reacciones se monitorizaron durante 4 minutos, tomando una lectura de Ia absorbancia a 405 nm cada minuto.
La azida sódica inhibe Ia actividad catalasa presente en el interior de las células de Escherichia coli capturadas sobre las partículas magnéticas. Pero Ia azida sódica puede también inhibir a Ia peroxidasa conjugada con el anticuerpo policlonal anti-conejo unido a su vez al anticuerpo policlonal anti Escherichia coli obtenido en conejo unido a Ia superficie de las células capturadas, y en consecuencia es muy importante lavar exhaustivamente el pellet que contiene las células de Escherichia coli inmunocapturadas e incubadas con Ia azida sódica, antes añadir Ia disolución del anticuerpo conjugado con Ia peroxidasa. La muestra en Ia que Ia catalasa no es inhibida está representada en Ia figura 5 por el símbolo cuadrado, y tiene Ia misma concentración de bacterias que Ia muestra en Ia que Ia actividad catalasa sí está inhibida, y que esta representada por el símbolo círculo.
Los resultados demuestran que si Ia enzima endógena del microorganismo capturado no es inhibida, dicha actividad puede competir con Ia molécula de lectura y dar lugar a una subestimación de Ia concentración del microorganismo en Ia muestra, proporcionalmente a Ia cantidad de células viables del microorganismo capturadas. Este efecto incide en el volumen de muestra que puede utilizarse en el análisis. Para reducir el límite de detección del análisis es conveniente aumentar el volumen de Ia muestra, de forma que el número total de células del microorganismo en Ia muestra sea mayor. Sin embargo, esto aumentaría Ia cantidad de enzima endógena que compite con Ia molécula de lectura y Ia probabilidad de obtener un falso negativo o una subestimación de Ia concentración del microorganismo sería mayor.
Ejemplo 7. Mejora de Ia sensibilidad de Ia determinación de legionella en aguas mediante capturas sucesivas.
Durante el proceso de Ia inmunocaptura del microorganismo de interés, en este ejemplo Legionella, Ia velocidad de captura decrece con el tiempo debido a dos factores fundamentalmente:
1) Los puntos de unión para las bacterias son cada vez menos ya que van siendo ocupados (es posible que, dado el tamaño de Ia bacteria se produzcan, además, impedimentos estéricos). 2)La concentración de Legionella libre en el medio disminuye con el tiempo y se produce una disminución de Ia velocidad de captura, porque las colisiones son proporcionalmente menores.
Una solución para el primer punto consiste en aumentar Ia concentración de partícula magnética y por tanto de anticuerpo de captura, Io que ofrecería un mayor número de puntos de anclaje para el microorganismo. Sin embargo, también aumentaría Ia superficie activa de Ia partícula para una adsorción no específica.
Una solución para el punto segundo consiste en incrementar el tiempo de Ia etapa de inmunocaptura y compensar así Ia disminución de Ia velocidad de captura; si durante este tiempo prolongado Ia superficie de Ia partícula inmunomagnética no queda desprotegida, cabe esperar un aumento de Ia señal de Ia muestra sin incremento de Ia señal inespecífica. En una realización de Ia presente invención Ia etapa de inmunocaptura tiene una duración de un ovemigth (16 horas). La Figura 12 presenta los resultados obtenidos al incrementar el tiempo de Ia etapa de inmunocaptura de 15 minutos a 16 horas. La señal de Ia muestra se incrementa significativamente pero no Ia señal del blanco; esto sugiere que durante este período de tiempo siguen produciéndose Ia captura del microorganismo sin que las partículas inmunomagnéticas pierdan su protección frente a Ia adsorción no específica.
En otra realización particular de Ia presente invención, Ia determinación de Legionella se realiza mediante repeticiones de la etapa de inmunocaptura de forma que en cada etapa ocurre un cambio de Ia muestra por muestra fresca. Este procedimiento consiste en mantener constante Ia cantidad de partícula inmunomagnética (y por tanto de anticuerpo y potenciales puntos de anclaje), sometido en cada etapa a un mismo volumen de muestra fresca. Se realiza Ia primera captura con un volumen de 9,0 mi; se elimina el sobrenadante y se repite Ia captura con una nueva alícuota de muestra fresca de 9,0 mi. Este proceso se repite hasta tres veces (27,0 mi de muestra total). De esta forma, al comparar los resultados podemos comprobar Ia influencia de Ia concentración de Legionella en el medio durante el proceso de captura. La Figura 11 presenta una comparación entre dos posibles realizaciones de Ia presente invención para Ia determinación de Legionella en aguas, según que dicha determinación comprenda una sola captura (A) o varias capturas sucesivas (B). Este procedimiento incrementa el tiempo de ensayo aproximadamente en 40 minutos, pasando de 60 a 110 minutos, pero como se muestra en Ia Figura 11 incrementa Ia señal de Ia muestra aproximadamente en un 50%, sin variar Ia señal del blanco. Ejemplo 8. Discriminación entre bacterias muertas y bacterias vivas en la detección de legionella pneumophila.
Muestras de diferentes concentraciones de Legionella pneumophila fueron analizadas mediante el procedimiento cuantitativo proporcionado por en Ia presente invención. Además, se distinguen dos tipos de muestra; muestras en que Ia bacteria ha sido inactivada térmicamente, y muestras en las que tal inactivación no tiene lugar, de modo que las células del microorganismo permanecen viables. Dicha viabilidad es comprobada por cultivo, obteniendo los correspondientes recuentos.
Para realizar los ensayos, se prepara un volumen de 9,0 mi de cada una de las suspensiones de Ia bacteria, y 9,0 mi de un blanco. Se aplica el procedimiento descrito en el ejemplo 1 , tanto al blanco como a las muestras. Los resultados se presentan en Ia Figura 13. Como puede verse, las células inactivadas no son detectadas mientras que las células viables son detectadas y Ia señal correspondiente a cada suspensión ensayada depende de Ia concentración de Legionella pneumophila.
Esto sugiere que el procedimiento proporcionado en Ia presente invención podría ser utilizado para realizar una valoración rápida de Ia concentración de Legionella viable antes y después de una tratamiento de desinfección en una instalación de riesgo, y podría utilizarse para determinar Ia eficacia de un tratamiento desinfectante y la oportunidad de su aplicación.
Por Io tanto, se puede concluir que Ia presente invención aporta distintas ventajas sobre los métodos existentes, que se pueden resumir en: a) La presente invención aumenta Ia sensibilidad mediante una creación técnica que no implica el uso necesario de nanopartículas, sino incluso de micropartículas, consiguiendo sensibilidades de 1 célula/mL, un orden de magnitud superior a Ia mejor sensibilidad conseguida mediante el uso de nanopartículas. b) Este procedimiento se basa en Ia obtención y utilización de partículas superparamagnéticas, principalmente micropartículas, en las que se ha inmovilizado un anticuerpo de forma directa y covalente, preferentemente policlonal, contra el microorganismo que se quiere determinar, suspendidas en un medio líquido cuya composición permite simultáneamente minimizar Ia agregación de las microesferas, minimizar las adsorciones no específicas y minimizar las interferencias de Ia muestra analizada, y cuya concentración permite mantener estos efectos frente a Ia dilución con Ia muestra que va a ser analizada. c) Esto hace posible obtener una recuperación eficiente del microorganismo basada en su inmunocaptura, por cuanto Ia probabilidad de interacción antígeno-anticuerpo es alta debido a que Ia superficie de Ia partícula expuesta a la colisión con el microorganismo es en todo momento elevada y Ia manipulación de las partículas es cuantitativa, y Ia probabilidad de interacción con cualquier otro componente químico o biológico presente en Ia muestra es reducida. d) Permite Ia realización de dicha determinación tanto in situ, con un valor semicuantitativo, como en laboratorio, con un valor cuantitativo, en un tiempo no superior a 1 hora, mediante el uso de un dispositivo mecanizado. El procedimiento puede ser automatizado para obtener un biosensor automático.

Claims

REIVINDICACIONES
1. Un procedimiento para detectar y/o semicuantificar y/o cuantificar microorganismos en una solución o suspensión, que no contiene microorganismos pre-cultivados, que comprende las etapas de: a) mezclar Ia muestra sospechosa de contener el microorganismo con i) una suspensión amortiguadora del pH, que comprende al menos un tipo de partículas paramagnéticas que tienen unido a su superficie un anticuerpo dirigido específicamente contra el microorganismo que se quiere determinar; y ii) al menos un tipo de molécula de agente bloqueante en exceso sobre Ia superficie de dichas partículas magnéticas no ocupada por el anticuerpo; b) incubar Ia mezcla durante un tiempo determinado en condiciones adecuadas para formar los complejos microorganismo-partícula magnética; c) aplicar un campo magnético para Ia separación y concentración de los complejos formados microorganismo-partícula magnética; y posterior evacuación del sobrenadante; d) resuspender los complejos microorganismo-partícula magnética en una disolución amortiguadora del pH, que comprende al menos un tipo de molécula bloqueante en exceso y un segundo anticuerpo marcado con un marcador (una enzima o un fluoróforo); e) incubar Ia mezcla durante un tiempo determinado para formar los complejos anticuerpo marcado-microorganismo-partícula magnética; f) aplicar un campo magnético para Ia separación y concentración de los complejos formados anticuerpo marcado-microorganismo-partícula magnética; y posterior evacuación del sobrenadante; g) lavar las partículas para eliminar el exceso del segundo anticuerpo, y evacuación posterior del sobrenadante; h) resuspender los complejos formados anticuerpo marcado-microorganismo-partícula magnética, en un medio líquido que contiene simultáneamente los substratos necesarios para el revelado mediante Ia enzima que actúa como marcador, un agente bloqueante en una concentración que permite mantener el equilibrio de adsorción desplazado hacia las moléculas de bloqueante unidas, y un inhibidor específico de las enzimas intrínsecas que compiten por uno o varios de dichos substratos; h) incubar Ia mezcla durante un tiempo determinado para desarrollar Ia señal; i) detectar y cuantificar Ia señal que resulta de Ia formación de los complejos anticuerpo marcado-microorganismo-partícula magnética, relacionando dicha señal con Ia presencia y cuantificación del microorganismo buscado.
2. Un procedimiento para detectar y/o semicuantificar y/o cuantificar microorganismos de acuerdo con Ia reivindicación 1 , caracterizado porque Ia muestra es de origen ambiental, alimentario u obtenida de fluidos biológicos.
3- Un procedimiento para detectar y/o semicuantificar y/o cuantificar microorganismos de acuerdo con las reivindicaciones 1-2, caracterizado porque el microorganismo es un organismo microscópico procariótico, preferentemente bacterias, o eucariótico, preferentemente protozoos, algas, levaduras y hongos.
4. Un procedimiento para detectar y/o semicuantificar y/o cuantificar microorganismos de acuerdo con Ia reivindicación 3, caracterizado porque el microorganismo es una bacteria.
5. Un procedimiento para detectar detectar y/o semicuantificar y/o cuantificar microorganismos de acuerdo con las reivindicación 4, caracterizado porque el microorganismo pertenece al grupo de bacterias patógenas, preferentemente seleccionadas del grupo especies de Enterobacteríaceae, Vibríonaceae, Bacillus, Eschθríchia, Streptococcus, Pseudomonas, Salmonella, Legionella, Enterobacter, etc.
6. Procedimiento para detectar y/o semicuantificar y/o cuantificar microorganismos de acuerdo con las reivindicaciones 1-5 caracterizado porque el anticuerpo de lectura y/o captura del microorganismo de interés es monoclonal o policlonal.
7 Un procedimiento para Ia detectar y/o semicuantificar y/o cuantificar microorganismos de acuerdo con las reivindicaciones 1-6, caracterizado porque las partículas magnéticas son esféricas siendo sul rango del diámetro de 0,5 μm a 2 μm, preferiblemente de 0,7 μm a 1,5 μm, y más preferiblemente de 0,8 μm a 1,0 μm.
8. Un procedimiento para Ia detección de microorganismos de acuerdo con las reivindicaciones 1-7, caracterizado porque las partículas magnéticas se funcionalizan químicamente, especialmente con grupos -NH2, -COOH u -OH
9. Un procedimiento para detectar y/o semicuantificar y/o cuantificar microorganismos de acuerdo con las reivindicaciones 1-8, caracterizado porque durante todas las etapas se mantiene un exceso de concentración de al menos un tipo de molécula bloqueante, de manera que el equilibrio adsorción-desorción se encuentra desplazado hacia Ia molécula adsorbida durante todo el análisis, para prevenir Ia adsorción no específica sobre las partículas magnéticas, evitando falsos positivos y falsos negativos.
10. Un procedimiento para detectar y/o semicuantificar y/o cuantificar microorganismos de acuerdo con las reivindicaciones 1-9, caracterizado porque Ia molécula bloqueante es una proteína o un carbohidrato.
11. Un procedimiento para detectar y/o semicuantificar y/o cuantificar microorganismos de acuerdo con las reivindicaciones 1-10, caracterizado porque Ia molécula bloqueante se selecciona entre albúmina de suero, caseína de leche, gelatina de piel de peces de agua fría, gelatina de piel porcina, leche desnatada o polidextranos.
12. Un procedimiento para Ia detectar y/o semicuantificar y/o cuantificar microorganismos de acuerdo con las reivindicaciones 1-11 , caracterizado porque Ia detección de Ia presencia de un microorganismo se realiza visualmente en Ia solución o suspensión, siendo Ia producción de coloración indicativo de Ia presencia del microorganismo.
13 Un procedimiento para Ia detectar y/o semicuantificar y/o cuantificar microorganismos de acuerdo con las reivindicaciones 1-12 caracterizado porque se emplean grandes volúmenes y/o cargas sucesivas de Ia misma muestra sobre los mismos soportes constantemente protegidos frente adsorciones no deseables, aumentando Ia sensibilidad del método.
14. Un procedimiento para detectar y/o semicuantificar y/o cuantificar microorganismos de acuerdo con las reivindicaciones 1-13 caracterizado porque el tiempo en Ia etapa de inmunocaptura se ve incrementado aumentando Ia sensibilidad del método debido a que Ia protección sostenida de Ia superficie de Ia partícula impide el incremento de Ia adsorción no específica durante todo el análisis.
15. Un procedimiento para Ia detectar y/o semicuantificar y/o cuantificar microorganismos de acuerdo con las reivindicaciones 1-14 caracterizado porque Ia sensibilidad de detección es de 1 célula/mL r
16. Un procedimiento para detectar y/ o semicuantificar y/o cuantificar microorganismos de acuerdo con las reivindicaciones 1-15 caracterizado porque el resultado es obtenido en un tiempo inferior o igual a una hora.
17. Un kit para llevar a cabo el procedimiento para detectar y/o semicuantificar y/o cuantificar microorganismos en una solución o suspensión de acuerdo con las reivindicaciones 1-16, caracterizado porque comprende: un aparato portátil reutilizable de uso manual para el análisis in situ y un conjunto de composiciones o medios reactivos para Ia realización del análisis, todo ello dispuesto en un contenedor que incorpora una placa refrigerante.
18. Kit según reivindicación 16 caracterizado porque dicho aparato comprende un soporte con al menos dos cubetas y un imán, y una carta de colores para una correcta interpretación de los resultados.
19. Kit según reivindicaciones 17-18 caracterizado porque las composiciones o medios reactivos son las siguientes:
a) composición para Ia captura del microorganismo de interés, que comprende una suspensión de partículas inmunomagnéticas (con el anticuerpo de captura inmovilizado en su superficie mediante unión covalente, y un agente de bloqueo unido a Ia superficie no ocupada por el anticuerpo, mediante unión no covalente), en un medio líquido que contiene en disolución i)el mismo agente de bloqueo, ii)un agente quelante, iii)un agente surfactante.iv) un agente biocida, y v)un agente bacteriostático, y que presenta fuerza iónica elevada, correspondiente a una disolución de un tampón fosfato de concentración entre 90 y 500 mm.
b) composición de mareaje del microorganismo de interés, que comprende un anticuerpo de lectura, conjugado con una molécula de lectura o una sustancia fluorescente, en una disolución que contiene i)un agente de bloqueo y ii)un agente inhibidor de Ia actividad de enzimas presentes en el microorganismo que puedan competir en Ia molécula de lectura, y que presenta fuerza iónica media correspondiente a una disolución de un tampón fosfato de concentración entre 30 y 90 mm.
c) composición de lectura del microorganismo de interés, que comprende un sustrato oxidable necesario para el desarrollo de Ia reacción de lectura, en una disolución que contiene una sal débil de fosfato disódico para reducir Ia autooxidación de dicho sustrato.
d) composición de lectura del microorganismo de interés, que comprende un sustrato oxidante, necesario para el desarrollo de Ia reacción de lectura, en una disolución de un tampón fosfato-citrato.
e) una composición de parada de Ia reacción de lectura, que comprende un ácido fuerte o una base fuerte.
f) una composición para el lavado de las partículas inmunomagnéticas que comprende un agente de bloqueo, un agente surfactante y un agente bacteriostático, con una fuerza iónica baja correspondiente a una disolución de un tampón fosfato de concentración entre 5 y 30 mM.
20. Kit según reivindicación 19 caracterizado porque Ia fuerza iónica de a) corresponde a un tampón de fosfato sódico de concentración entre 100 y 200 mM, preferiblemente
150 mM; Ia fuerza iónica de b) corresponde a un tampón de fosfato-citrato 50 mM y pH 6,0; Ia disolución de tampón fosfato-citrato de d)es de pH 6,0 y concentración 50 mM; Ia concentración de ácido fuerte o base fuerte de e) es entre 1M y 5 M; y Ia fuerza iónica de f) corresponde a una disolución de un tampón de fosfato de sodio a pH 7,0 y concentración entre 20 y 30 mM, preferiblemente 25 mM.
21. Kit según reivindicaciones 17-20 caracterizado porque
- el agente de bloqueo es un carbohidrato, preferentemente polidextranos, o proteína, preferentemente proteína, y más preferentemente una proteína seleccionada del grupo albúmina de suero, caseína de leche, gelatina de piel de peces de agua fría, gelatina de piel porcina, leche desnatada en polvo, entre albúmina de suero, caseína de leche, gelatina de piel de peces de agua fría, gelatina de piel porcina, leche desnatada o polidextranos.
- el agente inhibidor de Ia actividad enzimática microbiana competitiva se selecciona entre azida sódica y triazol, preferentemente triazol, o un substrato, para Ia molécula de lectura, preferentemente peroxidasa, siendo preferentemente dicho substrato peróxido substituido, y más preferentemente peróxido de urea.
- el sustrato oxidante se selecciona entre peróxido de hidrógeno y peróxido de urea, preferentemente peróxido de urea al 0,05
- el sustrato oxidable se selecciona entre ortofenilendiamina, ácido 2,2'.azino- bis(3-etilbenzoazolin-6.sulfónico), y ácido 5-aminosalicílico, preferentemente ácido 5- aminosalicílico al 0,1 %
- el ácido fuerte se selecciona entre ácido clorhídrico, ácido nítrico y ácido sulfúrico, preferentemente ácido clorhídrico 5M y ácido sulfúrico 1 M
- Ia base fuerte se selecciona entre hidróxido de potasio e hidróxido de sodio, preferentemente hidróxido de sodio 3M;
-, Ia sal débil es fosfato dipotásico o disódico, preferentemente fosfato disódico 0,1 M
-el agente quelante se selecciona entre 2,2'-Bipiridilo, dimercaptopropanol, ácido etilendiaminotetraacético (EDTA), ácido etilendioxi-dietilen-dinitrilo-tetraacético, ácido etilen glicol-bis(2-aminoetil)-N,N,N',N'-tetraacético (EGTA), ácido nitrilotriacético (NTA), orto-fenantrolina, ácido salicílico y trietanolamina (TEA), preferiblemente EDTA
- el surfactante se selecciona entre detergentes no iónicos, preferentemente alquil fenoles polietoxilados, alcoholes grasos polietoxilados, ácidos grasos polietoxilados, alcanolaminas o condensados, y más preferentemente el monolaurato de sorbitán (Tween 20); - el agente bacteriostático se selecciona entre p-nitrofenil-di-cloroacetamido propanodiol (cloranfenicol), sulafanilamida, 2,4-diamino-5-(3,4,5- trimetox¡bencil)pir¡m¡d¡na (trimetoprim), preferiblemente sal sódica del 2- (etilmercuriomercapto) benzoico (timerosal).
- el agente biocida se selecciona entre estreptomicina, neomicina, gentamicina, kanamicina, y azida sódica, preferiblemente azida sódica.
22.. Kit según reivindicaciones 17-21 caracterizado porque:
a) en Ia composición para Ia captura del microorganismo de interés, en Ia suspensión, las partículas inmunomagnéticas son esféricas y de un diámetro medio entre 0,8 y 1 ,1 μm de diámetro, el anticuerpo de captura es un anticuerpo policlonal o monoclonal antiLegionella, unido covalentemente a Ia superficie de las partículas, y el agente de bloqueo es albúmina de suero bovino (BSA) en una concentración al 10%, el agente quelante es ácido etilendiaminotetraacético (EDTA) al 0, 1 %, el agente surfactante es monolaurato de sorbitán al 1 %, el agente biocida es azida sódica en concentración 0,1%, y el agente bacteriostático es timerosal en concentración 0,01%, todo ello en una disolución de tampón fosfato de concentración 150 mM a pH 7,0; dicha composición añadida a Ia muestra en una proporción 1/10.
b) en Ia composición de mareaje del microorganismo de interés, el anticuerpo de lectura es un anticuerpo antiLegionella conjugado con peroxidasa., siendo en Ia disolución que los contiene i)el agente de bloqueo seroalbúmina de suero bovino (BSA) al 0,1 % y ¡i) el agente inhibidor de Ia actividad de enzimas presentes en el microorganismo que puedan competir en Ia molécula de lectura triazol al 0,01 %, en una disolución fosfato y citrato de concentración 50 mM a pH 6,0.
c) en Ia composición de lectura del microorganismo de interés, el sustrato oxidable necesario para el desarrollo de Ia reacción de lectura es ácido 5-aminosalicílico al 0,1
% , Ia sal débil de fosfato disódico en una concentración de 0,1 M, a pH entre 7,5 y 8,0, para reducir Ia autooxidación de dicho sustrato.
d) en Ia composición de lectura del microorganismo de interés, el sustrato oxidante, necesario para el desarrollo de Ia reacción de lectura, es peróxido de hidrógeno o peróxido de urea, preferentemente peróxido de urea al 0,05 %, en una disolución de un tampón fosfato-citrato de concentración 50 mM a pH 6,0.
e) en Ia composición de parada de Ia reacción dé lectura, el ácido fuerte es ácido clorhídrico 5 M o ácido sulfúrico 1M y Ia base fuerte es hidróxido de sodio 3M..
f) en Ia composición para el lavado de las partículas inmunomagnéticas el agente de bloqueo es albúmina de suero bovino al 0,1 , el agente surfactante es monolaurato de sorbitán al 0,02 % y el agente bacteriostático es timerosal al 0,01 %7 en una disolución de un tampón fosfato de una concentración 25 mM a pH 7,0.
23. Dispositivo de análisis manual reutilizable para Ia detección o cuantificación de microorganismos en una solución o suspensión de acuerdo con las reivindicaciones 1-
16, que comprende un soporte (1) que contiene una base (2) y dos planos inclinados laterales (3); un eje móvil (4) que soporta un imán (5) y permite su desplazamiento con respecto al soporte; al menos una sujeción en forma de pinza (7), y al menos una cubeta (6) que descansa sobre Ia base y está fijada en su posición por Ia sujeción en forma de pinza (7) según Ia figura 2
24. Uso del dispositivo manual según reivindicación 23 para Ia realización de análisis in situ.
25. Biosensor automatizado para llevar a cabo el procedimiento para detectar microorganismos en una solución o suspensión de acuerdo con las reivindicaciones 1- 16, de forma automatizada, caracterizado por consistir en un sistema integrado que comprende
i) celdas para Ia reacción de captura y mareaje del microorganismo de interés.
i¡) celdas para Ia lectura de Ia absorbancia a Ia longitud de onda seleccionada o Ia fluorescencia a Ia longitud de emisión seleccionada.
iii) un transductor óptico que en el caso de Ia Legionella consiste en un espectrofotómetro o espectrofluorímetro .
iv) un circuito hidráulico para Ia manipulación de los diferentes líquidos, v) un microprocesador para el control secuencia! del análisis y Ia adquisición de Ia señal
vi) un ordenador para el tratamiento de los datos y su comunicación con el microprocesador.
vii) dispositivos de agitación.
viii) dispositivos de retención magnética,
ix) dispositivos de termostatización.
Según se representa en Ia figura 2.
26. Biosensor según reivindicación 25 caracterizado porque cada ciclo de medida comprende el análisis de un blanco y el análisis de una muestra siendo el valor de absorbancia resultante consecuencia de substraer Ia señal del blanco de Ia señal de Ia muestra.
27. Uso del Biosensor automatizado según reivindicaciones 25-26 para Ia monitorización on-line de Ia concentración de un microorganismo en aguas, basado en Ia utilización de alícuotas desechables de partículas inmunomagnéticas para Ia captura de dicho microorganismo.
28. Uso del Biosensor según reivindicación 27 caracterizado porque dicho microorganismo es Legionella, y/o Salmonella, y/o Escherichia coli, y/o Listeria, y/o Staphylococcus, y/o Streptococcus, y/o Brettanomyces.
PCT/ES2008/000613 2008-09-26 2008-09-26 Procedimiento rápido de detección de microorganismos con partículas magnéticas WO2010034846A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/ES2008/000613 WO2010034846A1 (es) 2008-09-26 2008-09-26 Procedimiento rápido de detección de microorganismos con partículas magnéticas
DK08877043.3T DK2336349T3 (en) 2008-09-26 2008-09-26 Rapid method for detection of microorganisms by means of magnetic particles
SI200831595A SI2336349T1 (sl) 2008-09-26 2008-09-26 Hiter postopek za detekcijo mikroorganizmov z magnetnimi delci
EP08877043.3A EP2336349B1 (en) 2008-09-26 2008-09-26 Rapid procedure for detection of microorganisms with magnetic particles
ES08877043.3T ES2566478T3 (es) 2008-09-26 2008-09-26 Procedimiento rápido de detección de microorganismos con partículas magnéticas
JP2011528373A JP5675022B2 (ja) 2008-09-26 2008-09-26 磁性粒子を用いた、微生物を迅速に検出するためのプロセス
US13/295,937 US9201066B2 (en) 2008-09-26 2011-11-14 Rapid process for detection of microorganisms with magnetic particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2008/000613 WO2010034846A1 (es) 2008-09-26 2008-09-26 Procedimiento rápido de detección de microorganismos con partículas magnéticas

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13120479 A-371-Of-International 2008-09-26
US13/295,937 Continuation US9201066B2 (en) 2008-09-26 2011-11-14 Rapid process for detection of microorganisms with magnetic particles

Publications (1)

Publication Number Publication Date
WO2010034846A1 true WO2010034846A1 (es) 2010-04-01

Family

ID=42059289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/000613 WO2010034846A1 (es) 2008-09-26 2008-09-26 Procedimiento rápido de detección de microorganismos con partículas magnéticas

Country Status (6)

Country Link
EP (1) EP2336349B1 (es)
JP (1) JP5675022B2 (es)
DK (1) DK2336349T3 (es)
ES (1) ES2566478T3 (es)
SI (1) SI2336349T1 (es)
WO (1) WO2010034846A1 (es)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130095501A1 (en) * 2010-06-16 2013-04-18 Hochschule Niederrhein Legionella test
CN103091465A (zh) * 2013-01-29 2013-05-08 南昌大学 一种基于Fe3O4@Au纳米材料免疫磁分离的食源性致病菌快速检测方法
JP2014505233A (ja) * 2010-10-22 2014-02-27 ティー2 バイオシステムズ インコーポレイテッド 検体の検出のためのnmrシステムおよび方法
US9360457B2 (en) 2010-10-22 2016-06-07 T2 Biosystems, Inc. NMR systems and methods for the rapid detection of analytes
US9562271B2 (en) 2012-04-20 2017-02-07 T2 Biosystems, Inc. Compositions and methods for detection of Candida species
CN111551730A (zh) * 2020-05-18 2020-08-18 上海艾瑞德生物科技有限公司 荧光微球封闭液及应用该封闭液的试剂盒
CN112326958A (zh) * 2020-10-28 2021-02-05 厦门宝太生物科技有限公司 一种微球封闭的方法及其微球标记的方法
US11519016B2 (en) 2016-01-21 2022-12-06 T2 Biosystems, Inc. NMR methods and systems for the rapid detection of bacteria

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102586101B (zh) * 2012-01-16 2013-07-31 中国科学院过程工程研究所 一种工业化用微藻磁性分离收集装置
CN106290836A (zh) * 2015-05-13 2017-01-04 上海凯创生物技术有限公司 一种军团菌抗原胶体金检测试剂盒
CN106290835A (zh) * 2015-05-13 2017-01-04 上海凯创生物技术有限公司 一种军团菌抗原乳胶法检测试剂盒
JP6880571B2 (ja) * 2016-05-20 2021-06-02 Jnc株式会社 磁性粒子を用いた水溶液中の微生物の回収方法および回収装置
CN108277150A (zh) * 2017-12-13 2018-07-13 安徽金龙山葛业有限公司 一种葛根茶制备的发酵设备
CN109142715A (zh) * 2018-07-03 2019-01-04 江南大学 一种新型纳米磁微粒悬浮体系及其配制方法
KR102271188B1 (ko) * 2019-12-13 2021-06-30 성균관대학교산학협력단 형광 이미징 기반 미생물 검출 장치 및 이의 제조방법

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2258897A1 (es) * 1974-01-28 1975-08-22 Asea Ab
EP0030086A1 (en) * 1979-11-13 1981-06-10 TECHNICON INSTRUMENTS CORPORATION (a New York corporation) Test-tube assembly, kit for making it and method of manual immunoassay
EP0498920A2 (en) * 1991-02-14 1992-08-19 Vicam, L.P. Assay method for detecting the presence of bacteria
US5183638A (en) * 1989-12-04 1993-02-02 Kabushiki Kaisha Nittec Automatic immunity analysis apparatus with magnetic particle separation
WO1993025909A1 (en) 1992-06-11 1993-12-23 Pharmacia Biosensor Ab Improvements in or relating to analyte detection
EP0605003A2 (en) * 1992-12-31 1994-07-06 Vicam, L.P. Assay method for detecting the presence of bacteria
WO1996014582A1 (fr) * 1994-11-07 1996-05-17 Laboratoires Merck-Clevenot Appareil automatique de dosage immunologique
US5834197A (en) 1994-05-11 1998-11-10 Genera Technologies Limited Methods of capturing species from liquids and assay procedures
US6159689A (en) 1995-11-10 2000-12-12 Genera Technologies Limited Methods of capture and assay procedures
JP2001004631A (ja) * 1999-06-25 2001-01-12 Shokuhin Sangyo Center 磁気ビーズ固定化抗体を用いた微生物の迅速検定法
WO2001040505A1 (fr) 1999-11-30 2001-06-07 Ulp-Centre D'analyses Et De Recherches Procede d'analyse d'un echantillon pour la presence de bacteries legionella comprenant une etape d'immunocapture
WO2002101354A2 (en) 2001-01-25 2002-12-19 Thaco Research, Inc. Rapid methods for microbial typing and enumeration
US20030049171A1 (en) * 2001-09-13 2003-03-13 Olympus Optical Co., Ltd. Automatic analyzing apparatus
US6562209B1 (en) * 2001-04-19 2003-05-13 Northrop Grumman Corporation Automated computer controlled reporter device for conducting imunnoassay and molecular biology procedures
ES2208121A1 (es) 2002-11-29 2004-06-01 Consejo Sup. Investig. Cientificas Anticuerpos y antigenos inmovilizados sobre particulas magneticas de silice como biosensores.
ES2220227A1 (es) 2003-05-30 2004-12-01 INSTITUTO NACIONAL DE TECNICA AEROESPACIAL "ESTEBAN TERRADAS" Metodo y aparato para la deteccion de sustancias o analitos a partir del analisis de una o varias muestras.
WO2005059085A2 (en) * 2003-12-15 2005-06-30 Commissariat A L'energie Atomique Method and device for division of a biological sample by magnetic effect
ES2237272A1 (es) 2003-03-21 2005-07-16 Universidad De Malaga Reactivo de latex para la deteccion de anticuerpos frente a legionella pneumophila.
US20050202518A1 (en) 2002-10-01 2005-09-15 Bruno Vedrine Method for detecting and counting micro-organisms in a sample
WO2006091630A2 (en) * 2005-02-22 2006-08-31 University Of Cincinnati Determination of viable microorganisms using coated paramagnetic beads
US20060211061A1 (en) 2004-08-18 2006-09-21 Yousef Haik Devices and methods for rapid detection of pathogens
US20060246535A1 (en) 2003-01-09 2006-11-02 Burns Edward R Agglutination tests for detection of microorganisms
WO2006123781A1 (ja) 2005-05-20 2006-11-23 Arkray, Inc. 微粒子を用いた微生物及び核酸の回収方法ならびにそれらに用いるキット
US20060292555A1 (en) 2004-06-24 2006-12-28 The Hong Kong University Of Science And Technology Biofunctional magnetic nanoparticles for pathogen detection
US7220596B2 (en) 1998-04-15 2007-05-22 Utah State University Real time detection of antigens
US20070231833A1 (en) * 2005-05-23 2007-10-04 Arcidiacono Steven M Labeled antimicrobial peptides and method of using the same to detect microorganisms of interest

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163164A (ja) * 1986-12-25 1988-07-06 Konica Corp 多層分析素子

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2258897A1 (es) * 1974-01-28 1975-08-22 Asea Ab
EP0030086A1 (en) * 1979-11-13 1981-06-10 TECHNICON INSTRUMENTS CORPORATION (a New York corporation) Test-tube assembly, kit for making it and method of manual immunoassay
US5183638A (en) * 1989-12-04 1993-02-02 Kabushiki Kaisha Nittec Automatic immunity analysis apparatus with magnetic particle separation
EP0498920A2 (en) * 1991-02-14 1992-08-19 Vicam, L.P. Assay method for detecting the presence of bacteria
WO1993025909A1 (en) 1992-06-11 1993-12-23 Pharmacia Biosensor Ab Improvements in or relating to analyte detection
EP0605003A2 (en) * 1992-12-31 1994-07-06 Vicam, L.P. Assay method for detecting the presence of bacteria
US5834197A (en) 1994-05-11 1998-11-10 Genera Technologies Limited Methods of capturing species from liquids and assay procedures
WO1996014582A1 (fr) * 1994-11-07 1996-05-17 Laboratoires Merck-Clevenot Appareil automatique de dosage immunologique
US6159689A (en) 1995-11-10 2000-12-12 Genera Technologies Limited Methods of capture and assay procedures
US7220596B2 (en) 1998-04-15 2007-05-22 Utah State University Real time detection of antigens
JP2001004631A (ja) * 1999-06-25 2001-01-12 Shokuhin Sangyo Center 磁気ビーズ固定化抗体を用いた微生物の迅速検定法
WO2001040505A1 (fr) 1999-11-30 2001-06-07 Ulp-Centre D'analyses Et De Recherches Procede d'analyse d'un echantillon pour la presence de bacteries legionella comprenant une etape d'immunocapture
WO2002101354A2 (en) 2001-01-25 2002-12-19 Thaco Research, Inc. Rapid methods for microbial typing and enumeration
US6562209B1 (en) * 2001-04-19 2003-05-13 Northrop Grumman Corporation Automated computer controlled reporter device for conducting imunnoassay and molecular biology procedures
US20030049171A1 (en) * 2001-09-13 2003-03-13 Olympus Optical Co., Ltd. Automatic analyzing apparatus
US20050202518A1 (en) 2002-10-01 2005-09-15 Bruno Vedrine Method for detecting and counting micro-organisms in a sample
ES2208121A1 (es) 2002-11-29 2004-06-01 Consejo Sup. Investig. Cientificas Anticuerpos y antigenos inmovilizados sobre particulas magneticas de silice como biosensores.
US20060246535A1 (en) 2003-01-09 2006-11-02 Burns Edward R Agglutination tests for detection of microorganisms
ES2237272A1 (es) 2003-03-21 2005-07-16 Universidad De Malaga Reactivo de latex para la deteccion de anticuerpos frente a legionella pneumophila.
ES2220227A1 (es) 2003-05-30 2004-12-01 INSTITUTO NACIONAL DE TECNICA AEROESPACIAL "ESTEBAN TERRADAS" Metodo y aparato para la deteccion de sustancias o analitos a partir del analisis de una o varias muestras.
WO2005059085A2 (en) * 2003-12-15 2005-06-30 Commissariat A L'energie Atomique Method and device for division of a biological sample by magnetic effect
US20060292555A1 (en) 2004-06-24 2006-12-28 The Hong Kong University Of Science And Technology Biofunctional magnetic nanoparticles for pathogen detection
US20060211061A1 (en) 2004-08-18 2006-09-21 Yousef Haik Devices and methods for rapid detection of pathogens
WO2006091630A2 (en) * 2005-02-22 2006-08-31 University Of Cincinnati Determination of viable microorganisms using coated paramagnetic beads
WO2006123781A1 (ja) 2005-05-20 2006-11-23 Arkray, Inc. 微粒子を用いた微生物及び核酸の回収方法ならびにそれらに用いるキット
US20070231833A1 (en) * 2005-05-23 2007-10-04 Arcidiacono Steven M Labeled antimicrobial peptides and method of using the same to detect microorganisms of interest

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
"Legionella and the prevention of legionellosis", WORLD HEALTH ORGANIZATION, 2007
ALBERS U, TIADEN A, SPIRIG T, AL ALAM D, GOYERT SM, GANGLOFF SC, HILBI H.: "Expression of Legionella pneumophila paralogous lipid A biosynthesis genes under different growth conditions", MICROBIOLOGY, vol. 153, 2007, pages 3817 - 29
BENTHAM, BROADBENT: "Legionella - Current Status and Emerging Perspectives", 1993, ASM PRESS., article "The Influence of the Sessile Population in the Legionella Colonization of Cooling Towers"
GEHRING A. G. ET AL.: "Enzyme-linked immunomagnetic chemiluminescent detection of Escherichia coli 0157:H7", JOURNAL OF IMMUNOLOGICAL METHODS., vol. 293, no. 1-2, 1 October 2004 (2004-10-01), pages 97 - 106, XP004634278 *
GRACIAS KS., MCKILLIP JL.: "A review of conventional detection and enumeration processes for pathogenic bacterium in food", CANADIAN JOURNAL OF MICROBIOLOGY, vol. 50, no. 11, 2004, pages 883 - 90
HUTTON G, BARTRAM J: "Global costs of attaining the Millennium Development Goal for water supply and sanitation", BULLETIN OF THE WORLD HEALTH ORGANIZATION, vol. 86, no. 1, 2008, pages 13 - 9
IRWIN P. ET AL.: "Blocking nonspecific adsorption of native food-borne microorganisms by immunomagnetic beads with iota-carrageenan", CARBOHYDRATE RESEARCH., vol. 339, no. 3, 25 February 2004 (2004-02-25), pages 613 - 621, XP027114441 *
JOLY P, FALCONNET PA, ANDRE J, WEILL N, REYROLLE M, VANDENESCH F, MAURIN M, ETIENNE J, JARRAUD S.: "uantitative real-time Legionella PCR for environmental water samples: data interpretation", APPLIED ENVIRONMENTAL MICROBIOLOGY, vol. 72, no. 4, 2006, pages 2801 - 8
L.J. KRICKA: "Selected strategies for improving sensitivity and reliability of immunoassays", CLINICAL CHEMISTRY, vol. 40, 1994, pages 347 - 357
MEER RR, PARK DL.: "Immunochemical detection methods for Salmonella spp., Escherichia coli O157:H7, and Listeria monocytogenes in foods", REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, vol. 142, 1995, pages 1 - 12
NOBLE RT, WEISBERG SB.: "A review of technologies for rapid detection of bacterium in recreational waters", JOURNAL OF WATER AND HEALTH, vol. 3, no. 4, 2005, pages 381 - 92
ROMPRE A., SERVÁIS P., BAUDARTS J., DE-ROUBIN MR., LAURENT P.: "Detection and enumeration of coliforms in drinking water: current processes and emerging approaches", JOURNAL OF MICROBIOLOGICAL PROCESSES, vol. 49, no. 1, 2002, pages 31 - 54
See also references of EP2336349A4
YANEZ MA, CARRASCO-SERRANO C, BARBERA VM, CATALÁN V.: "Quantitative detection of Legionella pneumophila in water samples by immunomagnetic purification and real-time PCR amplification of the dotA gene", APPLIED ENVIRONMENTAL MICROBIOLOGY, vol. 71, no. 7, 2005, pages 3433 - 41
YARADOU DF, HALLIER-SOULIER S, MOREAU S, POTY F, HILLION Y, REYROLLE M, ANDRE J, FESTOC G, DELABRE K, VANDENESCH F: "Integrated real-time PCR for detection and monitoring of Legionella pneumophila in water systems", APPLIED ENVIRONMENTAL MICROBIOLOGY, vol. 73, no. 5, 2007, pages 1452 - 6

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130095501A1 (en) * 2010-06-16 2013-04-18 Hochschule Niederrhein Legionella test
US9702852B2 (en) 2010-10-22 2017-07-11 T2 Biosystems, Inc. NMR systems and methods for the rapid detection of analytes
JP2014505233A (ja) * 2010-10-22 2014-02-27 ティー2 バイオシステムズ インコーポレイテッド 検体の検出のためのnmrシステムおよび方法
US9360457B2 (en) 2010-10-22 2016-06-07 T2 Biosystems, Inc. NMR systems and methods for the rapid detection of analytes
US9488648B2 (en) 2010-10-22 2016-11-08 T2 Biosystems, Inc. NMR systems and methods for the rapid detection of analytes
US9714940B2 (en) 2010-10-22 2017-07-25 T2 Biosystems, Inc. NMR systems and methods for the rapid detection of analytes
US9562271B2 (en) 2012-04-20 2017-02-07 T2 Biosystems, Inc. Compositions and methods for detection of Candida species
US11098378B2 (en) 2012-04-20 2021-08-24 T2 Biosystems, Inc. Compositions and methods for detection of candida species
CN103091465A (zh) * 2013-01-29 2013-05-08 南昌大学 一种基于Fe3O4@Au纳米材料免疫磁分离的食源性致病菌快速检测方法
US11519016B2 (en) 2016-01-21 2022-12-06 T2 Biosystems, Inc. NMR methods and systems for the rapid detection of bacteria
CN111551730A (zh) * 2020-05-18 2020-08-18 上海艾瑞德生物科技有限公司 荧光微球封闭液及应用该封闭液的试剂盒
CN111551730B (zh) * 2020-05-18 2023-09-19 上海艾瑞德生物科技有限公司 荧光微球封闭液及应用该封闭液的试剂盒
CN112326958A (zh) * 2020-10-28 2021-02-05 厦门宝太生物科技有限公司 一种微球封闭的方法及其微球标记的方法

Also Published As

Publication number Publication date
EP2336349A1 (en) 2011-06-22
JP2012503766A (ja) 2012-02-09
ES2566478T3 (es) 2016-04-13
EP2336349B1 (en) 2016-01-06
EP2336349A4 (en) 2012-05-02
SI2336349T1 (sl) 2016-06-30
JP5675022B2 (ja) 2015-02-25
DK2336349T3 (en) 2016-04-04

Similar Documents

Publication Publication Date Title
ES2566478T3 (es) Procedimiento rápido de detección de microorganismos con partículas magnéticas
US9201066B2 (en) Rapid process for detection of microorganisms with magnetic particles
US10696999B2 (en) Rapid method for detection of Salmonella live vaccine strains
CN101952727A (zh) 微生物捕获用组合物和方法
Boyacı et al. Amperometric determination of live Escherichia coli using antibody-coated paramagnetic beads
WO2007087439A2 (en) Method and apparatus for determining level of microorganisms using bacteriophage
US9766237B2 (en) Method of capturing bacteria on polylysine-coated microspheres
US5510242A (en) Method for using polymyxin-coated substrate for lipopolysaccharide detection
CN102645536A (zh) 一种检测金黄色葡萄球菌的方法
WO2014151885A1 (en) Conjugation of multiple vancomycin molecules on a polyvinyl alcohol backbone for the capture of microorganisms
KR20120088202A (ko) 미생물 검출용 바이오센서
US20050079484A1 (en) Method of detecting biological materials in liquid
US10006906B2 (en) Detection assays and methods
Švábenská et al. Electrochemical Biosensor for Detection of Bioagents
Stenholm et al. Evaluation of the TPX MRSA assay for the detection of methicillin-resistant Staphylococcus aureus
Matta Biosensing total bacterial load in liquid matrices to improve food supply chain safety using carbohydrate-functionalized magnetic nanoparticles for cell capture and gold nanoparticles for signaling
CN113670907B (zh) 一种cgc杂化纳米复合物及其制备方法和应用
CN109536571A (zh) 一种检测致病菌的纳米生物探针及其制备方法
EP2255197B1 (fr) Procede de detection et/ou de quantification et/ou d'identification in vitro de bacteries dans un materiau biologique
Horák et al. Magnetic poly (glycidyl methacrylate) microspheres for Campylobacter jejuni detection in food
Pięta et al. Application of an aptamer and a reagent based on gold nanoparticles for detection of Escherichia coli
RU2218411C2 (ru) Способ обнаружения патогенных микроорганизмов в объектах внешней среды
Dolai Sourav Chattopadhyay, Sankar Kumar Dey, Prasanta Kumar Maiti &
Cao et al. Bacteriophage-Modified Stir Bar Extraction Coupled with Portable Atp Bioluminescence Sensor for Point-of-Care Test of Live Escherichia Coli O157: H7 in Foods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877043

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011528373

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008877043

Country of ref document: EP