WO2010034485A1 - Procédé de commande d'un groupe d'entraînement - Google Patents

Procédé de commande d'un groupe d'entraînement Download PDF

Info

Publication number
WO2010034485A1
WO2010034485A1 PCT/EP2009/006886 EP2009006886W WO2010034485A1 WO 2010034485 A1 WO2010034485 A1 WO 2010034485A1 EP 2009006886 W EP2009006886 W EP 2009006886W WO 2010034485 A1 WO2010034485 A1 WO 2010034485A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
drive unit
electric motor
battery
battery current
Prior art date
Application number
PCT/EP2009/006886
Other languages
German (de)
English (en)
Inventor
Guido Arians
Guido Liesenfeld
Original Assignee
Trw Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trw Automotive Gmbh filed Critical Trw Automotive Gmbh
Publication of WO2010034485A1 publication Critical patent/WO2010034485A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/065Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by specially adapted means for varying pressurised fluid supply based on need, e.g. on-demand, variable assist
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage

Definitions

  • the invention relates to a method for controlling a drive unit, in particular for vehicle steering systems.
  • power units are often used which comprise a motor and a control unit, so that they are a compact unit and can be installed largely independently of other systems in the vehicle, for example as part of a motor / pump unit for vehicle steering systems.
  • FIG. 1 shows a drive unit 10 'according to the prior art, with an electronic control unit 12' and an electric motor 14 '.
  • Control unit 12 ' determines according to a predetermined condition, for example a map, in dependence on a plurality of steering-relevant parameters, such as e.g. the vehicle speed v and the steering angle ⁇ , an engine input signal E, via which the electric motor 14 'is driven.
  • a predetermined condition for example a map
  • steering-relevant parameters such as e.g. the vehicle speed v and the steering angle ⁇
  • an engine input signal E via which the electric motor 14 'is driven.
  • a method for controlling the drive unit 10 ' is intended to meet several requirements.
  • An output quantity A of the drive unit for example a torque of the electric motor, should be greater than or equal to a lower limit value A min .
  • an electric current, which the drive unit 10 'withdraws from the battery 16' hereinafter referred to as battery current I B , should not exceed an upper limit value l Bm ax.
  • Electric motor is supplied and when exceeding a
  • Motor current limit value is toregelt.
  • the motor current is in this case an internal size of the drive unit and does not necessarily correspond to the total battery current taken from the battery. In such a control method, it can therefore continue to come to a scattering of the battery current, in particular by changes in the boundary conditions.
  • Vorscen that can limit the battery current between the battery and the drive unit to an upper limit.
  • a ballast in turn has its own product dispersion and in turn may be dependent on the boundary conditions, in particular temperature fluctuations.
  • An independent of the drive unit pre-circuit is particularly unfavorable when a scheme for the drive unit is provided, since in the case of a current limit, the control / regulating unit can not regulate the drive unit accordingly.
  • the object of the invention is to provide a method for controlling a
  • the method according to the invention serves to control a drive unit, in particular for vehicle steering systems, with an electronic control unit and an electric motor, and comprises the following method steps: a) the motor is driven by an engine input signal from the control unit;
  • a battery current is determined, which is taken from the drive unit from a battery
  • the electric motor is controlled by the control / regulating unit so that the determined battery current does not exceed the predetermined upper limit.
  • the motor input signal may be an electrical voltage or an electric current.
  • the engine of the control / regulating unit can be particularly easy to control.
  • a control variable is determined after the first method step a), wherein a control of the electric motor takes place as a function of the control variable.
  • the control variable may be formed from a motor input signal of the Elekromotors. In this way, for example, the motor can be protected from overloading.
  • the control amount may be formed from an engine output of the electric motor, thereby enabling accurate control of the motor output and reducing the spread of the motor output.
  • a lower limit for an output of the drive unit can be specified, this output is not used or taken into account for the control of the electric motor. In this way, it is ensured that also output variables that are not regulated directly by the control / regulation unit meet a minimum requirement.
  • the control / regulating unit of the drive unit determines the engine input signal according to a predetermined condition, for example according to a characteristic map, wherein the predetermined condition is selected such that the lower limit value for the output quantity exceeds a predetermined quantile of a statistical distribution of the output variable Drive units corresponds.
  • the control can be set so that the drive units reach their maximum output, whereby the smallest possible quantile, for example, a 1% quantile, the statistical distribution corresponds to the lower limit for the output and the production committee is low.
  • the predetermined condition is determined, for example, by a statistically determined relationship between the engine input signal and an output variable of the drive assembly.
  • the predetermined condition may be such that the battery current of some drive units could exceed the predetermined upper limit value in some operating situations if the control provided in method step d) would not be carried out.
  • the control of the electric motor can be effected as a function of at least one steering-relevant parameter. This has the advantage that an optimal steering behavior can be set within the limits of the performance of the engine and can realize maximum energy savings.
  • Battery currents are selected from a set of limits depending on at least one parameter. This has the advantage that, for example, a reduction in the maximum permissible battery current in the event of overloading of the battery On-board network, low-battery, hybrid electric drive, etc. by the internal control unit or by the request of external control units is possible.
  • the drive unit may be part of an electric vehicle steering system, wherein the drive unit is coupled for example in the form of an electric motor directly to the steering gear.
  • the steering torque can be easily used for the output variable or control variable.
  • the power plant may be part of a motor / pump assembly for an electro-hydraulic vehicle steering system.
  • the output or control variable of the motor / pump unit may be a variable speed and / or a variable displacement.
  • Figure 1 shows a drive unit according to the prior art
  • FIG. 2 shows a first embodiment of a drive unit, which is controlled according to a first variant of the method according to the invention
  • FIG. 3 shows a diagram for an output variable and the battery current of a drive unit in a control method according to a first predetermined condition
  • FIG. 4 shows a diagram for an output quantity and the battery current of a drive unit in a control method according to a second predetermined condition
  • FIG. 5 shows a diagram for an output variable and the battery current of a drive unit in the case of an inventive system
  • FIG. 2 shows a drive unit 10 with an electronic control unit 12 and an electric motor 14.
  • the drive unit 10 is connected to a battery 16, from which it draws a battery current I 8 .
  • a current measuring device 38 for the battery current I B is provided.
  • the current measuring device 38 can also be structurally integrated into the drive unit 10.
  • the drive unit 10 is controlled by a method according to the invention, the method steps are described below.
  • Motor input signal E controlled by the control / regulating unit 12. This can preferably take place as a function of at least one steering-relevant parameter, e.g. Vehicle speed v, the steering angle speed ⁇ or the steering torque T.
  • the engine input signal E according to a predetermined condition, for example via a map or an algorithm determined.
  • Other steering-relevant parameters may also be used for the determination of the engine input signal E, for example a steering angle speed.
  • a steering-relevant parameter may be determined by means of a sensor or may be formed from a mathematical derivative of another steering-relevant parameter, e.g. the steering angle speed as a time differential of the steering angle.
  • a battery current I B is determined by the current measuring device 38, which is removed from the drive unit 10 from the battery 16.
  • At least one upper limit value l Bma x is specified for the battery current I B.
  • This upper limit value I max may depend , for example, on the battery 16 used or on the number of further consumers connected to the battery 16.
  • Control / regulating unit 12 regulated so that the determined battery current I B does not exceed the predetermined, upper limit value l Bmax .
  • the Current limitation occurs via a control, it can be ensured that on the one hand tolerances in the production of the components of the drive unit 10 and other changes in the boundary conditions, such as changes in temperature or supply voltage and supply line resistance of the battery 16, the current limit does not adversely affect.
  • FIGS. 3 to 5 each show a diagram of the output quantity A and of the battery current I B as a function of the engine speed n of a group of drive units 10.
  • the predetermined upper limit value l Bma ⁇ for the battery current I B is shown by a dot-dash line 18.
  • the dotted line 30 shows the predetermined lower limit A mm for the output A.
  • the illustrated stray values for the battery current I B and the output A correspond respectively to a lower and upper quantile, for example the 1% and 99% quantile, of the respective distribution of the group of drive units 10.
  • FIG. 3 shows the diagram in a control method according to a first predetermined condition.
  • the two dashed curves show an upper battery current leakage value 20 'and a lower battery current leakage value 22' representing the highest and lowest battery power I B drive assemblies 10 ', respectively.
  • the first predetermined condition is set such that the entire battery current spreading range 24 'is below the upper limit value l Bmax for the battery current I B. A battery current limit is not necessary in this case.
  • the output quantity A results in an upper output quantity spreading value 26 'and a lower output quantity spreading value 28'.
  • the lower output spread 28 ' is partially below the lower limit A m , n .
  • the output spread area is split into an upper output spread area 32 'above the lower limit A min and a lower output spread area 34' below the lower limit A m , n .
  • Drive unit 10 can be adjusted so that the drive units 10 reach approximately their maximum output size A.
  • the quantile of the statistical distribution of the output quantity A 1 which corresponds to the lower limit value A min for the output quantity A is chosen as small as possible, for example as 1% quantile, whereby only a small proportion of the
  • the spreads of the output A and the battery current I B change in the control according to the second predetermined condition.
  • the scattering areas are shown, as they would result in a simple control according to the second predetermined condition without a regulation of the battery current I B.
  • both the upper output quantity distribution value 26 "and the lower output value distribution value 28" are now above the lower limit value A min .
  • the total output spread area 32 "meets the output A requirement.
  • the battery upper leakage 20" and the battery lower leakage 22 are both increased, whereby the upper battery leakage 20" is partially above the upper limit I Bmax and thus the battery leakage area is lower Batteriestromstreu Society 24 "and an upper Batteriestromstreu Victoria Society 36" is divided.
  • the drive units 10 in the upper battery power spreading area 36 "in FIG. 4 exceed the upper limit value l Bma ⁇ and therefore have to be regulated down in the last method step.
  • FIG. 4 The diagram of the output A and the battery current I B after the regulation of the battery current I B is shown in FIG.
  • the control method is set in the same way as in Figure 4 such that a maximum
  • Output size A is achieved. Reaches the battery current I B one
  • the upper limit l Bmax the engine 14 so regulated that the battery current I B, the upper limit l Bma ⁇ does not exceed.
  • the curve for the battery current is essentially linear, ie without any further increase in further increase of the engine speed and always below or above the upper battery current litter value 20 "in FIG.
  • the lower battery current leakage value 22 remains unchanged, thereby reducing the battery leakage area 24.
  • Due to the control of the electric motor 14 at the upper limit I Bma ⁇ of the battery current I B the upper output spread value 26 also decreases while the lower output spread value 28 remains largely unchanged Since these drive units 10 are not affected by the battery current regulation, the output quantity spreading range 32 is also reduced in this way.
  • FIG. 6 shows a drive unit 10 with control of the electric motor 14 as a function of a control variable R.
  • a control variable measuring device 40 determines the control variable R and sends it to the control unit
  • the control variable R can the
  • Motor input signal E whereby, for example, an overload in
  • Electric motor 14 can be prevented, or an engine output signal A R , for example, a speed or torque.
  • the above-mentioned first and second conditions which are taken into account for the control method, may be control algorithms or data maps, which are queried appropriately in the implementation of the control method.
  • the motor control method for example, for a multi-phase motor design can be based on a control of the phase current or its flux and torque-forming components, the relationship between these components can be determined via a speed-dependent characteristic for the phase angle or by an additional regulator for the induced voltage , Maps, for example, depend on a significant temperature of the drive unit (10) limit the phase current or its components and thus protect the motor against overload or limit the maximum torque output. In the partial load range, this regulation would not be affected by the second condition since the maximum battery current is not reached. If, however, an operating point in the full load range is approached, then the engine control variables are limited in such a way that an impermissible increase in the battery current is prevented by a return of the determined battery current in the engine control process.
  • the feedback of the battery current can be done for example via an additional map, an extension of the engine control maps such as the Phasenstromlimit ist or a calculated limitation of the phase current regulator or the control circuits of the phase current components.
  • an extension of the engine control maps such as the Phasenstromlimit ist or a calculated limitation of the phase current regulator or the control circuits of the phase current components.
  • targeted retraction of the motor phase voltages or their components is also conceivable here.
  • the power plant 10 may be part of an electric vehicle steering system or part of a motor / pump assembly for an electro-hydraulic vehicle steering system.
  • the method variant for controlling the drive unit can be optimized for the respective vehicle steering system, for example by selecting the output variable A and / or the control variable R. It is possible, in particular, for the electric motor 14 to have a variable relevant to the vehicle steering system, such as e.g. to regulate an auxiliary steering torque.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

La présente invention concerne un procédé de commande d'un groupe d'entraînement (10) comprenant une unité électronique de commande / réglage (12) et un moteur électrique (14), et destiné notamment à des systèmes de direction de véhicule. Dans une première phase du procédé, le moteur électrique (14) est commandé par l'unité de commande / réglage (12) par l'intermédiaire d'un signal d'entrée moteur (E). Au cours d'une phase ultérieure du procédé, un courant de batterie (IB) qui est prélevé d'une batterie (16) par le groupe d'entraînement (10), est déterminé. Une valeur limite supérieure (IBmax) est prédéfinie pour le courant de batterie (IB). Au cours d'une phase ultime du procédé, le moteur électrique (14) est réglé par l'unité de commande / réglage (12) de sorte que le courant de batterie (IB) déterminé ne dépasse par la valeur seuil supérieure (IBmax) prédéfinie.
PCT/EP2009/006886 2008-09-23 2009-09-23 Procédé de commande d'un groupe d'entraînement WO2010034485A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008048510.1 2008-09-23
DE200810048510 DE102008048510A1 (de) 2008-09-23 2008-09-23 Verfahren zur Steuerung eines Antriebaggregats

Publications (1)

Publication Number Publication Date
WO2010034485A1 true WO2010034485A1 (fr) 2010-04-01

Family

ID=41693848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/006886 WO2010034485A1 (fr) 2008-09-23 2009-09-23 Procédé de commande d'un groupe d'entraînement

Country Status (2)

Country Link
DE (1) DE102008048510A1 (fr)
WO (1) WO2010034485A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3065298B1 (fr) * 2017-04-18 2019-04-12 Continental Automotive France Procede de determination d'une limite de courant de cellule d'une batterie de traction et d'un reseau de bord dans un vehicule automobile

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727670B1 (en) * 2002-12-12 2004-04-27 Ford Global Technologies, Llc Battery current limiter for a high voltage battery pack in a hybrid electric vehicle powertrain
EP1892174A1 (fr) * 2006-08-25 2008-02-27 NSK Ltd. Dispositif de direction assistée électrique
JP2008179247A (ja) * 2007-01-24 2008-08-07 Nsk Ltd 電動パワーステアリング装置
JP2008196392A (ja) * 2007-02-13 2008-08-28 Ihi Corp モータ制御駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727670B1 (en) * 2002-12-12 2004-04-27 Ford Global Technologies, Llc Battery current limiter for a high voltage battery pack in a hybrid electric vehicle powertrain
EP1892174A1 (fr) * 2006-08-25 2008-02-27 NSK Ltd. Dispositif de direction assistée électrique
JP2008179247A (ja) * 2007-01-24 2008-08-07 Nsk Ltd 電動パワーステアリング装置
JP2008196392A (ja) * 2007-02-13 2008-08-28 Ihi Corp モータ制御駆動装置

Also Published As

Publication number Publication date
DE102008048510A1 (de) 2010-03-25

Similar Documents

Publication Publication Date Title
EP2553802B1 (fr) Procédé de commande d'un point de fonctionnement optimal sur une machine synchrone et machine synchrone alimentée par un convertisseur
EP2711248B1 (fr) Réseau de bord bitension avec protection contre les surtensions
EP3088235A1 (fr) Systeme de gestion d'energie pour un systeme de vehicule agricole
EP3276768B1 (fr) Système de réseau électrique de bord pour véhicules à moteur pourvu d'un convertisseur et d'un consommateur à forte charge
DE19820381B4 (de) Verfahren zur Beeinflussung der Ventilkennlinie
DE102016218845A1 (de) Verfahren und Vorrichtung zum Betreiben eines Lenksystems mit elektromechanischer Lenkunterstützung
DE102017123033A1 (de) System und verfahren zum steuern von elektrofahrzeugen
EP1700367A1 (fr) Dispositif electrique et procede de fonctionnement
DE102006022706B3 (de) Antriebsvorrichtung und Regelungsverfahren für ein elektrisch angetriebenes Fahrzeug
WO2020030341A1 (fr) Procédé pour faire fonctionner un onduleur, dispositif de commande pour un onduleur et onduleur
DE10321872A1 (de) Generatorregelung mit Haupt- und Hilfsregler
WO2010034485A1 (fr) Procédé de commande d'un groupe d'entraînement
EP2885191B1 (fr) Procédé de distribution d'énérgie pour une pluralité de charges dans un véhicule ferroviaire
DE102021206419B3 (de) Regeleinrichtung zur Regelung einer eine Brennkraftmaschine und einen mit der Brennkraftmaschine antriebswirkverbundenen Generator umfassenden Leistungsanordnung, Regelanordnung mit einer solchen Regeleinrichtung, Leistungsanordnung und Verfahren zur Regelung einer Leistungsanordnung
DE102017108473A1 (de) Verfahren zur Kontrolle eines elektrischen Antriebs eines Fahrzeugs
DE102007022812B4 (de) Verfahren zur Begrenzung des Eingangsmoments an einer Getriebeeinheit und Steuerungssystem
DE10150421A1 (de) Verfahren und Vorrichtung zur Steuerung der Geschwindigkeit eines Fahrzeugs
DE102009001507B4 (de) Verfahren zum Betrieb eines elektrischen Servolenksystems und danach arbeitendes Steuergerät
DE102013203843A1 (de) Betriebsstrategie für ein elektrisches Energiebordnetz eines Kraftfahrzeugs
DE102022202956B4 (de) Hysterese basierte Ansteuerung eines Fahrzeugantriebs mit abwechselndem Freilauf- und Kurzschlusszustand im Fehlerfall
EP3568582B1 (fr) Commande de moteur, procédé de commande de moteur et programme d'ordinateur correspondant
DE102017211980A1 (de) Verfahren zum Betreiben eines Hybridfahrzeugs
DE102010001247A1 (de) Schaltungsanordnung zur Reduzierung eines Stromes durch eine Induktivität und Verfahren zum Steuern einer solchen Schaltungsanordnung
DE102008057610B4 (de) Elektrohydraulisches System mit mehreren in Reihe an einer Spannungsquelle angeschlossenen Motor-Pumpen-Aggregaten
DE102020130883A1 (de) Verfahren zur Verteilung einer elektrischen Leistung auf mehrere Motoren sowie Steuer- und Leistungselektronik hierfür

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09778685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09778685

Country of ref document: EP

Kind code of ref document: A1