WO2010033173A2 - Équipement rotatif de transformation de déchets de plastique en combustible liquide et procédé d'utilisation de celui-ci - Google Patents

Équipement rotatif de transformation de déchets de plastique en combustible liquide et procédé d'utilisation de celui-ci Download PDF

Info

Publication number
WO2010033173A2
WO2010033173A2 PCT/US2009/005141 US2009005141W WO2010033173A2 WO 2010033173 A2 WO2010033173 A2 WO 2010033173A2 US 2009005141 W US2009005141 W US 2009005141W WO 2010033173 A2 WO2010033173 A2 WO 2010033173A2
Authority
WO
WIPO (PCT)
Prior art keywords
discharging system
tube
residue
vessel
residue discharging
Prior art date
Application number
PCT/US2009/005141
Other languages
English (en)
Other versions
WO2010033173A3 (fr
Inventor
Jianguo Li
Xianji Wu
Original Assignee
Nantong Tianyi Environmental Protection Energy Equipment Limited Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/211,988 external-priority patent/US20100065410A1/en
Application filed by Nantong Tianyi Environmental Protection Energy Equipment Limited Corporation filed Critical Nantong Tianyi Environmental Protection Energy Equipment Limited Corporation
Publication of WO2010033173A2 publication Critical patent/WO2010033173A2/fr
Publication of WO2010033173A3 publication Critical patent/WO2010033173A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B1/00Retorts
    • C10B1/10Rotary retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/30Other processes in rotary ovens or retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/32Other processes in ovens with mechanical conveying means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Definitions

  • the present invention relates to the recycling of waste plastic and rubber and particularly relates to refining equipment and a method that converts waste plastic and waste rubber to fuel oil.
  • waste plastics are generated with the abundant applications of plastics. Due to the fact that the waste plastics are almost non-decomposable in natural condition, they become a serious problem to the survival of our environment. As such, it becomes very important to solve the pollution problem in our environment caused by the waste plastics, and to get them recycled and re-used.
  • the present invention is directed to a vessel for converting waste plastic or rubber into fuel oil.
  • the reaction vessel includes a wall extending between a first and a second end.
  • the wall is cylindrically or cone shaped.
  • the second end of the vessel can have a diameter of up to 144 inches, although larger sized diameters are contemplated depending upon the needs of the user.
  • the vessel further includes a feed-in entrance protruding through the first end, a residue discharge outlet protruding through the second end, and an oil or gas output tube protruding through the second end.
  • the oil or gas output tube may be interchangeably referred to as a fuel output tube.
  • the feed-in entrance and the oil or gas output tube can be situated on first and second support bearings, respectively.
  • a filter can be included in or at an end of the oil or gas output tube.
  • Inside of the reaction vessel there is a shield in front of the oil or gas output tube and a helix thruster housed inside of the oil or gas output tube.
  • there is a plurality of supporting tubes housed inside of the reaction vessel wherein the supporting tubes protrude through the wall of the vessel and open out so that heated air or gas can flow therethrough.
  • a heater can be provided to facilitate the heating of the vessel and the supporting tubes.
  • the vessel may be housed inside of a kiln structure including a heat insulation wall. Air or gas inside of the kiln structure is heated to a temperature of up to 800 0 C, thereby flowing through the supporting tubes and heating the supporting tubes and vessel.
  • the vessel, feed-in entrance, oil or gas output tube, supporting tubes and residue discharge outlet can be made from an alloy steel, seamless steel, iron, and the like.
  • the supporting tubes can be arranged vertically, horizontally, diagonally and combinations thereof inside of the vessel. Moreover, the supporting tubes can have a diameter of up to 200 mm, although larger sized diameters are contemplated depending upon the needs of the user.
  • the inside of the vessel can achieve an operating temperature of up to 450 0 C and the vessel can have a length of up to 24 feet.
  • the vessel and supporting tubes may be heated via hot air or gas.
  • the vessel can have the ability to continuously rotate, preferably about the center longitudinal axis, during operation.
  • a motor which supplies power and facilitates rotation of a first and a second gear, supplies the power to rotate the vessel.
  • the second gear is provided on the vessel, preferably the feed-in entrance comprises the second gear, whereby rotation of the first and second gears allows rotation of the vessel.
  • an embodiment of the present invention provides a discharging system for discharging residue from the vessel.
  • the discharging system can include a first residue discharging system housed inside of the vessel.
  • the residue discharge outlet protruding through the wall of the vessel can include a flange which can be connected to and disconnected from a first tube.
  • the first tube can be connected to a second tube and the second tube may be further be connected to a residue storage tank.
  • the discharging system can include a second residue discharging system housed inside of the second tube, and a closed residue discharging channel can be formed between the first residue discharging system and the second residue discharging system.
  • the first residue discharging system can include a three shaft conveyor system including a driver shaft and a first and second driven shaft wherein each shaft can be supported by one or more sliding bearings.
  • the driver shaft can further include a spiral vane disposed thereon and the first and second driven shafts can each further include a residue collecting vane disposed thereon.
  • the driver shaft or one of the driven shafts can extend from inside of the vessel to an inside of the residue discharge outlet.
  • the second residue discharging system can include a single driver shaft conveyor system supported by one or more bearings and have a spiral vane disposed thereon.
  • a preferred embodiment of the present invention also provides a method of converting waste plastic or rubber into fuel oil.
  • the method can include the steps of providing a device including a reaction vessel having a wall extending between a first end and a second end of the vessel, preferably a cone shaped or cylindrically shaped wall.
  • the method may include the step of housing the reaction vessel inside of a kiln including a heat insulation wall.
  • the method can also include the steps of providing a feed-in entrance protruding through the first end of the reaction vessel and situated on a first support bearing, providing a residue discharge outlet protruding through the second end of the reaction vessel and providing an oil or gas output tube protruding through the second end of the reaction vessel and situated on a second support bearing.
  • the method can also include the steps of providing a shield housed inside of the reaction vessel in front of the oil or gas output tube, providing a helix thruster housed inside of the oil or gas output tube, providing a heater, and providing a plurality of supporting tubes housed inside of the reaction vessel wherein the supporting tubes protrude through the wall of the reaction vessel and open out.
  • a motor may be provided and activated whereby the motor facilitates rotation of a first and a second gear.
  • the second gear can be provided on the reaction vessel, preferably the feed-in entrance comprises the second gear, causing the reaction vessel to rotate, preferably about the center longitudinal axis.
  • the method further can include the steps of heating the vessel and supporting tubes and feeding waste plastic, rubber, a catalyst, or any combination thereof through the feed-in entrance while heating the reaction vessel and the supporting tubes.
  • the outside of the supporting tubes and vessel can be heated to an operating temperature of up to 800 0 C and the inside of the vessel can achieve an operating temperature of up to 450 0 C.
  • a further step of the method of converting waste plastic or rubber into fuel oil can include condensing the waste plastic or rubber vapor in a condensor to form a condensate. Transmitting the condensate from the condensor through an oil-water separator to obtain an oil phase product and bringing the oil phase product into a mixing tank are other steps that can be included in the present method. Moreover, a catalyst can be added to the mixing tank to improve the stability of the oil phase product against oxidation. Yet another step according to the present method can include refining the oil phase product to produce gasoline, diesel oil, and other hydrocarbon fractions.
  • Fig. 1 is a side view of the revolving waste plastic-oil converting equipment and discharging system according to an embodiment of the present invention.
  • Fig. 2 is a cross-sectional top view of a reactor incorporating a preferred embodiment of the first residue discharging system of the present invention.
  • Fig. 3 is a cross-sectional side view of a reactor.
  • Fig. 4 is a sectional view along line A - A as shown in Fig. 3 or Fig. 5.
  • Fig. 5 is a cross-sectional side view of a reactor according to a preferred embodiment of the present invention.
  • Fig. 6 is a sectional view along line A - A as shown in Fig. 3 or Fig. 5.
  • the following description concerns preferred embodiments of the waste plastic to fuel oil converting distillation vessel.
  • the waste plastic to fuel oil converting distillation vessel disclosed herein can be interchangeably referred to as a vessel, reactor, distillation vessel, reaction vessel, or the like.
  • a preferred embodiment of the present invention includes a reaction vessel 3.
  • the reaction vessel 3 has a wall, preferably a cone- shaped wall or a cylindrically shaped wall, which makes up its body.
  • the wall extends between a first and a second end of the vessel and the vessel 3 has a total length of up to 24 feet, preferably about 15-21 feet.
  • the first and second ends of the vessel can be configured to any suitable operating diameters although in a preferred embodiment, the diameter of the second end is in a range of from about 72-144 inches.
  • the reaction vessel 3 can be made from any suitable material that can handle the high temperatures that the vessel is exposed to, such as iron, an alloy steel, and the like.
  • the reaction vessel 3 may also be housed inside of a kiln structure 27 (shown in Figs. 5 and 6).
  • Fig. 3 shows a feed-in entrance 21 protruding through the first end of the reaction vessel 3.
  • the feed-in entrance 21 can be connected to an automatic hydraulic feeder (not shown) or any other known method to perform feeding or continuous feeding of the waste plastic or rubber.
  • the feed-in entrance 21 can be situated on or engaged with, and supported by, a support bearing 26.
  • a residue discharge outlet 4 is shown protruding therethrough.
  • the residue discharge outlet 4 can also be referred to as a curved tube.
  • An oil or gas output tube 24 is also shown protruding through the second end of the vessel 3.
  • the oil or gas output tube 24 or fuel output tube 24 can have a helix thruster 25 and a filter (not shown) disposed therein.
  • the oil or gas output tube 24 can be situated on or engaged with, and supported by, a support bearing 26.
  • a shield 23 is placed inside of the vessel 3 near an entrance of the oil or gas output tube 24 to block unwanted residue from escaping through this tube. If the unwanted residue were to get into the oil or gas output tube 24, the helix thruster 25 set in the tube can push the residue back into the vessel 3.
  • the shield 23, feed-in entrance 21, residue discharge outlet 4, oil or gas output tube 24, helix thruster 25, and support bearings 26 can be made from any suitable materials that can handle the operating temperatures of the vessel 3, such as iron, an alloy steel, and the like.
  • a plurality of supporting tubes 22 are housed inside of the reaction vessel 3 wherein the supporting tubes 22 protrude through the wall of the reaction vessel 3 and open out.
  • These supporting tubes 22 can be arranged horizontally, vertically, diagonally, and any combination thereof inside of the vessel 3.
  • the quantity of supporting tubes 22 used depends upon the length of the reaction vessel 3 where a longer vessel 3 could require more supporting tubes 22.
  • Each end of the supporting tubes 22 goes through the vessel wall and opens out so heated air or gas can be supplied therethrough.
  • the vessel 3 is housed inside of a kiln structure 27, the air or gas inside of the kiln 27 is heated and in turn, heats the vessel and flows through the open ends of the supporting tubes 22 to heat them as well.
  • the supporting tubes 22 can have any suitable diameter, preferably a diameter of up to 200 mm, and be made from any material that can withstand the operating temperatures that the vessel 3 is exposed to such as seamless steel, an alloy steel, iron, and the like.
  • the strength of the vessel 3 is greatly improved. Due to the high temperatures that can be achieved inside of the vessel 3, such as 450 0 C 1 and outside of the vessel 3, such as 800 0 C, the shape of the vessel 3 could easily become distorted as it does with the vessels in the prior art. However, the vessel 3 of the present invention is not subjected to the shape distortion problems associated with the prior art reaction vessels at least because of the supporting tubes 22 of the present invention. Also due to the supporting tubes 22, the first and second ends of the vessel 3 can have a much larger diameter than those found in the prior art so the vessel is capable of handling the demand of large-scale manufacturing. Moreover, the life of the vessel 3 is greatly increased due to the supporting tubes 22. Finally, the supporting tubes 22 allow the waste plastic or rubber to be heated evenly inside of the vessel 3, which causes a complete reaction of all of the waste plastic or rubber into vapor.
  • the reaction vessel 3 further includes a rotation mechanism.
  • the rotation mechanism allows the vessel 3 to continuously rotate, preferably about the center longitudinal axis, during operation.
  • the rotation mechanism can include a motor that supplies power and facilitates rotation of a first and a second gear (not shown), whereby rotation of the first and second gears allows rotation of the vessel 3.
  • the second gear is provided on the vessel 3, preferably the feed-in entrance 21 comprises the second gear, so that rotation of the first and second gears facilitates rotation of the reaction vessel 3.
  • the rotation mechanism can comprise a motor, and a first and second gear, various other rotation mechanisms can be used, such as pulleys, magnets and the like, in accordance with the present invention as is commonly known by those skilled in the art.
  • the vessel 3 of the present invention can be used in a method of converting waste plastic or rubber into fuel oil.
  • the method may include any or all of the following steps, not necessarily in the order as described.
  • a motor is activated whereby the motor facilitates rotation of a first and a second gear, wherein the second gear is provided on the reaction vessel 3, causing the reaction vessel 3 to rotate.
  • Waste plastic or rubber and a catalyst are then manually or automatically fed through the feed-in entrance 21.
  • the catalyst can be alumina based, silicon dioxide based, or any other catalyst useful in method of converting waste plastic or rubber into fuel oil.
  • the reaction vessel 3 and the supporting tubes 22 are then heated. An operating temperature of up to 800 0 C 1 and preferably about 700 0 C, can be achieved outside of the vessel 3.
  • the inside of the vessel can be heated to a temperature of about 400 0 C to 450 0 C.
  • a high operating temperature inside of the vessel 3 is attributable to the supporting tubes 22 incorporated in the vessel 3, and a vessel not including these supporting tubes 22 would not be capable of achieving such high temperatures.
  • the waste plastic or rubber is then transformed from a solid to a liquid state with the increasing temperature.
  • the liquid is then converted into a gas or vapor phase under the action of the catalyst and the waste plastic or rubber vapor flows through the oil or gas output tube 24 and exits the vessel 3.
  • This vapor is then condensed into a mixture of liquid hydrocarbons in a condensor (not shown), before which the dust impurities carried by the vapor are separated in a settler (not shown).
  • the condensate is then transmitted from the condensor through an oil-water separator (not shown) to obtain an oil phase product.
  • the oil phase product is then brought into a mixing tank (not shown) and the catalyst is added to the mixing tank to improve the stability of the oil phase product against oxidation. Finally, the oil phase product is refined to produce gasoline, diesel oil, or other hydrocarbon fractions.
  • a high temperature, separable, continuous residue discharging system includes two sub-systems: a first residue discharging system and a second residue discharging system.
  • the first residue discharging system is assembled in a reactor 3.
  • the reactor 3 can be any type of reactor that converts plastic, rubber, industrial waste or the like into oil, fuel, or the like.
  • the first residue discharging system is a three unilateral shaft conveyer system. However, the system may include only one shaft or any number of shafts depending on the diameter of the shafts and the size of the reactor that the shafts are housed inside of.
  • the driver shaft 16 of the conveyor system extends the length of the reactor 3 and further into a residue discharge outlet or curved tube 4 (as shown in Fig. 1).
  • a spiral vane 17 is disposed on the driver shaft 16.
  • the curved tube 4 includes a flange 5, which connects the curved tube 4 to a first tube 10.
  • the first tube 10 has the ability to retract from the connection with the curved tube 4.
  • the first tube 10 is also shown in Fig. 1 as the first tube 10 as it connects to the second tube 9.
  • the second tube 9 is made of steel and has a diameter of 325 mm but this tube can be made from a variety of materials known in the art and include a large range of diameter sizes.
  • the second tube 9 can be an integral, single body tube or it can comprise multiple segments that are connected together to form a pathway.
  • the second tube 9 is further attached to a residue storage tank 20.
  • the connection of the curved tube 4 by its flange 5 to the first tube 10, the first tube 10 to the second tube 9, and the second tube 9 to the residue storage tank 20 forms a closed residue discharging channel.
  • the second residue discharging system Housed inside of the second tube 9 is a second residue discharging system.
  • the second residue discharging system includes a single driver shaft 7 with a spiral vane 8 disposed thereon.
  • the spiral vane 8 can be located in between a pair of bearing components (not shown), which support the single driver shaft 7 and allow it to rotate smoothly.
  • the second residue discharging system can include any number of shafts.
  • a first power source 1 delivers power, through a clutch 2, to the driver shaft 16 of the first residue discharging system.
  • the second power source 6 is also shown. This power source delivers power to the single driver shaft 7 of the second residue discharging system.
  • the power sources 1,6 can include an engine and a decelerator.
  • a preferred embodiment of the first residue discharging system includes a three unilateral shaft conveyor system housed in a reactor 3.
  • the driver shaft 16 is shown as well as a first driven shaft 13 and a second driven shaft 18.
  • the first and second driven shafts 13,18 include residue collecting vanes 14 disposed thereon.
  • the driver shaft 16 includes a spiral vane 8 disposed thereon. These vanes 8,14 assist in the residue collection and conveying process by moving the residue from the reactor 3 into the curved tube 4.
  • the shafts 13,16,18 of the first residue discharging system are supported at both of their ends by bearing components 12.
  • the bearing components 12 allow for smooth rotation of each shaft 13,16,18.
  • Also shown (but not labeled) is the curved tube 4 and the driver shaft 16 is extending therethrough.
  • the driver shaft 16 includes a driver gear that is engaged with a first gear of the first driven shaft 13 and a second gear of the second driven shaft 18. All of these gears are housed inside of a gear case 11.
  • the closed residue discharging channel can be formed as previously described and the residue can be discharged from the vessel 3.
  • the first tube 10 is connected to the flange 5 on the curved tube 4.
  • the first power source 1 is activated and transfers power, through the clutch 2, to the driver shaft 16.
  • the second power source 6 is also activated and it transfers power to the single driver shaft 7. As power is transferred to these shafts 7,16 they begin to rotate. Rotation is smooth because the shafts 7,16 are supported on bearing components 12.
  • the residue collecting vanes 14 disposed on the first and second driven shafts 13,18 and the spiral vane 8 disposed on the driver shaft 16 collect residue from inside of the reactor 3 and as rotation of the vanes 8,14 occurs, residue is pushed or conveyed towards the curved tube 4. Since the driver shaft 16 and the spiral vane 8 disposed thereon extend through the curved tube 4, the residue is pushed into the curved tube and falls down, through the first tube 10 and into the second tube 9. Once the residue falls into the second tube 9, the spiral vane 8 on the rotating single driver shaft 7 begins to push or convey the residue towards the residue storage tank 20.
  • Fig. 5 shows a preferred embodiment of the present invention wherein the reactor 3 is housed inside of a kiln 27. Under the reactor 3 and inside the kiln 27 is a heat insulation wall 28. The heated air inside of the kiln 27 can circulate around the reactor 3 and evenly heat it.
  • the kiln 27 and heat insulation wall 28 can be made of fire brick.
  • the heater 29 is also shown in Fig. 5.
  • the heater 29 heats the air or gas inside of the kiln 27 and, in turn, heats the vessel 3 and supporting tubes 22. However, in an embodiment that does not include a kiln 27, the heater 29 simply heats the vessel 3 and supporting tubes 22.
  • the heater 29 may operate by the combustion of a fuel, such as fuel oil or natural gas. It should be understood that other heaters commonly known in the art, such as an electric heater, can be used to heat the reaction vessel and supporting tubes.
  • Fig. 6 Depicted in Fig. 6 is the reactor 3 housed inside of the kiln 27.
  • the heater 29 heats the air or gas inside of the kiln 27.
  • the reactor 3, supporting tubes 22, and the heat insulation wall 28 are heated.
  • the heated air or gas can circulate around the reactor 3 as shown by the arrows in Fig. 6 and also flow through the supporting tubes 22.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

L'invention concerne une cuve de distillation de déchets de plastique en combustible liquide. La cuve de distillation peut être un cône rotatif comportant de nombreux tubes de support transversaux. Cette structure permet à de l'air ou à un gaz à haute température de circuler dans les tubes de support, qui traversent la cuve, pour augmenter la surface de chauffage et augmenter la température de la cuve de distillation. L'invention concerne également un système d'évacuation pour évacuer les résidus présents à l'intérieur du récipient et un procédé de transformation de déchets de plastique ou de caoutchouc en combustible liquide.
PCT/US2009/005141 2008-09-17 2009-09-15 Équipement rotatif de transformation de déchets de plastique en combustible liquide et procédé d'utilisation de celui-ci WO2010033173A2 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12/211,988 US20100065410A1 (en) 2008-09-17 2008-09-17 High temperature separable continuous residue discharging system and method of using the same
US12/211,988 2008-09-17
US12/401,744 2009-03-11
US12/401,744 US20100065411A1 (en) 2008-09-17 2009-03-11 Revolving waste plastic-oil converting equipment and method of using the same

Publications (2)

Publication Number Publication Date
WO2010033173A2 true WO2010033173A2 (fr) 2010-03-25
WO2010033173A3 WO2010033173A3 (fr) 2011-07-14

Family

ID=41697956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/005141 WO2010033173A2 (fr) 2008-09-17 2009-09-15 Équipement rotatif de transformation de déchets de plastique en combustible liquide et procédé d'utilisation de celui-ci

Country Status (2)

Country Link
US (1) US20100065411A1 (fr)
WO (1) WO2010033173A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108822881A (zh) * 2018-06-08 2018-11-16 国宏中晶(北京)科技发展有限公司 一种分阶段温控的轮胎裂解装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020197395A1 (fr) * 2019-03-26 2020-10-01 Fuenix Ecogy Ii B.V. Four rotatif pour l'évaporation de déchets thermoplastiques

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374704A (en) * 1978-08-24 1983-02-22 Young William P Apparatus for pyrolysis of hydrocarbon bearing materials
US5225044A (en) * 1990-03-14 1993-07-06 Wayne Technology, Inc. Pyrolytic conversion system
EP0851019A2 (fr) * 1996-12-23 1998-07-01 Richard Bouziane Dispositif de pyrolyse
EP0853114A2 (fr) * 1997-01-10 1998-07-15 Richard Bouziane Procédé discontinu pour le recyclage de déchets contenant des hydrocarbures
JP2001200093A (ja) * 2000-01-17 2001-07-24 Toshiba Corp 廃プラスチック処理装置
JP2005255841A (ja) * 2004-03-11 2005-09-22 Toshiba Corp 熱分解装置
WO2007040381A1 (fr) * 2005-10-05 2007-04-12 Agustin Javier Pretelin Nova Systeme permettant de recycler des pneumatiques uses et derives de tissu huile

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1508578A (en) * 1923-10-09 1924-09-16 Kohlenscheidungsgesellschaft M Apparatus for the distillation of coal and other substances
US1748178A (en) * 1923-10-12 1930-02-25 Hume Walter Reginald Rotary retort
US1587256A (en) * 1924-04-09 1926-06-01 Foulk Rotary oil-shale retort
US2798693A (en) * 1951-09-17 1957-07-09 Bojner Gustav Rotary heat exchangers
US4069133A (en) * 1976-06-25 1978-01-17 Chevron Research Company Apparatus and process for reducing particulates in a vaporous stream containing condensable hydrocarbons
US4235676A (en) * 1977-09-16 1980-11-25 Deco Industries, Inc. Apparatus for obtaining hydrocarbons from rubber tires and from industrial and residential waste
DE3346338A1 (de) * 1983-12-22 1985-07-11 Pka Pyrolyse Kraftanlagen Gmbh, 7080 Aalen Rotierende schweltrommel zum verschwelen von abfallstoffen
US4851601A (en) * 1988-01-19 1989-07-25 Mobil Oil Corporation Processing for producing hydrocarbon oils from plastic waste
SE8801377D0 (sv) * 1988-04-14 1988-04-14 Productcontrol Ltd Foredling av organiskt material
US4881947A (en) * 1988-06-28 1989-11-21 Parker Thomas H High efficiency gasifier with recycle system
DE4327633A1 (de) * 1993-08-17 1995-02-23 Siemens Ag Transporteinrichtung für Abfall
US5628969A (en) * 1995-10-18 1997-05-13 Mercury Treatment Alternatives, Inc. Chemical separation and reaction apparatus
CN1150968A (zh) * 1995-11-23 1997-06-04 杨亚力 废塑料烃处理的方法和设备
WO2001044405A1 (fr) * 1999-12-14 2001-06-21 Tirenergy Corporation Procede pour la pyrolyse de dechets de pneus et systemes de pyrolyse de pneus
AU2001283221A1 (en) * 2000-08-10 2002-02-25 Rj Leegroup, Inc. Low energy method of pyrolysis of hydrocarbon materials such as rubber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374704A (en) * 1978-08-24 1983-02-22 Young William P Apparatus for pyrolysis of hydrocarbon bearing materials
US5225044A (en) * 1990-03-14 1993-07-06 Wayne Technology, Inc. Pyrolytic conversion system
EP0851019A2 (fr) * 1996-12-23 1998-07-01 Richard Bouziane Dispositif de pyrolyse
EP0853114A2 (fr) * 1997-01-10 1998-07-15 Richard Bouziane Procédé discontinu pour le recyclage de déchets contenant des hydrocarbures
JP2001200093A (ja) * 2000-01-17 2001-07-24 Toshiba Corp 廃プラスチック処理装置
JP2005255841A (ja) * 2004-03-11 2005-09-22 Toshiba Corp 熱分解装置
WO2007040381A1 (fr) * 2005-10-05 2007-04-12 Agustin Javier Pretelin Nova Systeme permettant de recycler des pneumatiques uses et derives de tissu huile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108822881A (zh) * 2018-06-08 2018-11-16 国宏中晶(北京)科技发展有限公司 一种分阶段温控的轮胎裂解装置及方法

Also Published As

Publication number Publication date
WO2010033173A3 (fr) 2011-07-14
US20100065411A1 (en) 2010-03-18

Similar Documents

Publication Publication Date Title
JP5819607B2 (ja) 減圧熱分解処理装置及び連続油化炭化設備
CN109477010B (zh) 用于将废弃塑料转化成燃料的系统和工艺
KR100843585B1 (ko) 가연성 폐기물 무공해 탄화처리 에너지생산 시스템
CN201277557Y (zh) 一种有机废弃物热解装置
CN105542867A (zh) 资源化梯级裂解系统
CN1328308C (zh) 一种工业化废塑料油化装置
CN203582812U (zh) 集成式脱氯降膜裂解装置
US9234138B1 (en) Revolving waste plastic-oil converting equipment and method of using the same
US20050240068A1 (en) Dephlegmatic phased method of organic waste utilization and dephlegmatic pyrolysis apparatus
JP2014503610A (ja) 処理装置と方法
EP2634236B1 (fr) Dispositif de décomposition d'une matière de type charbon pour chauffage externe doté de plusieurs tuyaux
CN102459516A (zh) 裂解气化有机废物的新方法
CN111944546B (zh) 一种用于处理有机固体废料的可移动式集装箱系统
WO2013057735A1 (fr) Procédé et installation pour convertir une charge de déchets carbonés ségrégée ou non, homogène ou non en combustibles hydrocarbonés
US20100065411A1 (en) Revolving waste plastic-oil converting equipment and method of using the same
CN205347348U (zh) 资源化梯级裂解系统
CN101463256B (zh) 回收有机垃圾生产燃料的方法和专用设备
US8317980B2 (en) Reactor for converting waste materials into fuel, a feeding system for feeding waste materials into the reactor, and methods for converting waste materials into fuel
EP3431182B1 (fr) Système de conversion de pneumatiques entiers et autres matériaux en carbone solide en composants récupérables et réutilisables
CN212610427U (zh) 一种有机质热解装置
CN1225521C (zh) 离心分离生物质快速热解液化装置
CN108517221A (zh) 生物质热解系统
CN205347339U (zh) 双螺旋连续裂解炉
CN203393100U (zh) 一种组合式热解反应炉窑
CN114058391A (zh) 一种有机质热解装置及热解方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09789308

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09789308

Country of ref document: EP

Kind code of ref document: A2