WO2010032451A1 - 強度変調したレーザ光による蛍光検出装置および蛍光検出方法 - Google Patents

強度変調したレーザ光による蛍光検出装置および蛍光検出方法 Download PDF

Info

Publication number
WO2010032451A1
WO2010032451A1 PCT/JP2009/004644 JP2009004644W WO2010032451A1 WO 2010032451 A1 WO2010032451 A1 WO 2010032451A1 JP 2009004644 W JP2009004644 W JP 2009004644W WO 2010032451 A1 WO2010032451 A1 WO 2010032451A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
fluorescence
frequency
phase
low
Prior art date
Application number
PCT/JP2009/004644
Other languages
English (en)
French (fr)
Inventor
土井恭二
中田成幸
林弘能
星島一輝
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Priority to CN2009801365467A priority Critical patent/CN102159937A/zh
Priority to EP09814296A priority patent/EP2333525A4/en
Priority to KR1020117007144A priority patent/KR101236449B1/ko
Priority to JP2009540534A priority patent/JP4500887B2/ja
Priority to US13/119,696 priority patent/US8415627B2/en
Publication of WO2010032451A1 publication Critical patent/WO2010032451A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"

Definitions

  • the present invention relates to a fluorescence detection apparatus and a fluorescence detection method for irradiating a measurement object with intensity-modulated laser light, obtaining fluorescence signals by receiving fluorescence from the measurement object by the irradiation, and performing signal processing on the signals.
  • proteins such as flow cytometers used in the medical and biological fields, as well as measurement objects such as cells, DNA, RNA, etc., are identified using fluorescence emitted by fluorescent dyes to shorten the analysis of the measurement objects.
  • the present invention relates to a fluorescence detection apparatus and a fluorescence detection method applied to an analysis apparatus performed on time.
  • a flow cytometer used in the medical and biological fields incorporates a fluorescence detection device that receives fluorescence from a fluorescent dye of a measurement object by irradiating laser light and identifies the type of the measurement object. .
  • FRET fluorescence resonance energy transfer
  • a turbid liquid containing measurement objects such as proteins, cells, DNA, RNA, enzyme biological materials, etc.
  • a fluorescent dye fluorescent reagent
  • a sheath liquid is caused to flow in the conduit, and a turbid liquid containing the measurement object labeled with a fluorescent dye is allowed to flow into the sheath liquid to form a flow cell of the measurement object.
  • the fluorescence emitted from the fluorescent dye attached to the measurement object is received.
  • the measurement object is specified by identifying the received fluorescence as a label.
  • the intracellular relative amount of measurement objects such as intracellular DNA, RNA, enzyme, and protein can be measured, and the function of these measurement objects can be analyzed in a short time.
  • a cell sorter or the like is used that identifies specific types of cells and chromosomes by fluorescence and selects and collects only the identified cells and chromosomes in a short time. In this use, it is required to accurately identify more measurement objects from the fluorescence information in a short time.
  • Patent Document 1 describes an apparatus and a method for identifying individual particles or cells labeled with different fluorescent dyes based on the fluorescence lifetime (fluorescence relaxation time).
  • laser light whose intensity is modulated by a modulation signal from a modulator is emitted from a light source, directed to an irradiation port in a flow chamber, and irradiates particles and cells one by one.
  • the fluorescence emitted by the particles and cells is converted into a fluorescence signal by a photodetector and sent to two mixers.
  • the modulation signal of the modulator is sent to the two mixers via a variable phase shifter.
  • one mixer is supplied with a modulated signal whose phase is shifted by 90 degrees through a 90-degree phase shifter that shifts the phase of the signal by 90 degrees, and the other mixer receives a modulated signal without phase shift. Supplied as is.
  • the fluorescence signal and the modulation signal sent to each mixer are mixed, and a real part component and an imaginary part component, which are information on the phase delay of the fluorescence signal, are obtained via the low-pass filter.
  • the fluorescence lifetime is calculated from the ratio of the real part component and the imaginary part component. Thereby, it is supposed that individual particles and cells can be identified based on the fluorescence lifetime.
  • Patent Documents 2 and 3 also describe flow cytometers that identify particles and cells by obtaining the fluorescence lifetime using the phase delay of fluorescence.
  • the real part component (or cosine component) and the imaginary part component (sine component), which are information of the phase delay of the fluorescence signal with respect to the modulation signal should be constant values. Is.
  • the mixer that mixes the fluorescence signal and the modulation signal outputs the offset including the DC component offset by the modulation signal. This offset greatly affects the information on the phase lag for obtaining the fluorescence relaxation time of the fluorescence intensity when the fluorescence intensity of the fluorescence signal is weak (the level of the fluorescence signal is small). There was a problem that it was not possible to calculate a simple fluorescence relaxation time.
  • the present invention receives fluorescence emitted from the measurement object by irradiating the measurement object with laser light whose intensity is modulated at a predetermined frequency, and obtains a fluorescence signal obtained at this time.
  • Fluorescence detection apparatus and fluorescence capable of calculating a fluorescence relaxation time with higher accuracy than in the past even when the mixed signal output from the mixer includes a DC component as in the prior art when performing fluorescence detection by performing signal processing of An object is to provide a detection method.
  • One aspect of the present invention is a fluorescence detection device that receives fluorescence emitted from a measurement object by irradiating the measurement object with laser light, and obtains a fluorescence relaxation time from a fluorescence signal obtained by receiving the fluorescence.
  • a laser light source that emits intensity-modulated laser light that irradiates the measurement object;
  • a light receiving unit that outputs a fluorescence signal of fluorescence emitted from the measurement object by irradiation of the intensity-modulated laser beam;
  • a modulation signal having a predetermined frequency is generated, and a first reference signal having a frequency different from the frequency of the modulation signal and synchronized with the modulation signal Is generated separately from the modulation signal, and
  • a first mixer for performing a first mixing process of the fluorescence signal output from the light receiving unit and the first reference signal by irradiating a measurement object with laser light intensity-modulated using the modulation signal;
  • the mixed signal obtained by the first mixing process is lower than the addition frequency of the frequency of the modulation signal and the frequency of the first reference signal, and the frequency of the modulation signal and the first reference signal
  • a first low-pass filter that performs a first low-pass filtering process using a frequency higher than the
  • the signal generation unit of the fluorescence detection device includes a first oscillator that generates a clock signal, A second oscillator that generates the modulation signal in synchronization with the clock signal generated by the first oscillator; a third oscillator that generates the first reference signal in synchronization with the clock signal; It is preferable to have.
  • the fluorescence detection unit can obtain the first signal component by mixing a second reference signal, which is a digital signal having the difference frequency as a frequency, with a digital signal of the low frequency signal.
  • the fluorescence detection unit may create the second reference signal.
  • the signal processing unit performs the second mixing process on the modulation signal and the first reference signal, and the mixed signal obtained by the second mixing process, A second low-pass filter that outputs a sine wave signal having the difference frequency as a frequency by a second low-pass filtering process using a frequency lower than the addition frequency and higher than the difference frequency as a cutoff frequency, and
  • the fluorescence detection unit can also generate the second reference signal by digitizing the sine wave signal output from the second low-pass filter.
  • the fluorescence detection unit performs an FFT (Fast Fourier Transformation) process on the digital signal of the low-frequency signal based on the fluorescence signal, and a real part and an imaginary part corresponding to the difference frequency obtained by the FFT process Can be calculated as the first signal component, and the phase can be calculated from the values of the real part and the imaginary part.
  • FFT Fast Fourier Transformation
  • the light receiving unit includes a light receiving element that receives side scattered light of the measurement object by the laser light, and is obtained by receiving the side scattered light.
  • a light reception signal is output, and the signal processing unit outputs a third mixer that performs a third mixing process of the light reception signal and the first reference signal, and a mixed signal obtained by the third mixing process.
  • a third low-pass filter that performs a third low-pass filtering process using a frequency lower than the addition frequency and higher than the difference frequency as a cutoff frequency to output a low-frequency signal based on a received light signal
  • the fluorescence detection unit performs an FFT process on the low frequency signal based on the received light signal or by mixing the low frequency signal based on the received light signal with the second reference signal.
  • the phase of the second signal component corresponding to the differential frequency is obtained from the low-frequency signal based on the received light signal, and the phase of the fluorescence signal is corrected with reference to the phase of the second signal component. Using the corrected phase, the fluorescence relaxation time of the fluorescence of the measurement object can be obtained.
  • the signal processing unit for the mixed signal obtained by the second mixing process, a second mixer that performs a second mixing process of the modulated signal and the first reference signal, A second low-pass filter that outputs a sine wave signal having the difference frequency as a frequency by a second low-pass filtering process using a frequency lower than the addition frequency and higher than the difference frequency as a cutoff frequency, and
  • the fluorescence detection unit generates the second reference signal by digitizing the sine wave signal output from the second low-pass filter, and sets the phase of the second reference signal to the phase of the fluorescence signal. By subtracting from the phase, the phase of the fluorescence signal can be corrected, and the fluorescence relaxation time of the fluorescence of the measurement object can be obtained using the corrected phase.
  • the fluorescence detection unit performs FFT processing on the second reference signal, or mixes a separately generated sine wave signal having the difference frequency with the second reference signal, The phase of the second reference signal can be obtained.
  • each of the sine signal and the cosine signal is mixed with the second reference signal.
  • the phase of the second reference signal can be obtained by obtaining a ratio of values obtained by mixing the sine signal and the cosine signal.
  • the fluorescence detection unit further corrects the corrected phase of the fluorescence signal using a preset correction amount when obtaining the fluorescence relaxation time of the fluorescence of the measurement object, and after correction using the correction amount
  • the fluorescence relaxation time of the fluorescence of the measurement object is obtained using the phase of the measurement, and the correction amount is obtained when the fluorescence is measured using a fluorescent dye that emits fluorescence with a known fluorescence relaxation time as the measurement object. It is preferable that the amount of time is determined so as to match the fluorescence relaxation time of the fluorescent dye.
  • the light receiving unit includes a light receiving element that receives side scattered light of the measurement object by the laser light, and a light reception signal obtained by receiving the side scattered light.
  • the signal processing unit outputs a third mixer that performs a third mixing process of the received light signal and the reference signal, and the addition to the mixed signal obtained by the third mixing process.
  • a third low-pass filter that outputs a low-frequency signal based on a received light signal having the difference frequency as a frequency by a third low-pass filtering process using a frequency lower than the frequency and higher than the difference frequency as a cutoff frequency.
  • the fluorescence detection unit obtains the amplitude of the low-frequency signal based on the received light signal, the fluorescence detection unit determines the obtained amplitude as the intensity of the side scattered light, and Determines the amplitude obtained from the signal component as fluorescence intensity, intensity of the side scattered light, it is preferable to output the fluorescence intensity and the fluorescence relaxation time.
  • Another embodiment of the present invention is a fluorescence detection method for receiving fluorescence emitted from a measurement object by irradiating the measurement object with laser light and obtaining a fluorescence relaxation time from a fluorescence signal obtained by receiving the fluorescence.
  • the first signal component is the digital signal of the second reference signal and the low-frequency signal based on the fluorescence signal. It is preferably obtained by performing a mixing process with a signal.
  • the mixed signal obtained by the second mixing process is subjected to a second low-pass filtering process using a frequency lower than the addition frequency and higher than the difference frequency as a cutoff frequency, and the difference frequency is included in the frequency.
  • the second reference signal can be generated by outputting a sine wave signal and digitizing the sine wave signal obtained by the second low-pass filtering process.
  • the received light signal includes a third mixing process of the received light signal and the first reference signal, and a mixed signal obtained by the third mixing process, which is lower than the addition frequency and lower than the difference frequency.
  • the phase of the second signal component corresponding to the difference frequency is obtained, the phase of the fluorescence signal is corrected with reference to the phase of the second signal component, and the fluorescence of the measurement object is detected using the corrected phase.
  • the fluorescence relaxation time can be obtained.
  • the phase of the fluorescence signal is corrected using a preset correction amount, and the measurement object is used using the phase after correction. It is also possible to determine the fluorescence relaxation time of the fluorescence of the object.
  • the amount of correction is the fluorescence relaxation time obtained from the corrected phase when the fluorescence is measured using a fluorescent dye that emits fluorescence with a known fluorescence relaxation time as the measurement object. The amount is determined so as to match the fluorescence relaxation time.
  • the frequency of the modulation signal that modulates the intensity of the laser light and the frequency of the reference signal are set to be different. For this reason, even if mixing processing of the fluorescence signal whose intensity changes at the same frequency as the modulation signal and the reference signal is performed, the signal after the low-pass filtering processing mainly uses the difference frequency between the frequency of the modulation signal and the frequency of the reference signal.
  • the signal is an AC component signal. Therefore, by calculating the phase (phase delay) of the fluorescence signal with respect to the modulation signal from this signal, even if the mixed signal output from the mixer includes a DC component offset as in the conventional case, the fluorescence is more accurate than in the past.
  • the relaxation time can be calculated. Further, since the modulation signal and the reference signal are generated using different oscillators, the modulation signal and the reference signal rarely include noise components generated by the oscillator at the same time. For this reason, there are few noise components in the signal containing the phase delay information obtained by mixing the fluorescence signal and the reference signal. For this reason, it is possible to calculate the fluorescence relaxation time with higher accuracy than in the case where the modulation signal and the reference signal are generated using a single oscillator as in the prior art.
  • the phase of the fluorescence signal is corrected using the phase information of the side scattered light in consideration of the transmission of the reference signal and the fluorescence signal and the delay of the signal processing.
  • the phase of the fluorescence signal can be obtained with high accuracy. Therefore, the fluorescence detection apparatus and the fluorescence detection method of the present invention can obtain an accurate fluorescence relaxation time.
  • the fluorescence relaxation time is calibrated using the correction amount used for correction so that the fluorescence relaxation time obtained from the phase matches the fluorescence relaxation time of the fluorescent dye, so that an accurate fluorescence relaxation time is calculated. Can be done.
  • FIG. 7 is a diagram for explaining an example of other processing contents different from the processing contents in the analysis apparatus shown in FIGS.
  • FIG. 8 is a diagram for explaining an example of other processing contents different from the processing contents in the analysis apparatus shown in FIGS.
  • FIG. 1 is a schematic configuration diagram of a flow cytometer 10 applied to a fluorescence detection apparatus using intensity-modulated laser light L.
  • FIG. 2 is a diagram illustrating the configuration of the flow cytometer 10 in more detail.
  • the flow cytometer 10 includes a signal processing device 20 and an analysis device 80.
  • the signal processing device 20 irradiates the laser beam by flowing the sample 12 of the measurement object such as protein to be measured one by one as a flow cell.
  • the signal processing device 20 detects the fluorescent fluorescence signal emitted from the fluorescent dye attached to the sample 12 for labeling and performs signal processing.
  • the analysis device 80 obtains the fluorescence relaxation time of the fluorescence from the processing result obtained by the signal processing device 20, and further analyzes the measurement object in the sample 12. That is, the analyzer 80 corresponds to the fluorescence detection unit in the present invention.
  • the signal processing device 20 includes a laser emitting unit 22, light receiving units 24 and 26, a control / processing unit 28, and a conduit 30.
  • the control / processing unit 28 includes a control unit that modulates the intensity of the laser light from the laser emitting unit 22 at a predetermined frequency, and a signal processing unit that identifies a fluorescent signal from the sample 12.
  • the pipe line 30 forms a flow cell in which the sample liquid 12 is included in the sheath liquid that forms a high-speed flow. As shown in FIG. 1, a recovery container 32 is provided at the outlet of the conduit 30.
  • a cell sorter for separating a biological substance such as a specific cell in the sample 12 within a short time by irradiation with the laser beam L is arranged and separated into separate collection containers. You can also
  • the sample 12 is an object to be measured such as protein, cells, DNA, RNA, enzyme biological material, and the like.
  • the sample 12 is pre-labeled with a fluorescent reagent (fluorescent dye), and is turbid as shown in FIG. Prepared in liquid form.
  • the sample 12 includes, for example, a plurality of biological materials of different types, and the biological material is prepared such that a known pigment that emits fluorescence of a known wavelength that differs for each type of biological material is attached as a fluorescent pigment.
  • the flow cytometer 10 can examine characteristics such as biological bonding between a plurality of types of biological substances.
  • the sample 12 is not limited to a biological material, and may be, for example, a microbead provided with an artificial structure capable of binding to a specific biological material.
  • the laser emitting unit 22 includes a laser light source unit 23 and a laser driver 34.
  • the laser light source unit 23 is a part that emits laser light L having a predetermined wavelength.
  • a lens system (not shown) is provided so that the laser light L is focused at a predetermined position in the pipe 30, and this focusing position forms a measurement point of the sample 12.
  • the beam diameter at the measurement point of the laser beam L is several tens of ⁇ m.
  • the laser light source part 23 radiate
  • the CW (continuous wave) laser light L having a constant intensity is subjected to intensity modulation at a predetermined frequency and emitted.
  • a semiconductor laser is used as a light source for emitting the laser light L.
  • the laser beam L has an output of about 5 to 100 mW, for example.
  • the frequency (modulation frequency) for modulating the intensity of the laser light L is a frequency whose period is slightly longer than the fluorescence relaxation time, for example, 10 to 50 MHz.
  • the laser driver 34 is connected to the control / processing unit 28 to control the intensity of emission of the laser light L.
  • the intensity of each laser beam L is modulated at a predetermined frequency by a modulation signal, as will be described later.
  • the laser light source unit 23 oscillates in a predetermined wavelength band so that the laser light L excites the fluorescent dye to emit fluorescence in a specific wavelength band.
  • the fluorescent dye excited by the laser light L is attached to the sample 12 such as a biological material.
  • the sample 12 passes through the conduit 30 as a measurement object, the sample 12 is irradiated with the laser light L at the measurement point. Fluoresce at a specific wavelength.
  • the light receiving unit 24 is disposed so as to face the laser light source unit 23 with the pipe line 30 interposed therebetween.
  • the light receiving unit 24 includes a photoelectric converter 24a, a condenser lens 24b, and a shielding plate 24c.
  • the photoelectric converter 24a outputs a detection signal indicating that the sample 12 passes through the measurement point when the laser beam is forward scattered by the sample 12 passing through the measurement point.
  • the shielding plate 24c is used for shielding the light flux of the laser light L so that the photoelectric converter 24a receives the forward scattered light without directly receiving the laser light L.
  • the signal output from the light receiving unit 24 is used as a trigger signal that is a timing for starting AD conversion of an AD conversion board 82 in the analyzer 80 to be described later and starting analysis of the analyzer main body 84.
  • the light receiving unit 26 is disposed in a direction orthogonal to the emission direction of the laser light emitted from the laser light source unit 23 and in a direction orthogonal to the moving direction of the sample 12 in the pipe 30. ing.
  • the light receiving unit 26 includes a photoelectric converter that receives fluorescence emitted from the sample 12 irradiated at the measurement point and side scattered light of the laser light.
  • FIG. 2 shows a schematic configuration of an example of the light receiving unit 26.
  • the light receiving unit 26 includes a lens system 26a that focuses a fluorescent signal from the sample 12, a dichroic mirror 26b 1 , 26b 2 , 26b 3 , a bandpass filter 26c 1 , 26c 2 , 26c 3 , 26c 4, and a photomultiplier tube.
  • the lens system 26a focuses the fluorescence incident on the light receiving unit 26 on the light receiving surfaces of the photoelectric converters 27a to 27d.
  • the dichroic mirrors 26b 1 , 26b 2 , and 26b 3 are mirrors that reflect fluorescence in a predetermined range of wavelength bands and transmit the others.
  • the dichroic mirrors 26b 1 , 26b 2 , 26b 3 and the band-pass filters 26c 1 , 26c 2 , 26c 3 , 26c 4 transmit the fluorescence in a predetermined wavelength band according to the wavelength of each fluorescence from the sample 12.
  • the reflection wavelength band or the transmission wavelength band of 26b 1 , 26b 2 , 26b 3 and the band pass filters 26c 1 , 26c 2 , 26c 3 , 26c 4 is set.
  • the dichroic mirror 26b 2 is a mirror that reflects the light in the wavelength region of the side scattered light of the laser light and transmits the light in the wavelength region including the fluorescence wavelength.
  • the band-pass filters 26c 1 , 26c 2 , 26c 3 , and 26c 4 are filters that are provided in front of the photoelectric converters 27a, 27b, 27c, and 27d and transmit only fluorescence in a predetermined wavelength band.
  • the dichroic mirror 226b 2 is provided in front of the light receiving surfaces of the converters 27a and 27d, the photoelectric converter 27a receives light transmitted through the dichroic mirror 26b 2 , and the photoelectric converter 27d reflects light from the dichroic mirror 26b 2 . Is received.
  • the wavelength band of the transmitted fluorescence is set corresponding to the wavelength band of the fluorescence emitted by the fluorescent dye.
  • the photoelectric converters 27a to 27d are sensors that include, for example, a sensor including a photomultiplier tube, and convert light received by the photoelectric surface, which is a light receiving surface, into an electrical signal.
  • the photoelectric converters 27a to 27c receive light having a predetermined wavelength by limiting the wavelength region of light by a dichroic mirror and a band pass filter. Wavelength range of light photoelectric converter 27d receives light is limited by the dichroic mirror 26b 2, the photoelectric converter 27d is receiving the side-scattered light of the laser beam L. As described above, the light receiving unit 26 receives the fluorescence having three different wavelengths and the side scattered light of the laser light L.
  • the received fluorescence and side scattered light are received as an optical signal having signal information intensity-modulated at a certain frequency, so that the output fluorescence signal and light-receiving signal are intensity-modulated laser light.
  • a signal and a signal having a frequency corresponding to L are obtained.
  • the fluorescence signal and the light reception signal are supplied to the control / processing unit 28.
  • a signal obtained by receiving the fluorescence is called a fluorescence signal
  • a signal obtained by the side scattered light of the laser light L is called a received light signal.
  • the control / processing unit 28 includes a signal generation unit 40 and a signal processing unit 42.
  • the signal generation unit 40 is a part that generates a reference signal in addition to generating a modulation signal for modulating the intensity of laser light at a predetermined frequency (intensity modulation).
  • the signal generation unit 40 includes an oscillator (first oscillator) 46, an oscillator (second oscillator) 47, and an oscillator (third oscillator) 48. These oscillators may be constituted by circuits.
  • the oscillator 46 is a clock generator that generates a clock signal having a predetermined frequency.
  • the oscillator 47 generates a modulation signal for performing intensity modulation of the laser light L, makes a single frequency component by a filter (not shown), and supplies the modulation signal to the laser driver 34 via an amplifier.
  • the laser driver 34 a separately prepared direct current is superimposed and supplied to the laser light source unit 23.
  • the oscillator 48 generates a reference signal (first reference signal) used for obtaining the fluorescence relaxation time.
  • the modulation signal generated by the oscillator 48 and the reference signal generated by the oscillator 47 have different frequencies but are synchronized with each other. “Synchronized with each other” means that signals having the same phase are generated at the start of signal generation, and the times at which the phases become 0 mutually arrive periodically.
  • the difference frequency between the modulation signal and the reference signal is, for example, 100 kHz to 1 MHz or less, and is usually several hundred kHz.
  • the lower limit of the range of the difference frequency is 4 times 1 / T when the time for the sample 12 to pass the measurement point is T seconds, and the upper limit is preferably the sampling frequency of the AD conversion board 82 described later.
  • the signal generation unit 40 may use a PLL circuit (Phase Locked Loop) including a phase comparator, a loop filter, a voltage controlled oscillation circuit, and a frequency divider instead of the oscillator 47 and the oscillator 48.
  • PLL circuit Phase Locked Loop
  • the PLL circuit can also generate the modulation signal and the reference signal in synchronization.
  • the reason for separately generating the modulation signal and the reference signal is obtained by mixing the modulation signal and the reference signal with an RF mixer, which will be described later, as compared with the case where the modulation signal and the reference signal are generated by one oscillator. This is because the mixed signal is hardly affected by noise components derived from the oscillator. Furthermore, since the modulation signal and the reference signal are generated using separate oscillators, the chance that a noise component is included in the modulation signal and the reference signal to be mixed is reduced at the same time.
  • the reason why the frequencies of the oscillator 47 and the oscillator 48 are set so that the frequencies of the modulation signal and the reference signal are different from each other is that when the fluorescence signal and the reference signal are mixed in an RF mixer, as described later, This is to reduce the influence of the offset of the DC component contained in the problematic mixed signal. This point will be described later.
  • the signal processing unit 42 uses the fluorescence signals output from the photoelectric converters 27a to 27d and the received light signals of the side scattered light, and the phase of the fluorescence emitted from the sample 12 by the laser light irradiation, specifically, the modulation signal. Is a part for extracting information on the phase delay with respect to the modulation signal. Specifically, it has signal processing channels 1, 2, and 3 for separately processing the fluorescence signals from the photoelectric converters 27a to 27c, and a signal processing channel 4 for processing the fluorescence signals from the photoelectric converter 27d. The signal processing contents of the signal processing channels 1 to 4 are the same.
  • the information on the phase delay includes, for example, a real part component (Re component) and an imaginary part component (Im component) when the phase delay of the sine wave signal is displayed in a complex number.
  • the signal processing channel 1 of the signal processing unit 42 includes a processing circuit 52a.
  • the signal processing channels 2 to 4 have processing circuits 52b to 52d, respectively.
  • FIG. 3 is a configuration diagram showing the contents of the processing circuits 52a, 52b, 52c, and 52d.
  • Each of the processing circuits 52a to 52d includes an amplifier 54 that amplifies the fluorescence signal (light reception signal), a variable amplification amplifier 56, a power splitter 58 that distributes the amplified fluorescence signal (light reception signal), and an RF mixer (first signal).
  • the RF mixer in the signal processing channel 4 corresponds to the third mixer, and the low-pass filter corresponds to the third low-pass filter.
  • the fluorescence signals (light reception signals) sent from the photoelectric converters 27a to 27d are amplified by the amplifier 54 and further amplified to a desired level by the variable amplification amplifier 56. Further, the fluorescence signal (light reception signal) is divided into two by the power splitter 58 and sent to the RF mixers 60 and 62.
  • the RF mixer (not shown) in the processing circuits 52a, 52b, and 52c of the signal processing channels 1, 2, and 3 corresponds to the first mixer in the present invention
  • the RF mixer 60 and the RF mixer 60 in the processing circuit 52d of the signal processing channel 4 62 corresponds to the third mixer in the present invention.
  • the reference signal generated by the oscillator 48 is supplied to the 90-degree hybrid phase shifter 64 to generate a reference signal whose phase is shifted by 90 degrees and a reference signal whose phase is maintained (phase shift is 0 degree).
  • the reference signal shifted by 90 degrees by the 90-degree hybrid phase shifter 64 is supplied to the RF mixer 62.
  • the reference signal whose phase is maintained is supplied to the RF mixer 60.
  • the RF mixers 60 and 62 respectively mix the supplied reference signal and the supplied fluorescence signal (light reception signal).
  • an active mixer or a passive mixer such as a double balanced mixer is used.
  • the phase of the reference signal is shifted by 90 degrees and supplied to the RF mixer 62.
  • the signal shifted by 90 degrees may be a fluorescence signal (light reception signal).
  • the amplifiers 66 and 68 amplify the mixed signal generated from the reference signal and the fluorescence signal (light reception signal) in the RF mixers 60 and 62.
  • the low-pass filters 70 and 72 remove a high-frequency component whose component is an addition frequency of the frequency of the reference signal and the frequency of the fluorescence signal (light reception signal) from the mixed signal obtained by the mixing process, and the frequency of the reference signal For example, a frequency lower than the addition frequency and higher than the difference frequency is set as a cut-off frequency so as to pass a low-frequency component having a difference frequency between the frequency of the fluorescence signal (light reception signal) as a component. .
  • the real part component (Re component) which is information on the phase delay of the fluorescence signal (light reception signal) from the low pass filter 70 and the imaginary part component (information on the phase delay of the fluorescence signal (light reception signal) from the low pass filter 72).
  • the Re component and Im component signals are sent to the high-pass filters 74 and 76.
  • the high pass filters 74 and 76 remove DC components from the Re component and Im component signals.
  • the offset of the DC component included in the mixed signal output from the RF mixers 74 and 76 can be removed while the information on the phase delay of the fluorescence signal (light reception signal) is included in the AC component.
  • the Re component and Im component signals that have passed through the high-pass filters 74 and 76 are sent to the AD conversion board 82 of the analyzer 80.
  • the low-pass filter (not shown) in the processing circuits 52a, 52b, 52c of the signal processing channels 1, 2, 3 corresponds to the first low-pass filter in the present invention, and the corresponding low-pass filter in the processing circuit 52d of the signal processing channel 4.
  • the filter (not shown) corresponds to the third low-pass filter in the present invention.
  • the frequency of the modulation signal is different from the frequency of the reference signal.
  • the frequency of the fluorescence signal (light reception signal) is also different from the frequency of the reference signal. Therefore, the signal of the real part component (Re component) and the imaginary part component (Im component) output from the low pass filters 70 and 72 is an AC component signal having a difference frequency between the frequency of the modulation signal and the frequency of the reference signal. It is. This signal contains information about the phase delay.
  • the signals output from the low-pass filters 70 and 72 are DC components having a constant value.
  • the analyzer 80 cannot obtain a highly accurate fluorescence relaxation time. For this reason, in the flow cytometer 10, the frequency of the modulation signal and the frequency of the reference signal are set so that the information regarding the phase delay obtained as a mixing result is included in the AC component.
  • the real part component (Re component) and the imaginary part component (Im component) which are AC components are sent to the analyzer 80.
  • the analysis device 80 includes an AD conversion board (see FIG. 1) 82 that converts a real part component (Re component) and an imaginary part component (Im component) sent to each of the signal processing channels 1 to 4 into a digital signal, and an analysis.
  • the AD conversion board 82 starts AD conversion of the real part component (Re component) and the imaginary part component (Im component) using the signal sent from the light receiving unit 24 as a trigger signal. Further, the digitized real part component (Re component) and imaginary part component (Im component) are supplied to the analyzer main body 84.
  • the analyzer 80 starts the analysis using the digitized real part component (Re component) and imaginary part component (Im component).
  • the analyzer main body 84 Based on the real part component (Re component) and the imaginary part component (Im component), the analyzer main body 84 obtains the angle of the phase delay with respect to the laser beam of the fluorescence, and further obtains the fluorescence relaxation time from the angle of the phase delay. . Based on the obtained fluorescence relaxation time, it is specified which fluorescent dye the fluorescent signal output from the light receiving unit 26 is derived from. The analyzer main body 84 knows which signal processing channel the real part component (Re component) and the imaginary part component (Im component) of which the calculation result of the fluorescence relaxation time is based on. You can know if it comes from.
  • the analyzer main body 84 can determine which signal processing channel the fluorescence relaxation time by knowing the value of the fluorescence relaxation time. It is possible to identify whether the fluorescent dye emits fluorescence. Furthermore, since it is known in advance which sample 12 the fluorescent dye is attached to, the analyzer main body 84 can know what kind of sample 12 passed through the measurement point by specifying the fluorescence. . Therefore, when different types of biological materials in the sample 12 are biologically bonded, the fluorescence of both fluorescent dyes bonded to the biological material is detected substantially simultaneously, so that the analyzer main body 84 can detect fluorescence based on the fluorescence relaxation time.
  • the analyzer main body 84 forms a fluorescence detection unit for calculating the fluorescence relaxation time in the present invention, and is configured by a computer.
  • FIG. 4 is a diagram for explaining an example of processing contents performed in the analyzer main body 84.
  • the analyzer main body 84 After the real part component (Re component) and the imaginary part component (Im component) of each signal processing channel are converted into digital data by the AD conversion board 82, the processing shown in FIG. 4 is performed.
  • This process is a software process.
  • each processing is modularized by each subprogram and subroutine.
  • the analyzer main body 84 includes an FFT processing module 86, an amplitude calculation module 88, a phase calculation module 90, a phase lag calculation module 92, a compensated fluorescence intensity calculation module 94, and a fluorescence relaxation time calculation module 96. It has been.
  • the real part component (Re component) and the imaginary part component (Im component) of the fluorescence sent from the processing circuit 52a and the processing circuit 52d, and the real part component (Re of the side scattered light of the laser light L) The processing contents of the component) and the imaginary part component (Im component) are shown.
  • the processing contents of the real part component (Re component) and the imaginary part component (Im component) sent from the processing circuits 52b and 52c are not shown.
  • the processing contents of the real part component (Re component) and the imaginary part component (Im component) sent from the processing circuits 52b and 52c are the same as the processing of the real part component (Re component) and the imaginary part component (Im component) from the processing circuit 52a. Since it is the same as the content, the processing content is not shown and description is also omitted.
  • the real part component (Re component) and the imaginary part component (Im component) related to the phase delay of the side scattered light sent from the processing circuit 52d, and the real part component (Re component) and the imaginary part component (Im component) of the fluorescence are Each is sent to the FFT processing module 86 and subjected to FFT processing.
  • the FFT processing module 86 obtains the value of the real part component (Re_ ⁇ f) corresponding to the difference frequency ⁇ f between the modulation signal and the reference signal from the real part component (Re component), and the imaginary part component corresponding to the difference frequency ⁇ f.
  • the value (Im_ ⁇ f) is obtained from the imaginary part component (Im component).
  • the obtained real part component value (Re_ ⁇ f) and imaginary part component value (Im_ ⁇ f) are sent to the amplitude calculation module 88.
  • the real part component value (Re_ ⁇ f) and the imaginary part component value (Im_ ⁇ f) obtained from the fluorescence signal correspond to the first signal component corresponding to the difference frequency in the present invention, and the real part component obtained from the received light signal.
  • Value (Re_ ⁇ f) and the value of the imaginary part component (Im_ ⁇ f) correspond to the second signal component corresponding to the difference frequency in the present invention.
  • the amplitude calculation module 88 calculates the square root of the sum of squares of the real part component value (Re_ ⁇ f) and the imaginary part component value (Im_ ⁇ f), and outputs the calculation result as an intensity. That is, the amplitude calculation module 88 outputs the side scattered light intensity and the fluorescence intensity. Further, the real part component value (Re_ ⁇ f) and the imaginary part component value (Im_ ⁇ f) corresponding to the difference frequency obtained by the FFT processing are sent to the phase calculation module 90. In the phase calculation module 90, tan ⁇ 1 (Im_ ⁇ f / Re_ ⁇ f) is calculated. Thereby, the phase of the side scattered light and the phase delay of the fluorescence are calculated.
  • phase lag calculation module 92 subtracts the phase lag of the side scattered light obtained by the phase calculation module 90 from the fluorescence phase lag obtained by the phase calculation module 90, thereby correcting the fluorescence with respect to the reference signal. Find the phase lag of the signal. The reason why the correction is performed in this way is to correct a phase shift due to a difference between the transmission line of the reference signal and the transmission line of the light reception signal of the fluorescence signal or the side scattered light.
  • the fluorescence relaxation time calculation module 96 calculates tan ⁇ / ⁇ using the corrected phase delay ⁇ .
  • This calculation result is the fluorescence relaxation time ⁇ .
  • is 2 ⁇ f
  • f represents the frequency of the modulation signal.
  • the reason why the value of tan ⁇ / ⁇ can be used as the fluorescence relaxation time ⁇ is that the fluorescence relaxation process emits fluorescence according to the first-order lag response.
  • (1+ ( ⁇ ) 2 ) (1/2) is calculated by the compensated fluorescence intensity calculation module 94, and this calculated value is multiplied by the fluorescence amplitude calculated by the amplitude calculation module 88.
  • the fluorescence intensity compensated by ⁇ is calculated.
  • the analyzer main body 84 calculates the side scattered light intensity, the fluorescence intensity, the fluorescence relaxation time ⁇ , and the fluorescence intensity compensated by ⁇ , and uses these results for statistical processing and analysis. Use.
  • the side scattered light intensity, the fluorescence intensity, the fluorescence relaxation time ⁇ , and the fluorescence intensity compensated by ⁇ are all calculated and need not be used for statistical processing and analysis. It is preferable to calculate at least the fluorescence relaxation time ⁇ and use the fluorescence relaxation time ⁇ for statistical processing and analysis.
  • the side scattered light intensity can be used as an index indicating the complexity of the structure of the sample 12 because the scattering intensity greatly varies depending on the structure of the sample 12.
  • the flow cytometer 10 is configured as described above.
  • the oscillator 46 generates a clock signal
  • the oscillator 47 generates a modulation signal in synchronization with the clock signal generated by the oscillator 46
  • the oscillator 48 generates a reference signal in synchronization with the clock signal.
  • the noise component included in the modulation signal of the oscillator 47 and the reference signal of the oscillator 48 is independent, even if the fluorescence signal and the reference signal are mixed in the RF mixers 60 and 62, as in the conventional case.
  • the mixed signal does not include a large noise component by multiplying the fluorescence signal including the noise component by the reference signal including the noise component at the same time.
  • the transmitter 47 In the signal processing device 20 of the flow cytometer 10, first, the transmitter 47 generates a modulation signal having a predetermined frequency in synchronization with the clock signal generated by the oscillator 46. This signal is subjected to predetermined processing by the laser driver 34 and supplied to the laser light source unit 23.
  • the laser light source unit 23 emits laser light L, whose light intensity is modulated in accordance with the frequency of the modulation signal, toward the measurement point.
  • the laser beam L is a beam with a diameter of several tens of ⁇ m by a lens system (not shown).
  • the sample 12 flows through the conduit 30 and a flow is formed.
  • the flow has a flow rate of 1 to 10 m / sec over a flow path diameter of 100 ⁇ m.
  • the laser light source unit 23 irradiates the laser beam L toward the measurement point.
  • the detection signal is output to the analyzer 80 as a trigger signal.
  • the oscillator 48 generates a reference signal synchronized with the clock signal of the oscillator 48 in accordance with the trigger signal.
  • the signal processing unit 42 performs mixing processing and low-pass filtering processing according to the signal processing circuit shown in FIG. 3 using the fluorescence signal and the light reception signal sent from the photoelectric converters 27a to 27d and the reference signal.
  • the signal processing unit 42 generates a real part component (Re component) and an imaginary part component (Im component), which are information relating to the phase delay of each signal of fluorescence and side scattered light.
  • the frequency of the modulation signal for modulating the laser light L is, for example, 10 to 50 MHz, and the difference frequency between the modulation signal and the reference signal is 100 kHz to 1 MHz.
  • the frequency of the reference signal may be higher or lower than the frequency of the modulation signal.
  • the calculated real part component (Re component) and imaginary part component (Im component) are sent to the analyzer 80.
  • the analyzing apparatus 80 performs AD conversion on the received real part component (Re component) and imaginary part component (Im component) signals and digitizes them. Thereafter, the analyzer 80 performs the processing shown in FIG. 4 and calculates the intensity of the side scattered light, the fluorescence intensity, the fluorescence relaxation time ⁇ , and the fluorescence intensity compensated by ⁇ . These calculation results are used for statistical processing and analysis of the sample 12.
  • the analyzer 80 calculates the fluorescence relaxation time according to the equation tan ⁇ / ⁇ based on the phase delay ⁇ of the fluorescence signal based on the phase delay of the received light signal obtained by the side scattered light.
  • FIG. 5 is a diagram for explaining an example of processing contents different from the processing contents shown in FIG. 5 includes an FFT processing module 86, an amplitude calculation module 88, a phase calculation module 90, a phase lag calculation module 92, a compensated fluorescence intensity calculation module 94, and a fluorescence relaxation time calculation module having the functions shown in FIG. 96 is used.
  • a circuit having an RF mixer (second mixer) 52e and a low-pass filter (second low-pass filter) 52f is provided in the signal processing unit 42.
  • the RF mixer 52e mixes the reference signal generated by the oscillator 48 with respect to the modulation signal generated by the oscillator 47.
  • the low-pass filter 52f is lower than the addition frequency between the frequency of the modulation signal and the frequency of the reference signal with respect to the mixed signal obtained by the mixing process of the mixer, and is between the frequency of the modulation signal and the frequency of the reference signal.
  • a low-pass filtering process using a frequency higher than the difference frequency as a cutoff frequency is performed, and a sine wave signal (second reference signal) having the difference frequency as a frequency is output.
  • a signal from the circuit is supplied to the analyzer main body 84 via the AD conversion board 82.
  • the real part component (Re component) and the imaginary part component (Im component) of the received light signal calculated by the signal processing channel 4 are processed by the FFT processing module 86, and the difference frequency ⁇ f A real part component value (Re_ ⁇ f) and an imaginary part component value (Im_ ⁇ f) are obtained.
  • the amplitude calculation module 88 calculates the amplitude of the light reception signal of the side scattered light, and this amplitude is output as the side scattered light intensity.
  • the real part component (Re component) and the imaginary part component (Im component) of the fluorescence signal obtained in the signal processing channel 1 are processed by the FFT processing module 86, and the value of the real part component (Re_ ⁇ f) at the difference frequency ⁇ f is obtained.
  • the value of the imaginary part component (Im_ ⁇ f) is obtained, and using these two values, the amplitude calculation module 88 and the phase calculation module module 90 calculate the fluorescence intensity and the phase delay ⁇ a of the fluorescence signal.
  • the processing of the real part component (Re component) and the imaginary part component (Im component) of the fluorescence signal obtained by the signal processing channels 2 and 3 is also the real part component (Re component) of the fluorescence signal obtained by the signal processing channel 1.
  • the imaginary part component (Im component) are the same as the processing, and the description thereof is omitted. Illustration of processing of the fluorescence signal obtained in the signal processing channels 2 and 3 is also omitted.
  • the analyzer main body 82 takes in the data after AD conversion of the signal of the difference frequency ⁇ f obtained by mixing the modulation signal and the reference signal and performing the low-pass filtering process. Thereafter, the FFT processing module 86 obtains the value of the real part component (Re_ ⁇ f) and the value of the imaginary part component (Im_ ⁇ f) at the difference frequency ⁇ f. Using these two values, the phase calculation module 90 calculates the phase ⁇ b . Next, the phase lag calculation module 92 uses the phase lag ⁇ a of the fluorescent signal, the phase ⁇ b, and the correction phase ⁇ c stored in advance in the analyzer main body 84 to make ⁇ a ⁇ b ⁇ .
  • the phase delay ⁇ of the corrected fluorescence signal with respect to the reference signal is calculated.
  • the reason why the phase ⁇ b is subtracted from the phase delay ⁇ a of the fluorescence signal is to remove the phase delay due to the transmission delay time of the signal reaching the signal processing unit 42 and the delay time required for processing.
  • the correction phase (correction amount) ⁇ c is stored and held in advance in the analyzer main body 84.
  • the correction phase ⁇ c is determined and stored as follows. That is, the fluorescence of this sample 12 is measured using a known fluorescent dye that emits fluorescence with a known fluorescence relaxation time as the sample 12. At this time, the correction phase ⁇ c is determined so that the fluorescence relaxation time obtained from the corrected phase delay ⁇ a ⁇ b ⁇ c matches the known fluorescence relaxation time of the fluorescent dye. Thus, the correction phase ⁇ c is a correction amount for calibrating so that the measurement result matches the known fluorescence relaxation time.
  • the corrected phase delay ⁇ is sent to the fluorescence relaxation time calculation module 96.
  • the fluorescence relaxation time calculation module 96 calculates the fluorescence relaxation time ⁇ by calculating tan ⁇ / ⁇ . Further, the compensated fluorescence intensity calculation module 94 calculates (1+ ( ⁇ ) 2 ) (1/2), and calculates the fluorescence intensity compensated by ⁇ . Thus, the analyzer main body 84 calculates the side scattered light intensity, the fluorescence intensity compensated by ⁇ , the fluorescence intensity, and the fluorescence relaxation time ⁇ , and uses the calculation results for statistical processing and analysis of the sample 12.
  • FIG. 6 is a diagram for explaining an example of processing contents different from the processing contents performed in the analyzer main body 84 shown in FIGS. 4 and 5.
  • 6 includes an amplitude calculation module 88, a phase calculation module 90, a phase delay calculation module 92, a compensated fluorescence intensity calculation module 94, a fluorescence relaxation time calculation module 96, and a mixing process having the functions shown in FIG. Module 98 is used.
  • the processing content shown in FIG. 6 is that the processing content shown in FIG. 4 uses the FFT processing module 86 to determine the real part component value (Re_ ⁇ f) and the imaginary part component value (Im_ ⁇ f) of the difference frequency ⁇ f. Unlike this, cos (2 ⁇ ⁇ ⁇ f ⁇ t) separately generated by the analyzer main body 84 is used to obtain the real part component (Re component) and the imaginary part component (Im component) of the fluorescence signal and the received light signal of the side scattered light. Each mixing process is performed using a mixing processing module 98. By this mixing process, the value of the real part component (Re_ ⁇ f) and the value of the imaginary part component (Im_ ⁇ f) of the difference frequency ⁇ f are obtained.
  • the mixing processing module 98 is performed by software processing of the analyzer main body 84 that is a computer, there is no DC component offset that occurs when it is performed by the RF mixers 60 and 62. For this reason, a highly accurate mixing process can be performed. It is also conceivable that the analysis device 80 performs mixing processing of the RF mixers 60 and 62 so that no DC component offset occurs.
  • an AD conversion board that AD converts a fluorescence signal or a light reception signal whose intensity is modulated at 10 to 50 MHz by the AD conversion board 82 of the analyzer 80 is expensive, and it is not practical to use this expensive board.
  • the value of the real part component (Re_ ⁇ f) and the value of the imaginary part component (Im_ ⁇ f) calculated by the mixing processing module 98 at the difference frequency ⁇ f are sent to the amplitude calculation module 88 and the phase calculation module 90.
  • the same processing as shown in 4 is performed.
  • the description of the subsequent processing contents is omitted.
  • the analyzer main body 84 calculates the side scattered light intensity, the fluorescence intensity compensated by ⁇ , the fluorescence intensity, and the fluorescence relaxation time ⁇ , and uses the calculation results for statistical processing and analysis of the sample 12.
  • FIG. 7 is a diagram for explaining an example of processing contents different from the processing contents performed in the analyzer main body 84 shown in FIGS. 4, 5, and 6.
  • the processing shown in FIG. 7 includes an amplitude calculation module 88, a phase calculation module 90, a phase lag calculation module 92, a compensated fluorescence intensity calculation module 94, a fluorescence relaxation time calculation module 96 having the functions shown in FIG. 6 is used.
  • the processing content shown in FIG. 7 is that the processing content shown in FIG. 5 uses the FFT processing module 86 to obtain the real part component value (Re_ ⁇ f) and the imaginary part component value (Im_ ⁇ f) of the difference frequency ⁇ f.
  • the component) is mixed using the mixing processing module 98, thereby obtaining the real part component value (Re_ ⁇ f) and the imaginary part component value (Im_ ⁇ f) of the difference frequency ⁇ f.
  • the analyzer main body 84 is a mixing processing module for cos (2 ⁇ ⁇ ⁇ f ⁇ t) generated by the analyzer main body 84, sin (2 ⁇ ⁇ ⁇ f ⁇ t) separately generated, and a signal of the difference frequency ⁇ f. 98 is mixed.
  • the signal of the difference frequency ⁇ f is a signal that is AD-converted by mixing the modulation signal and the reference signal using the RF mixer 52e and performing the low-pass filtering process using the low-pass filter 52f. .
  • the value of the real part component (Re_ ⁇ f) and the value of the imaginary part component (Im_ ⁇ f) of the difference frequency ⁇ f in the signal of the difference frequency ⁇ f are obtained.
  • the value of the real part component (Re_ ⁇ f) and the value of the imaginary part component (Im_ ⁇ f) in the signal of the difference frequency ⁇ f calculated by the mixing processing module 98 are sent to the phase calculation module 90. Thereafter, the same processing as that shown in FIG. 5 is performed. The description of the subsequent processing contents is omitted.
  • the analyzer main body 84 calculates the side scattered light intensity, the fluorescence intensity compensated by ⁇ , the fluorescence intensity, and the fluorescence relaxation time ⁇ , and uses the calculation results for statistical processing and analysis of the sample 12.
  • FIG. 8 is a diagram for explaining an example of processing contents different from the processing contents performed in the analyzer main body 84 shown in FIGS. 8 includes the amplitude calculation module 88, the phase calculation module 90, the phase lag calculation module 92, the compensated fluorescence intensity calculation module 94, the fluorescence relaxation time calculation module 96, and the mixing shown in FIG. A processing module 98 is used.
  • the signal processing unit 42 mixes the modulation signal and the reference signal and applies a low-pass filtering process to obtain the signal of the difference frequency ⁇ f.
  • a signal from a circuit to be calculated that is, a circuit provided with the RF mixer 52e and the low-pass filter 52f shown in FIG. 8 is supplied to the analyzer main body 84 via the AD conversion board 82.
  • the mixing processing module 98 converts each of the real part component (Re component) and the imaginary part component (Im component) of the received light signal calculated by the signal processing channel 4 into the difference frequency ⁇ f.
  • the amplitude calculation module 88 calculates the amplitude of the light reception signal and the fluorescence signal of the side scattered light, and outputs these amplitudes as the side scattered light intensity and the fluorescence intensity.
  • the phase calculation module 90 calculates the phase theta a fluorescent signal from the value of the real part component of the fluorescence signal (Re_ ⁇ f) and value of the imaginary part component (Im_ ⁇ f).
  • the fluorescence relaxation time calculation module 96 calculates ⁇ a ⁇ c using the calculated fluorescence signal phase ⁇ a and the correction phase ⁇ c stored in advance in the analyzer main body 84.
  • the phase delay ⁇ of the corrected fluorescence signal with respect to the reference signal is calculated.
  • the correction phase (correction amount) ⁇ c is stored and held in advance in the analyzer main body 84.
  • the correction phase ⁇ c is determined and stored in the same manner as the correction phase ⁇ c shown in FIG. That is, a known fluorescent dye that emits fluorescence with a known fluorescence relaxation time is defined as the sample 12, and the fluorescence of the sample 12 is measured.
  • the correction phase ⁇ c is determined so that the fluorescence relaxation time ⁇ obtained from the corrected phase delay ⁇ a - ⁇ c matches the known fluorescence relaxation time of the fluorescent dye.
  • the correction phase ⁇ c is a correction amount for calibrating so that the measurement result matches the known fluorescence relaxation time.
  • the phase delay ⁇ is not calculated using the phase ⁇ b .
  • the value of the real part component (Re_ ⁇ f) and the value of the imaginary part component (Im_ ⁇ f) of the fluorescence signal obtained by performing the mixing process using the signal of the difference frequency ⁇ f includes the signal transmission time and signal processing. This is because the information is obtained by subtracting the phase delay caused by the delay time. Therefore, the corrected phase delay ⁇ can be obtained by calculating ⁇ a ⁇ c .
  • the subsequent processing is the same as the processing shown in FIG.
  • the analyzer main body 84 calculates the side scattered light intensity, the fluorescence intensity compensated by ⁇ , the fluorescence intensity, and the fluorescence relaxation time ⁇ , and uses the calculation results for statistical processing and analysis of the sample 12.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

 フローサイトメータを用いた蛍光検出装置は、変調信号により強度変調したレーザ光を出射し、このレーザ光の計測点を横切って通過する測定対象物が発する蛍光の蛍光信号を取得する。蛍光検出装置は、変調信号の周波数と異なる周波数を持つ、変調信号と位相の同期した参照信号を、変調信号と別に生成する。蛍光検出装置は、蛍光信号から参照信号を用いて測定対象物の蛍光の蛍光緩和時間を算出する。

Description

強度変調したレーザ光による蛍光検出装置および蛍光検出方法
 本発明は、強度変調したレーザ光を測定対象物に照射するとともに、この照射による測定対象物から蛍光を受けて蛍光信号を得、この信号について信号処理を行なう、蛍光検出装置および蛍光検出方法に関する。例えば、医療、生物分野で用いられるフローサイトメータのような蛋白をはじめ、細胞やDNAやRNA等の測定対象物の識別を蛍光色素の発する蛍光を用いて行なって測定対象物の分析等を短時間に行なう分析装置に適用される蛍光検出装置および蛍光検出方法に関する。
 医療、生物分野で用いられるフローサイトメータには、レーザ光を照射することにより測定対象物の蛍光色素からの蛍光を受光して、測定対象物の種類を識別する蛍光検出装置が組み込まれている。医療分野では、蛋白同士の生体結合等の相互作用に関する研究が盛んに行われている。特に、蛋白同士の相互作用について、蛍光共鳴エネルギ移動(FRET)の計測を用いて研究することが精力的に行われている。従来、FRETの計測は蛍光強度の変化により行われていたが、近年、蛍光緩和時間(蛍光寿命)の変化を利用して、測定対象物の分析をするフローサイトメータが種々提案されている。
 一般に、フローサイトメータでは、蛋白をはじめ、細胞、DNA、RNA、酵素の生体物質等の測定対象物を含む混濁液を蛍光色素(蛍光試薬)でラベル化し、圧力を与えて毎秒10m以下の速度で管路内にシース液を流し、このシース液に蛍光色素でラベル化した測定対象物を含む混濁液を流して測定対象物のフローセルを形成する。このフローセル中の測定対象物がレーザ光により照射されることにより、測定対象物に付着した蛍光色素が発する蛍光が受光される。この受光した蛍光がラベルとして識別されることで測定対象物が特定される。
 このフローサイトメータでは、例えば、細胞内のDNA、RNA、酵素、蛋白等の測定対象物の細胞内相対量を計測し、またこれら測定対象物の働きを短時間で解析することができる。また、特定のタイプの細胞や染色体を蛍光によって特定し、特定した細胞や染色体のみを生きた状態で、短時間で選別収集するセル・ソータ等が用いられる。この使用では、より多くの測定対象物を短時間に蛍光の情報から正確に特定することが要求されている。
 下記特許文献1では、異なる蛍光色素でラベルされた個々の粒子や細胞を、蛍光寿命(蛍光緩和時間)に基づいて識別する装置および方法が記載されている。
 当該文献では、モジュレータからの変調信号により強度変調されたレーザ光が光源から出射され、フローチャンバ内の照射口に向けられ、粒子や細胞に1つ1つ照射する。粒子や細胞が発する蛍光は、光検出器で蛍光信号に変えられて、2つのミキサに送られる。
 一方、モジュレータの変調信号は、可変位相シフタを介して上記2つのミキサに送られる。その際、一方のミキサには、信号の位相を90度シフトさせる90度位相シフタを介して、位相が90度シフトした変調信号が供給され、他方のミキサには、位相シフトのない変調信号がそのまま供給される。
 こうして、各ミキサに送られた蛍光信号と変調信号は混合され、ローパスフィルタを介して、蛍光信号の位相遅れの情報である実数部成分と虚数部成分が得られる。この実数部成分と虚数部成分との比率から蛍光寿命が算出される。
 これにより、蛍光寿命に基づいて個々の粒子や細胞を識別することができるとされている。
 この他に、特許文献2および3にも、蛍光の位相遅れを用いて蛍光寿命を求めることにより、粒子や細胞を識別するフローサイトメータが記載されている。
US特許5504337号公報 US特許5270548号公報 US特許5317162号公報
 しかし、上記特許文献に記載されているフローサイトメータにおいて、蛍光信号の、変調信号に対する位相遅れの情報である実数部成分(あるいはコサイン成分)と虚数部成分(サイン成分)は一定値となるべきものである。一方、蛍光信号と変調信号を混合するミキサは変調信号によるDC成分のオフセットを含んで出力する。このオフセットは、蛍光信号の蛍光強度が弱い(蛍光信号のレベルが小さい)場合、蛍光強度の蛍光緩和時間を求めるための位相遅れの情報に大きな影響を与えるため、上記フローサイトメータは、必ずしも正確な蛍光緩和時間を算出することができない、といった問題があった。
 そこで、本発明は、上記問題点を解決するために、測定対象物に、所定の周波数で強度変調したレーザ光を照射することにより測定対象物が発する蛍光を受光し、このとき得られる蛍光信号の信号処理を行って蛍光検出を行うとき、従来のようにミキサの出力する混合信号がDC成分を含んでも、従来に比べて精度の高い蛍光緩和時間を算出することのできる蛍光検出装置および蛍光検出方法を提供することを目的とする。
 本発明の一態様は、測定対象物にレーザ光を照射することにより測定対象物が発する蛍光を受光し、この蛍光の受光により得られる蛍光信号から、蛍光緩和時間を求める蛍光検出装置であり、
 測定対象物に照射する、強度変調されたレーザ光を出射するレーザ光源部と、
 強度変調されたレーザ光の照射によって測定対象物が発する蛍光の蛍光信号を出力する受光部と、
 前記レーザ光源部から出射するレーザ光を強度変調させるために、所定の周波数の変調信号を生成し、さらに、前記変調信号の周波数と異なる周波数を持ち、前記変調信号と同期した第1の参照信号を、前記変調信号と別に生成する信号生成部と、
 前記変調信号を用いて強度変調したレーザ光を測定対照物に照射することにより前記受光部で出力される蛍光信号と前記第1の参照信号との第1のミキシング処理を行う第1のミキサと、前記第1のミキシング処理で得られた混合信号に対して、前記変調信号の周波数と前記第1の参照信号の周波数との加算周波数より低く、前記変調信号の周波数と前記第1の参照信号の周波数との間の差分周波数より高い周波数をカットオフ周波数とする第1のローパスフィルタリング処理を行って蛍光信号ベースの低周波信号を出力する第1のローパスフィルタと、を有する信号処理部と、
 前記蛍光信号ベースの低周波信号をデジタル信号に変換し、このデジタル信号のうち、前記差分周波数に対応する第1の信号成分を用いて、前記変調信号に対する前記蛍光信号の位相を算出し、前記位相から、測定対象物の蛍光の蛍光緩和時間を求める蛍光検出部と、を有する。
 その際、蛍光検出装置の前記信号生成部は、クロック信号を生成する第1の発振器と、
 前記第1の発振器が生成した前記クロック信号に同期して前記変調信号を生成する第2の発振器と、前記第1の参照信号を、前記クロック信号に同期して生成する第3の発振器と、を有することが好ましい。
 前記蛍光検出部は、前記差分周波数を周波数とするデジタル信号である第2の参照信号を前記低周波信号のデジタル信号とミキシングすることにより、前記第1の信号成分を求めることができる。
 なお、前記蛍光検出部は、前記第2の参照信号を作成してもよい。
 あるいは、前記信号処理部は、前記変調信号と前記第1の参照信号との第2のミキシング処理を行う第2のミキサと、前記第2のミキシング処理で得られた混合信号に対して、前記加算周波数より低く、前記差分周波数より高い周波数をカットオフ周波数とする第2のローパスフィルタリング処理により、前記差分周波数を周波数に持つ正弦波信号を出力する第2のローパスフィルタと、を有し、前記蛍光検出部は、前記第2のローパスフィルタから出力された前記正弦波信号をデジタル化することにより、前記第2の参照信号を生成することもできる。
 また、前記蛍光検出部は、前記蛍光信号ベースの低周波信号のデジタル信号に対してFFT(Fast Fourier Transformation)処理を施し、前記FFT処理により得られる、前記差分周波数に対応する実数部と虚数部の値を前記第1の信号成分として算出し、前記実数部と前記虚数部の値から前記位相を算出することもできる。
 また、前記受光部は、前記蛍光を受光する受光素子の他に、前記レーザ光による測定対象物の側方散乱光を受光する受光素子を有し、前記側方散乱光の受光により得られた受光信号を出力し、前記信号処理部は、前記受光信号と前記第1の参照信号との第3のミキシング処理を行う第3のミキサと、前記第3のミキシング処理で得られた混合信号に対して、前記加算周波数より低く、前記差分周波数より高い周波数をカットオフ周波数とする第3のローパスフィルタリング処理を行って受光信号ベースの低周波信号を出力する第3のローパスフィルタと、を有し、前記蛍光検出部は、前記受光信号ベースの低周波信号と前記第2の参照信号とのミキシング処理により、あるいは、前記受光信号ベースの低周波信号に対してFFT処理を施すことにより、前記受光信号ベースの低周波信号のうち、前記差分周波数に対応する第2の信号成分の位相を求め、この第2の信号成分の位相を基準として、前記蛍光信号の位相を補正し、補正された前記位相を用いて測定対象物の蛍光の蛍光緩和時間を求めることができる。
 また、前記信号処理部は、前記変調信号と前記第1の参照信号との第2のミキシング処理を行う第2のミキサと、前記第2のミキシング処理で得られた混合信号に対して、前記加算周波数より低く、前記差分周波数より高い周波数をカットオフ周波数とする第2のローパスフィルタリング処理により、前記差分周波数を周波数に持つ正弦波信号を出力する第2のローパスフィルタと、を有し、前記蛍光検出部は、前記第2のローパスフィルタから出力された前記正弦波信号をデジタル化することにより、前記第2の参照信号を生成し、前記第2の参照信号の位相を、前記蛍光信号の位相から差し引くことにより、前記蛍光信号の位相を補正し、補正した前記位相を用いて測定対象物の蛍光の蛍光緩和時間を求めることもできる。
 その際、前記蛍光検出部は、前記第2の参照信号をFFT処理することにより、あるいは、別途生成された前記差分周波数を持つ正弦波信号を、前記第2の参照信号とミキシングすることにより、前記第2の参照信号の位相を求めることができる。
 また、前記蛍光検出部は、前記別途作成された前記差分周波数を持つ正弦波信号を、前記第2の参照信号とミキシングするとき、サイン信号およびコサイン信号のそれぞれを前記第2の参照信号とミキシングし、前記サイン信号および前記コサイン信号のそれぞれをミキシングした結果の値の比率を求めることにより、前記第2の参照信号の位相を求めることもできる。
 前記蛍光検出部は、測定対象物の蛍光の蛍光緩和時間を求めるとき、予め設定された補正量を用いて前記蛍光信号の前記補正をした位相をさらに補正し、前記補正量を用いた補正後の位相を用いて測定対象物の蛍光の蛍光緩和時間を求め、前記補正量は、既知の蛍光緩和時間で蛍光を発する蛍光色素を測定対象物として、蛍光を測定したときに求められる前記蛍光緩和時間が、前記蛍光色素の持つ蛍光緩和時間に一致するように、求められた量であることが好ましい。
 前記受光部は、前記蛍光を受光する受光素子の他に、前記レーザ光による測定対象物の側方散乱光を受光する受光素子を有し、前記側方散乱光の受光により得られた受光信号を出力し、前記信号処理部は、前記受光信号と前記参照信号との第3のミキシング処理を行う第3のミキサと、前記第3のミキシング処理で得られた混合信号に対して、前記加算周波数より低く、前記差分周波数より高い周波数をカットオフ周波数とする第3のローパスフィルタリング処理により、前記差分周波数を周波数に持つ受光信号ベースの低周波信号を出力する第3のローパスフィルタと、を有し、前記蛍光検出部は、前記受光信号ベースの低周波信号の振幅を求め、前記蛍光検出部は、求めた前記振幅を前記側方散乱光の強度として定め、さらに、前記第1の信号成分から求まる振幅を蛍光強度として定め、前記側方散乱光の強度、前記蛍光強度および前記蛍光緩和時間を出力することが好ましい。
 また、本発明の一態様は、測定対象物にレーザ光を照射することにより測定対象物が発する蛍光を受光し、この蛍光の受光により得られる蛍光信号から、蛍光緩和時間を求める蛍光検出方法であって、
 所定の周波数の変調信号により強度変調を受けたレーザ光を測定対象物の照射するステップと、
 レーザ光の照射された測定対象物が発する蛍光を検出手段にて受光し、前記検出手段によって得られる蛍光信号を取得するステップと、
 前記変調信号の周波数と異なる周波数を持ち、前記変調信号と位相の同期した第1の参照信号を、前記変調信号と別に生成するステップと、
 強度変調したレーザ光を測定対照物に照射することにより前記検出手段で得られた蛍光信号と前記第1の参照信号との第1のミキシング処理をし、さらに、前記変調信号の周波数と前記参照信号の周波数との加算周波数より低く、前記変調信号の周波数と前記参照信号の周波数との間の差分周波数より高い周波数をカットオフ周波数とする第1のローパスフィルタリング処理を施すことにより、蛍光信号ベースの低周波信号を生成するステップと、
 生成された前記蛍光信号ベースの低周波信号をデジタル信号に変換し、前記デジタル信号のうち、前記差分周波数に対応する第1の信号成分を用いて、前記変調信号に対する前記蛍光信号の位相を算出し、前記位相から、測定対象物の蛍光の蛍光緩和時間を求めるステップと、を有する。
 その際、前記差分周波数を周波数に持つデジタル正弦波信号を第2の参照信号としたとき、前記第1の信号成分は、前記第2の参照信号と、前記蛍光信号ベースの低周波信号のデジタル信号とミキシング処理を行うことにより求められることが好ましい。
 その際、前記蛍光信号に対して前記第1のミキシング処理と前記第1のローパスフィルタリング処理とを行う他に、前記変調信号と前記第1の参照信号との第2のミキシング処理を行い、前記第2のミキシング処理で得られた混合信号に対して、前記加算周波数より低く、前記差分周波数より高い周波数をカットオフ周波数とする第2のローパスフィルタリング処理を行って、前記差分周波数を周波数に持つ正弦波信号を出力し、前記第2のローパスフィルタリング処理により得られた前記正弦波信号をデジタル化することにより、前記第2の参照信号を生成することができる。
 また、前記蛍光の受光のとき、前記蛍光の受光の他に、前記レーザ光による測定対象物の側方散乱光が受光され、前記側方散乱光の受光により得られる受光信号が出力され、前記受光信号には、前記受光信号と前記第1の参照信号との第3のミキシング処理と、前記第3のミキシング処理で得られた混合信号に対して、前記加算周波数より低く、前記差分周波数より高い周波数をカットオフ周波数とし、受光信号ベースの低周波信号を出力する第3のローパスフィルタリング処理と、が施され、前記受光信号ベースの低周波信号と前記差分周波数を周波数に持つデジタル正弦波信号とのミキシング処理をすることにより、あるいは、前記受光信号ベースの低周波信号に対してFFT処理を施すことにより、前記受光信号ベースの低周波信号の、前記差分周波数に対応する第2の信号成分の位相を求め、前記第2の信号成分の位相を基準として、前記蛍光信号の位相を補正し、補正後の位相を用いて測定対象物の蛍光の蛍光緩和時間を求めることができる。
 また、前記蛍光信号の位相から、測定対象物の蛍光の蛍光緩和時間を求めるとき、予め設定された補正量を用いて前記蛍光信号の位相を補正し、この補正後の位相を用いて測定対象物の蛍光の蛍光緩和時間を求めることもできる。この場合、前記補正量は、既知の蛍光緩和時間で蛍光を発する蛍光色素を測定対象物として、蛍光を測定したときに、前記補正後の位相から求められる前記蛍光緩和時間が、前記蛍光色素の持つ蛍光緩和時間に一致するように、求められた量である。
 本発明の蛍光検出装置および蛍光検出方法の一態様では、レーザ光を強度変調する変調信号の周波数と、参照信号の周波数とが異なるように設定される。このため、変調信号と同様の周波数で強度が変化する蛍光信号と参照信号とのミキシング処理を行っても、ローパスフィルタリング処理後の信号は、変調信号の周波数と参照信号の周波数の差分周波数を主成分とするAC成分の信号となっている。したがって、この信号から、変調信号に対する蛍光信号の位相(位相遅れ)を算出することにより、従来のようにミキサの出力する混合信号がDC成分のオフセットを含んでも、従来に比べて精度の高い蛍光緩和時間を算出することができる。
 また、変調信号と参照信号とを異なる発振器を用いて生成するので、変調信号および参照信号には、発振器によって生じるノイズ成分が同時刻に含まれることは少ない。このため、蛍光信号と参照信号をミキシングして得られる位相遅れ情報を含む信号にノイズ成分は少ない。このため、従来のように、1つの発振器を用いて変調信号および参照信号を生成する場合に比べて、精度高く、蛍光緩和時間を算出することができる。
 本発明の蛍光検出装置および蛍光検出方法の一態様は、参照信号と蛍光信号の伝送や信号処理の遅延を考慮して、側方散乱光の位相の情報を用いて蛍光信号の位相を補正することで、あるいは、変調信号と参照信号の差分周波数の信号の位相情報を用いて蛍光信号の位相を補正することで、蛍光信号の位相を精度高く求めることができる。したがって、本発明の蛍光検出装置および蛍光検出方法は、正確な蛍光緩和時間を求めることができる。
 また、既知の蛍光緩和時間で蛍光を発する蛍光色素を測定対象物として用いて、蛍光色素の発する蛍光が測定されるとき、本発明の蛍光検出装置および蛍光検出方法の一態様は、蛍光信号の位相から求められる前記蛍光緩和時間が、前記蛍光色素の持つ蛍光緩和時間に一致するように、補正の際に用いる補正量を用いて蛍光緩和時間の較正を行ので、正確な蛍光緩和時間が算出され得る。
本発明の強度変調したレーザ光による蛍光検出装置を用いたフローサイトメータの概略構成図である。 図1に示すフローサイトメータの構成をより詳しく説明した図である。 図1に示すフローサイトメータの信号処理部の構成を説明する図である。 図1に示すフローサイトメータの分析装置における処理内容を説明する図である。 図4に示す分析装置における処理内容と異なる他の処理内容の例を説明する図である。 図4、図5に示す分析装置における処理内容と異なる他の処理内容の例を説明する図である。 図4~6に示す分析装置における処理内容と異なる他の処理内容の例を説明する図である。 図4~7に示す分析装置における処理内容と異なる他の処理内容の例を説明する図である。
 以下、本発明の強度変調したレーザ光による蛍光検出装置を好適に適用したフローサイトメータを基に詳細に説明する。
 図1は、強度変調したレーザ光Lによる蛍光検出装置に適用したフローサイトメータ10の概略構成図である。図2は、フローサイトメータ10の構成をより詳しく説明した図である。以下、フローサイトメータ10の構成について説明する。
 フローサイトメータ10は、信号処理装置20と、分析装置80と、を有する。信号処理装置20は、測定対象とする蛋白等の測定対象物の試料12をフローセルとして1つずつ流してレーザ光を照射する。信号処理装置20は、このとき、試料12にラベル化のために付着した蛍光色素の発する蛍光の蛍光信号を検出して信号処理をする。
 分析装置80は、信号処理装置20で得られた処理結果から蛍光の蛍光緩和時間を求め、さらに、試料12中の測定対象物の分析を行なう。すなわち、分析装置80は、本発明における蛍光検出部に対応する。
 信号処理装置20は、レーザ出射部22と、受光部24、26と、制御・処理部28と、管路30と、を有する。制御・処理部28は、レーザ出射部22からのレーザ光を所定の周波数で強度変調させる制御部、及び試料12からの蛍光信号を識別する信号処理部を含む。管路30は、高速流を形成するシース液に試料12を1つずつ含ませて流したフローセルを形成する。
 管路30の出口には、図1に示すように、回収容器32が設けられている。フローサイトメータ10には、レーザ光Lの照射により短時間内に試料12中の特定の細胞等の生体物質を分離するためのセル・ソータを配置して別々の回収容器に分離するように構成することもできる。
 試料12は、蛋白をはじめ、細胞、DNA、RNA、酵素の生体物質等の測定対象物であり、この試料12は蛍光試薬(蛍光色素)で予めラベル化され、図1に示すように、混濁液の状態で用意される。試料12は、例えば、種類の異なる複数の生体物質を含み、生体物質には、生体物質の種類毎に異なる既知の波長の蛍光を発する既知の色素が、蛍光色素として付着されように、用意される。これにより、フローサイトメータ10は、複数の種類の生体物質間の生体結合等の特性を調べることができる。
 試料12は、生体物質に限定されず、例えば、特定の生体物質と結合可能な人工的な構造を設けたマイクロビーズであってもよい。
 レーザ出射部22は、レーザ光源部23とレーザドライバ34を有する。
 レーザ光源部23は、所定の波長のレーザ光Lを出射する部分である。レーザ光Lは、管路30中の所定の位置に集束するように、図示されないレンズ系が設けられ、この集束位置が試料12の計測点を形成する。レーザ光Lの計測点におけるビーム径は数10μmである。なお、レーザ光源部23は、1つの波長のレーザ光Lを出射するが、複数のレーザ光を1つのレーザビームとして形成して出射することもできる。この場合、レーザ光源部23は、ハーフミラー等を用いてレーザ光を1つの光束に纏める。
 レーザ光源部23では、強度が一定のCW(連続波)レーザ光Lが、所定の周波数により強度変調を受けて出射する。
 レーザ光Lを出射する光源として例えば半導体レーザが用いられる。
 レーザ光Lは、例えば5~100mW程度の出力である。一方、レーザ光Lの強度を変調する周波数(変調周波数)は、その周期が蛍光緩和時間に比べてやや長い周波数であり、例えば10~50MHzである。
 レーザドライバ34は、制御・処理部28に接続されて、レーザ光Lの出射の強度が制御される。ここで、レーザ光Lの各々は、後述するように変調信号によって、所定の周波数で強度が変調される。
 レーザ光源部23は、レーザ光Lが蛍光色素を励起して特定の波長帯域の蛍光を発するように、予め定められた波長帯域で発振する。レーザ光Lによって励起される蛍光色素は生体物質等の試料12に付着されており、試料12が測定対象物として管路30を通過する際、試料12は計測点でレーザ光Lの照射を受けて特定の波長で蛍光を発する。
 受光部24は、管路30を挟んでレーザ光源部23と対向するように配置されている。受光部24は、光電変換器24aと、集光レンズ24bと、遮蔽板24cと、を備える。光電変換器24aは、測定点を通過する試料12によってレーザ光が前方散乱することにより、試料12が測定点を通過する旨の検出信号を出力する。遮蔽板24cは、光電変換器24aがレーザ光Lを直接受光することなく、前方散乱光を受光するようにレーザ光Lの光束を遮蔽するために用いる。
 この受光部24から出力される信号は、後述する分析装置80中のAD変換ボード82のAD変換開始および分析装置本体84の分析開始のタイミングとなるトリガ信号として用いられる。
 一方、受光部26は、レーザ光源部23から出射されるレーザ光の出射方向に対して直交する方向であって、かつ管路30中の試料12の移動方向に対して直交する方向に配置されている。受光部26は、計測点にて照射された試料12が発する蛍光およびレーザ光の側方散乱光を受光する光電変換器を備える。
 図2には、受光部26の一例の概略の構成が示されている。
 受光部26は、試料12からの蛍光信号を集束させるレンズ系26aと、ダイクロイックミラー26b,26b,26b3と、バンドパスフィルタ26c1,26c2,26c3,26c4と、光電子倍増管等の光電変換器27a~27dと、を有する。
 レンズ系26aは、受光部26に入射した蛍光を光電変換器27a~27dの受光面に集束させる。
 ダイクロイックミラー26b1,26b2,26b3は、所定の範囲の波長帯域の蛍光を反射させて、それ以外は透過させるミラーである。
 試料12からの各蛍光の波長にしたがってダイクロイックミラー26b1,26b2,26b3およびバンドパスフィルタ26c1,26c2,26c3,26c4が所定の波長帯域の蛍光を透過させるように、ダイクロイックミラー26b1,26b2,26b3およびバンドパスフィルタ26c1,26c2,26c3,26c4の反射波長帯域あるいは透過波長帯域が設定されている。ダイクロイックミラー26b2は、レーザ光の側方散乱光の波長領域の光を反射し、蛍光の波長を含む波長領域の光を透過するミラーである。
 バンドパスフィルタ26c1,26c2,26c3,26c4は、光電変換器27a,27b,27c,27dそれぞれの前面に設けられ、所定の波長帯域の蛍光のみが透過するフィルタである。ダイクロイックミラー226b2は、変換器27a,27dの受光面の前面に設けられ、光電変換器27aは、ダイクロイックミラー26b2の透過光を受光し、光電変換器27dは、ダイクロイックミラー26b2の反射光を受光する。
 透過する蛍光の波長帯域は、蛍光色素の発する蛍光の波長帯域に対応して設定されている。
 光電変換器27a~27dは、例えば光電子倍増管を備えたセンサを備え、受光面である光電面で受光した光を電気信号に変換するセンサである。光電変換器27a~27cは、ダイクロイックミラーおよびバンドパスフィルタによって光の波長領域が制限されて所定の波長の蛍光を受光する。光電変換器27dが受光する光の波長領域はダイクロイックミラー26b2によって制限され、光電変換器27dはレーザ光Lの側方散乱光を受光する。このように、受光部26は、3つの波長の異なる蛍光を受光するとともに、レーザ光Lの側方散乱光を受光する。
 ここで、受光する蛍光および側方散乱光は、一定の周波数で強度変調された信号情報を持った光信号として受光されるので、出力される蛍光信号および受光信号は、強度変調されたレーザ光Lに対応した周波数を有する信号および信号となる。この蛍光信号および受光信号は制御・処理部28に供給される。以降、蛍光の受光によって得られる信号を蛍光信号といい、レーザ光Lの側方散乱光によって得られる信号を受光信号という。
 制御・処理部28は、信号生成部40と、信号処理部42と、を有して構成される。
 信号生成部40は、レーザ光の強度を所定の周波数で変調(強度変調)するための変調信号を生成する他、参照信号を生成する部分である。
 具体的には、信号生成部40は、発振器(第1の発振器)46、発振器(第2の発振器)47および発振器(第3の発振器)48、を有する。これらの発振器は、回路によって構成されたものであってもよい。
 発振器46は、所定の周波数のクロック信号を生成するクロック生成器である。
 発振器47は、レーザ光Lの強度変調を行うための変調信号を生成し、図示されないフィルタにより単一の周波数成分にし、アンプを介して変調信号をレーザドライバ34に供給する。レーザドライバ34では、別途用意された直流電流が重畳されて、レーザ光源部23に供給される。
 発振器48は、後述するように、蛍光緩和時間を求めるために用いる参照信号(第1の参照信号)を生成する。発振器48で生成される変調信号と発振器47で生成される参照信号とは、周波数が異なっているが、互いに同期した信号となっている。互いに同期しているとは、信号の生成開始時点で、同じ位相の信号が生成されることをいい、お互いに位相0となる時刻が周期的に到来する。発振器47および発振器48において信号の生成は、発振器46の生成するクロック信号に同期して行われる。したがって、変調信号と参照信号は、互いに同期して生成される。
 変調信号と参照信号との間の差分周波数は、例えば100kHz~1MHz以下であり、通常、数100kHzである。差分周波数の範囲の下限は、試料12が計測点を通過する時間をT秒としたとき、1/Tの4倍であり、上限は後述するAD変換ボード82のサンプリング周波数であることが好ましい。
 信号生成部40は、発振器47および発振器48に替えて、位相比較器、ループフィルタ、電圧制御発振回路および分周器を備えたPLL回路(Phase Locked Loop)を用いることもできる。この場合、PLL回路は、変調信号および参照信号を同期して生成することもできる。
 このように、変調信号および参照信号を別々に生成する理由は、1つの発振器により変調信号および参照信号を生成す場合に比べて、後述するRFミキサで変調信号と参照信号をミキシングして得られる混合信号が、発振器に由来するノイズ成分の影響を受け難くなるからである。さらに、変調信号および参照信号は、別々の発振器を用いて生成されるので、ミキシング処理の対象となる変調信号および参照信号に、同時刻にノイズ成分が含まれる機会は少なくなる。
 変調信号および参照信号の周波数が互いに異なるように発振器47および発振器48の周波数が設定される理由は、後述するように、蛍光信号および参照信号のミキシングがRFミキサにて行われるとき、従来技術として問題のあった混合信号に含まれるDC成分のオフセットの影響を小さくするためである。この点は、後述する。
 信号処理部42は、光電変換器27a~27dから出力される蛍光信号および側方散乱光の受光信号を用いて、レーザ光の照射により試料12が発する蛍光の、変調信号に対する位相、具体的には、変調信号に対する位相遅れに関する情報を抽出する部分である。具体的には、光電変換器27a~27cからの蛍光信号を別々に処理する信号処理チャンネル1,2,3と、光電変換器27dからの蛍光信号を処理する信号処理チャンネル4と、を有する。信号処理チャンネル1~4の信号処理内容は同一である。
 なお、上記位相遅れに関する情報は、例えば、正弦波信号の位相遅れを複素数表示したときの実数部成分(Re成分)および虚数部成分(Im成分)を含む。
 信号処理部42の信号処理チャンネル1は、処理回路52aを有する。信号処理チャンネル2~4は、処理回路52b~52dをそれぞれ有する。
 図3は、処理回路52a,52b,52c,52dの内容を示す構成図である。
 処理回路52a~52dはそれぞれ、蛍光信号(受光信号)を増幅するアンプ54と、可変増幅アンプ56と、増幅された蛍光信号(受光信号)を分配するパワースプリッタ58と、RFミキサ(第1のミキサ)60,62と、90度ハイブリッド位相シフタ64と、アンプ66,68と、ローパスフィルタ(第1のローパスフィルタ)70,72と、ハイパスフィルタ74,76と、を有する。信号処理チャンネル4におけるRFミキサは第3のミキサに、ローパスフィルタは第3のローパスフィルタに対応する。
 光電変換器27a~27dから送られた蛍光信号(受光信号)は、アンプ54で増幅され、さらに、可変増幅アンプ56で所望のレベルに増幅される。さらに、蛍光信号(受光信号)は、パワースプリッタ58で2分され、RFミキサ60,62に送られる。
 なお、信号処理チャンネル1,2,3の処理回路52a,52b,52cにおけるRFミキサ(図示されない)は本発明における第1のミキサに対応し、信号処理チャンネル4の処理回路52dにおけるRFミキサ60,62は本発明における第3のミキサに対応する。
 一方、発振器48が生成した参照信号は、90度ハイブリッド位相シフタ64に供給されて、位相が90度シフトした参照信号と、位相が維持された(位相シフトが0度の)参照信号が生成される。90度ハイブリッド位相シフタ64により90度位相シフトした参照信号は、RFミキサ62に供給される。一方、位相が維持された参照信号は、RFミキサ60に供給される。
 RFミキサ60,62はそれぞれ、供給された参照信号と供給された蛍光信号(受光信号)をミキシング処理する。RFミキサ60,62には、アクティブミキサや、ダブルバランスドミキサ等のパッシブミキサが用いられる。
 本実施形態では、参照信号の位相を90度シフトさせてRFミキサ62に供給したが、90度シフトさせる信号を蛍光信号(受光信号)としてもよい。
 アンプ66,68は、RFミキサ60,62において参照信号と蛍光信号(受光信号)とから作られた混合信号を増幅する。
 ローパスフィルタ70,72は、ミキシング処理により得られた混合信号のうち、参照信号の周波数と蛍光信号(受光信号)の周波数との加算周波数を成分とする高周波成分を除去し、参照信号の周波数と蛍光信号(受光信号)の周波数との間の差分周波数を成分とする低周波成分を通過するように、例えば、上記加算周波数より低く、上記差分周波数より高い周波数がカットオフ周波数として設定されている。これにより、ローパスフィルタ70から蛍光信号(受光信号)の位相遅れの情報である実数部成分(Re成分)と、ローパスフィルタ72から蛍光信号(受光信号)の位相遅れの情報である虚数部成分(Im成分)が出力される。このRe成分とIm成分の信号は、ハイパスフィルタ74,76に送られる。ハイパスフィルタ74,76は、Re成分とIm成分の信号のDC成分を除去する。これによって、蛍光信号(受光信号)の位相遅れの情報をAC成分に含ませたまま、RFミキサ74,76の出力する混合信号に含まれるDC成分のオフセットを除去することができる。ハイパスフィルタ74,76を通過したRe成分とIm成分の信号は、分析装置80のAD変換ボード82に送られる。
 なお、信号処理チャンネル1,2,3の処理回路52a,52b,52cにおけるローパスフィルタ(図示されない)は本発明における第1のローパスフィルタに対応し、信号処理チャンネル4の処理回路52dにおける該当するローパスフィルタ(図示されない)は本発明における第3のローパスフィルタに対応する。
 上述したように変調信号の周波数と参照信号の周波数とは異なる。このため蛍光信号(受光信号)の周波数も参照信号の周波数と異なっている。したがって、ローパスフィルタ70,72から出力される実数部成分(Re成分)および虚数部成分(Im成分)の信号は、変調信号の周波数と参照信号の周波数との差分周波数を持ったAC成分の信号である。この信号に位相遅れに関する情報が含まれている。従来の方法では、変調信号と参照信号の周波数が同じであるので、ローパスフィルタ70,72から出力される信号は一定の値を持つDC成分である。上述したように、RFミキサによるミキシング結果にはオフセットしたDC成分が重なるため、位相遅れに関する情報がDC成分である場合、分析装置80において精度の高い蛍光緩和時間を求めることはできない。このため、フローサイトメータ10では、ミキシング結果として得られる位相遅れに関する情報がAC成分に含まれるように、変調信号の周波数と参照信号の周波数が設定されている。
 AC成分である実数部成分(Re成分)および虚数部成分(Im成分)は、分析装置80に送られる。
 分析装置80は、信号処理チャンネル1~4毎に送られてくる実数部成分(Re成分)および虚数部成分(Im成分)をデジタル信号に変換するAD変換ボード(図1参照)82と、分析装置本体(コンピュータ)84と、を有する。
 AD変換ボード82は、受光部24から送られた信号をトリガ信号として実数部成分(Re成分)および虚数部成分(Im成分)のAD変換を開始する。さらに、デジタル化された実数部成分(Re成分)および虚数部成分(Im成分)は分析装置本体部84に供給される。分析装置80は、デジタル化された実数部成分(Re成分)および虚数部成分(Im成分)を用いて分析を開始する。
 分析装置本体84は、実数部成分(Re成分)および虚数部成分(Im成分)に基づいて、蛍光のレーザ光に対する位相遅れの角度を求め、さらに、この位相遅れの角度から蛍光緩和時間を求める。求めた蛍光緩和時間に基づいて、受光部26から出力された蛍光信号が、どの蛍光色素に由来するものか否かを特定する。
 分析装置本体84は、蛍光緩和時間の算出結果がどの信号処理チャンネルの実数部成分(Re成分)および虚数部成分(Im成分)に基づくものかを知ることにより、蛍光緩和時間がどの波長の蛍光に由来するものかを知ることができる。また、蛍光色素が発する蛍光の蛍光緩和時間は、蛍光色素ごとに定まっているので、分析装置本体84は、蛍光緩和時間の値とどの信号処理チャンネルの蛍光緩和時間か、を知ることにより、どの蛍光色素の発した蛍光かを特定することができる。さらに、蛍光色素は、どの試料12に付着されたものか予め既知であるので、分析装置本体84は、蛍光の特定により、計測点を通過した試料12がどの種類のものかを知ることができる。したがって、試料12内の異なる種類の生体物質同士が生体結合した場合、生体物質に結合した両方の蛍光色素の蛍光が略同時に検出されるので、分析装置本体84は、蛍光緩和時間に基づいて蛍光の種類を特定することで、生体結合する生体物質の種類を知ることができる。このような分析は、試料12がフロー状態となって計測点を1つずつ横切るたびに行われるので、分析装置本体84は、得られた多数の結果を統計処理し総合的な試料12の分析をすることができる。
 分析装置本体84は、本発明における蛍光緩和時間を算出する蛍光検出部を形成し、コンピュータにより構成される。
 図4は、分析装置本体84で行われる処理内容の例を説明する図である。
 分析装置本体84では、AD変換ボード82により、各信号処理チャンネルの実数部成分(Re成分)および虚数部成分(Im成分)がデジタルデータに変換された後、図4に示す処理が行われる。この処理は、ソフトウェア処理である。
 ソフトウェア処理では、各処理が、各サブプログラムやサブルーチンによりモジュール化されている。分析装置本体84には、具体的には、FFT処理モジュール86、振幅算出モジュール88、位相算出モジュール90、位相遅れ算出モジュール92、補償された蛍光強度算出モジュール94、蛍光緩和時間算出モジュール96が設けられている。
 図4に示す例では、処理回路52aおよび処理回路52dから送られる蛍光の実数部成分(Re成分)および虚数部成分(Im成分)と、レーザ光Lの側方散乱光の実数部成分(Re成分)および虚数部成分(Im成分)の処理内容が示されている。図4に示す例では、処理回路52b,52cから送られる実数部成分(Re成分)および虚数部成分(Im成分)の処理内容は示されていない。処理回路52b、52cから送られる実数部成分(Re成分)および虚数部成分(Im成分)の処理内容は、処理回路52aからの実数部成分(Re成分)および虚数部成分(Im成分)の処理内容と同じであるため、その処理内容は図示されず、説明も省略する。
 処理回路52dから送られた側方散乱光の位相遅れに関する実数部成分(Re成分)および虚数部成分(Im成分)、および蛍光の実数部成分(Re成分)および虚数部成分(Im成分)はそれぞれ、FFT処理モジュール86に送られてFFT処理が施される。
 FFT処理モジュール86は、変調信号と参照信号との間の差分周波数Δfに対応する実数部成分の値(Re_Δf)を実数部成分(Re成分)から求め、差分周波数Δfに対応する虚数部成分の値(Im_Δf)を虚数部成分(Im成分)から求める。求められた実数部成分の値(Re_Δf)と虚数部成分の値(Im_Δf)は、振幅算出モジュール88に送られる。蛍光信号から得られた実数部成分の値(Re_Δf)と虚数部成分の値(Im_Δf)が本発明における差分周波数に対応する第1の信号成分に対応し、受光信号から得られた実数部成分の値(Re_Δf)と虚数部成分の値(Im_Δf)が本発明における差分周波数に対応する第2の信号成分に対応する。
 振幅算出モジュール88は、実数部成分の値(Re_Δf)と虚数部成分の値(Im_Δf)の二乗加算和の平方根を計算し、この計算結果を強度として出力する。すなわち、振幅算出モジュール88では、側方散乱光の強度と、蛍光強度が出力される。
 また、FFT処理により得られた差分周波数に対応する実数部成分の値(Re_Δf)と虚数部成分の値(Im_Δf)は、位相算出モジュール90に送られる。位相算出モジュール90では、tan-1(Im_Δf/Re_Δf)が算出される。これにより、側方散乱光の位相と蛍光の位相遅れが算出される。
 さらに、位相遅れ算出モジュール92は、位相算出モジュール90で求められた蛍光の位相遅れから位相算出モジュール90で求められた側方散乱光の位相遅れを差し引くことにより、補正された、参照信号に対する蛍光信号の位相遅れを求める。このように補正が行われるのは、参照信号の伝送線路と、蛍光信号や側方散乱光の受光信号の伝送線路の差異による位相のずれを補正するためである。
 次に、蛍光緩和時間算出モジュール96にて、補正された位相遅れθを用いて、tanθ/ωが算出される。この算出結果が蛍光緩和時間τである。ここで、ωは、2πfであり、fは変調信号の周波数を表す。
 tanθ/ωの値を蛍光緩和時間τとすることができるのは、蛍光の緩和過程が1次遅れ応答に従って蛍光を発するからである。
 さらに、補償された蛍光強度算出モジュール94にて、(1+(τω)2(1/2)が算出され、この算出された値が、振幅算出モジュール88で算出された蛍光の振幅に乗算されて、τで補償された蛍光強度が算出される。
 分析装置本体84は、以上のように、側方散乱光強度と、蛍光強度と、蛍光緩和時間τと、τで補償された蛍光強度を算出し、これらの結果を、統計的処理および分析に用いる。もちろん、側方散乱光強度と、蛍光強度と、蛍光緩和時間τと、τで補償された蛍光強度をすべて算出し、統計的処理および分析に用いなくてもよい。少なくとも蛍光緩和時間τを算出し、蛍光緩和時間τを統計的処理および分析に用いるとよい。なお、側方散乱光強度は、試料12の構造によって、散乱強度が大きく異なることから、試料12の構造の複雑さを示す指標として用いることができる。
 フローサイトメータ10は以上のように構成される。
 フローサイトメータ10では、発振器46はクロック信号を生成し、この発振器46が生成したクロック信号に同期して発振器47は変調信号を生成し、発振器48は、クロック信号に同期して参照信号を生成する。
 このため、発振器47の変調信号と発振器48の参照信号に含まれるノイズ成分は、独立しているので、RFミキサ60,62において、蛍光信号と参照信号がミキシング処理されても、従来のように、ノイズ成分を含む蛍光信号と同時刻のノイズ成分を含む参照信号とが乗算されて混合信号に大きなノイズ成分が含まれることがない。
 このようなフローサイトメータ10の信号処理装置20では、まず、発振器46が発するクロック信号に同期して所定の周波数の変調信号を発信器47は発生する。この信号がレーザドライバ34にて所定の処理が施されて、レーザ光源部23に供給される。レーザ光源部23は、変調信号の周波数に応じて光強度が変調されたレーザ光Lを計測点に向けて出射する。計測点では、レーザ光Lは、図示されないレンズ系により数10μmの径のビームとなっている。
 この状態で、試料12が管路30を流れ、フローが形成される。フローは、例えば100μmの流路径に1~10m/秒の流速を有する。
 レーザ光源部23は、レーザ光Lを計測点に向けて照射する。受光部24が試料12の通過を検出する検出信号を生成すると、この検出信号をトリガ信号として分析装置80に出力する。
 発振器48は、このトリガ信号に合わせて発振器48のクロック信号に同期した参照信号を生成する。
 信号処理部42は、光電変換器27a~27dから送られてくる蛍光信号および受光信号と、参照信号を用いて、図3に示す信号処理回路にしたがって、ミキシング処理およびローパスフィルタリング処理を行う。こうして、信号処理部42は、蛍光および側方散乱光の各信号の位相遅れに関する情報である実数部成分(Re成分)と虚数部成分(Im成分)を生成する。
 ここで、レーザ光Lを変調する変調信号の周波数は、例えば10~50MHzであり、変調信号と参照信号との差分周波数は、100kHz~1MHzである。参照信号の周波数は、変調信号の周波数に対して高くてもよく、また低くてもよい。
 算出された実数部成分(Re成分)と虚数部成分(Im成分)は、分析装置80に送られる。
 分析装置80は、送られてきた実数部成分(Re成分)と虚数部成分(Im成分)の信号にAD変換を施してデジタル化する。この後、分析装置80は、図4に示す処理を行い、側方散乱光の強度と、蛍光強度と、蛍光緩和時間τと、τにより補償された蛍光強度と、を算出する。これらの算出結果が、試料12の統計的処理や分析に用いられる。なお、分析装置80は、蛍光緩和時間を、側方散乱光によって得られる受光信号の位相遅れを基準にした蛍光信号の位相遅れθに基づいて、tanθ/ωの式に従って算出する。
 (変形例1)
 図5は、分析装置本体84で行われる図4に示す処理内容と異なる処理内容の例を説明する図である。図5に示す処理は、図4に示す機能を備えたFFT処理モジュール86、振幅算出モジュール88、位相算出モジュール90、位相遅れ算出モジュール92、補償された蛍光強度算出モジュール94、蛍光緩和時間算出モジュール96が用いられる。
 図5に示す処理内容を行うには、RFミキサ(第2のミキサ)52eとローパスフィルタ(第2のローパスフィルタ)52fと、を有する回路を信号処理部42に設ける。上記RFミキサ52eは、発振器47で生成された変調信号に対して発振器48で生成された参照信号をミキシング処理する。上記ローパスフィルタ52fは、ミキサのミキシング処理で得られた混合信号に対して、変調信号の周波数と参照信号の周波数との間の加算周波数より低く、変調信号の周波数と参照信号の周波数との間の差分周波数より高い周波数をカットオフ周波数とするローパスフィルタリング処理を行い、差分周波数を周波数に持つ正弦波信号(第2の参照信号)を出力する。このとき、上記回路からの信号がAD変換ボード82を介して分析装置本体84に供給される。
 図5に示す処理内容では、まず、信号処理チャンネル4で算出された受光信号の実数部成分(Re成分)と虚数部成分(Im成分)がFFT処理モジュール86で処理されて、差分周波数Δfにおける実数部成分の値(Re_Δf)と虚数部成分の値(Im_Δf)が求められる。この2つの値を用いて振幅算出モジュール88にて、側方散乱光の受光信号の振幅が算出され、この振幅が側方散乱光強度として出力される。
 一方、信号処理チャンネル1で得られた蛍光信号の実数部成分(Re成分)と虚数部成分(Im成分)がFFT処理モジュール86で処理され、差分周波数Δfにおける実数部成分の値(Re_Δf)と虚数部成分の値(Im_Δf)が求められ、この2つの値を用いて、振幅算出モジュール88および位相算出モジュールモジュール90にて蛍光強度および蛍光信号の位相遅れθaが算出される。信号処理チャンネル2,3で得られた蛍光信号の実数部成分(Re成分)と虚数部成分(Im成分)の処理も、信号処理チャンネル1で得られた蛍光信号の実数部成分(Re成分)と虚数部成分(Im成分)の処理と同じ内容であるので、その説明は省略される。信号処理チャンネル2,3で得られた蛍光信号の処理の図示も省略されている。
 上述したように、分析装置本体82は、変調信号と参照信号をミキシングしてローパスフィルタリング処理を施すことにより得られた差分周波数Δfの信号のAD変換後のデータを取り込む。この後、FFT処理モジュール86は、差分周波数Δfにおける実数部成分の値(Re_Δf)と虚数部成分の値(Im_Δf)を求める。この2つの値を位相算出モジュール90が用いて位相θbを算出する。
 次に、位相遅れ算出モジュール92は、蛍光信号の位相遅れθaと上記位相θbと、予め分析装置本体84に記憶保持されている補正位相θcとを用いて、θa-θb-θcを算出することにより、補正された蛍光信号の、参照信号に対する位相遅れθを算出する。蛍光信号の位相遅れθaから上記位相θbを差し引く理由は、信号処理部42に至る信号の伝送遅延時間および処理にかかる遅延時間による位相遅れを除去するためである。
 ここで、補正位相(補正量)θcは、分析装置本体84に予め記憶保持されている。この補正位相θcについては以下のように定められて記憶される。すなわち、既知の蛍光緩和時間で蛍光を発する既知の蛍光色素を試料12として、この試料12の蛍光が測定される。このとき、補正された位相遅れθa-θb-θcから求められる蛍光緩和時間が、蛍光色素の持つ既知の蛍光緩和時間に一致するように、補正位相θcが定められる。
 このように、補正位相θcは、計測結果が、既知の蛍光緩和時間に一致するように較正するための補正量である。
 補正された位相遅れθは、蛍光緩和時間算出モジュール96に送られる。蛍光緩和時間算出モジュール96は、tanθ/ωを算出することにより、蛍光緩和時間τを算出する。
 さらに、補償された蛍光強度算出モジュール94は、(1+(τω)2(1/2)を算出し、τで補償された蛍光強度を算出する。
 こうして、分析装置本体84は、側方散乱光強度、τで補償された蛍光強度、蛍光強度、蛍光緩和時間τを算出し、算出結果を試料12の統計的処理や分析に用いる。
 (変形例2)
 図6は、図4、図5に示す分析装置本体84で行われる処理内容と異なる処理内容の例を説明する図である。図6に示す処理は、図4に示す機能を備えた振幅算出モジュール88、位相算出モジュール90、位相遅れ算出モジュール92、補償された蛍光強度算出モジュール94、蛍光緩和時間算出モジュール96、およびミキシング処理モジュール98が用いられる。
 図6に示す処理内容は、図4に示す処理内容がFFT処理モジュール86を用いて差分周波数Δfの実数部成分の値(Re_Δf)と虚数部成分の値(Im_Δf)を求める内容であるのと異なり、分析装置本体84にて別途生成されたcos(2π・Δf・t)を用いて蛍光信号および側方散乱光の受光信号の実数部成分(Re成分)と虚数部成分(Im成分)をそれぞれ、ミキシング処理モジュール98を用いてミキシング処理する。このミキシング処理により、差分周波数Δfの実数部成分の値(Re_Δf)と虚数部成分の値(Im_Δf)を求める。
 ミキシング処理モジュール98は、コンピュータである分析装置本体84のソフトウェア処理により行われるので、RFミキサ60,62にて行うときに発生するDC成分のオフセットがない。このため、精度の高いミキシング処理を行うことができる。
 なお、DC成分のオフセットの発生がないように、RFミキサ60,62のミキシング処理を分析装置80にて行うことも考えられる。しかし、分析装置80のAD変換ボード82で、10~50MHzで強度変調する蛍光信号や受光信号をAD変換するAD変換ボードは高価であり、この高価なボードを用いることは実用的でない。
 ミキシング処理モジュール98にて算出された、差分周波数Δfにおける実数部成分の値(Re_Δf)と虚数部成分の値(Im_Δf)は、振幅算出モジュール88、位相算出モジュール90に送られて、以降、図4に示す処理内容と同じ処理を行う。以降の処理内容の説明は省略する。
 こうして、分析装置本体84は、側方散乱光強度、τで補償された蛍光強度、蛍光強度、蛍光緩和時間τを算出し、算出結果を試料12の統計的処理や分析に用いる。
 (変形例3)
 図7は、図4、図5、図6に示す分析装置本体84で行われる処理内容と異なる処理内容の例を説明する図である。図7に示す処理は、図5に示す機能を備えた振幅算出モジュール88、位相算出モジュール90、位相遅れ算出モジュール92、補償された蛍光強度算出モジュール94、蛍光緩和時間算出モジュール96、および、図6に示すミキシング処理モジュール98が用いられる。
 図7に示す処理内容は、図5に示す処理内容がFFT処理モジュール86を用いて差分周波数Δfの実数部成分の値(Re_Δf)と虚数部成分の値(Im_Δf)を求める内容であるのと異なり、分析装置本体84は、分析装置本体84にて生成したcos(2π・Δf・t)と、蛍光信号および側方散乱光の受光信号の実数部成分(Re成分)、虚数部成分(Im成分)と、をそれぞれ、ミキシング処理モジュール98を用いてミキシング処理することにより、差分周波数Δfの実数部成分の値(Re_Δf)と虚数部成分の値(Im_Δf)を求める。 さらに、分析装置本体84は、分析装置本体84にて生成したcos(2π・Δf・t)と、別途生成したsin(2π・Δf・t)と、差分周波数Δfの信号とを、ミキシング処理モジュール98を用いてミキシング処理する。差分周波数Δfの信号とは、図7に示すように、変調信号と参照信号とをRFミキサ52eを用いてミキシング処理し、ローパスフィルタ52fによるローパスフィルタリング処理を施して、AD変換された信号である。これにより、差分周波数Δfの信号における差分周波数Δfの実数部成分の値(Re_Δf)と虚数部成分の値(Im_Δf)を求める。
 ミキシング処理モジュール98にて算出された差分周波数Δfの信号における実数部成分の値(Re_Δf)と虚数部成分の値(Im_Δf)は、位相算出モジュール90に送られる。以降、図5に示す処理内容と同じ処理を行う。以降の処理内容の説明は省略する。
 こうして、分析装置本体84は、側方散乱光強度、τで補償された蛍光強度、蛍光強度、蛍光緩和時間τを算出し、算出結果を試料12の統計的処理や分析に用いる。
 (変形例4)
 図8は、図4~7に示す分析装置本体84で行われる処理内容と異なる処理内容の例を説明する図である。図8に示す処理は、図5に示す振幅算出モジュール88、位相算出モジュール90、位相遅れ算出モジュール92、補償された蛍光強度算出モジュール94、蛍光緩和時間算出モジュール96、および、図6に示すミキシング処理モジュール98が用いられる。
 図8に示す処理内容を行うには、図5に示す処理内容と同じように、信号処理部42において変調信号と参照信号をミキシングしてローパスフィルタリング処理を施すことにより、差分周波数Δfの信号を算出する回路、すなわち、図8に示すRFミキサ52e及びローパスフィルタ52fが設けられた回路からの信号がAD変換ボード82を介して分析装置本体84に供給される。
 図8に示す処理内容では、まず、信号処理チャンネル4で算出された受光信号の実数部成分(Re成分)と虚数部成分(Im成分)のそれぞれを、ミキシング処理モジュール98が、上記差分周波数Δfの信号とミキシング処理して、差分周波数Δfにおける実数部成分の値(Re_Δf)と虚数部成分の値(Im_Δf)を求める。この2つの値を用いて振幅算出モジュール88は、側方散乱光の受光信号の振幅および蛍光信号の振幅を算出し、これらの振幅を側方散乱光強度および蛍光強度として出力する。また、位相算出モジュール90は、蛍光信号の実数部成分の値(Re_Δf)と虚数部成分の値(Im_Δf)から蛍光信号の位相θaを算出する。
 次に、蛍光緩和時間算出モジュール96は、算出された蛍光信号の位相θaと、予め分析装置本体84に記憶保持されている補正位相θcを用いて、θa-θcを算出することにより、補正された蛍光信号の、参照信号に対する位相遅れθを算出する。
 ここで、補正位相(補正量)θcは、分析装置本体84に予め記憶保持されている。この補正位相θcについては、図5に示す補正位相θcと同様に定められて記憶される。すなわち、既知の蛍光緩和時間で蛍光を発する既知の蛍光色素を試料12として定め、この試料12の蛍光が測定される。このとき、補正された位相遅れθa-θcから求められる蛍光緩和時間τが、蛍光色素の持つ既知の蛍光緩和時間に一致するように、補正位相θcが定められる。このように、補正位相θcは、計測結果が、既知の蛍光緩和時間に一致するように較正するための補正量である。
 なお、図8に示す処理内容では、図5に示す処理内容と異なり、位相θbを用いて位相遅れθを算出しない。この理由は、差分周波数Δfの信号を用いてミキシング処理を行って得られた蛍光信号の実数部成分の値(Re_Δf)と虚数部成分の値(Im_Δf)には、信号の伝送時間や信号処理の遅延時間によって生じる位相遅れが差し引かれた情報となっているからである。
 したがって、θa-θcを算出することにより、補正された位相遅れθを求めることができる。
 以降の処理は、図5に示す処理と同じであるのでその説明は省略する。
 こうして、分析装置本体84は、側方散乱光強度、τで補償された蛍光強度、蛍光強度、蛍光緩和時間τを算出し、算出結果を試料12の統計的処理や分析に用いる。
 このように各変形例では、位相遅れの算出のための補正を行うが、このときの補正の方法が種々異なる。
 以上、本発明の強度変調したレーザ光による蛍光検出装置および蛍光検出方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
 10 フローサイトメータ
 12 試料
 20 信号処理装置
 22 レーザ出射部
 23 レーザ光源部
 24,26 受光部
 24b 集光レンズ
 26a レンズ系
 26b1,26b2,26b3 ダイクロイックミラー
 26c1,26c2,26c3,26c4 バンドパスフィルタ
 27a,27b,27c,27d 光電変換器
 28 制御・処理部
 30 管路
 32 回収容器
 34 レーザドライバ
 40 信号生成部
 42 信号処理部
 46,47,48 発振器
 52a~52d 処理回路
 54,66,68 アンプ
 56 可変アンプ
 58 パワースプリッタ
 60,62,52e RFミキサ
 64 90度ハイブリッド位相シフタ
 70,72,52f ローパスフィルタ
 74,76 ハイパスフィルタ
 80 分析装置
 82 AD変換ボード
 84 分析装置本体
 86 FFT処理モジュール
 88 振幅算出モジュール
 90 位相算出モジュール
 92 位相遅れ算出モジュール
 94 補償された蛍光強度算出モジュール
 96 蛍光緩和時間算出モジュール
 98 ミキシング処理モジュール

Claims (17)

  1.  測定対象物にレーザ光を照射することにより測定対象物が発する蛍光を受光し、この蛍光の受光により得られる蛍光信号から、蛍光緩和時間を求める蛍光検出装置であって、
     測定対象物に照射する、強度変調されたレーザ光を出射するレーザ光源部と、
     強度変調されたレーザ光の照射によって測定対象物が発する蛍光の蛍光信号を出力する受光部と、
     前記レーザ光源部から出射するレーザ光を強度変調させるために、所定の周波数の変調信号を生成し、さらに、前記変調信号の周波数と異なる周波数を持ち、前記変調信号と同期した第1の参照信号を、前記変調信号と別に生成する信号生成部と、
     前記変調信号を用いて強度変調したレーザ光を測定対照物に照射することにより前記受光部で出力される蛍光信号と前記第1の参照信号との第1のミキシング処理を行う第1のミキサと、前記第1のミキシング処理で得られた混合信号に対して、前記変調信号の周波数と前記第1の参照信号の周波数との加算周波数より低く、前記変調信号の周波数と前記第1の参照信号の周波数との間の差分周波数より高い周波数をカットオフ周波数とする第1のローパスフィルタリング処理を行って蛍光信号ベースの低周波信号を出力する第1のローパスフィルタと、を有する信号処理部と、
     前記蛍光信号ベースの低周波信号をデジタル信号に変換し、このデジタル信号のうち、前記差分周波数に対応する第1の信号成分を用いて、前記変調信号に対する前記蛍光信号の位相を算出し、前記位相から、測定対象物の蛍光の蛍光緩和時間を求める蛍光検出部と、を有することを特徴とする強度変調したレーザ光による蛍光検出装置。
  2.  前記信号生成部は、クロック信号を生成する第1の発振器と、
     前記第1の発振器が生成した前記クロック信号に同期して前記変調信号を生成する第2の発振器と、
     前記第1の参照信号を、前記クロック信号に同期して生成する第3の発振器と、を有する請求項1に記載の蛍光検出装置。
  3.  前記蛍光検出部は、前記差分周波数を周波数に持つデジタル信号である第2の参照信号を前記蛍光信号ベースの低周波信号のデジタル信号とミキシングすることにより、前記第1の信号成分を求める請求項1または2に記載の蛍光検出装置。
  4.  前記蛍光検出部は、前記第2の参照信号を作成する請求項3に記載の蛍光検出装置。
  5.  前記信号処理部は、前記変調信号と前記第1の参照信号との第2のミキシング処理を行う第2のミキサと、前記第2のミキシング処理で得られた混合信号に対して、前記加算周波数より低く、前記差分周波数より高い周波数をカットオフ周波数とする第2のローパスフィルタリング処理により、前記差分周波数を周波数に持つ正弦波信号を出力する第2のローパスフィルタと、を有し、
     前記蛍光検出部は、前記第2のローパスフィルタから出力された前記正弦波信号をデジタル化することにより、前記第2の参照信号を生成する請求項3に記載の蛍光検出装置。
  6.  前記蛍光検出部は、前記蛍光信号ベースの低周波信号のデジタル信号に対してFFT(Fast Fourier Transformation)処理を施し、前記FFT処理により得られる、前記差分周波数に対応する実数部と虚数部の値を前記第1の信号成分として算出し、前記実数部と前記虚数部の値から前記位相を算出する請求項1または2に記載の蛍光検出装置。
  7.  前記受光部は、前記蛍光を受光する受光素子の他に、前記レーザ光による測定対象物の側方散乱光を受光する受光素子を有し、前記側方散乱光の受光により得られた受光信号を出力し、
     前記信号処理部は、前記受光信号と前記第1の参照信号との第3のミキシング処理を行う第3のミキサと、前記第3のミキシング処理で得られた混合信号に対して、前記加算周波数より低く、前記差分周波数より高い周波数をカットオフ周波数とする第3のローパスフィルタリング処理を行って受光信号ベースの低周波信号を出力する第3のローパスフィルタと、を有し、
     前記蛍光検出部は、前記受光信号ベースの低周波信号と前記第2の参照信号とのミキシング処理により、あるいは、前記受光信号ベースの低周波信号に対してFFT処理を施すことにより、前記受光信号ベースの低周波信号のうち、前記差分周波数に対応する第2の信号成分の位相を求め、この第2の信号成分の位相を基準として、前記蛍光信号の位相を補正し、補正された前記位相を用いて測定対象物の蛍光の蛍光緩和時間を求める請求項3~5のいずれか1項に記載の蛍光検出装置。
  8.  前記信号処理部は、前記変調信号と前記第1の参照信号との第2のミキシング処理を行う第2のミキサと、前記第2のミキシング処理で得られた混合信号に対して、前記加算周波数より低く、前記差分周波数より高い周波数をカットオフ周波数とする第2のローパスフィルタリング処理により、前記差分周波数を周波数に持つ正弦波信号を出力する第2のローパスフィルタと、を有し、
     前記蛍光検出部は、前記第2のローパスフィルタから出力された前記正弦波信号をデジタル化することにより、前記第2の参照信号を生成し、前記第2の参照信号の位相を、前記蛍光信号の位相から差し引くことにより、前記蛍光信号の位相を補正し、補正した前記位相を用いて測定対象物の蛍光の蛍光緩和時間を求める請求項3に記載の蛍光検出装置。
  9.  前記蛍光検出部は、前記第2の参照信号をFFT処理することにより、あるいは、別途生成された前記差分周波数を持つ正弦波信号を、前記第2の参照信号とミキシングすることにより、前記第2の参照信号の位相を求める請求項8に記載の蛍光検出装置。
  10.  前記蛍光検出部は、前記別途作成された前記差分周波数を持つ正弦波信号を、前記第2の参照信号とミキシングするとき、サイン信号およびコサイン信号のそれぞれを前記第2の参照信号とミキシングし、前記サイン信号および前記コサイン信号のそれぞれをミキシングした結果の値の比率を求めることにより、前記第2の参照信号の位相を求める請求項9に記載の蛍光検出装置。
  11.  前記蛍光検出部は、測定対象物の蛍光の蛍光緩和時間を求めるとき、予め設定された補正量を用いて前記蛍光信号の前記補正をした位相をさらに補正し、前記補正量を用いた補正後の位相を用いて測定対象物の蛍光の蛍光緩和時間を求め、
     前記補正量は、既知の蛍光緩和時間で蛍光を発する蛍光色素を測定対象物として、蛍光を測定したときに求められる前記蛍光緩和時間が、前記蛍光色素の持つ蛍光緩和時間に一致するように、求められた量である請求項8~10のいずれか1項に記載の蛍光検出装置。
  12.  前記受光部は、前記蛍光を受光する受光素子の他に、前記レーザ光による測定対象物の側方散乱光を受光する受光素子を有し、前記側方散乱光の受光により得られた受光信号を出力し、
     前記信号処理部は、前記受光信号と前記参照信号との第3のミキシング処理を行う第3のミキサと、前記第3のミキシング処理で得られた混合信号に対して、前記加算周波数より低く、前記差分周波数より高い周波数をカットオフ周波数とする第3のローパスフィルタリング処理により、前記差分周波数を周波数に持つ受光信号ベースの低周波信号を出力する第3のローパスフィルタと、を有し、
     前記蛍光検出部は、前記受光信号ベースの低周波信号の振幅を求め、
     前記蛍光検出部は、求めた前記振幅を前記側方散乱光の強度として定め、さらに、前記第1の信号成分から求まる振幅を蛍光強度として定め、前記側方散乱光の強度、前記蛍光強度および前記蛍光緩和時間を出力する請求項1または2に記載の蛍光検出装置。
  13.  測定対象物にレーザ光を照射することにより測定対象物が発する蛍光を受光し、この蛍光の受光により得られる蛍光信号から、蛍光緩和時間を求める蛍光検出方法であって、
     所定の周波数の変調信号により強度変調を受けたレーザ光を測定対象物の照射するステップと、
     レーザ光の照射された測定対象物が発する蛍光を検出手段にて受光し、前記検出手段によって得られる蛍光信号を取得するステップと、
     前記変調信号の周波数と異なる周波数を持ち、前記変調信号と位相の同期した第1の参照信号を、前記変調信号と別に生成するステップと、
     強度変調したレーザ光を測定対照物に照射することにより前記検出手段で得られた蛍光信号と前記第1の参照信号との第1のミキシング処理をし、さらに、前記変調信号の周波数と前記参照信号の周波数との加算周波数より低く、前記変調信号の周波数と前記参照信号の周波数との間の差分周波数より高い周波数をカットオフ周波数とする第1のローパスフィルタリング処理を施すことにより、蛍光信号ベースの低周波信号を生成するステップと、
     生成された前記蛍光信号ベースの低周波信号をデジタル信号に変換し、前記デジタル信号のうち、前記差分周波数に対応する第1の信号成分を用いて、前記変調信号に対する前記蛍光信号の位相を算出し、前記位相から、測定対象物の蛍光の蛍光緩和時間を求めるステップと、を有することを特徴とする強度変調したレーザ光による蛍光検出方法。
  14.  前記差分周波数を周波数に持つデジタル正弦波信号を第2の参照信号としたとき、前記第1の信号成分は、前記第2の参照信号と、前記蛍光信号ベースの低周波信号のデジタル信号とミキシング処理を行うことにより求められる請求項13に記載の蛍光検出方法。
  15.  前記蛍光信号に対して前記第1のミキシング処理と前記第1のローパスフィルタリング処理とを行う他に、前記変調信号と前記第1の参照信号との第2のミキシング処理を行い、前記第2のミキシング処理で得られた混合信号に対して、前記加算周波数より低く、前記差分周波数より高い周波数をカットオフ周波数とする第2のローパスフィルタリング処理を行って、前記差分周波数を周波数に持つ正弦波信号を出力し、
     前記第2のローパスフィルタリング処理により得られた前記正弦波信号をデジタル化することにより、前記第2の参照信号を生成する請求項14に記載の蛍光検出方法。
  16.  前記蛍光の受光のとき、前記蛍光の受光の他に、前記レーザ光による測定対象物の側方散乱光が受光され、前記側方散乱光の受光により得られる受光信号が出力され、
     前記受光信号には、前記受光信号と前記第1の参照信号との第3のミキシング処理と、前記第3のミキシング処理で得られた混合信号に対して、前記加算周波数より低く、前記差分周波数より高い周波数をカットオフ周波数とし、受光信号ベースの低周波信号を出力する第3のローパスフィルタリング処理と、が施され、
     前記受光信号ベースの低周波信号と前記差分周波数を周波数に持つデジタル正弦波信号とのミキシング処理をすることにより、あるいは、前記受光信号ベースの低周波信号に対してFFT処理を施すことにより、前記受光信号ベースの低周波信号の、前記差分周波数に対応する第2の信号成分の位相を求め、前記第2の信号成分の位相を基準として、前記蛍光信号の位相を補正し、補正後の位相を用いて測定対象物の蛍光の蛍光緩和時間を求める請求項13または14に記載の蛍光検出方法。
  17.  前記蛍光信号の位相から、測定対象物の蛍光の蛍光緩和時間を求めるとき、予め設定された補正量を用いて前記蛍光信号の位相を補正し、この補正後の位相を用いて測定対象物の蛍光の蛍光緩和時間を求め、
     前記補正量は、既知の蛍光緩和時間で蛍光を発する蛍光色素を測定対象物として、蛍光を測定したときに、前記補正後の位相から求められる前記蛍光緩和時間が、前記蛍光色素の持つ蛍光緩和時間に一致するように、求められた量である請求項13または14に記載の蛍光検出方法。
PCT/JP2009/004644 2008-09-19 2009-09-16 強度変調したレーザ光による蛍光検出装置および蛍光検出方法 WO2010032451A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2009801365467A CN102159937A (zh) 2008-09-19 2009-09-16 采用强度调制激光的荧光检测装置和荧光检测方法
EP09814296A EP2333525A4 (en) 2008-09-19 2009-09-16 FLUORESCENCE DETECTION DEVICE USING INTENSITY MODULATED LASER LIGHT AND FLUORESCENCE DETECTION METHOD
KR1020117007144A KR101236449B1 (ko) 2008-09-19 2009-09-16 강도 변조한 레이저광에 의한 형광 검출 장치 및 형광 검출 방법
JP2009540534A JP4500887B2 (ja) 2008-09-19 2009-09-16 強度変調したレーザ光による蛍光検出装置および蛍光検出方法
US13/119,696 US8415627B2 (en) 2008-09-19 2009-09-16 Fluorescence detection device using intensity-modulated laser light and fluorescence detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-240970 2008-09-19
JP2008240970 2008-09-19

Publications (1)

Publication Number Publication Date
WO2010032451A1 true WO2010032451A1 (ja) 2010-03-25

Family

ID=42039299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004644 WO2010032451A1 (ja) 2008-09-19 2009-09-16 強度変調したレーザ光による蛍光検出装置および蛍光検出方法

Country Status (6)

Country Link
US (1) US8415627B2 (ja)
EP (1) EP2333525A4 (ja)
JP (1) JP4500887B2 (ja)
KR (1) KR101236449B1 (ja)
CN (1) CN102159937A (ja)
WO (1) WO2010032451A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173252A (ja) * 2011-02-24 2012-09-10 Mitsui Eng & Shipbuild Co Ltd 蛍光分析装置および蛍光分析方法
JP2018505405A (ja) * 2015-01-14 2018-02-22 ヘリオスペクトラ アクチエボラグ 植物の生育状況決定方法及びシステム
CN115409068A (zh) * 2022-09-09 2022-11-29 武汉中科科理光电技术有限公司 一种基于流式细胞数据的分析处理方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9632030B1 (en) 2012-11-05 2017-04-25 Arrowhead Center, Inc. Methods of measuring fluorescence lifetime using a flow cytometer
JP2014115121A (ja) * 2012-12-06 2014-06-26 Sony Corp 微小粒子分析装置及び微小粒子分析方法
CN103278440A (zh) * 2013-05-14 2013-09-04 桂林优利特医疗电子有限公司 细胞散射光多位置检测方法及细胞分析仪
WO2015012004A1 (ja) * 2013-07-23 2015-01-29 ソニー株式会社 粒子分析装置及び粒子分析方法
RU2569053C2 (ru) * 2014-03-13 2015-11-20 Павел Валерьевич Горбунов Сканирующий цитометр
CN112912715B (zh) * 2018-10-25 2024-08-09 浜松光子学株式会社 光学测定装置及光学测定方法
US11275026B2 (en) * 2019-05-14 2022-03-15 Becton, Dickinson And Company Phase-calibration for imaging flow cytometry
CN114414529B (zh) * 2021-12-07 2023-09-19 广东科学技术职业学院 盐度检测方法、计算机装置及计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270548A (en) 1992-07-31 1993-12-14 The United States Of America As Represented By The United States Department Of Energy Phase-sensitive flow cytometer
US5317162A (en) 1991-05-23 1994-05-31 Becton, Dickinson And Company Apparatus and method for phase resolved fluorescence lifetimes of independent and varying amplitude pulses
US5504337A (en) 1990-10-10 1996-04-02 Joseph R. Lakowicz Method and apparatus for performing phase fluorescence lifetime measurements in flow cytometry
JP2001523830A (ja) * 1997-11-19 2001-11-27 ユニバーシティ オブ ワシントン 高処理能力光学スキャナー
JP2007240424A (ja) * 2006-03-10 2007-09-20 Mitsui Eng & Shipbuild Co Ltd Fret検出方法および装置
JP2008508506A (ja) * 2004-07-27 2008-03-21 プリシセンス エイ/エス サンプルによって光信号に誘起される位相ずれを測定する方法および装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0259973A2 (en) * 1986-09-10 1988-03-16 John E. Shulze Fluorometric sensor system using heterodyne technique
US4937457A (en) 1989-02-10 1990-06-26 Slm Instruments, Inc. Picosecond multi-harmonic fourier fluorometer
US5315122A (en) * 1992-08-25 1994-05-24 Becton, Dickinson And Company Apparatus and method for fluorescent lifetime measurement
US5757013A (en) * 1995-12-06 1998-05-26 American Research Corporation Of Virginia Fluorescence decay measurement by calculation of inner product
US5818582A (en) * 1996-09-19 1998-10-06 Ciencia, Inc. Apparatus and method for phase fluorometry
JPH11132953A (ja) * 1997-10-29 1999-05-21 Bunshi Bio Photonics Kenkyusho:Kk 蛍光寿命測定方法および装置
US6426505B1 (en) 2000-01-19 2002-07-30 University Of Maryland Biotechnology Institute Phase-modulation fluorometer and method for measuring nanosecond lifetimes using a lock-in amplifier
US20030062485A1 (en) * 2001-09-28 2003-04-03 Fernandez Salvador M. Compact multiwavelength phase fluorometer
CN2518104Y (zh) * 2002-01-23 2002-10-23 天津中钞戈德智能技术有限公司 荧光检测传感器
US7582882B2 (en) * 2003-01-23 2009-09-01 Horiba Jobin Yvon, Inc. Solid state multi frequency fluorometric measurements system and method
EP1855102B8 (en) * 2005-02-15 2012-03-14 Mitsui Engineering and Shipbuilding Co, Ltd. Fluorescence detecting device and fluorescence detecting method
EP1750116B1 (en) * 2005-08-04 2013-04-17 Axetris AG Gas concentration detection method and device
CN100494989C (zh) * 2007-01-11 2009-06-03 山西大学 微弱荧光光谱的测量方法及装置
KR101152615B1 (ko) * 2007-08-30 2012-06-07 미쯔이 죠센 가부시키가이샤 형광공명에너지이동 검출 방법 및 장치
JP4365439B2 (ja) * 2008-03-04 2009-11-18 三井造船株式会社 蛍光検出方法及び蛍光検出装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504337A (en) 1990-10-10 1996-04-02 Joseph R. Lakowicz Method and apparatus for performing phase fluorescence lifetime measurements in flow cytometry
US5317162A (en) 1991-05-23 1994-05-31 Becton, Dickinson And Company Apparatus and method for phase resolved fluorescence lifetimes of independent and varying amplitude pulses
US5270548A (en) 1992-07-31 1993-12-14 The United States Of America As Represented By The United States Department Of Energy Phase-sensitive flow cytometer
JP2001523830A (ja) * 1997-11-19 2001-11-27 ユニバーシティ オブ ワシントン 高処理能力光学スキャナー
JP2008508506A (ja) * 2004-07-27 2008-03-21 プリシセンス エイ/エス サンプルによって光信号に誘起される位相ずれを測定する方法および装置
JP2007240424A (ja) * 2006-03-10 2007-09-20 Mitsui Eng & Shipbuild Co Ltd Fret検出方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2333525A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173252A (ja) * 2011-02-24 2012-09-10 Mitsui Eng & Shipbuild Co Ltd 蛍光分析装置および蛍光分析方法
JP2018505405A (ja) * 2015-01-14 2018-02-22 ヘリオスペクトラ アクチエボラグ 植物の生育状況決定方法及びシステム
CN115409068A (zh) * 2022-09-09 2022-11-29 武汉中科科理光电技术有限公司 一种基于流式细胞数据的分析处理方法
CN115409068B (zh) * 2022-09-09 2023-09-01 武汉中科科理光电技术有限公司 一种基于流式细胞数据的分析处理方法

Also Published As

Publication number Publication date
US8415627B2 (en) 2013-04-09
US20110168916A1 (en) 2011-07-14
JPWO2010032451A1 (ja) 2012-02-09
EP2333525A4 (en) 2012-04-04
KR20110059735A (ko) 2011-06-03
CN102159937A (zh) 2011-08-17
JP4500887B2 (ja) 2010-07-14
EP2333525A1 (en) 2011-06-15
KR101236449B1 (ko) 2013-02-22

Similar Documents

Publication Publication Date Title
JP4500887B2 (ja) 強度変調したレーザ光による蛍光検出装置および蛍光検出方法
JP4489147B2 (ja) 強度変調したレーザ光による蛍光検出装置および蛍光検出方法
JP4523673B1 (ja) 蛍光検出装置及び蛍光検出方法
JP4523674B1 (ja) 蛍光検出装置及び蛍光検出方法
CN101688837B (zh) Fret检测方法及装置
JP4540751B1 (ja) 蛍光検出装置及び蛍光検出方法
KR20120130772A (ko) Fret 측정 방법 및 fret 측정 장치
JP4365379B2 (ja) Fret検出方法及び装置
JP5324487B2 (ja) 蛍光検出用較正装置、蛍光検出用較正方法、および蛍光検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136546.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009540534

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814296

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13119696

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117007144

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009814296

Country of ref document: EP