WO2010032370A1 - 伝送レート制御装置及び伝送レート制御方法 - Google Patents

伝送レート制御装置及び伝送レート制御方法 Download PDF

Info

Publication number
WO2010032370A1
WO2010032370A1 PCT/JP2009/003863 JP2009003863W WO2010032370A1 WO 2010032370 A1 WO2010032370 A1 WO 2010032370A1 JP 2009003863 W JP2009003863 W JP 2009003863W WO 2010032370 A1 WO2010032370 A1 WO 2010032370A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission rate
communication
communication terminal
rate control
target
Prior art date
Application number
PCT/JP2009/003863
Other languages
English (en)
French (fr)
Inventor
村本衛一
米田孝弘
小西一暢
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN200980136899.7A priority Critical patent/CN102160340B/zh
Priority to US13/119,296 priority patent/US8699519B2/en
Priority to JP2010529592A priority patent/JP5170798B2/ja
Publication of WO2010032370A1 publication Critical patent/WO2010032370A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control

Definitions

  • the present invention relates to a transmission rate control apparatus and a transmission rate control method for controlling a transmission rate according to a band estimated to be usable in communication via a best effort type network.
  • TFRC TCP Friendly Rate Control
  • a terminal using TFRC calculates a transmission rate X using the following equation (1) based on RTT (Round Trip Time) indicating a round trip delay time of data between terminals and a packet loss state.
  • X [bps] is a transmission rate corresponding to a band estimated to be usable in communication via the network.
  • s is the packet size [bytes]
  • R is RTT [seconds]
  • b is a constant.
  • T_RTO is a value indicating a timeout according to the TCP protocol, and 4R is used.
  • P is a loss event rate representing a packet loss situation.
  • the loss event rate P is a loss rate that is specified for the TFRC to control the transmission rate smoothly. A packet loss that occurs within one round-trip time is counted as one loss event, and the history of this loss event is recorded. Is used to calculate.
  • FIG. 8 is a graph illustrating a method of calculating a loss event rate using a loss event history disclosed in Non-Patent Document 2.
  • the vertical axis 21 shown in FIG. 8 indicates the sequential number in the packet, and the horizontal axis 22 indicates the passage of time.
  • the arrival packet ( ⁇ , Packet Arrival) plot 23 shows the time when the packet arrived at the receiving terminal and the sequential number at that time.
  • a plot 24 of a lost packet (x, Packet Lost) shows a time when a loss event occurs and a sequential number at that time.
  • the arrival packet number 25 from the latest loss represents the number of packets that have arrived at the receiving terminal since the most recent event loss occurred.
  • Loss event interval 26 1 to 26 8 represent the number of packets arriving at the receiving terminal during the loss event and loss events.
  • Weight 27 1 -27 8 shows a weight to be multiplied by the corresponding loss event interval 26.
  • Weighted event loss 28 1 to 28 8 are obtained by multiplying the loss event interval 26 and the weight 27.
  • TFRC a reciprocal of a weighted loss event interval obtained by calculating a weighted average for the loss event intervals 26 for the past eight generations is calculated as a loss event rate (P).
  • the loss event interval is obtained by (loss event interval 26 1 ⁇ weight 27 1 +... + Loss event interval 26 8 ⁇ weight 27 8 ) / (weight 27 1 +... + Weight 27 8 ).
  • the TFRC uses the weighted loss event rate calculated using the loss event history as one of the parameters to control the transmission rate to change smoothly.
  • the TFRC cannot immediately change the transmission rate to an appropriate value in response to a sudden change in the bandwidth available for communication with the destination terminal.
  • FIG. 9 is a diagram illustrating an example of a configuration of a video conference system using a best effort type network.
  • the video conference system shown in FIG. 9 is provided with terminals 11, 12, and 13 for transmitting and receiving video and audio streaming data. Each terminal sets a transmission rate using the TFRC described above.
  • the terminal 11 and the terminal 12 are communicably connected via the domestic network ND.
  • the terminal 13, the terminal 11, and the terminal 12 are connected to be communicable via the domestic network ND, the overseas line L, and the overseas network NA.
  • broadband transmission such as 10 Mbps can be realized for both the domestic network ND and the overseas network NA.
  • transmission via the overseas line L is a bottleneck due to the overseas line L, and the bandwidth of about 2 Mbps is the limit.
  • the transmission rate is set to the narrowest band among the bands used for communication between terminals.
  • each terminal sets a transmission rate according to the performance of communication through the domestic network ND, the overseas line L, and the overseas network NA.
  • the domestic network ND and the overseas network NA can each realize transmission of about 10 Mbps, while the overseas line L can only implement transmission of about 2 Mbps. Therefore, each terminal sets the transmission rate to 2 Mbps.
  • the terminal 13 interrupts the communication and switches to the two-party communication between the terminals 11 and 12 that use only the domestic network ND.
  • the terminals 11 and 12 set the transmission rate according to the performance of communication through only the domestic network ND.
  • the domestic network ND can realize transmission of about 10 Mbps.
  • the terminals 11 and 12 change the transmission rate from 2 Mbps to 10 Mbps.
  • the transmission rate is smoothly changed. Therefore, in the video conference system shown in FIG. 9, even if the bandwidth that can be used for communication between the terminals 11 and 12 suddenly increases as a result of the terminal 13 interrupting communication, the transmission rate at the terminals 11 and 12 immediately increases. Do not shift to a higher bit rate. Until the transition to the high bit rate, the available bandwidth and the transmission rate are not matched, and the network bandwidth is not fully utilized. For this reason, it is desirable that the time until the transmission rate shifts to a high bit rate is short.
  • An object of the present invention is to provide a transmission rate control device and a transmission rate control method capable of changing a transmission rate to a target bit rate in a short time when a band estimated to be usable during communication via a network changes rapidly. Is to provide.
  • the present invention is a transmission rate control device used in a transmission rate control system that controls a transmission rate according to a band estimated to be usable in communication between two communication terminals via a best effort network,
  • a communication history storage unit that stores a communication history performed via the network for each communication terminal, and a round-trip delay time calculation unit that calculates a round-trip delay time caused by communication with a predetermined communication terminal via the network;
  • the target loss event rate calculated by the predetermined communication terminal and the round-trip delay time caused by communication with the predetermined communication terminal calculated by the round-trip delay time calculation unit A target transmission rate calculation unit that calculates a target transmission rate based on the transmission rate, and a transmission that controls the transmission rate so as to change from the currently set transmission rate to the target transmission rate calculated by the target transmission rate calculation unit And a rate control unit.
  • the present invention is a transmission rate control apparatus for controlling a transmission rate according to a band estimated to be usable in communication through a best effort network, and a communication history performed through the network is stored for each communication terminal.
  • a communication history storage unit stored in the communication history, a round-trip delay time calculation unit that calculates a round-trip delay time caused by communication with the communication terminal via the network, and communication with a predetermined communication terminal recorded in the communication history Target transmission set by communication with the predetermined communication terminal based on the past transmission rate realized in step 1 and the round-trip delay time generated by the communication with the predetermined communication terminal calculated by the round-trip delay time calculation unit
  • a transmission rate comprising: a target transmission rate calculation unit that calculates a rate; and a transmission rate control unit that changes the transmission rate currently set to the target transmission rate To provide a control device.
  • the present invention is a transmission rate control method performed in a transmission rate control system that controls a transmission rate according to a band estimated to be usable in communication between two communication terminals via a best effort network,
  • a first communication terminal that communicates with a second communication terminal via the network calculates a round-trip delay time caused by communication with the second communication terminal via the network, and the second communication
  • the target loss event rate based on the past transmission rate realized by the terminal communicating with the second communication terminal performed by the first communication terminal and the round-trip delay time calculated by the first communication terminal.
  • the first communication terminal calculates a target transmission rate based on the target loss event rate calculated by the second communication terminal and the round-trip delay time, and the first communication terminal , To provide a transmission rate control method for controlling transmission rate to change to the target transmission rate from the transmission rate set in the present time.
  • the transmission rate control device and the transmission rate control method according to the present invention when the band estimated to be usable during communication via the network changes rapidly, the transmission rate is changed to the target bit rate in a short time. can do.
  • the figure which shows the communication system with which transmission terminal X1, X2 and receiving terminal Y1, Y2 were connected to the network N The block diagram which shows the internal structure of the transmission terminal X1 of 1st Embodiment.
  • a timing chart showing processing performed when a bandwidth that can be used for communication between transmitting and receiving terminals is rapidly changed.
  • the timing chart which shows the process performed when the zone
  • the graph which shows the method of calculating a loss event rate using the history of the past loss event disclosed by nonpatent literature 2
  • the figure which shows an example of a structure of the video conference system using a best effort type
  • FIG. 1 a communication system in which transmission terminals X1 and X2 that transmit streaming data and reception terminals Y1 and Y2 that receive streaming data are connected to a best effort network N. explain.
  • the transmission terminals X1 and X2 and the reception terminals Y1 and Y2 are communication terminals that use the technology of TFRC (TCP Friendly Rate Control).
  • FIG. 2 is a block diagram illustrating an internal configuration of the transmission terminal X1 according to the first embodiment.
  • the transmission terminal X1 of the first embodiment includes an encoder 101, a redundant code processing unit (FEC processing unit) 103, a packet processing unit 105, a buffer 107, a packet transmission unit 109, Control packet reception unit 111, RTT calculation unit 113, communication history storage unit 115, transmission rate calculation unit 117, control unit 119, call monitoring unit 121, change method determination unit 123, and temporary transmission rate notification unit 125, an ARQ unit 127, and a clock 129.
  • FEC processing unit redundant code processing unit
  • Encoder 101 encodes content data such as video and audio according to a predetermined encoding rate.
  • the redundant code processing unit 103 generates a redundant code for the receiving terminal Y1 to perform error detection or error correction such as FEC (Forward Error Correction) from the content data encoded by the encoder 101. Further, the redundant code processing unit 103 adds the generated redundant code to the content data encoded by the encoder 101 and outputs the content data.
  • FEC Forward Error Correction
  • the redundant code described above is a code by an XOR operation, a Reed-Solomon code, or the like. Further, the redundant code generation by the redundant code processing unit 103 may be performed on a packet obtained by the packet processing unit 105 described later. Further, the generated redundant code may be combined into one packet together with the encoded content data, or may be provided in a packet different from the encoded content data packet.
  • the packet processing unit 105 packetizes the data in which the redundant code is added to the content data encoded by the encoder 101, and stores the created packet in the buffer 107.
  • the buffer 107 temporarily stores packets before being sent to the network N. When packets are stored in the buffer 107, they may be stored in the order in which encoded content or redundant codes are generated, or may be stored interleaved.
  • the packet transmission unit 109 transmits the packet stored in the buffer 107 to the network N at the transmission rate instructed by the control unit 119.
  • the transmission terminal X1 uses the round trip delay time (hereinafter referred to as “RTT”) generated by communication between the transmission and reception terminals via the network N.
  • RTP Round trip delay time
  • Information indicating the packet transmission time Tx is given.
  • a packet to which information indicating the transmission time Tx is added is an RTP (Real-time Transport Protocol) packet including content data.
  • the packet to which the information indicating the transmission time Tx is added is an RTCP (Real-time Transport Control Protocol) packet for controlling the transmission of the RTP packet, or another control packet.
  • the transmission time Tx is obtained from the clock 129 provided in the transmission terminal X.
  • the control packet receiver 111 receives the receiver report and feedback packet transmitted from the receiving terminal Y1.
  • the receiver report is an RTCP packet including information on the loss event rate P calculated by the receiving terminal Y1. Further, the transmission time Tx transmitted from the transmission terminal X is given to the feedback packet.
  • the receiver report may include the transmission time Tx transmitted from the transmission terminal X.
  • the communication history storage unit 115 stores a communication history including the maximum value, the minimum value, and the average value of the transmission rate, loss rate, loss event rate, and round-trip delay time (RTT) of communication with each communication terminal performed in the past. Store for each communication terminal.
  • the communication history storage unit 115 may record a loss rate, a loss event rate, and a dispersion rate related to the RTT.
  • the statistical value recorded in the communication history storage unit 115 does not need to be a statistical value of the entire communication time of each communication terminal, and even if it is a statistical value during a predetermined time before communication disconnection, the communication time zone It may be a statistical value for each.
  • the transmission rate calculation unit 117 uses the equation (1) described in the background art based on the RTT calculated by the RTT calculation unit 113, the loss event rate P included in the receiver report received by the control packet reception unit 111, and the like. Calculate the transmission rate.
  • the control unit 119 instructs the packet transmission unit 109 to transmit packets at the transmission rate calculated by the transmission rate calculation unit 117.
  • the call monitoring unit 121 monitors the connection status with the communication terminal with which the transmission terminal X1 communicates via the network N.
  • the call monitoring unit 121 determines whether or not there is a possibility that the bandwidth that can be used in communication with the receiving terminal Y1 may change suddenly.
  • the change method determination unit 123 is controlled to operate. Specifically, it is determined that the available bandwidth changes drastically triggered by the addition or deletion of a call connection destination terminal or a rapid change in RTT. For example, as described in the explanation of the background art, when communication with a terminal of an overseas network is completed, started, or when the RTT is suddenly shortened or increased due to line switching or the like, use Judge that the possible bandwidth changes rapidly.
  • the change method determination unit 123 includes a transmission rate maximum value (hereinafter referred to as “past transmission rate”) Xp included in the communication history with the receiving terminal Y1 recorded in the communication history storage unit 115, and the current transmission rate. Based on the above, the change policy CP is determined.
  • the past transmission rate is not limited to the maximum value of the transmission rate, and may be an average value.
  • the past transmission rate may be the maximum value or the average value of the loss event rate included in the communication history with the receiving terminal Y1 recorded in the communication history storage unit 115.
  • the past transmission rate may be obtained by substituting the round trip time (RTT) calculated by the RTT calculation unit 113 into the equation (1).
  • the change policy CP indicates how the current transmission rate is changed to the past transmission rate Xp.
  • the linear bit rate change is represented as a change policy CP_PROP.
  • the linear bit rate change is, for example, a change in which the transmission rate is increased or decreased step by step for each RTT.
  • the steady bit rate change is expressed as a change policy CP_CBR.
  • the bit rate change form differs between when the transmission rate is increased and when it is decreased, it is expressed as a change policy CP_AIMD.
  • the change in the bit rate having a different form is, for example, a change in which the change policy CP_CBR is applied when the transmission rate is increased and the change policy CP_PROP is applied when the transmission rate is decreased.
  • the change method determining unit 123 determines one of these three change policies CP according to the difference between the current transmission rate and the past transmission rate Xp. For example, the change method determination unit 123 selects the change policy CP_PROP when the difference is greater than a predetermined value, and selects the change policy CP_CBR when the difference is less than or equal to the predetermined value. Note that the change method determining unit 123 may determine a change policy set in advance.
  • the change method determining unit 123 determines the time Tr required to change from the current transmission rate to the past transmission rate Xp according to the sign of the value obtained by subtracting the current transmission rate from the past transmission rate Xp.
  • the sign of the value is positive, that is, when the transmission rate is increased
  • the change method determining unit 123 is n times the round-trip delay time R calculated by the RTT calculating unit 113 (n is a positive integer and constant). Is set to the required time Tr.
  • the sign of the value is negative, that is, when the transmission rate is lowered, the change method determination unit 123 sets log (n) times the round-trip delay time R as the required time Tr.
  • the temporary transmission rate notifying unit 125 transmits the past transmission rate Xp read from the communication history storage unit 115, the change policy CP determined by the change method determining unit 123, and the required time Tr to the receiving terminal Y1. Further, the temporary transmission rate notifying unit 125 transmits information related to the round trip delay time R calculated by the RTT calculating unit 113 to the receiving terminal Y1.
  • the ARQ unit 127 accepts an RTP packet retransmission request (NAK) sent from the receiving terminal Y1. If the packet indicated by the accepted NAK is stored in the buffer 107, the ARQ unit 127 instructs the packet transmission unit 109 to retransmit the packet to the receiving terminal Y1.
  • NAK RTP packet retransmission request
  • the packet receiving unit 201 receives a packet transmitted from the transmission terminal X via the network N.
  • the buffer 203 temporarily stores packets received by the packet receiving unit 201.
  • the packet processing unit 205 reads the packet from the buffer 203 and extracts the encoded content data and redundant code.
  • the redundant code processing unit 207 periodically performs error detection or error correction of the encoded content data using the read redundant code.
  • the decoder 209 decodes the encoded content data after error detection or error correction.
  • the situation monitoring unit 211 uses the function of detecting the occurrence of a loss event defined in RFC 3448 shown in Non-Patent Document 1, and based on the packets stored in the buffer 203, the situation monitoring unit 211 Monitor arrival status.
  • the situation monitoring unit 211 records in the communication history storage unit 213 the loss event interval c (k) obtained from the time at which the loss event occurred and the sequential number at that time.
  • the time when the loss event occurs is obtained from the clock 229 provided in the receiving terminal Y1.
  • FIG. 8 described in the background art is also a graph showing an example of the history of loss events at the receiving terminal Y1.
  • the communication history storage unit 213 stores the loss event interval c (k) output from the situation monitoring unit 211 as a communication history for each communication terminal. Further, the communication history storage unit 213 stores information on the eight generation weights W (1) to W (8) used in the temporary loss event interval calculation unit 217 and the loss event rate calculation unit 221. Incidentally, the weight is the same as the weight 27 1 -27 8 shown in FIG.
  • the target loss event rate calculation unit 215 calculates the target loss event rate TP using the following equation (2) from the past transmission rate Xp and the round trip time (RTT) R sent from the transmission terminal X1.
  • RTT round trip time
  • a transmission rate between the current transmission rate and the past transmission rate Xp is used as the parameter Xp substituted in the following equation (2).
  • the temporary loss event interval calculation unit 217 uses the calculated target loss event rate TP and the eight generation weights W (1) to W (8) to generate temporary loss event intervals tc (1) to tc (1) to eight generations. tc (8) is calculated by equation (3). The temporary loss event interval calculation unit 217 reads the eight generation weights W (1) to W (8) from the communication history storage unit 213.
  • Tc (k) in the above equation (3) is a temporary loss event interval of the kth generation.
  • W (k) is a weight assigned to the kth generation.
  • AW is the sum of weights W (1) to W (8) assigned to the first to eighth generations. Note that the symbol [] in equation (3) is a Gaussian symbol. [x] represents the maximum integer less than or equal to the real number x.
  • the call monitoring unit 219 monitors the connection status with the communication terminal with which the receiving terminal Y1 communicates via the network N.
  • the call monitoring unit 219 determines whether or not there is a possibility that the bandwidth that can be used for communication with the transmission terminal X1 may change suddenly.
  • the loss event interval used by the event rate calculation unit 221 is switched.
  • the loss event rate calculation unit 221 calculates, as the loss event rate P, the reciprocal of the weighted loss event interval obtained by taking a weighted average with respect to the loss event intervals for eight generations.
  • Loss event intervals for eight generations used as one of the parameters by the loss event rate calculation unit 221 are loss event intervals c (1) to c (8) for eight generations recorded in the communication history storage unit 213. .
  • the loss event intervals for 8 generations are temporary loss event intervals tc (1) to tc (8) for 8 generations calculated by the temporary loss event interval calculation unit 217.
  • the eight generation weights W (1) to W (8) are read from the communication history storage unit 213.
  • the loss event rate calculation unit 221 normally calculates the loss event rate P using the loss event intervals c (1) to c (8) for eight generations recorded in the communication history storage unit 213. However, if the call monitoring unit 219 determines that the bandwidth available for communication with the transmission terminal X1 has changed abruptly, the temporary loss event interval tc for eight generations calculated by the temporary loss event interval calculation unit 217. (1) to tc (8) are used. Therefore, the loss event rate calculation formula at the normal time is the following formula (4), and the loss event rate calculation formula when the band is rapidly changed is the following formula (5).
  • the receiver report generation unit 223 generates a receiver report including the loss event rate P calculated by the loss event rate calculation unit 221.
  • the control packet transmission unit 225 transmits the receiver report generated by the receiver report generation unit 223 to the transmission terminal X1 in the form of an RTCP packet every time a loss event occurs or periodically (for example, every RTT). Further, the control packet transmission unit 225 transmits a feedback packet to which information indicating the transmission time Tx is added to the transmission terminal X1 according to the packet including the transmission time Tx transmitted from the transmission terminal X1.
  • the ARQ unit 227 detects the loss of the RTP packet transmitted from the transmission terminal X1 from the difference between the sequential numbers of the packets stored in the buffer 203.
  • the ARQ unit 227 transmits a retransmission request (NAK) of the detected lost packet to the transmission terminal X1, and registers the retransmission request process to count the time.
  • NAK retransmission request
  • the ARQ unit 227 retransmits the retransmission request, registers the retransmission request process, and counts the time again.
  • the ARQ unit 227 stops counting the time and cancels the registered retransmission request process.
  • the loss event rate calculation unit 221 uses the temporary loss event intervals tc (1) to tc (8) for eight generations calculated in step S107 and the weights W (1) to W (8) for eight generations, A target loss event rate P is calculated (step S109).
  • the target loss event rate P calculated in step S109 is transmitted to the transmission terminal X1 (step S111).
  • the transmission rate calculation unit 117 calculates the target transmission rate using the target loss event rate P, the round trip delay time (RTT) R, and the like (step S113).
  • the control unit 119 changes the transmission rate so as to send the packet at the target transmission rate calculated in step S113 (step S115).
  • the loss event interval c (k) is included in the receiver report received by the control packet reception unit 301 of the present embodiment.
  • the loss event interval c (k) is recorded in the communication history storage unit 115.
  • the loss event rate P is not included in the receiver report, and the loss event rate P is calculated by the loss event rate calculation unit 311 included in the transmission terminal X2.
  • the value that the transmission rate calculation unit 303 of this embodiment substitutes for the loss event rate P which is one of the parameters of Expression (1), is the value calculated by the loss event rate calculation unit 311.
  • the call monitoring unit 305 provided in the transmission terminal X2 monitors the connection status with the communication terminal with which the transmission terminal X2 communicates via the network N.
  • the call monitoring unit 305 determines whether or not the bandwidth available for communication with the receiving terminal Y2 has changed abruptly. Further, the call monitoring unit 305 switches the loss event interval used by the loss event rate calculation unit 311 by controlling the change method determination unit 123 to operate when the band changes rapidly.
  • FIG. 6 is a block diagram showing an internal configuration of the receiving terminal Y2 of the second embodiment.
  • the receiving terminal Y2 in FIG. 6 includes a packet receiving unit 201, a buffer 203, a packet processing unit 205, a redundant code processing unit (FEC processing unit) 207, a decoder 209, a situation monitoring unit 401, a receiver report generation unit 403, and a control packet transmission.
  • FIG. 6 the same reference numerals are given to components common to FIG. 3 that shows the receiving terminal Y ⁇ b> 1 of the first embodiment.
  • the status monitoring unit 401 included in the receiving terminal Y2 monitors the arrival status of the packet transmitted from the transmitting terminal X2 based on the packet stored in the buffer 203, as in the first embodiment. However, the status monitoring unit 401 according to the present embodiment sends the loss event interval c (k) obtained from the time when the loss event occurs and the sequential number at that time to the receiver report generation unit 403.
  • the recipient report generation unit 403 included in the reception terminal Y2 generates a recipient report including the loss event interval c (k) obtained from the situation monitoring unit 401.
  • FIG. 7 is a timing chart illustrating processing performed when it is determined in the communication system according to the second embodiment that a bandwidth that can be used for communication between transmission and reception terminals changes rapidly.
  • the change method determination unit 123 of the transmission terminal X2 determines the change policy CP and the required time Tr (step S201).
  • the target loss event rate calculation unit 307 calculates the target loss event rate TP (step S203).
  • the temporary loss event interval calculation unit 309 calculates 8 generations of temporary loss event intervals tc (1) to tc (8) (step S205).
  • the loss event rate calculation unit 311 uses the temporary loss event intervals tc (1) to tc (8) for eight generations calculated in step S205 and the weights W (1) to W (8) for the eight generations, A target loss event rate P is calculated (step S207).
  • the transmission rate realized in the past is used. After generating a history of loss event intervals, transmission rate control using TFRC is performed. Therefore, the transmission rate can be changed to the target bit rate in a short time.
  • the transmission terminals X1 and X2 of the above embodiment include the redundant code processing unit 103 and the ARQ unit 127, and the reception terminals Y1 and Y2 include the redundant code processing unit 207 and the ARQ unit 227.
  • the redundant code processing unit 103 included in the transmission terminals X1 and X2 generates a redundant code from the encoded content data, assigns it to the encoded content data, and outputs it.
  • the redundant code processing unit 207 of the receiving terminals Y1 and Y2 periodically performs error detection or error correction of the encoded content data using the read redundant code.
  • the ARQ unit 127 included in the transmission terminals X1 and X2 accepts the retransmission request (NAK) of the RTP packet sent from the reception terminals Y1 and Y2. If the packet indicated by the received NAK is stored in the buffer 107, the ARQ unit 127 instructs the packet transmission unit 109 to retransmit the packet to the receiving terminals Y1 and Y2. In addition, the ARQ unit 227 included in the receiving terminals Y1 and Y2 detects the loss of the RTP packet transmitted from the transmitting terminals X1 and X2 from the difference in the sequential numbers of the packets stored in the buffer 203.
  • NAK retransmission request
  • the ARQ unit 227 transmits the detected retransmission request (NAK) of the lost packet to the transmission terminals X1 and X2, registers the retransmission request process, and counts the time.
  • the ARQ unit 227 retransmits the retransmission request when the count of this time becomes larger than the round trip time between the transmission terminal X1 and the reception terminal Y1, or when the count becomes larger than the round trip time between the transmission terminal X2 and the reception terminal Y2. Furthermore, the ARQ unit 227 registers the retransmission request process and counts the time again.
  • the ARQ unit 227 stops counting the time and cancels the registered retransmission request process.
  • the redundant code processing unit 103 when the redundant code processing unit 103 of the transmission terminals X1 and X2 generates the redundant code, the redundant code processing unit 103 generates a redundant code corresponding to the content data amount in response to an instruction from the control unit 119. Change the length.
  • the length of the redundant code with respect to the content data amount will be described as “redundant code strength”. For example, when the strength of the redundant code is 25%, the redundant code processing unit 103 generates a redundant code having a length that is 1 ⁇ 4 of the content data amount. Further, increasing the strength of the redundant code means changing the strength of the redundant code from 25% to 50%, for example.
  • the call monitoring units 121 and 305 of the transmission terminals X1 and X2 determine that the bandwidth that can be used for communication with the reception terminals Y1 and Y2 changes rapidly.
  • the control unit 119 instructs the redundant code processing unit 103 to generate a redundant code with a redundant code strength different from that of the normal time.
  • the strength of the redundant code at this time may be increased or decreased according to the change policy CP and the transmission rate control. Note that the control unit 119 instructs the redundant code processing unit 103 to restore the strength of the redundant code after the required time Tr determined by the change method determining unit 123 has elapsed.
  • the target loss event rate calculation unit 215 of the receiving terminal Y1 receives the change policy CP.
  • the target loss event rate calculation unit 215 changes the time for which packets are temporarily stored in the buffer 203 of the receiving terminal Y1 (reception allowable delay time) during the required time Tr.
  • the target loss event rate calculation unit 215 receives the change policy CP that rapidly increases the transmission rate, the probability of occurrence of packet loss increases, so that the reception terminal Y1 has an increased opportunity to make a retransmission request to the transmission terminal X1.
  • the allowable reception delay time is extended. As a result, retransmission is performed a plurality of times, and support for occurrence of packet loss can be increased.
  • the transmission rate control device is useful as a communication terminal or the like that changes a transmission rate to a target bit rate in a short time when a band that is estimated to be usable during communication via a network suddenly changes. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Communication Control (AREA)

Abstract

 ベストエフォート型のネットワークを介して第2の通信端末と通信を行う第1の通信端末は、通信履歴を通信端末毎に記憶する通信履歴記憶部と、第2の通信端末との通信で生じた往復遅延時間を算出する往復遅延時間算出部とを備える。第2の通信端末は、通信履歴に記録されている第2の通信端末との通信で実現された過去伝送レートと、第2の通信端末との通信で生じた往復遅延時間とに基づいて、第1の通信端末が第2の通信端末との通信で設定する目標損失イベント率を算出する目標損失イベント率算出部を備える。第1の通信端末は、前記目標損失イベント率と前記往復遅延時間とに基づいて算出した目標伝送レートに、現時点で設定されている伝送レートから変更する。当該伝送レート制御装置によれば、ネットワークを介した通信中に利用可能と推定される帯域が急激に変化すると判断したとき、伝送レートを短時間で目標のビットレートに変更できる。

Description

伝送レート制御装置及び伝送レート制御方法
 本発明は、ベストエフォート型のネットワークを介した通信で利用可能と推定される帯域に応じて、伝送レートを制御する伝送レート制御装置及び伝送レート制御方法に関する。
 近年、インターネットに代表されるベストエフォート型のネットワークを介して、映像や音声等のストリーミングデータを送信端末から受信端末に実時間的に伝送する技術が普及しつつある。ベストエフォート型のネットワークを介したデータ伝送では、送信端末で設定された伝送レートがネットワーク帯域より大きいと、ネットワーク上で輻輳が発生する。このため、送信端末は、宛先端末との間のネットワークの混雑状況や回線状況等によって変化する利用可能な帯域に応じて、ストリーミングデータの伝送レートを変更する。
 ベストエフォート型のネットワークを介したリアルタイム系のデータ伝送に特化した輻輳制御技術として、非特許文献1に開示されたTFRC(TCP Friendly Rate Control)が知られている。TFRCを利用する端末は、端末間のデータの往復遅延時間を示すRTT(Round Trip Time)及びパケットの損失状況等より、下記の式(1)用いて伝送レートXを算出する。
Figure JPOXMLDOC01-appb-M000001
 上記式(1)中のX[bps]は、ネットワークを介した通信で利用可能と推定される帯域に応じた伝送レートである。sはパケットサイズ[byte]、RはRTT[秒]、bは定数である。T_RTOは、TCPプロトコルによるタイムアウトを示す値であり、4Rが用いられる。Pは、パケット損失状況を表す損失イベント率である。損失イベント率Pとは、TFRCが滑らかな伝送レートの制御を行うために規定された損失率であり、1往復時間以内に発生するパケット損失を1損失イベントとカウントし、この損失イベントの履歴を用いて算出される。
 図8は、非特許文献2に開示された、損失イベントの履歴を用いて損失イベント率を計算する方法を示すグラフである。図8に示す縦軸21は、パケット中のシーケンシャル番号を示し、横軸22は時間の経過を示す。到着パケット(□,Packet Arrival)のプロット23は、受信端末にパケットが到着した時刻とそのときのシーケンシャル番号を示す。損失パケット(×,Packet Lost)のプロット24は、損失イベントが発生した時刻とそのときのシーケンシャル番号を示す。
 直近の損失からの到着パケット数25は、直近のイベント損失発生以降、受信端末に到着したパケット数を表す。損失イベント間隔26~26は、損失イベントと損失イベントの間に受信端末に到着したパケット数を表す。重み27~27は、対応する損失イベント間隔26に乗算する重みを示す。重み付きイベント損失28~28は、損失イベント間隔26と重み27を乗算して得られる。
 TFRCでは、図8に示すように、過去8世代分の損失イベント間隔26に対する加重平均をとった重み付きの損失イベント間隔の逆数が、損失イベント率(P)として算出される。なお、損失イベント間隔は、(損失イベント間隔26×重み27+…+損失イベント間隔26×重み27)/(重み27+…+重み27)で求める。このように、TFRCは、損失イベントの履歴を用いて算出される重み付きの損失イベント率をパラメータの1つとして用いることで、伝送レートが滑らかに変化するよう制御している。しかし、逆の見方をすれば、TFRCは、宛先端末との間の通信で利用可能な帯域の急激な変化に対して、即座に伝送レートを適当な値に変更できない。
 上記説明した技術は、例えばテレビ会議システムに用いられる。図9は、ベストエフォート型のネットワークを利用したテレビ会議システムの構成の一例を示す図である。図9に示すテレビ会議システムには、映像や音声のストリーミングデータを送受信する端末11,12,13が設けられている。各端末は、上記説明したTFRCを用いて伝送レートを設定する。
 端末11と端末12とは、国内ネットワークNDを介して通信可能に接続されている。また、端末13と端末11及び端末12とは、国内ネットワークND、海外線L及び海外ネットワークNAを介して通信可能に接続されている。なお、以下に示す例では、国内ネットワークND及び海外ネットワークNAとも例えば10Mbpsといった広帯域の伝送を実現できる。但し、海外線Lを介した伝送は、海外線Lがボトルネックとなり、2Mbps程度の帯域が限界である。
 このテレビ会議システムでは、端末間の通信で利用されている帯域の内、最も狭い帯域に合わせて伝送レートが設定される。例えば、端末11,12,13が3者間通信を行う際、各端末は、国内ネットワークND、海外線L及び海外ネットワークNAを介した通信の実績に合わせて伝送レートを設定する。本例では、国内ネットワークND及び海外ネットワークNAはそれぞれ10Mbps程度の伝送を実現できる一方、海外線Lは2Mbps程度の伝送しか実現できない。したがって、各端末は、伝送レートを2Mbpsに設定する。
 端末11,12,13による3者間通信が行われている状況で、端末13が通信を中断し、国内ネットワークNDのみを利用する端末11,12の2者間通信に切り替わったと想定する。このとき、端末11,12は、国内ネットワークNDのみを介した通信の実績に合わせて伝送レートを設定する。本例では、国内ネットワークNDは10Mbps程度の伝送を実現できる。このため、端末11,12は、伝送レートを2Mbpsから10Mbpsに変更する。
日本国特開2004-72720号公報
M.Handley他著,「TCP Friendly Rate Control(TFRC):Protocol Specification」,RFC 3448,2003年1月,p.1-24 S.Floyd他著,「Equation-Based Congestion Control for Unicast Applications」,2000年8月,p.1-14
 上述したように、TFRCを用いた伝送レートの制御では、伝送レートは滑らかに変更される。したがって、図9に示したテレビ会議システムにおいて、端末13が通信を中断した結果、端末11,12間の通信で利用可能な帯域が急激に上がっても、端末11,12における伝送レートは即座に高ビットレートに移行しない。高ビットレートに移行するまでの間は、前記利用可能な帯域と伝送レートとの整合性がとれておらず、当該ネットワーク帯域を充分に活用できていない状態である。このため、伝送レートが高ビットレートに移行するまでの時間は短い方が望ましい。
 なお、利用可能な帯域が急激に上がったとき、伝送レートの制御にTFRCを用いず、伝送レートを急激に高ビットレートに移行すると、パケットが輻輳して想定以上のパケット損失が発生する。その結果、受信端末における映像や音声に乱れが生じる。
 本発明の目的は、ネットワークを介した通信中に利用可能と推定される帯域が急激に変化するとき、伝送レートを短時間で目標のビットレートに変更可能な伝送レート制御装置及び伝送レート制御方法を提供することである。
 本発明は、ベストエフォート型のネットワークを介した2つの通信端末間の通信で利用可能と推定される帯域に応じて伝送レートを制御する伝送レート制御システムで用いられる伝送レート制御装置であって、前記ネットワークを介して行った通信履歴を通信端末毎に記憶する通信履歴記憶部と、前記ネットワークを介した所定の通信端末との通信で生じた往復遅延時間を算出する往復遅延時間算出部と、前記通信履歴に記録されている前記所定の通信端末との通信で実現された過去伝送レート、及び前記往復遅延時間算出部が算出した前記所定の通信端末との通信で生じた往復遅延時間に基づいて前記所定の通信端末が算出した目標損失イベント率と、前記往復遅延時間算出部が算出した前記所定の通信端末との通信で生じた往復遅延時間と、に基づいて目標伝送レートを算出する目標伝送レート算出部と、前記現時点で設定されている伝送レートから前記目標伝送レート算出部が算出した目標伝送レートに変更するよう伝送レートを制御する伝送レート制御部と、を備えた伝送レート制御装置を提供する。
 本発明は、ベストエフォート型のネットワークを介した通信で利用可能と推定される帯域に応じて伝送レートを制御する伝送レート制御装置であって、前記ネットワークを介して行った通信履歴を通信端末毎に記憶する通信履歴記憶部と、前記ネットワークを介した通信端末との通信で生じた往復遅延時間を算出する往復遅延時間算出部と、前記通信履歴に記録されている所定の通信端末との通信で実現された過去伝送レートと、前記往復遅延時間算出部が算出した前記所定の通信端末との通信で生じた往復遅延時間とに基づいて、前記所定の通信端末との通信で設定する目標伝送レートを算出する目標伝送レート算出部と、現時点で設定されている伝送レートから前記目標伝送レートに変更する伝送レート制御部と、を備えた伝送レート制御装置を提供する。
 本発明は、ベストエフォート型のネットワークを介した2つの通信端末間の通信で利用可能と推定される帯域に応じて伝送レートを制御する伝送レート制御システムで行われる伝送レート制御方法であって、前記ネットワークを介して第2の通信端末と通信を行う第1の通信端末が、前記ネットワークを介した前記第2の通信端末との通信で生じた往復遅延時間を算出し、前記第2の通信端末が、前記第1の通信端末が行った当該第2の通信端末との通信で実現された過去伝送レート、及び前記第1の通信端末で算出された往復遅延時間に基づいて目標損失イベント率を算出し、前記第1の通信端末が、前記第2の通信端末で算出された目標損失イベント率と、前記往復遅延時間とに基づいて目標伝送レートを算出し、前記第1の通信端末が、前記現時点で設定されている伝送レートから前記目標伝送レートに変更するよう伝送レートを制御する伝送レート制御方法を提供する。
 本発明は、ベストエフォート型のネットワークを介した通信で利用可能と推定される帯域に応じて伝送レートを制御する伝送レート制御方法であって、前記ネットワークを介した通信端末との通信で生じた往復遅延時間を算出し、所定の通信端末との通信で実現された過去伝送レートと、前記所定の通信端末との通信で生じた往復遅延時間とに基づいて、前記所定の通信端末との通信で設定する目標伝送レートを算出し、現時点で設定されている伝送レートから前記目標伝送レートに変更する伝送レート制御方法を提供する。
 本発明に係る伝送レート制御装置及び伝送レート制御方法によれば、ネットワークを介した通信中に利用可能と推定される帯域が急激に変化したとき、伝送レートを短時間で目標のビットレートに変更することができる。
送信端末X1,X2及び受信端末Y1,Y2がネットワークNに接続された通信システムを示す図 第1の実施形態の送信端末X1の内部構成を示すブロック図 第1の実施形態の受信端末Y1の内部構成を示すブロック図 第1の実施形態の通信システムにおいて、送受信端末間の通信で利用可能な帯域が急激に変化した際に行われる処理を示すタイミングチャート 第2の実施形態の送信端末X2の内部構成を示すブロック図 第2の実施形態の受信端末Y2の内部構成を示すブロック図 第2の実施形態の通信システムにおいて、送受信端末間の通信で利用可能な帯域が急激に変化した際に行われる処理を示すタイミングチャート 非特許文献2に開示された、過去の損失イベントの履歴を用いて損失イベント率を計算する方法を示すグラフ ベストエフォート型のネットワークを利用したテレビ会議システムの構成の一例を示す図
 以下、本発明の実施形態について、図面を参照して説明する。なお、本実施形態では、図1に示すように、ストリーミングデータを送信する送信端末X1,X2及びストリーミングデータを受信する受信端末Y1,Y2が、ベストエフォート型のネットワークNに接続された通信システムについて説明する。なお、送信端末X1,X2及び受信端末Y1,Y2は、TFRC(TCP Friendly Rate Control)の技術を利用する通信端末である。
(第1の実施形態)
 図2は、第1の実施形態の送信端末X1の内部構成を示すブロック図である。図2に示すように、第1の実施形態の送信端末X1は、エンコーダ101と、冗長符号処理部(FEC処理部)103と、パケット処理部105と、バッファ107と、パケット送信部109と、制御パケット受信部111と、RTT算出部113と、通信履歴記憶部115と、伝送レート算出部117と、制御部119と、呼監視部121と、変更方法決定部123と、一時伝送レート通知部125と、ARQ部127と、クロック129とを備える。
 エンコーダ101は、所定の符号化レートに応じて映像や音声等のコンテンツデータの符号化を行う。冗長符号処理部103は、エンコーダ101で符号化されたコンテンツデータから、受信端末Y1がFEC(Forward Error Correction)等の誤り検出、又は誤り訂正を行なうための冗長符号を生成する。さらに、冗長符号処理部103は、この生成した冗長符号を、エンコーダ101で符号化されたコンテンツデータに付与して出力する。
 上記説明した冗長符号は、XOR演算による符号やリードソロモン符号等である。また、冗長符号処理部103による冗長符号の生成は、後述するパケット処理部105によって得られたパケットに対して行っても良い。さらに、生成された冗長符号は、符号化されたコンテンツデータと共にひとつのパケットに合成されても、符号化されたコンテンツデータのパケットとは別のパケットに設けられても良い。
 パケット処理部105は、エンコーダ101で符号化されたコンテンツデータに冗長符号が付加されたデータをパケット化し、作成したパケットをバッファ107に格納する。バッファ107は、ネットワークNに送出される前のパケットを一時蓄積する。なお、バッファ107にパケットを蓄積する際には、符号化されたコンテンツや冗長符号が生成された順に蓄積しても、インターリーブして蓄積しても良い。
 パケット送信部109は、バッファ107に蓄積されたパケットを、制御部119から指示された伝送レートでネットワークNに送出する。なお、パケット送信部109が送信する一部のパケットには、ネットワークNを介した送受信端末間の通信で生じた往復遅延時間(以下「RTT」という。)を送信端末X1が計測するために用いられる、パケットの送信時刻Txを示す情報が付与される。送信時刻Txを示す情報が付与されるパケットは、コンテンツデータを含むRTP(Real-time Transport Protocol)パケットである。また、送信時刻Txを示す情報が付与されるパケットは、RTPパケットの伝送を制御するためのRTCP(Real-time Transport Control Protocol)パケット、またはその他の制御用パケット等である。なお、送信時刻Txは、送信端末Xが備えるクロック129から得られる。
 制御パケット受信部111は、受信端末Y1から送信された受信者レポート及びフィードバックパケットを受信する。受信者レポートは、受信端末Y1で算出された損失イベント率Pに関する情報を含むRTCPパケットである。また、フィードバックパケットには、送信端末Xから送信された送信時刻Txが付与されている。なお、受信者レポートには、送信端末Xから送信された送信時刻Txを含めても良い。
 RTT算出部113は、制御パケット受信部111が受信したフィードバックパケットの受信時刻Rxと、このフィードバックパケットに付与されている送信時刻Txとの差分(=Rx-Tx)を、RTTとして算出する。
 通信履歴記憶部115は、過去に行った各通信端末との通信の伝送レート、損失率、損失イベント率及び往復遅延時間(RTT)の各々の最大値、最小値及び平均値を含む通信履歴を通信端末毎に記憶する。なお、通信履歴記憶部115には、損失率、損失イベント率及びRTTのそれぞれに関する分散率が記録されていても良い。また、通信履歴記憶部115に記録される統計値は、各通信端末の通信時間全体の統計値である必要はなく、通信切断前の所定時間の間の統計値であっても、通信時間帯毎の統計値であっても良い。
 伝送レート算出部117は、RTT算出部113が算出したRTT、及び制御パケット受信部111が受信した受信者レポートに含まれる損失イベント率P等より、背景技術で説明した式(1)を用いて伝送レートを算出する。制御部119は、伝送レート算出部117が算出した伝送レートでパケットを送出するようパケット送信部109に指示する。
 呼監視部121は、送信端末X1がネットワークNを介して通信を行う通信端末との接続状況を監視する。呼監視部121は、受信端末Y1との通信で利用可能な帯域が急激に変化する可能性があるか否かを判断し、当該帯域が急激に変化すると判断した場合には、次に説明する変更方法決定部123が動作するよう制御する。具体的には、呼接続先の端末の追加、削除、やRTTの急激な変化を契機として、利用可能な帯域が急激に変化すると判断する。例えば、背景技術の説明で述べたように、海外ネットワークの端末との通信が終了したときや、開始されたとき、回線切替などの理由によって急激にRTTが短縮した場合や増加した場合は、利用可能な帯域が急激に変化すると判断する。
 変更方法決定部123は、通信履歴記憶部115に記録されている受信端末Y1との通信履歴に含まれる、伝送レートの最大値(以下「過去伝送レート」という)Xpと、現在の伝送レートとに基づいて、変更方針CPを決定する。なお、過去伝送レートは、伝送レートの最大値に限らず平均値であっても良い。また、過去伝送レートは、通信履歴記憶部115に記録されている受信端末Y1との通信履歴に含まれる損失イベント率の最大値、又は平均値であっても良い。また、過去伝送レートは、RTT算出部113で算出された往復遅延時間(RTT)等を、式(1)に代入して得られたものであっても良い。
 変更方針CPは、現在の伝送レートから過去伝送レートXpにどのように変化させるかを示す。線形的なビットレートの変化は、変更方針CP_PROPと表される。線形的なビットレートの変化とは、例えば、RTT毎に伝送レートを段階的に上げる又は下げる変化である。また、定常的なビットレートの変化は、変更方針CP_CBRと表される。また、伝送レートを上げる場合と下げる場合とでビットレートの変化の形態が異なる場合は、変更方針CP_AIMDと表される。形態が異なるビットレートの変化とは、例えば、伝送レートを上げる場合には変更方針CP_CBRを適用し、伝送レートを下げる場合には変更方針CP_PROPを適用した変化である。
 変更方法決定部123は、現在の伝送レートと過去伝送レートXpの差分に応じて、これら3つの変更方針CPの内からいずれか1つを決定する。例えば、変更方法決定部123は、当該差分が所定値より大きいとき変更方針CP_PROPを選択し、当該差分が所定値以下のとき変更方針CP_CBRを選択する。なお、変更方法決定部123は、予め設定された変更方針に決定しても良い。
 また、変更方法決定部123は、過去伝送レートXpから現在の伝送レートを引いた値の符号に応じて、現在の伝送レートから過去伝送レートXpに変更するまでの所要時間Trを決定する。変更方法決定部123は、当該値の符号が正のとき、すなわち伝送レートを上げる場合には、RTT算出部113によって算出された往復遅延時間Rのn倍(nは正の整数であり定数)を所要時間Trに設定する。一方、当該値の符号が負のとき、すなわち伝送レートを下げる場合、変更方法決定部123は、往復遅延時間Rのlog(n)倍を所要時間Trに設定する。
 一時伝送レート通知部125は、通信履歴記憶部115から読み出した過去伝送レートXp、変更方法決定部123が決定した変更方針CP、及び所要時間Trを受信端末Y1に送信する。さらに、一時伝送レート通知部125は、RTT算出部113によって算出された往復遅延時間Rに関する情報を受信端末Y1に送信する。
 ARQ部127は、受信端末Y1から送られたRTPパケットの再送要求(NAK)を受け付ける。ARQ部127は、受け付けたNAKが示すパケットがバッファ107に蓄積されていれば、そのパケットを受信端末Y1に再送するようパケット送信部109に指示する。
 図3は、第1の実施形態の受信端末Y1の内部構成を示すブロック図である。図3に示すように、第1の実施形態の受信端末Y1は、パケット受信部201と、バッファ203と、パケット処理部205と、冗長符号処理部(FEC処理部)207と、デコーダ209と、状況監視部211と、通信履歴記憶部213と、目標損失イベント率算出部215と、一時損失イベント間隔算出部217と、呼監視部219と、損失イベント率算出部221と、受信者レポート生成部223と、制御パケット送信部225と、ARQ部227と、クロック229とを備える。
 パケット受信部201は、ネットワークNを介して送信端末Xから送信されたパケットを受信する。バッファ203は、パケット受信部201が受信したパケットを一時蓄積する。パケット処理部205は、バッファ203からパケットを読み出して、符号化されたコンテンツデータ及び冗長符号を抽出する。冗長符号処理部207は、読み出した冗長符号を用いて、符号化されたコンテンツデータの誤り検出又は誤り訂正を定期的に行う。デコーダ209は、誤り検出又は誤り訂正後の符号化されたコンテンツデータを復号する。
 状況監視部211は、非特許文献1に示されるRFC3448で規定された損失イベントの発生を検知する機能を用いて、バッファ203に蓄積されたパケットに基づいて、送信端末X1から送出されたパケットの到着状況を監視する。状況監視部211は、損失イベントが発生した時刻とそのときのシーケンシャル番号から得られる損失イベント間隔c(k)を、通信履歴記憶部213に記録する。なお、損失イベントが発生した時刻は、受信端末Y1が備えるクロック229から得られる。背景技術で説明した図8は、受信端末Y1における損失イベントの履歴の一例を示すグラフでもある。
 通信履歴記憶部213は、状況監視部211から出力された損失イベント間隔c(k)を通信履歴として通信端末毎に記憶する。また、通信履歴記憶部213は、一時損失イベント間隔算出部217、及び損失イベント率算出部221で用いられる8世代の各重みW(1)~W(8)の情報を記憶する。なお、当該重みは、図8中に示した重み27~27と同様である。
 目標損失イベント率算出部215は、送信端末X1から送られた過去伝送レートXp及び往復遅延時間(RTT)R等より、下記式(2)を用いて目標損失イベント率TPを算出する。なお、線形的なビットレートの変化を示す変更方針CP_PROPの場合、下記式(2)中に代入されるパラメータXpには、現在の伝送レートと過去伝送レートXpの間の伝送レートが用いられる。
TP=α{s/(Xp・R)}2 …(2)
 上記式(2)中のαは、調整パラメータである。sは、パケットサイズ[byte]である。Rは、送信端末X1から送られたRTT[秒]である。Xpは、送信端末X1から送られた過去伝送レート[bps]である。
 一時損失イベント間隔算出部217は、算出された目標損失イベント率TP、及び8世代の各重みW(1)~W(8)を用いて、8世代分の一時損失イベント間隔tc(1)~tc(8)を式(3)で算出する。なお、一時損失イベント間隔算出部217は、通信履歴記憶部213から8世代の各重みW(1)~W(8)を読み出す。
tc(k)=[W(k)/(AW・TP)] …(3)
 上記式(3)中のtc(k)は、第k世代の一時損失イベント間隔である。また、W(k)は、第k世代に割り当てられた重みである。AWは、第1世代から第8世代に割り当てられた重みW(1)~W(8)の合計である。なお、式(3)中の記号[ ]はガウス記号である。[x]は、実数x以下の最大の整数を表す。
 呼監視部219は、受信端末Y1がネットワークNを介して通信を行う通信端末との接続状況を監視する。呼監視部219は、送信端末X1との通信で利用可能な帯域が急激に変化する可能性がある否かを判断し、当該帯域が急激に変化すると判断した場合には、次に説明する損失イベント率算出部221によって利用される損失イベント間隔を切り替える。
 損失イベント率算出部221は、8世代分の損失イベント間隔に対する加重平均をとった重み付きの損失イベント間隔の逆数を損失イベント率Pとして算出する。損失イベント率算出部221がパラメータの1つとして用いる8世代分の損失イベント間隔は、通信履歴記憶部213に記録されている8世代分の損失イベント間隔c(1)~c(8)である。また、8世代分の損失イベント間隔は、一時損失イベント間隔算出部217が算出した8世代分の一時損失イベント間隔tc(1)~tc(8)である。また、8世代の各重みW(1)~W(8)は、通信履歴記憶部213から読み出される。
 損失イベント率算出部221は、通常は、通信履歴記憶部213に記録されている8世代分の損失イベント間隔c(1)~c(8)を用いて損失イベント率Pを算出する。しかし、送信端末X1との通信で利用可能な帯域が急激に変化したと呼監視部219によって判断された場合には、一時損失イベント間隔算出部217が算出した8世代分の一時損失イベント間隔tc(1)~tc(8)が用いられる。したがって、通常時の損失イベント率算出式は下記式(4)であり、帯域が急激に変化したときの損失イベント率算出式は下記式(5)である。
Figure JPOXMLDOC01-appb-M000002
 受信者レポート生成部223は、損失イベント率算出部221によって算出された損失イベント率Pを含む受信者レポートを生成する。制御パケット送信部225は、受信者レポート生成部223によって生成された受信者レポートをRTCPパケットの形態で、損失イベントの発生毎又は定期的(例えば、RTT毎)に送信端末X1に送信する。また、制御パケット送信部225は、送信端末X1から送信された送信時刻Txを含むパケットに応じて、この送信時刻Txを示す情報を付与したフィードバックパケットを送信端末X1に送信する。
 ARQ部227は、送信端末X1から送信されたRTPパケットの損失を、バッファ203に蓄積されたパケットのシーケンシャル番号の隔たりから検知する。ARQ部227は、検知した損失パケットの再送要求(NAK)を送信端末X1に送信し、かつ、当該再送要求処理を登録して時間をカウントする。ARQ部227は、この時間のカウントが送信端末X1と受信端末Y1の往復時間より大きくなった場合、再送要求を再送信し、当該再送要求処理を登録して時間を再びカウントする。ARQ部227は、所定時間送信したNAKに応じて送信端末X1から前記損失パケットを受信したとき、時間のカウントを停止して、登録した再送要求処理をキャンセルする。
 以下、第1の実施形態の通信システムにおいて、送受信端末間の通信で利用可能な帯域が急激に変化した際に行われる処理について、図4を参照して詳細に説明する。図4は、第1の実施形態の通信システムにおいて、送受信端末間の通信で利用可能な帯域が急激に変化すると判定した際に行われる処理を示すタイミングチャートである。
 まず、送信端末X1の変更方法決定部123は、変更方針CP及び所要時間Trを決定する(ステップS101)。次に、一時伝送レート通知部125は、過去伝送レートXp、変更方針CP、所要時間Tr及び往復遅延時間(RTT)Rに関する情報を受信端末Y1に送信する(ステップS103)。これらの情報を受信した受信端末Y1では、目標損失イベント率算出部215が、目標損失イベント率TPを算出する(ステップS105)。次に、一時損失イベント間隔算出部217は、8世代分の一時損失イベント間隔tc(1)~tc(8)を算出する(ステップS107)。次に、損失イベント率算出部221は、ステップS107で算出した8世代分の一時損失イベント間隔tc(1)~tc(8)及び8世代の各重みW(1)~W(8)より、目標損失イベント率Pを算出する(ステップS109)。ステップS109で算出された目標損失イベント率Pは、送信端末X1に送信される(ステップS111)。
 目標損失イベント率Pを受信した送信端末X1では、伝送レート算出部117が、目標損失イベント率P及び往復遅延時間(RTT)R等を用いて目標伝送レートを算出する(ステップS113)。次に、制御部119が、ステップS113で算出された目標伝送レートでパケットを送出するよう伝送レートを変更する(ステップS115)。
 以上説明したように、本実施形態の通信システムでは、送受信端末間の通信で利用可能な帯域が急激に変化すると判断したとき、過去に実現された伝送レートから損失イベント間隔の履歴を生成した上で、TFRCを用いた伝送レートの制御が行われる。背景技術で説明したように、実際の損失イベント間隔に基づくTFRCを用いた伝送レートの制御では、伝送レートが滑らかに変化する。このため、従来の伝送レート制御では、伝送レートを低ビットレートから高ビットレート又は高ビットレートから低ビットレートに即座に変更できない。しかし、本実施形態では、上述したように、生成した損失イベント間隔の履歴を用いるため、伝送レートを短時間で目標のビットレートに変更することができる。
 なお、本実施形態の通信システムが用いられるベストエフォート型のネットワークは、有線ネットワークであっても、無線ネットワークであってもかまわない。
 また、送受信端末間の通信で利用可能な帯域が急激に変化する要因として、低ビットレートでしか通信できない無線端末との通信が終了した場合が考えられる。しかし、このようなユースケースでも本実施形態の通信システムは、伝送レートを短時間で目標のビットレートに変更することができる。
(第2の実施形態)
 図5は、第2の実施形態の送信端末X2の内部構成を示すブロック図である。図5における送信端末X2は、エンコーダ101、冗長符号処理部(FEC処理部)103、パケット処理部105、バッファ107、パケット送信部109、制御パケット受信部301、RTT算出部113、通信履歴記憶部115、伝送レート算出部303、制御部119、呼監視部305、変更方法決定部123、目標損失イベント率算出部307、一時損失イベント間隔算出部309、損失イベント率算出部311、ARQ部127、及びクロック129とを備える。図5において、第1の実施形態の送信端末X1を示す図2と共通する構成要素には同じ参照符号が付されている。
 送信端末X2が備える目標損失イベント率算出部307、一時損失イベント間隔算出部309及び損失イベント率算出部311は、第1の実施形態で説明した図3に示す受信端末Y1が備える各機能と同様である。第1の実施形態では、損失イベント率の算出を受信端末Y1側で行っているが、第2の実施形態では送信端末X2側で行う。
 但し、本実施形態の制御パケット受信部301が受信する受信者レポートには、損失イベント率Pの代わりに損失イベント間隔c(k)が含まれている。なお、損失イベント間隔c(k)は通信履歴記憶部115に記録される。このように、本実施形態では、受信者レポートに損失イベント率Pが含まれておらず、損失イベント率Pは送信端末X2が備える損失イベント率算出部311が算出する。このため、本実施形態の伝送レート算出部303が式(1)のパラメータの1つである損失イベント率Pに代入する値は、損失イベント率算出部311が算出した値である。
 送信端末X2が備える呼監視部305は、送信端末X2がネットワークNを介して通信を行う通信端末との接続状況を監視する。呼監視部305は、受信端末Y2との通信で利用可能な帯域が急激に変化したか否かを判断する。さらに、呼監視部305は、当該帯域が急激に変化した場合には、変更方法決定部123が動作するよう制御して、損失イベント率算出部311によって利用される損失イベント間隔を切り替える。
 図6は、第2の実施形態の受信端末Y2の内部構成を示すブロック図である。図6における受信端末Y2は、パケット受信部201、バッファ203、パケット処理部205、冗長符号処理部(FEC処理部)207、デコーダ209、状況監視部401、受信者レポート生成部403、制御パケット送信部225、ARQ部227、及びクロック229とを備える。図6において、第1の実施形態の受信端末Y1を示す図3と共通する構成要素には同じ参照符号が付されている。
 受信端末Y2が備える状況監視部401は、第1の実施形態と同様に、バッファ203に蓄積されたパケットに基づいて、送信端末X2から送出されたパケットの到着状況を監視する。但し、本実施形態の状況監視部401は、損失イベントが発生した時刻と、そのときのシーケンシャル番号から得られる損失イベント間隔c(k)を、受信者レポート生成部403に送る。受信端末Y2が備える受信者レポート生成部403は、状況監視部401から得られた損失イベント間隔c(k)を含む受信者レポートを生成する。
 以下、第2の実施形態の通信システムにおいて、送受信端末間の通信で利用可能な帯域が急激に変化した際に行われる処理について、図7を参照して詳細に説明する。図7は、第2の実施形態の通信システムにおいて、送受信端末間の通信で利用可能な帯域が急激に変化すると判断した際に行われる処理を示すタイミングチャートである。
 まず、送信端末X2の変更方法決定部123は、変更方針CP及び所要時間Trを決定する(ステップS201)。次に、目標損失イベント率算出部307が、目標損失イベント率TPを算出する(ステップS203)。次に、一時損失イベント間隔算出部309は、8世代分の一時損失イベント間隔tc(1)~tc(8)を算出する(ステップS205)。次に、損失イベント率算出部311は、ステップS205で算出した8世代分の一時損失イベント間隔tc(1)~tc(8)及び8世代の各重みW(1)~W(8)より、目標損失イベント率Pを算出する(ステップS207)。次に、伝送レート算出部303は、目標損失イベント率P及び往復遅延時間(RTT)R等を用いて目標伝送レートを算出する(ステップS209)。次に、制御部119は、ステップS113で算出された目標伝送レートでパケットを送出するよう伝送レートを変更する(ステップS211)。
 以上説明したように、本実施形態の通信システムでは、第1の実施形態と同様に、送受信端末間の通信で利用可能な帯域が急激に変化すると判断したとき、過去に実現された伝送レートから損失イベント間隔の履歴を生成した上で、TFRCを用いた伝送レートの制御が行われる。したがって、伝送レートを短時間で目標のビットレートに変更することができる。
(第3の実施形態)
 上記実施形態の送信端末X1,X2は冗長符号処理部103及びARQ部127を備え、受信端末Y1,Y2は冗長符号処理部207及びARQ部227を備える。上述したように、送信端末X1,X2が備える冗長符号処理部103は、符号化されたコンテンツデータから冗長符号を生成し、符号化されたコンテンツデータに付与して出力する。また、受信端末Y1,Y2の冗長符号処理部207は、読み出した冗長符号を用いて、符号化されたコンテンツデータの誤り検出又は誤り訂正を定期的に行う。
 一方、送信端末X1,X2が備えるARQ部127は、受信端末Y1,Y2から送られたRTPパケットの再送要求(NAK)を受け付ける。ARQ部127は、当該受け付けたNAKが示すパケットがバッファ107に蓄積されていれば、そのパケットを受信端末Y1,Y2に再送するようパケット送信部109に指示する。また、受信端末Y1,Y2が備えるARQ部227は、送信端末X1,X2から送信されたRTPパケットの損失を、バッファ203に蓄積されたパケットのシーケンシャル番号の隔たりから検知する。ARQ部227は、検知した損失パケットの再送要求(NAK)を送信端末X1,X2に送信し、かつ、当該再送要求処理を登録して時間をカウントする。ARQ部227は、この時間のカウントが送信端末X1と受信端末Y1の往復時間より大きくなった場合、あるいは送信端末X2と受信端末Y2の往復時間より大きくなった場合、再送要求を再送信する。さらに、ARQ部227は、当該再送要求処理を登録して時間を再びカウントする。ARQ部227は、所定時間送信したNAKに応じて送信端末X1,X2から送信された前記損失パケットを受信したときとき、時間のカウントを停止して、登録した再送要求処理をキャンセルする。
 第3の実施形態では、送信端末X1,X2の冗長符号処理部103が行う冗長符号の生成に際して、制御部119からの指示に応じて、冗長符号処理部103は、コンテンツデータ量に対する冗長符号の長さを変える。以下、第3の実施形態では、コンテンツデータ量に対する冗長符号の長さを「冗長符号の強度」として説明する。例えば、冗長符号の強度が25%の場合、冗長符号処理部103は、コンテンツデータ量の1/4の長さの冗長符号を生成する。また、冗長符号の強度を上げるとは、冗長符号の強度を例えば25%から50%に変化させることである。
 本実施形態では、送信端末X1,X2の呼監視部121,305が受信端末Y1,Y2との通信で利用可能な帯域が急激に変化すると判断する。呼監視部121,305が急激に変化すると判断したとき、制御部119は、通常時とは異なる冗長符号の強度で冗長符号を生成するよう冗長符号処理部103に指示する。このときの冗長符号の強度は、変更方針CPや伝送レートの制御に応じて上げても下げても良い。なお、制御部119は、変更方法決定部123によって決定された所要時間Trを経過した後には、冗長符号の強度を元に戻すよう冗長符号処理部103に指示する。
 伝送レートを急激に上げるとパケット損失の発生確率が大きくなるが、所要時間Trの間は、冗長符号の強度を上げることによって、パケット損失の発生に対するサポートを厚くできる。逆に、伝送レートを急激に下げるとパケット損失の発生確率が小さくなるため、冗長符号の強度を下げる。冗長符号の強度を下げると冗長符号の生成処理量が減るため、冗長符号処理部103による冗長符号生成の高速処理が可能である。
 また、第3の実施形態では、受信端末Y1の目標損失イベント率算出部215が変更方針CPを受信するようにした。受信したとき、目標損失イベント率算出部215は、受信端末Y1のバッファ203にパケットを一時蓄積する時間(受信許容遅延時間)を所要時間Trの間変える。また、目標損失イベント率算出部215は、伝送レートを急激に上げる変更方針CPを受信した場合はパケット損失の発生確率が大きくなるので、受信端末Y1が送信端末X1に再送要求を行う機会が増すように、受信許容遅延時間を延長する。これによって、再送が複数回行われ、パケット損失の発生に対するサポートを厚くできる。逆に、伝送レートを急激に下げるとパケット損失の発生確率が小さくなり、受信端末Y1が送信端末X1に再送要求を複数回行う必要が減るため、受信許容遅延時間を短縮する。なお、ARQ部227は、往復遅延時間(RTT)の倍数を単位として受信許容遅延時間を延長又は短縮する。なお、受信許容遅延時間の延長幅又は短縮幅は、常に往復遅延時間(RTT)の固定倍数としても、現在の伝送レートと過去伝送レートXpの差分等に応じて変更しても良い。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2008年9月19日出願の日本特許出願(特願2008-240986)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明に係る伝送レート制御装置は、ネットワークを介した通信中に利用可能と推定される帯域が急激に変化したとき、伝送レートを短時間で目標のビットレートに変更する通信端末等として有用である。
X1,X2 送信端末
Y1,Y2 受信端末
N ベストエフォート型のネットワーク
101 エンコーダ
103 冗長符号処理部(FEC処理部)
105 パケット処理部
107 バッファ
109 パケット送信部
111,301 制御パケット受信部
113 RTT算出部
115 通信履歴記憶部
117,303 伝送レート算出部
119 制御部
121,305 呼監視部
123 変更方法決定部
125 一時伝送レート通知部
127 ARQ部
129 クロック
201 パケット受信部
203 バッファ
205 パケット処理部
207 冗長符号処理部(FEC処理部)
209 デコーダ
211,401 状況監視部
213 通信履歴記憶部
215,307 目標損失イベント率算出部
217,309 一時損失イベント間隔算出部
219 呼監視部
221,311 損失イベント率算出部
223,403 受信者レポート生成部
225 制御パケット送信部
227 ARQ部
229 クロック

Claims (20)

  1.  ベストエフォート型のネットワークを介した2つの通信端末間の通信で利用可能と推定される帯域に応じて伝送レートを制御する伝送レート制御システムで用いられる伝送レート制御装置であって、
     前記ネットワークを介して行った通信履歴を通信端末毎に記憶する通信履歴記憶部と、
     前記ネットワークを介した所定の通信端末との通信で生じた往復遅延時間を算出する往復遅延時間算出部と、
     前記通信履歴に記録されている前記所定の通信端末との通信で実現された過去伝送レート、及び前記往復遅延時間算出部が算出した前記所定の通信端末との通信で生じた往復遅延時間に基づいて前記所定の通信端末が算出した目標損失イベント率と、前記往復遅延時間算出部が算出した前記所定の通信端末との通信で生じた往復遅延時間と、に基づいて目標伝送レートを算出する目標伝送レート算出部と、
     前記現時点で設定されている伝送レートから前記目標伝送レート算出部が算出した目標伝送レートに変更するよう伝送レートを制御する伝送レート制御部と、
    を備えた伝送レート制御装置。
  2.  前記所定の通信端末が算出する目標損失イベント率は、前記通信履歴に記録されている前記所定の通信端末との通信で実現された過去伝送レート、及び前記往復遅延時間算出部が算出した前記所定の通信端末との通信で生じた往復遅延時間に基づいて所定数の目標損失イベント間隔を算出し、当該所定数の目標損失イベント間隔の各々に割り当てられた重みを用いた前記所定数の目標損失イベント間隔の加重平均値の逆数を、前記目標損失イベント率として算出することを特徴とする請求項1記載の伝送レート制御装置。
  3.  請求項1又は2に記載の伝送レート制御装置であって、
     前記過去伝送レートは、前記通信履歴に記録されている前記所定の通信端末との通信で実現された伝送レートの最大値であることを特徴とする伝送レート制御装置。
  4.  請求項1~3のいずれか一項に記載の伝送レート制御装置であって、
     前記過去伝送レートと前記現時点で設定されている伝送レートの差分の符号に応じて、前記伝送レート制御部が前記現時点で設定されている伝送レートから前記目標伝送レートに変更するまでの所要時間を決定する変更方法決定部を備えたことを特徴とする伝送レート制御装置。
  5.  請求項4に記載の伝送レート制御装置であって、
     前記変更方法決定部は、前記現時点で設定されている伝送レートに対して前記過去伝送レートが大きいとき、前記往復遅延時間のn倍(nは正の整数)を前記所要時間として決定することを特徴とする伝送レート制御装置。
  6.  請求項4に記載の伝送レート制御装置であって、
     前記変更方法決定部は、前記現時点で設定されている伝送レートに対して前記目標伝送レートが小さいとき、前記往復遅延時間のlog(n)倍(nは正の整数)を前記所要時間として決定することを特徴とする伝送レート制御装置。
  7.  請求項4~6のいずれか一項に記載の伝送レート制御装置であって、
     前記伝送レート制御部は、前記所要時間の経過に比例して、前記現時点で設定されている伝送レートから前記目標伝送レートに変更するよう伝送レートを制御することを特徴とする伝送レート制御装置。
  8.  請求項1~7のいずれか一項に記載の伝送レート制御装置であって、
     前記所定の通信端末に送信するデータから、所定の冗長符号の強度に応じて冗長符号を生成する冗長符号処理部を備え、
     前記冗長符号処理部は、前記伝送レート制御部が前記現時点で設定されている伝送レートから前記目標伝送レートに変更中は、当該変更前の冗長符号の強度とは異なる冗長符号の強度に応じて冗長符号を生成することを特徴とする伝送レート制御装置。
  9.  請求項1~8のいずれか一項に記載の伝送レート制御装置であって、
     前記所定の通信端末は、前記ネットワークを介して受信したパケットを一時蓄積するバッファを備え、
     前記伝送レート制御部が前記現時点で設定されている伝送レートから前記目標伝送レートに変更中、前記所定の通信端末は、前記バッファにパケットを一時蓄積する時間を当該変更前とは異なる時間に設定することを特徴とする伝送レート制御装置。
  10.  ベストエフォート型のネットワークを介した通信で利用可能と推定される帯域に応じて伝送レートを制御する伝送レート制御装置であって、
     前記ネットワークを介して行った通信履歴を通信端末毎に記憶する通信履歴記憶部と、
     前記ネットワークを介した通信端末との通信で生じた往復遅延時間を算出する往復遅延時間算出部と、
     前記通信履歴に記録されている所定の通信端末との通信で実現された過去伝送レートと、前記往復遅延時間算出部が算出した前記所定の通信端末との通信で生じた往復遅延時間とに基づいて、前記所定の通信端末との通信で設定する目標伝送レートを算出する目標伝送レート算出部と、
     現時点で設定されている伝送レートから前記目標伝送レートに変更する伝送レート制御部と、
    を備えたことを特徴とする伝送レート制御装置。
  11.  請求項10に記載の伝送レート制御装置であって、
     前記目標伝送レート算出部は、前記通信履歴に記録されている前記所定の通信端末との通信で実現された過去伝送レートと、前記往復遅延時間算出部が算出した前記所定の通信端末との通信で生じた往復遅延時間とに基づいて目標損失イベント率を算出し、当該算出した目標損失イベント率及び前記往復遅延時間に基づいて前記目標伝送レートを算出することを特徴とする伝送レート制御装置。
  12.  請求項11に記載の伝送レート制御装置であって、
     前記目標伝送レート算出部は、前記通信履歴に記録されている前記所定の通信端末との通信で実現された過去伝送レートと、前記往復遅延時間算出部が算出した前記所定の通信端末との通信で生じた往復遅延時間とに基づいて所定数の目標損失イベント間隔を算出し、当該所定数の目標損失イベント間隔の各々に割り当てられた重みを用いた前記所定数の目標損失イベント間隔の加重平均値の逆数を、前記目標損失イベント率として算出することを特徴とする伝送レート制御装置。
  13.  請求項10~12のいずれか一項に記載の伝送レート制御装置であって、
     前記過去伝送レートは、前記通信履歴に記録されている前記所定の通信端末との通信で実現された伝送レートの最大値であることを特徴とする伝送レート制御装置。
  14.  請求項10~13のいずれか一項に記載の伝送レート制御装置であって、
     前記過去伝送レートと前記現時点で設定されている伝送レートの差分の符号に応じて、前記伝送レート制御部が前記現時点で設定されている伝送レートから前記目標伝送レートに変更するまでの所要時間を決定する変更方法決定部を備えたことを特徴とする伝送レート制御装置。
  15.  請求項14に記載の伝送レート制御装置であって、
     前記変更方法決定部は、前記現時点で設定されている伝送レートに対して前記過去伝送レートが大きいとき、前記往復遅延時間のn倍(nは正の整数)を前記所要時間として決定することを特徴とする伝送レート制御装置。
  16.  請求項14に記載の伝送レート制御装置であって、
     前記変更方法決定部は、前記現時点で設定されている伝送レートに対して前記目標伝送レートが小さいとき、前記往復遅延時間のlog(n)倍(nは正の整数)を前記所要時間として決定することを特徴とする伝送レート制御装置。
  17.  請求項14~16のいずれか一項に記載の伝送レート制御装置であって、
     前記伝送レート制御部は、前記所要時間の経過に比例して、前記現時点で設定されている伝送レートから前記目標伝送レートに変更することを特徴とする伝送レート制御装置。
  18.  請求項10~17のいずれか一項に記載の伝送レート制御装置であって、
     前記所定の通信端末に送信するデータから、所定の冗長符号の強度に応じて冗長符号を生成する冗長符号処理部を備え、
     前記冗長符号処理部は、前記伝送レート制御部が前記現時点で設定されている伝送レートから前記目標伝送レートに変更中は、当該変更前の冗長符号の強度とは異なる冗長符号の強度に応じて冗長符号を生成することを特徴とする伝送レート制御装置。
  19.  ベストエフォート型のネットワークを介した2つの通信端末間の通信で利用可能と推定される帯域に応じて伝送レートを制御する伝送レート制御システムで行われる伝送レート制御方法であって、
     前記ネットワークを介して第2の通信端末と通信を行う第1の通信端末が、前記ネットワークを介した前記第2の通信端末との通信で生じた往復遅延時間を算出し、
     前記第2の通信端末が、前記第1の通信端末が行った当該第2の通信端末との通信で実現された過去伝送レート、及び前記第1の通信端末で算出された往復遅延時間に基づいて目標損失イベント率を算出し、
     前記第1の通信端末が、前記第2の通信端末で算出された目標損失イベント率と、前記往復遅延時間とに基づいて目標伝送レートを算出し、
     前記第1の通信端末が、前記現時点で設定されている伝送レートから前記目標伝送レートに変更するよう伝送レートを制御することを特徴とする伝送レート制御方法。
  20.  ベストエフォート型のネットワークを介した通信で利用可能と推定される帯域に応じて伝送レートを制御する伝送レート制御方法であって、
     前記ネットワークを介した通信端末との通信で生じた往復遅延時間を算出し、
     所定の通信端末との通信で実現された過去伝送レートと、前記所定の通信端末との通信で生じた往復遅延時間とに基づいて、前記所定の通信端末との通信で設定する目標伝送レートを算出し、
     現時点で設定されている伝送レートから前記目標伝送レートに変更することを特徴とする伝送レート制御方法。
PCT/JP2009/003863 2008-09-19 2009-08-11 伝送レート制御装置及び伝送レート制御方法 WO2010032370A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980136899.7A CN102160340B (zh) 2008-09-19 2009-08-11 传送速率控制装置和传送速率控制方法
US13/119,296 US8699519B2 (en) 2008-09-19 2009-08-11 Transmission rate control device and transmission rate control method
JP2010529592A JP5170798B2 (ja) 2008-09-19 2009-08-11 伝送レート制御装置及び伝送レート制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008240986 2008-09-19
JP2008-240986 2008-09-19

Publications (1)

Publication Number Publication Date
WO2010032370A1 true WO2010032370A1 (ja) 2010-03-25

Family

ID=42039222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003863 WO2010032370A1 (ja) 2008-09-19 2009-08-11 伝送レート制御装置及び伝送レート制御方法

Country Status (4)

Country Link
US (1) US8699519B2 (ja)
JP (1) JP5170798B2 (ja)
CN (1) CN102160340B (ja)
WO (1) WO2010032370A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011259239A (ja) * 2010-06-09 2011-12-22 Sony Corp 通信処理装置、通信処理システム、通信処理方法及びプログラム
JP2014175959A (ja) * 2013-03-11 2014-09-22 Ricoh Co Ltd 情報処理装置、通信制御方法及びプログラム
WO2021171481A1 (ja) * 2020-02-27 2021-09-02 日本電信電話株式会社 Nni故障検出システム、nni故障検出方法、及びプログラム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6303452B2 (ja) * 2013-12-02 2018-04-04 富士通株式会社 通信ノード
US10057149B2 (en) * 2014-09-16 2018-08-21 Mitsubishi Electric Corporation Delay measuring device, measurement object device and communication system
US10412779B2 (en) 2015-09-18 2019-09-10 Whatsapp Inc. Techniques to dynamically configure jitter buffer sizing
US9749178B2 (en) * 2015-09-18 2017-08-29 Whatsapp Inc. Techniques to dynamically configure target bitrate for streaming network connections
CN106888277B (zh) * 2017-03-07 2023-02-14 腾讯科技(深圳)有限公司 一种域名查询方法及装置
CN113423122B (zh) * 2021-06-03 2023-01-31 Oppo广东移动通信有限公司 上行速率的调节方法、装置、电子设备和存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041434A1 (fr) * 2006-10-02 2008-04-10 Panasonic Corporation Procédé de commande de flux, dispositif de terminal émetteur utilisé dans celui-ci, dispositif de terminal récepteur et système de transfert par paquets

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7278070B2 (en) * 2001-09-14 2007-10-02 Texas Instruments Incorporated Interleaving to avoid wideband interference in a multi-carrier communications system
KR20030095995A (ko) * 2002-06-14 2003-12-24 마츠시타 덴끼 산교 가부시키가이샤 미디어 전송방법 및 그 송신장치 및 수신장치
JP3730974B2 (ja) 2002-06-14 2006-01-05 松下電器産業株式会社 メディア伝送方法及びその送信装置
EP1450514A1 (en) * 2003-02-18 2004-08-25 Matsushita Electric Industrial Co., Ltd. Server-based rate control in a multimedia streaming environment
US8503294B2 (en) * 2003-07-11 2013-08-06 Nec Corporation Transport layer relay method, transport layer relay device, and program
JP4559126B2 (ja) 2004-06-01 2010-10-06 日本電信電話株式会社 映像送信方法、映像送信装置、映像送信用プログラム及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体
GB2477515B (en) * 2010-02-03 2012-09-26 Orbital Multi Media Holdings Corp Data flow control method and apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041434A1 (fr) * 2006-10-02 2008-04-10 Panasonic Corporation Procédé de commande de flux, dispositif de terminal émetteur utilisé dans celui-ci, dispositif de terminal récepteur et système de transfert par paquets

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. HANDLEY ET AL.: "TCP Friendly Rate Control (TFRC)", PROTOCOL SPECIFICATION, RFC 3448, January 2003 (2003-01-01) *
YUTA SAKAKURA ET AL.: "CBR Tsushin no Tameno TCP Friendly de Ari Katsu Koritsuteki de Yori Taiiki Hendohaba o Yokusei shita Taiiki Seigyo Hoshiki no Teian", IEICE TECHNICAL REPORT, vol. 104, no. 340, 8 October 2004 (2004-10-08), pages 1 - 6 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011259239A (ja) * 2010-06-09 2011-12-22 Sony Corp 通信処理装置、通信処理システム、通信処理方法及びプログラム
JP2014175959A (ja) * 2013-03-11 2014-09-22 Ricoh Co Ltd 情報処理装置、通信制御方法及びプログラム
WO2021171481A1 (ja) * 2020-02-27 2021-09-02 日本電信電話株式会社 Nni故障検出システム、nni故障検出方法、及びプログラム

Also Published As

Publication number Publication date
JPWO2010032370A1 (ja) 2012-02-02
CN102160340B (zh) 2014-10-08
CN102160340A (zh) 2011-08-17
JP5170798B2 (ja) 2013-03-27
US8699519B2 (en) 2014-04-15
US20110170417A1 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
JP5170798B2 (ja) 伝送レート制御装置及び伝送レート制御方法
JP4520032B2 (ja) ヘッダ圧縮装置およびヘッダ圧縮方法
JP4454320B2 (ja) 伝送装置、伝送制御プログラム、及び伝送方法
JP4840365B2 (ja) 通信装置、通信システム、通信方法、および、通信プログラム
EP1871031B1 (en) Retransmission control method and device
JP4708978B2 (ja) 高スループットを実現する通信システム、通信端末、セッション中継装置、及び通信プロトコル
US20160323062A1 (en) Packet recovery in interactive real-time media protocol
JP4354406B2 (ja) データユニット送信機及びこの送信機の制御方法
US9282049B2 (en) Systems, methods, and computer program products providing feedback for network congestion management
JP6412160B2 (ja) 通信装置、通信装置システム及び通信方法
CN112436924B (zh) 一种数据传输方法及电子设备
CN114024914A (zh) 视频数据传输方法、装置及电子设备
JP2006211632A (ja) Crc検査範囲外エラーを検出する方法
CN112769526B (zh) 数据包重传方法、系统和存储介质
KR100922472B1 (ko) 통신 단말, 통신 제어 방법 및 통신 제어 프로그램
US20060209687A1 (en) Communication rate control method and device
Dunaytsev et al. Modeling TCP SACK performance over wireless channels with completely reliable ARQ/FEC
JP4435817B2 (ja) 通信端末、通信制御方法および通信制御プログラム
CN101005336A (zh) 一种适合卫星网络的自适应拥塞控制方法及系统
Le et al. Reliable user datagram protocol for airborne network
JP2007515872A (ja) 一般nackレポートブロックおよび消失rleレポートブロックを使用するフィードバックの提供
CN111092907B (zh) 基于udp协议的数据流快速传输方法、系统及介质
Heuschkel et al. Udp++: Cross-layer optimizable transport protocol for managed wireless networks
Hu et al. A block based encoding approach for improving sliding window network coding in wireless networks
JP2009260719A (ja) データ伝送端末装置およびデータ伝送方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136899.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814216

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010529592

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13119296

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814216

Country of ref document: EP

Kind code of ref document: A1