WO2010031881A1 - Rotor de un generador eléctrico para aplicación eolica con flujos de refrigeración en al menos una de las cabezas de bobina - Google Patents

Rotor de un generador eléctrico para aplicación eolica con flujos de refrigeración en al menos una de las cabezas de bobina Download PDF

Info

Publication number
WO2010031881A1
WO2010031881A1 PCT/ES2008/000594 ES2008000594W WO2010031881A1 WO 2010031881 A1 WO2010031881 A1 WO 2010031881A1 ES 2008000594 W ES2008000594 W ES 2008000594W WO 2010031881 A1 WO2010031881 A1 WO 2010031881A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
cooling
coil
air
winding
Prior art date
Application number
PCT/ES2008/000594
Other languages
English (en)
French (fr)
Inventor
Xavier Calvo Madariaga
Adolfo DOMÍNGUEZ GÓMEZ
Jon Vaquerizo Ayastuy
Javier Ojeda Pichel
Alejandro Belaustegui Foronda
Peio PAGÓLA TOLOSA
Original Assignee
Indar Electric, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Indar Electric, S.L. filed Critical Indar Electric, S.L.
Priority to CN2008801319835A priority Critical patent/CN102217173A/zh
Priority to BRPI0823101A priority patent/BRPI0823101A2/pt
Priority to EP08876969.0A priority patent/EP2339720A4/en
Priority to PCT/ES2008/000594 priority patent/WO2010031881A1/es
Publication of WO2010031881A1 publication Critical patent/WO2010031881A1/es
Priority to US13/108,089 priority patent/US20110210561A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • H02K3/51Fastening of winding heads, equalising connectors, or connections thereto applicable to rotors only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine

Definitions

  • the present invention falls within the technical field of doubly fed electric generators and particularly in the sector of generator rotors' for wind application.
  • cooling is a very important issue when designing an electric generator, especially a generator with a rotor with a multi-phase winding of alternating current, from now on winding, since it depends on the correct long-term operation of the generator, and the useful power to be extracted from it.
  • a single cooling circuit is established through holes made in the magnetic plates of the rotor and stator. There is no air flow in radial direction. Due to the presence of a single circuit, a cold side (at the entrance of cooled air after cold exchange) and a hot side (at the exit of heated air after collecting losses from the generator) are established inside the generator.
  • a single cooling circuit is established.
  • the air flow circulates in the radial direction allowing a contact between the cooling air and the winding. Due to the presence of a circuit, a cold side and a hot side are established inside the generator.
  • the air enters the generator by cooling the heads of the cold side (air inlet), and then enters the generator shaft.
  • the first is with a ribbed shaft on which the stacked sheet is placed and the second with a sheet stacked on a solid shaft.
  • the coil heads are subject to the action of the centrifugal force.
  • a clamping system called zuncho.
  • the zuncho consists of a compressive treadmill that is placed along the entire length of the bobbin head, avoiding its deformation due to the centrifugal force due to the rotation.
  • This slip in general, is formed by a material with a poor thermal conductivity.
  • the object of this invention is to create a structure that allows the cooling of the rotor coil heads to be enhanced by creating a radial air circulation in that area.
  • the present invention proposes the rotor of an electric generator for wind application with cooling flows in at least one of the coil heads, comprising an axis, at least one set of plates, stacked magnetic, at least one polyphase winding of alternating current, a loop that externally surrounds the polyphasic winding in each coil head, said rotor being characterized because at least in the first coil head, the strap is divided into at least two parts separated by a
  • SUBSTITUTE SHEET (RULE 26) determined axially distance, thus defining a radial passage that enables a passage for the flow of cooling air between the respective parts of the strip.
  • a region is ordinarily defined between the upper and lower layers, commonly of insulating material, called sandwich.
  • this region or sandwich also be divided into at least two separate parts in order to define a path or step for the cooling flow to the respective parts of the strip and to at least one of the coils of the rotor.
  • the radial passage formed by the parts that make up the zuncho and the parts of the sandwich define a space of uniform dimensions.
  • the present invention allows air circulation through the rotor coil heads by establishing a new cooling circuit. So,
  • the radial / axial passage of the cooling air is possible by enhancing the convection cooling and improving the cooling of the winding head area.
  • sandwich as the insulating material that is placed between the upper and lower winding layer, called sandwich, is generally divided into several parts and leaves an axial separation that allows the passage of cooling air.
  • the coil head rests on a clamping ring attached to the rotor shaft, it is provided with the cooling air inlet in such a way that the passage of the cooling air towards the coil head.
  • an air flow is created that passes between the parts of the sandwich and the strap and contributes to the cooling of the coil heads. Although this air flow is not part of the main air flow that cools the generator, it is mixed with it so that the air that forms this flow is cold air.
  • the plates that are part of the winding in the area of the coil heads can be grouped so that their acting as a fan enhances the passage of air in the radial direction.
  • the set of stacked magnetic plates is delimited on both sides by two clamping washers on which a pressure ring is pressed respectively, so that this set of plates is axially immobilized.
  • the pressure ring can be provided with a groove that allows the radial passage of air.
  • the number, shape and dimensions of the grooves will be chosen in each case to optimize cooling.
  • the proximal parts of the zuncho and the sandwich should have
  • SUBSTITUTE SHEET (RULE 26) dimensions such that they allow the radial exit of the air that passes through the grooves of the pressure ring of the sheet stacked through the space between the tightening washer and said proximal parts.
  • This embodiment not only allows to open a new air passage in the coil head but also, thanks to the grooving of the clamping ring, this radial flow is enhanced by further improving the cooling.
  • This radial flow can be further enhanced by designing the shape of the clamping ring so that it acts as a centrifugal fan.
  • the hot-side coil heads are cooled with the air that has already passed through the rotor and the stator and therefore has taken the generator losses and has been heated.
  • the rotor is closed on its hot side by a closing plate from which the coil head protrudes.
  • the rotor closing plate can be provided with openings that allow a part of the main flow of the cooling air to be derived to the coil head of the hot side thus forming a bypass. This air that goes to the coil head on the hot side has not yet cooled the generator and is therefore cold air.
  • the openings can be, for example, radially distributed circular holes.
  • two flows in the radial direction and in the axial direction through the coil head or heads are enabled for cooling.
  • Figures IA, IB, IC- They are schematic partial sections of different alternatives of the cooling circuit of an electric generator corresponding to the prior art.
  • Figure 2.- It is a partial section that schematically shows an embodiment of a rotor according to the present invention.
  • Figure 3. It is a partial section that schematically shows the application of the embodiment of the invention shown in Figure 2 to the particular case of an electric generator with a simple cooling circuit.
  • Figure 4.- It is a front perspective view that schematically shows an embodiment of the pressure ring of the set of stacked sheets.
  • Figure 5. It is a rear plan view schematically showing an embodiment of a rotor closure element mounted on the rotor shaft, for use in the embodiment shown in Figure 3.
  • Figure 6. It is a plan view Rear schematically showing another embodiment of a rotor closure element mounted on the rotor shaft, for use in the embodiment shown in Figure 3.
  • Figures IA, IB and IC show the cooling air flows according to the alternatives already known from the state of the art in an electric generator with a conventional rotor.
  • Figure IA shows a simple cooling circuit that is established through holes made in the magnetic plates 3 mounted on the axis 1 of the rotor and through the stator 15. There is no air flow in the radial direction. Due to the presence of a single circuit a cold side is established inside the generator, that is, on the left side corresponding to the
  • FIG. 1B shows a simple cooling circuit in which the air flow also circulates in the radial direction allowing a contact between the cooling air and the winding 4.
  • the cooling air flows in the axial direction guided by those axial ribs 2.
  • Figure IC shows a double cooling circuit with radial channels.
  • the two cooling circuits generate respective air flows in the radial direction.
  • the rotor consists of an axis (1) provided on its periphery of axial ribs (2) and the set of magnetic plates (3) stacked on said nerves (2).
  • two clamping washers (14) are placed, pressed against the magnetic plate assembly (3) by a pressure ring
  • the two-layer winding (4) is inserted through grooves that pass through the magnetic sheet assembly (3),
  • SUBSTITUTE SHEET (RULE 26) conformed in a conventional way by plates of conductive material (copper).
  • the electrical connections of the different winding plates are made by means of connectors (5) located at the end of the coil head.
  • the strap (8,9) is placed on the outside of the rotor coil head.
  • the strap is composed of two independent parts (8 and 9), namely a first part or proximal part (9) facing the pressure washer (14), and a second part or distal part (8) in the free end of the winding head (4), separated by an axial distance (12).
  • sandwich 10, 11).
  • the sandwich is divided into two parts (10,11) leaving a separation axial that allows the passage of cooling air.
  • the sandwich comprises a first or proximal part (11) facing the pressure washer (14) and a second or distal part (10) in the free end zone of the winding (4).
  • the respective positions of the proximal parts (9, 11) of the sandwich and the strap are such that a proximal radial passage is defined between them and the clamping washer (14), through which cooling air can flow.
  • the clamping ring (7) of coil heads is made in such a way that it allows air to pass through.
  • the clamping ring (7) is connected to the pressure ring (6) of the stacked plate assembly (3) by means of axial wings (7a) between which air can flow
  • Figure 3 shows the application of the rotor shown in Figure 2 to a generator with a simple cooling circuit.
  • the rotor has had an opening in the closure.
  • the winding head 4 on the hot side of the rotor has the same elements as its cold side, but symmetrically arranged as a mirror image.
  • a closing plate (13) is provided with openings through which the cooling air can flow to the winding head (4) of the hot side.
  • Figures 5 and 6 show particular ways of how the openings can be made in the closing plate (13) of the rotor.
  • the openings 13a are axially radially distributed holes between the ribs (2) of the rotor shaft (1), while in the embodiment of Figure 6 they are openings (13b) in the annular direction between said nerves (2). It should be noted that the rotor shown in the figure
  • Figures 2 and 3 are the simple cooling circuits (A, B, C, D) through which the cooling air flows in the respective embodiments shown there.
  • Figure 2 shows only the circuits on the cold side of the rotor
  • Figure 3 shows the application of the embodiment of Figure 2 referring to a simple circulation system, that is, to a circulation system similar to that illustrated by the Figure IB.
  • the embodiment of Figure 2 could also be applied to a circulation system analogous to that illustrated in Figure IC, so as to have a double circuit in which the air travels two different paths , originating two air circuits in the generator, so that there are two different inputs to the rotor, corresponding to a symmetrical configuration without thermal differences between the two sides of the generator.
  • circuit A is the main cooling circuit of the generator. This circuit is what goes through the rotor, the stator and the refrigerator (not shown) of the generator.
  • Circuit B passes between the tightening washer (14) and the pressure ring (6) of the stacked plate assembly.
  • This air is driven by the winding plates (4) of the rotor and by the pressure ring itself (6) which, in the case that it comprises a groove (6a) like the one illustrated in Figure 4, performs the functions fan boosting air circulation in this circuit.
  • Circuit C (figure 2) is established radially through the rotor winding (4) due to the splitting of the strap (8, 9) and the sandwich (10 and 11) and actively participates in the cooling of the area.
  • Circuit D (figure 2) is established through the winding of the rotor (4) due to the partition of the strap

Abstract

Se describe un rotor, que comprende un eje (1), un conjunto de chapas magnéticas apiladas (3), un bobinado (4) polifásico de corriente alterna que atraviesa el conjunto de chapas (3), un zuncho (8,9) que rodea cada cabeza de bobina, en cuyo rotor al menos en una de las cabezas de bobina el zuncho (8, 9) está dividido respectivamente en al menos dos partes separadas por una determinada distancia axial (12), definiendo así un paso radial que habilita un flujo radial de aire de refrigeración entre las respectivas partes del zuncho (8,9).

Description

ROTOR DE UN GENERADOR ELÉCTRICO PARA APLICACIÓN EOLICA CON FLUJOS DE REFRIGERACIÓN EN AL MENOS UNA DE LAS
CABEZAS DE BOBINA CAMPO TÉCNICO DE LA INVENCIÓN La presente invención se encuadra en el campo técnico de los generadores eléctricos doblemente alimentados y particularmente en el sector de rotores de generadores' para aplicación eólica.
ESTADO DE LA TÉCNICA ANTERIOR A LA INVENCIÓN En un generador eléctrico, es importante mantener los devanados por debajo de una temperatura límite que viene fijada por la clase de aislamiento usado en la fabricación del mismo, para así posibilitar un rendimiento óptimo en cuanto a la generación de energía eléctrica. Además, hay que tener en cuenta que superar dicha temperatura límite ocasiona que la duración del material utilizado en el generador para procurar el aislamiento respecto del resto de fases y respecto de tierra, sea mucho menor debido a que la relación entre la vida de los aislamientos y la temperatura sigue una ley logarítmica. Se considera que un incremento de 10 K en la temperatura del aislamiento disminuye su vida a la mitad. Esto implica que variaciones pequeñas de temperatura supongan reducciones importantes de la vida útil de los materiales aislantes. Por ello, la refrigeración es una cuestión muy importante a la hora de diseñar un generador eléctrico, especialmente un generador con un rotor con un bobinado polifásico de corriente alterna, a partir de ahora bobinado, ya que de ello depende el correcto funcionamiento a largo plazo del generador, y la potencia útil que se va a poder extraer del mismo.
La refrigeración de los generadores eléctricos tiene lugar mediante fenómenos de convección, conducción
HOJA DE SUSTITUCIÓN (REGLA 26) y radiación. De estos tres fenómenos son la convección y la conducción los que tienen mayor importancia en la refrigeración de los generadores eléctricos.
De acuerdo con el estado de la técnica anterior a la invención, los esquemas más básicos de refrigeración de un generador eléctrico son:
- Circuito simple con agujeros axiales: se establece un solo circuito de refrigeración a través de agujeros realizados en las chapas magnéticas del rotor y estator. No hay flujo de aire en dirección radial. Debido a la presencia de un sólo circuito se establece dentro del generador un lado frío (en la entrada de aire refrigerado tras intercambio con foco frío) y un lado caliente (en la salida de aire calentado tras recoger pérdidas del generador) .
- Circuito simple con canales radiales: se establece un solo circuito de refrigeración. En este caso el flujo de aire circula en dirección radial lo que permite un contacto entre el aire de refrigeración y el bobinado. Debido a la presencia de un circuito se establece dentro del generador un lado frío y un lado caliente .
- Doble circuito con canales radiales: se establecen dos circuitos de refrigeración. Los flujos de aire son de dirección radial, existe contacto entre el bobinado y el flujo de aire de refrigeración. Debido a la presencia de dos circuitos se minimizan las diferencias de temperatura entre el lado frío y el lado caliente. La refrigeración de los generadores eléctricos de potencia superior a IMW para aplicación eólica se realiza de forma general mediante el citado esquema de canales radiales de refrigeración, bien sea en un simple o doble circuito. La forma de refrigeración más eficaz
HOJA DE SUSTITUCIÓN (REGLA 26) _ 3 - ^ •• -, ¿üU0 es conseguir que el aire pase directamente por el foco caliente, es decir, potenciar la convección en la refrigeración del generador. El principal problema del uso de un esquema de refrigeración de circuito simple es el hecho de que el perfil térmico que se obtiene en el generador presenta un lado frío (en la entrada de aire) y un lado caliente (en la salida de aire) .
En el diseño de los generadores con circuito de aire simple con canales radiales, el aire entra en el generador refrigerando las cabezas del lado frío (entrada de aire) , y posteriormente entra en el eje del generador. Existen dos posibilidades la primera es con un eje nervado sobre el que se coloca la chapa apilada y la segunda con chapa apilada sobre un eje macizo. Una vez el aire está en el rotor, por la propia rotación del mismo, es expulsado radialmente por los canales que se han creado para tal efecto pasando primero por el rotor y luego por el estator del generador. En generadores de circuito simple de canales radiales es necesario disponer una chapa de cierre al final del rotor para forzar a que todo el flujo de aire atraviese radialmente el rotor y se dirija al estator, evitando de esta forma que parte del flujo se vaya directamente fuera del generador sin pasar a través del estator y por tanto no refrigerando el mismo.
Las cabezas de bobina están sujetas a la acción de la fuerza centrífuga. Para evitar su deformación se dispone de un sistema de sujeción llamado zuncho. El zuncho consiste en un cintado compresivo que se coloca en todo lo largo de la cabeza de bobina evitando su deformación por efecto de la fuerza centrífuga debida al giro .
Este zuncho, en general, está formado por un material con una mala conductividad térmica. El mayor
HOJA DE SUSTITUCIÓN (REGLA 26) problema de la refrigeración de las cabezas de bobina es la barrera térmica que supone el zuncho que por otro lado resulta imprescindible desde un punto de vista mecánico. En la solicitud de patente alemana DE10040232A1 (SIEMENS AG) , se propone la creación de canales radiales de refrigeración eή los extremos del paquete de chapa apilada. Si bien potencia la refrigeración del generador al ampliar el número de canales radiales, no supone una solución al problema de la refrigeración de las cabezas de bobina ni al problema que supone la barrera térmica que impone el zuncho a esta zona del generador.
Habiendo visto por tanto el estado de la técnica anterior en este tipo de generadores y habiendo identificado la principal problemática existente, era un objetivo deseable mejorar térmicamente la refrigeración de las cabezas de bobina generadores eléctricos de rotor bobinado para la aplicación eólica, por lo que la presente invención tiene por objeto crear una estructura que permita potenciar la refrigeración de las cabezas de bobina del rotor creando una circulación de aire en dirección radial en esa zona.
DESCRIPCIÓN DE LA INVENCIÓN
Para conseguir el objetivo y resolver los inconvenientes anteriormente indicados, la presente invención propone el rotor de un generador eléctrico para aplicación eólica con flujos de refrigeración en al menos una de las cabezas de bobina, que comprende un eje, al menos un conjunto de chapas, magnéticas apiladas, al menos un bobinado polifásico de corriente alterna, un zuncho que rodea exteriormente el bobinado polifásico en cada cabeza de bobina, caracterizándose dicho rotor porque al menos en la primera cabeza de bobina, el zuncho está dividido en al menos dos partes separadas por una
HOJA DE SUSTITUCIÓN (REGLA 26) determinada distancia axialmente, definiendo así un paso radial que habilita un paso para el flujo de aire de refrigeración entre las respectivas partes del zuncho.
En el caso de generadores con doble capa de bobinado se define ordinariamente una región entre la capa superior e inferior, comúnmente de material aislante, denominada sandwich. Para esta circunstancia, la presente invención propone que esta región o sandwich se divida también al menos en dos partes separadas con objeto de definir un camino o paso para el flujo de refrigeración hacia las respectivas partes del zuncho y hacia al menos una de las bobinas del rotor. Opcionalmente, se propone que el paso radial formado por las partes que componen el zuncho y las partes del sandwich defina un espacio de dimensiones uniformes.
La presente invención permite la circulación del aire por las cabezas de bobina del rotor estableciendo un nuevo circuito de refrigeración. Así,
- al estar dividido el zuncho en varias partes se posibilita el paso radial / axial del aire de refrigeración potenciando la refrigeración por convección y mejorando la refrigeración de la zona de la cabeza del bobinado.
- al estar dividido generalmente también el material aislante que se coloca entre la capa superior e inferior del bobinado, llamado sandwich, en varias partes deja una separación axial que posibilita el paso del aire de refrigeración.
- cuando, como es habitual en los generadores eléctricos para aplicación eólica, la cabeza de bobina se apoya sobre un aro de sujeción unido al eje del rotor, éste está dotado de la entrada de aire de refrigeración de tal forma que se permite el paso del aire de refrigeración hacia la cabeza de bobina.
HOJA DE SUSTITUCIÓN (REGLA 26) De esta forma quedan comunicados los espacios creados por las partes del zuncho, las partes del sandwich en el caso de generadores con doble capa de bobinado, y la entrada de aire prevista, por ejemplo, en el aro de sujeción de las cabezas de bobina.
Cuando el rotor gira, las pletinas de material conductor eléctrico, en general cobre, que conforman el bobinado del rotor y que están dispuestas de forma radial, actúan como un ventilador centrífugo creando una sobrepresión de aire de refrigeración hacia la parte más exterior del rotor. Cuando existe un paso de aire hacia el exterior del rotor, se crea un flujo de aire que pasa entre las partes del sandwich y del zuncho y que contribuye a la refrigeración de las cabezas de bobina. Aunque este flujo de aire no forma parte del flujo de aire principal que refrigera el generador sí se mezcla con él de manera que el aire que forma este flujo es aire frío.
Las pletinas que forman parte del bobinado en la zona de las cabezas de bobina se pueden agrupar de manera que su actuación como ventilador potencie el paso de aire en dirección radial.
Habitualmente, en los rotores de los generadores eléctricos para aplicación eólica, el conjunto de chapas magnéticas apiladas está delimitado en ambos lados por sendas arandelas de apriete sobre las que presiona respectivamente un aro de presión, de manera que este conjunto de chapas quede axialmente inmovilizado. En este caso, el aro de presión puede estar dotado de un ranurado que permite el paso radial de aire. Respecto del diseño del ranurado, se elegirán en cada caso el número, forma y dimensiones de las ranuras para que se optimice la refrigeración. En esta realización, las partes proximales del zuncho y del sandwich deben tener
HOJA DE SUSTITUCIÓN (REGLA 26) unas dimensiones tales que permitan la salida radial del aire que pasa a través de las ranuras del aro de presión de la chapa apilada por el espacio entre la arandela de apriete y dichas partes proximales . Esta realización no sólo permite abrir un nuevo paso de aire en la cabeza de bobina sino que además, gracias al ranurado del aro de sujeción, se potencia este flujo radial mejorando aún más la refrigeración. Este flujo radial puede potenciar aún más diseñando la forma del aro de sujeción de tal manera que actúe como un ventilador centrífugo.
En los generadores eólicos cuya refrigeración consta en general de un circuito simple, las cabezas de bobina del lado caliente son refrigeradas con el aire que ya ha pasado por el rotor y el estator y por tanto ha cogido las pérdidas del generador y se ha calentado. Adicionalmente, es bastante habitual que en este tipo de generadores el rotor esté cerrado en su lado caliente por una chapa de cierre de la que sobresale la cabeza de bobina. En este caso, para hacer llegar aire de refrigeración a la cabeza de bobina del lado caliente, la chapa de cierre del rotor puede estar provista de aberturas que permitan que una parte del flujo principal del aire de refrigeración se derive a la cabeza de bobina del lado caliente formando de esta manera un by- pass . Este aire que va a la cabeza de bobina del lado caliente, todavía no ha refrigerado el generador y por tanto es aire frío. Las aberturas pueden ser, por ejemplo, orificios circulares radialmente distribuidos.
De acuerdo con la estructura propuesta, se habilitan para la refrigeración sendos flujos en dirección radial y en la dirección axial a través de la cabeza o cabezas de bobina.
A continuación, para facilitar una mejor comprensión de esta memoria descriptiva y formando parte
HOJA DE SUSTITUCIÓN (REGLA 26) integrante de la misma, se acompañan una serie de figuras en las que con carácter ilustrativo y no limitativo se han representado unas realizaciones de la invención. BREVE DESCRIPCIÓN DE LAS FIGURAS
Figuras IA, IB, IC- Son secciones parciales esquemáticas de diferentes alternativas del circuito de refrigeración de un generador eléctrico correspondientes al estado de la técnica anterior. Figura 2.- Es una sección parcial que muestra esquemáticamente una realización de un rotor conforme a la presente invención.
Figura 3. - Es una sección parcial que muestra esquemáticamente la aplicación de la realización de la invención mostrada en la figura 2 al caso particular de un generador eléctrico con un circuito simple de refrigeración.
Figura 4.- Es una vista en perspectiva frontal que muestra esquemáticamente una realización del aro de presión del conjunto de chapas apiladas.
Figura 5.- Es una vista en planta posterior que muestra esquemáticamente una realización de un elemento de cierre del rotor montado en el eje del rotor, para su uso en la realización mostrada en la figura 3. Figura 6.- Es una vista en planta posterior que muestra esquemáticamente otra realización de un elemento de cierre del rotor montado en el eje del rotor, para su uso en la realización mostrada en la figura 3. En estas figuras aparecen referencias numéricas que identifican los siguientes elementos :
1 eje del rotor
2 nervio del eje del rotor
3 conjunto de chapas magnéticas
HOJA DE SUSTITUCIÓN (REGLA 26) 4 bobinado del rotor
5 conectores de las pletinas del bobinado
6 aro de presión
6a ranurado en el aro de presión 7 aro de sujeción 7a ala axial 7b extensión radial
8 zuncho (primera parte)
9 zuncho (segunda parte) 10 elemento de material aislante (sandwich)
(primera parte)
11 elemento de material aislante (sandwich) (segunda parte)
12 distancia axial entre las partes del zuncho 13 pieza de cierre del rotor
13a orificios axiales 13b abertura anular
14 arandela de apriete
15 estator REALIZACIONES DE LA INVENCIÓN
A continuación se realiza una descripción de la invención basada en las figuras anteriormente comentadas .
Las figuras IA, IB y IC muestran los flujos del aire de refrigeración según las alternativas ya conocidas a partir del estado de la técnica en un generador eléctrico con un rotor convencional.
La figura IA muestra un circuito de refrigeración simple que se establece a través de agujeros realizados en las chapas magnéticas 3 montadas en el eje 1 del rotor y a través del estator 15. No hay flujo de aire en dirección radial . Debido a la presencia de un sólo circuito se establece dentro del generador un lado frío, es decir, en el lado izquierdo correspondiente a la
HOJA DE SUSTITUCIÓN (REGLA 26) entrada de aire refrigerado tras intercambio con un foco frío, y un lado caliente, es decir, en el lado derecho correspondiente a la salida de aire calentado tras recoger pérdidas del generador. La figura IB muestra un circuito de refrigeración simple en el que el flujo de aire circula además en dirección radial lo que permite un contacto entre el aire de refrigeración y el bobinado 4. Al estar montados los conjuntos de chapas magnéticas 3 en nervios axiales 2 del eje 3, el aire de refrigeración fluye en dirección axial guiado por esos nervios axiales 2. Al igual que en el caso del circuito simple mostrado en la figura IA, debido a la presencia de un sólo circuito se establece dentro del generador un lado frío y un lado caliente. La figura IC muestra un circuito doble de refrigeración con canales radiales . Tal como se representa en dicha figura, los dos circuitos de refrigeración generan respectivos flujos de aire en dirección radial. De esta manera, existe contacto entre el bobinado 4 y el flujo de aire de refrigeración, así debido a la presencia de dos circuitos se minimizan ventajosamente las diferencias de temperatura entre el lado frío y el lado caliente. Tal y como se puede observar en la realización de la presente invención mostrada en la Figura 2, el rotor consta de un eje (1) provisto en su periferia de nervios axiales (2) y el conjunto de chapas magnéticas (3) apiladas sobre dichos nervios (2) . En los dos extremos del conjunto de chapas magnéticas (3), están colocadas sendas arandelas de apriete (14) , presionadas contra el conjunto de chapas magnéticas (3) por un aro de presión
(6) que más abajo se describirá con más detalle. Por unas ranuras que atraviesan el conjunto de chapas magnéticas (3) se inserta el bobinado (4) de dos capas,
HOJA DE SUSTITUCIÓN (REGLA 26) conformado de forma en si convencional por pletinas de material conductor (cobre) . Las conexiones eléctricas de las diferentes pletinas del bobinado, se realizan mediante unos conectores (5) ubicados en el extremo de la cabeza de bobina. El zuncho (8,9) está colocado en el exterior de la cabeza de bobina del rotor. Como puede apreciarse, el zuncho está compuesto por dos partes independientes (8 y 9) , a saber una primera parte o parte proximal (9) enfrentada a la arandela de presión (14) , y una segunda parte o parte distal (8) en la parte extrema libre de la cabeza del bobinado (4) , separadas por una distancia axial (12) . Por otra parte, entre las dos capas del bobinado (4) del rotor en la cabeza de bobina se sitúa el mencionado sandwich (10, 11) . Contrariamente a los rotores convencionales donde el sandwich (10,11) es en general continuo todo a lo largo de las cabezas de bobina, conforme a esta realización de la invención, el sandwich se divide en dos partes (10,11) dejando una separación axial que permite el paso del aire de refrigeración. También el sandwich comprende una parte primera o proximal (11) enfrentada a la arandela de presión (14) y una parte segunda o distal (10) en la zona extrema libre del bobinado (4) . Las respectivas posiciones de las partes proximales (9, 11) del sandwich y del zuncho son tales, que entre los mismos y la arandela de apriete (14) queda definido un paso radial proximal, por el que puede fluir aire de refrigeración. También puede observarse que el aro de sujeción (7) de cabezas de bobina está realizado de tal forma que permite el paso del aire. En la realización mostrada en la figura 2, el aro de sujeción (7) está unido al aro de presión (6) del conjunto de chapas apiladas (3) mediante unas alas axiales (7a) entre las que puede fluir el aire
HOJA DE SUSTITUCIÓN (REGLA 26) de refrigeración. Para permitir el flujo de aire hacia el paso radial entre la arandela de apriete (14) y las partes proximales (9, 11) del zuncho y del sandwich, el aro de presión (6) debe incluir pasos de aire, como por ejemplo los definidos por unos ranurados (6a) como el que puede apreciarse en la figura 4.
Evidentemente, el número de partes independientes del zuncho (8,9) y del sandwich (10,11) también puede ser respectivamente un número mayor que dos . En la figura 3 se muestra la aplicación del rotor mostrado en la figura 2 a un generador con un circuito simple de refrigeración. En este caso al rotor, se le ha practicado una abertura en el cierre. Puede observarse que la cabeza del bobinado 4 en el lado caliente del rotor presenta los mismos elementos que su lado frío, pero dispuestos simétricamente a modo de imagen especular. Para posibilitar la refrigeración de la cabeza de bobina del lado caliente se dispone una chapa de cierre (13) con aberturas por las que puede fluir el aire de refrigeración hacia la cabeza del bobinado (4) del lado caliente. Las figuras 5 y 6 muestran formas particulares de cómo se pueden realizarse las aberturas en la chapa de cierre (13) del rotor. Asi por ejemplo, en la realización ilustrada en la figura 5, las aberturas 13a son orificios axiales radialmente distribuidos entre los nervios (2) del eje (1) del rotor, mientras que en la realización de la figura 6 son aberturas (13b) en la dirección anular entre dichos nervios (2) . Debe destacarse que el rotor mostrado en la figura
3 se diferencia ligeramente del rotor de la figura (2) ya que sus aros de sujeción (7) , en vez de estar unidos al aro de presión [S) , están unidos directamente al nervio axial (2) del eje (1) del rotor mediante
HOJA DE SUSTITUCIÓN (REGLA 26) extensiones radiales (7b) entre las que, por motivos evidentes, puede pasar un flujo axial de aire de refrigeración .
En las Figuras 2 y 3 también están representados los circuitos de refrigeración (A, B, C, D) simples por los que fluye el aire de refrigeración en las respectivas realizaciones que allí se muestran. La figura 2 muestra sólo los circuitos en el lado frío de rotor, mientras que la figura 3 muestra la aplicación de la realización de la figura 2 referida a un sistema de circulación simple, es decir, a un sistema de circulación similar al que ilustra la figura IB., Sin embargo, resulta evidente que la realización de la figura 2 también podría aplicarse a un sistema de circulación análogo al que se ilustra en la figura IC, para así disponer de un circuito doble en el que el aire recorre dos caminos diferentes, originando dos circuitos de aire en el generador, de manera que existen dos entradas diferentes al rotor, correspondientes a una configuración simétrica sin diferencias térmicas entre los dos lados del generador .
Volviendo específicamente a lo que ilustran las figuras 2 y 3 , puede observarse que el circuito A (figura 2) es el circuito principal de refrigeración del generador. Este circuito es el que pasa por el rotor, por el estator y por el refrigerador (no mostrado) del generador .
En la configuración de circuito simple, el aire recorre un solo camino en el rotor del generador. Por lo tanto, existe una asimetría en la refrigeración resultante dado que un lado está más caliente que otro. Aún así es importante remarcar que se produce una mejor refrigeración de las cabezas de los bobinados (4) , ya que, como se explicará más adelante, en ambos lados el
HOJA DE SUSTITUCIÓN (REGLA 26) aire de refrigeración pasa entre las respectivas partes
(8,9) del zuncho y del sandwich (10, 11), así como por el paso entre la arandela de apriete (14) y las partes proximales respectivas (9, 11) del zuncho y del sandwich, El circuito B (figura 2) pasa entre la arandela de apriete (14) y el aro de presión (6) del conjunto de chapas apiladas. Este aire está impulsado por las pletinas del bobinado (4) del rotor y por el propio aro de presión (6) que, en el caso de que comprenda un ranurado (6a) como el que se ilustra en la figura 4, hace las funciones de ventilador potenciando la circulación de aire en este circuito.
El circuito C (figura 2) se establece radialmente a través del bobinado del rotor (4) debido a la partición del zuncho (8, 9) y del sandwich (10 y 11) y participa activamente en la refrigeración de la zona.
El circuito D (figura 2) se establece a través del bobinado del rotor (4) debido a la partición del zuncho
(8 y 9) y del sandwich y de la presencia de un espacio para que este aire pueda circular en dirección axial a través de las pletinas del bobinado del rotor.
HOJA DE SUSTITUCIÓN (REGLA 26)

Claims

REIVINDICACIONES
1. ROTOR DE XIN GENERADOR ELÉCTRICO PARA APLICACIÓN EÓLICA CON FLUJOS DE REFRIGERACIÓN EN AL MENOS UNA DE LAS CABEZAS DE BOBINA, que comprende un eje (1) , al menos un conjunto de chapas magnéticas apiladas (3), al menos un bobinado (4) polifásico de corriente alterna, un zuncho (8,9) que rodea exteriormente el bobinado polifásico (4) en cada cabeza de bobina, caracterizado porque al menos en la primera cabeza de bobina, el zuncho (8, 9) está dividido en al menos dos partes separadas por una determinada distancia (12) axial, definiendo así un paso radial que habilita un flujo de aire de refrigeración entre las respectivas partes del zuncho (8,9) .
2. ROTOR DE UN GENERADOR ELÉCTRICO PARA APLICACIÓN EÓLICA CON FLUJOS DE REFRIGERACIÓN EN AL MENOS UNA DE LAS CABEZAS DE BOBINA, según la reivindicación 1, caracterizado porque al menos la segunda cabeza de bobina comprende una chapa de cierre (13) que evita que el aire salga del rotor sin atravesar sus canales radiales y porque dicha chapa de cierre (13) está provista de al menos una abertura (13a, 13b) para el paso de un flujo de aire de refrigeración.
3. ROTOR DE UN GENERADOR ELÉCTRICO PARA APLICACIÓN EÓLICA CON FLUJOS DE REFRIGERACIÓN EN AL MENOS UNA DE LAS CABEZAS DE BOBINA, según la reivindicación 2,
HOJA DE SUSTITUCIÓN (REGLA 26) caracterizado por tener las aberturas (13b) en la chapa de cierre (13) del rotor, situadas en alineación anular entre los nervios radiales (2) del eje (1) y radialmente alejados de éste.
4. ROTOR DE UN GENERADOR ELÉCTRICO PARA APLICACIÓN EÓLICA CON FLUJOS DE REFRIGERACIÓN EN AL MENOS UNA DE LAS CABEZAS DE BOBINA, según las reivindicaciones 1 6 2, caracterizado porque el bobinado (4) comprende grupos de pletinas agrupados para maximizar el paso (A, B, C, D) para el flujo de aire de refrigeración que atraviesa el rotor y estator radialmente.
HOJA DE SUSTITUCIÓN (REGLA 26)
PCT/ES2008/000594 2008-09-17 2008-09-17 Rotor de un generador eléctrico para aplicación eolica con flujos de refrigeración en al menos una de las cabezas de bobina WO2010031881A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2008801319835A CN102217173A (zh) 2008-09-17 2008-09-17 用于风成应用的、且在至少一个线圈头部中具有冷却流的发电机转子
BRPI0823101A BRPI0823101A2 (pt) 2008-09-17 2008-09-17 rotor de um gerador elétrico para aplicação aeólica com fluxos de resfriamento em pelo menos uma das cabeças de bobina
EP08876969.0A EP2339720A4 (en) 2008-09-17 2008-09-17 ELECTRIC GENERATOR ROTOR FOR WIND-APPLICATION WITH REFRIGERATION AIR FLOWS IN AT LEAST ONE OF THE SPOOL HEADS
PCT/ES2008/000594 WO2010031881A1 (es) 2008-09-17 2008-09-17 Rotor de un generador eléctrico para aplicación eolica con flujos de refrigeración en al menos una de las cabezas de bobina
US13/108,089 US20110210561A1 (en) 2008-09-17 2011-05-16 Rotor of an electrical generator for aeolian application with cooling flows in at least one of the coil heads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2008/000594 WO2010031881A1 (es) 2008-09-17 2008-09-17 Rotor de un generador eléctrico para aplicación eolica con flujos de refrigeración en al menos una de las cabezas de bobina

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13063968 A-371-Of-International 2008-09-17
US13/108,089 Continuation US20110210561A1 (en) 2008-09-17 2011-05-16 Rotor of an electrical generator for aeolian application with cooling flows in at least one of the coil heads

Publications (1)

Publication Number Publication Date
WO2010031881A1 true WO2010031881A1 (es) 2010-03-25

Family

ID=42039105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/000594 WO2010031881A1 (es) 2008-09-17 2008-09-17 Rotor de un generador eléctrico para aplicación eolica con flujos de refrigeración en al menos una de las cabezas de bobina

Country Status (4)

Country Link
EP (1) EP2339720A4 (es)
CN (1) CN102217173A (es)
BR (1) BRPI0823101A2 (es)
WO (1) WO2010031881A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012130814A3 (de) * 2011-04-01 2012-11-22 Wobben Properties Gmbh Polschuh

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011107682A1 (de) * 2011-07-13 2013-01-17 Voith Patent Gmbh Tragring für den Wickelkopf einer elektrodynamischen Maschine
CN102570719A (zh) * 2011-12-31 2012-07-11 东元总合科技(杭州)有限公司 大功率电机
EP3393014A1 (de) * 2017-04-20 2018-10-24 Siemens Aktiengesellschaft Rotorendring für einen rotor einer elektrischen rotationsmaschine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB738803A (en) * 1953-07-13 1955-10-19 Vickers Electrical Co Ltd Improvements relating to dynamo electric machines
US3163789A (en) * 1962-11-02 1964-12-29 Allis Chalmers Mfg Co Thermally balanced rotor
US3831050A (en) * 1973-09-17 1974-08-20 Gen Electric Rotor for a dynamoelectric machine
US4922147A (en) * 1988-11-25 1990-05-01 Westinghouse Electric Corp. Apparatus and method for thermal balancing of the rotor of a dynamo-electric machine
DE10040232A1 (de) 2000-08-17 2002-03-21 Siemens Ag Läufer einer elektrischen Maschine mit radialem Kühlschlitz
US6844637B1 (en) * 2003-08-13 2005-01-18 Curtiss-Wright Electro-Mechanical Corporation Rotor assembly end turn cooling system and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE517435C (de) * 1928-11-24 1931-02-05 Aeg Einrichtung zur Befestigung der Stirnverbindungen umlaufender Wicklungen elektrischer Maschinen mit unter der Wirkung der Waermeausdehnung unabhaengig voneinander erfolgen-der axialer Verschiebung der von den Teilbandagen festgehaltenen Wickelkopfgruppen
FR736474A (fr) * 1932-04-30 1932-11-24 Procédé de refroidissement des machines électriques et machines pour la mise en oeuvre de ces procédés
US2998537A (en) * 1959-01-02 1961-08-29 Gen Electric Dynamoelectric machine
DE1538803B2 (de) * 1966-02-05 1970-06-25 Ganz Villamossagi Müvek, Budapest Turbogeneratorlaufer
DE19513457A1 (de) * 1995-04-08 1996-10-10 Abb Management Ag Rotor einer elektrischen Maschine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB738803A (en) * 1953-07-13 1955-10-19 Vickers Electrical Co Ltd Improvements relating to dynamo electric machines
US3163789A (en) * 1962-11-02 1964-12-29 Allis Chalmers Mfg Co Thermally balanced rotor
US3831050A (en) * 1973-09-17 1974-08-20 Gen Electric Rotor for a dynamoelectric machine
US4922147A (en) * 1988-11-25 1990-05-01 Westinghouse Electric Corp. Apparatus and method for thermal balancing of the rotor of a dynamo-electric machine
DE10040232A1 (de) 2000-08-17 2002-03-21 Siemens Ag Läufer einer elektrischen Maschine mit radialem Kühlschlitz
US6844637B1 (en) * 2003-08-13 2005-01-18 Curtiss-Wright Electro-Mechanical Corporation Rotor assembly end turn cooling system and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2339720A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012130814A3 (de) * 2011-04-01 2012-11-22 Wobben Properties Gmbh Polschuh
JP2014514902A (ja) * 2011-04-01 2014-06-19 ヴォッベン プロパティーズ ゲーエムベーハー ポールシュー

Also Published As

Publication number Publication date
BRPI0823101A2 (pt) 2015-10-13
CN102217173A (zh) 2011-10-12
EP2339720A1 (en) 2011-06-29
EP2339720A4 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
ES2523424B1 (es) Estator de generador eléctrico rotativo, generador eléctrico rotativo que comprende dicho estator y turbina eólica que incorpora dicho generador eléctrico rotativo
ES2319392T3 (es) Refrigeracion de un arrollamiento de entrehierro de maquinas electricas.
ES2879994T3 (es) Armazón de soporte de rotor de motor y motor
US20130270937A1 (en) Wind turbine with improved cooling
ES2393565T3 (es) Disposición para la refrigeración de una máquina eléctrica
US10404131B2 (en) Dynamo-electric machine
ES2287175T3 (es) Maquina dinamoelectrica refrigerada por gas.
ES2302621B1 (es) Generador electrico refrigerado con tubos embebidos en su cubierta.
WO2010031881A1 (es) Rotor de un generador eléctrico para aplicación eolica con flujos de refrigeración en al menos una de las cabezas de bobina
PT2030308E (pt) Método e dispositivo para arrefecimento de uma máquina elétrica
ES2909107T3 (es) Máquina de reluctancia síncrona
RU2011120334A (ru) Динамоэлектрическая машина
BR102013012881A2 (pt) Veículo, máquina elétrica acoplada a um dispositivo acionado em um veículo, e, método de resfriamento de uma máquina elétrica acoplada a um dispositivo acionado em um veículo
ES2819190T3 (es) Máquina eléctrica, en particular un generador eléctrico
US20170141654A1 (en) System for thermal management in electrical machines
ES2316417T3 (es) Bobinas de extremidad refrigeradas con gas para un rotor de maquina dinamoelectrica y procedimiento para refrigerar bobinas de extremidad.
BRPI1105989A2 (pt) gerador de turbina eàlica sincrânico
CA2902329A1 (en) Radial vent composite heat pipe
EP2878070A2 (en) Active segment of a wind turbine rotary electric machine, rotary electric machine, and wind turbine
JP5388961B2 (ja) 回転電機
US20140183988A1 (en) Assemblies For Cooling Electric Machines
ES2532176T3 (es) Generador
KR20160067040A (ko) 회전 전기의 회전자
ES2372695T3 (es) Máquina de polos salientes con al menos una bobina inductora.
ES2608463T3 (es) Rotor de una máquina eléctrica síncrona multipolar de polos salientes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880131983.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08876969

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1142/KOLNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2008876969

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008876969

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0823101

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110317