WO2010031275A1 - 实现光模块波长锁定的控制装置和方法 - Google Patents

实现光模块波长锁定的控制装置和方法 Download PDF

Info

Publication number
WO2010031275A1
WO2010031275A1 PCT/CN2009/072797 CN2009072797W WO2010031275A1 WO 2010031275 A1 WO2010031275 A1 WO 2010031275A1 CN 2009072797 W CN2009072797 W CN 2009072797W WO 2010031275 A1 WO2010031275 A1 WO 2010031275A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
wavelength
output
optical
laser
Prior art date
Application number
PCT/CN2009/072797
Other languages
English (en)
French (fr)
Inventor
吕书生
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2010031275A1 publication Critical patent/WO2010031275A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06804Stabilisation of laser output parameters by monitoring an external parameter, e.g. temperature

Definitions

  • the present invention relates to a technology for realizing automatic wavelength control of an optical transmitter in the field of optical fiber communication, and more particularly to a control device and method for realizing wavelength locking of an optical module.
  • Wavelength division multiplexing (OFDM) technology is a novel technology for simultaneously transmitting multiple optical signals through a plurality of specific wavelengths with a certain interval in a single optical fiber, thereby significantly increasing the transmission capacity of a single fiber. With the further increase of transmission capacity, the wavelength division multiplexing technology has experienced the development stage from coarse wavelength division multiplexing to dense wavelength division multiplexing.
  • Dense Wavelength Division Multiplexing has received great attention because it can make full use of bandwidth resources.
  • DWDM Dense Wavelength Division Multiplexing
  • it can also be achieved by reducing the channel spacing, for example, reducing the channel spacing from 100 GHz to 50 GHz to 25 GHz, or even smaller.
  • optical transceiver module has been widely used in DWDM transmission systems, playing the role of electric / optical, optical / electrical conversion, its performance has an important impact on DWDM system performance indicators .
  • DFB distributed Feed Back
  • the currently recommended fiber-optic communication DWDM system has a wavelength interval of 100 GHz, 50 GHz, and 25 GHz, and the maximum allowable center-to-center frequency offset is 12.5 GHz and 5 GHz, respectively. , and the 2.5GHZ.
  • the method of stabilizing the center wavelength by simply using the core temperature control device of the laser is no longer effective, so it is necessary to further improve the wavelength control technology of the laser.
  • the present invention has been made in view of the problem that the optical module outputs a large wavelength offset and thus the adjacent channel signal crosstalk in the DWDM system in the prior art.
  • the main object of the present invention is to provide a wavelength locking of the optical module.
  • a control device for realizing wavelength locking of an optical module is provided.
  • the control device for realizing the wavelength locking of the optical module comprises: a laser die temperature control unit, configured to acquire a feedback signal of the internal negative temperature coefficient thermistor of the laser, and compare the feedback signal with a preset signal to generate a control signal input to the internal thermoelectric cooler of the laser; an automatic wavelength control unit for detecting the output optical signal of the laser to obtain a wavelength deviation signal for achieving wavelength locking; and a superimposing unit for superimposing the wavelength deviation signal on the preset The signal is sent to the laser die temperature control unit.
  • the automatic wavelength control unit comprises: a beam splitter, a back-to-optical power detector, a filter, an optical wavelength detector, and a wavelength deviation signal generating unit; the output optical signal of the laser is split into two optical signals by the optical splitter, and the light is split.
  • the signal is converted by the back optical power detector into a first backlight current signal proportional to the power of the output optical signal; the other optical signal is sequentially passed through the filter, and the optical wavelength detector outputs a signal for changing the wavelength of the output optical signal.
  • a wavelength deviation signal generating unit configured to obtain a wavelength variation amount of the output optical signal by comparing the first backlight current signal and the second backlight current signal, and calculate the wavelength deviation signal according to the wavelength variation.
  • the wavelength deviation signal generating unit comprises: a first transimpedance amplifier for converting the first backlight current signal into a voltage signal, and a second transimpedance amplifier for converting the second backlight current signal into a voltage signal, Comparing the error amplifier of the output of the first transimpedance amplifier and the second transimpedance amplifier, and the wavelength deviation algorithm controller; the output of the first transimpedance amplifier is connected to one input of the error amplifier, and the output of the second transimpedance amplifier is connected The other input of the error amplifier, the error amplifier output is used to characterize the error voltage signal of the wavelength variation and is sent to the input of the wavelength deviation algorithm controller, which is used to convert the error voltage signal into a wavelength deviation signal.
  • the error amplifier comprises: an integrating circuit unit and two digital-to-analog converting units for adjusting the feedback coefficient; the first input end of the integrating circuit is connected to the output end of the first transimpedance amplifier, and the first input end and the output of the integrating circuit unit A digital-to-analog conversion unit is connected in series between the terminals, and the digital-to-analog conversion unit
  • the element is configured to receive a preset digital signal for adjusting the amplification factor, and convert the preset digital signal into a negative feedback signal by using the output of the integrating circuit unit, and superimposed on the voltage signal outputted by the first transimpedance amplifier;
  • the second input end of the integration circuit is connected to the output end of the second transimpedance amplifier, and another digital-to-analog conversion unit is connected in series between the second input end of the integration circuit and a preset operating voltage, and the digital-to-analog conversion unit is configured to receive the pre- The digital signal is set, and the preset digital signal is converted into an analog
  • the laser die temperature control unit comprises: an error amplifying unit, a compensation control unit, and a thermoelectric cooler driver unit; an input end of the error amplifying unit receives a feedback signal from a laser internal negative temperature coefficient thermistor, and the error amplifying unit The other input end is connected to the output end of the superimposing unit, and the error amplifying unit is configured to compare the feedback signal with the output result of the superimposing unit, and the output difference value is sent to the compensation control unit; the compensation control unit is configured to use the difference value according to the difference,
  • the control command for controlling the internal thermoelectric cooler of the laser is output by adjusting the proportional coefficient and the integral coefficient of the temperature control closed loop; the thermoelectric cooler driver unit is used for power amplification of the control command, and the output is used to drive the thermoelectric cooler inside the laser.
  • A. Obtaining a feedback signal of the internal negative temperature coefficient thermistor of the laser, and comparing the feedback signal with a preset signal to generate a control signal input to the internal thermoelectric cooler of the laser to form a negative feedback loop of the laser die temperature control;
  • the wavelength deviation signal is superimposed on the preset signal, and the wavelength change information is added to the laser die temperature control negative feedback loop to form a wavelength automatic control negative feedback loop.
  • the wavelength deviation signal is obtained by the following steps: Bl, dividing the output optical signal of the laser into two optical signals, and converting one optical signal into a power proportional to the power of the output optical signal through the back optical power detector. a backlight current signal; the other optical signal sequentially passes through the filter, and the optical wavelength detector outputs a second backlight current signal for reflecting the wavelength change of the output optical signal;
  • step B2 obtaining an output optical signal by comparing the first backlight current signal and the second backlight current signal
  • the wavelength change amount of the number, and the wavelength deviation signal is calculated based on the wavelength change amount.
  • step B2 comprises the following steps:
  • B21 Converting, by the first transimpedance amplifier, the first backlight current signal into a voltage signal, and converting, by the second transimpedance amplifier, the second backlight current signal into a voltage signal;
  • B22 comparing the first transimpedance amplifier and the second transimpedance amplifier The output of the error voltage signal for characterizing the amount of wavelength change;
  • the wavelength locking method is adopted to improve the stability and accuracy of the wavelength control, and the problem of the crosstalk of the adjacent channel signals in the DWDM system in the prior art is solved by the prior art, and the optical transmission system is satisfied. A requirement for higher wavelength stability.
  • FIG. 1 is a schematic structural view of a wavelength locking control device according to an embodiment of the present invention
  • FIG. 2 is an optical transmission characteristic of a Fabry-Perot Etalon filter
  • FIG. 3 is a wavelength locking control device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing state transition of a wavelength locking control device according to an embodiment of the present invention
  • FIG. 5 is a diagram showing internal signal flow of a thermoelectric cooler controller
  • FIG. 6 is a closed loop of laser die temperature control according to an embodiment of the present invention.
  • Proportional integral control algorithm implementation circuit 7 is a circuit configuration diagram of an error amplifier according to an embodiment of the present invention
  • FIG. 8 is a flowchart of software control of a wavelength locking control device according to an embodiment of the present invention
  • FIG. 9 is a wavelength locking control method according to an embodiment of the present invention. flow chart. BEST MODE FOR CARRYING OUT THE INVENTION
  • BEST MODE FOR CARRYING OUT THE INVENTION BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic structural diagram of a wavelength locking control device according to the present invention.
  • the control device for implementing wavelength locking of an optical module according to the present invention includes:
  • the wavelength automatic control unit 300 is configured to detect an output optical signal of the laser to obtain a wavelength deviation signal for realizing wavelength locking.
  • the above-mentioned automatic wavelength control unit includes the following two parts: an optical path portion including a beam splitter, a back-to-optical power detector, a filter, and an optical wavelength detector.
  • the output optical signal of the laser is split into two optical signals by the optical splitter, and one optical signal is converted into a first backlight current signal Ip proportional to the power of the output optical signal by the back optical power detector; the other optical signal passes through the filter in turn.
  • the optical wavelength detector outputs a second backlight current signal ⁇ ⁇ for reacting the wavelength change of the output optical signal. As shown in FIG.
  • the divergent output optical signal can also be converted into a parallel optical signal by a concentrating mirror to facilitate the collection of the optical signal.
  • Signal processing section comprising a wavelength deviation signal generating unit 305, by comparing the cell current signal Ip of the first backlight and the second backlight current signal ⁇ ⁇ , to obtain the amount of change of the wavelength of the output optical signal, Gen 4 according to the wavelength change amount Calculate the wavelength deviation signal.
  • the wavelength deviation signal generating unit 305 includes: a first transimpedance amplifier 303 for converting the first backlight current signal Ip into a voltage signal V(p) for using the second backlight current signal.
  • a second transimpedance amplifier 304 that converts ⁇ into a voltage signal ⁇ ( ⁇ )
  • an error amplifier 302 for comparing the output of the first transimpedance amplifier and the second transimpedance amplifier
  • a wavelength deviation algorithm controller C 2 ( z) 301 An output of the first transimpedance amplifier 303 is coupled to an input of the error amplifier 302, and an output of the second transimpedance amplifier 304 is coupled to another input of the error amplifier 302.
  • the output of the error amplifier 302 is used to characterize the wavelength. Variety
  • the quantity error voltage signal Verr is sent to the input end of the wavelength deviation algorithm controller C 2 (z) 301, and the wavelength deviation algorithm controller 301 is configured to convert the error voltage signal into a superimposable preset signal Vset.
  • the error amplifier 302 includes: an integrating circuit unit, and two digital-to-analog converting units M-DAC that adjust feedback coefficients.
  • the integration circuit here is composed of an operational amplifier D1, a resistor R1, a resistor R2, a capacitor C1, a resistor R3, and a resistor R4.
  • the structure of the integrating circuit can be seen in FIG.
  • the first input terminal of the integrating circuit is connected to the output end of the first transimpedance amplifier 303, that is, the inverting input terminal of the operational amplifier D1 in FIG.
  • a digital-to-analog conversion unit M-DAC is connected in series between the first input end and the output end of the integrating circuit unit, and the digital-to-analog conversion unit is configured to receive a preset digital signal CODE for adjusting the amplification factor, and use the above-mentioned integrating circuit
  • the output of the unit converts the preset digital signal CODE into a negative feedback signal, which is superimposed on the voltage signal V(p) output by the first transimpedance amplifier.
  • the second input end of the integrating circuit is connected to the output end of the second transimpedance amplifier, that is, the non-inverting input terminal of the operational amplifier D1 in FIG.
  • the filter 7 is connected to the output end of the second transimpedance amplifier 304 through the resistor R3, and Another digital-to-analog conversion unit M-DAC is connected in series between the second input end of the integration circuit and a preset operating voltage, and the digital-to-analog conversion unit is configured to receive the preset digital signal CODE and use the preset working voltage
  • the preset digital signal CODE is converted into an analog quantity and superimposed on the output voltage signal ⁇ ( ⁇ ) of the second transimpedance amplifier.
  • the error amplifier 302 can obtain the Verr output amplitude by writing the CODE of the M-DAC. Change.
  • the integral amplifier circuit outputs an analog signal V FE , which needs to be converted into an error voltage signal Verr in the form of a digital signal by an analog-to-digital converter ADC 800, and then sent to the wavelength deviation algorithm controller C 2 (z).
  • the calculation of the wavelength deviation algorithm is performed in 301 to obtain a wavelength deviation signal that can be superimposed on the input of the laser die temperature control unit.
  • the superimposing unit 500 is configured to superimpose the wavelength deviation signal into the preset signal Vset and send it to the laser die temperature control unit 400.
  • the laser die temperature control unit 400 is configured to obtain a feedback signal of the laser internal negative temperature coefficient thermistor 600, and compare the feedback signal with a preset signal Vset to generate an input to the internal thermoelectric cooler of the laser. control signal.
  • the laser die temperature control unit 400 includes: an error amplifying unit 402, a compensation control unit 401, and a thermoelectric cooler driver unit 403; an input terminal of the error amplifying unit 402 receives heat from a laser internal negative temperature coefficient Sense resistor 600 feedback signal, on The other input end of the error amplifying unit 402 is connected to the output end of the superimposing unit 500.
  • the error amplifying unit 402 is configured to compare the feedback signal with the output result of the superimposing unit 500, and the output difference value is sent to the compensation control unit 401.
  • the compensation control unit 401 is configured to output a control command for controlling the internal thermoelectric cooler of the laser by adjusting the proportional coefficient and the integral coefficient of the temperature control closed loop according to the difference; the thermoelectric cooler driver unit 403 is configured to use the above control command Power amplification is performed, the output of which is used to drive the internal thermoelectric cooler of the laser.
  • the laser converts the transmitted data into an optical signal
  • the optical splitter splits the output signal of the laser into two parts: one light illuminates the back-to-back optical power detector to obtain a current signal Ip proportional to the magnitude of the output optical power, the size and output of the signal. independent of the wavelength of light; the other path of the light through a filter (which may be Fabry-Perot Etalon filter) is irradiated onto the optical wavelength as a wavelength monitor detector to obtain a photocurrent signal ⁇ ⁇ , not only on the wavelength of the output light, and Also related to the output optical power size.
  • the Fabry-Perot Etalon filter is a key component in wavelength-locking technology.
  • the photo-generated current generated by the back-to-optical power detector is input into the wavelength deviation signal generating unit as a monitor signal.
  • the automatic power control can automatically adjust the laser bias current according to the change of the laser output average optical power to achieve automatic control of the laser output average optical power.
  • the output optical power is kept stable, that is, the photo-generated current Ip is kept stable.
  • the control loop formed by the photo-generated current Ip as an input parameter is the optical power automatic control circuit APC, which belongs to a part of the automatic wavelength control unit. Only the Ip is stable, and the difference between the current signals ( ⁇ , ⁇ ⁇ ) is The fluctuation of the output wavelength is proportional.
  • a control signal is generated to control the change of the temperature of the laser, and the fluctuation of the wavelength of the optical signal emitted by the laser can be controlled, thereby achieving wavelength locking.
  • a block diagram of the wavelength locking control device according to the embodiment of the present invention is shown in FIG. Use a transimpedance amplifier to detect the current ⁇ ⁇ generated by the back-to-head optical power detector and the optical wavelength detector The resulting backlight current signal ⁇ ⁇ is converted into voltage signals V(p), and ⁇ ( ⁇ ), respectively. Generally, the amount of change in ⁇ ( ⁇ ) caused by the wavelength change is small.
  • the voltage Verr is used as an input to the wavelength deviation algorithm controller C 2 (z) 301.
  • the optical wavelength detector detects a current signal generated by the backlight ⁇ ⁇ only the output light wavelength related to, but also the output optical power, whereas the APC circuit can be ensured by the optical power output substantially constant, and therefore, light
  • the backlight current signal generated by the wavelength detector detection is only related to the wavelength of the output light, that is, the Verr voltage is only related to the wavelength of the output light.
  • the wavelength deviation algorithm controller C 2 (z) 301 controls the center wavelength in real time according to the input error voltage signal Verr.
  • the laser die temperature control unit must be stabilized and set before the wavelength automatic control unit is activated.
  • 1 and 3 illustrate the wavelength locking control device of the present invention constructed by the wavelength automatic control unit 300, the laser die temperature control unit 400, and the superimposing unit 500.
  • the laser die temperature control unit When the difference between the laser die temperature and the set value is within the range of ⁇ z T (typically 0.1 °C), the laser die temperature control unit is locked, and after a short delay, it switches to the wavelength control mode.
  • the wavelength automatic control unit and the superimposing unit are activated.
  • the state transition of the wavelength lock control device is shown in Figure 4. Initial state, laser die temperature control unit, Indicates that the laser die temperature is not stable yet. , indicating that the temperature of the laser die is stable. After a '', period delay ⁇ 3 ⁇ 4, the wavelength automatic control unit and the superimposing unit are enabled.
  • the above wavelength automatic control unit wavelength deviation controller may adopt a compensation adjustment algorithm, an integration algorithm, an integral separation PI control algorithm, and an adaptive control algorithm, etc., which may be implemented by software, and the wavelength is executed in the timer interrupt service program of the MCU controller. Deviation control algorithm.
  • setting the wavelength lock enable flag can increase the flexibility of wavelength control.
  • the internal structure of the new laser usually includes a laser die, a PIN tube for average optical power monitoring, a negative temperature coefficient thermistor RTH1 600 for die temperature control, and a thermoelectric cooler device, and a Fabry-Perot Etalon filter.
  • the Fabry-Perot Etalon filter is used in the laser, and the Fabry-Perot Etalon filter in the laser can be directly used when constructing the automatic wavelength control unit, without adding another filter.
  • the compensation control unit 401 and the thermoelectric cooler driver unit 403 in the laser die temperature control unit can be realized by a dedicated thermoelectric cooler controller chip, and the internal signal flow direction thereof is shown in FIG. 5, and includes three levels: the first stage.
  • the 4 cland error amplifier 603 for implementing the error amplifying unit is for accurately measuring the difference between the current temperature of the laser die and the preset temperature; the second stage is a PID control amplifier, Z 1 , Z2 , and a controller chip
  • the internal compensation Amplifier 601 constitutes a proportional integral control loop for implementing the compensation control unit.
  • the proportional and integral coefficients of the laser die temperature control unit can be adjusted by external resistance capacitance parameters to optimize the performance of the system.
  • the stage is a large current output stage for implementing the PWM mode of the thermoelectric cooler driver unit, that is, a monthly constant width modulation/linear amplifier 602.
  • the driving circuit in the thermoelectric cooler driver unit can adopt an H-bridge amplifying circuit composed of four high-power MOSFETs to realize the forward and reverse bidirectional driving of the thermoelectric cooler, thereby performing cooling and heating of the thermoelectric cooler.
  • the laser die temperature control unit controller uses a proportional integral control algorithm, and its implementation circuit is shown in Figure 6.
  • R1 is Z1 in Fig. 7, R2 and C1 form Z2 in Fig. 7, R1 and R2 form a proportional link, R1 and C1 constitute an integral link, and the proportional integral coefficient is adjusted by modifying the parameters of the three resistive container members.
  • the parameters can be obtained by trial and error.
  • the trial and error method is based on the approximate influence of each control parameter on the system response, and the parameters are repeatedly tried and tested to achieve a satisfactory system response curve, and finally the proportional integral control coefficient is determined.
  • the temperature of the Fabry-Perot Etalon filter it is also necessary to control the temperature of the Fabry-Perot Etalon filter.
  • the Fabry-Perot Etalon filter temperature control unit structure is identical to the laser die temperature control unit, and the implementation circuit is identical. It is not mentioned here.
  • the APC circuit In order to ensure that the Verr is only related to the wavelength information, the APC circuit needs to work stably to ensure that the output optical power is substantially unchanged, and the output current of the corresponding back-facing optical power detector is unchanged.
  • the APC circuit structure is quite mature, please refer to the relevant information, and will not be mentioned here.
  • Power detection and wavelength detection use a transimpedance amplifier circuit to convert the photocurrent signal into a voltage signal.
  • the transimpedance amplifier adopts a high input impedance negative feedback structure, which has the characteristics of designing a single tube and high bandwidth.
  • the present invention further provides a control method for realizing wavelength locking of an optical module based on the above structure. As shown in FIG.
  • the method includes the following steps 701 to 703: Step 701: Acquire an internal negative temperature coefficient thermal of the laser a feedback signal of the resistor, and comparing the feedback signal with a preset signal to generate a control signal input to the internal thermoelectric cooler of the laser to form a laser die temperature control negative feedback loop; Step 702: Detecting an output optical signal of the laser to obtain a wavelength deviation signal indicating a wavelength change. Step 703: superimposing the wavelength deviation signal on the preset signal, and adding wavelength change information to the laser die temperature control negative feedback loop. In the middle, a wavelength is automatically controlled to control the negative feedback loop. Referring to FIG. 1 and FIG.
  • the wavelength deviation signal is obtained by the following steps: First, the output optical signal of the laser is split into two optical signals, and one optical signal is converted into a proportional light by the back optical power detector. a first backlight current signal of a signal power level; the other optical signal sequentially outputs a second backlight current signal for reflecting a wavelength change of the output optical signal through the filter, and the optical wavelength detector; and then, by comparing the first backlight current signal And the second backlight current signal obtains a wavelength change amount of the output optical signal, and calculates the wavelength deviation signal according to the wavelength change amount.
  • the output optical signal of the laser is split into two optical signals, and one optical signal is converted into a proportional light by the back optical power detector. a first backlight current signal of a signal power level; the other optical signal sequentially outputs a second backlight current signal for reflecting a wavelength change of the output optical signal through the filter, and the optical wavelength detector; and then, by comparing the first backlight current signal And the second backlight current signal obtains a wavelength change amount of
  • the first backlight current signal is first converted into a voltage signal by a first transimpedance amplifier, and the second backlight current signal is converted into a voltage signal by a second transimpedance amplifier; Then comparing the output results of the first transimpedance amplifier and the second transimpedance amplifier to obtain an error voltage signal for characterizing the wavelength variation; and finally converting the error voltage signal into a wavelength deviation signal by using a wavelength deviation algorithm controller,
  • One step is performed by the wavelength deviation signal generating unit in the control circuit.
  • FIG. 8 an implementation method of a wavelength deviation signal generation unit wavelength deviation algorithm controller according to an embodiment of the present invention is shown.
  • an integral separation PI control algorithm is selected for description, implemented by software, in an MCU.
  • the wavelength interrupt device control algorithm is executed in the timer interrupt service program, as follows: Step 501: interrupt the monthly service program start; Step 502, firstly, the laser die temperature control unit is stabilized, and then the wavelength automatic control unit is started, specifically See the related description of Figure 4.
  • the interrupt service routine determines whether the laser die temperature control unit is stable by determining whether the wavelength locking algorithm is enabled and whether TempAlm is 1. If TempAlm is 1, then step 503 is performed; if not, step 505 is performed; The error voltage signal Verr is sampled and subjected to software filtering. The error voltage signal Verr can be obtained by referring to the circuit structure shown in FIG.
  • Step 504 Calculate the control quantity by using the integral separation PI algorithm, and convert it into a 12-bit digital quantity, and generate a wavelength deviation signal that can be superimposed on the input end of the laser die temperature control unit through the digital-to-analog conversion (DAC) output;
  • Step 505 wavelength locking
  • the above-mentioned integral separation control algorithm not only maintains the integral action, but also reduces the overshoot, which greatly improves the control performance.
  • the specific algorithm is as follows:
  • a threshold is artificially set
  • the proportional control can be used to avoid large overshoot and the system has a faster response;
  • the proportional integral control can be used to ensure the system's control precision.
  • the tuning process of the integral separation threshold, the proportional coefficient and the integral coefficient in the software algorithm uses the trial and error method.
  • a computer readable medium having stored thereon computer executable instructions for causing a computer or processor to perform, for example, when executed by a computer or processor The processing of each step shown in Figs. 8 and 9.
  • the wavelength locking automatic control device of the invention has good dynamic response quality such as good dynamic response, excellent wavelength following and small steady state error, and high stability and precision of wavelength control.
  • the optical module integrated with the wavelength locking control device can overcome the wavelength shift caused by external environment changes and laser aging factors, and stabilize the output wavelength on the ITU-T defined grid to meet the DWDM system's wavelength for each channel. Higher stability and accuracy requirements.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

实现光模块波长锁定的控制装置和方法 技术领域 本发明涉及在光纤通讯领域里实现光发射机波长自动控制的技术,尤其 涉及一种实现光模块波长锁定的控制装置和方法。 背景技术 波分复用技术是在单根光纤中通过具有一定间隔的多个特定波长同时 传输多路光信号, 从而显著提高单纤传输容量的新型技术。 随着传输容量的 进一步提高 ,波分复用技术经历了从粗波分复用到密集波分复用的发展阶段。 密集波分复用系统(Dense Wavelength Division Multiplexing,筒称为 DWDM ) 由于可以充分利用带宽资源而受到人们的极大关注。 当前为了提升 DWDM 系统的传输容量, 除采用提高单通道信号速率、 扩展可用光谱范围外, 还可 以通过缩小通道间隔的方式来实现, 例如, 将通道间隔由 100GHZ、 50GHZ 缩小到 25GHZ, 甚至更小。 随着光通信技术的不断发展 ,光收发合一模块已经越来越广泛地应用到 DWDM传输系统中 , 起着电 /光、 光 /电转换的作用, 其性能对 DWDM系统 性能指标有着重要影响。 目前分布式反馈 (Distributed Feed Back, 筒称 DFB) 半导体激光器由于具有调制速率高、 小型、 稳定可靠等优点, 已经广泛用于 光模块中。 但是分布式反馈半导体激光器的输出波长会随着工作温度的变化 而发生漂移(温度波长漂移量一般为 0.1nm/°C ), 这种波长漂移会导致信道间 的信息产生串扰, 使得 DWDM光纤通信系统的安全性下降。 因此, 必须采 取手段对用于 DWDM光纤通信系统中的各个 DFB激光器的波长进行精确控 制。 国际通信联盟 (筒称 ITU-T ) 目前推荐的光纤通信 DWDM 系统各信道 的波长间隔主要有 100GHZ、 50GHZ、 和 25GHZ, 其相应允许的各信道最大 中心频率偏移分别为士 12.5GHz、 士 5GHz、 和士 2.5GHZ。 为防止由于外界环境 变化和激光器老化导致波长产生偏移, 原来单纯通过激光器的管芯温度控制 装置来稳定其中心波长的方法已经不再有效, 所以就需要进行一步地改进激 光器的波长控制技术。 发明内容 针对现有技术中光模块输出波长偏移大从而 1起 DWDM系统中相邻通 道信号串扰的问题而提出本发明, 为此, 本发明的主要目的是提供一种实现 光模块波长锁定的控制装置和方法, 以解决上述问题至少之一。 为了实现上述目的 , 才艮据本发明的一个方面, 提供了一种实现光模块波 长锁定的控制装置。 根据本发明的实现光模块波长锁定的控制装置包括:激光器管芯温度控 制单元, 用于获取激光器内部负温度系数热敏电阻的反馈信号 , 并将该反馈 信号与一预设信号进行比较,产生输入至激光器内部热电制冷器的控制信号; 波长自动控制单元, 用于检测激光器的输出光信号, 获得用于实现波长锁定 的波长偏差信号; 及叠加单元, 用于将波长偏差信号叠加到预设信号中, 并 送入至激光器管芯温度控制单元。 优选地, 波长自动控制单元包括: 分光器、 背向光功率检测器、 滤波器、 光波长检测器、 以及波长偏差信号生成单元; 激光器的输出光信号通过分光 器分成两路光信号, 一路光信号通过背向光功率检测器转化为一正比于输出 光信号功率大小的第一背光电流信号; 另一路光信号依次通过滤波器、 光波 长检测器输出一用于反应输出光信号波长变化的第二背光电流信号; 波长偏 差信号生成单元用于通过比较第一背光电流信号和第二背光电流信号, 获得 输出光信号的波长变化量 , 才艮据该波长变化量计算波长偏差信号。 优选地, 波长偏差信号生成单元包括: 用于将第一背光电流信号转化为 电压信号的第一跨阻放大器, 用于将第二背光电流信号转化为电压信号的第 二跨阻放大器, 用于比较第一跨阻放大器和第二跨阻放大器输出结果的误差 放大器, 以及波长偏差算法控制器; 第一跨阻放大器的输出端连接误差放大 器的一个输入端,第二跨阻放大器的输出端连接误差放大器的另一个输入端, 误差放大器输出用于表征波长变化量的误差电压信号, 并送至波长偏差算法 控制器的输入端 , 波长偏差算法控制器用于将误差电压信号转化为波长偏差 信号。 优选地, 误差放大器包括: 积分电路单元以及两个调节反馈系数的数模 转换单元; 积分电路的第一输入端连接第一跨阻放大器的输出端, 在积分电 路单元的第一输入端与输出端之间串联有一个数模转换单元, 该数模转换单 元用于接收一用于调节放大倍数的预设数字信号 , 并利用积分电路单元的输 出量将该预设数字信号转换为一负反馈信号 , 叠加到第一跨阻放大器输出的 电压信号中; 积分电路的第二输入端连接第二跨阻放大器的输出端, 积分电 路的第二输入端与一预设工作电压之间串联有另一个数模转换单元, 该数模 转换单元用于接收预设数字信号, 并利用预设工作电压将该预设数字信号转 换为一模拟量, 叠加到第二跨阻放大器的输出电压信号中。 优选地,激光器管芯温度控制单元包括:误差放大单元、补偿控制单元、 及热电制冷器驱动器单元; 误差放大单元的一个输入端接收来自激光器内部 负温度系数热敏电阻的反馈信号 , 误差放大单元的另一个输入端连接叠加单 元的输出端 , 该误差放大单元用于将反馈信号与叠加单元的输出结果进行比 较, 输出差值送入到补偿控制单元中; 补偿控制单元用于依据差值, 通过调 节温度控制闭环的比例系数和积分系数, 输出用以控制激光器内部热电制冷 器的控制命令; 热电制冷器驱动器单元用于将控制命令进行功率放大, 输出 用以驱动激光器内部的热电制冷器。 为了实现上述目的 , 才艮据本发明的另一个方面, 提供了一种实现光模块 波长锁定的控制方法。 才艮据本发明的实现光模块波长锁定的控制方法包括以下步骤:
A、 获取激光器内部负温度系数热敏电阻的反馈信号 , 并将该反馈信号 与一预设信号进行比较, 产生输入至激光器内部热电制冷器的控制信号, 形 成激光器管芯温度控制负反馈回路;
B、 检测激光器的输出光信号, 获得表征波长变化的波长偏差信号;
C、 将该波长偏差信号叠加到预设信号中, 使波长变化信息添加到激光 器管芯温度控制负反馈回路中 , 形成波长自动控制负反馈回路。 优选地, 步骤 B中通过以下步骤获得波长偏差信号: Bl、 将激光器的输出光信号分成两路光信号, 一路光信号通过背向光 功率检测器转化为一正比于输出光信号功率大小的第一背光电流信号; 另一 路光信号依次通过滤波器、 光波长检测器输出一用于反应输出光信号波长变 化的第二背光电流信号;
B2、 通过比较第一背光电流信号和第二背光电流信号, 获得输出光信 号的波长变化量, 4艮据该波长变化量计算波长偏差信号。 优选地 , 步骤 B2包括以下步骤:
B21、 通过第一跨阻放大器将第一背光电流信号转化为电压信号, 通过 第二跨阻放大器将第二背光电流信号转化为电压信号; B22、 比较第一跨阻放大器和第二跨阻放大器的输出结果, 获得用于表 征波长变化量的误差电压信号;
B23、 将误差电压信号转化为可叠加在预设信号中的波长偏差信号。 通过本发明, 采用波长锁定的方法提高波长控制的稳定度和精度, 解决 了现有技术中光模块输出波长偏移大从而 1起 DWDM 系统中相邻通道信号 串扰的问题, 满足了光传输系统对波长稳定度更高的要求。 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说 明书中变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优 点可通过在所写的说明书、 权利要求书、 以及附图中所特别指出的结构来实 现和获得。 附图说明 此处所说明的附图用来提供对本发明的进一步理解 ,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是根据本发明实施例的波长锁定控制装置的结构示意图; 图 2是 Fabry-Perot Etalon滤波器的光传输特性; 图 3为根据本发明实施例的波长锁定控制装置的筒化控制框图; 图 4是根据本发明实施例的波长锁定控制装置状态转换示意图; 图 5是热电制冷器控制器内部信号流向图; 图 6 是根据本发明实施例的激光器管芯温度控制闭环比例积分控制算 法实现电路; 图 7是根据本发明实施例的误差放大器的电路结构图; 图 8是根据本发明实施例的波长锁定控制装置软件控制流程图; 图 9是才艮据本发明实施例的波长锁定控制方法的流程图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 如图 1 示出了才艮据本发明的波长锁定控制装置的结构示意图, 如图 1 所示, 本发明提出的实现光模块波长锁定的控制装置包括:
( 1 ) 波长自动控制单元 300 , 用于检测激光器的输出光信号, 获得用 于实现波长锁定的波长偏差信号。 如图 1和图 3所示, 上述波长自动控制单元包括以下两个部分: 光路部分, 包括分光器、 背向光功率检测器、 滤波器、 光波长检测器。 激光器的输出光信号通过分光器分成两路光信号 , 一路光信号通过背向光功 率检测器转化为一正比于输出光信号功率大小的第一背光电流信号 Ip; 另一 路光信号依次通过滤波器、 光波长检测器输出一用于反应输出光信号波长变 化的第二背光电流信号 Ιλ。 如图 1所示, 在激光器的输出光信号进入分光器 之前 , 还可以通过一聚光镜将发散的输出光信号转换为平行光信号 , 以便于 对光信号的采集。 信号处理部分, 包括波长偏差信号生成单元 305, 该单元用于通过比较 上述第一背光电流信号 Ip和第二背光电流信号 Ιλ, 获得输出光信号的波长变 化量, 4艮据该波长变化量计算波长偏差信号。 如图 3所示, 上述波长偏差信号生成单元 305包括: 用于将上述第一背 光电流信号 Ip转化为电压信号 V(p)的第一跨阻放大器 303 , 用于将上述第二 背光电流信号 Ιλ转化为电压信号 ν(λ)的第二跨阻放大器 304, 用于比较上述 第一跨阻放大器和上述第二跨阻放大器输出结果的误差放大器 302, 以及波 长偏差算法控制器 C2(z) 301。 上述第一跨阻放大器 303的输出端连接上述误 差放大器 302的一个输入端, 上述第二跨阻放大器 304的输出端连接上述误 差放大器 302的另一个输入端, 上述误差放大器 302输出用于表征波长变化 量的误差电压信号 Verr, 并送至上述波长偏差算法控制器 C2(z) 301的输入 端, 上述波长偏差算法控制器 301用于将上述误差电压信号转化为可叠加在 上述预设信号 Vset中的波长偏差信号,在这里波长偏差算法控制器的算法有 艮多种, 比如补偿算法, 积分算法, 积分分离算法, 自适应算法等等。 如图 7所示, 误差放大器 302包括: 积分电路单元、 以及两个调节反馈 系数的数模转换单元 M-DAC。 这里的积分电路由运算放大器 D1、 电阻 R1、 电阻 R2、 电容 Cl、 以及电阻 R3、 电阻 R4构成, 积分电路的结构可以参见 图 7所示。 这里积分电路的第一输入端连接上述第一跨阻放大器 303的输出 端, 即, 图 7中运算放大器 D1的反相输入端通过电阻 R1连接第一跨阻放大 器 303的输出端, 并且在上述积分电路单元的第一输入端与输出端之间串联 有一个数模转换单元 M-DAC, 该数模转换单元用于接收一用于调节放大倍 数的预设数字信号 CODE, 并利用上述积分电路单元的输出量将该预设数字 信号 CODE转换为一负反馈信号, 叠加到上述第一跨阻放大器输出的电压信 号 V(p)中。另夕卜,积分电路的第二输入端连接上述第二跨阻放大器的输出端, 即, 图 7 中运算放大器 D1 的同相输入端通过电阻 R3连接第二跨阻放大器 304 的输出端, 并且在上述积分电路的第二输入端与一预设工作电压之间串 联有另一个数模转换单元 M-DAC, 该数模转换单元用于接收上述预设数字 信号 CODE, 并利用上述预设工作电压将该预设数字信号 CODE转换为一模 拟量, 叠加到上述第二跨阻放大器的输出电压信号 ν(λ)中。 误差放大器 302 通过写入 M-DAC的 CODE可以得到 Verr输出幅度的?丈变。图 7中积分放大 电路输出的是模拟信号 VFE, 需要通过一模数转换器 ADC 800将其转换为数 字信号形式的误差电压信号 Verr, 然后送入到波长偏差算法控制器 C2(z) 301 中进行波长偏差算法的计算, 用以获得可叠加在激光器管芯温度控制单元输 入端的波长偏差信号。 ( 2 )叠加单元 500,用于将上述波长偏差信号叠加到上述预设信号 Vset 中, 并送入至激光器管芯温度控制单元 400。
( 3 ) 激光器管芯温度控制单元 400 , 用于获取激光器内部负温度系数 热敏电阻 600的反馈信号, 并将该反馈信号与一预设信号 Vset进行比较, 产 生输入至激光器内部热电制冷器的控制信号。 如图 3所示, 激光器管芯温度控制单元 400包括: 误差放大单元 402、 补偿控制单元 401、 及热电制冷器驱动器单元 403; 上述误差放大单元 402 的一个输入端接收来自激光器内部负温度系数热敏电阻 600的反馈信号 , 上 述误差放大单元 402的另一个输入端连接叠加单元 500的输出端 , 该误差放 大单元 402用于将上述反馈信号与上述叠加单元 500的输出结果进行比较, 输出差值送入到补偿控制单元 401中;补偿控制单元 401用于依据上述差值, 通过调节温度控制闭环的比例系数和积分系数, 输出用以控制激光器内部热 电制冷器的控制命令; 热电制冷器驱动器单元 403用于将上述控制命令进行 功率放大, 其输出用以驱动激光器内部热电制冷器。 以下结合附图详细说明本发明的工作原理。 图 1示出了一部分单信道光波长锁定控制装置的光路功能框图。激光器 把传输数据转变成光信号, 分光器把激光器的输出信号分成两部分: 一路光 照射到背向光功率检测器, 得到一个正比于输出光功率大小的电流信号 Ip, 该信号的大小与输出光波长无关; 另一路光通过滤波器 (可以是 Fabry-Perot Etalon滤波器) 照射到用作波长监测的光波长检测器上, 得到一个光电流信 号 Ιλ, 它不仅与输出光波长有关, 而且与输出光功率大小也有关。 Fabry-Perot Etalon滤波器是波长锁定技术中的关键器件, 它有两个突出优点: 首先, 它 的光传输特性是具有周期性的, 如图 2所示, 这就意味着在制造时, 如果将 etalon的自由光谱范围 ( FSR ) 与 ITU-T规定的波长间隔相适配, 则许多符 合 ITU-T标准的波长可以通过同一波长监测系统来监测; 另外, Etalon滤波 器受温度影响很小 ,由于波长检测器输出的电信号是周期性变化的波长信号 , 必须高度关注波长捕捉的范围, 以确保锁定的是正确的波长, 如果滤波器受 温度影响很大, 则很难保证对波长的精确锁定, 在这一点上, Etalon滤波器 具有一定的优势。 背向光功率检测器产生的光生电流作为监控信号 1入波长偏差信号生 成单元中。 光功率自动控制电路 ( Automatic power control , 筒称为 APC ) 能 够才艮据激光器输出平均光功率的变化自动调整激光器偏置电流的大小来实现 激光器输出平均光功率的自动控制 , 利用 APC电路, 可以使输出光功率保持 稳定, 即, 光生电流 Ip保持稳定。 在这里光生电流 Ip作为输入参数构成的控 制环路即是光功率自动控制电路 APC , 它属于波长自动控制单元的一部分, 只有 Ip稳定不变, 电流信号 (Ιρ, Ιλ)间的差异才与输出波长的波动成正比。 才艮 据 Ιλ的变化产生控制信号控制激光器的温度的变化,能够控制激光器发出光 信号波长的波动, 从而实现波长锁定。 才艮据本发明实施例的波长锁定控制装置筒化控制框图如图 3所示。采用 跨阻放大器, 将背向光功率检测器检测产生的电流 Ιρ、 和光波长检测器检测 产生的背光电流信号 Ιλ分别转化为电压信号 V(p)、 和 ν(λ)。 通常, 由波长变 化引起的 ν(λ)的变化量较小, 因此, 需采用误差放大器将 V(p)和 ν(λ)的差 值放大, 而且该误差放大器增益可调, 将误差放大器输出电压 Verr作为波长 偏差算法控制器 C2(z) 301的输入。 如上面所述, 光波长检测器检测产生的背 光电流信号 Ιλ不仅与输出光波长有关, 而且与输出光功率大小也有关, 而通 过 APC电路可以确保输出光功率大小基本不变, 因此, 光波长检测器检测产 生的背光电流信号 ^仅与输出光波长有关, 即, Verr电压仅与输出光波长有 关。 波长偏差算法控制器 C2(z) 301才艮据输入的误差电压信号 Verr实时地对 中心波长进行控制。 此外, 为确保锁定到正确的波长, 在启动波长自动控制 单元之前, 必须先让激光器管芯温度控制单元稳、定工作。 图 1和图 3示出了由波长自动控制单元 300、 激光器管芯温度控制单元 400和叠加单元 500构成的本发明所公开的波长锁定控制装置。 刚上电时, 波长锁定控制装置工作在温度控制模式,激光器管芯温度控制单元开始工作 , LsTEMPALM=0表示激光器管芯温度控制单元还没有稳定。 当激光器管芯温 度与设定值的差值在士 z T 范围之内时 (一般为 0.1 °C ) , 激光器管芯温度控 制控制单元锁定, 经过一小段延时 后, 切换到波长控制模式, 波长自动控 制单元和叠加单元启动。 波长锁定控制装置的状态转换见图 4。 初始状态, 激光器管芯温度控制控制单元,
Figure imgf000010_0001
表示激光器管芯温度还 没有稳定, 当
Figure imgf000010_0002
, 表示激光器管芯温度稳定, 经过一'』、段 延时 τ¾后 , 使能波长自动控制单元和叠加单元 , 这时
Figure imgf000010_0003
当波长锁定后,
Figure imgf000010_0004
。 上述波长自动控制单元波长偏差控制 器可以采用补偿调节算法、 积分算法、 积分分离 PI控制算法、 和自适应控制 算法等等, 可以用软件实现, 在 MCU控制器的定时器中断服务程序中执行 波长偏差控制算法。 另外, 设置波长锁定使能标志位, 可以增加波长控制的 灵活性。 取样 TempAlm信号的状态, 是为了控制 ATC闭环和 AFC闭环的 启动顺序。 TempAlm=l表示激光器管芯温度控制单元稳定工作。 该信号保证 在激光器管芯温度稳定后再启动波长自动控制单元和叠加单元。 以下结合附图 , 将对本发明的具体实施例加以详细描述。 通常新型激光器的内部结构主要包括激光器管芯、实现平均光功率监测 的 PIN管、 用于管芯温度控制的负温度系数热敏电阻 RTH1 600、 和热电制 冷器器件、 以及 Fabry-Perot Etalon滤波器、 实现波长监测的 PIN管、 用于 Fabry-Perot Etalon滤波器温度控制的负温度系数热敏电阻、 和热电制冷器等 器件。 通常激光器中就带有 Fabry-Perot Etalon滤波器, 则在构建波长自动控 制单元时可以直接采用激光器中 Fabry-Perot Etalon滤波器 , 而不需要再另外 增加滤波器。 激光器管芯温度控制单元中的补偿控制单元 401 及热电制冷器驱动器 单元 403可以由专用的热电制冷器控制器芯片来实现, 其内部的信号流向由 图 5所示,含有 3级:第一级为用以实现误差放大单元的 4青密误差放大器 603 , 用于精密测量激光器管芯当前温度与预设温度之间的差; 第二级为 PID控制 放大器, Z 1、 Z2、 和控制器芯片内部的 卜偿放大器( Compensation Amplifier ) 601 构成比例积分控制环用以实现补偿控制单元, 可以通过外接阻容参数来 调节激光器管芯温度控制单元的比例系数和积分系数, 优化系统的性能; 第 三级为用以实现热电制冷器驱动器单元的 PWM方式的大电流输出级 , 即月永 宽调制 /线性放大器 602。 热电制冷器驱动器单元中的驱动电路可采用由 4个 大功率 MOSFET组成的 H桥放大电路, 实现热电制冷器的正、 反两向驱动, 从而进行热电制冷器的制冷和制热。 激光器管芯温度控制单元控制器采用比 例积分控制算法, 其实现电路如图 6所示。 R1是图 7中的 Zl , R2和 C1组 成图 7中的 Z2 , R1和 R2构成比例环节, R1和 C1构成积分环节, 通过修 _ 改这三个阻容器件的参数来调节比例积分系数, 优化系统的性能。 这里参数 的获取可采用试凑法。 试凑法是根据各控制参数对系统响应的大致影响, 反 复试凑参数, 以达到满意的系统响应曲线, 最后确定比例积分控制系数。 除 了保证管芯温度稳定以外, 还需要控制 Fabry-Perot Etalon 滤波器的温度。 Fabry-Perot Etalon滤波器温度控制单元结构与激光器管芯温度控制单元完全 相同, 实现电路也完全相同, 在此不再赞述。 为保证 Verr仅与波长信息相关, APC电路需要稳定工作, 以保证输出 光功率基本不变, 对应的背向光功率检测器的输出电流不变。 APC电路结构 已经相当成熟, 可以参见相关资料, 在此不再赞述。 功率检测和波长检测采 用跨阻放大器电路将光电流信号转换成电压信号, 跨阻放大器采用高输入阻 抗负反馈结构 , 具有设计筒单和带宽高的特点。 另外,本发明在上述结构的基础上还提供了一种实现光模块波长锁定的 控制方法, 如图 9所示, 其包括以下步骤 701至步骤 703: 步骤 701、 获取激光器内部负温度系数热敏电阻的反馈信号, 并将该反 馈信号与一预设信号进行比较, 产生输入至激光器内部热电制冷器的控制信 号 , 形成激光器管芯温度控制负反馈回路; 步骤 702、 检测激光器的输出光信号, 获得表征波长变化的波长偏差信 号; 步骤 703、 将该波长偏差信号叠加到上述预设信号中, 使波长变化信息 添加到上述激光器管芯温度控制负反馈回路中 , 形成波长自动控制负反馈回 路。 结合图 1和图 3 , 上述步骤 702中通过以下步骤获得波长偏差信号: 首先, 将激光器的输出光信号分成两路光信号,一路光信号通过背向光 功率检测器转化为一正比于输出光信号功率大小的第一背光电流信号; 另一 路光信号依次通过滤波器、 光波长检测器输出一用于反映输出光信号波长变 化的第二背光电流信号; 然后, 通过比较上述第一背光电流信号和第二背光电流信号, 获得输出 光信号的波长变化量,才艮据该波长变化量计算波长偏差信号。在这一过程中, 如图 3所示, 首先要通过第一跨阻放大器将上述第一背光电流信号转化为电 压信号, 通过第二跨阻放大器将上述第二背光电流信号转化为电压信号; 然 后再比较上述第一跨阻放大器和上述第二跨阻放大器的输出结果, 获得用于 表征波长变化量的误差电压信号; 最后利用波长偏差算法控制器将误差电压 信号转化为波长偏差信号, 这一步在控制电路中由波长偏差信号生成单元完 成。 如图 8所示,给出了才艮据本发明实施例的波长偏差信号生成单元波长偏 差算法控制器的实现方法, 本实施例选取积分分离 PI控制算法进行说明, 用 软件实现, 在 MCU的定时器中断服务程序中执行波长锁定装置控制算法, 如下所示: 步骤 501 , 中断月 务程序开始; 步骤 502, 首先要使激光器管芯温度控制单元工作稳定, 然后再启动波 长自动控制单元 , 具体参见图 4的相关说明。 在这里中断服务程序通过判断 波长锁定算法是否使能且 TempAlm是否为 1 来确定激光器管芯温度控制单 元是否稳定, 若 TempAlm为 1 , 则执行步骤 503; 若否, 则执行步骤 505; 步骤 503 , 采样误差电压信号 Verr, 并进行软件滤波, 误差电压信号 Verr的获得可参照图 3所示的电路结构, 在此不再 ^故详细说明; 步骤 504, 利用积分分离 PI算法计算控制量, 并转化为 12位数字量, 通过数模转换 ( DAC )输出, 生成可以叠加到激光器管芯温度控制单元输入 端的波长偏差信号; 步骤 505 , 波长锁定控制中断服务程序结束。 上述积分分离控制算法, 既保持了积分作用, 又减少了超调量, 使得控 制性能有了较大的改善, 具体算法如下:
( 1 )才艮据控制对象的实际情况, 人为设定一阈值;
( 2 ) 当偏差值大于阈值时, 采用比例控制, 可以避免较大的超调, 又 使系统有较快的响应; ( 3 ) 当偏差值小于阈值时, 采用比例积分控制, 可保证系统的控制精 度。软件算法中积分分离阈值、 比例系数和积分系数的整定过程采用试凑法。 才艮据本发明实施例, 还提供了一种计算机可读介质, 该计算机可读介质 上存储有计算机可执行的指令, 当该指令被计算机或处理器执行时, 使得计 算机或处理器执行如图 8和图 9所示的各步骤的处理。 需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执 行指令的计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但是 在某些情况下 , 可以以不同于此处的顺序执行所示出或描述的步骤。 本发明所述的波长锁定自动控制装置具有良好的动态响应、优秀的波长 跟随以及较小的稳态误差等动静态控制品质 , 波长控制的稳定度和精度高。 集成波长锁定控制装置的光模块可以克服由于外界环境变化和激光器老化等 因素导致的波长偏移,将输出波长稳、定在 ITU-T定义的栅格上,满足 DWDM 系统对各通道波长越来越高的稳定度和精度要求。 另外, 外置波长锁定装置 的成本高 , 在光模块内部实现波长锁定功能具有较大的优势。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 4青申和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种实现光模块波长锁定的控制装置, 其特征在于, 所述装置包括: 激光器管芯温度控制单元 , 用于获取激光器内部负温度系数热敏 电阻的反馈信号, 并将该反馈信号与一预设信号进行比较, 产生输入 至激光器内部热电制冷器的控制信号;
波长自动控制单元, 用于检测激光器的输出光信号, 获得用于实 现波长锁定的波长偏差信号; 及
叠加单元, 用于将所述波长偏差信号叠加到所述预设信号中, 并 送入至所述激光器管芯温度控制单元。
2. 根据权利要求 1所述的控制装置, 其特征在于, 所述波长自动控制单 元包括: 分光器、 背向光功率检测器、 滤波器、 光波长检测器、 以及 波长偏差信号生成单元;
激光器的输出光信号通过所述分光器分成两路光信号,一路光信 号通过所述背向光功率检测器转化为一正比于输出光信号功率大小的 第一背光电流信号; 另一路光信号依次通过所述滤波器、 光波长检测 器输出一用于反应输出光信号波长变化的第二背光电流信号;
所述波长偏差信号生成单元用于通过比较所述第一背光电流信 号和第二背光电流信号, 获得输出光信号的波长变化量, 根据该波长 变化量计算所述波长偏差信号。
3. 根据权利要求 2所述的控制装置, 其特征在于, 所述波长偏差信号生 成单元包括: 用于将所述第一背光电流信号转化为电压信号的第一跨 阻放大器, 用于将所述第二背光电流信号转化为电压信号的第二跨阻 放大器, 用于比较所述第一跨阻放大器和所述第二跨阻放大器输出结 果的误差放大器, 以及波长偏差算法控制器;
所述第一跨阻放大器的输出端连接所述误差放大器的一个输入 端 , 所述第二跨阻放大器的输出端连接所述误差放大器的另一个输入 端, 所述误差放大器输出用于表征波长变化量的误差电压信号, 并送 至所述波长偏差算法控制器的输入端, 所述波长偏差算法控制器用于 将所述误差电压信号转化为所述波长偏差信号。
4. 根据权利要求 3所述的控制装置, 其特征在于, 所述误差放大器包括: 积分电路单元以及两个调节反馈系数的数模转换单元;
所述积分电路的第一输入端连接所述第一跨阻放大器的输出端, 在所述积分电路单元的第一输入端与输出端之间串联有一个数模转换 单元,该数模转换单元用于接收一用于调节放大倍数的预设数字信号, 并利用所述积分电路单元的输出量将该预设数字信号转换为一负反馈 信号, 叠加到所述第一跨阻放大器输出的电压信号中;
所述积分电路的第二输入端连接所述第二跨阻放大器的输出端, 所述积分电路的第二输入端与一预设工作电压之间串联有另一个数模 转换单元, 该数模转换单元用于接收所述预设数字信号, 并利用所述 预设工作电压将该预设数字信号转换为一模拟量, 叠加到所述第二跨 阻放大器的输出电压信号中。
5. 根据权利要求 1、 2、 3或 4所述的控制装置, 其特征在于, 所述激光 器管芯温度控制单元包括: 误差放大单元、 补偿控制单元、 及热电制 冷器驱动器单元;
所述误差放大单元的一个输入端接收来自激光器内部负温度系 数热敏电阻的反馈信号, 所述误差放大单元的另一个输入端连接所述 叠加单元的输出端, 该误差放大单元用于将所述反馈信号与所述叠加 单元的输出结果进行比较, 输出差值送入到所述补偿控制单元中; 所述补偿控制单元用于依据所述差值, 通过调节温度控制闭环的 比例系数和积分系数, 输出用以控制激光器内部热电制冷器的控制命 令;
所述热电制冷器驱动器单元用于将所述控制命令进行功率放大, 输出用以驱动激光器内部的热电制冷器。
6. 一种实现光模块波长锁定的控制方法, 其特征在于, 所述控制方法包 括以下步骤:
A、 获取激光器内部负温度系数热敏电阻的反馈信号, 并将该反 馈信号与一预设信号进行比较, 产生输入至激光器内部热电制冷器的 控制信号 , 形成激光器管芯温度控制负反馈回路;
B、 检测激光器的输出光信号, 获得表征波长变化的波长偏差信 号; C、 将该波长偏差信号叠加到所述预设信号中, 使波长变化信息 添加到所述激光器管芯温度控制负反馈回路中 , 形成波长自动控制负 反馈回路。
7. 根据权利要求 6所述的控制方法, 其特征在于, 所述步骤 B中通过以 下步骤获得波长偏差信号:
Bl、 将激光器的输出光信号分成两路光信号, 一路光信号通过背 向光功率检测器转化为一正比于输出光信号功率大小的第一背光电流 信号; 另一路光信号依次通过滤波器、 光波长检测器输出一用于反应 输出光信号波长变化的第二背光电流信号;
B2、 通过比较所述第一背光电流信号和第二背光电流信号, 获得 输出光信号的波长变化量 ,才艮据该波长变化量计算所述波长偏差信号。
8. 根据权利要求 7所述的控制方法 , 其特征在于 , 所述步骤 B2包括以下 步骤:
B21、 通过第一跨阻放大器将所述第一背光电流信号转化为电压 信号,通过第二跨阻放大器将所述第二背光电流信号转化为电压信号;
B22、 比较所述第一跨阻放大器和所述第二跨阻放大器的输出结 果, 获得用于表征波长变化量的误差电压信号;
B23、 将所述误差电压信号转化为可叠加在所述预设信号中的所 述波长偏差信号。
PCT/CN2009/072797 2008-09-16 2009-07-16 实现光模块波长锁定的控制装置和方法 WO2010031275A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810216186.9 2008-09-16
CN2008102161869A CN101369713B (zh) 2008-09-16 2008-09-16 一种实现光模块波长锁定的控制装置和方法

Publications (1)

Publication Number Publication Date
WO2010031275A1 true WO2010031275A1 (zh) 2010-03-25

Family

ID=40413402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072797 WO2010031275A1 (zh) 2008-09-16 2009-07-16 实现光模块波长锁定的控制装置和方法

Country Status (2)

Country Link
CN (1) CN101369713B (zh)
WO (1) WO2010031275A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511029A (zh) * 2014-09-25 2016-04-20 青岛海信宽带多媒体技术有限公司 一种光模块及光模块中激光器波长偏移的调整方法、装置
CN105680953A (zh) * 2016-03-31 2016-06-15 青岛海信宽带多媒体技术有限公司 一种光模块启动方法及装置
CN106961308A (zh) * 2017-03-14 2017-07-18 武汉汉源光通信技术有限公司 光收发单元、光模块、光通信系统及相关参数控制方法
CN113410753A (zh) * 2021-06-10 2021-09-17 深圳市大族光通科技有限公司 可调激光器调节电路及调节系统
CN113639795A (zh) * 2021-08-09 2021-11-12 天津大学 原位监测控制光波导器件温度和光功率的系统和方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621178B (zh) * 2009-07-17 2010-11-10 北京大学 激光器自动锁模控制器
CN101888269B (zh) * 2010-04-15 2014-06-18 烽火通信科技股份有限公司 Wdm-tdma混合pon系统中光发送机在突发模式下稳定波长的方法
CN101867151B (zh) * 2010-07-08 2014-04-23 华中科技大学 一种无致冷半导体激光器波长随温度漂移的自动补偿电路
CN102014315B (zh) * 2010-09-15 2014-03-12 索尔思光电(成都)有限公司 一种用于光密集波分复用的波长快速稳定方法
CN103208739A (zh) * 2012-01-16 2013-07-17 昂纳信息技术(深圳)有限公司 一种波长锁定器及其波长锁定装置
CN103682971B (zh) * 2012-09-17 2016-05-25 华为技术有限公司 激光器波长锁定的方法及装置
CN103311802A (zh) * 2013-05-31 2013-09-18 华为技术有限公司 波长可调的激光输出方法和可调激光装置
CN105144623B (zh) * 2013-10-12 2017-12-22 华为技术有限公司 一种分光组件、频率监控装置及其监控方法
CN103887708A (zh) * 2014-03-04 2014-06-25 中国科学院上海光学精密机械研究所 具有功率监测的光纤耦合垂直腔面发射激光器
CN107024744A (zh) * 2016-01-29 2017-08-08 青岛海信宽带多媒体技术有限公司 一种光模块及波长监控方法
US10050405B2 (en) * 2016-04-19 2018-08-14 Lumentum Operations Llc Wavelength locker using multiple feedback curves to wavelength lock a beam
CN108476069B (zh) * 2016-04-28 2020-03-31 华为技术有限公司 一种光收发装置、波长控制系统和方法
CN109217097B (zh) * 2017-07-07 2022-05-13 中兴通讯股份有限公司 激光器波长控制方法及装置
CN111712980B (zh) 2018-02-14 2023-06-06 古河电气工业株式会社 光模块、其波长控制方法以及其校准方法
CN112859966A (zh) * 2019-11-27 2021-05-28 华中科技大学 一种光学器件参数锁定的集成闭环反馈pwm控制系统和方法
CN111756469B (zh) * 2020-06-09 2022-11-01 杭州兰特普光电子技术有限公司 光模块波长锁定的方法、光模块及dwdm网络
CN111949051B (zh) * 2020-07-27 2023-03-14 江西久盛国际电力工程有限公司 一种槽式定日镜场自动追日控制系统及方法
CN112821955B (zh) * 2020-12-23 2022-03-11 国家电网有限公司信息通信分公司 基于f-p标准具波长锁定器的波长快速锁定方法及系统
CN113113842B (zh) * 2021-03-22 2022-07-12 武汉光迅科技股份有限公司 光模块波长控制方法、装置及存储介质
CN113741590B (zh) * 2021-09-09 2023-03-28 江苏奥雷光电有限公司 一种硅光微环波长标定和锁定控制方法
CN115576372A (zh) * 2022-10-09 2023-01-06 国网江苏省电力有限公司电力科学研究院 提高半导体光源输出稳定性的双闭环控制装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400737B1 (en) * 1999-12-14 2002-06-04 Agere Systems Guardian Corp. Automatic closed-looped gain adjustment for a temperature tuned, wavelength stabilized laser source in a closed-loop feedback control system
US6804273B1 (en) * 2002-03-19 2004-10-12 Ciena Corporation Method and system for compensating a frequency stabilized optical source
JP2005085815A (ja) * 2003-09-04 2005-03-31 Mitsubishi Electric Corp 波長安定化装置
CN101017957A (zh) * 2007-02-09 2007-08-15 中国科学院上海光学精密机械研究所 稳定半导体激光器工作波长的装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400737B1 (en) * 1999-12-14 2002-06-04 Agere Systems Guardian Corp. Automatic closed-looped gain adjustment for a temperature tuned, wavelength stabilized laser source in a closed-loop feedback control system
US6804273B1 (en) * 2002-03-19 2004-10-12 Ciena Corporation Method and system for compensating a frequency stabilized optical source
JP2005085815A (ja) * 2003-09-04 2005-03-31 Mitsubishi Electric Corp 波長安定化装置
CN101017957A (zh) * 2007-02-09 2007-08-15 中国科学院上海光学精密机械研究所 稳定半导体激光器工作波长的装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511029A (zh) * 2014-09-25 2016-04-20 青岛海信宽带多媒体技术有限公司 一种光模块及光模块中激光器波长偏移的调整方法、装置
CN105511029B (zh) * 2014-09-25 2019-06-28 青岛海信宽带多媒体技术有限公司 一种光模块及光模块中激光器波长偏移的调整方法、装置
CN105680953A (zh) * 2016-03-31 2016-06-15 青岛海信宽带多媒体技术有限公司 一种光模块启动方法及装置
CN106961308A (zh) * 2017-03-14 2017-07-18 武汉汉源光通信技术有限公司 光收发单元、光模块、光通信系统及相关参数控制方法
CN106961308B (zh) * 2017-03-14 2023-09-12 武汉汉源光通信技术有限公司 光收发单元、光模块、光通信系统及相关参数控制方法
CN113410753A (zh) * 2021-06-10 2021-09-17 深圳市大族光通科技有限公司 可调激光器调节电路及调节系统
CN113639795A (zh) * 2021-08-09 2021-11-12 天津大学 原位监测控制光波导器件温度和光功率的系统和方法
CN113639795B (zh) * 2021-08-09 2023-10-27 天津大学 原位监测控制光波导器件温度和光功率的系统和方法

Also Published As

Publication number Publication date
CN101369713B (zh) 2011-07-13
CN101369713A (zh) 2009-02-18

Similar Documents

Publication Publication Date Title
WO2010031275A1 (zh) 实现光模块波长锁定的控制装置和方法
CN101592762B (zh) 一种光模块及其控制方法
JP5229163B2 (ja) 波長制御方法および光送信装置
EP0813272B1 (en) Wavelength-changeable light source capable of changing wavelength of output light, optical communication network using the same and wavelength control method for controlling wavelength of output light of the same
US6529534B1 (en) Wavelength controlling circuit for laser signal
CN108390724B (zh) 光模块的发射光功率调节方法、装置及光模块
CN112564802B (zh) 一种可调光模块及其全温锁波方法
CN109981180A (zh) 一种波长锁定光模块、装置和波长锁定方法
CN105762635B (zh) 一种可调光模块的波长控制装置及方法
KR20080050235A (ko) 광 세기 및 소광비 조절 장치 및 방법
EP1291988A1 (en) Frequency locking of multi-section laser diodes
WO2014205840A1 (zh) 一种监控光信号方法、信号监测装置和光网络系统
JP2001196689A (ja) レーザ波長を安定させる方法および装置
JP3737383B2 (ja) 半導体レーザモジュール試験装置および半導体レーザモジュール試験方法
WO2016169007A1 (zh) 一种波长锁定器、波长锁定方法和装置
EP1167943A2 (en) Detecting aging of optical components
JP2002537662A (ja) 同調可能なレーザーの波長をロックし、モードをモニタする方法
WO2023035775A1 (zh) 波长锁定器、可调激光器及波长锁定控制方法
CN103235629B (zh) 实现输出功率自动调节控制电路结构及其方法
CN109921849B (zh) 用于优化光通信系统的传输性能的控制装置及方法
CN115173937B (zh) 一种自动调测锁定光模块波长的方法与装置
JP4570318B2 (ja) 発光制御方法およびその装置
JP2006005531A (ja) 多チャンネル光送信装置
CN114204411B (zh) 一种激光设备
WO2003081812A1 (en) Stabilizing optical sources in a communication system___________

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09813996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09813996

Country of ref document: EP

Kind code of ref document: A1